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Abstract In this paper we will show that the closely K-convexlike vector-valued functions with

K R™a nonempty convex cone and related classes of vector-valued functions discussed

in the literature arise naturally within the theory of biconjugate functions applied to the
Lagrangian perturbation scheme in finite dimensional optimization. For these classes of
vectorvalued functions an equivalent characterization of the dual objective function associated
with the Lagrangian is derived by means of a dual representation of the relative interior of a
convex cone. It turns out that these characterizations are strongly related to the closely
convexlike and Ky-Fan convex hifunctions occurring within minimax problems. Also it is shown
for a general class of finite dimensional optimization problems that strong Lagrangian duality
holds in case a vector-valued function related to the functions in this optimization problem is
closely K-convexlike and satisfies some additional regularity condition.
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Abstract

In this paper we will show that the closely-convexlike vector-valued functions with
K C R™ anonempty convex cone and related classes of vector-valued functions discussed
in the literature arise naturally within the theory of biconjugate functions applied to the La-
grangian perturbation scheme in finite dimensional optimization. For these classes of vector-
valued functions an equivalent characterization of the dual objective function associated with
the Lagrangian is derived by means of a dual representation of the relative interior of a convex
cone. It turns out that these characterizations are strongly related to the closely convexlike
and Ky-Fan convex bifunctions occurring within minimax problems. Also it is shown for a
general class of finite dimensional optimization problems that strong Lagrangian duality holds
in case a vector-valued function related to the functions in this optimization problem is closely
K-convexlike and satisfies some additional regularity condition.

1 Introduction.

For D a nonempty set of a vector spadelet f : D — R be some real-valued function and
F: D — R™ some vector-valued function. Consider now the optimization problem

v(P) :=inf{f(z) : 2 € F} (P)

with nonempty feasible regio# := {x € D : F(z) € —K} and K C R™ a proper convex
cone. It is well-known that one can associate with the above so-called primal proBlethe
Lagrangian dual optimization problef®) given by

v(D) :=sup{f(\) : A € K*}. (D)

In the optimization problem/p) the nonempty sek™* := {\ € R™ : X'y > 0 for everyy € K}
denotes the dual cone &f andf : K* — [—o0, c0) is the Lagrangian function given by

O(\) := inf{f(z) + \"F(z) : z € D}.

It can be shown relatively easy thatP) > v(D) (weak duality) and an important theoretical is-
sue in optimization theory is to determine under which conditions on the functioii/ggfy one
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actually has that(D) equalsv(P) and additionally the dual probleniX) has an optimal solution.

It is well-known (cf.[17]) that this holds under convexity conditions(df f) in combination with

some regularity assumption on the feasible regfoknown as thegeneralized Slater condition.
These conditions are sufficient and imply that the value fungtiohthe Lagrangian perturbation
problem with perturbation spadé (cf.[17], [18]) associated with the optimization probl€iR)

is a convex function orY. By generalizing in the first part of Sectidhsome classical convex-

ity results used within this perturbation approach it is shown in the second part of S¢hiah
strong Lagrangian duality holds under weaker sufficient conditions ¢mparticular, strong La-
grangian duality holds if the lower semicontinuous ipuif p is convex in combination with some
regularity conditions. Also it is verified that the functipris convex if and only if some vector-
valued function related to the function pdiF, f) is closely convexlike. By these observations

the connection between cone convexlike vector-valued functions and Lagrangian strong duality
is established.. Due to this we start in Sectiowith an overview on some of the different cone
convexlike vector-valued functions discussed in the literature (see for example [21], [9], [10], [16],
[13], [1], [5], [14]). Observe these functions are given various names and in most of the literature
(contrary to this paper and [5]) it is assumed that the associated cone has a nonempty interior. At
the end of Sectior? we also translate the different cone convexlike properties of vector-valued
functions to properties of real-valued bifunctions. In particular;#0¢ )-convexlike and closely
K-convexlike vector-valued functions these results seem to be new. Finally, in Sgetieffirst

extend some of the classical convexity results known within the literature (see for example [17]
or [6]) and, as already mentioned, apply these results in the second part of this section to the
Lagrangian perturbation scheme of Rockafellar. In particular, we will derive strong Lagrangian
duality results under weaker cone convexlike properties of some vector-valued function related to
the primal optimization problemH).

Instead of the perturbation approach of Rockafellar to derive Lagrangian duality results one
could also have used the so-called image space approach first considered by Giannessi (cf.[8]). In
this approach one shows that the intersection of a convex set and a certain convex conic extension
of the image of a vector-valued function related to the original optimization prokins @mpty.

Such an approach can be found in the already mentioned paper of Giannessi and for a recent
example of this approach to so-called parametric generalized systems the reader is referred to [14].
Observe in [14] a general parametric system is considered where the image space is a topological
linear space. Using the image space approach it is shown that under certain cone convexity-type
conditions these systems satisfy a theorem of the alternative. It is well known that the Lagrangian
duality model can also be put into this framework (cf.[5]) and so it is in principle possible to derive
similar results using the image space approach. However, in [14] the authors do not consider the
finite dimensional case in detail. In particular, by the infinite dimensionality of the image space

it is assumed in [14] that the cone under consideration has a nonempty interior. In this paper the
image space is finite dimensional and this means that we do not need to assume that the cone under
consideration has a nonempty interior. This enables us to derive stronger results for our particular
case.

2 On cone convexlike vector-valued functions.

In this section we first discuss some elementary properties of thes'set& with K € R™ a
nonempty proper convex cone afd_ R™ arbitrary. These properties will be used at the end of
this section to discuss relations between various known classes of cone convexlike vector-valued



functions. Also we will investigate the relation between cone convexlike vector-valued functions
and several classes of real-valued bifunctions considered within the minimax literature (cf.[7]). To
start with our discussion we first recall some well-known concepts. A nonempfy setR™ is

called a cone ivK C K for everya > 0 and it is called convex i&eK + (1 — a) K C K for
every0 < a < 1 (cf.[17], [6]). Contrary to some authors it is not assumed that the zero element
belongs to a cone. We now list some elementary properties of thé& set&”. Since for a convex
setK it holds thata K + (1 — o) K = K for every0 < a < 1, it is obvious that

S+ Kconvex<=aS+(1—a)S+KCS+Kfor0<a<l. (1)

Also it is well-known (cf.[17]) that the setsi(K') andcl(K) are again nonempty convex cones,
whereri denotes the relative interior antithe closure operator. This implies that relation (1) also
holds with K replaced byi(K) or c/(K). To verify an equivalent characterization@fS + K)
convex we first observe (cf.[5]) that(S + cl(K)) = cl(S + ri(K)). This shows

c(S+cl(K)) =cl(S+ K) = cl(S + ri(K)). 2

Applying the first equality in relation (2) an@ € cl(K), it follows thatS C ¢l(S + K). Also
for cl(S + K') convex it is obvious that(S + K) + (1 — «)(S + K) C cl(S + K) for every
0 < a < 1. Using these two observations one can show by standard arguments that

c(S+ K) convex<= aS+ (1 —a)S Cc(S+ K)for0 < a < 1. (3)
Moreover, by relations (1) and (2) the following inclusions are easy to show (cf.[5], [14])
S + K convex=- S + ri(K) convex=- cl(S + K) convex. 4)

For arbitrary convex cones” C R™ the implications in relation (4) are strict (cf.[5]). However,
under some additional assumption on the $etgnd K one can show that the last implication in
relation (4) can actually be reversed. To prove this we need to verify a technical result. This is
shown in the Appendix. Recall that the $et(S) represents the linear hull ¢f, while the set

af f(S) denotes the affine hull & (cf.[6]).

Lemma 1 For K C R™ a nonempty convex cone afdC R™ a set satisfying C ¢ + lin(K)
for somezy € af f(S), it follows

S + ri(K) convex<> cl(S + K) convex.

Proof. By relation (4) we only have to verify thaf(S + K) convex impliesS + ri(K) convex.
By Theorem 27 it follows thati(cl(S + K)) = S + ri(K), and since the relative interior of a
convex set is again convex, the result follows. O

In the definition of a cone we did not assume that the zero element belongs to this cone. How-
ever, in many specific cones occurring within finite dimensional optimization the zero element is
included. It is now natural to investigate whether this additional assumption enables us to improve
the above results. If we consider relation (1) this is indeed the case and we obtain

S+ Kconvex<=aS+(1-—a)SCS+Kfor0<a<1 (5)

for any convex conds containing0. Although relation (5) is listed for convex cones belonging
to R™ one can verify the same relation by exactly the same proof for cones belonging to a vector
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spaceX. This observation will be useful in verifying relation (11) below. As shown by the follow-
ing example the conditiod € K is essential in relation (5). Note th&t, := int(R") for any
m € N with int denoting the interior an®’" the positive orthant aR™.

Example 2 Consider the convex sst= [0,2] x {0} C R?. For this set it follows thas + R?
equalsR? , and for every0 < a < 1the setS + (1 — a)S = S'is not included inS + R? ..
This shows that the conditiane K cannot be omitted in relation (5).

If K is a convex cone containir@one can show the following improvement of relation (4).
Lemma 3 For K C R™ a convex cone containim@andS € R™ it follows
S + K convex= S + cl(K) convex=- S + ri(K) convex.

Proof. If S + K is convex and € K, it follows by relation (5) thatvS + (1 —a)S C S+ K C
S + cl(K) for every0 < o < 1. This implies again by relation (5) tha&t+ cl(K) is convex. If
S+cl(K) is convex, then similarlwS+(1—«)S C S+l (K) and using:l(K)+ri(K) C ri(K)
we obtain

aS+(1—a)S+ri(K)CS+cd(K)+ri(K)CS+ri(K)

for every0 < o < 1. Applying the observation after relation (1) yields+ ri(K) is convex. O

The following example shows that in general the first and second implication in Lemma 3 are
strict implications.

Example 4 To show that the first implication of Lemma 3 is strict fét:= R% | U {0} and
S :={(1,0),(2,0)}. For these sets it follows that + K is not convex and + c/(K) is convex.
To verify that the second implication of Lemma 3 is strict,Aet= {(s,t) : t > s > 0} and
S :={(s,0) : s € Q}. For these sets we obtain th&t+ ri(K) is convex, while5 + c/(K) is not
convex.

Within the considered chain of implications it is clear that the improvement of Lemma 3 over
relation (4) is given by the intermediate res$ilt- c/(K') convex. It is now natural to ask whether
S+ cl(K) convex also holds without the additional assumption fia@ontainsd. The first part of
the following example yields a negative answer. Similarly, one can present a conveX ook
containing0 satisfyingS + cl(K) is convex, whileS + K is not convex. This shows in particular
for convex coneds not containing that the propertie§ + K convex andS + cl(K') convex are
not related.

Example 5 To show an example of a sgtand a convex con& not containingd satisfyingS + K
is convex and + cl(K) is not convex, lef{ := {(s,t) : t > s > 0} andS := {(s,0) : s € Q}.
Clearly 0 does not belong td< and the setS + K is convex, while the sef + c/(K) is not
convex. To show an example of a Sedind a convex con& not containing0 satisfyingS + K
is not convex and’ + cl(K) is convex letk := {(s,0,0) : s > 0} U {(s,t,u) : uw > 0} and
S :={(0,0,0),(0,1,0)}. It is easy to verify that is a convex cone an@l does not belong to
K. Since(1,0,0) and (1,1,0) do belong toS + K but (1, ,0) does not, the se + K is not
convex The setl(K) is now given by (s, u,t) : u > 0} and soS + cl(K) = cl(K) showing that
S + cl(K) is convex.



We will now apply the above elementary results for sets K to the different classes of cone
convexlike vector-valued functions discussed in the literature (for a survey see [5]). Recall for a
nonempty proper convex corf€ that the transitive ordering <x x is defined byx — y € K.

Note that this ordering is a partial ordering (cf.[19]) if the cdkiés pointed, i.eK N —K = {0}.
The epigraph epi(F') of a vector-valued functiod’ : D — R™, whereD is a subset of a vector
spaceX, with respect to this ordering is given by

epix(F):={(z,r):x €D, F(z) <gr} C D xR™

To list some useful relations we introduce the functiégn: D — D x R™ given by Fy(x) :=
(z, F(z)) and associate with the convex coReC R™ the convex cond(, := {Ox} x K C
X x R™ with 0x denoting the zero element of the vector spAcdt is easy to see that

epix (F) = Fo(D) + Ko, (6)

with G(D) := {G(z) : * € D} the range of a vector-valued functi@gn. Moreover, for the
projectionA : D x R™ — R™ given by A(z, r) = r it follows that

A(epiy (F)) = F(D) + K. )

The next definition introduces some classes of cone convexlike vector-valued functions used within
the literature (see for example [5] or [14]).

Definition 6 Let K C R™ be a nonempty convex cone. The vector-valued funétiod — R™
is called K-convex if the set eRi(F') is convex. It is calledk-convexlike, respectively closely
K-convexlike, if the set’'(D) + K, respectively:l(F (D) + K) is convex.

For each of the above function classes it is easy to show that they are closed under addition
and multiplication with a positive scalar. This means that each class of functions is a convex cone
itself. In the literature ai(K')-convexlike function is also calleff -subconvexlike (cf.[10], [5],

[1]). To show the implications of the results derived for the setsK with K a nonempty convex
cone we first consider the class &Fconvex functions. Since for any convex calieC R™ it is
well-known thatri(Ky) = ri({0x} x K) = {0x} x ri(K) andri(K) is a nonempty convex
cone, we obtain by relation (6) and the first implication in relation (4) that

F'is K-convex = F'is ri(K)-convex. (8)

In the next example it is shown that the setfofconvex functions is strictly included in the set of
ri(K)-convex functions.

Example 7 Let K = R? , U {0} and consider the vector-valued functiéh: R? — R? given by

Fz) = (0,0) forz e R xRy
' (1,0) otherwise.

It is clear that epi; k) (F) = R? x R? and soF is ri(K)-convex. Suppose now thatis also
K-convex and consider the vectars;, ;) € R*,i = 1,2 with 2; := (1,4), 22 := (1,-2),
r1 = (0,0) andry = (1, 0). Since0 belongs tak we obtain that both vectors belong to gF")
and this implies by the convexity of gfiF') that

271($1,T1) + 271(I2,T2) = (1, 1, 271,0) S ele(F) 9)

By relation (9) it follows that2~!,0) € K + F(1,1) = K and we obtain a contradiction. Hence
Fis not K-convex.



In Example 7 the con& is not closed. However, foK closed one can give an improvement
of relation (8) As shown by the next theorem the sets-&fK’)-convex andik'-convex functions
coincide forK a closed convex cone.

Theorem 8 For ' : D — R™ a vector-valued function an® C R™ a closed convex cone it
follows that
F'is K-convex <= F is ri(K)-convex.

Proof. By relation (8) we have to verify that amy( K )-convex function is alsé -convex. Suppose
the vector-valued functiod’ is ri(K)-convex and consider sonte;,r;) € epig(F),i = 1,2.
This implies by definition that; — F'(z;) € K and for a fixedky € ri(K) and arbitraryn € N
we obtain

ri +n"tho — F(x;) € d(K) +n" ko C ri(K).

This shows that the vectdr;, 7; +n~'ko),i = 1,2 belongs to eRi ) (F') and since epi ) (F)
is convex it follows for every) < o < 1 thatax; + (1 — «)z2 € D and

ary + (1 —a)rg +n kg — Faz; + (1 — a)xs) € ri(K). (10)
Lettingn T oo in relation (10) we obtain
ary + (1 — a)ro +n kg — Flaz; + (1 — a)xs) € d(ri(K)).

This shows usingl(ri(K)) = cl(K) = K andax; + (1 — a)xy € D that the set epi(F) is
convex. 0

As already observed, it is mostly assumed in the literature (see for example [2]) that the convex
coneK contains0. If this additional condition holds another equivalent definition df a&onvex
function can be given. This definition is frequently encountered within the literature (see for
example [2]) and resembles the classical definition of a convex function. Applying relation (5)
and (6) yields

Fis K-convex<=> D is convex and*'(ax1 + (1 — a)xs) <x aF(r1) + (1 — a)F(x2) (11)

for any convex conds containing0. Next we discuss convexlike functions with respeckioWe
observe by relation (1) that

F'is K-convexlike<= aF (D) + (1 —a)F(D)+ K C F(D)+ K (12)
for every0 < « < 1. If additionally the zero element belongs it follows by relation (5) that
F'is K-convexlike<= aF (D) + (1 — a)F(D) C F(D) + K (13)
for every0 < o < 1. Similarly by the observation after relation (1) we obtain
Fisri(K)-convexlike <= F (D) + (1 —a)F(D) +ri(K) C F(D) +ri(K)  (14)
for every0 < a < 1 and by relation (3) that

F is closelyK-convexlike<= aF (D) + (1 — a)F(D) C cl(F(D) + K) (15)



for every0 < a < 1. Finally we obtain by relations (4) and (7) that the following implications
hold (cv denotes an abbreviation for convex and the symbols stand for the whole class of functions
having the corresponding property)

K-cv C K-cvlike C ri(K)-cvlike C closely K -cvlike.

It can be shown (cf.[5]) that the above inclusions are strict. Finally, we mentioR far R and
F : D — R™ satisfyingF'(D) C xo + lin(K) for somex, € af f(F (D)) (sufficient condition:
K has a nonempty interior) that by Theorem 27

Fisri(K)-convexlike <= F'is closelyK -convexlike. (16)

Using the above relations and duality results for convex cones one can translate some of the above
properties of vector-valued functions to real-valued bifunctions. The first duality result needed for
this translation is the well-known bipolar theoreK) = K** with K* := {A € R™ : A\T2 > 0

for everyx € K} the dual cone of{ and K** := (K™*)*. Also we need a refinement of the bipolar
theorem for relatively open convex cones given by (cf.[20])

zeri(K) <z elin(K)and\"z > 0for A € K*\K~+ (17)

with K+ := {A € R™ : ATz = 0 for everyz ¢ K} denoting the orthogonal complement of

K. To give an equivalent characterization of relatively open convex cones, which can be applied
directly within the proof of the next theorems, we observe ugingll) = (K+)* (cf.[6]) that
lin(K) N K+ = {0}. This shows

(K*Nlin(K))\{0} C K*\K*. (18)

Moreover, by the orthogonal projection theorem (cf.[11]) it follows for everg R™ andz €
lin(K) thatAT2 = A\] 2 with \; € lin(K) denoting the orthogonal projection dbnto the linear
subspacéin(K). Using these observations it follows fore lin(K) that

Az >o0forhe KX\K+ <= ATz > 0for X € (K* Nlin(K))\{0}. (19)

Hence by relations (17), (18) and (19) an equivalent dual characterization of relatively open convex
cones is given by

z € ri(K) <=z € lin(K)and\"z > 0for A € (K* Nlin(K))\{0}. (20)

In the next definition we introduce a class of functions well-known within the minimax literature

(cf.[3], [7]).

Definition 9 The bifunctionf : K* x D — R is called convex orD if the setD is convex, and
for everyx,,z5 € D and0 < «a < 1 it follows that

fyvazry + (1 —a)z) <af(Mz)+ (1 —a)f(\ x2)

for every\ € K*. The bifunctionf : K* x D — R is called Ky-Fan convex o if for every
x1,22 € D and0 < «a < 1 there exists some, € D satisfying

f(/\vxo) < O‘f(Awrl) + (1 - Oé)f(/\v .’Ez)

for every\ € K*.



The next result is well-known and a direct consequence of the bipolar theorem and relations
(13) and (6) (see for example [2] or [5]). In Theorems 10, 12 and 14 below the bifungtion
K* x D — R has the special form

O z) = AT F(x) (21)
with ' : D — R™ some vector-valued function.

Theorem 10 For K C R™ a nonempty convex cone it follows that the vector-valued function
F : D — R™iscl(K)-convex onD if and only if the functiory : K* x D — R defined in (21) is
convex onD. Moreover, the vector-valued functidn: D — R™ is cl(K)-convexlike if and only

if the functionf : K* x D — R defined in (21) is Ky-Fan convex dn.

By Theorem 8 we know thak’ is cl(K)-convex if and only ifF' is ri(K)-convex and this
shows that the dual representationdt’)-convex functions in Theorem 10 also holds#ofK)-
convex functions. Unfortunately, since for arbitrary convex coRles R™ it is not possible to
give a dual characterization @f, it seems difficult to give a dual representation akaconvex
function. A similar observation also holds f&f-convexlike functions. On the other hand, since in
relation (17) a dual representation for relatively open convex cones is, giviempossible to give
a dual representation forra(K')-convexlike and a closelys -convexlike function. To define the
proper class of bifunctions foti ( K)-convexlike functions we introduce the following definition.

Definition 11 The bifunctionf : K*xD — R belongsto the clasd ifforeverye > 0,0 < a < 1
andxq, x9 € D there exists some, € D such that

Fzo) < af (M) + (1 —a)f(A z2) + €A

for every\ € P; and
F\zo) =af(N\z) + (1 —a)f(A z2)
for every\ € P, with the setsP;, P, a partition of K*.

In the next theorem we derive a dual characterization of{ & )-convexlike function. Note
that the setB denotes the closed Euclidean unit ballRfi* and so its boundary B is given by
OB ={\:||A]| =1}

Theorem 12 For K C R a nonempty convex cone it follows thdt: D — R™ is ri(K)-
convexlike if and only if the functiorf : K* x D — R defined in (21) belongs to the sdtwith
P =K*"\KtandP, = K.

Proof. Let F' be ari(kK)-convexlike function and consider some arbitrary 0,0 < o < 1 and
x1,x2 € D. Since the seti(K) is a nonempty cone one can find sokec ri(K) N eB. This
implies by relation (14) that there exists somgec D satisfying

aF(z1)+ (1 — a)F(x2) — F(zo) + ko € mi(K). (22)

Applying the dual representation oi(K) given by (17), the Cauchy-Schwarz inequality and
|| ko ||< e we obtain

aF(z)+ (1 —a)F(z3) — F(xo) + ko € lin(K) (23)

8



and
af(\z1)+ (1—a)f(N22) — fF(Am0) > —ATko > —€||A| (24)

for every\ € K*\ K. This shows usingin(K) = (K*)* that the functionf belongs to the set
Awith P, = K*\K' andP, = K. To prove the reverse implication we consider an arbitrary
ko € ri(K). By the compactness of the s&t N lin(K) N 9B we obtain by relation (19) that

2¢0 == inf{\"ko : A € K* Nlin(K) N dB} > 0. (25)

Hence by (18) ang belongs ta4 it follows for every0 < a < 1 andx1, zo € D that there exists
somez, € D satisfying

fFzo) < af(Aar) + (1 = a)f(A x2) + eol Al (26)
for every\ € (K* Nlin(K))\{0} and
O‘f()‘v$1) + (1 - O‘)f()‘va) - f()‘vl‘o) =0 (27)

for every\ € K. This yields by (27) andin(K) = (K+)* that
aF(z1) + (1 — a)F(x3) — F(zo) € lin(K). (28)
Also by relations (25) and (26) we obtain
af(Ax1) + (1 —a)f (A xz2) = (A z0) + AT ko > 0 (29)

for every\ € (K* Nilin(K))\{0}. Applying to relations (28) and (29) the dual representation
of ri(K) listed in (20) it follows thaivF'(z1) + (1 — a)F(z2) — F(x0) + ko € 7i(K). Since
ko € ri(K) is arbitrary, we finally obtain

aF(D)+ (1 —a)F(D)+ri(K) C F(D) +ri(K),
and by relation (14) the vector-valued functiéns ri( K )-convexlike. O

If the convex cond< C R™ has a nhonempty interior, then by relation (16) we may apply The-
orem 12 to closely<’-convexlike vector-valued functions. Moreover, since fofull dimensional
it follows that K+ = {0}, the definition of the se# also simplifies. It is now easy to see far
full dimensional thatF' is closely K-convexlike if and only if for every > 0,0 < o < 1 and
1,22 € D there exists somey € D satisfying

f()‘?:EO) < Oéf()\,$1) + (1 - Oé)f()\,{l,‘g) +e (30)

for every\ € K*\{0) N 9B. Note that the inequality listed in relation (30) is also known within
minimax theory and called closely convex dn(cf.[4]).

Definition 13 The bifunctionf : K* x D — R belongs to the clasB if for everye > 0, z1, o
€ D and0 < a < 1 there exists somey € D and someyy € B satisfying

FAmo) < af(Xar) + (1 —a)f(X xz2) +€l[Al
for every\ € P, and
F o) = af (A1) + (1= a) f (A, x2) + ATyo

for every\ € P, with the setsP;, P, a partition of K*.
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By Theorem 12 and relation (16) the next result is only useful for a convex Boaed a
vector-valued functiotF’ not satisfyingF'(D) C zg + lin(K) for somezg € af f(F(D)).

Theorem 14 For K C R™ a nonempty convex cone it follows that: D — R™ is closelyK -
convexlike if and only if the functiorf : K* x D — R defined in (21) belongs to the d8twith
P = K*\KtandP, = K+.

Proof. Let F' be closelyK-convexlike and consider some arbitrary> 0,0 < o« < 1 and
x1,x2 € D. By relation (15) andl(F (D) + K) C F(D) + K + €B it follows that there exists
somezxg € D, ky € K and—y, € eB satisfying

al(z1) + (1 — a)F(z2) = F(zo) + ko — vo. (31)
This implies for every\ € K= that
ATF (o) = aATF(z1) 4+ (1 — )AT F(z3) + A yo, (32)
while for every\ € K*\ K and the Cauchy-Schwartz inequality we obtain
M F(x) < aXTF(zy) + (1 — a)AT F(z) + €| A]]. (33)

Hence by (32) and (33) the functighbelongs to the sdf with P, = K*\ K+ andP, = K. To
prove the reverse implication it follows by (18) ajithelongs tad5 that for everye > 0,0 < a < 1
andz;,z2 € D there exists somey, € D andy, € ¢B satisfying

fmo) —af(Az1) — (1 —a)f(N22) <€ (34)
forevery\ € K*Nlin(K)NoB and
Fz0) = af (A1) + (1= a) f(A, x2) + ATyo (35)
forevery\ € K. If ko € ri(K) N OB is fixed, we obtain by relation (19) that
€0 ;= min{\ ko : A € K* Nlin(K)NdB} > 0. (36)
This implies by (34), (36) angy € B that
F\x0) = af (X 1) = (1= @) f (A, x2) = AT (yo + Beeg ko) < 0 (37)

for every\ € K* N lin(K) N 0B. Since the functiom\ — f(\,z) is linear, it is obvious that
relation (37) also holds for every € (K* N lin(K))\{0}. Also, by (35) andky € ri(K) it
follows that

aF (1) + (1 — a)F(22) — F(x0) + yo + 3eey "ko € lin(K) + 3eey ko C lin(K).  (38)
Applying to relations (37) and (38) the dual representatiorniK') listed in (20) yields
aF(z1) + (1 — a)F(x2) — F(x0) + yo + 3eey ko € ri(K) C K,
and hence, using € eB andky € 0B, we obtain
aF(x1)+ (1 —a)F(x2) € F(D)+ K + €(1+ 3¢)B.
Sincee > 0 is arbitrary, we may conclude that
aF(D)+ (1 —a)F(D) Cc(F(D) + K),

and by (15) the vector-valued functidnis closely K-convexlike. O
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3 Conjugate functions, Lagrangian duality and cone convexlike vec-
tor valued functions.

In this section we will discuss conjugate functions, Lagrangian duality and the relation with the
above class of cone convexlike vector-valued functions. In particular, we will first consider the
lower semicontinuous hujy of a functionp : R™ — [—o0, o] and show its relation with the
biconjugate functionp™* if p is convex. After having discussed these relations we will then in-
troduce the primal problertP) already given in the introduction equipped with the Lagrangian
perturbation scheme with perturbation parameter R™, and show that the convexity of the as-
sociated lower semicontinuous hplbf the (Lagrangian perturbation) value functiptis convex

if and only if some vector-valued function is closely convexlike. This enables us to apply the
general results identified in the first part of this section and by doing so we derive under certain
conditions, strong duality and related results for optimization prokl&n In our analysis we
need the following elementary result.

Lemma 15 If C C R™ is convex and C C'is nonempty, then it follows that
ri(C)) C S < ri(C) = ri(9).

Proof. The sufficiency part being trivial we only prove the necessary part. To verify this, let
ri(C)) C S. Since the affine operatarf f is monotone,S C C andaf f(ri(C)) = aff(C),
we obtainaf f(C) = af f(S). This implies using-i(C)) C S thatri(C) = ri(ri(C)) C 7i(S).
SinceS C C andaf f(C) = af f(S) we also havei(S) C ri(C), and the result is proved. [

To continue our analysis let : R™ — [—o0, 00| be an extended real-valued function with
effective domaindom(p) := {x € R™ : p(x) < oo} nonempty and lep denote the lower
semicontinuous hull of the functign It is well-known (cf.[17], [6]) thatepi(p) = cl(epi(p)) with
epi(p) := epir, (p) denoting the epigraph of the functiprand

dom(p) € dom(p) C cl(dom(p)). (39)
Applying now relation (39) we immediately obtain
cl(dom(p)) = cl(dom(p)) anda  f (dom(p)) = af f(dom(p)). (40)
Also by Lemma 15 and relation (39) it follows fdbm () convex that
ri(dom(p)) € dom(p) <= ri(dom(p)) = ri(dom(p))- (41)

If we denote byp*(\) := sup{ATy — p(y) : y € R™} the conjugate function of the functign
andp** its biconjugate function the next corollary is an easy consequence of the Fenchel-Moreau
theorem and some well-known function descriptiompof

Corollary 16 If the lower semicontinuous hyilof a functionp : R™ — [—o0, 00| is convex, then
it follows for everyy, belonging to dorp) thatp** (yo) = p(yo) = liminf, .., p(y).

Proof. Sincey, belongs to dortp) it follows thatp(y) is finite orp(yo) = —oo. If p(yo) IS
finite the convex functioip is proper and by the Fenchel Moreau theorem (cf.[17], [6]) we obtain
*(yo) = p(yo). Moreover, ifp(yg) = —oo, it follows by contradiction thap* is identically co
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and sop*™*(yg) = —oo. Hence we obtain in both cases th#t (yo) = p(yo) and sincep(yg) =
liminf,_.,, p(y) (cf.[17], [6]) the result follows. O

Up to now we did not show that the optimization problem associated with the biconjugate
function p** has an optimal solution. The next corollary is an immediate consequence of some
standard results in convex analysis.

Corollary 17 If the lower semicontinuous hufi of a functionp : R™ — [—o0, o0] is convex,
then it follows for everyy, belonging to r{dom(p)) that there exists somk, € R™ satisfying

P (v0) = Yo )\0 —p*(Xo) = D(yo) = lim lnfyﬂyo p(y).

Proof. If p(yp) = —oo we knowp* = oo, and the result is obvious. Fpfyy) finite andy, belongs
to ri(dom(p)) the subgradient séip(y) is nonempty (cf.[17], [6]) and

A € 9p(yo) <= P"(N) = Ao — D(vo)- (42)
Applying now Corollary 16p* < p*and relation (42), it follows for\y belonging todp(y) that
p(yo) =P (yo) = (P")"(v0) = Yo /\0 —P"(Mo) = P(yo), and the result is proved. O

To replace in Corollary 17 the valuien inf,, ., p(y) by p(yo) for yo belonging ta-i(dom(p)),
it is necessary and sufficient to assume thas lower semicontinuous ifyg, or equivalently
P(yo) = p(yo). To achieve this, we introduce the following class of functions.

Definition 18 A functionp : R™ — [—o0, oo] is called almost convex if the lower semicontinuous
hull p of p is convex andi(epi(p)) is a subset oépi(p).

In the next result we give an equivalent description of an almost convex function.
Theorem 19 For any functiorp : R™ — [—o0, co] with dom(p) nonempty, it follows that
p almost convex—> p convex and(y) = p(y) for everyy € ri(dom(p)).

Proof. If p is an almost convex function witlom(p) nonempty, we only need to show that
p(y) = p(y) for everyy € ri(dom(p)). By relation (39) the set do(p) is also nonempty. Since it
is well-known (cf.[17], [6]) that

ri(epi(p)) = {(y,7) : ply) <r, y € ri(dom(p)} (43)

and by assumptioni(epi(p)) C epi(p), it follows for everyy € ri(dom(p)) ande > 0 that
(y,p(y) + €) belongs toepi(p). This impliesp(y) > p(y) for everyy € ri(dom(p)) and hence
p equalsp on ri(dom(p)). To prove the reverse implication, Igtconvex andi(y) = p(y) for
everyy € ri(dom(p)). This impliesri(dom(p)) C dom(p) and by relation (41) we obtain
ri(dom(p)) = ri(dom(p)). Hence by the representation of the relative interior of the epigraph
of a convex function (see relation (43)) and the previous observations it follows that

ri(epi(p)) = {(y,r) : p(y) <7,y € ri(dom(p)} < epi(p),

and sop is almost convex. d

As shown in the above proof it follows fgralmost convex withlom(p) nonempty that
ri(dom(p)) = ri(dom(p)), (44)

and these sets are nonempty. The next result is an immediate consequence of Corollary 17, Theo-
rem 19 and relation (44).
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Corollary 20 If the functionp : R — [—o0, co] is almost convex withom (p) nonempty, then it
follows for everyy, belonging tori(dom(p)) that there exists some) € R™ satisfyingp™* (yo) =

Yo Ao — p*(Ao) = p(vo).

To see what happens feralmost convex ify, does not belong tei(dom(p)), but to the
relative boundarybd(dom(p)) given by

rbd(dom(p)) := cl(dom(p))\ri(dom(p)),

we first need the following observation. By relations (40) and (44) we obtainp &most convex
anddom(p) nonempty that

Yo +t(yr — yo) € ri(dom(p)) (45)
for everyyy € cl(dom(p)), y1 € ri(dom(p)) and0 < t < 1. It is now possible to show the

following result for an almost convex functign with nonempty effective domain using some
standard results from convex analysis, Theorem 19 and relation (45).

Corollary 21 If the functionp : R™ — [—o0, o] is almost convex witdom(p) nonempty, then
it follows for everyy, belonging torbd(dom(p)) andy; belonging tori(dom(p)) that p**(yo) =

limtlo p(yo + t(yl - yO))

Proof. Sincedom/(p) is nonempty it follows by the observation after relation (44) thédom(p))

is nonempty. If for every € ri(dom(p)) it holds thatp(y) = —oo, we obtain thap™ (yg) = —oc.

This implies by relation (45) the desired result and so we still need to prove the result if there exists
somey € ri(dom(p)) with p(y) finite. This implies by Theorem 19 thaty) = p(y) is finite and
hencep is a proper convex function. Applying now the Fenchel-Moreau theorem yjétds- p

and this shows that** is a lower semicontinuous proper convex function. Sipe= p, it also
follows using relation (44) that

ri(dom(p™)) = ri(dom(p)) = ri(dom(p)) (46)
and this implies (cf.[17], [6]) for every; € ri(dom(p)) andyy € rbd(dom(p)) that
P (yo) = limy o p™ (yo + t(y1 — yo))- (47)
By relation (45) and Corollary 20 we obtain
P (yo +t(y1 — yo)) = p(yo + t(y1 — yo)) (48)
for every0 < ¢t < 1 and by relations (47) and (48) the desired result follows. O

In what follows we will apply the previous results to the Lagrangian perturbation scheme of
the optimization probleniP). Consider the value function: R™ — [—o0, co| given by

p(y) :=inf{f(z) : F(z) <k y,x € D}. (49)

Clearly fory = 0 we recover our initial optimization problerf¥) and it is easy to see that
dom(p) = F(D) + K. Since we always assume that the feasible redgiaa nonempty, or equiv-
alentlyo € F(D) + K we obtain0 € dom(p). Introducing for the perturbed problem the feasible
regionF(y) given by

Fly) ={x: F(x) e —K +y,z € D},
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it is follows by definition forF(y) empty thap(y) = cc. If the vector-valued functiod/ : D —
R™*1 is given by

H(z) = (F(x), f(x)), (50)

then the next result is easy to show.

Theorem 22 It follows that the functiorp is convex if and only if the functioH is closelyK x
R4 -convexlike. Moreover, the functignis convex if and only the functioH is K x int(R)-
convexlike.

Proof. If epis(p) :=epij(r. ) (p) denotes the strict epigraph pfthen it is easy to verify that
epi(p) = cl(epi(p)) = cl(epis(p))- (51)
By relation (49) we obtain
epis(p) = {(y;7) : Feep y € F(z) + K andf(z) <r} = H(D) + (K x int(Ry)),  (52)

and this shows by relations (51) thati(p) = cl(H (D) + (K x R4)). To verify the second part,
it follows by Theorem 8 thatpi(p) is convex if and only ifepis(p) is convex. Applying relation
(52) yields the desired result. O

The next result is well-known and can be easily verified.
Lemma 23 If the functiond : K* — [—o0, o) is the Lagrangian function
O(\) := inf{f(z) + A" F(x) : 2 € D},
then it follows withp given by relation (49) that

o [ B) AeK*
P A)_{ —oo  otherwise.

By Lemma 23 we obtain that™ (y) = sup{—ATy + 6(\) : A € K*}. This yields fory = 0
that
p™(0) =sup{fd(\) : A € K*} =v(D). (53)

As already observed in the introduction, the above problem is called the Lagrangian dual problem
(D). We are now ready to prove the following main results for the primal optimization problem
(P) and its Lagrangian dual problem.

Theorem 24 If 0 belongs taF (D) + K and the vector-valued functiaid : D — R™ !, listed in
relation (50), is closely< x R -convexlike, then it follows that

v(D) = liminf, o p(y) (54)

with p given by relation (49). Also the functignis lower semicontinuous di if and only if
v(D) = p(0). Finally, if 0 belongs tori(F(D) + K), then it follows that the dual probleniX)
has an optimal solution.
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Proof. By Theorem 22 we know that the vector-valued functiéns closely K" x R -convexlike
if and only if the functionp is convex Moreover, by relations (39) antbm(p) = F(D) + K it
follows that

0€ F(D)+ K Cdom(p). (55)

This yields by Corollary 16 thav(D) = p**(0) = liminf, .op(y). Also it holds that
liminf, . p(y) = p(0) if and only if p is lower semicontinuous &and using this in combination

with the first part, the second part follows. To verify the last part, we observe by relation (39) and
the observation after this relation thabelongs ta-i(F (D) + K) = ri(dom(p)) C ri(dom(p)).

This implies by Corollary 17 and relation (53) that the dual problem has an optimal solutidn.

Discussing a more general parametric optimization problem, in [15] a geometrical interpreta-
tion is given forp lower semicontinuous & In case we impose the additional regularity condition

ri(cl(H(D) + (K x R}))) C H(D) + (K x Ry), (56)

then the following improvement of Theorem 24 can be verified. It will be shown that this additional
condition is always satisfied if the vector-valued functidns ri( K) x int(R; )-convexlike.

Theorem 25 If 0 belongs taF’(D)+ K and the vector-valued functidii : D — R™*! is closely
K x R -convexlike and satisfies relation (56), then it follows th@) = lim, |, p(ty:) for every
y1 belongingri(F (D) + K). If 0 belongs ta-i(F (D) + K ), then the dual problem has an optimal
solution andv(D) = p(0).

Proof. By relation (56) and Theorem 22 we obtain that the functigmalmost convex. Hence the
result follows from Corollaries 20 and 21. O

By Theoren®.2 of [5] it follows for any nonempty convex cong that
c(H(D) 4+ (K xRy)) =cl(H(D) + (ri(K) x int(R4))). (57)
This shows forif : D — R™*! ari(K) x int(R, )-convexlike vector-valued function that

ri(cl(H(D) + (K x Ry))) = ri(cl(H(D) + (ri(K) x int(R..)))
= ri(H(D) + (ri(K) x int(Ry))).

Hence forH ari(K) x int(R4)-convexlike vector-valued function we obtain that the regularity
condition given by relation (56) automatically holds. Finally we like to observe that the second
part of Theorem 25 is also verified in [5] by means of the image space approach of Giannessi and
in the same paper it is shown that the condition of Theorem 25 is still weaker than the assumption
that H is ri(K) x int(R4 )-convexlike.

4  Appendix

In this appendix we show a technical result needed in Sedttido show this result we first need
the following lemma.

Lemma 26 For S C R™ and K C R a nonempty convex cone it follows that there exists some
xo € af f(S) satisfyingS C z( + lin(K) if and only if for everyr € af f(S + K) it holds that
aff(S+ K) =z + lin(K).
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Proof. Letaff(S) = z + lin(K) for everyz € aff(S + K). Since0 € cl(K) we obtain
SCaff(S) Caff(S+c(K))=uaff(S+ K)andhence by our assumption there exists some
xo € af f(S) satisfyingS C aff(S) = xo + lin(K). To show the reverse implication we first
observe for every € aff(S + K) thatz + lin(K) C af f(S + K) + lin(K). SinceK is a
convex cone this yields (cf.[6]) that

aff(S+K)+lin(K)=aff(S+K)+aff(K)=aff(S+ K+ K)=aff(S+ K),

and hence: + lin(K) C af f(S + K) for everyx € af f(S + K). To show the reverse inclusion
we need our assumptioft C zg + lin(K) for somexy € af f(S). Using this assumption we
obtainS + K C lin(K) + K + zo C lin(K) + xo and this shows

af f(S+ K) C lin(K) + xo. (58)

It is well-known in linear algebra (cf.[12]) thatf f(S + K) = lin(S + K — x) + y for every
x,y € af f(S+K). This implies in combination with relation (58) thaf f (S+ K) C lin(K)+=x
for everyz € af f(S + K) and this shows the desired result. O

Using Lemma 26 one can show the following theorem. This result generalizes a similar result
proved by Breckner and Kassay (cf.[1]) for convex cones having a nonempty interior. If the cone
K C R™ has a nonempty interior, théin(X) = R™ and so the condition in the next theorem is
automatically satisfied.

Theorem 27 Let K C R™ be a nonempty convex cone aSdC R™ some set satisfying C
xo + lin(K) for somezxy € af f(S). Then it follows thati(cl(S + K)) = S + ri(K).

Proof. We first show thatS+ ri(K) C ri(cl(S + K)). If x belongs toS + ri(K), it follows
that there exist some € S andk € ri(K) C K satisfyingz = s + k. Clearly = belongs to
aff(S+ K) and since: belongs tori(K) andaf f(K) = lin(K) for any convex cone, one can
find someey > 0 satisfying

(k+eB)Nlin(K) C K (59)
with B := {x € R™ : ||z|| < 1} denoting the closed Euclidean unit ball. By Lemma 26 and
se€ S Caff(S+ K)weobtainaff(S + K) = s+ lin(K). This implies in combination with
relation (59) that

(x+eB)Naff(S+K)=(s+k+eB)N(s+1lin(K)) Cs+ K,

and sar belongs ta-i(cl(S + K). To verify the inclusion-i(cl(S + K)) C S + ri(K), consider
somez € ri(cl(S + K)). By definition there exists somg > 0 satisfying

(z+eaB)Naff(S+K)=(z+eaB)Naff(c(S+K)) C c(S + K). (60)

Sinceri(K) is a nonempty convex cone, there exists same ri(K) with [|kg|| < 5 and this
yieldsz —ky € z+¢; B. Moreover, sincef f(S1)+af f(S2) = af f(S1+S2) for everyS; C R™
it follows that

v —ko € aff(S+K)—aff(K)=aff(S+K)

and this implies by relation (60) that the point- kq belongs ta:l(S + K), or equivalently,

(x—ko+eB)N(S+K)#0 (61)
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for everye > 0. At the same time, due thy belongs tori(K) C K, there exists some, > 0
satisfying
(ko + e2B) NlinK) C ri(K), (62)

while for = belonging tocl(S + K) we know by Lemma 26 that
aff(S+K) =z +lin(K) =z — lin(K). (63)
Combining relations (62) and (63) yields
(x —ko+eB)Naff(S+ K)=xz— ((ko+ e2B)Nlin(K)) C z — ri(K). (64)
Since by relation (61) one can find some S andk € K satisfying
s+ke(x—Fko+eB),

this implies by relation (64) that+ k£ € « — ri(K). Hence it follows that: belongs tos + &k +
ri(K) C S+ ri(K) and so we have verified that(cl(S + K)) C S + ri(K). O
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