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Combining SKU-level sales forecasts  

from models and experts 

 

 

 

 

 

 

 

We study the performance of SKU-level sales forecasts which linearly combine statistical 

model forecasts and expert forecasts. Using a large and unique database containing model 

forecasts for monthly sales of various pharmaceutical products and forecasts given by about 

fifty experts, we document that a linear combination of those forecasts usually is most 

accurate. Correlating the weights of the expert forecasts in these linear combinations with the 

experts’ experience and behaviour shows that more experience and modest deviation from 

model forecasts gives most weight of the expert forecast. When the rate of bracketing 

increases, we notice a convergence to equal weights. We show that these results are robust 

across twelve different forecast horizons.   
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1. Introduction 

 

 

There is abundant literature on the relative performance of model forecasts, expert forecasts 

and their combination, see Lawrence et al. (2006) and Fildes et al. (2009), and the earlier 

work of Blattberg and Hoch (1990). The most common findings are that expert forecasts can 

improve on model forecasts and that a linear combination of the model forecast with an expert 

forecast is often even better. The literature so far mainly considers a few single-product, 

single-horizon and single-expert cases.  

In our present paper we aim to extend the currently available literature by considering 

various products in various product categories, twelve different forecast horizons and about 

fifty experts. A main additional feature of our analysis is that we know a few characteristics of 

these experts and we also observe their behaviour. This allows us to correlate the optimal 

balance between the model and the experts with their characteristics and their behaviour, 

which in turn gives guidelines from a managerial perspective, and this is new to the literature.  

 In this paper we empirically analyze a unique and very large database with model 

forecasts, expert forecasts and realizations concerning monthly SKU-level sales of a range of 

pharmaceutical products for a large Netherlands-based firm. At the headquarters office, the 

model forecasts are automatically created by a statistical package, where the program each 

month allows for a re-specification of the model and it also re-estimates all parameters each 

time. The experts, located in local offices in thirty-seven countries, receive these forecasts 

and, after that, create their forecasts using their own expertise. We will see that expert 

forecasts often differ from the model forecasts, which is perhaps not unexpected given the fact 

that the automatic program includes as input only lagged monthly sales values, and that this 

fact is known to the experts, see Goodwin (2000, 2002).  

The question the firm faces is whether the model forecasts and the expert forecasts can 

be improved by taking a linear combination of the two. A related question is whether this 

linear combination should follow an unconditional 50%-50% rule, or whether the weights 

shall depend on the characteristics of the experts.  

The literature on combining forecasts in for example Clemen (1989) and Timmermann 

(2006) suggests that linear combinations of forecasts may improve on each of its contributors. 

So the first question we consider in this paper is whether there are optimal weights for each of 

the experts. And, if so, is that robust across forecast horizons and does it differ across experts?   
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 The second question that we try to answer is whether these optimal weights can be 

explained by characteristics of the experts. This question is very relevant from a managerial 

perspective as it facilitates training of experts and also their selection prior to their 

appointment. Blattberg and Hoch (1990) claim that a 50%-50% rule would be best but this 

claim corresponds with unconditional weights as it is not correlated with experts’ 

characteristics. Lamont (2002) demonstrated that age (experience) has a positive effect on the 

quality of an expert, but also that this effect is parabolic. There are also studies like Barber 

and Odean (2001) and Beyer and Bowden (1997) which find gender differences in (over-) 

confidence levels, so perhaps there are also such differences across the relative weights of the 

experts in the combined forecasts. Finally, the degree of bracketing shall be important for the 

quality of the combined forecast. Larrick and Soll (2006, p. 112) state that when the rate of 

bracketing increases, the power of averaging forecasts does too. Their findings were based on 

experiments, and in the present study we shall seek empirical evidence for this statement 

based on factual data.   

 The outline of our paper is as follows. In Section 2 we outline the main features of our 

unique database. Section 3 deals with the methodology and gives the details of our empirical 

findings. Section 4 concludes with various implications for managers who need to evaluate 

the qualities of the experts. .  

 

 

2. Data  

 

Our data concern a firm that creates model forecasts and which has almost fifty experts 

allocated in thirty-seven countries
1
 are allowed to report their own forecasts additional to the 

model forecasts they receive from the headquarter’s office. Average characteristics of these 

experts are available. The question the firm has is whether specific combinations of these two 

sets of forecasts are better in terms of point-forecast accuracy, and whether such combinations 

can be associated with observable characteristics and recent behaviour of these experts.  

 To start, we have data on MFi,j,t+h|t, denoting a model forecast created at time t for 

horizon t+h for sales in country i for product j. The forecasts concern monthly SKU-level 

sales of pharmaceutical products, and the sample covers October 2004 to and including 

October 2006. The countries range from the US, UK, Korea, Austria, Thailand, to Malaysia 

                                                 
1
 In some countries there are two experts, and then we average their characteristics in the computations to come.   
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and Mexico. In our analysis below we label the countries as i = 1, 2, .., I  = 37 for 

confidentiality reasons, so we allocate one (average) expert to each of the countries. The 

index j runs from 1, 2, to Ji, which means that for each country we have a different set of 

products that belongs to the responsibility of the local expert. The products are associated 

with seven different product categories. The smallest number of Ji is 10, the largest is 85. 

Finally, we have forecasts for horizons 1, 2, 3, to 10, 11 and 12 (a year ahead). The 

headquarters’ office uses an automated statistical package to create these forecasts, where the 

input contains only lagged sales data. This is known to the experts. The model selection 

process is rerun each month and also parameter estimation is redone each month, and also this 

is known to the experts. .  

 Additional to the evidently enormous amount of model forecasts we have access to 

expert forecasts, to be denoted as EFi,j,t+h|t. The experts make these forecasts upon receipt of 

the model forecasts, and they are aware of the fact that the automated program only includes 

lagged sales. To the manager, it is unknown who of the experts takes the model forecast as 

input for their own forecasts. Typically, as we will see below, the expert forecasts differ from 

the model forecasts, which is not unexpected given that experts may see various reasons to 

adjust pure own-history-based projections, see Goodwin (2000, 2002). Unfortunately we have 

no information on what exactly drives the expert to deviate from model forecasts and also not 

on which factors they look at when creating their final expert forecasts.  We therefore simply 

take these expert forecasts as a second set of forecasts additional to the model forecasts.  

Finally, we have actual SKU-level sales data denoted by Si,j,t+h corresponding with the two 

sets of forecasts. 

 In this paper we aim to draw generalizing conclusions on combining model-based 

forecasts with expert forecasts. We will analyze the data in the dimensions i and h, and thus to 

aggregate across the products for each expert. Unreported experimentation with the data at a 

more detailed level indicated that differences across the products are not relevant, and so we 

can safely aggregate along that dimension. 

 

Insert Table 1 about here 

 

 To get a first impression of the type of data that we have, we report on some basic 

statistics in Table 1. For the twelve forecast horizons, we compute the fractions where the 

model forecasts and expert forecasts exceed or do not exceed each other, and also where they 

differ from the actual sales data. The first two columns of Table 1 correspond with what is 
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called bracketing, meaning that the expert forecasts and model forecasts are on distinct sides 

of the realizations. The last two columns of Table 1 concern the cases where the expert 

deviates from the model forecast into the wrong direction, that is, further away from the actual 

realization.  

 If we consider the first few forecast horizons, we observe that the fraction that experts 

deviate from the model in the wrong direction is highest (close to 0.350 by summing the last 

two columns), where it most often happens that forecasts of experts are too high. Looking at 

the first two columns we see that bracketing occurs only in around 0.270 of the cases. When 

we compare the various horizons, we see a slight increase in the fraction of bracketing cases, 

and a decrease in the fraction of wrong direction cases. The middle two columns seem to be 

rather constant around 0.330 across the forecast horizons.  

 

Insert Table 2 about here  

  

That experts have a tendency to create forecasts that exceed model forecasts is made 

more explicit in the second column of Table 2. This over-optimism bias has also been 

documented in Fildes et al. (2009). This tendency clearly decreases with increasing forecast 

horizon. At the same time, and as expected, the model forecasts are around 50% above and 

50% below the realizations. This of course corresponds with the mean-reversion tendency of 

regression-type models with symmetric error assumptions, as they are implemented in the 

automatic program used by the headquarters’ office. In short, model forecasts are unbiased by 

their very nature.    

 

Insert Table 3 about here 

 

 Finally, in Table 3 we give the available information we have on each of the thirty-

seven experts. As said, in some countries there are two experts, and then the data are averaged 

across these two experts. For each expert we know the (average) age, gender and the 

(average) number of years that experts occupy their (forecasting) position within the firm. We 

see that the average age is close to 40, that there are about as many men as women and that 

the experts are in office for an average of 9 years.  
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3. Methodology and results 

 

To address the managerial questions of the firm, which are typical questions any firm would 

have to manage a range of experts, we aim to compute the optimal value of the weights in a 

combined forecast. This combined forecast for each expert i given a horizon h is given by 

 

(1)  thtjiithtjii EFaMFa |,,|,, )1(    

 

where we compute the value of ai across all products within an expert-horizon combination. 

To achieve this aim, we compute the root mean squared prediction error (RMSPE) as 

 

(2)  
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for ai = 0.00, 0.05 (with steps of size 0.05), .. 1.00. This gives 21 RMSPE values for each 

horizon, and we choose the value of ai with the smallest value of RMSPE. Of course, when ai 

= 0.00, the RMSPE for the pure expert forecast is lowest across all 21 cases and when ai = 1, 

the RMSPE for the pure model forecast is lowest.    

 

Insert Table 4 about here 

 

 The results of this exercise appear in Table 4. For example, for expert 5 it holds that 

for the forecast horizon of 5 months, the optimal value of a5 is 0.75, meaning that her 

contribution to the combined forecasts is 0.25. Details of the computations can be obtained 

from the authors, but for now it suffices to say that almost all sequences of 21 RMSPE values 

show a (slight) parabolic curve, meaning that an optimum most often is reached within the 

range of considered ai values.  

A closer look at the optimal weights in Table 4 shows that in only 4.73% of the 444 

(37 times 12) cases the value of ai equals 0.00 (expert forecasts only), and that in only 5.86% 

of the cases it equals 1.00 (model forecasts only). This strongly confirms the common finding 

that combined forecasts are more accurate than their individual components. Here, in 89.41% 

of the cases model forecasts combined with expert forecasts yield improvement.  
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 When we compute the average of the optimal weights, we get values around 0.50 (see 

the last row of Table 4), with a slight tendency to increase with increasing forecast horizon. 

This suggests that the relative weight of the model increases with the horizon. Hence, the 

unconditional weights 50%-50%, as suggested by Blattberg and Hoch (1990), seem to be a 

good choice indeed, at least, unconditionally.   

 

 

Optimal weights and experts 

 

A further impression from the numbers in Table 4 is that there is substantial variation across 

the experts, and hence it seems worthwhile to examine whether the optimal weights can be 

explained by experts’ characteristics and their behaviour. The conditional model that we use 

for this purpose is  

 

(3)  
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where we estimate the parameters using OLS. As the sample size is only 37, we rely on a 10% 

significance level.  

The optimal ai value per expert follows from Table 4. The variables wrong_direction 

and no_deviation are fractions of the total amount of expert forecasts which are on the wrong 

side of the model forecast relative to the realization and which do not differ from the model 

forecasts, respectively. In the first round we estimate all parameters, and then subsequently 

delete the least significant ones, until we have at least 10% significant parameters.  

Before we estimate the parameters, we formulate some prior thoughts on the possible 

relevance and sign of the parameters in (3). We measure the experience of an expert by the 

number of years he or she is in that particular position and by his or her age. The results in 

Lamont (2002) suggest that the effect of experience is positive for the quality of the expert, 

which here means that the parameters β1 and β3 would have a negative sign (giving smaller 

values of the optimal ai and hence more weight to the expert. Lamont (2002) also documents 

that much younger or much older experts perform not as good as medium-aged experts, and 

hence we expect that β2 and β4 are positive. Additionally, we include the variable that counts 

the number of products an expert has to deal with as a measure of experience. We expect β5 to 
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be negative too. The studies in Barber and Odean (2001) and Beyer and Bowden (1997) 

suggest that female experts have a lower tendency to be overconfident, and hence might 

deviate less from the model, and this may also give the model more weight, so β6 is expected 

to be positive. On the other hand, female experts may quote forecasts that differ less from the 

model forecasts, and this in turn may lead to more weight of the model, and then β6 would be 

negative.  

 Concerning the actual behaviour of experts, we include two variables in (3).  Deviating 

from the model in the wrong way would of course lead to less weight of the expert in the 

combined forecast, so we expect β7 to be positive. Also, more cases with no deviation would 

make the model more relevant, and so we expect β8 to be positive.   

As far as forecast horizons are concerned we have no particular prior hypotheses, 

except perhaps that, based on Table 2, a smaller deviation of the expert forecast from the 

model forecast might be beneficial to the weight of the expert forecast. This would mean that 

the parameter β8 becomes more relevant for further away horizons.  

 

Insert Table 5 about here 

 

 A first immediate conclusion that can be drawn from Table 5, where we only report on 

the 10% significant parameters, is that the variables position, position
2
, female and number of 

products do not matter at all. Further, the results in Table 5 indicate that the horizon matters to 

fit the conditional mean of the optimal value of a. For the short term horizons like 1 to 5 

experience matters while for further-away horizons the degree of no deviation matters. Also, 

for some horizons, the degree of wrong signed deviations influences the optimal value of a.  

 We obtain the expected sign for experience, for experts’ forecasts on the wrong side of 

the model forecasts and for the degree of no deviation. Forecasts of older experts have more 

weight in the optimal combined forecast, and, as the squared variable is significant too, too 

young or too old gives less weight. This estimated quadratic effect clearly supports the 

findings in Lamont (2002). The age which gives the minimum values of optimal ai, and hence 

gives most weight to the expert, is around 40 years. Interestingly, experience does not seem to 

matter much for further-away horizons.   

 For horizons 6, 7, 8 and 10, we find that the optimal weight cannot be predicted by the 

explanatory variables used in this paper and hence the best predictor is the unconditional 

mean. Looking at the standard errors for the intercept parameter, we see that 0.50 is within the 

90% confidence bounds, which supports the claim in Blattberg and Hoch (1990).   
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 Finally, for further-away horizons we see that the degree of no deviation becomes 

relatively more important when gaining weight for the expert in the combined forecast. This 

suggests that the degree in which the expert forecast does not differ from the model forecast is 

indeed relevant.  

 Given that we find a useful prediction model for the optimal weight for various 

horizons, we conclude that the unconditional 50%-50% rule can sometimes better be replaced 

by a conditional rule. This insight adds to the insights given in Blattberg and Hoch (1990), 

and is new to the literature. 

 

Bracketing 

 

Theory predicts that bracketing, that is, model forecasts and expert forecasts each are on one 

side of the realization, makes combining forecasts a fruitful exercise. More so, as is argued in 

Larrick and Soll (2006), if the rate of bracketing increases, the power of simply taking 

averages increases. This argument rests on the assumption that the location on both sides of 

the realization of both the model forecast and the expert forecast obeys a uniform distribution. 

So, if MF is on one side of S and EF is on the other side, and the location of MF and EF is 

uniformly distributed, meaning that it does not occur that say MF is always closer to S that EF 

is, then on average MF and EF are equally close to S, and in that case the 50-50 rule should be 

optimal.  

 To examine this conjecture for actual data and not for experiments as in the study of 

Larrick and Soll (2006), we run the following simple regression, that is,  

 

(4)  iii bracketingaoptimal   10

2)5.0_(  

 

where the explanatory variable is the fraction of forecasts that bracket the realization. We 

argue that when the conjecture is valid, that then β1 in (4) is significant and negative. The 

relevant estimation results are displayed in Table 6.  

 

Insert Table 6 about here 

 

 Similar to the results in Table 5, we observe that for intermediate horizons the 

distribution of the optimal value of ai is hard to predict (see the low fit values for the horizons 
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6 to 10 in the last column of Table 6). On the other hand, for horizons 1 to 5 and for 11 and 

12, there is strong evidence that the difference between the optimal ai and 0.5 gets smaller for 

higher rates of bracketing. So, bracketing makes simple averaging more powerful.  

 

 

4. Discussion 

 

Our paper analyzed a very large and unique database with model forecasts and expert 

forecasts to see if combining these forecasts would be beneficial. Blattberg and Hoch (1990) 

predicted that unconditional weights of 50%-50% would be best. One of the novelties of our 

study is that we examined if these weights could be predicted by experts’ characteristics and 

actual behaviour or performance, that is, whether there are perhaps conditional weights.  

 

Main findings 

 

We first documented convincingly that the model forecasts are unbiased, at least on average. 

This is very important as if that would not be the case, all subsequent analysis should have 

been modified. Evidence indicated that model forecasts are indeed unbiased, and also that 

experts have a tendency to deliver forecasts that exceed model forecasts in particular for 

nearby forecast horizons, see also Fildes et al. (2009). Additionally, we documented that the 

fraction of bracketing is substantially smaller than the fraction of expert forecasts being on the 

wrong side of the model and of reality. In fact, bracketing occurs in only around one-fourth of 

all cases.  

When we computed the optimal weights of combining model forecasts and expert 

forecasts, we found that the unconditional weights (across horizons and on average) are 

indeed close to a 50%-50%, but that there also is a strong variation across the experts. In fact, 

we showed that combined forecasts improve on the component forecasts in about 90% of the 

(large amount of) cases. Next, the optimal weights were shown to depend on experience (age), 

the degree of wrong-signed expert forecasts, and the degree of no deviation from the model 

forecast in the hypothesized way for various forecast horizons. Hence the unconditional 50%-

50% rule can be improved by including experts’ characteristics and actual behaviour. Finally, 

we found that more bracketing leads to more indication that the 50%-50% rule is optimal.  
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Managerial implications  

 

Our findings have various managerial implications. The first is that it is almost always best to 

combine model forecasts and expert forecasts. When the manager has no information on what 

the expert does or who he or she is, then the unconditional weights 50%-50% seem to be the 

best choice. However, when experts more often take extreme positions (on the wrong side of 

the model forecast) or deviate too much or have less experience the weights of the model 

forecast in the combination should be higher. On the other hand, when experts’ forecasts and 

model forecasts would bracket the realizations, then the 50%-50% becomes more useful 

again.  

 When training new experts it is important to inform them that bracketing makes their 

contribution more relevant and that taking extreme positions (that is, the wrong side of the 

model forecast) does not. What also would help is to demonstrate to these experts that the 

model forecasts are in general unbiased, and hence that persistently quoting above or below a 

model forecast simply cannot be appropriate.  

 When hiring new experts it makes sense to ask for their past credentials in terms of 

their forecasts relative to the model forecasts. Note that simply choosing for the expert or for 

the model because the associated RMSPE is smaller than that of the other is not the best 

strategy, as we have seen that combined forecasts are almost always better. So, their degree of 

bracketing matters, and as we saw, their experience does too. Literature suggests that too 

novice or too established experts have a tendency to take more extreme positions, and our 

findings suggest that this makes their relative contribution in a combined forecast smaller, at 

least for nearby horizons.   
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Table 1:  

The differences between the model forecasts, the expert forecasts and the corresponding 

realization, measured in fractions across all cases Ji and I 

 

 

Horizon        Deviation in  

 Bracketing       wrong direction 

 ------------------------------     ------------------------------ 

 MF<S<EF MF>S>EF MF<EF<S MF>EF>S EF<MF<S EF>MF>S 

 

 

1 0.162  0.100  0.168  0.166  0.133  0.229 

2 0.164  0.102  0.162  0.166  0.132  0.232 

3 0.164  0.108  0.160  0.168  0.130  0.226 

4 0.165  0.108  0.164  0.166  0.133  0.221 

5 0.162  0.108  0.159  0.167  0.139  0.220 

6 0.160  0.109  0.163  0.171  0.133  0.216 

7 0.163  0.115  0.157  0.173  0.136  0.208 

8 0.165  0.116  0.152  0.171  0.141  0.205 

9 0.160  0.118  0.151  0.174  0.140  0.207 

10 0.160  0.122  0.152  0.173  0.140  0.203 

11 0.160  0.127  0.153  0.166  0.146  0.196 

12 0.154  0.129  0.160  0.173  0.144  0.187 
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Table 2:  

Expert forecasts relative to model forecasts and model forecasts relative to realizations, 

measured in fractions across all cases Ji and I 

 

 

Horizon   EF > MF   MF > S 

 

 

1    0.559    0.495 

2    0.557    0.500 

3    0.550    0.502 

4    0.549    0.495 

5    0.541    0.495 

6    0.539    0.497 

7    0.527    0.496 

8    0.521    0.492 

9    0.517    0.499 

10    0.516    0.498 

11    0.509    0.488 

12    0.502    0.489 
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Table 3:  

Characteristics of the experts (mean values if there are two experts) (and sample average) 

 

 

Expert   Age (years)  Gender (1 = female) Position (years) 

 

1   30   0   10 

2   37.5   0   15 

3   55   1   15 

4   40   0   5 

5   35   1   5 

6   30   0   5 

7   47.5   0   17.5 

8   45   0   10 

9   60   0   20 

10   30   1   10 

11   20   1   1 

12   45   1   5 

13   35   1   5 

14   40   1   15 

15   45   1   5 

16   50   0   15 

17   40   1   3 

18   40   1   1 

19   30   0   5 

20   45   0.5   10 

21   35   1   5 

22   25   1   2 

23   50   0   20 

24   32.5   0   7.5 

25   45   0   10 

26   35   0   10 

27   45   0   7 

28   35   0   3 

29   35   1   5 

30   30   1   3 

31   55   0   10 

32   35   0   5 

33   60   1   15 

34   30   0.5   4 

35   55   1   20 

36   30   1   5 

37   30   0   2 

 

Mean   40.07   0.47   8.61 
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Table 4: Optimal weights in the combined forecast, that is, thtjiithtjii EFaMFa |,,|,, )1(   , 

when aggregated across products  

 

 

Expert       Horizon 

 1 2 3 4 5 6 7 8 9 10  11 12 

 

1 0.00 0.00 0.00 0.00 0.00 0.25 0.60 0.65 0.75 0.65 0.85 0.85 

2 0.20 0.20 0.35 0.25 0.30 0.30 0.15 0.45 0.50 0.50 0.55 0.50 

3 0.65 0.65 0.70 0.55 0.45 0.40 0.35 0.35 0.30 0.30 0.25 0.25 

4 0.25 0.50 0.40 0.20 0.20 0.20 0.70 0.65 0.35 0.45 0.50 0.35 

5 0.20 0.20 0.30 0.50 0.75 0.70 0.65 0.70 0.80 0.80 0.95 0.90 

6 0.65 0.35 0.30 0.30 0.10 0.20 0.30 0.15 0.25 0.15 0.05 0.00 

7 0.00 0.05 0.25 0.05 0.00 0.05 0.25 0.30 0.35 0.25 0.50 0.45 

8 0.55 0.60 0.50 0.50 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 

9 0.65 0.95 0.95 0.90 0.90 0.85 0.55 0.55 0.50 0.50 0.50 0.35 

10 0.55 0.40 0.45 0.40 0.40 0.45 0.45 0.50 0.50 0.50 0.50 0.55 

11 0.90 0.90 0.90 0.90 0.90 0.90 0.95 0.95 0.90 0.95 1.00 1.00 

12 0.75 0.65 0.85 0.90 0.85 0.65 0.75 0.75 0.70 0.65 0.55 0.40 

13 0.10 0.15 0.15 0.25 0.15 0.20 0.40 0.35 0.40 0.35 0.05 0.05 

14 0.65 0.65 0.55 0.45 0.40 0.40 0.35 0.35 0.30 0.35 0.40 0.35 

15 0.45 0.45 0.45 0.45 0.55 0.55 0.45 0.40 0.65 0.75 0.70 0.70 

16 0.35 0.35 0.30 0.30 0.30 0.30 0.35 0.35 0.40 0.45 0.50 0.45 

17 0.45 0.50 0.45 0.40 0.45 0.40 0.35 0.35 0.30 0.35 0.35 0.20 

18 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.20 0.15 0.20 0.65 

19 0.85 1.00 0.60 0.60 0.45 0.05 0.00 0.30 0.15 0.25 0.40 0.75 

20 0.65 0.55 0.55 0.45 0.50 0.60 0.65 0.60 0.65 0.70 0.75 0.55 

21 0.80 0.85 0.80 0.95 0.95 0.90 0.95 1.00 0.95 1.00 0.80 0.95 

22 0.50 0.40 0.35 0.20 0.90 0.10 0.15 0.10 0.20 0.10 0.10 0.10 

23 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.70 0.70 0.70 0.70 0.70 

24 0.70 0.65 0.70 0.60 0.55 0.60 0.60 0.60 0.70 0.75 0.70 0.55 

25 0.55 0.70 0.70 0.60 0.65 0.75 0.75 0.85 0.80 0.80 0.80 0.85 

26 0.25 0.50 0.45 0.35 0.25 0.25 0.40 0.45 0.10 0.10 0.05 0.05 

27 1.00 1.00 1.00 1.00 1.00 0.80 0.65 0.65 0.45 0.60 0.80 0.75 

28 0.45 0.35 0.50 0.45 0.55 0.55 0.60 0.65 0.50 0.50 0.50 0.40 

29 0.50 0.40 0.15 0.20 0.45 0.55 0.50 0.70 0.55 0.65 0.85 0.90 

30 0.50 0.65 0.75 0.70 0.70 0.65 0.70 0.65 0.60 0.60 0.50 0.55 

31 0.40 0.05 0.00 0.00 0.00 0.35 0.50 0.55 0.50 0.10 0.00 0.00 

32 0.50 0.50 0.50 0.45 0.50 0.50 0.50 0.55 0.55 0.50 0.50 0.45 

33 0.55 0.60 0.65 0.70 0.70 0.75 0.75 0.75 0.75 0.75 0.80 0.70 

34 1.00 0.90 0.95 1.00 1.00 0.95 0.60 0.55 0.90 1.00 1.00 1.00 

35 0.30 0.40 0.65 0.90 0.00 0.15 0.30 0.65 0.55 1.00 0.25 0.25 

36 0.20 0.30 0.50 0.40 0.50 0.60 0.40 0.65 0.60 0.80 0.50 0.80 

37 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.90 0.90 

        

Mean 0.51 0.52 0.52 0.50 0.50 0.49 0.51 0.55 0.54 0.55 0.53 0.53 
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Table 5: 

Estimation results for model (3), where insignificant parameters are deleted sequentially 

(using a 10% significance level). Parameters have been estimated by OLS, with a White-type 

correction for potential heteroskedasticity 

 

   

Horizon  Variable (parameter and standard error in parentheses)  Fit 

 

Intercept Age  Age^2  Wrong  No    

        Direction Deviation 

  

 

1  0.580  -0.044  0.0005  2.248    0.246 

  (0.574)  (0.021)  (0.0002) (0.846) 

 

2  0.727  -0.043  0.0005  1.724    0.158 

  (0.671)  (0.026)  (0.0003) (0.984) 

 

3  1.617  -0.057  0.0007      0.079 

  (0.579)  (0.028)  (0.0003) 

 

4  1.668  -0.062  0.0008      0.082 

  (0.654)  (0.031)  (0.0004) 

 

5  1.115  -0.058  0.0007  1.609    0.199 

  (0.729)  (0.030)  (0.0004) (0.736) 

 

6  0.489          0.000 

  (0.046) 

 

7  0.508          0.000 

  (0.040) 

 

8  0.547          0.000 

  (0.037) 

 

9  0.508        0.547  0.063 

  (0.040)        (0.297) 

 

10  0.553          0.000 

  (0.045) 

 

11  0.502        0.614  0.062 

  (0.051)        (0.204) 

 

12  -0.102      1.690  1.398  0.174 

  (0.304)      (0.840)  (0.369) 

 

=================================================================== 
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Table 6: 

Estimation results for model (4). Parameters have been estimated by OLS, with a White-type 

correction for potential heteroskedasticity (standard errors are in parentheses). The sample 

size is 36. The data on expert 11 are not included as they amount to an outlier.  

 

 

Horizon   Intercept   Fraction of bracketing Fit 

 

 

1    0.191 (0.053)   -0.486 (0.178)   0.141 

2    0.229 (0.055)   -0.575 (0.195)   0.164 

3    0.192 (0.063)   -0.442 (0.212)   0.104 

4    0.216 (0.061)   -0.489 (0.210)   0.115 

5    0.246 (0.057)   -0.573 (0.198)   0.149 

6    0.105 (0.031)   -0.127 (0.093)   0.014 

7    0.035 (0.032)   0.065 (0.100)   0.004 

8    0.030 (0.037)   0.069 (0.126)   0.005 

9    0.055 (0.031)   -0.015 (0.103)   0.003 

10    0.110 (0.046)   -0.138 (0.150)   0.017 

11    0.163 (0.046)   -0.317 (0.151)   0.095 

12    0.174 (0.044)   -0.334 (0.132)   0.107 
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