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Instrumental Variable Estimation for Duration Data

Abstract

In this article we focus on duration data with an endogenous variable for which an
instrument is available. In duration analysis the covariates and/or the effect of the
covariates may vary over time. Another complication of duration data is that they
are usually heavy censored. The hazard rate is invariant to censoring. Therefore, a
natural choice is to model the hazard rate instead of the mean.

We develop an Instrumental Variable estimation procedure for the Generalized
Accelerated Failure Time (GAFT) model. The GAFT model is a duration data
model that encompasses two competing approaches to such data; the (Mixed) Pro-
portional Hazard (MPH) model and the Accelerated Failure Time (AFT) model.
We discuss the large sample properties of this Instrumental Variable Linear Rank
(IVLR) estimation based on counting process theory. We show that choosing the
right weight function in the IVLR can improve its efficiency. We discuss the im-
plementation of the estimator and apply it to the Illinois re-employment bonus
experiment.

JEL classification: C21, C41, J64.
Key words: Endogenous Variable; Duration model; Censoring; Instrumental Vari-
able.
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1 Introduction

Social scientists have a long tradition of exploring the substantive implications of en-

dogeneity in both methodological work and empirical work. Endogeneity is troublesome

because it precludes the usual causal kinds of statements social scientists like to make. A

canonical example is the evaluation of the effect of training programs of unemployment

individuals on earnings and employment status. In general, the indicator for those who

were trained is endogenous, because those individuals who choose to get training perceive

the training as beneficial for earning or employment status. Other examples include the

effect of union status and childbearing on labor market outcomes. All these problems have

a treatment-control flavor. The notion that treatment status is endogenous reflects the

fact that simple comparisons of treated and untreated individuals are unlikely to have a

causal interpretation.

In recent years, social experiments have gained popularity as a method for evaluating

social and labor market programs (see e.g. Meyer (1995), Heckman et al. (1999) and An-

grist and Krueger (1999)). In experiments the assignment of individuals to the treatment

can be manipulated. If assignment is random, the average impact of the treatment can

be estimated. However, a randomized assignment may be compromised, if the individuals

can refuse to participate, either by dropping out, if they are to receive the treatment, or

by obtaining the treatment, if they are in the control group. If this non–compliance to the

assigned treatment is correlated with the outcomes in the treatment or control regimes,

the observed effect of the treatment is a biased estimate of the treatment effect. Thus,

even with random assignment the actual treatment status can be endogenous.

Most of the evaluation literature has focused on static treatments, i.e. treatment that

is administered at a particular point in time or in a particular time interval. If the outcome

is a duration the treatment or its effect can be dynamic, i.e. it can be switched on and off

over time. Examples are the unemployment insurance experiments (see Meyer (1995) for

a survey) in which the unemployed receive a cash bonus if they find a job in a specified

period. Another example is a temporary cut in unemployment benefits of unemployed
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individuals who do not expend sufficient effort to find a job (e.g. see Van den Berg et al.

(2004) for The Netherlands and Ashenfelter et al. (2005) for the U.S. ).

The problem of endogeneity in duration models is similar to other statistical models:

when endogeneity is present the standard interpretations given by any statistical model

generally do not hold. If the training is perceived beneficial those individuals who choose to

get training differ ex ante from those who choose not to get training. Similarly, unemployed

who choose to be eligible for a cash bonus if they find a job in time, differ both in observed

and unobserved characteristics that may influence their job finding probability.

For linear models the problem of endogeneity can be solved if an instrument is avail-

able. The only requirement is that such an instrument affects the endogenous variable

but is not correlated with the errors of the regression. We extend that notion to duration

models that are inherently non-linear and propose an estimation technique. The basic

idea behind this Instrumental Variable Linear Rank (IVLR) estimator is that on the cor-

rect transformed duration time the proportion of people with a particular value of the

instrument remains the same.

Two competing approaches to the estimation of the effect of a, possible time–varying,

covariate on duration has been the (Mixed) Proportional Hazard (MPH) model (for a

recent survey see Van den Berg (2001)) and the Accelerated Failure Time (AFT) model

(see a.o. Kalbfleisch and Prentice (2002), Brännäs (1992), and Klein and Moeschberger

(1997)). In the Mixed Proportional Hazards (MPH) model the hazard is written as the

product of the baseline hazard, a non-negative regression function, and a non-negative

random variable that represents the covariates that are omitted from the regression func-

tion. Ridder (1990) introduced the Generalized Accelerated Failure Time (GAFT) model,

a generalization of the AFT models that also includes the MPH model.

The GAFT model is based on transforming the duration and assuming some dis-

tribution for this transformed duration. The transformation is related to the integrated

hazard of a PH model. The AFT model is obtained by restricting the transformation.

The AFT does not restrict the distribution of the transformed duration, while the MPH

model restricts this distribution to a mixture of exponentials. The regression coefficients
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in a GAFT model can be interpreted in terms of the effect of regressing on the quantiles

of the distribution of the transformed duration for the reference individual. In an AFT

model the relation between the q-th quantile of a individual with observed characteristics

X and the q-th quantile of the reference individual is the acceleration factor. In a GAFT

this acceleration factor is multiplied by the ratio of the ‘duration dependence’ at the two

quantile durations.

For the population parameters of the GAFT model the distribution of the transformed

durations is independent of the instrument. Thus, for a binary instrument, R, the pro-

portion of the people with R = 1 remains the same over the survivors on the transformed

duration time. Then the rank test statistic for the influence of this instrument on trans-

formed duration should go to zero. The inverse of the rank test provides the estimation

procedure we call the IVLR. The asymptotic properties of the estimator are derived using

counting process theory.

The existence of endogenous covariates implies (possible) dependence between the

transformed duration and the censoring time. This implies that the IVLR estimator,

which exploits the independence between the transformed durations and the instruments,

may give biased results. We can often make the assumption that the (potential) censoring

time is known at the start of the study. In the re-employment bonus data, for example, we

can only observed the unemployed while receiving UI benefits. In this case the potential

censoring time is for all individuals at 26 weeks, the maximum duration of UI benefits in

Illinois at the time of the experiment. With known (potential) censoring time we can mod-

ify the GAFT transformation by introducing additional censoring such that this modified

transformation and the instruments become independent for the uncensored observations.

Then, the IVLR estimator on this modified transformation leads to consistent estimators.

The IVLR estimation is based on a vector of mean restrictions on weight functions of

the covariates, instrument and the transformed durations. Thus the IVLR is also related

to GMM estimation. In GMM estimation it is feasible to get the most efficient GMM

estimator in just two steps. In the first step directly observed weighting matrices lead

to a consistent, but not necessary efficient estimator. From this consistent estimator we

3



can consistently estimate the efficient weighting matrices. It is then possible to obtain an

efficient estimate of the parameters involved in just two steps. A similar reasoning applies

to the IVLR-estimator. In the first step we use simple weighting functions to obtain

consistent estimates of the parameters of the GAFT model. From these parameters we

can estimate the distribution of the transformed durations, which are needed to calculate

the most efficient weighting functions. Then, in just one additional step the efficient IVLR

is obtained.

For our empirical application we use data from the Illinois unemployment bonus exper-

iment. These data have been analysed before with increasing sophistication by Woodbury

and Spiegelman (1987), Meyer (1996) and Bijwaard and Ridder (2005). In this experi-

ment a group of individuals who became unemployed during four months in 1984 were

divided at random in three groups of about equal size: two bonus groups and a control

group. The unemployed in the claimant bonus group qualified for a cash bonus if they

found a job within 11 weeks and would hold this job for at least four months. In the em-

ployer bonus group, the bonus was paid to their employer. The members of the two bonus

groups were asked whether they were prepared to participate in the experiment. About

15% of the claimant bonus and 35% of the employer bonus groups refused participation.

It is very likely that the decision to be eligible for a bonus is related to the unemploy-

ment duration. This makes the participation indicator an endogenous variable in relation

to the unemployment duration. Comparing our estimates with a standard ML-estimate

shows that ignoring the endogeneity leads to underestimate the effect of the bonus on the

re-employment probability. Assuming an AFT instead of a more general GAFT model

overestimate the effect of the bonus.

The outline of the article is as follows. Section 2 introduces the GAFT model and its

relation to the AFT and MPH models. We also discuss identification and interpretation

of the GAFT model. Section 3 provides a discussion on endogenous variables in duration

models and how such variables can be incorporated into a GAFT model. In Section 4

we explain the counting process framework for duration models and the GAFT model in

particular. We also discuss the problems of endogenous censoring. Within the counting
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process framework, the asymptotic properties of our estimator, which is introduced in Sec-

tion 5, can be derived using martingale theory. We prove the consistency and asymptotic

normality of the estimator. We discuss the efficiency and the practical implementation of

the IVLR. Section 6 discusses the empirical application of the IVLR estimator to the re-

employment bonus experiment. We conclude with a summary and discuss possible avenues

for further research in Section 7.

2 Duration Models

For many economic and demographic phenomena the timing of a transition from one

state into another state is important. Examples include the time till re-employment of

an unemployed individual, the time till marriage and the time till death. Two important

features of such transition data are that some relevant characteristics of the individual

may change over time, time-varying variables, and that, due to a limited observation

window, we do not observe the completed duration for all individuals, right-censoring. In

a duration model the timing of a particular event is modeled and it is straightforward to

incorporate time-varying variables and allow for right-censoring.

The key variables in duration analysis are the duration till the next event, T , and the

indicator of censoring, δ. The observed durations may be right–censored, i.e. we observe

T̃ = min(T, C) with C the censoring time. The possible time–varying covariates are given

by the vectorXi(t) where i refers to a member of the population. The path of the covariates

are predetermined. Thus X(t) = {X(s); 0 ≤ s ≤ t} does not depend on future events.

Two competing approaches for the analysis of duration data has been the (Mixed)

Proportional Hazard (MPH) model and the Accelerated Failure Time (AFT) model. The

Mixed Proportional Hazards (MPH) model assumes that the hazard, the instantaneous

probability of an event at duration t, given that no event occurred before t can be written

as

λ(t|X(t), V ) = vλ0(s;α)eβ
′X(t)

where λ0(t) represents the baseline hazard, that is, the duration dependence of the hazard
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common to all individuals. The covariates affect the intensity proportionally, eβ
′X(s) and

the unobserved heterogeneity V is a random variable that captures variables not in X. For

the population parameters, α0 and β0, the integrated hazard, Λ(t) =
∫ t

0
λ0(s;α0)e

β′

0X(s) ds

times the unobserved heterogeneity is unit exponentially distributed, E(1) and therefore

the MPH model is also equivalent to

∫ t

0

λ0(s;α0)e
β′

0X(s) ds ∼ E(1)

V
(1)

Thus the distribution of integrated hazard is a mixture of exponential distributions.

The AFT model assumes that the survival function of an individual with covariate

path X(t) is related to the survival function of the reference individual, the individual

with X(t) = 0, by

S
(

t|X(t)
)

= S0

(

∫ t

0

eβ
′X(s) ds

)

with S0(·) is the survival function of the reference individual. If all covariantes are time-

invariant then an AFT model implies that the distribution of TX , the duration of an

individual with covariate vector X, and the distribution of e−β
′XT0 are the same. Thus

X accelerates, β < 0, or decelerates, β > 0 the duration. This is equivalent with a linear

regression model for the log-duration

ln(T ) = −β ′X + ǫ

where ǫ is a random variable with same distribution as ln(T0).

2.1 The Generalized Accelerated Failure Time Model

A class of duration models that generalizes the AFT models in such a way that it also

includes the MPH models is the Generalized Accelerated Failure Time (GAFT) model,

introduced by Ridder (1990). The GAFT model is not specified by the distribution of

the log-duration. Instead, we transform the duration, and assume that this transformed

duration has some distribution. The transformation of the duration is related to the

integrated hazard in a PH-model. The GAFT model is also related to the generalized

regression model proposed by Han (1987).
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The GAFT model assumes that the relation between the duration T and the covariates

is specified as
∫ T

0

λ(s;α)eβ
′X(s) ds = U (2)

where λ(t;α) is a non–negative function on [0,∞). The non–negative regression function

eβ
′X(s) captures the effect of the covariates. A flexible functional form for λ is the piece-

wise constant function. The GAFT model is characterized by these functions and by the

distribution of the non–negative random variable U . We denote the survivor function of

U0, the transformation in the population parameters α0 and β0 by G0(u) and its hazard

function by κ0(u), which do not depend on X. We assume that the distribution of U0

is absolutely continuous. The semi–parametric estimators considered in this article avoid

assumptions on the distribution of U0.

As mentioned, the GAFT model contains as special cases the AFT, the PH and the

MPH models. The AFT model restricts the transformation to λ(t;α) ≡ 1, but leaves the

distribution of U0 unrestricted (with the exception of that U0 should be non–negative, see

e.g. Cox and Oakes (1984)). The (M)PH model restricts the distribution of U0, but leaves

the λ unrestricted (non–negative). The distribution of U0 is an unit exponential distri-

bution (PH) or a mixture of exponential distributions (MPH). A convenient assumption

is that the unobserved heterogeneity has a gamma distribution with variance σ2. Then,

U0 has a Burr distribution with density g0(u) = (1 + uσ2)−(1+1/σ2), survival function

G0(u) = (1 + uσ2)−1/σ2

, mean 1/(1 − σ2) and hazard function (1 + uσ2)−1.

We denote the left–hand side of (2) by h(T,X(T ); θ) with θ = (α′, β ′)′ the vector

of parameters. The survivor function of T at t in the GAFT model for the population

parameters is

F (t | X(t); θ0) = G0

(

h(t, X(t); θ0)
)

(3)

and the hazard of T at t is

λ0(t;α0)e
β′

0X(t)κ0

(

h(t, X(t); θ0)
)

. (4)

We can interpret the model in terms of the effect of regressing on baseline quantiles, the

quantiles for the reference individual. Let tq(X) be the q–th quantile of the population
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distribution of T with covariate history X. Let tq be the q–th quantile for the reference

individual (with X(t) identically equal to zero). Then from (3)

G0

(

h
(

tq(X), X
(

tq(X)
)

; θ0

)

)

= 1 − q = G0

(

h
(

tq, 0; θ0
)

)

(5)

Hence we obtain a relation between tq(X) and tq that is defined implicitly by

∫ tq(X)

0

λ(s;α0)e
β′

0X(s) ds =

∫ tq

0

λ(s;α0) ds (6)

This implies that
d tq(X)

d tq
= e−β

′

0X
(

tq(X)
)

λ
(

tq;α0

)

λ
(

tq(X);α0

) (7)

In the AFT model the duration of an individual with (time–constant) covariate X is

distributed as U0e
−β′

0X . Thus, in the relation between the quantiles in the GAFT model

the acceleration factor is multiplied by the ratio of the values of λ(t) in the q–th quantile

of the reference and the q–th quantile of the individual with covariate X.

In the MPH model we can interpret λ(t) as the baseline hazard, i.e. the factor in the

proportional hazard that captures the (duration) time variation in the hazard function.

Thus, in the MPH model the ratio in (7) can be interpreted as the ratio of baseline

hazards. The regression parameter, β, is the proportional change in the hazard rate due

to a unit change in X(t) for a unit with unobserved heterogeneity V .

2.2 Identification of the GAFT model

Assume that the regression function in the GAFT model is log–linear. Then, the model

is characterized by the non–negative function λ(t;α) defined on [0,∞), the distribution

of U0 and the regression parameter β. Ridder (1990) has shown that if the covariates

are time constant, all observationally equivalent GAFT models, i.e. models that give the

same conditional distribution of T given X, have regression parameters dβ, integrated

transformation c1

(

∫ t

0
λ0(s;α0) ds

)c2
and U0 distribution G0

(

(

u
c1

)1/c2
)

for some constants

c1, c2 > 0. The equivalent class follows from the fact that a GAFT model with time

constant covariates can be expressed as a transformation model

ln
(

∫ T

0

λ0(s;α0) ds
)

d
= −β ′

0X + lnU,
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and the constants c1, c2 correspond to addition of ec1 to and division by c2 of the left–

and right–hand sides.

With time–varying covariates, the set of observationally equivalent GAFT models is

generally smaller. In particular, the power transformation that gives an observationally

equivalent model if the covariates are time constant, in general does not result in a GAFT

model. As an example consider the GAFT model with time–varying regressors that differ

between two groups. In group I

X(t) =

{

1 if 0 ≤ t ≤ 1,

0 if t > 0.

and in group II, X(t) = 0; t ≥ 0. Moreover λ0(t;α) = αtα−1. With time constant regres-

sors the parameter α is not identified. It can be shown that the observationally equivalent

GAFT models have transformation c1t
α and U–distribution with survival Gu

(

u
c1

)

. Hence,

with time–varying covariates α is identified (and so is β).

We conclude that identification depends on whether the covariates are time constant

or time–varying. If the covariates are time constant we can identify the transformation

h(T,X(T ); θ0) up to a power and β up to scale (with the power and the scale being

equal). Moreover, if we fix the power we can identify h(T,X(T ); θ0)
c2 up to scale and the

distribution of U0 up to the same scale parameter.

If the covariates are time–varying we can, except in special cases, identify h(T,X(T ); θ0)

and the distribution of U0 up to a common scale parameter. Because we leave the distribu-

tion of U0 unspecified in our estimation method, we can not use restrictions on U0 to find

the scale parameter. For that reason we normalize h(T,X(T ); θ0) by setting h(T, 0; θ0) = 1

for some t0 > 0. With time constant regressors we need the same normalisation, but in ad-

dition we need to set one regression coefficient equal to one. Of course, we could choose a

class of transformations that is not closed under the power transformation. This amounts

to identification by functional form.

Finally, we need a condition on the sample paths of X in the population. If we rewrite

(2) as
∫ T

0

elnλ(s;α0)+β′

0X(s)ds = U0 (8)
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we require that

Pr
(

lnλ(s;α0) + β ′
0X(.) = 0

)

= 0 (9)

where the probability is computed over the distribution of X as a random function of t

and 0 is the zero function. In other words, lnλ is not collinear with X.

3 Endogenous Covariates in Duration Models

It can rarely be defended that a study on unemployment durations includes all the relevant

characteristics of the individuals looking for a job. For example, consider like in our

application a study on the effect of a cash-bonus for finding a job within a certain period

on the re-employment probability. Because such a bonus increases the reward of leaving

unemployment it gives an incentive to search more intensively and therefore it increases

the re–employment hazard. However, the search intensity of the unemployed individuals

is usually not observed.

Suppose that the unemployed have to choose at the start of their unemployment spell

whether they want to be eligible for a bonus. If they choose to be eligible they have to fill in

some forms, notify their new employer and provide a proof that they held that new job for

at least four months. Thus, joining the bonus program implies some administrative duties

and cooperation with their new employer for the unemployed. This might refrain some

individuals from joining the bonus program, as we see in our application. It is very likely

that the unobserved motivation to return to work has an impact on both the decision to

join the bonus program and the search intensity. This implies that the indicator of joining

the bonus program is an endogenous variable for the analysis of the unemployed duration.

Without adjusting for this (self)-selection standard duration analysis give biased results

of the effect of the bonus on unemployment duration.

A way of adjusting for an endogenous variable is the conventional instrumental vari-

able method that assumes instrument–error independence and an exclusion restriction. A

familiar example of an instrumental variable is the treatment assignment–indicator of a

randomly assigned treatment in which the actual treatment still depends on a decision
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by the agents (or on decisions made by those who execute the program). For instance,

long–term unemployed can be randomly assigned to a training program, but for many

programs they can still decide not to join, or the training manager can decide to withhold

some training from some people. Then, the assignment indicator is an instrument for the

actual indicator of training received.

The method of instrumental variables (IV) is widely used in econometrics. For illus-

tration consider the simple linear model

Y = β ′X + γD + ǫ

where Y is observed outcome, X is a vector of exogenous variables, D is an endogenous

variable, and ǫ is a disturbance with mean 0. If D and ǫ are correlated OLS gives biased

estimates of θ = (β, γ). The conventional IV method uses an instrument R that affects D

but is uncorrelated with ǫ, like the assignment indicator in a random but compromised

experiment. If we denote Z = (X,R) and X̃ = (X,D) the IV estimator is

θ̂IV =
(

Z ′X̃
)−1

Z ′Y

Complications arise if the outcome variable of interest is a duration variable, like the

unemployment duration. Models for duration data, as shown in section 2, are usually non-

linear. In general the value of the endogenous variable may depend on information that

accumulates during the evolution of the duration. The common approach to accommodate

such time-varying variables is to relate them to the hazard rate. Another reason to consider

the effect on the hazard rate is that duration data are usually (right)-censored, due to a

limited observation window. The hazard rate is invariant to censoring and is therefore the

natural choice for the analysis of duration data. Let D(t) be the value of the endogenous

variable at duration t. Then the GAFT model with endogenous variables becomes

∫ T

0

λ(s;α)eβ
′X(s)+ψ(s,D(s),γ) ds = U = h

(

T,X(T ), D(T ), θ
)

(10)

where ψ(t, D(t), γ) captures the effect of the endogenous variable and θ = (β ′, α′, γ′)′.

Without loss of generality we assume that D is a binary variable that only changes at
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prediscribed durations and that the effect of the endogenous variable may change over

the duration. Then a flexible functional form for ψ is

ψ(t, D(t), γ) =

J
∑

j=0

γj ·Dj · Ij(t) (11)

where Ij(t) = I(tj < t ≤ tj+1) with t0 = 0 and tJ+1 = ∞.

IfD is an exogenous variable, standard techniques for the analysis of survival time data can

be used to estimate the γ’s. For example, we can use a Mixed Proportional Hazards model

and estimate γ using (semi–parametric) Maximum Likelihood procedures, depending on

the assumptions we make about the distribution of the unobserved heterogeneity, V ,

and the baseline hazard. If the model is correctly specified the MLE yields a consistent

estimate.

However, we will get biased estimation results for the parameters if the covariate D

is endogenous. Consider, for example, a randomized trail with selective compliance to

the assigned treatment. Let R = 0, 1 be the random assignment and D = 0, 1 the actual

treatment. The problem is that even if D has no effect on the hazard the parameter vector

γ may not have a causal interpretation, because those who comply with their assigned

treatment differ in observed and unobserved characteristics from those who do not comply.

Since physical randomization implies that at time zero all attributes of the two treat-

ment groups are (in expectation) identical, a commonly used solution to this problem, is

to ignore the post–randomization compliance and rely on the analysis of the treatment

assignment groups. This intention–to–treat (ITT) analysis replaces the actual treatment,

D by the treatment assignment indicator, R in the estimation procedure. Further, if the

model is correctly specified the estimated γ’s effect will correspond to the overall effect

that would be realized in the whole population, under the assumption that the compliance

rate and the factors influencing compliance in the sample are identical to those that would

occur in the whole population.

The major drawback of the intention–to–treat analysis is that the estimated effect is a

mixture of the population effect and the effect on the compliance. Hence, if the treatment

effectively raises the re–employment hazard, the intention–to–treat measure of this effect
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will diminish as non–compliance increases. Another disadvantage is that compliance is

very likely to depend on the perceived effects of the treatment. If, for example, the unem-

ployed know that being eligible for a re–employment bonus does not stigmatize them, they

will be more prone to participate. Thus, when the pattern of compliance is a function of

the perceived efficacy of the treatment the estimated intention–to–treat will not represent

the overall effect of the treatment had it been adopted in the whole population.

3.1 GAFT model with endogenous interventions

We propose an Instrumental Variable method for duration models that adjusts for the

possible endogeneity of the intervention, without suffering the problems of the intention–

to–treat method. This is accomplished by using the GAFT model, defined in (10), that

transforms the duration such that for the true, population, parameter the transformed

duration is independent of the instrument.

The intuition behind the idea of transforming can be clarified by considering the simple

example of an experiment with random assignment and selective compliance at the start

of the study. If the treatment has no impact on the hazards the probability of observing

an individual with R = 1 among the survivors at some duration t should be equal to

the treatment assignment probability at the start, Pr(R = 1). If the treatment has an

effect, say positive, on the hazard this does not hold, since the treated individuals find a

job faster. However, on the transformed duration time-scale, using the true, population,

parameters, U0 = h
(

T,X(T ), D(T ), θ0
)

, in the GAFT model in (10) the proportion of the

individuals in assignment group remains the same

Pr
(

R = 1 | U0 ≥ u
)

= Pr
(

R = 1 | T ≥ 0
)

, (12)

In other words: the basic assumption underlying the IV estimator is that for the right

GAFT model the distribution of the duration on the transformed time scale is independent

of the instrument. This implies that the hazard of the population transformed duration is

independent of the instrument. This independence only holds for the population param-

eters and therefore we can build an estimation procedure that exploits this conditional
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independence1. In section 5 we discuss this Instrumental Variable Linear Rank (IVLR)

estimator.

The interpretation of the parameters of the GAFT-model is the same as defined in

the section 2.1, (7). If, for example, the endogenous variable is time-invariant and has

a fixed effect, thus ψ(t, D, γ) = γD, then the relation between the q-th quantile of the

transformed duration U0 for D = 0, tq(0), and for D = 1, tq(1), is

d tq(1)

d tq(0)
= e−γ

′

0D exp
(

−β ′
0

(

X(tq(1)) −X(tq(0))
))λ

(

tq(0);α
)

λ
(

tq(1);α
) (13)

If γ0 > 0 and assuming incorrectly an AFT model would overestimate the effect of the

D if λ
(

tq(0);α
)

< λ
(

tq(1);α
)

and underestimate the effect if λ
(

tq(0);α
)

> λ
(

tq(1);α
)

.

The hazard or re–employment rate of unemployment durations often exhibits a spike just

before the time that unemployment benefits are exhausted. This corresponds to a large

increase in λ at that spike. For the bonus data this implies that, if we assume that all

unemployed who find a job receive the bonus and that the bonus has a small positive

effect on the job finding rate, tq(0) > tq(1). If tq(0) is in the spike while tq(1) is not, then

the left–hand side of (13) is greater than one and the AFT treatment effect at tq(1) is

negative. Thus if there is (substantial) variation in λ, the AFT treatment effects will be

biased.

The identification in the GAFT model with endogenous variables is the same as in

the GAFT model with only exogenous variables, except that we need additional assump-

tions on the instrument. First, the instrument should only affect the duration through

the endogenous variable and not directly. Second, the value of the instrument should in-

fluence the value of the endogenous variable in a non-trivial way. For example, if both

the instrument and the endogenous variable are binary then Pr(D = 1|R = 1) > 0 and

Pr(D = 0|R = 0) > 0.

1Here we only concentrate on a static binary instrument and a discrete, but possible time-varying
according to a prescribed protocol, endogenous variable. It is not difficult to extend the analysis to more,
discrete, levels of both the instrument and the endogenous variable and to have a sequential instruments.
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4 Counting process interpretation

The density and the survival function of a duration T can be expressed as functions of

the hazard rate. These expressions can be used to obtain a likelihood function. We use a

different (but of course equivalent) representation of the relation between the hazard rate

and the random duration. In particular, we use the framework of counting processes (see

e.g. Andersen et al. (1993) and Klein and Moeschberger (1997)). The main advantage of

this framework is that it allows us to express the duration distribution as a regression

model with an error term that is a martingale difference. This simplifies the analysis of

the estimator. The conditions for non selective observation can be precisely stated in this

framework. The same is true for conditions on time–varying covariates.

The starting point is that the hazard of T is the intensity of the counting process

{N(t); t ≥ 0} that counts the number of times that the event occurs during [0, t]. The

counting process has a jump +1 at the time of occurrence of the event2. A jump occurs if

and only if dN(t) = N(t)−N(t−) = 1. For duration data, the event can only occur once.

In many unemployment studies the individuals are only observed until re-employment.

So, at most one jump is observed for any unit. To account for this we introduce the

observation indicator Y (t) = I(T ≥ t) that is zero after re–employment. By specifying the

intensity as the product of this observation indicator and the hazard rate we effectively

limit the number of occurrences of the event to one. We assume that the observation

indicator only depends on events up to time t. The observation process is assumed to

have left–continuous sample paths. We define the history of the process up to time t by

H(t) = {Y (t), D,X(t)}, where Y (t) = {Y (s), 0 ≤ s ≤ t}. The history H(t) only contains

observable events.

Let V be some unobserved variables that both influence the endogenous variable and

the duration. An example is the, usually, unobserved search intensity of unemployed

looking for a job. We assume that V and X(t) are stochastically independent. Denote

HV (t) = {H(t), V }, the history that also includes the unobservables. As with dynamic

2The sample paths are assumed to be right-continuous.
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regressors in time-series models, the time-varying X(t) may depend on the dependent

variable up to time t but not after time t (conditionally on V ). Thus D only depends

on HV (t) and X(t) only on H(t). In the counting process literature such a time-varying

covariate is called predictable. We will use the econometric term predetermined.

If the conditional distributions of N(t) given HV (t) or H(t) are well-defined (see

Andersen et al. (1993) for assumptions that ensure this) we can express the probability

of an event in (t− dt, t] as3

Pr(dN(t) = 1 | HV (t)) = Y (t)κ
(

t | X(t), D, V
)

dt (14)

with κ(t | ·) is the hazard of T at t givenX(t), D and V . By the Doob-Meier decomposition

dN(t) = Y (t)κ
(

t | X(t), D, V
)

dt+ dM(t) (15)

with {M(t); t ≥ 0} a (local square integrable) martingale. The conditional mean and

variance of this martingale are

E
(

dM(t) | H(t)
)

= 0 (16)

Var
(

dM(t) | H(t)
)

= Y (t)κ
(

t | X(t), D, V
)

dt (17)

The (conditional on H(t)) mean and variance of the counting process are equal, so that

the disturbances in equation (15) are heteroscedastic. The probability in equation (14) is

zero, if the individual is not at risk.

A counting process can be considered as a sequence of Bernoulli experiments, because

if dt is small equations (14) and (17) give the mean and variance of a Bernoulli random

variable. The relation between the counting process and the sequence of Bernoulli ex-

periments is given in equation (15), which can be considered as a regression model with

an additive error that is a martingale difference. This equation resembles a time-series

regression model. The Doob-Meier decomposition is the key to the derivation of the dis-

tribution of the estimator, because the asymptotic behavior of partial sums of martingales

is well-known.

3Because the sample paths of {Y (t), X(t), t ≥ 0} are assumed to be left-continuous (as is the baseline
hazard), we can substitute t for t − dt in (14).
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4.1 Transformed Counting process

The GAFT model transforms the observed duration T to a transformed duration U0. The

transformation involved a parameter vector θ0 = (β ′
0, γ

′
0, α

′
0)

′. We denote the transforma-

tion for parameter vectors θ 6= θ0 by U(θ) with U0 = U(θ0). The distribution of U(θ) can

also be represented by a (transformed) counting process {NU(u); u ≥ 0}. The relation

between the original and transformed counting process, the observation indicator, and

the time-varying exogenous covariates is

NU (u; θ) = N
(

h−1(u; θ)
)

Y U(u; θ) = Y
(

h−1(u; θ)
)

XU(u; θ) = X
(

h−1(u; θ)
)

IUk (u; θ) = Ik
(

h−1(u; θ)
)

with h(T ; θ) = h
(

T,X(T ), D(T ); θ
)

, defined in (10), and Ik(t) = I(tk < t ≤ tk+1).

For θ = θ0 we denote h0(T ) = h(T ; θ0). The corresponding history is HU(u; θ) =

{Y U
(u; θ), X

U
(u; θ), I

U

k (u; θ), D}. In the sequel we suppress θ and write Y U(u), NU(u), X
U
(u), I

U

k (u)

and HU(u) for θ 6= θ0 and Y0(u), N0(u), X0(u), Ik0(u) and H0(u) for θ = θ0. The intensity

of the transformed counting process with respect to history HU(u) is obtained by the

innovation theorem (see Andersen et al. (1993), p. 80, 87)4

Pr
(

dNU(u) = 1 | HU(u)
)

= Y U(u)E

[

λ
(

h−1(u; θ);α0

)

λ
(

h−1(u; θ);α
) e(β0−β)′XU (u)

× exp
(

K
∑

k=1

(γk0 − γk)I
U
k (u)D

)

κ0

(

h0

(

h−1(u; θ)
)

)

∣

∣

∣

∣

HU(u)

]

du (18)

We implicitly integrate with respect to the distribution of the unobserved V conditional

on HU(u). Note that these unobserved covariates are only introduced to ascertain the

predictability of the endogenous covariate process. Although the distribution of those

variables determines the distribution of U0, the consistency of the IVLR is independent

of that distribution. Unfortunately, even for the population parameters θ0 the hazard of

4If U = h(T ) and κT is the hazard rate of the distribution of T , then the hazard rate of the distribution
of U is

κU (u) = κT

(

h−1(u)
) 1

h′

(

h−1(u)
)
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U0, κ0(u), still depends on the intervention path (through the correlation with V ). If we

condition on the history of the instruments instead of the actual endogenous covariates

we do get the desired independence.

We must add the instrument R to the conditioning variables in (18) if we consider in-

strumenting the endogenous variable. Let the UR–history,HUR(u) = {Y U(s), XU(s), R; 0 ≤
s ≤ u}, be the history on the transformed durations in which the endogenous variable D

is replaced by the instrument. Then, another application of the innovation theorem gives

the intensity of the transformed process on the UR–history

Pr
(

dNU(u) = 1 | HUR(u)
)

= Y U(u)E

[

λ
(

h−1(u; θ);α0

)

λ
(

h−1(u; θ);α
) e(β0−β)′XU (u)

× exp
(

K
∑

k=1

(γk0 − γk)I
U
k (u)D

)

κ0

(

h0

(

h−1(u; θ)
)

)

∣

∣

∣

∣

HUR(u)

]

du (19)

which for the population parameters simplifies to Y U
0 (u)κ0(u)du withHUR

0 (u) = HUR(u; θ0).

Note that (18) and (19) only differ in the history the intensities are conditioned on.

The intensity in (19) is independent of (the history) of X and R if we substitute the

population parameter values, but not for other values of the parameters. This forms the

basis for identification of the parameters. Independence of (the history) of X and R and

the hazard rate of U0 implies that the quantiles of the distribution of U0 do not depend

on X or R. By choosing CU
0 such that Pr(U0 ≤ CU

0 ) = q we restrict the independence

to the quantiles up to the q–th. For further reference we denote the intensity in (19) by

κUi (u; θ) such that

Pr
(

dNU(u) = 1 | HUR(u)
)

= Y U(u)κUi (u; θ)du

which reduces to κ0(u) for the population parameters.

4.2 Censoring and endogenous covariates

A common feature of duration data is that some of the observations are censored. Assume

the censoring time, C, is (potentially) known. For example, in the analysis of unemploy-

ment duration based on administrative data the duration is often only observed while
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the individual receives unemployment benefits. Usually, the maximum duration of receiv-

ing benefits is based on the labor market history of the individual and is recorded in

the data. Then, the potential censoring time is known and the observed durations are

T̃ = min(T, C) and ∆ = I(T ≤ C), where ∆ is one if T is observed.

One is tempted to define the censored transformed durations by the minimum of the

transformed time till (potential) censoring and the transformed time till the event occurs,

Ũ(θ) = min
(

h(T ; θ), h(C; θ)
)

= h(T̃ ; θ). However, with endogenous covariates censoring

makes some of the orthogonality conditions fail to hold. This can be illustrated by a

simple example: Consider a fixed censoring time, all individuals have the same maximum

duration of receiving benefits. Then for all individuals, irrespective of their value of the

endogenous variable, censoring occurs at time C. Suppose the binary endogenous variable,

D, and other covariates all be determined at the start of the study and have a constant

effect on the hazard. Finally, we assume that except for the γ the effect of the endogenous

variable, all parameters, β0 and α0, are known. Then, the transformation is

U0 = eγ0D+β′

0XΛ0(T ) (20)

with Λ0(t) =
∫ t

0
λ(s, α0) ds. Hence, if D = 0 censoring in the transformed time occurs

at eβ
′

0XΛ0(C), but if D = 1 censoring occurs at eβ
′

0X+γ0Λ0(C). Thus, if γ0 > 0, then all

transformed durations in the interval [eβ
′

0XΛ0(C), eβ
′

0X+γ0Λ0(C)] have D = 1 (for γ0 < 0

the boundaries are reversed). The hazard of U0 on this interval clearly depends on D and

hence on R. The independence of the hazard of U0 and R only holds up to the lower

bound of the interval. This implies that in the IVLR, which exploits this independence,

the transformed durations that fall in the problematic interval have to be censored.

This can be generalized to the model with a time–varying coefficient of the endogenous

variable and time–varying exogenous covariates. Assume the piecewise constant structure

for the effect of the endogenous variable in (11). This implies that for tk < t ≤ tk+1, the

coefficient of D = 1 is eγk . We define the transformed censoring time CU(θ) (possibly

depending on the observed history of other covariates) such that: (a) T ≥ C implies

h(T ; θ) ≥ CU(θ) and (b) U0 and R are independent on the interval bounded above by
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CU(θ).

Note that we either observe T ≤ C and ∆ = 1, or T > C and ∆ = 0. If some

of the other covariates are also time–varying we have another identification problem,

because these covariates are only observed up until T̃ . The transformed censoring times

(conditional on T, C > tk) that take all these considerations into account are the sum of

the transformed duration up to tk, h(tk; θ) and the censoring adjustment, i.e

CU(θ) =

{

∫ C

0
λ(s;α)eβ

′X(s)P (s; γ) ds if T > C,
∫ T

0
λ(s;α)eβ

′X(s)P (s; γ) ds+
∫ C

T
λ(s;α) ds if T ≤ C.

(21)

where P (s; γ) = I(s ≥ tk)
∏k

j=0 min(eγj , 1). From the last term on the right–hand side of

(21) we see why we need to know C even for the uncensored observations. Otherwise we

can not compute CU(θ) for these observations. We can estimate the parameters of the

Instrumental GAFT model from the following observed data

Ũ(θ) = min
(

U(θ), CU(θ)
)

, ∆U (θ) = I
(

U(θ) < CU(θ))

and Y U(u; θ) = I
(

Ũ(θ) ≥ u
)

. Now Ũ(θ0) is independent of R for ∆U(θ0) = 1. Note

that if, at least, one of the γ’s is different from zero, we introduce extra censoring on the

transformed durations, because then some units with ∆ = 1 have ∆U (θ) = 0.

5 Instrumental Variable Linear Rank Estimation

In this section we introduce the Instrumental Variable Linear Rank (IVLR) estimator of

the GAFT model. The estimator is based on independence of the transformed durations

{Ũ(θ0),∆
U(θ0)} and R and the properties of the IVLR are derived using the transformed

counting process NU(u). The IVLR is motivated by (19) and is defined on the possibly

censored durations Ũ(θ). For notational convenience we suppress the dependence on θ.

Only when we want to emphasis this dependence we include it.

5.1 The IVLR estimator

For the population parameter vector θ0 the hazard of U0, κ0(u), is independent of the

covariate and instrument history up to h−1
0 (u). Because this is true only for θ = θ0, we
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can use an estimate of (19) as an estimating equation. This independence can be used to

construct test statistics close to the linear rank test (see Prentice (1978)). The IVLR also

exploits this independence and is the estimation procedure derived from these rank tests.

The estimating equation that defines the IVLR estimator contains a left–continuous

weight function W . The dimension of W is greater than or equal to the dimension of θ0

which is p. The weight function may depend on Ũi(θ) = Ũi and X
U

i (u) and R. Typical

examples are W = X
U
(u), for the coefficient β of the exogenous variables and W = R,

for a time-constant coefficient of the endogenous variable D. The variance of the IVLR

estimator depends on W and in section 5.2 we discuss the optimal choice of this function.

The IVLR estimator is defined by the estimating equations

Sn(θ;W ) =
n

∑

i=1

∆U
i

{

W
(

Ũi, X
U

i

(

Ũi
)

, Ri; θ
))

−W (Ũi; θ)
}

(22)

where

W (Ũi; θ) =

∑n
j=1 Y

U
j (Ũi)W

(

Ũi, X
U

j

(

Ũi
)

, Rj ; θ
)

)

∑n
j=1 Y

U
j (Ũi)

,

the average of the weight function evaluated at Ũi(θ) among the individuals still at risk.

Note that we use ∆U
i instead of ∆i to assure independence of the instruments and the

transformed durations for all uncensored observations.

The interpretation of Sn(θ;W ) is that it compares the weight function for a trans-

formed duration that ends at Ũi(θ) to the average of the weight functions at that time for

those individuals that are still under observation. The suggestion is that the difference of

the weight function for individual i and the average weight function for the individuals

under observation is zero at the population parameters. Thus, the statistic Sn(θ;W ) has

mean zero at the population parameters and, therefore, we base our estimator on the roots

of Sn(θ;W ) = 0. However, the estimating functions are discontinuous, piecewise constant,

functions of θ and a solution may not exist. For that reason we define the Instrumental

Linear Rank estimator (IVLR) θ̂n(W ) as the minimizer of the quadratic form, i.e.

θ̂n(W ) = inf{θ | Sn(θ;W )′Sn(θ;W )} (23)
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The counting process interpretation of duration models allows for another, of course equiv-

alent, formulation of the estimating equations in (22). The relevant counting measure,

NU
i (u), can be seen as a discrete ’probability distribution’ that assigns weight unity to

uncensored transformed durations and is zero elsewhere. Then the estimating equations

can be expressed as an integral with respect to that counting process

Sn(θ;W ) =
n

∑

i=1

∫ CU
i

0

{

W
(

u,X
U

i (u), Ri

)

−W (u; θ)
}

dN Ũ
i (u) (24)

where CU
i is the transformed censoring time defined in (21). To ensure weak consistency

and asymptotic normality of the IVLR estimator we make the following assumptions. The

random variable R is an instrument that is determined at the start. We restrict both the

instrument, R, and the endogenous variable D, to be binary. The other assumptions can

be found in the appendix.

If Sn(θ;W ) were differentiable with respect to θ, then asymptotic normality can be

proved using Taylor series expansion in a neighborhood of θ0. Tsiatis (1990) showed that,

if Sn(θ;W ) is not differentiable, as in the current problem, we can still use a linear ap-

proximation of n−1/2Sn(θ;W ). Using this approximation and the asymptotic normality of

Sn(θ0;W ), we can show that
√
n(θ̂n(W )−θ0) is asymptotically normal. Let a(u; θ0) be the

probability limit of the average weight function (see assumption A6), C0 the transformed

censoring time for θ = θ0. Let di0(u) the derivative of the hazard of U(θ) w.r.t. θ, i.e.

di0(u) =
∂κUi (u; θ)

∂θ

∣

∣

∣

θ=θ0

and V (u, θ) is the probability limit of

1

n

n
∑

i=1

[

W
(

u,X
U

i (u), Ri

)

−W (u; θ)
]

× di0(u)
′Y U
i (u)

The asymptotic properties of the IVLR estimator are summarized in the following two

theorems.

Theorem 1 (Consistency).

If assumptions C1 to C7 hold θ̂n(W ) converges in probability to θ0.
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Proof: See the appendix.

Theorem 2 (Asymptotic Normality).

If assumptions C1 to C9 hold and Q(W ) has full rank, then

√
n(θ̂n(W ) − θ0)

d→ N
(

0, Q−1(W )Ω(W )Q′−1
(W )

)

(25)

where

Ω(W ) =

∫ C0

0

a(u; θ0)κ0(u) du (26)

is the asymptotic variance of n−1/2Sn(θ0;W ) and,

Q(W ) =

∫ C0

0

V (u, θ0) du (27)

the limiting covariance matrix of the processes W (u,Xi0(u), Ri) and di0(u)/κ0(u).

Proof: See the appendix.

5.2 Efficiency of the IVLR estimator

Many different choices of the weight functions lead to consistent estimates of the param-

eters. By properly choosing the weight function the asymptotic variance of the IVLR can

be minimized. Tsiatis (1990) has shown that for the AFT model with exogenous covari-

ates weight functions proportional to uκ′0(u)/κ0(u)X minimize the asymptotic variance

of the estimated regression parameters. In general the distribution of U0 is unknown. This

distribution can, however, consistently be estimated from the implied U from any IVLR

with a weight function not involving these functionals.

The IVLR estimation is based on a vector of mean restrictions on weight functions of

the covariates, instrument and the transformed durations. GMM estimation is also based

on moment conditions and in GMM estimation it is feasible to get the most efficient

GMM estimator in just two steps. A similar reasoning applies to the IVLR-estimator. This

justifies an adaptive construction of an efficient estimator. In the next section we address

the practical implementation of an adaptive estimation procedure. First, we introduce the

optimal weight function.
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Theorem 3 (Optimal weight function in IVLR).

The weight–function that gives the smallest asymptotic variance for θ̂n(W ) is

Wopt(u,X(u), R(u)) ∝ ∂ lnκU(u; θ)

∂θ

∣

∣

∣

∣

θ=θ0

=
di0(u)

κ0(u)
(28)

The asymptotic covariance matrix of the optimal IVLR estimator reduces to

Ω−1(Wopt) = Q−1(Wopt). (29)

Proof of theorem 3. From

1√
n

(

Sn(ϑ0;W )
Sn(ϑ0;Wopt)

)

D→ N

(

0,

(

Ω(W ) Q(W )′

Q(W ) Ω(Wopt)

))

follows that the matrix

Z =

(

Ω(W ) Q(W )′

Q(W ) Ω(Wopt)

)

is non–negative definite, the same is true for its inverse. In particular, the submatrices on

the main diagonal of the inverse are non-negative definite. Hence the matrix

Q−1(W )Ω(W )Q′−1
(W ) − Ω−1(Wopt)

is a non-negative definite matrix.

Consider, for example, a GAFT model with a piecewise constant λ function,

λ(t, α) =

J
∑

j=0

eαjI(tj < t ≤ tj+1) (30)

with t0 = 0 and tL+1 = ∞ and the hazard on the last interval is normalized to 1, αL = 0.

Assume that the model has a constant coefficient for the endogenous variable then by
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(28) the optimal weight functions are

Wopt,β = X(u)

[

1 + u
κ′0(u)

κ0(u)

]

(31)

Wopt,αj
=

(

1 + u
κ′0(u)

κ0(u)

)

·
(

RI1
j (u) + (1 − R)I0

j (u)
)

+ (32)

+R

[

(

1 + uκ0(u)
)f0(u|1, R) − f0(u)

f0(u)
+ u

f ′
0(u|1, R) − f0(u)

f0(u)

]

I1
j (u) +

+ (1 −R)

[

(

1 + uκ0(u)
)f0(u|0, R) − f0(u)

f0(u)
+ u

f ′
0(u|0, R)− f0(u)

f0(u)

]

I0
j (u)

Wopt,γ = R

[

1 + u
κ′0(u)

κ0(u)

]

+ (33)

+R

[

(

1 + uκ0(u)
)f0(u|1, R) − f0(u)

f0(u)
+ u

f ′
0(u|1, R) − f0(u)

f0(u)

]

where f0(u|D,R) is the density of U0 given D and R, f ′
0(·) is the derivative of the density

and IDj (u) = I
(

mj(X,D) < u ≤ mj+1(X,D)
)

for

mj(X,D) =

∫ tj

0

λ(s, α)eβ
′X(s)+γD ds

5.3 Estimation in practice

The statistic Sn(θ;W ) is a multi–dimensional step–function. Therefore, the standard

Newton–Raphson algorithm cannot be used to solve (23). One of the alternative methods

for finding a zero of a non–differentiable function is the Powell-method. This method (see

Press et al. (1986, §10.5) and Powell (1964)) is a multidimensional version of the Brent

algorithm.

Related to the computation of optimal weight function is the estimation of the variance

matrix for an arbitrary weight function.5 The difficulty in estimating the covariance matrix

lies in the calculation of the matrix Q(W ) and not in the calculation of the variance matrix

5Robins and Tsiatis (1991) suggested to use a numerical derivative of n−1Sn(θ; W ) that does not need
an estimate of the optimal W–function to get Q̂(W ). This numerical derivative is sensitive to the choice
of the difference in θ. We found it hard to get stable results.
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of the estimating equation. The latter can be consistently estimated by

Ω̂ =
1

n

n
∑

i=1

∫ CU
i (θ̂)

0

[

W
(

u,X
U

i (u), Ri

)

−W (u, θ̂)
][

W
(

u,X
U

i (u), Ri

)

−W (u, θ̂)
]′

dN̂U
i (u)

(34)

where N̂U
i (u) is the counting process of U(θ̂).

The optimal weight functions, the covariance matrix and the most efficient estimators

are estimated in two steps. The first step consists of obtaining a consistent estimate of

θ0 using a weight function that does not depend on the distribution of U0. For example,

in a GAFT model with a piecewise constant λ and a time-invariant coefficient of the

endogenous variable, the choice for the first-step weight functions could be Ij(u), X(u)

and R. The transformed durations for the estimated parameter values based on these first

step weight functions are estimates of the unobserved population transformed durations.

The second step concerns the estimation of the unknown distribution of U0. Many different

methods are available to get a reasonable estimate of an unknown distribution. We shall

not apply the commonly used kernel based method. Although kernel–smoothed hazard

rate estimators have been developed and adjusted to deal with the boundary problems

inherent to hazard rates these methods can be difficult to implement due to the choice

of the bandwidth. It is also unclear how the boundary corrections can be incorporated in

the kernel estimates of the derivative of the hazard. We therefore choose to use a series

approximation of the distribution.

Suppose the distribution of U0 can be approximated arbitrary well using orthonormal

polynomials. We base our approximation on Hermite polynomials using the exponential

distribution as a weighting function:

g0(u) =
ae−au

∑L
l=0 b

2
l

[

L
∑

l=0

blLl(u)
]2

(35)

where

Ll(u) =
l

∑

k=0

(

l

k

)

(−au)k
k!

(36)

are the Laguerre polynomials. The unknown parameters of this approximation are a and

b0, . . . , bL. If bl ≡ 0 for all l > 0 the distribution of U0 is exponential. Even for L as small as
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three (35) allows for many different shapes of κ0(u) and its derivative. Both can be derived

analytically given the estimates of the parameters. The parameter estimators can be

obtained from standard maximum likelihood procedures on the observed (Ũi(θ̂n(W )),∆i).

If a consistent but inefficient estimator θ̂n(W ) of θ0 is available and we have estimated

the parameters of the polynomial approximation of the distribution of U0 we can obtain

an efficient estimator θ̂opt in just one extra step. From the linearization of the estimating

equations, given in (41), we obtain an efficient estimator from

θ̂opt = θ̂n(W ) − Q̂(W )−1Sn(θ̂n(W );Wopt)/n (37)

This procedure is related to obtaining an efficient GMM estimator in two steps from a

consistent, but possible, inefficient GMM estimator. It also possible to obtain the efficient

estimator directly from minimizing the quadratic form. However, this involves again the

minimization of a multi–dimensional step function.

6 Application to the Illinois Re-employment Bonus

Experiment

Between mid–1984 and mid–1985, the Illinois Department of Employment Security con-

ducted a controlled social experiment.6 This experiment provides the opportunity to

explore, within a controlled experimental setting, whether bonuses paid to Unemploy-

ment Insurance (UI) beneficiaries or their employers reduce the time spend in unemploy-

ment relative to a randomly selected control group. In the experiment, newly unemployed

claimants were randomly divided into three groups: a Claimant Bonus Group, a Employer

Bonus Group and, a control group. The members of both bonus groups were instructed

that they (Claimant group) or their employer (Employer group) would qualify for a cash

bonus of $500 if they found a job (of at least 30 hours) within 11 weeks and, if they held

that job for at least four months. Each newly unemployed individual who was randomly

6A complete description of the experiment and a summary of its results can be found in Woodbury
and Spiegelman (1987).
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assigned to one of the two bonus groups had the possibility to refuse participation in the

experiment.

Woodbury and Spiegelman (1987) concluded from a direct comparison of the control

group and the two bonus groups that the claimant bonus group had a significantly smaller

average unemployment duration. The average unemployment duration was also smaller

for the employer bonus group, but the difference was not significantly different from zero.

These results are confirmed in Table 1. Note that the response variable is insured weeks

of unemployment. Because UI benefits end after 26 weeks, all unemployment durations

are censored at 26 weeks. In Table 1 no allowance is made for censoring. In the table we

distinguish between compliers, those who agreed to be eligible for a bonus if assigned to a

bonus group, and non-compliers. We see that the claimant bonus only affects the compliers

and that the average unemployment duration of the non-compliers and the control group

are almost equal.

Table 1: Average unemployment durations:control group and (non-)compliers.

Control Claimant Employer
Group Bonus Bonus

All Compl. Non-compl. All Compl. Non-compl.

Benefit
weeks

18.33 16.96 16.74 18.18 17.65 17.62 17.72

(0.20) (0.20) (0.22) (0.50) (0.21) (0.26) (0.35)
N 3952 4186 3527 659 3963 2586 1377

standard error of average in brackets.

About 15% of Claimant group and 35% of the employer group declined participation.

The reason for this refusal is unknown. Bijwaard and Ridder (2005) showed that the

participation rate is significantly related to some observed characteristics of the individuals

that also influence that re–employment hazard. Hence, we cannot exclude the possibility

of unmeasured variables that affect both the compliance decision and the re–employment

hazard. Meyer (1996) analyzed the same data with a PH model with a piecewise constant

baseline hazard. He used the randomization indicator instead of the actual bonus-group

agreement indicator as an explanatory variable. Thus he used the ITT estimator. He found

a significantly positive effect of the claimant bonus. However, as shown by Bijwaard and
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Ridder (2005), the ITT has a downward bias.

We calculate the IVLR estimate of the effect of the claimant and employer bonus on

the unemployment duration in a GAFT model and compare these estimates with the

IVLR estimates of an AFT model, with ITT estimates in an MPH model and the ML

estimates of an MPH model that ignores the endogeneity of the decision to participate

in the bonus group. We consider the two interventions separately: thus Claimant Bonus

group versus Control group and Employer Bonus group versus Control.

We shall consider two alternative specifications for the effect of the bonus on unem-

ployment duration: (i) constant effect and, (ii) a change in the effect after 10 weeks, in

line with the end of the eligibility period of the bonuses. Thus, the implied transformed

durations are

U(θ) =

∫ T

0

λ(s;α)eβ
′X+(γ1I1(s)+γ2I2(s))Dds (38)

with I1(t) = I(0 ≤ t < 11) and I2(t) is its complement. Note that the covariates are all

time–constant because the individual characteristics available in the data are all deter-

mined when the individuals register at the unemployment office. We include the follow-

ing: the logarithm of the age (LNAGE), the logarithm of the pre–unemployment earnings

(LNBPE), gender (MALE= 1), ethnicity (BLACK= 1), and the logarithm of the weekly

amount of UI benefits plus dependence allowance (LNBEN). We employ two different

specifications for λ(t;α0): (i) AFT model, i.e. λ(t;α0) ≡ 1; and (ii) GAFT model with a

piecewise constant λ on six intervals 0–2, 2–4, 4–6, 6–10, 10–25 and 25 and beyond.

For identification we need to set one of the parameters of the piecewise constant λ

equal to one (or the log equal to zero). We let the base interval, the interval on which

λ = 1, start on the last week before the end of the observation period, at 25 weeks.

This allows us to capture the spike in the observed unemployment duration just before

the UI eligibility period ends. The end of the UI eligibility period, at 26 weeks, is for all

individuals the same and thus provides the potential censoring time.

For both the AFT and the GAFT specifications we estimate a first stage IVLR using

the Powell-method and the one step optimal IVLR. The first stage IVLR uses the values of

the covariates, X, (only for the GAFT-model) the interval indicators on the transformed
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duration, Ij(u) and, the bonus group assignment indicator times the interval indicators

on the transformed duration, R · I1(u) and R · I2(u), as the weight functions. From these

first stage IVLR’s the implied transformed duration are obtained. Then, we estimate the

parameters of the polynomial approximation of the distribution of U conditional on R

and D as mentioned in section 5.3. From these estimated parameters we calculate the

hazard and its derivative of the transformed duration. These functions are then used as

inputs to derive the optimal weight functions (see Theorem 3), which in turn are necessary

to calculate the covariance matrix. We also calculate the 1-step efficient estimates with

these optimal weight functions. In the case of a constant bonus effect, the optimal weight

function are given in (31)–(33). When we assume that the effect of the bonus changes

after 11 weeks the optimal weight function in (33) is more complicated and therefore not

spelled out here.

The estimation results for the bonus effects are reported in Table 2. The results for

the piecewise constant λ and for the regression coefficients in the AFT and GAFT models

can be found in appendix B. A comparison of the results shows that AFT overestimates

the effect and that both ML and ITT estimators underestimate the effect of the employer

bonus. The results clearly indicate that the bonuses only influence the chances to find a

job in the first ten weeks. This is in line with the bonus eligibility period: those who find a

job after that period would not get the bonus. The effect of the Claimant Bonus increases

from about 10% higher probability to find a job at every unemployment duration to about

15% higher probability to find a job in the first ten weeks (and no effect thereafter). The

bonus for the Employer group raises the job finding probability with about 7% at every

unemployment duration or with about 12% in the first ten weeks of unemployment.

In the GAFT (and AFT) model the effect of the bonus is defined in terms of the change

in the quantiles, see (7) and (13). In an AFT model with a time-constant coefficient for

the bonus this effect is constant and independent of the other covariates. In a GAFT

model the λ function influences this effect directly and indirectly as the other covariates

determine the quantiles. Using the distribution of U0, already calculated to estimate the

optimal IVLR and the variance-covariance matrix, we can derive the effect of the bonus
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in the GAFT depending on the quantile of the distribution. In Table 3 we present the

effect of the bonus on the unemployment duration at the 80%, 60% and 40% survival for

the reference individual and for a black individual, together with the AFT effect (first

stage). Figure 1 till Figure 4 depict the change over the whole 90%-25% survival range of

the effect of the bonus in the GAFT model.
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(time-varying γ)
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Table 2: Instrumental Variable Linear Rank estimates for the effect of the Bonus
Claimant group

Constant effect
AFT GAFTa MLE ITT

First stage 0.1446 0.1024 - -
(0.0493) (0.0523) - -

1–step optimal 0.1596 0.0932 0.1039 0.1117
(0.0460) (0.0380) (0.0285) (0.0303)

Time varying effect
First stage
0-10 0.2955 0.1433 - -

(0.0523) (0.0907) - -
10+ -0.0720 0.0063 - -

(0.0608) (0.0886) - -
1–step optimal
0-10 0.3865 0.1439 0.1601 0.1516

(0.0486) (0.0578) (0.0361) (0.0378)
10+ -0.0437 -0.0411 - -

(0.0572) (0.0850) - -

Employer group

Constant effect
AFT GAFTa MLE ITT

First stage 0.1011 0.0721 - -
(0.0646) (0.0470) - -

1–step optimal 0.1332 0.0696 0.0387 0.0516
(0.0612) (0.0425) (0.0318) (0.0307)

Time varying effect
First stage
0-10 0.2304 0.1103 - -

(0.0710) (0.0736) - -
10+ -0.0783 -0.0048 - -

(0.0836) (0.1253) - -
1–step optimal
0-10 0.6334 0.1279 0.0881 0.0800

(0.0674) (0.0521) (0.0402) (0.0384)
10+ 0.0330 -0.0747 - -

(0.0745) (0.0882) - -
a GAFT piecewise constant intervals: 0–2, 2–4, 4–6, 6–10, 10–25,
25 →; Notes: Standard error in brackets.
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Table 3: Effect of the Bonus on the length of unemployment duration

Claimant Employer

Constant Time-varying Constant Time-varying
AFT 0-10 0.865 0.744 0.904 0.794

10+ 0.865 1.075 0.904 1.081
GAFT reference individual
80% tq(0) 3.9 3.7 2.8 4.3

tq(1) 3.5 2.9 2.5 3.7
effect 0.911 0.866 0.933 0.823

60% tq(0) 12.8 12.6 8.9 12.7
tq(1) 10.4 9.4 7.8 10.0
effect 0.911 0.571 0.933 1.078

40% tq(0) 25.7 25.7 20.7 24.3
tq(1) 22.8 23.1 18.3 22.5
effect 1.772 1.973 0.933 1.078

GAFT black individual
80% tq(0) 7.5 6.8 4.8 8.1

tq(1) 6.5 5.3 4.1 6.4
effect 0.911 0.681 0.933 0.880

60% tq(0) 25.3 24.4 18.44 24.22
tq(1) 22.1 21.0 16.2 22.5
effect 1.772 1.042 0.933 1.078

40% tq(0) 35.6 35.1 30.7 34.2
tq(1) 32.9 33.8 28.90 33.9
effect 0.911 1.042 0.933 1.078
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Note that an effect smaller than one indicates that the bonus decreases the duration

till re-employment and an effect bigger than one increases the duration. We see from

the table (and more pronounced in Figure 1 and Figure 3) that even for a time-constant

γ the effect of the bonus on the unemployment duration in the GAFT model changes

with the duration. The huge spike in the effect at the survival quantile of 40% for the

claimant group is because the re–employment rate exhibits a spike just before the time

that unemployment benefits are exhausted, which is at 26 weeks. For the individuals in the

control group the 40% survival time is just before 26 weeks, while in the claimant bonus

group it is at 23 weeks. Thus the control group individuals are in the re-employment spike

while the claimant bonus group are not. The interval boundaries of the other intervals of

λ also cause, although not as pronounced, spikes. These spikes are downward because the

λ is jumping to a lower level at these boundaries. The spikes are also visible in the effect

of a time-varying coefficient of the bonus, see Figure 2 and Figure 4. Here, the change in

γ at a duration of 10 weeks, after which the coefficient is negative, is reflected is a upward

shift of the effect curve.

An indication that the AFT is not the right model is the difference between the first

stage and one–step optimal estimators for the AFT model. For a correctly specified model

both estimators are consistent and, therefore, do not differ much. In the GAFT model the

first stage and one–step estimator are of the same magnitude. The estimated standard

errors of the latter are, as expected, substantially lower in most situations.

Although the focus in this article is on the estimation of the effect of a possibly endoge-

nous variable on the duration we also give a short discussion on the estimation results of

the other parameters. These estimators can be found in the tables in appendix B. The

regression parameters are overestimated (in absolute terms) if we assume an AFT model.

These regression parameters hardly change from a model with constant bonus effect (Ta-

ble 5) to a model with time–varying bonus effect (Table 6). The regression parameters for

the Claimant data and the Employer data (both including the control group) are almost

identical. Gender, MALE, is the exception; Gender has no significant influence on the

re–employment probability in the Employer data. The shape of the estimated λ’s indicate
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a U–shaped λ.

We end with a discussion on the selectivity in the bonus data. The compliance rate

in the Claimant group, 85%, was much higher than the compliance rate in the employer

group, 65%. Many individuals in the Employer group, apparently and contrary to our

findings, did not perceive a bonus paid to their new employer beneficiary for their job

search. Following Moffitt (1983) this partial compliance may be explained by a stigma

effect. However, this is a tentative explanation because our analysis only adjust for (pos-

sible) selective compliance. It does not provide a model for the selection process. Thus,

both an advantage and a drawback of our method is that we do not make any assumptions

on the selection process and therefore cannot tell why individuals make such a selective

decision.

7 Conclusion

In this article we proposed and implemented an instrumental variable estimation pro-

cedure for duration models. We show how the effect of an endogenous variable on the

duration in a Generalized Accelerated Failure Time (GAFT) model can be estimated.

The GAFT model is based on a transformation of the durations that encompasses both

the Accelerated Failure Time (AFT), very popular in biostatistics, and the Mixed Pro-

portional Hazards (MPH) model, very popular in econometrics. The interpretation of

regression coefficients in the GAFT is in terms of shifting the quantiles of the distribu-

tion.

The Instrumental Variable Linear Rank (IVLR) estimation procedure is based on the

inverse of an extended rank-test. It exploits the suggestion that for the population param-

eters the difference between the value of a weight function to the average of the weight

functions for those individuals that are still under observation on the transformed dura-

tion goes to zero. This implies that for the population parameters the proportion of the

individuals with a particular instrument value remains the same over the survivors on

the transformed duration. The estimation procedure is related to quantile-regression, in

particular Koenker and Bilias (2001) and Koenker and Geling (2001), and to Rank Pre-
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serving Structural Failure Time (RPSFT) Model estimator of Robins and Tsiatis (1991).

The main difference with the RPSFT-model is that it assumes an AFT model while the

IVLR allows for the more general GAFT-model, that includes duration dependence. The

procedure is also related to the 2 stage Linear Rank (2SLR) estimation procedure of Bij-

waard and Ridder (2005). The 2SLR assumes an MPH model and is a 2-steps procedure,

while the IVLR is a one-step procedure.

We show that a counting process framework simplifies the derivation and interpretation

of the IVLR. The counting process framework also enables us to derive the large sample

properties of the IVLR. Because the IVLR is based on a vector of mean restrictions it

is related to the well-known GMM estimation procedure. Similar to the application of

GMM estimation choosing the right weight functions can improve the efficiency. However,

again similar to the GMM, these optimal weight functions are not directly observable.

Fortunately, an adaptive (or even 2 step) procedure can provide the efficient IVLR.

A difficulty with the proposed estimator is that it involves root-finding of a multi-

dimensional step-function that is not differential. For this problem the Powell method

provides a good algorithm to find the solution.

The empirical application shows that the ML and ITT estimates are downward biased

due to endogeneity. Incorrectly assuming an AFT model can give misleading conclu-

sions about the effects of a bonus on the re–employment hazard. In the Illinois bonus

re-employment experiment many unemployed found a job just before their UI-benefits

expires. This induces a spike in the re-employment hazard. In the GAFT, even with

a constant regression coefficient, such a spike leads to an effect that changes over the

quantiles. This has important implications for the evaluation of the effect of a possible

endogenous variable on a duration.

Social experiments may provide instruments for an endogenous variable. With good

instruments available the proposed method can be very useful in analyzing the effects of a

possible endogenous variable on an inherently duration outcome. Examples in population

studies include the effect of training programs on the unemployment duration, policies to

increase the birth rate and migration policies.
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There are several issues that need further research. First, the current approach to ad-

just for endogenous censoring implies loss of information and depends on the (unknown)

parameters of the model. An important improvement would be to find a method to ad-

just for endogenous censoring that is parameter independent and minimizes the loss of

information. Another related issue is that if the IVLR assumes that the censoring time

is (potentially) known in advance. Further research on more general censoring patterns

deserve attention. Second, in our empirical application we have, because of random as-

signment, a perfect assignment. Such an instrument is, however, not always available.

Finding good instruments is therefore an important issue just as the influence of weak

instruments on the properties of the estimator. A final issue for further research is the

extension of the IVLR to recurrent duration data, like repeated unemployment spells.
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A Asymptotic properties of the IVLR

Assumptions:

C1: The covariate process X(t) is predetermined, i.e. its distribution is independent of

{H(s), s > t}. The sample paths of the covariate process are bounded and at least

one of time–varying covariates is a continuous variable.

C2: The observation process Y (t) is cadlag and Y (t) is predetermined. Moreover,

Pr
(

dN(t) = 1 | Y (t) = 1, H(t)
)

= Pr
(

dN(t) = 0 | Y (t) = 0, H(t)
)

C3: The population distribution of T given X and D satisfies
∫ T

0

λ(s;α0)e
β′

0X(s)+ψ(s,D;γ0) ds = U0

The absolutely continuous distribution of U0 does not depend on X or R. The p.d.f.

of U0 is bounded.

C4: The transformed observation process Y U(u) = I
(

Ũ(θ) ≥ u
)

is cadlag and predeter-

mined, with Ũ(θ) = min
(

U(θ), CU
)

and CU defined in (21).

C5: The instrumental function W is bounded and left–continuous.

C6: The intensity of U(θ), κUi (u) given history HUR(u) in (19) can be linearized in a

neighborhood of θ0 as a function of θ, i.e. there exist µ(u) and ǫ > 0 such that for

‖θ − θ0‖ < ǫ

∣

∣κUi (u; θ) − κ0(u) − (θ − θ0)
′di0(u)

∣

∣ ≤ ‖θ − θ0‖2 µ(u)

for u ≤ C0 = CU(θ0) with

di0(u) =
∂κUi (u; θ)

∂θ

∣

∣

∣

θ=θ0

C7: There exists a continuous function a(u; θ) of θ in a neighborhood B of θ0 such that

sup
u≤C0

sup
θ∈B

∥

∥W (u; θ) − a(u; θ)
∥

∥

p→ 0

41



where

W (u; θ) =

∑n
j=1 Y

U
j (u)W

(

u,X
U

j (u), Rj

)

∑n
j=1 Y

U
j (u)

C8: There exists a continuous matrix function A(u; θ) of θ in a neighborhood B of θ0

such that

sup
u≤C0

sup
θ∈B

∥

∥

∥

∥

1

n

n
∑

i=1

[

W
(

u,X
U

i (u), Ri

)

−W (u; θ)
]

×
[

W
(

u,X
U

i (u), Ri

)

−W (u; θ)
]′

Y U
i (u) − A(u; θ)

∥

∥

∥

∥

p→ 0

C9: There exists a continuous matrix-function V (u; θ) of θ in a neighborhood B of θ0

such that

sup
u≤C0

sup
θ∈B

∥

∥

∥

∥

1

n

n
∑

i=1

[

W
(

u,X
U

i (u), Ri

)

−W (u; θ)
]

× di0(u)
′Y U
i (u) − V (u; θ)

∥

∥

∥

∥

p→ 0

The starting point is (24), which can, for θ in a small neighborhood of θ0, be rewritten as

Sn(θ;W ) =
n

∑

i=1

∫ Ci0

0

{

W
(

u,X
U

i (u), Ri

)

−W (u; θ)
}

dNU
i (u)

+

n
∑

i=1

∫ Ci0

CU
i

{

W
(

u,X
U

i (u), Ri

)

−W (u; θ)
}

dNU
i (u) (39)

Substitution of the Doob–Meier composition in the first term on the right for NU
i gives

Sn(θ;W ) =
n

∑

i=1

∫ Ci0

0

{

W
(

u,X
U

i (u), Ri

)

−W (u; θ)
}

dMU
i (u)

+

n
∑

i=1

∫ Ci0

0

{

W
(

u,X
U

i (u), Ri

)

−W (u; θ)
}

κUi (u)Y U
i (u) ddu (40)

We consider both terms separately. The first term is, for θ close to θ0, close to Sn(θ0;W )

and for the second term we have

(θ − θ0) ·
n

∑

i=1

∫ Ci0

0

{

W
(

u,X
U

i (u), Ri

)

−W (u; θ)
}

× ∂κUi (u)

∂θ

′

Y U
i (u) du+Op

(

‖θ − θ0‖2)
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Returning to (39) we note that the second term in this equation equals

n
∑

i=1

{

[

W
(

Ci0, Xi0(Ci0), Ri

)

−W
(

Ci0; θ0
)

]

×θ0(Ci0)Yi(Ci0)
}

+Op

(

‖θ − θ0‖2)

The term between brackets is the covariance between θ0(Ci0) and W
(

Ci0, Xi0(Ci0), Ri

)

which is zero. Thus this whole term is zero for θ close to θ0 and we have

Sn(θ;W ) ≈ Sn(θ0;W ) + n

∫ C0

0

Z(u; θ0) du · (θ − θ0) (41)

Hence, approximately for the IVLR estimator θ̂n(W )

√
n(θ̂n(W ) − θ0) =

[
∫ C0

0

Z(u; θ0) du

]−1
1√
n
Sn(θ0;W ) (42)

The proof of the consistency and asymptotic normality are both based upon the asymp-

totic linearity of Sn(θ;W ) in the neighborhood of the true value θ0. We follow the reasoning

of Tsiatis (1990). Instead of a mean and variance condition, we have a mean and three

covariance conditions. Let S̃n(θ;W ) be the right-hand side of (41). The following lemma

shows that the linearization in (41) is uniformly close to the original estimating function

Lemma 1. In neighbourhoods of O(n−1/2) of θ0

n−1/2
∥

∥

∥
S̃n(θ;W ) − Sn(θ;W )

∥

∥

∥

converges uniformly to zero.

This lemma implies that n−1/2S̃n(θ;W ) and n−1/2Sn(θ;W ) are asymptotically equiv-

alent in a neighbourhood close to θ0.

Proof: This can be proved in lines of Tsiatis (1990) Lemma (3.1) and (3.2) and theo-

rem (3.2) and this is, because of the analogy, not repeated here.

Proof of theorem 1 and theorem 2. According to lemma 1 are n−1/2Sn(θ;W ) in a neigh-

bourhood close to θ0 asymptotically equivalent to n−1/2S̃n(θ;W ). Then the estimates θ∗

and θ̂, with S̃n(θ
∗;W ) = 0, will also be asymptotically equivalent. Clearly, θ∗ converges

in probability to θ0. Hence, if we show that
√
n(θ̂ − θ∗)

p→ 0 then this would imply that
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θ̂ also converges in probability to θ0. Tsiatis (1990) argues that lemma 1 suffices to proof

this. This proves theorem 1.

According to the Mann–Wald theorem convergence in probability implies convergence

in distribution. We note that
√
n(θ∗ − θ0) = n−1/2Q−1(W )Sn(θ0;W ) clearly converges to

a normal distribution with mean zero and variance matrix Q−1(W )Ω(W )Q′−1(W ). This

completes the proof of theorem 2.

Remark. To establish detailed conditions on when S̃n(θ;W ) has a unique root is rather

tedious; however Ying (1993) gave an excellent general treatment on rank estimation,

which can also be used for the estimating equations in this article.
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B Additional tables for the IVLR of reemployment

bonus experiment

Table 4: Descriptive statistics for Control,Claimant Bonus and Employer Bonus group.

Control Claimant Employer
Group bonus bonus

White 0.632 0.651 0.647
Black 0.271 0.251 0.256
Other 0.097 0.099 0.097

Male 0.547 0.563 0.538

Age 20–29 0.425 0.436 0.424
Age 30–39 0.333 0.324 0.326
Age 40–49 0.179 0.185 0.187
Age 50–54 0.063 0.054 0.064

Weekly benefit
-$51 0.088 0.085 0.084
$52–$90 0.201 0.212 0.217
$91–$120 0.169 0.176 0.179
$121–$160 0.190 0.196 0.181
$161– 0.353 0.331 0.339

Dependence allowance 0.323 0.345 0.332
Average pre–claim 3188 3222 3215
earnings
Average age 33.0 32.9 33.1

Average weekly 119.9 118.8 118.5

N 3952 4186 3963

45



Table 5: Instrumental Variable Linear Rank estimates for the regression coefficients of the
Illinois data (Constant Bonus Effect)

First stage Claimant Employer

AFT GAFTa AFT GAFTa

LNAGE -0.5718 -0.3424 -0.5219 -0.3379
(0.0734) (0.0897) (0.0717) (0.0699)

LNBPE 0.3528 0.2146 0.3188 0.2036
(0.0510) (0.0601) (0.0512) (0.0482)

BLACK -0.6636 -0.3770 -0.6264 -0.3792
(0.0526) (0.0842) (0.0510) (0.0641)

MALE 0.1135 0.0663 0.0464 0.0295
(0.0377) (0.0330) (0.0376) (0.0305)

LNBEN -0.5841 -0.3558 -0.6263 -0.4010
(0.0867) (0.1011) (0.0871) (0.0865)

One step Optimal

Claimant Employer

AFT GAFTa AFT GAFTa

LNAGE -0.5204 -0.3612 -0.4733 -0.3110
(0.0693) (0.0653) (0.0683) (0.0603)

LNBPE 0.3537 0.2266 0.3133 0.1871
(0.0473) (0.0449) (0.0483) (0.0424)

BLACK -0.6162 -0.3982 -0.5646 -0.3574
(0.0509) (0.0510) (0.0495) (0.0443)

MALE 0.1293 0.0691 0.0698 0.0227
(0.0355) (0.0303) (0.0355) (0.0303)

LNBEN -0.5924 -0.3692 -0.6040 -0.3610
(0.0813) (0.0762) (0.0826) (0.0727)

a GAFT piecewise constant intervals: 0–2, 2–4, 4–6, 6–10,
10–25, 25 →; Notes: Standard error in brackets.
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Table 6: Instrumental Variable Linear Rank estimates for the regression coefficients of the
Illinois data (Time–varying Bonus effect)

First stage

Claimant Employer

AFT GAFTa AFT GAFTa

LNAGE -0.5361 -0.3285 -0.5233 -0.3355
(0.0693) (0.0897) (0.0706) (0.0763)

LNBPE 0.3313 0.2139 0.3153 0.2029
(0.0481) (0.0617) (0.0506) (0.0530)

BLACK -0.6086 -0.3665 -0.6268 -0.3771
(0.0494) (0.0861) (0.0501) (0.0740)

MALE 0.1036 0.0668 0.0461 0.0294
(0.0352) (0.0337) (0.0371) (0.0304)

LNBEN -0.5470 -0.3564 -0.6187 -0.3989
(0.0820) (0.1043) (0.0859) (0.0959)

One step Optimal

Claimant Employer

AFT GAFTa AFT GAFTa

LNAGE -0.4861 -0.3288 -0.4529 -0.3660
(0.0653) (0.0664) (0.0675) (0.0622)

BPE 0.3332 0.2061 0.3017 0.2236
(0.0442) (0.0455) (0.0474) (0.0434)

BLACK -0.5644 -0.3615 -0.5286 -0.4189
(0.0476) (0.0533) (0.0488) (0.0480)

MALE 0.1176 0.0626 0.0622 0.0283
(0.0332) (0.0304) (0.0349) (0.0302)

LNBEN -0.5501 -0.3343 -0.5813 -0.4284
(0.0765) (0.0770) (0.0815) (0.0752)

a GAFT piecewise constant intervals: 0–2, 2–4, 4–6, 6–10,
10–25, 25 →; Notes: Standard error in brackets.
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Table 7: Estimated λ in GAFT model for the Bonus data
Claimant

Constant Bonus effect Time varying Bonus effect

interval first opt. first opt.
0–2 0.8098 0.7500 0.8625 0.9328

(0.4638) (0.2052) (0.5262) (0.2409)
2–4 0.3146 0.2348 0.3542 0.2309

(0.3691) (0.1462) (0.4048) (0.1799)
4–6 -0.0782 -0.0415 -0.0390 0.0318

(0.2646) (0.1220) (0.3015) (0.1552)
6–10 -0.2743 -0.1859 -0.2341 -0.2085

(0.2392) (0.1133) (0.2807) (0.1369)
10–25 -0.6868 -0.6655 -0.6077 -0.6345

(0.1626) (0.1006) (0.1758) (0.1261)

Employer

Constant Bonus effect Time varying Bonus effect

interval first opt. first opt.
0–2 0.7095 0.8929 0.7088 0.5647

(0.3063) (0.1450) (0.4375) (0.1716)
2–4 0.2540 0.4451 0.2542 0.1464

(0.2134) (0.0939) (0.3344) (0.1227)
4–6 -0.1217 -0.1178 -0.1195 0.0875

(0.2008) (0.0925) (0.2330) (0.1050)
6–10 -0.4552 -0.2707 -0.4526 -0.4098

(0.1516) (0.0751) (0.2255) (0.0975)
10–25 -0.7492 -0.6826 -0.7180 -0.6057

(0.0971) (0.0372) (0.1015) (0.0491)

Notes: Standard error in brackets.
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