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Abstract

Cointegration occurs when the long run multiplier of a vector autoregressive

model exhibits rank reduction� Priors and posteriors of the parameters of the coin�
tegration model are therefore proportional to priors and posteriors of the long run

multiplier given that it has reduced rank� Rank reduction of the long run multiplier

is modelled using a decomposition resulting from its singular value decomposition�

It speci�es the long run multiplier matrix as the sum of a matrix that equals the

product of the adjustment parameters and the cointegrating vectors� i�e� the coin�

tegration speci�cation� and a matrix that models the deviation from cointegration�

Priors and posteriors for the parameters of the cointegration model are obtained by

restricting the latter matrix to zero in the prior and posterior of the unrestricted

long run multiplier� The special decomposition of the long run multiplier results

in unique posterior densities� This theory leads to a complete Bayesian framework

for cointegration analysis� It includes prior speci�cation� simulation schemes for
obtaining posterior distributions and determination of the cointegration rank via

Bayes factors� We illustrate the analysis with several simulated series� the UK data

of Hendry and Doornik ����	
 and the Danish data of Johansen and Juselius �����
�

Key words� cointegration� Bayesian analysis� Bayes factors�

� Introduction

The introduction of the concept of cointegration by Engle and Granger �����	 has intro

duced a rapidly expanding literature on multivariate analysis of stochastic trends� This
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has lead to a largely uni�ed theory of classical statistical analysis of cointegration� see
among others Johansen �����	 and Phillips �����	� However� there does not exist a com

plete framework for Bayesian analysis of cointegration� like in the classical literature�
The main contributions to Bayesian analysis of cointegration are� Koop �����	 analyses
implied moving averages�impulse responses resulting from the Wold decomposition of a
time series� DeJong ����
	 considers the posterior distributions of the roots of vector au

toregressive models� Kleibergen and van Dijk �����b	 analyse the consequences of local
non
identi�cation and prior speci�cation on the posteriors of the parameters� Dorfman
�����	 tests for the number of cointegrating vectors by analysing the di�erence between
the number of unit roots in the di�erent univariate models and the number of unit roots
in the multivariate model� and Geweke �����	 proposes posterior simulators using the
Gibbs sampler�

This paper di�ers from the previous papers in several ways� First� the above men

tioned papers usually focus on one aspect of Bayesian cointegration analysis in vector
autoregressive �VAR� models� for instance the computation of posterior distributions� In
the present paper we propose a complete framework for cointegration analysis� including
prior speci�cation� simulation schemes for posterior distributions and cointegration rank
determination based on posterior odds� Second� we introduce a new decomposition of the
long run multiplier of the VAR model in error correction form� This decomposition of the
long run multiplier allows us to condition on rank reduction of the long run multiplier
in a unambiguous way� It speci�es the long run multiplier as the sum of two matrices�
The �rst matrix is the product of the adjustment parameter matrix and the cointegration
vectors� i�e� the cointegration speci�cation� The second matrix models the deviation from
the cointegration speci�cation� Cointegration occurs if the second matrix is zero� The
decomposition results from a singular value decomposition as singular values are a natural
way to represent rank reduction� see Golub and van Loan �����	� Priors and posteriors
of the parameters of the cointegration model are now obtained by putting the matrix
that models the deviation from the cointegration speci�cation in the priors and posteri

ors of the parameters of the unrestricted model equal to zero� This way of construction
priors allows us to extend the classes of priors for the parameters of linear models� for
instance conjugate priors� to the parameters of the cointegration model� Furthermore�
Bayes factors�posterior odds ratios to analyse rank reduction can be computed using a
Savage
Dickey density ratio of Dickey �����	� see also Verdinelli and Wasserman �����	�

The outline of the paper is as follows� In Section 
 we brie�y discuss cointegration and
provide the new decomposition of the long run multiplier� In Section � we de�ne prior
distributions for the model parameters of the cointegration model� Section � discusses
posterior distributions and contains simulation schemes to obtain posterior results� To
compare cointegration models with di�erent number of cointegrating relations we consider
in Section � posterior odds to determine the cointegration rank� Section � illustrates the
proposed cointegration analysis with several simulated series� Additionally� we consider
the UK data analysed in Hendry and Doornik �����	 and the Danish data analysed in
Johansen and Juselius �����	� Finally� Section � concludes�






� The Cointegration Model

Consider a vector autoregressive model of order k �VAR�k	� for a n
dimensional vector of
time series fYtgTt��

Yt � �� �t�
kX

i��

�iYt�i � �t� ��	

where �t is an independent n
dimensional vector normal process with zero mean and
�n � n	 positive de�nite symmetric covariance matrix �� The �n � �	 vectors � and �
contain the constant and trend coe�cients and �i� i � �� � � � � k are �n� n	 matrices with
autoregressive coe�cients� The initial values Y�� � � � � Yk are �xed� The VAR model in ��	
can be written in the error correction form

�Yt � �� �t ��Yt�� �
k��X
i��

��i�Yt�i � �t� �
	

where � �
Pk

j���j � In is the �n� n	 long run multiplier matrix ��i � �Pk

j�i���j are
�n� n	 matrices� i � �� � � � � k � �� see e�g� Johansen �����	�

The characteristic polynomial of model ��	 is equal to j��z	j � jInzk �
Pk

i���iz
k�ij�

Since by de�nition ���	 � ��� unit roots enter the model when ���	 has a lower rank
value� If � is a zero matrix� the characteristic polynomial has n unit roots� which corre

sponds to n stochastic trends� Common stochastic trends appear if �n � r	 roots of the
polynomial j��z	j are equal to one� � � r � n� see Johansen �����	� In that case the rank
of � equals r and we say that series generated by model ��	 are cointegrated� Hence�
cointegration implies that we can write the matrix � as a product of two full rank �n� r	
matrices � and 	

� � �	 �� ��	

The matrix 	 contains the cointegrating vectors� which re�ect the stationary long term
relations �or equilibria	 between the univariate series in Yt� The � matrix contains the
adjustment parameters� which indicate the speed of adjustment to the equilibria 	 �Yt�

Since the number of parameters in �	 �� 
nr is larger than the number of free param

eters in �� under reduced rank �� nr � �n� r	r	 the � and�or 	 parameters have to be
restricted to become estimable� A common restriction to identify 	 is 	 �	 � Ir� Since the
results in this paper are not sensitive to the way we restrict 	 we choose� for notational
convenience� for the speci�cation

	 � � �Ir � 	 �
�	� ��	

where 	� is a ��n� r	� r	 matrix� Note that due to this normalization the 	 matrix has
always full rank�

�



To save on notation we write the error correction model �
	 in matrix notation�

�Y � Y���
� �X
� �� ��	

where �Y � ��Yk�� � � ��YT 	
�� Y�� � �Yk � � �YT��	

�� � � ��k�� � � � �T 	
��X � �X �

k�� � � �X
�
T 	

��
Xt � ��Y �

t�� � � ��Y
�
t�k�� � t		� and 
 � ���� � � � ��k�� � �	�� To save even further on nota


tion� we focus in the remainder of this paper on a simple VAR��	 model without determin

istic elements� This is not a serious restriction since under a di�use prior speci�cation on 
�
integrating out the 
 parameters from the likelihood function leads to analysing a VAR��	
model for the transformed data MX�Y and MXY��� where MX � IT�k �X�X �X	��X ��
We refer to this VAR��	 model in error correction form as a linear error correction �lec�
model

�Y � Y���� �� ��	

where we de�ne � � �� for notational convenience� Under the restriction � � �	 � this
model simpli�es to an error correction cointegration �ecc� model

�Y � Y��	�� �� ��	

where � � ��� To clarify the restriction that leads to rank reduction in � we consider
the following decomposition of �

� � 	�� 	���� � �	 	�	

�
Ir �

� �

��
�

��

�
� ��	

where 	 � �Ir �	 �
�	

� and �� and 	� are speci�ed such that ���
� � � with ���

�
� � In�r

and 	 �	� � � with 	 �
�	� � In�r and 	� � �	� In�r	

��In�r � 	 �
�	�	

� �

� � �� � �In�r �

�
�
��

���

� �
��
� ��	

� �

� �In�r � ��
��

���

� 	 where � � ��� ��	 with �� a �r � �n � r		 matrix
and �� a �r� r	 matrix� We use that for a positive �semi	
de�nite real symmetric matrix

M � M
�

� � C�
�

�C � where � is a diagonal matrix containing the eigenvalues of M and
C contains the orthonormal eigenvectors of M and M� �

� � C�� �

�C �� see e�g� Johansen
������ p� 


	� Using this decomposition we reparametrise the linear error correction
model ��	 in an unrestricted error correction �uec� model

�Y � Y��	�� Y��	���� � �� ��	

When � � �� the long run multiplier � in ��	 displays rank reduction and cointegra

tion occurs� Note that the row
 and columnspace of the matrix �	����	� which models
the deviation from the cointegration speci�cation 	�� are spanned by the orthogonal
complements of the cointegrating vectors 	 and the matrix of adjustment parameters ��
respectively�

The decomposition of � in ��	 results from the singular value decomposition of ��

� � U S V �� ���	

�



where U and V are �n� n	 orthonormal matrices� i�e� U �U � In� V
�V � In and S is an

�n�n	 diagonal matrix containing the positive singular values of � �in decreasing order	�
see among others Golub and van Loan �����	 and Magnus and Neudecker �����	� If we
write

U �

�
U�� U��

U�� U��

�
� S �

�
S�� �

� S��

�
and V �

�
V�� V��
V�� V��

�
���	

with U��� S��� V�� �r� r	� U��� S��� V�� ��n� r	� �n� r		� U��� V�� ��n� r	� r	 and U���
V�� �r � �n� r		 matrices� we obtain the following expressions for �� � and 	�

� � U��S���V
�
�� V

�
��	

� � �U��U
�
��	

� �

�U��S��V
�
���V��V

�
��	

� �

�

	� � �U��U
��
�� �

��
	

where the square roots of the matrices are de�ned below ��	� see Kleibergen �����	� From
��
	 if follows that � consists of an orthogonal transformation of the �n � r	 smallest
singular values of �� which end up in S��� The singular values are the square root of
the eigenvalues of the symmetric matrix ��� and hence are always real� The number of
non
zero singular values determines the rank of a matrix� see Golub and van Loan �����	�
Since � is an orthogonal transformation of the smallest singular values� restricting �
to zero is equivalent to restricting the smallest singular values to zero and is thus an
unambiguous way of restricting the rank of the long run multiplier� The decomposition
��	 does therefore not su�er from dependence of the order of the variables in the VAR
model like in Kleibergen and van Dijk �����b	�

The Likelihood Function

The likelihood function of the unrestricted error correction model ��	 conditional on the
initial observations Y� is given by

Llec�Y j���	 � �
p

�	��T���nj�� Inj� �

� exp���



�vec��	����� � I��n 	vec��			

� �
p

�	��T���nj�j� �

�
�T���jIT��j� �

�
n exp���



tr�������		�

���	

where � is given in ��	� In addition� the conditional likelihood function of the unrestricted
error correction model ��	 and the cointegration model ��	 are

Luec�Y j���� �� 	�	 � Llec�Y j���	j���������� ���	

Lecc�Y j���� 	�	 � Luec�Y j���� �� 	�	j���� ���	

respectively�
In the next section we propose a prior framework to analyse the unrestricted error

correction models ��	 and the cointegration models ��	�

�



� Prior Speci�cation

Traditional Bayesian analysis of the cointegration model starts directly with specifying
priors on the parameters �� � and 	� in the cointegration model ��	� The cointegration
model ��	 is non
linear in the parameters � and 	�� It is easy to see that the parameter 	�
is not identi�ed when � � � �or when � is of reduced rank	� see Phillips �����	 for more
discussion on local non
identi�cation� Consequently� if a di�use prior is used� such that the
joint posterior of the parameters is proportional to the likelihood� the conditional posterior
of 	� given � is constant and non
zero when � � �� The integral over this conditional
posterior at � � �� which is part of the marginal posterior of �� is therefore proportional
to the volume of the parameter region of 	� �R�n�r�r	� which is in�nity� This leads to
a a posteriori favour for locally non
identi�ed parameter values when di�use priors are
used for the parameters ��� 	�	� see Kleibergen and van Dijk �����b	 for a more elaborate
discussion of this phenomenon� This problem with local non
identi�cation disappears if
one speci�es proper priors� However� if under a proper speci�cation � � �� the posterior
of 	� is completely determined by the prior on 	� and Bayes factors to compare models
with di�erent number of cointegration relations may in such case be very sensitive to prior
speci�cation�

The approach in this paper is based on the idea that the error correction cointegration
model ��	 is nested in the linear error correction model ��	 and results from imposing a
reduced rank restriction �� � �	 on the long run multiplier �� Since this is also true for
the likelihood functions of the models� we also want this to hold for prior and therefore
posterior distributions� The parametrisation of rank reduction of � using ��� �� 	�	 in
��	 is such that starting from a density p��	 for unrestricted values for � it leads to a
unique expression of the conditional density pr��	 for reduced rank values of �

pr��	 � p��	jrank����r

� p����� 	�� �		j���jJ��� 	�� �	j���j�
���	

where jJ��� 	�� �	j represents the Jacobian of the transformation from � to ��� 	�� �	�
j��� stands for evaluated in � � � and the subscript r denotes restricted� see Kleibergen
�����	� The conditional density ���	 is unique since it is constructed by restricting an
orthogonal transformation of the smallest singular values of � to zero� see also below�
The density p��	 can be a posterior or a prior of� and may depend on hyperparameters�
Given a prior or posterior on � we can use ���	 to construct the prior or posterior on the
parameters of � under rank reduction� i�e� the cointegration model ��	�

For instance� �di�use	 priors for the � and � parameters in the linear error correction
model ��	 implies via the Jacobian transformation J��� �� 	�	j priors for the �� �� � and
	� parameters in the unrestricted error correction model ��	� which leads to well
behaved
posterior distributions� The joint prior of the parameters of the cointegration model ��	 is
now proportional to the joint prior of the parameters of the unrestricted error correction
model ��	 evaluated in � � �� Since the likelihood of the cointegration model ���	 as a
function of the parameters results from the likelihood of the unrestricted error correction

�



model ���	 evaluated in � � �� the posterior of the parameters of the cointegration model
results from restricting � � � in the posterior of the parameters of the unrestricted error
correction model ��	� i�e� the posterior of � under rank reduction�

Normally� the construction of posteriors and priors using conditional densities like ���	
su�ers from the Borel
Kolmogorov paradox� see Kolmogorov �����	 and Billingsley �����	�
Consequently� the posterior or prior then depends on the way we restrict the � matrix to
obtain rank reduction and therefore on the cointegration speci�cation� In other words it
depends on the way � is de�ned in the restriction � � �� For instance� restricting � � �

in the decomposition of � in ��� �� 	�	 in Kleibergen and van Dijk �����a	 may lead to a
di�erent posterior than the decomposition in ��	� Also the restriction 
 � ����� �	 � ��
which also implies rank reduction may lead to a di�erent posterior� Although this Borel

Kolmogorov paradox cannot be avoided� Kleibergen �����	 shows that it is possible to
obtain unique prior and posterior densities if the transformation from � to ��� �� 	�	
allows us to uniquely obtain � from every value of ��� �� 	�	 given that ��� 	�	 allow
for it� Only speci�cations of � which satisfy this condition allow us to condition on the
restriction of rank reduction and on nothing else� Note that this condition is stronger
than just invertibility� It is not allowed that di�erent values of � lead to the same value
of �� The decomposition of � in ��	 satis�es this condition� since � it is an orthogonal
transformation of the singular values� However� the decomposition of� in Kleibergen and
van Dijk �����a	 does not satisfy this condition since conditioning on � � � in that case
does not always corresponds with the desired kind of rank reduction� Also conditioning
on 
 � ���� � �	 � � does not satisfy this condition since we cannot retain the value
of ��� �� 	�	 from ��� 
� 	�	 when � � � and thus also not the value of �� Our prior
framework therefore leads to unique posteriors within the limited class of restrictions that
lead to rank reduction� see Kleibergen �����	 for details�

Finally� note that the above proposed construction of prior distributions also allows us
to construct conjugate priors for the parameters of the cointegration model� If we specify
a conjugate prior for the parameters of the linear error correction model ��	� we have
speci�ed a conjugate prior for the parameters of the unrestricted error correction model
��	� Evaluating this prior in � � � then gives us the conjugate prior for the parameters of
the error correction cointegration model ��	� Furthermore� if the prior of the parameters
of the error correction cointegration model is conjugate� this is also true for the posterior
of the parameters of the error correction cointegration model and hence the prior and
posterior of ��� 	�	 are of the same type�

�



Linear Error Correction Model

A conjugate prior for � and � in the linear error correction model ��	 consists of an
inverted Wishart prior for � and a matrix normal prior for � given �

plec��	 � jSj ��hj�j� �

�
�h�n��� exp���



tr����S		�

plec��j�	 � j�j� �

�
njAj ��n exp���



tr������� P 	�A��� P 			�

���	

where h and the positive de�nite symmetric �PDS� �n�n	 matrix S are prior parameters
for the inverted Wishart and the PDS �n � n	 matrix A and the �n � n	 matrix P are
prior parameters for the matrix normal prior� Therefore� the marginal prior for � is a
matrix t density� A di�use �non
informative	 prior speci�cation for � and � given � is

given by plec��	 � j�j� �

�
�n��� and plec��j�	 � ��

Unrestricted Error Correction Model

The joint prior of the parameters of the unrestricted error correction model ��	 results
directly from the joint prior of the linear error correction model plec����	 ���	

puec����� �� 	�	 � plec����	j����������jJ��� �� 	�	j� ���	

where jJ��� �� 	�	j is the Jacobian of the transformation from� to ��� �� 	�	� The deriva

tion of this Jacobian and its functional form are given in Appendix A� It is not possible
to write the joint prior as a product of marginal and�or conditional priors of a known
type� Note that the marginal prior of � is still an inverted Wishart density� The marginal
priors of the remaining parameters can be obtained through simulation� see Section ��

Cointegration Model

The joint prior of the parameters of the error correction cointegration model ��	 is pro

portional to the joint prior of the unrestricted model ���	 evaluated in � � ��

pecc����� 	�	 �
�

cr
puec����� �� 	�	j���

�
�

cr
puec����	j����jJ��� �� 	�	j���j�

���	

where cr is a correction factor which corrects the integrating constant and

jJ��� �� 	�	j���j � j�In � 		 ��� � � �

In�r

�
	 ���

� � 	�	j

�

����
�
In � 	 �	 �

� � 	 �
�

�� 	� ��
� � In�r

�����
�

�

�
�
�	

�



see Appendix A� The correction factor cr equals

cr �

ZZZ
puec����� �� 	�	j��� d� d� d	�� �
�	

Note that for the di�use prior speci�cation cr is not de�ned� For determining the posterior
distributions the factor cr does not matter since it is a constant� However� for the cointe

gration rank determination via posterior odds analysis the value of this factor is needed�
Section ��� shows how to calculate cr through simulation� Furthermore� Section � shows
how to simulate from the marginal prior distributions pecc��	� pecc��	 and pecc�	�	 which
are of unknown analytical form while the conditional prior of � given ��� 		 is an inverted
Wishart density�

��� Speci�cation of the Prior in Practise

When constructing priors for the parameters of cointegration models� we typically do
not have prior information regarding the unrestricted long run multiplier � but we have
some prior beliefs about the cointegrating vectors 	� their loading factors � and the
cointegration rank r� The prior framework based on a prior for the long run multiplier is
based on the �rst property though� Given the prior on the long run multiplier� for example
a Minnesota prior� see Doan et al� �����	� it gives the implied prior on the parameters of
the error correction cointegration model� We can however also specify the implied prior
on � and 	� directly� such that it corresponds in functional form to the implied prior
which would result from a conjugate prior on the long run multiplier� We then substitute
the information we have regarding the cointegrating vector and loading vectors in this
prior which implies a conjugate prior on the parameter of the long run multiplier�

The prior for ����� 	�	 in the cointegration model ��	 implied by the conjugate prior
speci�cation ���	 reads

pecc��� �� 	�	 �
����
�
In � 	 �	 �

� � 	 �
�

�� 	� ��
� � In�r

�����
�

�

j�j� �

�
�h��n��� exp���



tr�����S � �	�� ba	�A�	�� ba				�

�

	

where ba � P with b a �n � r	 and a an �r � n	 matrix and S and A are the remaining
prior parameters� By specifying P as ba we can now re�ect the information we have
with respect to the location of the cointegrating vector and their loading vectors in the
speci�cation of b and a respectively� Note that the dimensions of b and a also re�ect
our prior beliefs about the cointegration rank� The scale matrices S and A allow us to
re�ect our prior ideas about the correlation and variances of 	� and �� where it is such
that the prior variance of both 	� and � are decreasing in A and the prior variance of
� is increasing in S� The prior �

	 results from the conjugate prior ���	 with P � ba
and shows the functional form of a conjugate prior on the parameters of the cointegration
model� Note that the prior �

	 incorporates the local non
identi�cation of 	� for lower

�



rank values of � since it is �at and zero at these parameter values which shows that the
prior variance of 	� is in�nite at lower rank values of ��

Finally� we emphasize the importance of using priors on the parameters of error correc

tion cointegration models which are implied by priors on the long run multiplier� whose
properties are well understood� The linear error correction model is linear in the long
run multiplier � and it is therefore well known how prior information is updated to pos

terior information and that all properties of its prior are thus re�ected in its posterior�
The cointegration model is non
linear in � and 	� and it is not directly clear how the
prior information is updated to posterior information� if one speci�es a prior directly on
its parameters� To verify the plausibility of a speci�ed prior on the parameters of the
cointegration model� one has to construct the implied prior on the long run multiplier�
Since the linear error correction model is linear in the long run multiplier� the properties
of the implied prior are re�ected in the posterior of the long run multiplier and hence
also in the posterior of the parameters of the cointegration model� see Kleibergen �����	�
Using this approach Kleibergen �����	 shows that specifying independent normal priors
directly on � and 	� on models with di�erent number of cointegration relations can lead
to incoherent Bayes factors�

� Posterior Distributions

In this section we discuss the posterior distributions of the parameters of the linear er

ror correction model ��	� the unrestricted error correction model ��	 and the cointegra

tion model ��	� We focus on the posteriors of the parameters under the conjugate prior
speci�cation� The posteriors under di�use prior speci�cation follow from the conjugate
speci�cation by putting h � �n� S � � and A � ��

Linear Error Correction Model

The posterior of the parameters of the linear error correction model ��	 is proportional
to the prior ���	 times the likelihood ���	� Since it can be seen as a multivariate linear
regression model� the marginal posterior of � and the conditional posterior of � given �
are just

plec��jY 	 � jS � P �AP ��Y ��Y �  �
�
�A� Y �

��Y��	  �j
�

�
�T�h�j�j� �

�
�T�h�n�

exp���



tr�����S � P �AP ��Y ��Y �  �

�
�A� Y �

��Y��	  �			�

plec��j�� Y 	 � j�j� �

�
nj�A� Y �

��Y��	j
�

�
n

exp���



tr�������  �	��A� Y �

��Y��	���  �			�

�
�	

with

 � � �A� Y �
��Y��	

���AP � Y �
���Y 	� �
�	

��



see e�g� Zellner �����	� The marginal posterior of � is just like the prior an inverted
Wishart distribution� The conditional posterior of � given � is a matrix normal distri

bution� Hence the marginal posterior of � is a matrix t density� see Zellner �����	�

Unrestricted Error Correction Model

The posterior of the parameters of the unrestricted error correction model is proportional
to the prior ���	 times the likelihood Luec����� �� 	�	 de�ned in ���	�

puec����� �� 	�jY 	 � puec����� �� 	�	Luec�Y j���� �� 	�	� �
�	

This posterior density cannot be decomposed into a product of conditional and�or marginal
densities belonging to a known class of probability density functions� We can however
simulate from this posterior since we can easily simulate from the posterior of the linear
error correction model �
�	 and it holds that

puec����� �� 	�jY 	 � plec����jY 	j����������jJ��� �� 	�	j� �
�	

The simulation scheme is as follows

Step �� Draw �i from plec��jY 	 given in �
�	�

Draw �i from plec��j�i� Y 	 given in �
�	�

Step �� Perform a singular value decomposition of �i � U i Si V i��

Step �� Compute �i� �i and 	i
� using ��
	�

The simulated values �i� �i and 	i
� can be used to determine marginal results� Likewise�

we can use this simulation scheme to obtain marginal prior results for �� � and 	��

Cointegration Model

The posterior of the parameters of the error correction cointegration model ��	 is propor

tional to the prior ���	 times the likelihood ���	

pecc����� 	�jY 	 � pecc����� 	�	Lecc�Y j���� 	�	� �
�	

Again this joint posterior cannot be decomposed in marginal and�or conditional posterior
densities of a known type� Since the prior and the likelihood function of the parameters
of the cointegration model ��	 equals the prior and likelihood function of the parameters
of the unrestricted error correction model ��	 evaluated in � � � it holds that

pecc����� 	�jY 	 � puec����� �� 	�	j���Luec�Y j���� �� 	�	j���
� puec����� �� 	�jY 	j����

�
�	

��



We use this relation to set up a Markov Chain Monte Carlo simulation algorithm to obtain
posterior results� Since the full conditional posterior distributions are of a unknown type�
standard Gibbs sampling is not possible� Therefore� we apply the Metropolis
Hastings
sampler of Metropolis et al� �����	 and Hastings �����	�

To describe the Metropolis
Hastings �M
H� sampling algorithm� let � be a random
variable with density function f��	� Let g��j�	 be a candidate�generating density function
in �� The simulation algorithm to sample from the density f��	 works as follows�

Step �� Specify starting values �� and set i � ��

Step �� Simulate � from g��j�i	�

De�ne a��� �i	 �

��	
�


min
�

f���g��ij��
f��i�g��j�i�

� �
�

f��i	g��j�i	 � �

� f��i	g��j�i	 � ��

Choose �i�� � � with probability a��� �i	

and �i�� � �i with probability ��� a��� �i		�

Step �� Set i � i� � and go to step 
�

The described iterative scheme generates a Markov chain� After the chain has converged�
say at H iterations� the simulated values f�i� i � Hg can be used as a sample from the
distribution of � to compute means� variances� etc� Di�erent choices for the candidate�

generating function result in di�erent speci�c forms of the algorithm� For example� if
g��ij�	 � g��j�i	 the acceptance probability simpli�es to a��� �i	 � min�f��	�f��i	� �	�
This describes the original Metropolis algorithm� If g��� �i	 � g��	� we get a��i� �	 �
min�w��	�w��i	� �	� where w��	 � f��	�g��	� which can be interpreted as importance
weights� For details we refer to Smith and Roberts �����	 and Tierney �����	�

If we opt for a M
H algorithm� we can take the posterior of the parameters of the
unrestricted error correction model �
�	 as candidate�generating density function� since
we have already shown how to sample from this distribution� However� in this case we also
sample � which does not show up in the posterior of the parameters of the cointegration
model �
�	� To circumvent this problem we extend the posterior of the parameters of the
cointegration model �
�	 with a proper conditional density g��j���� 	�� Y 	�

g��j���� 	�� Y 	 pecc����� 	�jY 	 � g��j���� 	�� Y 	 puec����� �� 	�jY 	j���� �
�	

and sample from this distribution using the M
H approach� Since g is a proper density� the
draws �� � and 	� can be seen as draws from the posterior �
�	� The acceptance
rejection
step depends on the ratio of the extended posterior of the parameters of the cointegration

�This solution is based on the ideas in Chen �������

�




model �
�	 and the posterior of the parameters of the unrestricted error correction model
�
�	

w����� �� 	�	 �
g��j���� 	�� Y 	 puec����� �� 	�jY 	j���

puec����� �� 	�jY 	
� ���	

Implementing this in a M
H sampler results in

Step �� Draw ��i����i��� �i��� 	i��
� 	 from �
�	�

Step �� Accept ��i����i��� �i��� 	i��
� 	 with probability min

�
w��i����i����i����i��

�
�

w��i��i��i��i
�
�

� �
�

otherwise ��i����i��� �i��� 	i��
� 	 � ��i��i� �i� 	i

�	�

Since the candidate�generating density function has to approximate the density from which
one wants to sample� it is necessary to take for g��j���� 	�� Y 	 a density function which
is close to the conditional posterior of �� Therefore� the choice of g depends on the
functional form of the prior for ����	� The decomposition of the trace in the posterior
under a conjugate prior speci�cation given in Appendix B shows that a good choice for g
is

g��j���� 	�� Y 	 � �
�	�
�

�
�n�r�� j���

��
�

�
�j

�

�
�n�r�j	 �

��A � Y �
��Y��		�j

�

�
�n�r�

exp���



tr�	 �

��A� Y �
��Y��		����  �	���

��
�

�
����  �	�		� ���	

with  � � �	 �
��A � Y �

��Y��		�	
��	 �

��A�P � 	�	 � Y �
����Y � 	�		���

�
�
�����

��
�

�
�	

���
This results in the following expression for the weight function w

w����� �� 	�	 � �
�	�
�

�
�n�r�� jJ��� �� 	�	j���j

jJ��� �� 	�	j j���
��
�

�
�j

�

�
�n�r�

j	 �
��A� Y �

��Y��		�j
�

�
�n�r� exp���



tr��	 �

��A� Y �
��Y��		�	

 �����
��
�

�
�	

 ��		� ��
	

Remember that the functional form of the Jacobian jJ��� �� 	�	j is given in Appendix A�
Using the same strategy as above we can also obtain drawings from the marginal priors
pecc��	 and pecc�	�	� see also the end of Section ����

The Metropolis
Hastings sampler presented in this section may sometimes lead to high
rejection frequencies and therefore slow convergence� An alternative approach is impor

tance sampling� see Kloek and van Dijk �����	 and Geweke �����	� The weight function
w in ��
	� evaluated in the draws� represents in that case important weights� see also
Chen �����	 and �Verdinelli and Wasserman ����� p� ���	� The M
H sampling approach�
however� has the advantage that it can be implemented in a Gibbs sampler� see Chib
and Greenberg �����	� This makes it possible to analyse more complicated VAR models�
for instance a VAR model with an endogenous break in the constant� These models are
usually analysed using a Gibbs framework� The sampling of the block ����� 	�	 given

��



the remaining parameters in the model can then be done using the simulation steps in
this section� In the next subsection we show how we can use importance sampling tech

niques to compute posterior odds to compare cointegration models with di�erent number
of cointegrating relations�

� Posterior Odds Ratios

The in the previous sections developed procedures for calculating the posteriors of the
parameters of the cointegration model for di�erent number of cointegrating vectors r� allow
us to compare models with di�erent cointegration ranks using posterior odds analysis�
Since the number of cointegrating vectors r can only take n� � di�erent discrete values�
we can consider prior and posterior probabilities of the cointegration rank r and the
implied number of unit roots �n� r	� r � �� � � � � n�

First we assign prior probabilities to every cointegration rank r�

Pr�rank � r� r � �� � � � � n� ���	

These prior probabilities imply prior odds ratios �PROR� to compare a priori the cointe

gration models with di�erent number of cointegrating relations� Since every cointegration
model ��	 is nested in the full rank model ��	 it is convenient to consider

PROR�rjn	 � Pr�rank � r�

Pr�rank � n�
� r � �� � � � � n� ���	

The Bayes factor �BF� which compares the cointegration model ��	 with the unrestricted
error correction model ��	 is given by

BF�rjn	 � Pr�Y jrank � r�

Pr�Y jrank � n�
� r � �� � � � � n

�

RRR
pecc����� 	�	Lecc�Y j���� 	�	 d� d�d	�RRRR

puec����� �� 	�	Luec�Y j���� �� 	�	 d� d� d� d	�
� ���	

see e�g� Leamer �����	 for a formal discussion about Bayes factors� Now we can de�ne
the posterior odds ratios �POR� to compare a posteriori a cointegration model with r
cointegrating vectors with a model with n cointegrating vectors

POR�rjn	 � PROR�rjn	� BF�rjn	� r � �� � � � � n� ���	

These posterior odds ratios imply posterior probabilities for every cointegration rank� The
posterior probability for a cointegration model with rank r equals

Pr�rank � rjY � �
POR�rjn	Pn

i�� POR�ijn	 � r � �� � � � � n� ���	

The posterior probabilities can be used to choose the cointegration rank� or as weights in
further analyses� like forecasting exercises� In the next subsection we show how the Bayes
factors can be computed in case of conjugate priors�

��



��� Computation of Bayes Factors

The computation of the Bayes factor ���	 requires the evaluation of two integrals� Since it
is not possible to integrate out �� � or 	 analytically� we need again simulation techniques
to calculate Bayes factors�

For the computation of the Bayes factor we use that the prior and the likelihood of
the error correction cointegration model ��	 equals the prior and the likelihood of the
unrestricted error correction model ��	 evaluated in � � � times ��cr� The Bayes factor
���	 simpli�es to

BF�rjn	 �
RRR

pecc����� 	�	Lecc�Y j���� 	�	 d� d�d	�RRRR
puec����� �� 	�	Luec�Y j���� �� 	�	 d� d�d� d	�

�

RRR
�
cr
puec����� �� 	�	j���Luec�Y j���� �� 	�	j��� d� d�d	�RRRR
puec����� �� 	�	Luec�Y j���� �� 	�	 d� d�d� d	�

�

RRR
�
cr
puec����� �� 	�jY 	j��� d� d� d	�RRRR
puec����� �� 	�jY 	 d� d� d� d	�

� ���	

Dickey �����	 shows that under certain regularity conditions this Bayes factor can be sim

pli�ed as the ratio of the marginal posterior density of �� puec��jY 	� and the marginal prior
density of �� puec��	� both evaluated in � � �� This ratio is known as the Savage
Dickey
density ratio� see also Verdinelli and Wasserman �����	� Unfortunately� the marginal prior
and posterior distribution are of an unknown type and can only be obtained through sim

ulation� The height of the marginal posterior density in � � � can be computed using a
kernel estimator� see Silverman �����	� However� this strategy su�ers from the curse of
dimensionality in kernel estimation since �n� r	� can become large� The same reasoning
holds for the computation of cr� which is in fact the height of the marginal prior of �
evaluated in � � �� see �
�	� If one wants to avoid the nonparametric estimation� one can
also use the approach of Chen �����	� see also �Verdinelli and Wasserman ����� p� ���	�
We extend the numerator with the integral

R
g��j���� 	�	d�� where g is a proper density

function

BF�rjn	 �
RRR

�
cr
puec����� �� 	�jY 	j��� �

R
g��j���� 	�	 d�	 d� d�d	�RRRR

puec����� �� 	�jY 	 d� d�d� d	�

�
�
cr

RRRR
puec����� �� 	�jY 	j��� g��j���� 	�	 d� d� d� d	�RRRR

puec����� �� 	�jY 	 d� d� d� d	�
� ���	

An appropriate candidate for g��j���� 	�	 is a density function which is close to the
conditional posterior of �� see Chen �����	 for details� Therefore� the conditional density
function ���	 is again a good candidate�

We can calculate the ratio of integrals in ���	 by simulating �� �� � and 	� from
puec����� �� 	�jY 	� see Section �� For the simulated parameters ��i��i� �i� 	i

�	� i �
�� � � � � N � we calculate the ratio of the integrands w��i��i� �i� 	i

�	 de�ned in ��
	� The av

erage of the simulated weights w��i��i� �i� 	i

�	� which can be seen as importance weights�

��



then converges to the ratio of the integrals ���	 times cr

p
N



�

N

NX
i��

w��i��i� �i� 	i
�	� crBF�rjn	

�
� N��� v	� ���	

where N is the number of draws� v � var�w����� �� 	�		�� stands for weak convergence�

and
�

�
N

PN

i��w��
i��i� �i� 	i

�	
� � � �

N

PN

i��w��
i��i� �i� 	i

�		
�
�
� v� see Geweke �����	 and

Chen �����	�
To compute the Bayes factors we also need the value of cr� We can use the same simula


tion technique of Chen �����	 to calculate cr� Since
RRRR

puec����� �� 	�	 d� d� d�d	� � �
we can write

cr �

ZZZ
puec����� �� 	�	j��� d� d� d	�

�

RRR
puec����� �� 	�	j��� d� d� d	�RRRR
puec����� �� 	�	 d� d�d�d	�

�

RRR
puec����� �� 	�	j��� �

R
h��j���� 	�	 d�	 d� d�d	�RRRR

puec����� �� 	�	 d� d� d�d	�

�

RRRR
puec����� �� 	�	j��� h��j���� 	�	 d� d� d� d	�RRRR

puec����� �� 	�	 d� d�d�d	�
� ���	

where h��j���� 	�	 is a proper conditional density function� Simulate from the prior
puec����� �� 	�	 ���	 and compute the ratio of the integrands of the numerator and de

nominator� The average of these simulated ratios then converges to cr� An appropriate
density function h for the prior speci�cation ���	 is a density function which is close to
the conditional prior of �

h��j���� 	�	 � �
�	�
�

�
�n�r�� j���

��
�

�
�j

�

�
�n�r�j	 �

�A	�j
�

�
�n�r�

exp���



tr�	 �

�A	���� l	���
��
�

�
���� l	�		� ��
	

with l � �	 �
�A	�	

��	 �
�A�P � 	�	���

�
�
�����

��
�
�
�	

��� The weight function belonging
to this density equals

jJ��� �� 	�	j���j
jJ��� �� 	�	j h��j���� 	�	j���� ���	

In case of a di�use prior speci�cation cr is not de�ned and Bayes factors for rank
reduction cannot be interpreted� Under di�use prior speci�cations the height of the
marginal prior� in our case cr� is often replaced by a penalty function depending on the
number of restricting parameters� For instance� if we put cr equal to T� �

�
�n�r�� with T

the number of observations we have the Bayesian information criterion �BIC� of Schwartz
�����	� see also Kass and Raferty �����	� We can also use a Bayesian generalisation of the
posterior information criterion �PIC� of Phillips and Ploberger ������ ����	� In that case

the penalty function equals cr � �
�	�
�

�
�n�r�� � We note that the resulting Bayes factor is

not equal to the PIC for cointegration models constructed in Phillips �����	�

��



� Application

To illustrate the applicability of the� in the previous sections� constructed methods and
procedures for Bayesian cointegration analyses� we consider four simulated time series�
the UK data analysed in Hendry and Doornik �����	 and the Danish data analysed in
Johansen and Juselius �����	� Since we want to illustrate the performance of our Bayesian
analysis without the risk of prior dominance� we choose in this section for an approach
with proper conjugate priors� which do not contain much information� More informative
priors can easily be incorporated in the analysis�

��� Simulated Series

We consider the following four data generating processes �DGPs��

I � �Yt �

�
� ���

���
���

�
A � �t

II � �Yt �

�
� ���

���
���

�
A �

�
� ���


��

��


�
A� � � �� �Yt�� � �t

III � �Yt �

�
� ���

���
���

�
A �

�
� ���
 ���


��
 ���

��
 ��


�
A� � � ��

� � ��
�
Yt�� � �t

IV � �Yt �

�
� ���

���
���

�
A �

�
� ���
 ���
 ���


��
 ���
 ���

��
 ��
 ���


�
A
�
� � � ��

� � ��
� � �

�
AYt�� � �t�

���	

where �t � NID��� I		 and the sample size T is ��� observations� The four DGPs contain
�� �� 
 and � cointegrating relations� respectively� DGP I contains three unit roots�
DGP II contains 
 unit roots and a root ���� DGP III contains the roots �� ��� and ����
and DGP IV contains the roots ���� ��� and ����

To analyse the simulated series� we consider a VAR��	 model with a constant term�
which corresponds to the speci�cation in the DGP� The �rst step in the Bayesian analysis
is to specify a prior on the vector autoregressive parameters � and on the covariance
matrix �� The prior speci�cation is given in ���	� For the � prior we take h � � and
S � I	� For the mean of the prior for � given � we take P � �� favouring the hypothesis
of three unit roots� Note that the variance A of this prior distribution also re�ects our
prior beliefs about the number of cointegrating relations� since it corresponds to the term
�Y �

��Y��	 in the likelihood� see �
�	� Note that the series 	 �Yt�� is stationary� while 	
�
�Yt��

is not� If we want to be uninformative about the rank of � it is di�cult to propose a
prior value for A� To circumvent this problem we take a g
prior for �� see Zellner �����	�
In our case this would imply that the variance of this prior is a fraction of the matrix
�Y �

��Y��	� Since we are dealing with non
stationary time series� we divide this matrix by

��



Table �� Bayes factors and posterior probabilities and LR statistics for the four DGPs�

� � � � � ��� � � ���� di�use classical
r ln�BF� Pr�rjY � ln�BF� Pr�rjY � ln�BF� Pr�rjY � ln�PIC� Pr�rjY � LR p�val�

DGP I

� ���
� ���� 
���� ���� ����� ���� 
���� ���� ����� ����
� ���� ���� ���
 ���� ����
 ���� �
��� ���� ���� ����

 ���� ���� 
��
 ���� ���� ���� ���� ���� ���� ��
�
� ���� ���� ���� ���� ���� ���� ���� ����

DGP II

� ����� ���� 
��� ���� �
��� ���� ���
 ���� ����� ����
� ���� ���� ���� ���� �
��� ���� �
��
 ���� ���� ����

 ���� ���� 
�
� ���� ���� ���� ���� ���� ���� ��
�
� ���� ���� ���� ���� ���� ���� ���� ����

DGP III

� ��
��� ���� �
���� ���� ��
��� ���� �
���� ���� ����� ����
� ����� ���� ����
 ���� ����� ���� ����� ���� ����� ����

 ���� ���� ��
� ���� 
��� ���� 
��� ���� 
��� ����
� ���� ���� ���� ��

 ���� ���� ���� ���


DGP IV

� ������ ���� �
���� ���� ����
� ���� �
���� ���� ����� ����
� �����
 ���� ����� ���� ����� ���� ����
 ���� ����� ����

 ����� ���� ���
� ���� �
��
 ���� �
��� ���� �
��
 ����
� ���� ���� ���� ���� ���� ���� ���� ����

� A log Bayes factor ln�BF�� 
 denotes that a cointegration model with r cointegration relations is
more likely than a model with � cointegration relations�

� Posterior probability of the cointegration rank Pr�rjY � ���� is based on equal prior probabilities ����
for every rank r�

� The prior is given in ���� with h � �� S � I�� P � � and A � ��Y �
��
Y����T �

� LR denotes the Johansen likelihood ratio trace statistic for cointegration �p�values based on classical
distribution theory in the 
nal column�� see Johansen �������

��



T � where T equals the number of observations� The prior variance for � is now given by
A � ��Y �

��Y��	�T � A smaller value of � implies less prior information� Finally� we give
each cointegration rank the same prior probability Pr�rank � r� � �



� r � �� � � � � �� see

���	�
Given the priors and prior probabilities� we can compare models with reduced rank

�cointegration models	 with the full rank unrestricted error correction model� Table �
shows the Bayes factors and posterior probabilities for the four DGPs for three values of
�� � � �� ���� ������ A Bayes factor exceeding one �or ln�BF�rj�		 exceeding zero	 indicates
that rank r is preferred above the full rank situation� For instance� for DGP I every rank
reduction is preferred� while for DGP IV the full rank situation is always preferred� The
Bayes factors can be translated into posterior probabilities for the cointegration ranks� see
���	� In all cases the posterior probabilities of the correct cointegration rank exceeds the
posterior probabilities of the other ranks� Note that unit roots become more likely if we
increase the prior variance on � by decreasing �� This results since our prior is centered
at � � �� When we increase the prior variance� the prior height in � � � decreases� The
posterior height in � � � remains almost the same since the value of � is such that the
prior only minorly a�ects the posterior� From Section ��� we have seen that the Bayes
factor for � � � equals the ratio of the posterior and prior height in � � �� Hence the
Bayes factor increases when we increase the prior variance� The same reasoning holds for
the Bayes factors for � � �� This shows that one needs to be careful in specifying prior
variances and avoid priors with a too large prior variance� The columns labelled !di�use"
show the Bayes factors and posterior probabilities in case of a di�use prior speci�cation�
These Bayes factors are constructed using the cr � �
�	�

�

�
�n�r�� penalty function� see the

end of Section ��� for a discussion� We see that the PIC based Bayes factors give quite
satisfactory results and we therefore prefer them above a proper informative prior with a
very large prior variance�

The �nal two columns of Table � show the classical likelihood ratio �LR� statistics for
rank reduction of Johansen �����	 with p
values based on classical asymptotic theory�
The trace statistics also indicate the right cointegration rank�

��� Small Monetary Model for the UK

Hendry and Doornik �����	 construct a small linear dynamic monetary model for the
United Kingdom� The model consists of the variables nominal M�� denoted by mt� total
�nal expenditure yt� the total �nal expenditure de�ator pt� and the di�erential between
the three
month local authority interest rate and the M� retail sight
deposit interest rate
denoted by rt� The latter represents the opportunity cost of holding M�� All variables
are in logs except for the interest rate rt�

In this section we analyse the same UK data as in Hendry and Doornik �����	� We
have the same quarterly observed series of mt� yt� pt and rt for the period �����I#�����II�
The data are seasonally adjusted� The �rst step in the modelling strategy is to specify an
unrestricted VAR model� Hendry and Doornik �����	 propose a VAR�
	 model for the

��



four
dimensional vector of time series Yt � �mt � pt� yt��pt� rt	
�

�Yt � �� �t��Yt�� � ����Yt�� � ��DOILt � ��DOUTt � �t ���	

where �t � NID����	� �� and �� are �� � �	 parameter vectors and DOILt and DOUTt

are dummy variables to capture outlying observations caused by the Heath
Barber boom
and the �rst e�ects of the Thatcher government� and the two oil crises respectively� see
Hendry and Doornik �����	 for details��

The trend t and the dummy variable DOUTt are restricted such that they lie in
the cointegration space� i�e� ��

�� � � and ��
��� � �� which means that the vector

�t DOUTt	
� is added to the Yt�� vector and that � becomes a ��� �	 matrix� The long

run multiplier is now no longer a square matrix as in the decomposition in ���	� However�
the decomposition can be directly extended to allow for the nonsquare long run multiplier
by adjusting the sizes of the involved matrices in the appropriate manner� In general
when � is a �m � n	 matrix with m � n� the singular value decomposition ���	 is such
that U is an �m�m	 matrix with U �U � Im� V a �n� n	 matrix with V �V � In and S a
�m� n	 matrix consisting of a �n� n	 diagonal matrix with the n singular values on its
main diagonal on top of a ��m� n	� n	 matrix of zeros� see Golub and van Loan �����	�
We can write U � S and V as in ���	 but now with U�� a �r�r	 matrix� U�� a �r��m�r		�
U�� a ��m � r	 � r	� U�� a ��m � r	 � �m � r		 and S�� a ��m � r	 � �n � r		 matrix�
The values for �� 	� and � follow now directly from ��
	� Furthermore� the speci�cation
of conditional densities� derivation of the Jacobian� etc� remain unaltered� see Kleibergen
and van Dijk �����	�

The �rst part of Table 
 reports the results of a Bayesian cointegration analysis for the
model ���	� The �rst row displays the results for a model without the dummy variables
DOILt and DOUTt� The results are based on the conjugate prior speci�cation ���	 with
h � �� S � ������ � I
� P � � and A � ��Y �

��Y��	�T for di�erent values of �� For
the remaining parameters we take �at priors� Again� we assume equal prior probabilities
Pr�rank � r� � �

�
� r � �� � � � � �� For � � � we see that the posterior probabilities

indicate that two cointegration relations are most likely� For the other two values of �
only one cointegration relation is more likely� The posterior probabilities resulting from
these Bayes factors also indicate one cointegration relation� The �nal two columns shows
that the Johansen trace statistics indicate one cointegration if we test at a ��$ level of
signi�cance�

The results change if we include the dummy variables DOUTt and DOILt like in
Hendry and Doornik �����	� see second row of Table 
� The posterior probabilities for
� � � and � � ��� now indicate two cointegration relations between the series in Yt� while
for � � ���� we have only one cointegration relation� The PIC based Bayes factors also
indicate two cointegration relations� Hence� this speci�cation provides more posterior ev

idence for two cointegration relations� The Bayesian results correspond with the classical
results in Hendry and Doornik �����	� who also �nd two cointegration relations using

�DOUTt is zero except for unity in �����IV� �����I and �����II and DOILt is zero except in �����III�
�����IV and �����III�
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Table 
� Bayes factors� posterior probabilities and LR statistics for the UK and Danish
data�

� � � � � ��� � � ���� di�use classical
r ln�BF� Pr�rjY � ln�BF� Pr�rjY � ln�BF� Pr�rjY � ln�PIC� Pr�rjY � LR p�val�

UK data
no dummies and restricted trend

� ������ ���� ������ ���� ���� ���� 
���� ���� ������ ����
� ���� ���� 
���� ���� ����� ���� 
���� ���� ����� ����

 ���� ���� 
���� ��
� ����� ���� 
���� ���� �
��
 ����
� ���� ���
 ����� ���� ����� ���� ����� ���� ���� ����
� ���� ���� ���� ���� ���� ���� ���� ����

dummies and restricted trend

� ������ ���� �
���� ���� ���� ���� 
���� ���� ��
��� ����
� ��
� ���� ����� ���
 ����� ���� ����� ���� ����
 ����

 
���� ���� ����� ���� ����� ���� 
���� ���� ����� ��
�
� ����� ���� 
���� ���� ���

 ���� ����� ���� ���� ����
� ���� ���� ���� ���� ���� ���� ���� ����

Danish data
unrestricted constant

� ����� ���� ���
� ���� �
��� ���� 
���� ��
� ����� ����
� ����� ���� 
���� ���� ����� ���� 
���� ���� ����� ����

 ��
� ���� ����� ���� ����� ���� ����� ���� ���� ����
� 
��� ���� ���� ���� ���� ���� ���� ���� ���� ����
� ���� ���� ���� ���� ���� ���� ���� ����

restricted constant

� 

��� ���� ����� ���� ����� ���� ����� ���� ����� ����
� 
���� ���� ����� ���� ����� ���
 
���� ���� ����� ����

 ����� ���� 
���
 ���� ����� ���� ����
 ���� ���� ����
� ���� ���� �
��� ���� ����� ���� ����� ���� 
��� ����
� ���� ���� ���� ���� ���� ���� ���� ����

� A log Bayes factor ln�BF�� 
 denotes that a cointegration model with r cointegration relations is
more likely than a model with � cointegration relations�

� Posterior probability of the cointegration rank Pr�rjY � ���� is based on equal prior probabilities ����
for every rank r�

� The prior is given in ���� with h � �� P � �� A � ��Y �
��Y����T with S � 
�


�� I� for the UK

series and S � 
�

�� I� for the Danish series�
� LR denotes the Johansen likelihood ratio trace statistic for cointegration �p�values based on classical
distribution theory in the 
nal column�� see Johansen �������


�



the two dummy variables� see the �nal two columns of Table 
� Note that the favour
of the PIC based Bayes factor for the absence of cointegration above one cointegration
relation results from the restricted trend in the cointegration space� The model without
cointegration is therefore more �exible than the model with one cointegration relation�
Because none of these models are good models in terms of Bayes factors� the most �exible
one is preferred�

��� Danish Money Demand

Johansen and Juselius �����	 analyse the demand function for money for the Danish
economy using a VAR model� Their model consist of M� denoted by mt� real income yt�
price level pt and the costs of holding money� The costs of holding money is approximated
by a di�erence between the bank deposit rate idt for interest bearing deposits and the
bond rate ibt � All variables are in logs� Since the in�ation rate �pt does not alter the
cointegration analysis signi�cantly� this variable is not considered in the Johansen and
Juselius study�

In this subsection we analyse the same Danish data as in Johansen and Juselius �����	�
We have quarterly observed series of mt� i

d
t � i

b
t and yt for the period ������#������� The

cointegration analysis is performed in the following VAR�
	 model��
BB�

�mt

�yt
�ibt
�idt

�
CCA � ��

	X
s��

��s �Ds�t ��

�
BB�

mt��

yt��
ibt��
idt��

�
CCA � ���

�
BB�

�mt��

�yt��
�ibt��
�idt��

�
CCA� �t� ���	

where �Ds�t represents seasonal dummies with zero mean and ��s is a four
dimensional
parameter vector� s � �� � � � � �� Although it is not likely that real income does not have
a linear trend� Johansen and Juselius restrict the constant in the cointegrating space�
i�e� ��

�� � �� see e�g� Johansen and Juselius �����	� Hence� the � matrix is extended
with an extra row and the Y�� matrix with an extra column� see also above�

The second part of Table 
 displays the results of a Bayesian cointegration analysis
for the Danish data� The results are based on a conjugate prior speci�cation for � and
� ���	 with h � �� S � ������ I
� P � � and A � ��Y �

��Y��	�T for di�erent values of ��
For the remaining parameters we take a �at prior� We assume again equal probabilities
���	 Pr�rank � r� � �

�
� r � �� � � � � n�

First� we consider a model where the constant is not restricted in the cointegrating
space ���

�� 	� �	� The third row of Table 
 shows the Bayes factors and posterior proba

bilities for three values of �� The Bayes factors favour every rank reduction over the full
rank model� resulting in no posterior indication for cointegration� Hence the model with
� � � is more likely than any cointegration speci�cation� The PIC based Bayes factors
indicate that a model with one cointegration relation is preferred�

In case we restrict the constant in the cointegrating space� we see that the Bayes factors
again favour every rank reduction over a full rank model� see the �nal row of Table 
�







Figure �� Marginal posterior densities of the adjustment parameters � and the cointe

grating vector 	 for the UK series�


�



However� for � � � and � � ��� the posterior probabilities assign most probability to a
model with rank one� For � � ���� there is again no evidence of cointegration� Note
again that similar to the UK data� we �nd less cointegration when we decrease �� As
explained before this results from the decrease of the prior height in the point where the
tested hypothesis lies� PIC based Bayes factors indicate no cointegration� The �nal two
columns show again the LR test statistics� The classical results show that we need to test
at a ��$ level of signi�cance to �nd cointegration�

To compare Bayesian posterior results with classical maximum likelihood estimates we
compute posterior results for the cointegration model with one cointegrating relationship
and the constant restricted in the cointegrating space ���

�� � �	� We use a di�use prior
speci�cation to compare the posterior outcomes directly with the maximum likelihood
results of Johansen and Juselius �����	� The posterior means of the � and 	 parameters
are

�� � �
mt yt ibt idt

���
� ���� ���� ����
�����	 �����	 ����
	 ����
	

	 and 	 � �
mt yt ibt idt �
� ����
 ���� ����� ���
�

��	 �����	 �����	 ����
	 �����	
	�

where the posterior standard deviations are between parentheses� Note that the posterior
means correspond reasonably well to the maximum likelihood estimates in Table 
 of
Johansen and Juselius �����	 and that the posterior standard deviations of the elements
of the cointegrating vector are essentially in�nite since the marginal posterior has Cauchy
type tails� see Kleibergen �����	 and Kleibergen and van Dijk �����	� However� since the
marginal posterior of the �rst element of � has almost no probability mass in zero� the
posterior standard deviations do not show their in�nite value� Figure � shows the marginal
posterior densities of the adjustment parameters � and the cointegrating vector 	� The
�rst column shows the marginal posteriors of the � parameters� The marginal posterior
of the adjustment parameter for the money equation is situated far away from zero� This
is not the case for the other adjustment parameters� where zero lies within the ��$ one

sided highest posterior density regions of the marginal posteriors� The second column of
Figure � shows the marginal posteriors of the 	 parameters� These marginal posterior
distributions are more skewed and have fatter tails which are even of the Cauchy type� see
Kleibergen �����	� The posterior masses of the marginal posteriors of the cointegration
parameters are situated far away from zero except for the ib
element�

In summary� although the examples in this section are simple� they show that Bayesian
techniques provide useful tools to analyse cointegration� The Bayes factors indicate
whether rank reduction is plausible� Bayes factors can be used to calculate posterior
probabilities for each cointegration rank� to show the best model� If there is no clear
preference for one of the cointegration ranks� it is also possible to use the posterior prob

abilities as weights in a forecasting exercise�
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� Concluding Remarks

In this paper we have proposed a new Bayesian approach for cointegration analysis� This
approach is based on the idea that the cointegration model is nested in a linear error
correction model where the parameter modelling the error correction� i�e� the long run
multiplier� has full rank� Cointegration then occurs when the long run multiplier exhibits
rank reduction� We therefore explicitly model the priors and posteriors of the parameters
of the cointegration model as proportional to the priors and posteriors of the long run
multiplier given that it has reduced rank� This is achieved by specifying the long run
multiplier as the sum of two matrices� The �rst matrix is the product of the adjustment
parameters and the cointegrating vectors� i�e� the cointegration speci�cation� The second
matrix models the deviation from the cointegration speci�cation and we can therefore
restrict it to zero to obtain cointegration�

The Bayesian analysis starts with de�ning a prior for the full rank parameter matrix
modelling error correction in the linear error correction model� This prior leads via a Ja

cobian transformation to the joint prior for the adjustments parameters� the cointegration
vectors and the matrix modelling the deviation from the cointegration speci�cation� The
prior and posterior of the parameters of the cointegration model are obtained by putting
the matrix modelling the deviation in the prior and posterior of the unrestricted model
equal to zero� To obtain marginal posterior results we propose a Metropolis
Hastings sim

ulation algorithm� Bayes factors to determine the cointegration rank are obtained using
the Savage
Dickey density ratio�

The Bayesian cointegration analysis proposed in this paper is �exible and is therefore
also applicable in more complicated models� We can for instance allow for structural
breaks in the means and deterministic trend or we can consider non
linear cointegra

tion models� like Markov Switching cointegration and threshold cointegration� Also we
may change the assumption of normal distributed errors and extend the analysis to t

distributed errors or vector moving average errors� All of these issues are subjects of our
future research�
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A Jacobian Transformation

For the derivation of the Jacobian transformation� it is convenient to split up the trans

formation from � to �� � and 	� in two steps� �rstly from � to ���� ��� �� 	�	� where
� � ��� ��	 and �� � ����

� ��� and secondly from ���� ��� �� 	�	 to ��� �� 	�	� In the
following we construct the Jacobians for the two transformations� We can denote � as a
function of ���� ��� �� 	�	

� �
�
	 	�

�� �� �

� �

��
�
��

�

where � � �Ir � ��	 with � � ���� 	 � �Ir � 	 �
�	

�� �� � �In�r � �����	
� �

� ���� In�r	 and

	� � �	� In�r	
��In�r � 	�	

�
�	

� �

� so that ���
�
� � In�r and 	 �

�	� � In�r�
	 The derivatives

of � with respect to ��� ��� � and 	� read

J� �
� vec��	

��vec���		�
� ��� � 		

J� �
� vec��	

��vec���		�
� ��� �

In�r

�� 	��

�
� �In � 	��	

� vec���	

��vec���		�

J	 �
� vec��	

��vec��		�
� ���� � 	�	

J
 �
� vec��	

��vec�	�		�
� ������

� �
�

�

In�r

��
� �����

� � In	
� vec�	�	

��vec�	�		�
�

with

� vec���	

��vec���		�
� �In � �

� �

�
n 	

� vec���� In�r	

��vec���		�

� ����� In�r	
� � In�r	

� vec��
� �

�
n 	

� �vec��
�

�
n 		�

� vec��
�

�
n 	

��vec��n		�
� vec��n	

��vec���		�

� vec�	�	

��vec�	�		�
� �	

� �

�
�

n � In	
� vec��	� In�r	

�	

��vec�	�		�

� �In�r � �	� In�r	
�	
� vec�	

� �

�
n 	

� �vec�	
�

�
n 		�

� vec�	
�

�
n 	

��vec�	n		�
� vec�	n	

��vec�	�		�

�If M is a positive de
nite real symmetric matrix� then M
�

� � C�
�

�C � where � is a diagonal matrix
containing the eigenvalues ofM and C contains the orthonormal eigenvectors ofM andM� �

� � C�� �

�C ��
see e�g� �Johansen ����� p� �����
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where we de�ne for notational convenience �n � �In�r � �����	 and 	n � �In�r � 	�	
�
�	 so

that �� � �
� �

�
n ���� In�r	� 	� � �	� In�r	

�	
� �

�
n with �

�

�
n�

�

�
n � �n� 	

�

�
n 	

�

�
n � 	n�

� vec���� In�r	

��vec���		�
�
��

Ir

�

�� In�r
�
K n�r�r

� vec��
� �

�
n 	

� �vec��
�

�
n 		�

� ����
�

�
�

n � �
� �

�
n 	

� vec��
�

�
n	

��vec��n		�
� ���

�

�
�

n � In�r	 � �In�r � �
�

�
n 		

��

� vec��n	

��vec���		�
� �In�r � ���	 � ���� � In�r	K n�r�r

and

� vec��	� In�r	
�	

��vec�	�		�
�
�
In�r �

�
Ir

�

��
K n�r�r

� vec�	
� �

�
n 	

� �vec�	
�

�
n 		�

� ��	� �

�
�

n � 	
� �

�
n 	

� vec�	
�

�
n 	

��vec�	n		�
� ��	

�

�
�

n � In�r	 � �In�r � 	
�

�
n 		

��

� vec�	n	

��vec�	�		�
� �	� � In�r	 � �In�r � 	�	K n�r�r

where K i�j are so
called commutation matrices� For any �i � j	 matrix W � vec�W 	 �
K i�jvec�W

�	� vec�W �	 � K j�ivec�W 	� and K
�
i�j � K j�i � see �L%utkepohl ����� p� ���	� The

Jacobian of the transformation from � to ���� ��� �� 	�	 becomes���� � vec��	

��vec���	� vec���	� vec��	� vec�	�	�	

���� � j�J� J� J	 J
	j�

Since �� � ����
� �� the derivatives of ���� ��� �� 	�	 with respect to ��� ��� � and 	� are

respectively
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G	 �
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� vec��	� vec�	�	
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�
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The Jacobians of the two transformations determine the Jacobian of the total transfor

mation from � to ��� �� 	�	

jJ��� �� 	�	j
�

���� � vec��	

��vec��	� vec��	� vec�	�	�	

����
�

���� � vec��	
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����
������vec���	
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�	�
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� j�J� J� J	 J
	j j�G� G� G	 G
	j�

Straightforward algebra shows that the Jacobian evaluated in � � � equals

jJ��� �� 	�	j���j � j�In � 		 ��� � � �

In�r

�
	 ���

� � 	�	j�

B Decomposition

The trace in the posterior density of the linear error correction model �
�	 can be decom

posed as follows

tr�������  �	��A � Y �
��Y��	���  �		

� tr�����	�� 	���� �  �	��A� Y �
��Y��	�	�� 	���� �  �			
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�
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��A � Y �
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�
�	
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�	 �
��A� Y �
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with

 � � �A� Y �
��Y��	

���AP � Y �
���Y 	

 � � �	 �
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