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On noncooperative games and minimax theory

J.B.G.Frenk∗

G.Kassay†

May 26, 2005

Abstract

In this note we review some known minimax theorems with appli-
cations in game theory and show that these results form an equivalent
chain which includes the strong separation result in finite dimensional
spaces between two disjoint closed convex sets of which one is com-
pact. By simplifying the proofs we intend to make the results more
accessible to researchers not familiar with minimax or noncooperative
game theory.

1 Introduction

In a two person noncooperative zero sum game one faces the following prob-
lem. Let X be the set of actions of player 1 and Y the set of actions of player
2. If player 1 chooses action x ∈ X and player 2 chooses action y ∈ Y , then
player 2 has to pay to player 1 an amount f(x, y) with f : X × Y → R

a given function. This function is called the payoff function of player 1.
Since player 1 likes to gain as much profit as possible, but at the moment
he does not know how to achieve this, he first decides to compute a lower
bound on his profit. To do this, player 1 argues as follows : if he chooses
action x ∈ X, then he wins at least infy∈Y f(x, y) irrespective of the action
of player 2. Therefore a lower bound on the profit for player 1 is given by

r∗ := supx∈X infy∈Y f(x, y). (1)
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Similarly player 2 likes to minimize his losses. Therefore, he also decides to
compute first an upper bound on his losses. If he decides to choose action
y ∈ Y it follows that he loses at most supx∈X f(x, y) and this is independent
of the action of player 1. Therefore an upper bound on his losses is given by

r∗ := infy∈Y supx∈X f(x, y). (2)

Since the profit of player 1 is at least r∗ and the losses of player 2 is at most
r∗ and the losses of player 2 are the profits of player 1, it follows that r∗ ≤ r∗.
If r∗ = r∗, then this equality is called a minimax result. If additionally inf
and sup are attained, an optimal action for both players can then be easily
derived. However, in general r∗ < r∗, as the following example shows.

Example 1.1 Let f : [0, 1]× [0, 1]→ R given by f(x, y) = (x−y)2. For this
function it holds 0 = r∗ < r∗ = 1

4 . For this example it is not obvious which
actions should be selected by the two players.

By extending the sets of actions of each player, it is possible to show
under certain conditions that the extended game satisfies a minimax result.
In the next definition we introduce the set of mixed strategies.

Definition 1.1 For a nonempty set D of actions and d ∈ D let εd denote
the one-point probability measure concentrated on the set {d} and denote by
F(D) the set of all probability measures on D with a finite support.

Introducing the unit simplex ∆k := {α :
∑k

i=1 αi = 1, αi ≥ 0, 1 ≤ i ≤ k},
it follows by Definition 1.1 that λ belongs to the set F(D) if and only if there
exist some k ∈ N and a set {d1, ..., dk} ⊆ D such that

λ =
∑k

i=1
λiεdi , (λ1, ..., λk) ∈ ∆k and λi ≥ 0.

A game theoretic interpretation of a mixed strategy λ ∈ F(D) is now given
by the following. If a player with action set D selects the mixed strategy
λ =

∑k
i=1 λiεdi ∈ F(D), then with probability λi, 1 ≤ i ≤ k this player will

use action di ∈ D. By the above definition it is clear that the action set D of
any player can be identified with the set of one-point probability measures;
therefore the set D is often called the set of pure strategies for that player.
Assume that player 1 uses the set F(X) of mixed strategies and the same
holds for player 2 using the set F(Y ). This means that the payoff function
f should be extended to a function fe : F(X)×F(Y )→ R given by

fe(λ, µ) :=
∑m

i=1

∑n

j=1
λiµjf(xi, yj) (3)
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with λ =
∑m

i=1 λiεxi ∈ F(X) and µ =
∑n

j=1 µjεyj ∈ F(Y ). This extension
represents the expected profit for player 1 or expected loss of player 2.

In [3] the authors showed that several well known minimax theorems form
an equivalent chain and this chain includes the strong separation result in
finite dimensional spaces between two disjoint convex sets of which one is
closed and the other compact. By reducing the number of results in this
equivalent chain and by giving more transparent and simpler proofs, we
intend to make the results more accessible to researchers not familiar with
minimax or noncooperative game theory.

The first minimax result was proved in a famous paper by von Neumann
(cf.[6]) in 1928 for X and Y unit simplices in finite dimensional vector spaces
and f affine in both variables. Later on, the conditions on the function f
were weakened and more general sets X and Y were considered. These
results turned out to be useful also in optimization theory (see for instance
[2]) and were derived by means of short or long proofs using a version of the
Hahn Banach theorem in either finite or infinite dimensional vector spaces.
With von Neumann’s result as a starting point, we will show that several
of these so-called generalizations published in the literature can be derived
from each other using only elementary observations. Before introducing this
chain of equivalent minimax results we need the following notations. The
set F2(X) ⊆ F(X) denotes the set of two-point probability measures on X.
This means that λ belongs to F2(X) if and only if

λ = λ1εx1 + (1− λ1)εx2 (4)

with xi, 1 ≤ i ≤ 2 different elements of X and 0 < λ1 < 1 arbitrarily chosen.
Also, for each 0 < α < 1 the set F2,α(X) represents the set of two point
probability measures with λ1 = α in relation (4). On the set Y similar
spaces of probability measures with finite support are introduced.

2 Equivalent minimax results

To start in a chronological order we first mention the famous von Neumann’s
minimax result (cf.[6]).

Theorem 2.1 (von Neumann, 1928). If X and Y are finite sets, then it
follows that

maxλ∈F(X) minµ∈F(Y ) fe(λ, µ) = minµ∈F(Y ) maxλ∈F(X) fe(λ, µ).
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A generalization of Theorem 2.1 due to Wald [7]) and published in 1945
is given by the next result. This result plays a fundamental role in the
theory of statistical decision functions. While in case of Theorem 2.1 the
action sets of players 1 and 2 are finite, this condition is relaxed in Wald’s
theorem claiming that only one set should be finite.

Theorem 2.2 (Wald, 1945). If X is an arbitrary nonempty set and Y is
a finite set, then it follows that

supλ∈F(X) minµ∈F(Y ) fe(λ, µ) = minµ∈F(Y ) supλ∈F(X) fe(λ, µ).

In order to prove Wald’s theorem by von Neumann’s theorem, we first
need the following elementary lemma. For its proof, see for instance [3].
Recall a function is lower semicontinuous if all its upper level sets are closed.
For every set D let < D > be the set of all finite subsets of D.

Lemma 2.1 If the set X is compact and the function h : X × Y → R is
upper semicontinuous on X for every y ∈ Y , then maxx∈X infy∈Y h(x, y) is
well defined and

maxx∈X infy∈Y h(x, y) = infY0∈<Y > maxx∈X miny∈Y0 h(x, y).

Since for every µ ∈ F(Y ) and J ⊆ X it is easy to see that

supλ∈F(J) fe(λ, µ) = supx∈J fe(εx, µ), (5)

we are now ready to derive Wald’s minimax result from von Neumann’s
minimax result. Observe Wald (cf.[7]) uses in his paper von Neumann’s
minimax result and the Lebesgue dominated convergence theorem.

Theorem 2.3 von Neumann’s minimax result ⇒ Wald’s minimax result.

Proof: If α := supλ∈F(X) minµ∈F(Y ) fe(λ, µ) then clearly

α = supJ∈<X> maxλ∈F(J) minµ∈F(Y ) fe(λ, µ). (6)

Since the set Y is finite we may apply von Neumann’s minimax result in
relation (6) and this implies in combination with relation (5) that

α = supJ∈<X> minµ∈F(Y ) maxλ∈F(J) fe(λ, µ) (7)

= supJ∈<X> minµ∈F(Y ) maxx∈J fe(εx, µ)

= − infJ∈<X> maxµ∈F(Y ) minx∈J(−fe(εx, µ)).
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The finiteness of the set Y also implies that the set F(Y ) is compact and
the function µ → fe(εx, µ) is continuous on F(Y ) for every x ∈ X. This
shows in relation (7) that we may apply Lemma 2.1 with the set X replaced
by F(Y ), Y by X and h(x, y) by −fe(εx, µ) and so it follows that

α = minµ∈F(Y ) supx∈X fe(εx, µ). (8)

Finally by relation (5) with J replaced by X the desired result follows from
relation (8).

In 1996 Kassay and Kolumbán (cf.[4]) introduced the following class of
functions.

Definition 2.1 The function f : X × Y → R is called weakly concavelike
on X if for every I belonging to < Y > it follows that

supλ∈F(X) miny∈I fe(λ, εy) ≤ supx∈X miny∈I f(x, y).

Since εx belongs to F(X) it is easy to see that f is weakly concavelike
on X if and only if for every I ∈ < Y > it follows that

supλ∈F(X) miny∈I fe(λ, εy) = supx∈X miny∈I f(x, y)

and this equality also has an obvious interpretation within game theory.
The main result of Kassay and Kolumbán is given by the following theorem
(cf.[4]).

Theorem 2.4 (Kassay-Kolumbán, 1996). If X is a compact subset of a
topological space and the function f : X ×Y → R is weakly concavelike and
upper semicontinuous on X for every y ∈ Y , then it follows that

infµ∈F(Y ) maxx∈X fe(εx, µ) = maxx∈X infy∈Y fe(x, y).

At first sight this result might not be recognized as a minimax result.
However, it is easy to verify for every x ∈ X that

infy∈Y f(x, y) = infµ∈F(Y ) fe(εx, µ). (9)

By relation (9) an equivalent formulation of Theorem 2.4 is now given by

infµ∈F(Y ) maxx∈X fe(εx, µ) = maxx∈X infµ∈F(Y ) fe(εx, µ),

and so the result of Kassay and Kolumban is actually a minimax result.
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We now give an elementary proof for Theorem 2.4 using Wald’s minimax
theorem.
Proof: Let α = infµ∈F(Y ) maxx∈X fe(εx, µ), β = maxx∈X infµ∈F(Y ) fe(εx, µ)
and suppose by contradiction that α > β. (The inequality β ≤ α always
holds.) Let γ so that α > γ > β. Then by relation (9) and Lemma 2.1 we
have

γ > β = maxx∈X infy∈Y f(x, y) = infY0∈<Y > maxx∈X miny∈Y0 f(x, y).

Therefore, there exists a finite subset Y0 ∈< Y > such that

maxx∈X miny∈Y0 f(x, y) < γ

and this implies by weak concavelikeness that

supλ∈F(X) miny∈Y0 fe(λ, εy) < γ. (10)

Similarly to relation (9), it is easy to see that for every λ ∈ F(X) and
every µ ∈ F(Y ) the relations

infµ∈F(Y0) fe(λ, µ) = miny∈Y0 fe(λ, εy)

and

supλ∈F(X) fe(λ, µ) = maxx∈X fe(εx, µ)

hold, and these together with (10) and Wald’s theorem imply

α > γ > supλ∈F(X) infµ∈F(Y0) fe(λ, µ) = infµ∈F(Y0) supλ∈F(X) fe(λ, µ)

≥ infµ∈F(Y ) supλ∈F(X) fe(λ, µ) = infµ∈F(Y ) maxx∈X fe(εx, µ) = α,

a contradiction. This completes the proof.

In 1952 Kneser (cf.[5]) proved a general minimax result useful in game
theory. Its proof is ingenious and very elementary and uses only some sim-
ple computations and the well-known result that any upper semicontinuous
function attains its maximum on a compact set.
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Theorem 2.5 (Kneser, 1952). If X is a nonempty convex compact subset
of a topological vector space and Y is a nonempty convex subset of a vector
space and the function f : X × Y → R is affine in both variables and upper
semicontinuous on X for every y ∈ Y , then it follows that

maxx∈X infy∈Y f(x, y) = infy∈Y maxx∈X f(x, y). (11)

One year later, generalizing the proof and result of Kneser, Ky Fan
(cf.[1]) published his celebrated minimax result. To show his result Ky Fan
introduced the following class of functions which we call Ky Fan convex (Ky
Fan concave) functions.

Definition 2.2 The function f : X × Y → R is called Ky Fan concave on
X if for every λ ∈ F2(X) there exists some x0 ∈ X satisfying

fe(λ, εy) ≤ f(x0, y)

for every y ∈ Y. The function f : X × Y → R is called Ky Fan convex on Y
if for every µ ∈ F2(Y ) there exists some y0 ∈ Y satisfying

fe(εx, µ) ≥ f(x, y0)

for every x ∈ X. Finally, the function f : X × Y → R is called Ky Fan
concave-convex on X × Y if f is Ky Fan concave on X and Ky Fan convex
on Y.

By induction it is easy to show that one can replace in the above def-
inition F2(X) and F2(Y ) by F(X) and F(Y ). Although rather technical,
the above concept has a clear interpretation in game theory. It means that
the payoff function f has the property that any arbitrary mixed strategy is
dominated by a pure strategy. Eliminating the linear structure in Kneser’s
proof Ky Fan (cf.[1]) showed the following result.

Theorem 2.6 (Ky Fan, 1953). If X is a compact subset of a topological
space and the function f : X × Y → R is Ky Fan concave-convex on X × Y
and upper semicontinuous on X for every y ∈ Y , then it follows that

maxx∈X infy∈Y f(x, y) = infy∈Y maxx∈X f(x, y).

In what follows we show that Ky Fan’s minimax theorem can easily be
proved by Kassay-Kolumbán’s result. Indeed, it is easy to see that every Ky
Fan concave function on X is also weakly concavelike on X. By Theorem
2.4 and relation (9) it follows that
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maxx∈X infy∈Y f(x, y) = infµ∈F(Y ) maxx∈X fe(εx, µ). (12)

Also, since f is Ky Fan convex on Y , for every µ ∈ F(Y ) there exists
y0 ∈ Y such that fe(εx, µ) ≥ f(x, y0) for every x ∈ X. Thus,

maxx∈X fe(εx, µ) ≥ maxx∈X f(x, y0) ≥ infy∈Y maxx∈X f(x, y)

implying that

infµ∈F(Y ) maxx∈X fe(εx, µ) ≥ infy∈Y maxx∈X f(x, y)

and this, together with (12) leads to

maxx∈X infy∈Y f(x, y) ≥ infy∈Y maxx∈X f(x, y).

Since the reverse inequality always holds, we have equality in the last
relation and the proof is complete.

We show now that the following well-known strong separation result in
convex analysis can easily be proved by Kneser’s minimax theorem.

Theorem 2.7 If X ⊆ Rn is a closed convex set and Y ⊆ Rn a compact
convex set and the intersection of X and Y is empty, then there exists some
s0 ∈ Rn satisfying

sup{s>0 x : x ∈ X} < inf{s>0 y : y ∈ Y }.

Proof: Since X ⊆ Rn is a closed convex set and Y ⊆ Rn is a compact convex
set we obtain that H := X − Y is a closed convex set. It is now easy to see
that the strong separation result as given in Theorem 2.7 holds if and only
if there exists some s0 ∈ Rn satisfying σH(s0) := sup{s>0 x : x ∈ H} < 0. To
verify this, we assume by contradiction that σH(s) ≥ 0 for every s ∈ Rn. This
clearly implies σH(s) ≥ 0 for every s belonging to the compact Euclidean
unit ball E and applying Kneser’s minimax result we obtain

suph∈H infs∈E s>h = infs∈E suph∈H s
>h ≥ 0. (13)

Since by assumption the intersection of X and Y is nonempty, we obtain
that 0 does not belong to H := X−Y and this implies using H is closed that
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infh∈H ‖h‖ > 0. By this observation we obtain for every h ∈ H that−h‖h‖−1

belongs to E and so for every h ∈ H it follows that infs∈E s>h ≤ −‖h‖. This
implies that

suph∈H infs∈E s>h ≤ suph∈H −‖h‖ = − infh∈H ‖h‖ < 0

and we obtain a contradiction with relation (13). Hence there must exist
some s0 ∈ Rn satisfying σH(s0) < 0 and we are done.

Observe that without loss of generality one may suppose that the vec-
tor s0 in Theorem 2.7 belongs to ∆n (the unit simplex in Rn). An easy
consequence of Theorem 2.7 is the following result.

Lemma 2.2 If C ⊆ Rn is a convex compact set, then it follows that

infu∈C maxα∈∆n α
>u = maxα∈∆n infu∈C α>u.

Proof: It is obvious that

infu∈C maxα∈∆n α
>u ≥ maxα∈∆n infu∈C α>u. (14)

To show the reverse inequality, we assume by contradiction that

infu∈C maxα∈∆n α
>u > maxα∈∆n infu∈C α>u := γ. (15)

Let e be the vector (1, ...., 1) in Rn and introduce the mapping H : C → R
n

given by H(u) := u− βe with β satisfying

infu∈C maxα∈∆n α
>u > β > γ (16)

If we assume that H(C) ∩ Rn− is nonempty, then there exists some u0 ∈ C
satisfying u0 − βe ≤ 0. This implies maxα∈∆n α

>u0 ≤ β and we obtain a
contradiction with relation (16). Therefore H(C)∩Rn− is empty. Since H(C)
is convex and compact and Rn− is closed and convex, we may apply Theorem
2.7. Hence one can find some α0 ∈ ∆n satisfying α>0 u − β ≥ 0 for every
u ∈ C and using also the definition of γ listed in relation (15) this implies
that

γ ≥ infu∈C α>0 u ≥ β.

Hence we obtain a contradiction with relation (16) and the desired result is
proved.

Finally we show that von Neumann’s minimax theorem (Theorem 2.1) is
an easy consequence of Lemma 2.2. In this way we close the equivalent chain
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of results considered in this note. Indeed, let m := card(X) and introduce
the mapping L : F(Y )→ R

m given by

L(µ) := (fe(εx, µ))x∈X .

It is easy to see that the range L(F(Y )) ⊆ Rm is a convex compact set.
Applying now Lemma 2.2 yields

infµ∈F(Y ) maxλ∈F(X) fe(λ, µ) = infu∈L(F(Y )) maxα∈∆m α
>u

= maxα∈∆m infu∈L(F(Y )) α
>u

= maxλ∈F(X) infµ∈F(Y ) fe(λ, µ),

which completes the proof.

As we have seen, the equivalent minimax results presented here corre-
sponds to different zero-sum games with different action sets. From our
technique it follows that finite pure action sets and compact pure action
sets are not really ”far apart”.
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