
GEORGI NALBANTOV

Essays on Some Recent
Penalization Methods 
with Applications in Finance and Marketing

Rotterdam School of Management
Erasmus University 
Erasmus School of Economics
P.O. Box 1738, 3000 DR Rotterdam 
The Netherlands

Tel. +31 10 408 11 82
Fax +31 10 408 96 40
E-mail info@erim.eur.nl
Internet www.erim.eur.nl

G
E

O
R

G
I N

A
LB

A
N

T
O

V
  -   E

ssa
y

s o
n

 S
o

m
e

 R
e

ce
n

t P
e

n
a

liza
tio

n
 M

e
th

o
d

s

ERIM PhD Series
Research in Management

E
ra

sm
u

s 
R

e
se

a
rc

h
 I

n
st

it
u

te
 o

f 
M

a
n

a
g

e
m

e
n

t
-

E
R

IM

132

E
R

IM

D
e

si
g

n
 &

 l
a

yo
u

t:
 B

&
T

 O
n

tw
e

rp
 e

n
 a

d
vi

e
s 

 (
w

w
w

.b
-e

n
-t

.n
l)

  
  

P
ri

n
t:

 H
a

ve
k

a
  

 (
w

w
w

.h
a

ve
k

a
.n

l)ESSAYS ON SOME RECENT PENALIZATION METHODS 
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The subject of this PhD research is within the areas of Econometrics and Artificial Intel -
li gence. More concretely, it deals with the tasks of statistical regression and classification
analysis. New classification methods have been proposed, as well as new applications of
established ones in the areas of Finance and Marketing.

The bulk of this PhD research centers on extending standard methods that fall under
the general term of loss-versus-penalty classification techniques. These techniques build
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should neither be too complex nor too simple in order to possess a good forecasting
ability. New proposed classification techniques in this area are Support Hyperplanes,
Nearest Convex Hull classification and Soft Nearest Neighbor.

Next to the new techniques, new applications of some standard loss-versus-penalty
methods have been put forward. Specifically, these are the application of the so-called
Support Vector Machines (SVMs) for classification and regression analysis to financial time
series forecasting, solving the Market Share Attraction model and solving and interpreting
binary classification tasks in Marketing.

In addition, this research focuses on new efficient solutions to SVMs using the so-called
majorization algorithm. This algorithm provides for the possibility to incorporate various
so-called loss functions while solving general SVM-like methods.
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Chapter 1

Introduction

The term learning in the context of this thesis is about extracting knowledge
from data. This term has penetrated deeply into �elds such as Machine Learning
and Statistics, where it is often referred to as function estimation. A famous
example that illustrates an ubiquitous learning dilemma is the so-called �tree�
example. Here, a boy and his younger sister are given several pictures. Some
pictures show trees, other pictures show other items. Both the trees and the
other items are known to the children. Later, a new picture with a tree is
presented to the children and the task is to say whether the item shown is a
tree or not. The boy, having studied the pictures extremely closely concludes
(incorrectly) that the item is not a tree, since he has never seen a tree with
exactly so many branches. The younger girl, who has paid little attention to
the pictures, concludes (correctly) that the item in the new picture is a tree,
because it is green. The typical learning dilemma illustrated here is whether,
based on a �nite number of examples, to �nd a learning rule that describes the
data too well, or to construct a learning rule that is a simple one. Inevitably,
the �right� balance, or trade-o�, has to be sought. The idea that there is a need
to search for such a trade-o� is one of the main motivation pillars of this thesis.
Depending on the area of research, this trade-o� is referred to as bias-versus-
variance, or �t-versus-complexity. In essence, the way to achieve a balance in
practice is to start from a function that �ts, or describes, a given data too well,
and then to �punish� it for being too precise. Loosely speaking, in this way
we end up with a function, or learner, that �nds itself somewhere between the
boy and the girl. More formally, the act of punishing is called penalization or
regularization.

While a rigorous universally-acknowledged de�nition of the term learning
has not crystallized in the literature, distinct types of learning have emerged.
Among the most popular types, where the penalization idea stands out as quite
relevant, are supervised and unsupervised learning. Supervised learning involves
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knowledge about the outcomes associated with some data. These techniques
handle data with usually one output variable and many input variables. Gen-
erally speaking, a variable is something that has a magnitude and varies. The
input variables are also referred to as inputs, explanatory variables, predictors,
attributes, or features, depending on the area of research. In case the output
variable is allowed to take real values, it is likewise also called the explained,
predicted or response variable. The �nancial problem of predicting the expected
stock market return from a linear combination of several �nancial input variables
is an example of such a supervised input-output problem, and is generally called
a regression problem, since the output variable is real valued. The bias-variance
trade-o� in this linear regression context reveals itself as the compromise choice
between a function that �ts the data too well, which is the linear function es-
timated by a so-called Ordinary Least Squares procedure, and a function that
provides a constant value for the output variable whatever the inputs.

A second example of a supervised learning method is classi�cation. Classi�-
cation resembles regression with only one crucial di�erence: the output variable
can take only a �nite number of discrete values, or labels. If this variable takes
only two values, then the learning process is referred to as binary classi�cation,
and sometimes even as binary, or binomial, regression. Here, the output vari-
able is also called a group, a class, or a nominal explanatory variable. The tree
example above represents a binary classi�cation task. Another example of such
a task is predicting whether the stock market is expected to go �up� or �down�.

In contrast to supervised learning methods where the outcome variable is
known a priori, unsupervised methods seek some kind of structure in the data
without a known outcome variable. A good example of an unsupervised tech-
nique is clustering. Roughly speaking, clustering is about �nding a certain
structure in the data based on the inputs only, whereas classi�cation and re-
gression are about �nding relations in the data that describe the concrete way
in which inputs a�ect outputs. In this thesis, only supervised learning tasks are
addressed however, and more speci�cally classi�cation and regression problems.

Thesis Topics

This thesis focuses on three major themes. The �rst one glides in-between the
surfaces of Statistics/Econometrics and Machine Learning, without a clear pri-
ority of one over the other. Actually, it is the combination of the advances in
these �elds that gives rise to possible breakthroughs. The thesis combines and
builds on three branches of methods, namely instance-based, penalization and
kernel methods. The combination among these three branches, or aspects, has
given rise to three novel classi�cation methods proposed in this thesis: Sup-
port Hyperplanes (SH), Soft Nearest Neighbor (SNN) and Nearest Convex Hull
(NCH) classi�cation. To the best of my knowledge, these are the �rst methods
that combine all of the above three aspects and bene�t greatly from the valu-
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able qualities inherent in each of them. Each of the aspects has its own merits,
discussed very shortly below. Where applicable, the e�ect of one aspect over
another is stressed as well.

Instance-based methods are those which do not provide a global prediction
rule for the input-output relations, but build a model each time the output
value of a test observation is needed. The term �instance-based learner� is typ-
ical of the Machine Learning literature, however it has a close counterpart in
the Statistics literature, which is �local learner� or �local method�. Generally
speaking, instance-based methods provide �exible models that can easily adjust
to the underlying data, in case such an adjustment is needed. If there is no
or limited need for adjustment, then penalization comes in handy to reduce a
�exible solution of an instance-based model to a simpler one, achieving in this
case a better bias-variance, or �t-complexity, balance. The e�ect of penaliza-
tion is to smooth out the solution of an intrinsically �exible model, achieving
is this way a better balance between so-called bias and variance. The term
�penalization� is used in both Statistics and Machine Learning, though these
�elds are not in complete agreement with the accompanying speci�cs. Penaliza-
tion methods usually have a basis an intrinsically �exible, and often so-called
unbiased, model that is subsequently penalized, or downgraded so to say, to a
simpler model. In essence, penalization is the act of shrinking the predictions of
a model towards each other. Equivalently stated, it is the act of ��attening� or
simplifying the prediction function of a certain model. Finally, kernel methods
make use of so-called kernels or kernel functions, which allow one to map the
data from the original into a higher-dimensional space and to carry out nec-
essary calculations there without explicit knowledge of this higher-dimensional
space. The term kernel itself has di�erent meanings, such as a (nonparametric)
prediction-function smoother, a (nonparametric) density-estimation smoother
and a means to provide an implicit expansion of the space of the inputs. In this
thesis, the third meaning is used. The usage of kernels, in combination with an
adequate level of penalization, has proved to enhance the performance of linear
models enormously. This is mainly due to the possibility to view, so to say, the
data from di�erent angles as well as to consider the interactions between the
inputs.

Special attention is paid to all of these aspects in the subsequent sections
of this introduction. In addition, a good example of a kernel-based penaliza-
tion technique is brie�y presented: the popular Support Vector Machine (SVM)
(Vapnik, 1995). This technique is suitable for illustrating the main concepts
of kernelization and penalization. SVMs are not an instance-based technique
however, unlike SNN, NCH and SH. It should be stressed beforehand that the
proposed three novel methods are not extensions of SVMs, but rather success-
fully competing methods. If pushed to the limit, I would rather classify these
three methods as conceptual extensions of the famous classi�cation technique
1 -Nearest Neighbor.
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A second theme of interest in this thesis, which chronologically comes �rst,
concerns new applications of established penalization techniques. Signi�cant
�ndings on synergies between �elds such as Econometrics, Machine Learning,
Finance and Marketing have been reported. More precisely, this thesis con-
tributes to an array of successful applications of kernel-based penalization tools
in three main ways. In Finance, to begin with, the Support Vector Regres-
sion (SVR) technique has been found capable of providing a reliable so-called
Value-versus-Growth rotation strategy used commonly in �nancial time-series
forecasting. In marketing, secondly, SVMs have also been found to provide supe-
rior accuracy. At the same time, a way to provide a better interpretability of the
nonlinear e�ects of (kernelized) SVMs has been put forward. Third, a prominent
example of a synergy between the �elds of Econometric, Machine Learning and
Marketing is the application of SVRs to the so-called Market Share Attraction
Model. SVRs have been found to improve the predictive ability of the Market
Share Attraction Model quite substantially.

Finally, the third theme of this thesis concentrates on a new majorization
algorithm, which has been developed to solve the optimization problem of the
classi�cation technique Support Vector Machines in a relatively fast way.

Main Contributions of the Thesis

As this thesis originates within the �eld of Econometrics, one of its overall main
contributions might be an increased awareness for methods that are typical for
Machine Learning. The thesis concentrates on combining research advances
coming from these �elds, and especially on the so-called instance-based, ker-
nel and penalization methods. Clearly, there is an overlap between the two
disciplines in this respect, as pointed out already. It is the combination of
research advances put forward in these three general methods that gives rise
to the key contributions of the thesis within the area of supervised learning.
Concretely, these are the classi�cation methods Soft Nearest Neighbor, Near-
est Convex Hull classi�er, and Support Hyperplanes. From an instance-based
point of view, these methods cover almost the whole spectrum from highly lo-
cal, �exible models to more conservative, smooth models. The SNN is most
local, as it considers distances to points. Next in line is NCH, where the local
region is the so-called convex hull of points, and �nally, the SH considers an
even bigger local region, which is formed by so-called Version Space of (chosen)
models. An essential further contribution is that it is not only the size of the
local regions that matters, but also the so-called soft distance to each of these re-
gions. Each of the proposed classi�ers utilizes this soft-distance approach. The
SNN method, for example, extends in a soft, continuous way from one nearest
neighbor to two and more neighbors, achieving in this way a smooth transition
from a small local region to a bigger local region without changing the distance
metric or assigning unequal weights to the observations within a certain local
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region. The NCH technique, on its part, computes soft distances to the convex
hulls of observations that belong to di�erent classes. And �nally, SH compute
the soft distances to the sets of points that are classi�ed correctly by all models
from a certain function class. This soft-distance approach is motivated from
a bias-variance, or penalization, point of view (mentioned in the tree example
in the beginning of the introduction), similarly to the soft margin that arises
in the context of Support Vector Machines. This particular application of the
penalization concept in the instance-based classi�cation case is novel, and it has
by no means been exhaustively presented in this thesis. It has long been known
however that increasing the size of the so-called local region leads to smoother
and less �exible models. The novelty here is not only the introduction of soft
distances, but also their usage together with the so-called kernels, which has
proved to enhance the performance of the instance-based models substantially.
The kernels themselves have been borrowed from the literature on kernel meth-
ods, which does not so vigorously interact with the literature on instance-based
methods. However, the combination of kernel and instance-based features is
not complete without introducing penalization into the picture in the form of
computing soft distances that change (implicitly) the size of the local region on
which the classi�cation of a test point is based.

Regarding the application part of the thesis, which is actually chronologi-
cally presented �rst, its main purpose and contribution is to acquaint the reader
with existing established kernel-based penalization techniques, which are not
instance-based however. In this part, either o�-the-shelve econometric meth-
ods are reported to be improved using kernel-based penalization techniques,
or existing Financial and/or Marketing tasks have been tackled in a superior
way. Finally, the contribution of the proposed majorization algorithm lies in
its relatively easier interpretability and in many cases in providing quite fast
optimization solutions.

The rest of the introduction is organized as follows. First, special attention
is paid to the three most relevant aspects of learning in this thesis: the instance-
based, the penalization and the kernel aspects, and especially to the interactions
between them. As these methods are not discussed in detail in the body of the
thesis, the introduction has been used to serve as a selective basic presentation
of these methods. Instance-based learning methods are discussed as much as
needed for understanding the main concepts, advantages and disadvantages.
Most of the attention is focused however on penalization. It is such a basic and
powerful idea that it arises actually directly from the so-called loss function1
that we have in mind and the fact that we have a �nite data set available for
research. A whole section is dedicated to an extensive but still rather simple
example that illustrates the main motivation and e�ect of penalization, and
introduces more formally key concepts such as bias and variance. The role of

1The loss function, loosely speaking, tells us how much we �lose� if our prediction is o�-
target by a certain amount.
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kernels is discussed two times: once as a way to enhance instance-based learners,
and another time more formally as a way to provide implicit decision-surfaces
in a so-called higher-dimensional space. Next to the exposition of the three
key relevant aspects of the thesis, the classi�cation technique of Support Vector
Machines is commented on brie�y, with a view to providing a concrete example
of the advantages that a (classi�cation) penalization method provides. They
are discussed from a rather non-mainstream angle though.

I would like to note that the material in the introduction is presented in
a way that is as distant as possible from pre-set frameworks, such a typically
Statistical or a Machine Learning framework. Arguably, this makes the intro-
duction relatively hard to read, but in this way it may also be accessible to a
larger audience.

1.1 Instance-Based Learning
First of all, it should be mentioned that an �instance� in the Machine Learning
literature corresponds to an �observation� in the Econometrics and Statistics
literature � it is just an observed input-output pair. Sometimes the output is
not known in advance, in which case we speak about a test instance, or a test
observation . Instance-based learning is the process of deriving a prediction rule
for each single test observation separately, instead of deriving a single explicit
prediction rule that could be applied to all test observations without any further
computations. That is, any instance-based (learning) technique builds a new
model each time a predicted value of a (single) test observation is needed.

Instance-based methods do not output the entire (predicted) decision sur-
face, but just a small part of it. Actually, this part is the smallest possible:
just the single point in space, where we have supplied the test observation. The
simplest example of an instance-based model in the regression context is the
1-Nearest Neighbor (1NN) regression. The model here is the following rule:
assign a test observation as having the output value of the nearest observation
from the training data set. It is clear that this rule is formulated in such a way
that it is necessary to recompute the rule each time we would like to predict
the value of a test observation. Notice that 1NN can immediately be applied to
classi�cation tasks as well, where it is actually more popular. The 1NN rule in
this case is: classify a test observation as having the class of its nearest neighbor,
say in Euclidean distance sense. It is common for the instance-based methods
to produce a rule for a test instance based on some area in the space around it.
In this sense instance-based methods are also referred to as local methods. The
fact that these methods do not output the predicted values for more than one
test observation at a time has brought them the nickname �lazy� learners.

Another prominent instance-based learner is the generalized version of the
1NN method, called k-Nearest Neighbor (kNN). Here a training set is stored and
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each time the classi�cation or regression value of a test observation is needed, the
method looks for the k nearest observations according to some distance metric,
so that the test observation receives the average value of these, nearest observa-
tions from the training data set. Other examples of instance-based learners are
distance-weighted kNN, locally weighted regression, and more recently, Support
Hyperplanes (SH), Nearest Convex Hull classi�cation (NCH), and Soft Nearest
Neighbor (SNN). The last three methods are the subject of Chapters 5, 6, and
7.

The di�erence between instance-based and (default) non-instance-based mod-
els could actually be blurred. Consider, for instance, local linear regression. This
method is an instance-based method, as the output value of a test instance is
determined only after a �local� region about this instance in considered. The
instance-based nature here is hidden in the fact that the exact position of the
�local� region is dependent on the (position of the) test instance. For the sake
of the argument, we can imagine a local region that is so big that it actually
covers all observations in the available data set. Thus, the local regression has
turned into a non-local (default) one; it is non-instance-based, as the locality is
no longer dependent on a particular test instance.

A big advantage of local learners is their relatively bigger adaptability to
the observations from the training data set. Therefore, they are able to easily
capture complex relations in the data between the inputs and the outputs. This
advantage however could also be considered as a big disadvantage in case such
complex relations are not inherent in the input-output generating process, since
what could be captured/modeled is mostly the noise in the data. We face the
usual bias-variance trade-o� (discussed more deeply in Section 1.2): whether
to allow a model to be more �exible, more unbiased or to arti�cially reduce its
capability of detecting more complex relations, thereby reducing the variance of
the estimated (test) output values over repeated samples from the population
of input-output pairs. The so-called bias and variance are controlled by means
of penalization, or regularization. A way to explicitly control for such a bias-
variance trade-o� is implemented in the SH, NCH and SNN methods. Such
a control is especially useful when the training data set at hand is not large
and/or contains many input variables.

Nonlinear Instance-Based Learning via Kernels
Being local learners, the instance-based methods mentioned so far usually pro-
duce implicit nonlinear overall decision rules already in the (original) training-
data space. Nevertheless, one can map the data into a higher-dimensional space
and carry out all the necessary calculations for a given method in this space. In
this way, even more �exible nonlinear (implicit) decision surfaces may appear
in the original data space. This mapping is usually called basis expansion, and
could be carried out either explicitly, by creating new input variables out of the
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existing input variables or, sometimes, implicitly by using so-called kernels. The
kernels make it possible to make necessary calculations in the higher-dimensional
space using only knowledge of the data that is the original, non-expanded space.
In case the input-output relations in the data are not very complex, the act of
mapping may look like a not-so-reasonable idea. This is of course true if there
is no penalization, or regularization, mechanism that smooths out the overall
(implicit) decision surface in the higher-dimensional space, which corresponds
to a smoother surface in the original space as well. The only remaining question
is: why should we not regularize, or penalize, our method already in the origi-
nal space so as to produce a smoother overall (implicit) decision surface? This
is a more philosophical question and calls for experiments with real data. All
our experiments point to the fact that mapping into a higher-dimensional space
invariably improves the model performance, provided that a proper regulariza-
tion parameter is being set (usually via a so-called cross-validation procedure).
From an empirical point of view, the question is not whether we should map or
not, but rather, what is a good mapping. A similar question has arisen in the
early days of Support Vector Machines. It turned out that one of the best map-
pings is the mapping into an in�nite-dimensional space via the so-called Radial
Basis Function kernel, introduced in Section 1.3. This mapping allows for any
possible �exible decision surface in the original space, with the concomitant fear
that much of the noise in the data would be modeled, and not the true relations.
However, it turned out that the regularization parameter saves it all: regulariza-
tion is so powerful that it is responsible for highly non-�exible decision surfaces
in the higher-dimensional space, which correspond also to highly non-�exible
decision surfaces in the training-data space too. The bene�cial e�ect of map-
ping lies, it seems, in the model's capability to examine the data from di�erent
angles and to capture relations that would normally be hidden in the original
space. The combination of this plethora of new mapping possibilities � carried
out implicitly via so-called kernel functions � and a proper level of regulariza-
tion are ultimately responsible for the superior performance of the SH, NCH,
and SNN methods when the data is mapped into a higher-dimensional space.
Interestingly, the mapping into an in�nite-dimensional space that is provided
implicitly by the RBF kernel yields the best result for the SH, NCH, and SNN
methods, just like the SVM case, though the philosophy and the motivation
behind the instance-based group of methods is di�erent.

Advantages of the Proposed Instance-Based Techniques
The Support Hyperplanes, Nearest Convex Hull and Soft Nearest Neighbor
methods proposed in this thesis contribute to the debate on how to search
for a good penalization technique, and to the literature on kernel methods,
as well as support-vector, large-margin, and distance-based learning. All of
these techniques should be viewed from a penalization point of view, that is as
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penalization methods that try to �nd a balance between training error and model
complexity. The underlying reasons behind the bene�cial e�ect of penalization
are discussed in Sections 1.2 and 1.2.1.

Some of the advantages and disadvantages of the proposed three new tech-
niques, SH, NCH and SNN, have already been pointed out. Being instance-based
techniques, these three methods bear two main features that are common to all
methods of this type. First and foremost is the feature that concerns the open
debate on how �exible a model should be. As instance-based learners are local
methods, they are inherently more �exible and more adaptable as compared
to some methods that learn the whole decision surface at once, such as linear
regression or SVMs. On the other hand, local learners are better equipped to
handle cases where the true relations are rather complex. An advantage of SH,
NCH and SNN is that they enjoy the �exibility of being local learners, but also
are able to provide smoother relations if necessary, via in-built penalization ca-
pability. Empirical tests are in favor of some of these three methods as opposed
to SVMs for example, on a variety of data sets. A more extensive view on the
relative merits of these three methods vis-a-vis SVMs, as well as among them-
selves is given in Chapter 5. It is argued that when compared to SVMs, for
example, the proposed methods could strike a better balance between bias and
variance.

The biggest disadvantage of all instance-based methods from computational
point of view is that they are quite slow at test time. This comes quite naturally,
as a new model has to be built each time an output value for a test observation
is needed. In the case of SH and NCH, quadratic optimization problems have
to be solved, which makes them intrinsically slow methods. Their performance
on a variety of classi�cation tasks is however quite worthy of boasting, which
suggests that they could be used in tasks where achieving higher accuracy takes
precedence over speed.

1.2 To Penalize or . . . to Penalize
Incredible as it may seem at �rst sight, in my view this is one of the most
fundamental sections of the whole thesis. Here, the bene�cial e�ect of the no-
tion of penalization in a broad sense is demonstrated in a straightforward and
easy-to-grasp way using a tossing-a-coin experiment. In essence, penalization
is de�ned as the act of reducing the values of the estimates (or, predictions) of
a given model. In regression estimation, this would-be-penalized model usually
provides unbiased estimates for the so-called conditional mean. Similarly, in
classi�cation this model usually provides unbiased estimates for the most prob-
able class, conditional on a given combination of values for the inputs. Why
should we penalize such a model at all? We should penalize it, because the
prediction performance of the resulting penalized model on future observations
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always improves, at least in theory.
In what follows, some of the terminology is simpli�ed for ease of exposition

of the tossing-a-coin experiment. For example, it is assumed that our a pri-
ori chosen so-called loss function is the squared-error loss function. That is,
the tossing-a-coin experiment is intrinsically a regression estimation task. The
squared-error loss function is most appropriate to choose in a regression con-
text, where the output variable takes real values. Nevertheless, in our example
these values are just two. Regression estimation is actually the setup in which
it is easiest to illustrate the bene�ts of penalization. In classi�cation tasks, it
is more appropriate to use the so-called 0− 1 loss function, for which the bias-
variance interplay is more subtle and therefore it is not addressed here, even
though classi�cation penalization methods form the spine of the thesis. There
exist several types of penalization, such as penalization towards zero, penaliza-
tion towards the average, and a combination between these two. In this section,
only penalization towards zero is discussed extensively.

What's in a Toss of a Coin?
Plenty, if a statistician is tossing the coin. What follows is a simple experimen-
tal setup with two known outcomes, the values 1 and 2, which enables us to
see through the eyes of a statistician and understand the bene�cial e�ects of
penalization. First, we introduce the task, which is to estimate the expected
value to be tossed, out of two equally likely outcomes. Then, we mention why
we are actually interested in �nding the expected value to begin with. It turns
out that the answer lies in the so-called loss that we have in mind before we
start the experiment, which is in this case the squared-error loss. Interestingly,
we will never mention the terms loss or loss function throughout the actual ex-
position of the tossing-a-coin example, as they are not indispensable terms. We
will however talk about a squared discrepancy, or error, between a certain real
value2 z and (future) possible outcome values, here 1 and 2. In essence, an error
is the quantitative realization of the (underlying) loss function, when the latter
is applied to a concrete estimate and a concrete (future) outcome. Third, having
the squared error a priori in mind gives rise to a performance measure for any
model that estimates the optimal z, where the optimal z is the expected value
among all possible output values. This performance measure is the so-called
expected mean squared error (EMSE). It is the EMSE that we ultimately want
to minimize. The MSE is the mean of the squared errors that a prediction (for
the optimal z) of our model will produce when compared to all future output
values. If we re-estimate the optimal z by our model in�nitely many times, and
thus have in�nitely many predictions, we will be able to calculate the expected

2It turns out that the optimal z value is actually equal to the expected value to be tossed,
which in our case is equal to 1.5, as the probability to toss each of 1 and 2 is assumed to be
equal to 0.5.
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MSE, that is EMSE, as the average MSE. Each time we re-estimate the optimal
z we should use a certain �xed amount of randomly-selected data.

The role of penalization here is to reduce the EMSE of a so-called unbiased
model. We consider only penalization towards zero, as it makes most sense in
the simple task at hand. The overall e�ect of penalization can be split into two
e�ects on two additive parts if � as in our case � we measure the discrepancy
between our estimated value for the expected value of the possible outcomes and
any (future) possible outcome with the squared error between the two. The two
additive parts a�ected by penalization are usually called �bias� and �variance�,
and it will become apparent how and why these names arise.

It should be crystal clear that the bene�cial e�ect of penalization is not
somehow introduced via a change of the loss function, which is here a change
of the squared-error discrepancy measure. It is not true that when we choose
to penalize the estimates of an unbiased model we are somehow changing our
squared-error discrepancy (performance) measure implied by the (unchanged)
squared-error loss function. On the contrary, penalization is a way to improve
an unbiased model's performance in the direction implied by this very squared-
error discrepancy measure, that is a decrease of EMSE.

Now we turn to a simple experiment that demonstrates the bene�cial e�ect
of penalization. Suppose we have the following experimental setup. We are
given a coin with number 1 written on one of its sides, and number 2 written on
the other side. These two possible outcomes are known in advance and occur
with equal probability. That is, Pr(outcome = 1) = Pr(outcome = 2) = 0.5.
Suppose we would like to �nd such a real value z, the optimal z, that minimizes
the mean squared error (MSE), de�ned here as

MSE(z) ≡ (1− z)2Pr(outcome = 1) + (2− z)2Pr(outcome = 2)

= (1− z)2 × 1
2

+ (2− z)2 × 1
2
.

It is not hard to verify that the MSE is minimized when z equals µ, where

µ = expected value to be tossed

= 1× Pr(outcome = 1) + 2Pr(outcome = 2) =
1 + 2

2
= 1.5. (1.1)

The corresponding minimal value for the MSE is

MSE(µ) = MSE(1.5)
= (1− 1.5)2Pr(outcome = 1) + (2− 1.5)2Pr(outcome = 2)

=
(1− 1.5)2

2
+

(2− 1.5)2

2
= 0.25.

Our desire to minimize the MSE stems actually from the fact that we have
implicitly decided to measure the discrepancy between (the single value) z and
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Table 1.1: Calculation of the expected mean squared error (EMSE) of the unbiased model �esti-
mated value for µ, µ̂, equals the number that appears after a single toss� in the top panel and the
best possible, perfect-foresight model �estimated value for µ equals 1.5, whatever number has been
tossed� in the bottom panel.

outcome estimate of µ (future)
after based on possible squared probability MSE per
a toss this outcome outcomes error to occur estimate of µ EMSE

1 1 1 0 0.5
2 1 0.5

0.5
2 2 1 1 0.5

2 0 0.5
0.5

0.5

outcome estimate of µ (future)
after based on possible squared probability MSE per
a toss this outcome outcomes error to occur estimate of µ EMSE

1 1.5 1 0.25 0.5
2 0.25 0.5

0.25
2 1.5 1 0.25 0.5

2 0.25 0.5
0.25

0.25

any (future) possible outcome with the squared di�erence between the two.
Here, possible outcomes are 1 and 2, which occur with equal probability, and
possible squared di�erences are (1− z)2 and (2− z)2. Note that µ is a so-called
population parameter � it is the expected value of our outcome variable �number
tossed�. The z value need not a priori be equal to a population parameter value,
but in this case it is.

Suppose that we would like to �nd µ, but are only allowed to estimate it
on the basis of just one toss of the coin, and not using the set of all possible
outcomes as we did in (1.1). Our model for estimating µ could be:

default model for µ:
�the estimated value of µ, µ̂, equals the number tossed�. (1.2)

It is important to remember that the set of possible outcomes, in this experiment
{1, 2}, is known in advance. Therefore, it is possible to compute the MSE if
number 1 has been tossed:
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Figure 1.1: Calculation of the expected mean squared error (EMSE) of the following
model for estimating the expected value µ to be tossed: �estimated value for µ, µ̂new,
equals the number that appears after a single toss, called an outcome, multiplied
by α�. Possible outcomes are 1 and 2, which occur with equal probability. Thus, the
expected value to be tossed, µ, equals 1.5. An error is de�ned as the di�erence between
a (future) possible outcome and a concrete value for µ̂new, such as 1× α or 2α.
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Table 1.2: Calculation of the expected mean squared error (EMSE) of the following model for
estimating the expected value µ to be tossed: �estimated value for µ, µ̂new, equals the number that
appears after a single toss, called an outcome, multiplied by α�. Here, α = 0.9. Possible outcomes
are 1 and 2, which occur with equal probability. Thus, the expected value to be tossed, µ, equals
1.5. An error is de�ned as the di�erence between a (future) possible outcome and a concrete value
for µ̂new, such as 1 × α or 2α. The mean squared error (MSE) per concrete estimate is de�ned as
the expected value of the squared error, which is equal to the average of two errors in our case. The
EMSE is de�ned as the expected value of the MSE per estimate, and is equal to the average of two
values for the MSE in our case.

outcome estimate of µ (future)
after based on possible squared probability MSE per
a toss this outcome outcomes error to occur estimate of µ EMSE

1 0.9 1 0.01 0.5
2 1.21 0.5

0.61
2 1.8 1 0.64 0.5

2 0.04 0.5
0.34

0.475

MSE(µ̂ = 1) = (1− µ̂)2Pr(outcome = 1) + (2− µ̂)2Pr(outcome = 2)
= (1− 1)2Pr(outcome = 1) + (2− 1)2Pr(outcome = 2)

=
(1− 1)2

2
+

(2− 1)2

2
= 0.5.

If, on the other hand, number 2 has been tossed, then the MSE is

MSE(µ̂ = 2) = (1− µ̂)2Pr(outcome = 1) + (2− µ̂)2Pr(outcome = 2)
= (1− 2)2Pr(outcome = 1) + (2− 2)2Pr(outcome = 2)

=
(1− 2)2

2
+

(2− 2)2

2
= 0.5.

Since numbers 1 and 2 appear with equal probability, it is equally probable that
µ̂ takes each of these values. However, it is not known in advance which number
would be tossed. Therefore, we can compute the expected MSE (EMSE) of our
estimation procedure for µ as

EMSE(µ̂) = MSE(1)Pr(µ̂ = 1) + MSE(2)Pr(µ̂ = 2)
= 0.5Pr(µ̂ = 1) + 0.5Pr(µ̂ = 2)
= 0.5Pr(outcome = 1) + 0.5Pr(outcome = 2) = 0.5. (1.3)

This derivation is also shown in Table 1.1. Thus, the EMSE of our model
is 0.5. Note that the EMSE model-performance measure is implied by the



25

1.2 To Penalize or . . . to Penalize 15

squared-di�erence discrepancy measure between a single predicted number, like
z and µ̂, and any (future) possible outcome. The minimal possible EMSE is
achieved when µ̂ and µ coincide, whatever number has been tossed, and is non-
coincidentally equal to the minimal value of the MSE, 0.25:

minimal EMSE(µ̂) = MSE(1.5)Pr(µ̂ = 1) + MSE(1.5)Pr(µ̂ = 2)
= MSE(1.5) [Pr(µ̂ = 1) + Pr(µ̂ = 2)] = MSE(1.5)
= MSE(µ) = 0.25. (1.4)

This derivation is also shown in Table 1.1. Thus, it holds that minimal
EMSE(µ̂) = EMSE(µ) = MSE(µ). Can we improve the EMSE of our model,
computed in (1.3), towards the minimal EMSE, computed in (1.4)? Can we
come up with a new model that improves the EMSE of our old model, where
our new model is also based on one toss only? Say, our new model is

our new model for µ:
“the estimated value for µ, µ̂new, equals α times the number tossed�,

where the optimal α is 0.9, as will become clear in a moment. In other words,
the estimates of the new model are equal to the estimates of the default model
times α, implying: µ̂new = αµ̂. We can compute the EMSE of the new model
(using the value of 0.9 for α):

EMSE (µ̂new) = MSE (1× α)Pr(µ̂new = 1× α) + MSE (2α)Pr(µ̂new = 2α)
= MSE (1× α)Pr(outcome = 1) + MSE (2α)Pr(outcome = 2)

=
[
(1− α)2

2
+

(2− α)2

2

]
1
2

+
[
(1− 2α)2

2
+

(2− 2α)2

2

]
1
2

=
0.61
2

+
0.34
2

= 0.475. (1.5)

The derivation of the EMSE (µ̂new) is also illustrated in Figure 1.1 and Table 1.2.
Note that the EMSE of the default model can be derived from the �gure and the
table when α is set to 1. The EMSE of the hypothetical model that achieves
the minimal EMSE, that is the model �the estimate of µ equals µ whatever
number has appeared after the toss�, can likewise be traced. Note also that the
column �(future) possible outcomes� of Table 1.2 contains two values. These
values are all possible values that could occur, and each of these values occurs
with equal probability. Alternatively, if we do not know how many � but still, a
�nite number of � values could occur and what is the probability of each one to
occur, we have to consider not two, but in�nitely many outcomes, where each
outcome is a result of a random toss (that is, the outcomes should not in�uence
each others' probability of occurrence). From these in�nitely many outcomes
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Figure 1.2: The expected mean squared error (EMSE) of the model �the estimated
value for µ, µ̂new, equals α times the number tossed� for di�erent values of α, as
computed by (1.5) for non-�xed λ. The minimal value for EMSE is achieved for
α = 0.9. For α = 1 the estimator for µ, µ̂new, is unbiased. Notice the interplay
between the two major components of EMSE(µ̂new): the squared bias [E (µ̂new)− µ]2

(the downward sloping dashed curve) and the variance Var (µ̂new) (the upward sloping
dash-dotted curve). As long as α ∈ (0.8, 1) the EMSE is lower than the EMSE of the
unbiased estimator. See (1.8) for the exact e�ect of the squared bias and the variance
on EMSE in the squared-error discrepancy case.

we can then �compute� the probability of occurrence of each possible outcome
and proceed as we have done so far.

So, the EMSE of our new model, 0.475, is better than the EMSE of the old
model, 0.5, and we still base our estimate for µ on one toss only. The optimal
value of α is determined from (1.5), which (more generally) is minimized for

α∗ =
µ2

µ2 + Var(µ̂)
=

1.52

1.52 + 0.25
= 0.9, (1.6)

where µ is the expected value to be tossed, computed in (1.1), and Var(µ̂) is the
variance of µ̂, where µ̂ takes values as postulated by the default model (1.2).
As the values that µ̂ could take are 1 and 2, which occur equally likely, Var(µ̂)
is computed as:
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Var(µ̂) = E(µ̂− E(µ̂))2 = E(µ̂− [1Pr(µ̂ = 1) + 2Pr(µ̂ = 2)])2 = E(µ̂− 1.5)2

= (1− 1.5)2Pr(µ̂ = 1) + (2− 1.5)2Pr(µ̂ = 2) =
(1− 1.5)2

2
+

(2− 1.5)2

2
= 0.25. (1.7)

where the E operator denotes expected value. There are several important
points to be stressed here:

• Our default estimator for µ, µ̂, is �unbiased�, that is, the expected value of
µ̂ is equal to µ. In our case this holds as E(µ̂) = 1×Pr(µ̂ = 1) + 2Pr(µ̂ =
2) = 1× Pr(outcome = 1) + 2Pr(outcome = 2) = µ = 1.5.

• The optimal α, with which to multiply the possible estimates {1, 2} of the
unbiased estimator µ̂, can be computed only if the expected value µ is
known. This is unrealistic, as µ is actually the value we are looking for.
Having pointed that out, consider the next note:

• The optimal α is always between 0 and 1, that is, α∗ ∈ [0, 1]. The optimal
α would be 1 in the trivial case where Var(µ̂) = 0.

• The optimal α is equal to 0 when µ = 0, whatever the variance of an
unbiased estimator for µ, such as Var(µ̂) here, see (1.6). In this case, the
penalized model estimates µ correctly as being equal to 0, whatever the
training data.

Regarding the third item, the Var(µ̂) = 0 condition can never be ful�lled in
practice, as we base our model for µ on imperfect knowledge about the problem
setting or, so to say, on a �nite data set (of one number that has appeared after
the toss). This �nite data set can contain in general di�erent values; in our case,
there are two possible data sets containing one tossed number each. The main
conclusion here is that even though the optimal α cannot be computed exactly,
it is never in practice optimal to rely on the unbiased model, which corresponds
to α = 1, as long as the unbiased model's estimates of µ̂ vary over di�erent
(selected at random) training data sets. Therefore, it would be in most, if not
all, of the practical cases bene�cial to set α below 1. In the case at hand, it can
be shown that if a model uses α in the range (0.8, 1), then the EMSE of this
model would be smaller than the EMSE of the unbiased model, computed in
(1.3). This is illustrated in Figure 1.2.

It might appear at �rst sight that we have improved the EMSE of the unbi-
ased model somehow arti�cially, that is, without using any additional informa-
tion other than the tossed number. In fact, if we only know the tossed number,
then indeed we cannot improve the EMSE. However, we do have additional
knowledge, which is that the output variable has some variance by de�nition
of the problem. That is, the output variable is a random variable and as such
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could take di�erent values. The unbiased model never uses this extra informa-
tion. The penalized model, on the other hand, does. The higher the variance
of the output variable and the smaller the amount of data from which to build
a model � which results in a higher variance for the unbiased estimator of µ,
such as Var(µ̂) � the stronger the case for penalization. Thus, the penalized
model amends an information de�ciency inherent in the unbiased model. As
the variance of an unbiased estimator, such as Var(µ̂), is not known a priori, it
is not possible to provide a priori the most optimal penalization level. What is
known for sure however is that as Var(µ̂) > 0 in practice, a penalization level
of zero, here in the form α = 1, is intrinsically suboptimal.

As a concluding remark, it should be mentioned that the act of multiplying
the estimates µ̂ of an unbiased model with α ∈ [0, 1], where each estimate is
computed from a �nite data set, is called penalization towards zero.

It is handy at this stage to clarify explicitly the di�erences between three
terms that have appeared so far: a model, an estimator, and an estimate:

• a model is a relation, for example: �µ̂ = number tossed�;

• an estimator is a random variable, for example: µ̂;

• an estimate is a concrete value that an estimator may take, for example:
µ̂ = 1.

The estimator is a random variable as it can take di�erent values, called es-
timates, depending on the outcome after a toss. Note that a model is not a
random variable as it is a qualitative statement in nature, a description of how
reality works. Thus, strictly speaking it is incorrect to say that �a model is
unbiased�. Instead, one should say �the estimator µ̂ (provided by a model) is
unbiased�, since unbiasness is a property of random variables only. Sometimes
we use the term �a model is unbiased�, but only as a shorthand notation for �the
estimator µ̂ is unbiased�. In the same line of thought, the estimates by them-
selves cannot be unbiased, as they are just concrete values, and not random
variables. Finally, we should mention that the random variable µ̂ is referred to
as an estimator, as this random variable tries to capture a population parameter,
here µ.

The Bias-Variance Trade-O�
The act of penalization towards zero of the (default) unbiased model creates a
bias of the new model. This bias (in absolute terms) is equal to

|E(µ̂new)− µ| = |E(α∗µ̂)− µ| = |α∗E(µ̂)− µ| = |α∗µ− µ| = |1.35− 1.5| = 0.15,

where α∗ = 0.9 (see 1.6). Of course, when α = 1 we recover the default model,
for which the bias is equal to 0. Just for the sake of the argument for the
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moment, we can also compute the variance of the new model as

Var(µ̂new) = Var(α∗µ̂) = (α∗)2 Var(µ̂) = 0.92 × 0.25 = 0.2025,

where Var(µ̂) has been computed in (1.7). In sum, the act of penalization
(towards zero) of an unbiased estimator for µ has two emblematic e�ects:

• it creates a bias of the new, penalized estimator for µ, that is,
|E(µ̂new)− µ| > |E(µ̂)− µ| = 0. Simultaneously with this however,

• it reduces the variance of the new estimator vis-a-vis the unbiased estima-
tor, that is, Var(µ̂new) < Var(µ̂).

Therefore, we can say that penalization brings with itself two antagonistic ef-
fects, as illustrated in Figure 1.2. One is the negative e�ect of creating a biased
estimator. The absolute value of the bias in our case has been computed as 0.15.
In words, it means that if we re-estimate µ by µ̂new using all possible tosses (here,
1 and 2), then on average we will be o�-target, or o�-µ, by 0.15. Let us verify
this. If the number tossed is 1, then we are o�-target by |1 − 0.9 × 1| = 0.1.
And, if the number tossed is 2, then we are o�-target by |2− 0.9× 2| = 0.2. As
the probability to toss either 1 or 2 is equal to 0.5, on average we are indeed
o�-target by (0.1 + 0.2)/2 = 0.15. The second e�ect of penalization is a desir-
able one: the variance of the penalized (biased) estimator, Var(µ̂new), is lower
than the variance of the unbiased estimator, Var(µ̂). In words, it means that
if we re-estimate µ by µ̂new using all possible tosses (here, 1 and 2), then the
corresponding estimates from this model will be closer to each other than the
estimates of the unbiased model. Let us verify this. If the number tossed is 1,
then the estimate for µ is α∗. And, if the number tossed is 2, then the estimate
for µ is 2α∗. In our case α∗ = 0.9, therefore the possible estimates are 0.9 and
1.8. As the probability to toss either 1 or 2 is equal to 0.5, the variance of the set
of values {0.9, 1.8} is, as already shown, 0.2025. The corresponding estimates
for µ of the unbiased model form the set of values {1, 2}. The variance of these
values is 0.25. It is no wonder that this variance is bigger, as 1 and 2 are further
away from each other than 0.9 and 1.8 are. Thus, the biased estimator brings
us the comfort that even if we had other data at our disposal (here, another
realized number after a toss), our conclusions, or estimates, about µ will not be
too far apart from each other.

This interplay between bias and variance is referred to as the bias-variance
trade-o�. Clearly, the biased model µ̂new outperforms the unbiased one, µ̂, in
terms of EMSE by EMSE(µ̂)− EMSE(µ̂new) = 0.5− 0.475 = 0.025. This means
that the negative e�ect of increased biased is more than compensated by the
positive e�ect of reduced variance. The exact role that bias and variance play
for the EMSE can be best illustrated from the following famous decomposition
of EMSE:

EMSE (µ̂new) = Var(Y ) + [E (µ̂new)− µ]2 + Var (µ̂new) . (1.8)



30

20 Introduction

For convenience, a new variable Y has been introduced, which is the random
variable �number that appears after a toss�, or �number tossed� for short. Thus,
Y is just the output variable of interest in our setting. It can take only two
values, 1 and 2, which appear with equal probability. The variance of Y is
therefore

E(Y −E(Y ))2 = E(Y −1.5)2 = (1−1.5)2Pr(Y = 1)+(2−1.5)2Pr(Y = 2) = 0.25,

which is the same as the variance of our default model, as it can take the
same values with the same (equal) probabilities. Notice that Var(Y ) cannot be
in�uenced by any model: it just exists even before we start thinking about a
model. Thus, Var(Y ) is the so-called irreducible part of EMSE of any model,
or the irreducible error for short. The other two terms fall under our in�uence,
however. The second term is the squared bias [E (µ̂new)− µ]2 between µ and
our estimator of it, µ̂new, which we denote as bias2(µ, µ̂new). The last term is the
variance of our estimator for µ, Var (µ̂new), which was already discussed. In sum,
the EMSE of the estimator µ̂new for µ from the model µ̂new = �number tossed
times α� can be decomposed in general into three parts:

• irreducible error, here: Var(Y ). This is the variance of the random variable
whose expected value we are trying to estimate;

• squared bias between µ and our estimator for µ, here: [E (µ̂new)− µ]2;

• variance of our estimator for µ, here: Var (µ̂new).
The e�ects of penalization-towards-zero of an unbiased estimator for µ appear
clearer now. First, there is no e�ect whatsoever on the irreducible error. Second,
the bias increases (from zero), meaning that the squared-bias term increases.
This worsens the EMSE with respect to that of the unbiased estimator. How-
ever, the variance of the penalized estimator (here, Var (µ̂new)) decreases vis-
a-vis the variance of the unbiased estimator (here, Var (µ̂)). This, in its turn,
improves the EMSE with respect to that of the unbiased estimator. The com-
bined e�ect of penalization is a decrease in EMSE with respect to that of the
unbiased estimator. In order to �nd the optimal level of penalization, the true
value of µ has to be known, which is unrealistic, as this is the scalar value we
are actually looking for to begin with. However, it is not necessary to know the
optimal level of penalization in order to enjoy the e�ect of a decrease in EMSE.
This happens since even a slight departure from the unbiased model, that is,
even a slight decrease of the estimates of the unbiased estimator for µ from µ̂ to
αµ̂ where α is slightly below 1, is already bound to improve the EMSE of the
unbiased model, as can be clearly seen in Figure 1.2. The unlikely case from a
practical point of view when improvement of the EMSE of the unbiased model is
impossible � that is, when Var (µ̂) = 0 � has already been addressed in Section
1.2. In this case, the EMSE equals the irreducible error, Var (Y ), and the opti-
mal value of the regularization parameter α is 1. The variance of the unbiased
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estimator, Var (µ̂), would be zero, for example, when we re-estimate µ̂ from a
number of in�nite series of (random) tosses. As µ̂ would be computed as 1.5
each time, there would be no variance among the estimates. This occurs since
we (re-)estimate the population parameter of interest, here µ, from a series that
contains in�nitely many random realizations of the output variable Y . Notice
that in this case, the optimal regularization parameter α would be computed as
being equal to 1, implying that no regularization is needed.

1.2.1 SVMs for Classi�cation as a Penalization
Method

Up till now we have considered an example where the squared-error discrepancy
measure was used as our way to assess the discrepancy between a predicted
value and an output value. This measure is referred to in the literature as the
squared-error loss. It has turned out that the expected-error loss implies the
minimization of the Expected Mean Squared Error (EMSE) model-performance
criterion, which is minimized when our prediction is the mean, or the expected
value. In case the output variable is observed over many possible combinations
of values for the input variables, we say that the EMSE is minimized when our
prediction is the conditional mean, that is the mean at a particular combination
of values for the inputs. In this case we are ultimately interested in minimizing
the EMSE over all such possible combinations, or the minimization of the overall
or expected EMSE. The most prominent conclusion we have arrived at is that
a model that minimizes the error over the training set (in the example of the
previous section, of just one toss) that is an unbiased model, is not the best
prediction model that could be derived from our training set. A better model
would be one that penalizes, or shrinks, the prediction for each conditional
mean. Note that in the tossing-a-coin example there is just one conditional
mean. This penalized model achieves a lower EMSE even though it somehow
counter-intuitively does not minimize the empirical counterpart of EMSE, which
is the sum of (squared) errors over the training data set.

A similar phenomenon occurs also in classi�cation, where it is common to
use the so-called 0 − 1 loss function rather than the squared-error loss. In this
case, if an observation from a given class is misclassi�ed, the loss is 1, otherwise
it is 0. For the 0 − 1 loss function the expected loss cannot be decomposed
into additive bias and variance terms in the same way as for the squared-error
loss. Nevertheless, the bias and variance enter in a nonlinear fashion in the
expression for EMSE and play a similar role. That is, both bias and variance
should be reduced3 to achieve good predictive performance. Having the 0 − 1
loss in mind implies that we should maximize the expected accuracy in much the
same way as the squared-error loss implies that we should minimize the expected

3It can be shown however (see Friedman, 1996; Hastie, Tibshirani, & Friedman, 2001) that
it is not always optimal to trade-o� bias and variance when the 0-1 loss function is used.
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MSE (EMSE) criterion. We note that maximizing the expected accuracy can
equivalently be stated as minimizing the expected misclassi�cation rate, as the
accuracy is equal to one minus the misclassi�cation rate.

Below I consider a concrete binary classi�cation technique, called Support
Vector Machines (SVMs) (Vapnik, 1995), viewed from a rather non-mainstream
angle. This technique is a penalization technique as the estimates are penalized.
It is quite suitable for representing the bias-variance interplay in classi�cation
tasks and the need for penalization of the estimates in this setting. Actually,
the estimates are not penalized directly, as in the tossing-a-coin example, but
indirectly via shrinking of the model coe�cients. Without loss of generality, we
consider here linear SVMs only, and postpone the discussion of the nonlinear
SVMs for the next section.

Let us consider the binary classi�cation setup. Here, we have a data set
D = {(xi, yi)}N

i=1, where xi ∈ Rp and yi ∈ {−1,+1}. That is, we have a
data set of N observations for p inputs and corresponding class labels. The
fact that the two possible labels of the binary output variable y are set to the
values −1 and 1 and not to any other two di�erent values is not crucial. SVMs
are a classi�cation method that, given data D, builds a model for predicting
future binary outcomes y for future (or, test) values for the inputs x. The
minimization, or objective, function of SVMs for binary classi�cation consists
of two terms. One of the terms minimizes the sum of training errors. The second
term penalizes the model coe�cients towards zero, which is directly responsible
for shrinking the predicted (raw) y values from D. This penalization term has
a geometrical representation and is referred to as the margin.

At the outset, let us �rst focus on how the SVM model views the discrepancy
between an observed y value and a predicted (raw) y value. This discrepancy
is called a (training) error for short. A crucial feature of this error is that if
an observation from class 1 receives a predicted value more than or equal to 1,
then no error is associated with this predicted value. Similarly, if an observation
from class −1 receives a predicted value less than or equal to −1, then no error
is associated with this predicted value. Actually, the SVM error for class 1 is
de�ned as [1 − ŷi]+, where [Z]+ = max(0, Z), and the error for class −1 is
de�ned as [1 + ŷi]+, where ŷi is the predicted functional value for observation
yi. The predicted label for observation yi is equal to sign(ŷi). In short, the
SVM error is de�ned as [1 − yiŷi]+. For comparison, the squared error in this
case is [1 − yiŷi]2 = [yi − ŷi]2, which would be applicable in case we have a
squared-error loss in mind instead of a 0− 1 loss.

In linear SVMs it is assumed that the predicted raw output values are a
linear combination of the inputs for any i = 1, 2, . . . , N :

ŷi = β0 + β′xi,

where β is a p × 1 vector of coe�cients. The �nal predicted output values
are subsequently given as sign(ŷi). Nonlinear formulations will be discussed
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in the next section. In SVMs, a restriction on the overall magnitude of the
β coe�cients is imposed. Concretely, the sum β′β is not allowed to be large,
where the researcher can choose how much �large� is. The magnitude of the
sum β′β is controlled by means of a penalization parameter λ. The role of
λ is to shrink the β coe�cients towards zero, but not the β0 one. Shrinking
these coe�cients directly translates into shrinking the predicted output values
ŷi (towards β0). And reducing the predicted output values is ultimately what
regularization is all about.

The objective function that SVMs minimize takes the form (see, e.g., Hastie
et al., 2001, p. 380):

min
β0,β

N∑

i=1

[1− yiŷi]+ + λβ′β, (1.9)

subject to ŷi = β0 + β′xi.

The λ parameter is nonnegative and is set manually. Usually this SVM opti-
mization problem is reformulated equivalently as:

min
β0,β,ξ

C
N∑

i=1

ξi +
1
2
β′β, (1.10)

subject to ξi ≥ 0, yi(β0 + β′xi) ≥ 1− ξi, i = 1, 2, . . . N

where the introduced ξi's are called slack variables and C = 1/2λ. Note that∑N
i=1 ξi =

∑N
i=1[1− yiŷi]+.

Let us pause for a moment and comment on the formulation of the SVM
optimization problem. Three terms have appeared, each of which has a distinct
meaning and usage here: �error�, �loss (function)� and �objective function�. Con-
cretely,

• a (training) �error� is a real value. It is the quantitative way in which
a model measures the discrepancy between an observed value and a pre-
dicted value. Sometimes the error in this meaning is called a loss, but we
refrain from this usage here to avoid confusion. For SVMs the error is
[1− yiŷi]+ for observed yi and corresponding prediction ŷi.

• a �loss� is also a value. It is the quantitative way in which we, as re-
searchers, measure the discrepancy between an observed value and a pre-
dicted value. In the classi�cation case this is usually the 0− 1 loss, which
means that we measure the performance of a model in terms of its accu-
racy. This comes to stress that we do not access a model based on its
objective function value (which it minimizes). Using the current notation,
the loss that we associate with a yi and a prediction ŷi is [0−yisign(ŷi)]+,
which is a rather roundabout way to say that if sign(ŷi) = yi, then our loss
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for observation i is 0, and if sign(ŷi) 6= yi, then our loss for observation i
is 1.

• an �objective function� is the function, such as (1.9), that a model mini-
mizes so as to produce a rule, such as (1.9), that will make sure that test
observations yj , j = 1, 2, . . . , J , J →∞, are predicted with great accuracy,
where the accuracy rate is computed as limJ→∞(1/J)

∑J
j=1[yjsign(ŷj)]+.

That is, the minimization of the objective function aims at reducing
the overall loss over the whole data space, which in case of 0 − 1
loss is equal the overall misclassi�cation rate. The overall misclassi-
�cation rate is computed as one minus the accuracy rate, or 1 −
limJ→∞(1/J)

∑J
j=1[yjsign(ŷj)]+ = limJ→∞(1/J)

∑J
j=1[−yjsign(ŷj)]+ =

limJ→∞(1/J)
∑J

j=1[0 − yjsign(ŷj)]+. The last term may seem arti�cial,
but it is handy for comparison with the average training error in SVMs,
which is (1/N)

∑N
i=1[1− yiŷi]+ = (1/N)

∑N
i=1 ξi.

Notice that in order to achieve high accuracy on test data, the SVM model
does not minimize the misclassi�cation rate on the training data, which is
(1/N)

∑N
i=1[0 − yiŷi]+, but minimizes a di�erent term (actually, the sum of

two terms), called objective function. The reason for this can be traced back to
the tossing-a-coin example of Section 1.2. From this example it is clear that we
should not actually be interested in having a zero sum of errors on the training
set. Ultimately, we want to minimize the expected loss over future tosses. The
quadratic squared-error loss leads to the goal of achieving a minimal expected
MSE (EMSE), whereas having a 0 − 1 loss in mind leads to the maximization
of the expected accuracy criterion. That is, using the 0− 1 loss translates into a
desire to maximize the accuracy that a model achieves over future observations.
In the tossing-a-coin experiment, we were not keen on predicting the mean value
to be tossed as the value that appeared on one (single training) toss, in which
case the (training) error would of course be zero. Two forces were playing their
roles in moving us away from this zero-error solution: the so-called bias and
variance. The same forces play a similar role when the 0− 1 loss is used instead
of the squared-error loss. Roughly speaking, the bias in case of SVMs has to
do with the term

∑N
i=1 ξi, and the variance has to do with the term β′β. The

manually-adjustable C parameter sets the relative preference between the two
terms. Notice that the unbiased classi�cation model would be minimizing just
the training misclassi�cation rate (times N):

N∑

i=1

[0− yisign(ŷi)]+.

It turns out that there are many possible solutions in this case however, which
makes it rather impractical to work with. SVMs o�er the term

∑N
i=1 ξi =
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Figure 1.3: Linear solutions to a simple binary classi�cation example in 1D-
space. Panel (a) shows many solutions that produce zero sum of training errors.
Panel (b) shows the SVM solution in case of zero sum of training errors, along
with the SVM margin. Panel (c) shows a random linear zero-error solution and
its margin, which is smaller than the margin of the SVM line.

∑N
i=1[1 − yiŷi]+ as a (rough) approximation to

∑N
i=1[0 − yisign(ŷi)]+, and do

not su�er from this problem. In addition, the β′β makes sure that the predicted
values are shrunk, or penalized. In this particular case, we have a �penalization
towards the average� or rather �penalization towards β0�, and not penalization
towards zero, as the intercept term is not penalized. The β's play a similar role
as the α in the tossing-a-coin example.

Let us comment on one �nal detail. It was noted in the previous paragraph
that the unbiased classi�cation model would be maximizing (just) the training
misclassi�cation rate (1/N)

∑N
i=1[0 − yisign(ŷi)]+. This model is unbiased in

the sense that if we have an in�nite amount of data at each possible combina-
tion of values for the inputs, then this model will predict the class with highest
probability of occurrence at each such point. That is, if we observe at a particu-
lar point that the biggest number of observations come from one of the classes,
then our prediction at this point should be this particular class. This simple
rule is called the Bayes model. The Bayes model minimizes the expected loss
in case we have decided to have a 0 − 1 loss in mind, that is, it maximizes the
expected accuracy. Actually, to reiterate, the 0−1 loss implies the maximization
of the expected accuracy criterion in much the same way as the squared-error
loss implies the minimization of the expected MSE (EMSE) criterion.

A graphical representation of SVM in the one-dimensional case could come
in handy. It shows that the idea of penalization in this case has a geometrical
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interpretation as a width of the so-called margin. Consider Figure 1.3, which
depicts a simple two-class classi�cation problem in a one-dimensional case. It
is important to keep in mind that di�erences between predicted and true values
count as errors only if predictions are below 1 for the positive observations with
y = 1 and shown as circles and above −1 for the negative observations with
y = −1 and shown as crosses. Panel (a) shows many possible linear solutions
that do not induce any error, since predicted values have the correct sign and
are above 1 or below −1. Panel (b) shows the SVM line, which is the �attest
possible among all lines that induce no error. The term �attest is used to denote
that the coe�cients of the line (except the intercept) are close to zero. Since the
SVM line is the �attest, an interesting phenomenon can be observed. Namely,
the value of x for which y = 1, and the value of x for which y = −1 are most
distant from each other. This distance is referred to as the margin. Thus,
greater penalization in the form of increased λ results in:

• model coe�cients (in general, the β's) being closer to zero;
• an increase in the width of the margin; and
• predicted raw output values ŷi (such as those in 1.9) being closer, or

shrunk, to each other.
Consider also Panel (c), which shows the (relatively smaller) margin of another
line that produces zero sum of errors. All lines in Panel (a) produce zero sum of
errors, also referred to as zero empirical bias or zero empirical error. However,
only the �attest line among them is associated with the smallest variance among
future estimates. Notice that the �attest possible line, which is a horizontal line,
is associated with the minimal possible variance among future estimates, that
is a zero variance. The SVM line is the �attest line (in the �gure) among all the
lines that correctly classify the training observations. It is possible to achieve
an even �atter SVM solution, but it is bound to bring along some errors, or
increased empirical bias. Depending on the manually-controllable parameter λ
these errors are considered either �small� or �big�. Thus, λ controls the extent
to which empirical bias could be tolerated. The SVM optimization problem will
yield coe�cients that produce optimal �atness (or, margin) for a given �xed
level of empirical bias, where the level of bias is determined by λ. What the
SVM optimization problem cannot do is to yield the optimal allocation between
the (non-�xed) level of empirical bias and the degree of �atness of the solution,
that is to �nd the optimal λ. The optimal λ has to be found using methods
that approximate the misclassi�cation rate over any (new) test set, such as the
cross-validation method.

A Note on Regularization
The exact interpretation of regularization parameters such as the λ parameter in
SVMs for classi�cation (see 1.9) has sparkled a debate between the Statistics and
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Econometrics literature on the one hand and the Machine Learning literature
on the other. Rather than taking a side in this debate, I would rather present
shortly and informally my viewpoint on the e�ect of regularization parameters,
which is in many respects a consensus view. In fact, regularization can be seen
as a way of shrinking predictions and/or providing a prediction function that
�nds itself in-between best-�t functions from di�erent classes of functions.

Observe, �rst, the interesting property that for λ = 0 the optimal SVM lines
in Figure 1.3, Panel (a) are in�nitely many. These lines are lines of best �t, where
the �t is measured as the sum of all training errors, here:

∑N
i=1[1 − yiŷi]+. In

this case the �t is perfect as the sum of training errors is zero for any such
line. In a hypothetical case of a quadratic-error model, which is applicable in
case of a squared-error loss function, the �t is the sum of squared errors, or
the sum of squared discrepancies between the training output values and the
corresponding predicted output values. For λ = ∞, the optimal β's in SVM are
zeros, and thus any predicted output value is equal to β0. This is a penalization
towards β0 in its pure form. Thus, the predicted output value in this case is a
constant whatever the inputs. If the intercept β0 is penalized as well by this λ,
then the predicted output value is 0 whatever the inputs, and we have a pure
penalization towards zero.

This role of λ can be equivalently described using the term class of functions,
or function class for short. Informally, the simplest function class contains just
one function that outputs a predicted value of zero for the dependent variable
y, whatever the inputs, that is ŷ(0) = 0. Let us call this function class �class
0�. Arguably, this function is in many respects more preferable than a random
assigning of prediction values for the dependent variable, at least due to the
fact that the variance of the predictions is zero. Next comes �class 1�, which is
the function class of (all) constants. When λ = ∞ and β0 is not penalized, the
SVM prediction function belongs to this class, as it is ŷ(1) = β

(1)
0 whatever the

inputs and β
(1)
0 is a constant. Here, the optimal SVM prediction function is the

constant of best �t, as there does not exist another function from function class
1 � that is, another constant � which produces a smaller sum of training errors.
This simple solution is also known as the �majority voting rule�, as the optimal
β

(1)
0 is either any value > 0 or any value < 0, depending on whether there

are more positive or negative observations in the training data set. As there
are (in�nitely) many solutions for β

(1)
0 that provide the majority voting rule,

there are (in�nitely) many constants of best �t in the case of SVM. Notice that
function class 0 is included already in function class 1, as zero is an allowable
value for β

(1)
0 . The next function class, �class 2�, is the class of (all) linear

functions. When λ = 0, the SVM line belongs to this class, and is expressed as
ŷ(2) = β

(2)
0 +xβ

(2)
1 for the (single) input x. This SVM line is the line of best �t, as

there does not exist another function from class 2 � if fact, another combination
of β0 and β1 � which produces a smaller sum of training errors. Actually, there
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might exist (in�nitely) many lines of best �t, as can be seen in Panel (a) of
Figure 1.3, where is it evident that there are in�nitely many lines of perfect �t,
that is lines for which the sum of training errors is zero,

∑N
i=1[1 − yiŷi]+ = 0.

Notice also that class 2 contains in itself class 1 and therefore also class 0. That
is, in a way all function classes 0, 1 and 2 can be viewed as being comprised of
�lines�. Nevertheless, these classes are di�erent.

To sum up, the ultimate role of λ, for example in the context of Figure
1.3, is to provide predictions, ŷ's, that are in-between the predictions of a best-
�t function from function class 2, ŷ(2) = β

(2)
0 + xβ

(2)
1 , and the predictions of

a best-�t function from function class 1, ŷ(1) = β
(1)
0 . This is achieved when

λ is in-between the extremes of 0 and ∞. This interpretation is close to the
statistical view on regularization. Equivalently stated, the role of λ is to provide
a prediction function that lies in-between a prediction function of best �t from
function class 2 and a prediction function of best �t from function class 1.
Thus, the actual role of λ is not really to provide a new, synthetic function class
that �nds itself somehow in-between two (not necessarily adjacent) function
classes. Rather, the usage of λ provides a compromise solution of two concrete
functions from two di�erent (not necessarily adjacent) function classes, where
these two functions are functions of best �t from their respective function classes.
For example, the SVM line of Figure 1.3, Panel (b) can be thought of as the
prediction function that founds itself in-between a function of best �t from the
class of all constants (class 1) and a function of best �t from the class of all
lines (class 2). This interpretation is close to the Machine Learning view on
regularization. Here, the introduction of λ is seen as a way to reduce, so to
say, a best-�t function from function class 2 towards a best-�t function from
the simpler function class 1. A way to quantify the extent of such simplicity, or
inversely stated, complexity, is provided by a function-class complexity measure
called the VC-dimension (Vapnik, 1995). For example, the class of constants,
class 1, has a VC-dimension of 1; the class of linear functions, class 2, has a
VC-dimension of 2 and so on. Notice that we speak about the class of linear
functions in the input-output data space here, and not the space of the inputs
only. There exist upper bounds on the expected misclassi�cation rate over
the whole domain of input values that use the VC-dimension, and are referred
to as generalization-error bounds. As a matter of fact, the SVM method has
been initially proposed and justi�ed in this context. As the introduction of λ
e�ectively reduces the capacity, or the freedom, of the linear functions from 2
towards 1, one can say that λ gives rise to an e�ective VC-dimension between
2 and 1 or an e�ective degrees of freedom between 2 and 1. The last sentence
uses mixed terminology from Statistics/Econometrics and Machine Learning,
and basically conveys the notion that these scienti�c areas converge here to the
same ideas, but expressed in a di�erent way. The degrees of freedom are in
general equal to the number of input variables p plus one (for the intercept).
In the classi�cation case, the VC-dimension is equal to the same value if the
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prediction function is a hyperplane. The role λ, then, is to provide a prediction
function that �nds itself in-between two best-�t functions from function class p
and function class 1 respectively, as the predictions are being shrunk towards
β0.

1.3 Nonlinear Learning via Duality and Kernels
In the kernel approach, nonlinear solutions to the target classi�cation or re-
gression function are achieved by creating new explanatory variables and then
solving for a new linear target function based on the original variables and the
new variables. Nonlinearity is observed in the space of the original variables
only. In the augmented space, the solution is linear. The simplest example in
this respect is the simple quadratic function y = ax2 + bx+ c. In the space with
coordinates x, the single input, and y, the output, this function is nonlinear �
that is, it is quadratic � whereas in the space with coordinates x, x2 and y, the
function is linear � that is, it is a plane in a 3D space. The introduction of such
new variables is usually referred to as extending the basis.

Before proceeding, it is useful to point out which meaning of term kernel
we will have in mind here. In the context of this thesis, a kernel is referred
to the inner product or dot product of two vectors in the extended-basis, or
feature, space. What is important is that the dot product is computable using
the coordinates of the vectors in the original space only. The dot product
between input vectors from Rp xi and xj in the original space is denoted as
x′ixj , and in the feature, higher-dimensional space as φ(xi)′φ(xj), where φ(xi)
are the coordinates of xi mapped into the higher-dimensional, feature space.
More formally, xi is said to be mapped to the higher-dimensional space via
mapping φ from Rp to Rm with m > p. It is important to note that there are
no new explanatory variables from the outside world entering into the problem.
The new variables φ(x) are combinations of the original variables only, that
is, the new coordinates of points in the higher-dimensional space are created
from the coordinates of the original points. The kernel k(xi,xj) stands for
the dot product between two points, φ(xi) and φ(xj), in feature space, that
is, k(xi,xj) = φ(xi)′φ(xj). The special property of kernels is that this dot
product is computed using the coordinates of the original points xi and xj ,
without knowing the explicit coordinates φ(xi) and φ(xj).

Duality refers to reexpressing an optimization problem in equivalent dual
optimization form using Lagrange multipliers, also called dual variables. A
constrained minimization problem can be reexpressed as an equivalent maxi-
mization problem using (possibly restricted) nonnegative dual variables. If the
dual variables are de�ned as nonpositive, then this maximization problem is
actually turned into a minimization problem. Dual representation is essential
for all kernel methods, because it allows for e�cient implementation of nonlin-
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ear solutions. Sometimes the dual representation is not only e�cient but also
the only one solvable in practice. For that reason, it would be illuminating to
derive the SVM for classi�cation in dual form, step by step. This line of dual
derivation is also followed by the introduced methods SH, NCH, and SNN in
Chapters 5, 6, and 7.

Let us start from the primal SVM formulation (1.10) with feature vectors
φ(x) instead of the original vectors x, then form the corresponding Lagrangian
and take its �rst derives with respect to the unknown variables (β0, β, and ξ).
The Lagrangian of the primal problem (1.10) with feature vectors φ(xi) is

LP (β0,β, ξ, α,η) = C
N∑

i=1

ξi +
1
2
β′β −

N∑

i=1

αi{yi(β0φ(xi)′β)− 1 + ξi} −
N∑

i=1

ηiξi,

where αi and ηi, i = 1, 2, . . . , N , are nonnegative Lagrange multipliers. Next,
we take the �rst derivatives of the Lagrangian with respect to (β0, β, and ξ)
and set them to zero:

∂LP

∂β0
= 0 ⇔ −

N∑

i=1

αiyi = 0

∂LP

∂βk
= 0 ⇔ βk =

N∑

i=1

yiαiφ(xi)k for k = 1, 2, . . . , m

∂LP

∂ξi
= 0 ⇔ C − αi − ηi = 0 for i = 1, 2, . . . , N,

where m is the number of input variables in the extended, higher-dimensional
space, and consequently the number of coe�cients in vector β in this space; and,
φ(xi)k is the kth coordinate of φ(xi) in the higher-dimensional space. Plugging
back these results into the Lagrangian LP (β0, β, ξ,α,η) we arrive at the SVM
dual (maximization) problem

min
α

N∑

i=1

αi − 1
2

N∑

i=1

N∑

j=1

yiyjαiαj [φ(xi)′φ(xj)], (1.11)

subject to αi ≥ 0, i = 1, 2, . . . , N , and
∑N

i=1 αiyi = 0.

Notice that � somewhat luckily � only φ(xi)′φ(xj) for any input pair has to
be known explicitly, and not φ(x) explicitly. This allows for the usage of ker-
nels, which replace the dot product φ(xi)′φ(xj) with a kernel k(xi,xj), and
therefore for computing e�ciently nonlinear decision-surface solutions in the
original training-data space. Popular kernels are the polynomial kernel of de-
gree d, k(xi,xj) = (x′ixj + 1)d, the Radial Basic Function (RBF) kernel with
proximity parameter γ, k(xi,xj) = exp(−γ ‖ xi − xj ‖2), and the linear kernel,
k(xi,xj) = x′ixj , which gives the linear solution in the original data space with
no mapping.
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A Counter Example: OLS in Dual Form
As noted in the beginning of this Section, the usage of kernels in a so-called dual
problem allows for nonlinear decision-surface solutions in the original training-
data space. It is not possible however to always use kernels in the dual. That is,
kernelization and dualization do not automatically go hand in hand. The most
prominent example thereof is the dual form of the pervasive Ordinary Least
Squares (OLS) estimation, which happens not to allow for the usage of kernel
functions.

Below, we derive the dual OLS optimization form that shows why OLS per
se � that is, without penalization of the squared norm β′β of the coe�cients �
cannot be kernelized. We also show that the act of penalizing this squared norm
makes the usage of kernels possible. In this way, OLS estimation is turned into
Ridge Regression (RR) estimation.

A linear estimation model can always be presented in dual form, but it
cannot always be kernelized. The reason is that it is the quadratic penalty that
gives rise to a formulation of the dual involving dot, or inner, products of the
inputs of the form φ(xi)′φ(xi) and not explicit linear expansions of the form
φ(xi). To illustrate this, let us derive the dual of the OLS estimation problem
and then the dual of the Ridge Regression problem. The OLS dual can be
derived from the (OLS) primal as follows. We start from the usual primal form:

min
e,β

1
2
e′e, (1.12)

subject to e = y −Φ(X)′β,

where p is the number of inputs, N in the number of training observations,
p < N , e is a N × 1 vector of errors, and Φ(X) is a matrix of N row vectors
φ(xi)′, i = 1, 2, . . . , N . From now on we will denote Φ(X) by Φ for short. This
optimization problem can be solved by forming the Lagrangian

LP (e, β, α) =
1
2
e′e + (y −Φ′β)′α,

where α is a N×1 vector of Lagrange multipliers. By taking the �rst derivatives
with respect to e and the coe�cients β, and setting them equal to zero, we
establish that e = α and Φ′α = 0. Plugging back the solution for the primal
variables into the Lagrangian, it becomes a function that should be maximized
with respect to the unknown dual variables α. Using the fact the α = e in the
optimum, we establish the dual OLS formulation:

max
e

e′y − 1
2
e′e, (1.13)

subject to Φ′e = 0.

As the Φ matrix contains a column of ones, the constraints Φ′e = 0 imply that∑N
i=1 ei = 0. The solution for e of the primal minimization problem (1.12) and
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the dual maximization problem (1.13) should coincide at the optima, therefore
0.5e′e = e′y − 0.5e′e ⇔ e′e = e′y. Notice that the matrix Φ, as opposed
to ΦΦ′ enters in both the primal and the dual optimization problem (refer
to the SVM dual problem 1.11). Therefore, Φ has to be known explicitly in
both formulations and the kernel �trick� of using a kernel (matrix) expression
to replace the term ΦΦ′ cannot be applied.

Now we shall see how the Ridge Regression (RR) can be expressed in dual
form, where explicit knowledge only of ΦΦ′ is needed, and not of Φ itself.
Basically, the RR dual resembles the one of OLS, with two di�erences. The
constraint Φ′e = 0 is removed, but the term −(1/2λ)(Φ′e)′(Φ′e) is added to
the dual objective function, where λ is a Ridge Regression manually-adjustable
parameter determining the strength of the penalty. Formally, in order to derive
the dual RR from the primal RR, the following steps are taken:

min
e,β

1
2
e′e +

λ

2
β′β,

subject to e = y −Φ′β,

where λ > 0, the �rst column of Φ is a vector of ones, and e is a N × 1 vector
of errors. We solve this problem by forming the Lagrangian

L(e, β,α) =
1
2
e′e +

λ

2
β′β + (y −Φ′β)′α.

Taking the �rst derivatives with respect to e and β and setting them to zero
yields (1/λ)Φ′α = β, and e = α. Plugging back these results into the La-
grangian and using the fact that e = α at the optimum, we arrive at the
equivalent (dual) maximization RR problem

max
e

= −1
2
e′e + e′y − 1

2λ
e′ΦΦ′e. (1.14)

The dual RR problem is an unconstrained problem. In many applications how-
ever it is common not to penalize the intercept term. This leads to an identical
formulation of dual RR with the additional constraint that the sum of α's should
be zero,

∑N
i=1 αi = 0, and Φ does not contain a column of ones. Notice that

ΦΦ′ has to be known explicitly in (1.14), and not Φ, which enables the usage
of kernels.

1.4 Outline of the Thesis
The thesis is structured into two main parts. The �rst part is more practical
and concentrates on new applications of established methods. The second part
is more theoretical and focuses on putting forward new classi�cation methods.
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Extensive applications of these new methods to real-data tasks and derivations
of subtle theoretical properties, among others, are the subject of future research.
Most of the chapters have already been published or accepted for publication.
Full references are given in the chapters themselves.

Chapter 2: Estimating the Market Share Attraction Model using
SVRs. This chapter is a nice example of how knowledge from three disciplines
can be combined to produce a formidable result. We start with the application
task: to predict the monthly market-share allocation among 36 car brands for
a certain out-of-sample period. Traditionally, an Econometrics approach has
been proposed to solve this task, which has its merits. Inside the Economet-
rics model however a regression problem has to be solved that cries, so to say,
for regularization. A well-performing regularization technique can readily be
borrowed from the Machine Learning literature, namely SVRs. Using SVRs to
solve the Econometric Market Share Attraction Model improves the forecasted
results dramatically. This chapter has been accepted for publication in Econo-
metric Reviews (Nalbantov, Franses, Groenen, & Bioch, 2008).

Chapter 3: Equity Style Timing using Support Vector Regressions.
This is yet another demonstration of the bene�ts that regularization techniques
provide. In this case, SVRs are applied to �nancial series forecasting. More
concretely, the task is to come up with a so-called �nancial rotation strategy
between so-called Value and Growth stocks. Similar strategies are quite popular
investment strategies. The forecasting results indicate tremendous improvement
over passive models during an out-of-sample period of about 10 years. This chap-
ter has been published as Nalbantov, Bauer, and Sprinkhuizen-Kuyper (2006).

Chapter 4: Solving and Interpreting Binary Classi�cation Problems
in Marketing with SVMs. This chapter bridges the gap that invariably
arises between improved performance and decreased interpretability of results
provided by SVMs in classi�cation tasks. As SVMs are mostly nonlinear learn-
ers (that is, functions), the coe�cients they output take di�erent values over
di�erent ranges of the inputs. This makes the interpretation of the e�ect of
the inputs hard. To make matters worse, sometimes no coe�cients are output.
Still, we would like to have an idea about the individual e�ects that the inputs
have on the behavior of the output variable. This e�ect can be extracted using
probability estimates for the predicted classes. Once these estimates are avail-
able, one of the input variables is changes, while the rest are hold �xed on their
average levels. The change in class-belonging probability gives a clear idea of
the (nonlinear) e�ect of each of the inputs, leading to a better interpretation of
the e�ects of the inputs. This chapter has been published as Nalbantov, Bioch,
and Groenen (2006b).
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Chapter 5: Instance-Based Penalization Methods for Classi�cation.
This is the most important chapter of the thesis, as it combines in one place
the real, new contribution of this research. Three new classi�cation techniques
are put forward, which contribute to the plethora of existing classi�cation tech-
niques. The proposed techniques are Support Hyperplanes, Nearest Convex
Hull classi�cation, and Soft Nearest Neighbor. The common element among
these methods is, �rst of all, that they are regularization methods. That is, all
of them try to �nd a balance between model complexity and sum of training
errors, which is ultimately responsible for the excellent performance results. To
the best of my knowledge, they are the �rst instance-based regularization tech-
niques. Next to the inherent regularization capability, these techniques are able
to employ kernels, which are responsible for providing nonlinear solutions by
mapping the data into a higher-dimensional space. Thus, the proposed three
methods can also be viewed as kernel methods. There is some sort of similarity
between these techniques and SVMs, for instance. That is why a discussion on
the relative merits of among all these techniques is presented. To sum up, this
chapter proposes three new classi�cation techniques, all of which fall under the
general heading instance-based large-margin kernel methods.

Chapter 6: Classi�cation with Support Hyperplanes. This chapter is a
spin-o� of Chapter 5. It concentrates on a new classi�cation technique called
Support Hyperplanes. This chapter has been published as Nalbantov, Bioch,
and Groenen (2006a).

Chapter 7: Nearest Convex Hull Classi�cation. This chapter is a spin-o�
of Chapter 5. It concentrates on a new classi�cation technique called Nearest
Convex Hull classi�cation.

Chapter 8: SVM-Maj: A Majorization Approach to Linear Support
Vector Machines with Di�erent Hinge Errors. This chapter contributes
to the debate on how to solve the optimization problem that arises in linear
SVMs in a fast way. Existing solvers are shown to have a worse speed, espe-
cially so when the number of inputs is small and the data set in not so big.
Next to increased speed, a big advantage of the majorization approach is that
di�erent loss functions can be employed with ease, such as the (default) linear
hinge loss, the quadratic hinge loss, and the Huber hinge loss. An earlier version
of this chapter has been published as Groenen, Nalbantov, and Bioch (2007).



45

Part I
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Chapter 2

Estimating the Market Share
Attraction Model using
SVRs∗

We propose to estimate the parameters of the Market Share Attraction Model
(Cooper & Nakanishi, 1988; Fok & Franses, 2004) in a novel way by using a
nonparametric technique for function estimation called Support Vector Regres-
sions (SVR) (Vapnik, 1995; Smola, 1996). Traditionally, the parameters of the
Market Share Attraction Model are estimated via a Maximum Likelihood (ML)
procedure, assuming that the data are drawn from a conditional Gaussian distri-
bution. However, if the distribution is unknown, OLS (Ordinary Least Squares)
estimation may seriously fail (Vapnik, 1982). One way to tackle this problem is
to introduce a linear loss function over the errors and a penalty on the magni-
tude of model coe�cients. This leads to qualities such as robustness to outliers
and avoidance of the problem of over�tting. This kind of estimation forms the
basis of the SVR technique, which, as we will argue, makes it a good candidate
for estimating the Market Share Attraction Model. We test the SVR approach
to predict (the evolution of) the market shares of 36 car brands simultaneously
and report promising results.

∗This chapter has been accepted for publication as Nalbantov et al. (2008):
Nalbantov, G.I., Franses, P.H.B.F., Groenen, P.J.F., & Bioch, J.C. (2008). Estimating the
Market Share Attraction Model using Support Vector Regressions. Econometric Reviews.
(Accepted)
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2.1 Introduction
The Market Share Attraction Model is a popular tool for analyzing competitive
structures (Cooper & Nakanishi, 1988; Fok & Franses, 2004). It is typically
applied for simultaneously predicting the market shares of several brands within
a given product category. The model helps to evaluate the e�ect of marketing-
mix variables on brands' performances as well as the e�ect of an individual
brand's own e�orts while conditioning on competitors' reactions. A detailed
econometric analysis of the model can be found in Fok, Franses, and Paap
(2002). What makes this model rather special is the requirement that the
forecasted market shares are all non-negative and sum to unity.

The traditional unrestricted Market Share Attraction Model often su�ers
from poor predictability, especially for the relatively larger brands. The poor
performance is likely to be due to various causes, including heteroscedasticity
and failure to account for a trend in the data. The huge number of coe�cients
to be estimated is another source of concern. A common way to address those
issues is to restrict the model coe�cients or to aggregate brands into categories.
More fundamentally, however, one can also address the applied estimation proce-
dure, which is Maximum Likelihood (ML) with assumed Gaussian noise model,
leading to OLS (Ordinary Least Squares) estimation of model coe�cients. OLS
estimation is appropriate (and optimal) in cases the dependent variable has
been drawn from a conditional Gaussian distribution. In cases where this is
not so, the least-squares techniques are suboptimal and could lead to severely
mismatched solutions for some densities (Vapnik, 1982). Then, improved coef-
�cient estimation can be obtained in a variety of ways. One way is by using
estimation methods put forward in the literature on Support Vector Machines
(SVMs), and this is what we primarily address in this paper.

SVMs are a nonparametric tool that can be used for both classi�cation and
regression estimation tasks (Vapnik, 1995; Burges, 1998; Cristianini & Shawe-
Taylor, 2000). They have gained considerable popularity during the last years,
following a series of successful applications in areas ranging from Bioinformat-
ics and Optical Character Recognition to Economics and Finance (see, among
others, Sch�olkopf, Guyon, & Weston, 2001; Sch�olkopf, Burges, & Vapnik, 1995;
P�erez-Cruz, Afonso-Rodr�iguez, & Giner, 2003; Tay & Cao, 2001).

The SVM technique for regression estimation is referred to as Support Vector
Regression (SVR). Essentially, (linear) SVR coe�cient estimation capitalizes on
the utilization of a speci�c non-Gaussian noise model and an L2-norm penal-
ization of the coe�cients. The utilization of a speci�c noise model is in itself
rooted in two observations. The �rst one is the proposition that the linear loss
function is the best error loss function of the worst model over any probabil-
ity density function of the dependent variable given the independent variables
(Huber, 1964). Thus, if the dependent variable is drawn from an unknown dis-
tribution, a linear loss function over the errors could be more appropriate than
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the common quadratic one. The second building block is the bound obtained
on the test error (less than in�nity) using the so-called Structural Minimization
Principle (Vapnik, 1995). This bound arises when a certain error-insensitive
region around the predicted value of the dependent variable is introduced. The
width of this region can be made arbitrarily small however.

These two observations result in the �rst departure of SVR from OLS: in-
stead of the common quadratic loss, SVR utilize the so-called ε-insensitive loss
function (Vapnik, 1995). This robust loss function penalizes the discrepancy be-
tween a true and a corresponding target value linearly, if this discrepancy is more
than (a user-de�ned) ε. Up to ε there is no loss incurred at all. In other words,
the ε-insensitive loss function is: |ε|ε ≡ |y − f(x)|ε ≡ max{0, |y − f(x)| − ε},
where y is a target value and x is a vector of predictor variables.

To relate SVR estimation to our task of estimating the coe�cients of the
Market Share Attraction Model, we argue as follows. We assume that the data
is generated by an underlying functional dependency plus additive noise, that
is, y = ftrue(x) + ε. Normality tests show that for the data set we analyze,
the noise is non-Gaussian. This renders the speci�cation of a Gaussian likeli-
hood for ML estimation (which is equivalent in this case to OLS estimation)
problematic. Thus, there is room for improvement over the standard Market
Share Attraction Model, which assumes a Gaussian noise scheme, i.e. the loss
function is 0.5ε2, with corresponding density model p(ε) = 1√

2π
exp(−0.5ε2).

One way to remedy the standard Market Share Attraction Model approach is
to consider more robust density noise models. SVR, for example, considers the
model p(ε) = 1

2(1+ε) exp(−|ε|ε) (see Smola & Sch�olkopf, 1998, 2004), which cor-
responds to the ε-insensitive loss function. Other robust noise models could also
be used, like the student-t distribution model. Alternatively, the noise model
itself could be (fully) estimated via, for example, a Gaussian mixture1. These
approaches however fall out of the scope of the paper.

Next to the usage a more robust, ε-insensitive loss function, SVR departs
from OLS in that it estimates model coe�cients by including also an L2-norm
penalization term for them, as is done in Ridge Regression (RR) for instance.
This puts SVR estimation close to penalized ML estimation, as RR (linear)
coe�cient estimates are obtained via penalized ML (Cawley & Talbot, 2002).

Nonlinear estimation is the �nal building block of SVR. It is achieved by
mapping the predictors from their original (linear) space to a higher-dimensional
space (via kernel functions). Linear estimation in this higher-dimensional space
corresponds to a nonlinear regression surface in the original linear space.

A nice feature of SVRs is that they solve a quadratic programming problem
to obtain a solution. Unlike competing techniques such as Neural Networks (for
a general reference see (Bishop, 1995), (Hastie et al., 2001), among others), this
solution is unique and does not su�er from a local minimum. This adds to the

1We thank an anonymous referee for pointing this out.
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desirable properties of SVRs such as the ability to avoid in-sample over�tting
and robustness against outliers in the data, which arise due to the ε-insensitive
loss function and the L2-norm penalization of model coe�cients. All of these
properties make SVRs very suitable for application to the standard Market
Share Attraction Model.

We compare the performance of the traditional OLS solution to the Market
Share Attraction model with that of SVR and RR in the experimental part of
the paper. RR is a good competitor to SVR because it likewise penalizes the L2-
norm of model coe�cients, and is able to employ the same type of nonlinearities
as SVR via kernel functions. The nonlinear RR is referred to as Kernel Ridge
Regression (KRR) (see, e.g., Saunders, Gammerman, & Vovk, 1998; Hastie
et al., 2001; Shawe-Taylor & Cristianini, 2004; Pozdnoukhov, 2002). A common
theme between RR and SVR is the penalization of the L2-norm of the model
coe�cients. The major di�erence is the loss function employed: quadratic in
the �rst case and ε-insensitive in the latter case. This makes the comparison of
these penalization techniques quite interesting.

The paper is organized as follows. The next section introduces the Market
Share Attraction Model in its traditional form. Section 2.3 outlines the SVR
technique and augments it with SVR estimation and Section 2.4 discusses its
nonlinear extension. In addition, we give a short account of both (linear) RR
and (nonlinear) KRR. We then carry out pairwise tests for superior predictive
ability (Hansen, 2005) across OLS, linear and nonlinear RR, and linear and
nonlinear SVR in Section 2.5, which presents our main �ndings on a data set
that is used to predict the evolution of market shares of 36 car brands for a
certain period. The �nal section gives a conclusion.

2.2 The Market Share Attraction Model
The purpose of the Market Share Attraction Model is to provide an overall
model for the market share Mi,t of brand i at time t for the I brands constitut-
ing the market over a period from t = 1 to T . An important characteristic of a
market share Mi,t is that 0 ≤ Mi,t ≤ 1 and that it sums over all brands to one,
that is,

∑I
i=1 Mi,t = 1. The typical interval between the measurements of the

market shares is a week or a month. The model uses K predictor variables with
nonnegative values xk,i,t to predict the market shares described below. Typical
predictor variables are price, distribution, advertising spending, etc. The use-
fulness of the model lies in its ability to describe the competitive structures and
to infer cross e�ects of marketing-mix instruments (Fok et al., 2002).

The so-called Multiplicative Competitive Interaction (MCI) speci�cation of
a market share Mi,t builds on the attraction Ai,t of brand i at time t that is
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de�ned as

Ai,t = exp(µi + εi,t)
I∏

j=1

K∏

k=1

x
βk,j,i

k,j,t for i = 1, . . . , I, (2.1)

where βk,j,i is the unknown coe�cient for brand i and µi is a brand-speci�c
intercept term corresponding to the size of the brand. The vector of error terms
εt = [ε1,t, . . . , εI,t]′ is usually assumed to be normally distributed with zero
mean and some unknown covariance matrix Σ. The market share of brand i at
time t can be de�ned as the attraction of brand i at t divided by the sum of all
attractions at t, that is,

Mi,t =
Ai,t∑I

j=1 Aj,t

for i = 1, . . . , I. (2.2)

The model in (2.1) with (2.2) is the Market Share Attraction Model. Notice
that the de�nition of the market share of brand i at time t given in (2.2) implies
that the attraction of the product category is the sum of the attractions of all
brands and that equal attraction of two brands results in equal market shares.

In addition to the predictor variables xk,i,t, one could also include
lagged variables xk,i,t−1, xk,i,t−2, . . . , xk,i,t−P and lagged market shares
Mi,t−1,Mi,t−2, . . . , Mi,t−P as predictors. With these P lags, the attraction Ai,t

speci�cation with a P -th order autoregressive structure becomes

Ai,t = exp(µi + εi,t)
I∏

j=1

(
K∏

k=1

x
βk,j,i

k,j,t

P∏
p=1

(
M

αp,j,i

j,t−p

K∏

k=1

x
βp,k,j,i

k,j,t−p

))
, (2.3)

where αp,j,i is the e�ect of lagged market shares on the attraction and βp,k,j,i

the e�ect of lagged explanatory variables. Clearly, this speci�cation involves
quite a number of parameters.

To estimate the parameters, the model is linearized in two steps. First, we
choose brand I as a benchmark brand and express the market share of each of
the remaining brands as a fraction of this benchmark brand, that is,

Mi,t

MI,t
=

exp(µi + εi,t)
∏I

j=1

(∏K
k=1 x

βk,j,i

k,j,t

∏P
p=1

(
M

αp,j,i

j,t−p

∏K
k=1 x

βp,k,j,i

k,j,t−p

))

exp(µI + εI,t)
∏I

j=1

(∏K
k=1 x

βk,j,I

k,j,t

∏P
p=1

(
M

αp,j,I

j,t−p

∏K
k=1 x

βp,k,j,I

k,j,t−p

)) .

(2.4)

The second step is to take the natural logarithm (denoted by log) of both sides of
(2.4). Together, these two steps result in the (I−1)-dimensional set of equations
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given by

log Mi,t − log MI,t = (µi − µI) +
I∑

j=1

K∑

k=1

(βk,j,i − βk,j,I) log xk,j,t

+
P∑

p=1

I∑

j=1

(αp,j,i − αp,j,I) log Mj,t−p

+
P∑

p=1

I∑

j=1

K∑

k=1

(βp,k,j,i − βp,k,j,I) log xk,j,t−p + ηi,t.(2.5)

Because the µi parameters only appear as the di�erence µi−µI with the bench-
mark parameter µI , they are not uniquely identi�ed. However, the parame-
ters µ̃i = µi − µI are uniquely identi�ed. Similarly, β̃k,j,i = βk,j,i − βk,j,I ,
β̃p,k,j,i = βp,k,j,i − βp,k,j,I , and α̃p,j,i = αp,j,i − αp,j,I can also be uniquely
identi�ed. Therefore, for estimation we use µ̃i, β̃k,j,i, β̃p,k,j,i, and α̃p,j,i.

The errors ηi,t in (2.5) are equal to ηi,t = εi,t−εI,t, or, equivalently, ηt = Lεt

with the (I−1)× I matrix L = [I | −1] where I an (I−1)-dimensional identity
matrix and 1 is an (I − 1)-vector of ones. Hence, given the earlier assumptions
that εt is normally distributed with mean 0 and covariance matrix Σ, ηt is also
normally distributed with mean 0 and a (I−1)×(I−1) covariance matrix equal
to Σ̃ = LΣL′. As a consequence, out of the I(I + 1)/2 unknown (co)variances
in Σ, we can only identify I(I − 1)/2 values.

Using the substitution above to obtain unique estimates for the e�ects, the
general attraction model in (2.5) can be expressed as an (I − 1)-dimensional
P -th order vector autoregression with exogenous variables, that is, by

log Mi,t − log MI,t = µ̃i +
I∑

j=1

K∑

k=1

β̃k,j,i log xk,j,t +
P∑

p=1

I∑

j=1

α̃p,j,i log Mj,t−p

+
P∑

p=1

I∑

j=1

K∑

k=1

β̃p,k,j,i log xk,j,t−p + ηi,t. (2.6)

Under the assumption that the error variables are normally distributed with
some unknown covariance matrix, maximum likelihood (ML) is the appropriate
estimation method. In our application, the explanatory variables for each brand
are the same, that is, xk,1,t = xk,2,t = . . . = xk,I,t. Under these conditions and
if there are no parameter restrictions then the ordinary least squares (OLS)
estimator is equal to the ML estimator (Fok et al., 2002).

If the dependent variable has not been drawn from a conditional normal
distribution, then the parameters of the general Market Share Attraction Model
(2.6) are not guaranteed to be optimally estimated by a least-squares technique
(Vapnik, 1982). An alternative way to estimate the model parameters in this
case is by means of the suggested SVR, which is outlined below.
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2.3 Linear Support Vector Regression
Support Vector Regressions (SVRs) and Support Vector Machines (SVMs) are
rooted in the Statistical Learning Theory, pioneered by Vapnik (1995) an co-
workers. Detailed treatments of SVR and SVM can be found, for example, in
Burges (1998), Smola (1996) and Smola and Sch�olkopf (1998). The following is
a self-contained basic introduction to Support Vector Regressions (SVRs).

SVRs have two main strengths and these are good generalizability/avoidance
of over�tting and robustness against outliers. Generalizability refers to the
fact that SVRs are designed in such a way that they provide the most simple
solution for a given, �xed amount of (training) errors. A solution is referred
to as being simple if the coe�cients of the predictor variables are penalized
towards zero. Thus, an SVR addresses the problem of over�tting explicitly, just
like many other penalization methods such as RR (Tikhonov, 1963) and Lasso
(Tibshirani, 1996). The robustness property stems from considering absolute,
instead of quadratic, values for the errors. As a consequence, the in�uence
of outliers is less pronounced. More precisely, SVRs employ the so-called ε-
insensitive error loss function, which is presented below. To put it in a nutshell,
(linear) SVR departs from the classical regression in two aspects. The �rst one
is the utilization of the ε-insensitive loss function instead of the quadratic one.
The second aspect is the penalization of the vector of coe�cients of the predictor
variables.

The classical multiple regression has a well known loss function that is
quadratic in the errors, r2

i = (y − f(xi))2. The loss function employed in SVR
is the ε-insensitive loss function

g(ri) = |yi − f(xi)|ε ≡ max{0, |yi − f(xi)| − ε } = max{0, |ri| − ε}
for a predetermined nonnegative ε, where yi is the true target value, xi is a
vector of input variables and f(xi) is the estimated target value for observation
i. Figure 2.1 shows the resulting function for the residual. Intuitively speaking,
if the absolute residual is o�-target by ε or less, then there is no loss, that
is, no penalty should be imposed, hence the name �ε-insensitive�. However, if
the opposite is true, that is |yi − f(x)| − ε > 0, then a certain amount of loss
should be associated with the estimate. This loss rises linearly with the absolute
di�erence between y and f(x) above ε.

Because SVR is a nonparametric method, traditional parametric inferential
statistical theory cannot be readily applied. Theoretical justi�cations for the
SVR are instead based on statistical learning theory (Vapnik, 1995). There are
two sets of model parameters in (linear) SVR: coe�cients, and two manually-
adjustable parameters � C and ε � that explicitly control the interplay between
model �t and model complexity. For each value of the manually-adjustable pa-
rameters C and ε there is a corresponding set of optimal coe�cients, which are
obtained by solving a quadratic optimization problem. The C and ε parame-
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ε− ε

g (ri)

ri

Figure 2.1: The ε-insensitive loss function that assigns no penalty to residuals
ri ∈ [f(xi)−ε, f(xi)+ε] for point i. As |ri| gets larger than ε, a nonzero penalty
g(ri) that rises linearly is assigned.

ters are usually tuned using a cross-validation procedure. In such a procedure,
the data set is �rst partitioned into several mutually exclusive parts. Next,
models are built on some parts of the data and other parts are used for evalu-
ation of model performance for a particular choice of the �t-versus-complexity
parameters C and ε. This is quite analogous to the process of adjusting the
bias-versus-variance parameter in Ridge Regression, for instance. We start out
the intuitive SVR exposition with assuming that C has implicitly been set to
unity and ε has been set to 2. We later relax that assumption and give a more
formal meaning of these parameters in terms of their role in the SVR opti-
mization problem (2.7). In the nonlinear SVR case, other manually-adjustable
parameters may arise. Then a cross-validation grid search over a certain range
of values for C, ε and these parameters has to be performed in order to tune all
parameters.

Let us �rst consider the case of simple linear regression estimation by SVR
by the usual linear relation y = β1x1 + b, where β1 and b are parameters to
be estimated. Figure 2.2 shows an example with three cases of possible linear
functional relations. The SVR line is the solid line in Figure 2.2c, given by the
equation f(x1) = β1x1 + b. The �tube� between the dotted lines in Figure 2.2
consists of points for which the inequality |y− f(x1)| − ε ≤ 0 holds, where ε has
been �xed arbitrarily at 2. All data points that happen to be on or inside the
tubes are not associated with any loss. The rest of the points will be penalized
according to the ε-insensitive loss function. Hence, the solutions in Panel (b)
and (c) both have zero loss in ε-insensitive sense.

The exact position of the SVR line of Figure 2.2c is determined as follows.
The starting point is that the SVR line should be as horizontal/simple/�at as
possible. The extreme case of β1 = 0 in Figure 2.2a will unavoidably yield
several mistakes, as ε is not big enough to give zero loss for all points. This
case represents a simple but quite �lousy� relationship. However, notice that
the resulting region between the dotted lines, referred to as the ε-insensitive
region, occupies the greatest possible area (for ε = 2). It is argued in the SVR



55

2.3 Linear Support Vector Regression 45

−5 0 5 10 15
−5

0

5

10

15

20

y

x 1

| y − f ( x 1 ) | + ε

| y − f ( x 1 ) | + ε

ε = 2

y y

−5 0 5 10 15
x 1

ε = 2

−5 0 5 10 15
x 1

ε = 2

(a) (b) (c)

Figure 2.2: Three possible solutions to a linear regression problem with data
points that lie on a line. The vertical line segments in panel (a) indicate loss
per observation, which is equal to |y − f(x1)| − ε, for ε = 2. In line with
the ε-insensitive loss function, a point is not considered to induce an error if
its deviation from the regression line is less than or equal to ε. The horizontal
regression line in panel (a) is the simplest possible one since it hypothesizes that
there is no relation between y and x1, and it produces too much loss. Panel
(b) gives the classical linear regression estimation, yielding zero loss. Panel
(c) shows the linear SVR, which also yields zero loss but it �atter than the
regression in Panel (b).

literature that this particular area can be seen as a measure of the complexity of
the regression function used. Accordingly, the horizontal regression line provides
the least complex functional relationship between x1 and y, which is equivalent
to no relationship at all.

Consider the next step in Figure 2.2b. Here, the solid line �ts the training
data extremely well. This line is the actual regression function from classical
regression analysis, where the loss measured as the sum of squared errors of the
estimates is being minimized. The distance between the dotted lines however
has clearly diminished as compared to Figures 2.2a and 2.2c. What the SVR
line of Figure 2.2c aims for is to �nd a balance between the amount of ��atness�
(or complexity) and training mistakes (or �t). This balance is the fundamental
idea behind SVR analysis. Good generalization ability is achieved when the
best trade-o� between function's complexity (proxied by the distance between
the dotted lines) and function's accuracy on the training data is being struck.
The idea that such a balance between complexity and amount of training errors
should be searched has been formalized in Vapnik (1995).

To �nd a linear relationship between p independent variables and a single
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dependent variable in a data set of n observations, the mathematical formulation
of the optimization problem of SVR can be derived intuitively as follows. The
objective is to �nd a vector of p coe�cients β and an intercept b so that the
linear function f(x) = β′x+ b has the best generalization ability for some �xed
ε error insensitivity. From the �complexity� side, this linear surface should be as
horizontal as possible, which can be achieved by minimizing the quadratic form
β′β. From the �amount of errors� side however, a perfectly horizontal surface
(obtained for β = 0) will generally not be optimal since a lot of errors will
typically be made in such a case. According to the ε-insensitive loss function,
the sum of these errors is de�ned to be equal to

∑n
i=1 g(ri) =

∑n
i=1 max{0, |yi−

f(xi)| − ε}. One can strike a balance between amount of errors and complexity
by minimizing their sum

Lp(β, b) :=
1
2
β′β + C

n∑

i=1

max{0, |yi − (β′xi + b)| − ε}, (2.7)

where C is a user-de�ned constant that controls the relative importance of the
two terms. This minimization problem formulation is the familiar penalty plus
loss minimization paradigm that arises in many domains (see, e.g., Hastie et al.,
2001).

The problem can equivalently be represented by introducing the so-called
slack variables ξ and ξ∗. Then, minimizing Lp(β, b) can be represented as the
constrained minimization problem

minimize Lp(β, b, ξ, ξ∗) :=
1
2
β′β + C

n∑

i=1

(ξi + ξ∗i ), (2.8)

subject to yi − (β′xi + b) ≤ ε + ξi,

β′xi + b− yi ≤ ε + ξ∗i , and
ξi, ξ

∗
i ≥ 0

(Vapnik, 1995; Smola & Sch�olkopf, 1998).
If the estimate β′xi + b of the ith observation deviates from the target yi

by more than ε, then a loss is incurred. This loss is equal to either ξi or ξ∗i ,
depending on which side of the regression surface observation i lies. It turns out
that (2.8) is a convex quadratic optimization problem with linear constraints,
and thus a unique solution can always be found. As already mentioned, the
objective function in (2.8) consists of two terms. The �rst term, 1

2β′β, captures
the degree of complexity, which is proxied by the width of the ε-insensitive
region between surfaces y = β′x + b + ε and y = β′xi + b − ε. If β = 0, then
complexity ( 1

2β′β) is minimal since the ε-insensitive region is biggest. The slack
variables variables ξi and ξ∗i , i = 1, 2, . . . , n, are constrained to be nonnegative.
All points i inside the ε-insensitive region have both ξi = 0 and ξ∗i = 0. If a
point i lies outside the ε-insensitive region, then either ξi > 0 and ξ∗i = 0, or
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ξi = 0 and ξ∗i > 0. All data points that lie outside the ε-insensitive region (that
is, for which |y − f(xi| ≥ ε) are called �support vectors�. It can be shown that
the �nal solution for the SVR line depends only on the support vectors, and
thus all other points are completely irrelevant (Smola & Sch�olkopf, 1998). This
property is referred to as the sparse-solution property of SVR. In other words,
the �nal formulation of the SVR function would remain the same even if all
data points that are not support vectors were removed from the original data
set.

Generally, it is not possible to have both terms 1
2β′β and C

∑n
i=1(ξi + ξ∗i )

equal to zero. If β = 0, then the loss C
∑n

i=1(ξi + ξ∗i ) can be large, as depicted
in Figure 2.2a. Likewise, if the sum C

∑n
i=1(ξi + ξ∗i ) is relatively small, then β

will generally be large, and consequently 1
2β′β too. Therefore, at the minimum

of the objective function in (2.8), a balance is found between 1
2β′β (complexity)

and C
∑n

i=1(ξi + ξ∗i ) (�t), ensuring that neither the resulting function f(x1) =
β′x + b �ts the data too well, nor that it is too �at. The constraints in the
optimization problem ensure that the degenerate solution β = ξ = ξ∗ = 0 is
avoided.

2.4 Nonlinear Support Vector Regression
Another useful feature of the SVR is that nonlinear relationships can be easily
included. This property may be useful in the Market Share Attraction Model
if there is a nonlinear relation between the log attraction di�erences and the
predictor variables.

2.4.1 Preliminaries
To introduce nonlinear regression solutions in the original (linear) space of the
predictor variables x, they are mapped to a higher-dimensional space via a
mapping function x → Φ(x). Possible mappings are discussed in the next
subsection. A mapping can be thought of as equivalent to extending the basis
of the predictor space. As a result, optimization problem (2.8) becomes (Vapnik,
1995; Smola & Sch�olkopf, 1998):

minimize Lp(β, b, ξ, ξ∗) :=
1
2
β′β + C

n∑

i=1

(ξi + ξ∗i ), (2.9)

subject to yi − (β′Φ(xi) + b) ≤ ε + ξi,

β′Φ(xi) + b− yi ≤ ε + ξ∗i , and
ξi, ξ

∗
i ≥ 0.

To cope with possibly in�nite-dimensional nonlinear mappings and for greater
computational e�ciency, instead of the primal linear minimization problem de-
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�ned in (2.9), its dual representation is used. The unknown parameters of the
nonlinear SVR β, b, ξi and ξ∗i , i = 1, 2, . . . , n of the original primal (2.9) can be
found as the unique solution of its dual counterpart,

maximize Ld(α) := −1
2

n∑

i,j=1

(αi − α∗i )(αj − α∗j )(Φ(xi)′Φ(xj)) +

+
n∑

i=1

(αi − α∗i )yi − ε
n∑

i=1

(αi + α∗i )

subject to 0 ≤ αi, α
∗
i ≤ C, i = 1, 2, . . . , n and

n∑

i=1

(αi − α∗i ) = 0,

where the unknowns αi and α∗i are the Lagrange multipliers of the primal. For
a step-by-step derivation of the dual and the way to �nd the b parameter we
refer to, for example, Vapnik (1995) and Smola (1996). The αi and α∗i are the
weights associated with each data point i. If both αi and α∗i for point i are
equal to zero, then this point lies inside the ε-insensitive region. It has a weight
of zero and plays no role for the �nal formulation of the SVR function. Note
that the speci�c case Φ(x) = x recovers the linear SVR of Section 2.3.

The SVR regression function takes the form of (Smola & Sch�olkopf, 1998):

f(x) =
n∑

i=1

(α∗i − αi)(Φ(x)′Φ(xi)) + b, (2.10)

where Φ(x) is a vector containing the mapped values of the independent vari-
ables for a new (test) point. Note that since the SVR regression function
can be expressed as f(x) = β′Φ(x) + b, it follows that β′Φ(x) =

∑n
i=1(α

∗
i −

αi)(Φ(x)′Φ(xi)) at the optimum, and therefore model coe�cients are obtained
as β =

∑n
i=1(α

∗
i − αi)Φ(xi).

2.4.2 Nonlinear SVR via Kernel Functions
We now consider nonlinear SVR estimation in greater detail. The construc-
tion of nonlinear SVR is carried out in two steps. First, the data are mapped
through x → Φ(x) into a higher -dimensional space. Second, a linear regression
function is constructed in the transformed space. This function corresponds
to a nonlinear one in the original, non-transformed space. The optimal linear
regression function in the transformed space should be, analogically to the non-
transformed case, as �at as possible (Smola & Sch�olkopf, 1998) to ensure a good
generalization ability. Due to the mapping x → Φ(x), the SVR estimates in the
nonlinear case take the form (Smola & Sch�olkopf, 1998):

f(x) =
n∑

i=1

(α∗i − αi)k(x,xi) + b,
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Figure 2.3: Three possible nonlinear SVR solutions to the problem of estimating
the function y = sin(x1) from examples.

where k(xi,xj) = Φ(xi)′Φ(xj) is a so-called kernel function that computes
dot products in a transformed space. Often, the Gaussian kernel k(xi,xj) =
Φ(xi)′Φ(xj) = e−γ‖xi−xj‖2 is used, where γ is a manually adjustable parameter
that controls the degree of similarity between any two vectors in the transformed
space. Note that coe�cient estimates for nonlinear SVR are available only if the
mapping x → Φ(x) is carried out explicitly. The coe�cients are then calculated
as β =

∑n
i=1(α

∗
i − αi)Φ(xi). Other kernels exist but are beyond the scope of

this paper.
Let us now consider Figure 2.3, which shows 17 sample points (black dots)

from the function y = sin(x1). Three possible nonlinear SVR solutions to this
problem are given in this �gure. By construction there is no noise in the data.
The nonlinear transformation of the original data is carried out via the Gaussian
kernel. All SVR manually adjustable parameters are the same in all three
panels, except for ε, which is equal to 0.1, 0.45 and 0.9 in panels (a), (b), and
(c), respectively. As ε increases, the estimated functional relationship between
y and x1 becomes weaker (and therefore �atter); furthermore, the amount of
errors reduces substantially. Notice that the estimated relationship also becomes
�atter as x1 takes on values that are farther away from the values of the original
data points, which is an attractive property of SVR for extrapolation.

So far the question of how to choose the manually adjustable parameters
(such as C, ε and γ) has been left aside. As mentioned in Section 2.3, one very
common way to proceed is to use a k-fold cross-validation procedure. In a such
a procedure, the data set is split in k (equally-sized) parts. Then, k models
for a �xed set of values for the manually adjustable parameters are built on
k − 1 folders and each time the one remaining folder is used for validation (or,
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testing). The chosen parameters are those that produce minimal mean squared
error on average (over all k test parts).

For the sake of completeness, we should point out that an alternative speci�-
cation of the standard ε-insensitive SVR exists, called ν-SVR, which minimizes
the primal objective function (Sch�olkopf, Bartlett, Smola, & Williamson, 1998)

1
2
β′β + C

(
νnε +

n∑

i=1

max{0, |yi − (β′xi + b)| − ε}
)

instead of (2.7), where 0 ≤ ν ≤ 1 is speci�ed a priori. The parameter ν is an
upper bound on the fraction of points allowed to lie outside the tube that is
asymptotically equal to the number of support vectors. Here, ε is treated as
an unknown nonnegative parameter to optimize over and is therefore computed
automatically.

Finally, we point that other (convex) loss functions could also be employed in
(2.7), next to the standard ε-insensitive loss function, such as Laplacian, Huber,
polynomial or piecewise polynomial (see, e.g., Smola & Sch�olkopf, 1998, 2004).
Due to the convexity of these loss functions, the solution is unique.

2.4.3 Links between SVR and Classical Regression Anal-
ysis

The classical OLS approach to function estimation is to �nd the vector of coe�-
cients β = β∗ and intercept term b = b∗, which minimize the loss LOLS(β, b) =∑n

i=1(yi − β′xi − b)2, where {yi,xi}, i = 1, 2, . . . n, is a data point. The RR
approach extends OLS by modifying the loss to LRR(β, b) = λβ′β +

∑n
i=1(yi−

β′xi − b)2, for λ ≥ 0. Hence, the linear SVR, OLS, and RR optimization
problems can be thought of special cases of the general optimization problem

minimize LAll
p (β, b, ξ, ξ∗) :=

A

2
β′β +

C

k

n∑

i=1

((ξi)k + (ξ∗i )k) (2.11)

subject to yi − β′xi − b ≤ ε + (ξ∗i )k,

β′xi + b− yi ≤ ε + (ξi)k, and
ξi, ξ

∗
i ≥ 0,

for i = 1, 2, . . . , n,

where ε ≥ 0, k ∈ {1, 2}, A ≥ 0, C > 0. The classical linear regression optimiza-
tion problem is a special case of (2.11), where k = 2, ε = 0, C = 2, and A = 0.
The linear RR estimation problem is obtained for k = 2, ε = 0, C = 2, and
A = 2λ. Finally , the linear SVR estimation problem (2.8) corresponds to the
restrictions k = 1, ε > 0, C > 0, and A = 1.
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Interestingly, linear RR can be extended to nonlinear RR via the intro-
duction of kernel functions, akin to the transition from linear to nonlinear
SVR. The resulting method is called Kernel Ridge Regression (KRR). KRR
can be derived as follows. Starting from the primal minimization problem
LRR(β, b) = λβ′β +

∑n
i=1(yi−β′xi− b)2, one introduces a mapping x → Φ(x),

and constructs the equivalent dual (maximization) form of the nonlinear RR
(minimization) optimization problem (see, e.g., Shawe-Taylor & Cristianini,
2004; Pozdnoukhov, 2002):

maximize LRRd(α) := − 1
4λ

n∑

i,j=1

αiαj(Φ(xi)′Φ(xj)) +
n∑

i=1

αiyi − 1
4

n∑

i=1

α2
i

subject to:
n∑

i=1

αi = 0.

The �nal step is to replace the dot product Φ(xi)′Φ(xj) with a kernel function
k(xi,xj). The resulting regression function, expressed in dual form, is: f(x) =∑n

i=1(α
∗
i − αi)k(x,xi) + b.

2.5 An Illustration for New Cars
The technique of SVR might be particularly useful for the Market Share At-
traction Model as it is not certain that the log of the market shares are condi-
tionally Gaussian and also as the log transformation can create outlying data
points. Here we present and compare the results of SVR and OLS estimation
(which is equivalent to ML estimation with underlying Gaussian noise) of the
coe�cients of the Market Share Attraction Model on empirical data. Carrying
out an extensive benchmark study is beyond the scope of the present paper and
we refer to P�erez-Cruz et al. (2003) for a number of simulation studies. They
report superior performance of SVR vis-a-vis ML coe�cient estimation (with
assumed Gaussian noise model) in cases where the dependent variable has not
been drawn from a conditional normal distribution as well as in cases where the
distribution is actually normal, but the sample size is small.

2.5.1 Description of the Data
The data are monthly sales �gures per brand of new cars, in the Netherlands
starting in January 1992 and ending in October 2001 obtained from Statistics
Netherlands (CBS). Market shares are computed by dividing brand sales by
total sales. There is a total of 36 di�erent brands, one being 'Other' collecting
all the smallest brands. The price series concerns the price of new cars. This
price series is based on the best selling model per brand in a particular year.
Note that we only have the prices of models for the 26 best selling brands.
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The source is www.autoweek.nl. To �nd the price of that best selling model
we consulted various annual editions of (Dutch language) Autoboek, Autovisie,
and Autotest. The market shares are presented in the line plots of Figure 2.4.

2.5.2 Estimation of the Market Share Attraction Model
We now turn to the estimation of the (unrestricted) Market Share Attraction
Model, applied to our data. We expect that the prices and market shares of each
brand will have an e�ect on the market shares of all the other brands. In other
words, we assume that the explanatory variables in the model are the same for
each brand. For convenience, we denote with xk,t the kth explanatory variable
for any brand at time t, no matter whether it is in a lagged or other form, or it
represents price or another explanatory variable. Thus, the attraction of brand
i at time t, given in the general equation (2.1), becomes in our case

Ai,t = exp(µi + εi,t)
K∏

k=1

x
βk,i

k,t for i = 1, . . . , I, (2.12)

with k = 1, 2, . . . , 88, t = 1, 2, . . . , T and I = 36. The length of the time horizon
T ranges from 50 to 117, since we study the evolution of market shares over
time. For each T a separate Market Share Attraction Model for all brands is
estimated. The �rst 26 explanatory variables are current prices; the next 26
variables are one month lagged prices, and the last stack of 36 variables are one
month lagged market shares of all brands. Using brand I as a base brand, (2.1)
translates into the market share equations for brands 1, 2, . . . , I − 1 at time t
(akin to (2.5))

log M1,t − log MI,t = µ̃1 +
∑K

k=1 β̃k,1zk,t + η1,t

log M2,t − log MI,t = µ̃2 +
∑K

k=1 β̃k,2zk,t + η2,t

... =
... +

... +
...

log MI−1,t − log MI,t = µ̃I−1 +
∑K

k=1 β̃k,I−1zk,t + ηI−1,t,

(2.13)

where zk,t = log xk,t. For notational convenience, we denote yi,t = log Mi,t −
log MI,t, yi = (yi,1, yi,2, . . . , yi,T )′, β̃i = (β̃1,i, β̃2,i, . . . , β̃K,i)′ and ηi =
(ηi,1, ηi,2, . . . , ηi,T )′. Further, we denote with Z the common matrix of inde-
pendent variables for each brand over time t = 1, 2, . . . , T . Consequently, (2.13)
can be modeled in matrix form as




y1

y2

...
yI−1


 =




Z 0 · · · 0

0 Z
...

... . . . ...
0 · · · 0 Z







β̃1

β̃2

...
β̃I−1


 +




η1

η2

...
ηI−1


 . (2.14)
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Figure 2.4: Market shares of 36 brands on the Dutch market between January
1992 and October 2001.
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The coe�cients of this model can now be estimated using OLS or SVR.
For OLS, one estimates the model coe�cients by minimizing the sum of
squared errors,

∑I−1
i=1

∑T
t=1 η2

i,t. For SVR estimation, one minimizes the sum
0.5

∑I−1
i=1

∑K
k=1 β̃k,i + C

∑I−1
i=1

∑T
t=1 max{0, |ηi,t| − ε}.

Because of the structure of the block diagonal matrix with blocks Z, the OLS
estimates can be computed very e�ciently. The inverse (Z′Z)−1 only needs to
be computed once and β̃i = (Z′Z)−1Z′yi contains the OLS optimal weights
for brand i. In a similar way, the weights for the linear SVR problem can be
estimated separately for each brand i. Computationally, this split will be much
faster than inserting (2.14) directly into a linear SVR program. However, for
nonlinear SVR, the problem cannot be split up into I smaller nonlinear SVR
problems because its solution is de�ned in the dual where the nonlinearity is
added to the full problem. Hence, splitting up the nonlinear SVR into smaller
parts does not solve the full nonlinear SVR problem.

Although coe�cient estimates for SVR are not always available in the non-
linear case (see Section 2.4), predicted values for the y's can always be created.
Once all y's are obtained, say using values for the predictor variables at test
time t∗, market shares can be derived using the relationship

eyi,t

∑I
i=1 eyi,t

=
e(log Mi,t−log MI,t)

∑I
i=1 e(log Mi,t−log MI,t)

=
Mi,t/MI,t∑I
i=1 Mi,t/MI,t

= Mi,t,

which uses the fact that the market shares sum up to unity.

2.5.3 Results
We estimated the coe�cients of the Market Share Attraction Model given in
(2.14) using both the SVR and OLS techniques. As indicated in Section 2.2, OLS
is equivalent to ML estimation because (a) the dependent variable is assumed
conditionally Gaussian, (b) the explanatory variables are the same for all brands,
and (c) there are no parameter restrictions. The dependent variable is the log-
ratio of market shares of 35 car brands and an arbitrary base brand, which
we have chosen to be Volvo. The predictor variables include current prices,
one period lagged prices, and one period lagged market shares. For SVR, we
have used the linear SVR and the nonlinear SVR with the popular Radial Basis
Function (RBF) kernel. We use an expanding window of historical in-sample
data to produce a forecast for a given out-of-sample month. That is, we have
estimated the market share model (2.14) 68 times, each time using slightly
di�erent, one-month-extended data. Thus, to forecast the �rst out-of-sample
month March 1996, we use the �rst 50 months from January 1992 to February
1996. For each following out-of-sample month we add one month of historical
data to the estimation window. In the end, we calculate the Root Mean Squared
Prediction Error (RMSPE) and Mean Absolute Prediction Error (MAPE) per
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brand per month, where an error is de�ned as true brand market share minus
predicted market share. Note that the market shares are always between 0 and
1.

For each of the 68 periods, we tested whether the assumption of OLS holds
that the dependent variable is sampled from a Gaussian distribution. Therefore,
we carried out two normality tests, that is, the large-sample Jarque-Bera and
small-sample Lilliefors tests. Both tests rejected normality of the dependent
variable at the 5% signi�cance level for each of the 68 models for all samples.
This result already suggests that SVR may perform better than OLS.

As noted in Section 2.4, SVR requires some parameters to be tuned, notably
C and the width ε of the error-insensitivity region. In the case of RBF kernel, an
additional γ parameter has to be tuned. The tuning is usually done via a grid
parameter search, where each grid point is evaluated using a cross-validation
procedure. In our case, we use a �ve-fold cross-validation procedure, which is
carried out as follows. A given training data set is divided into �ve equal parts.
A particular point on the grid is selected. It represents a tuple of values for
the tuning parameters. Five models are trained, where each of the �ve parts
is considered as an out-of-sample test set and the remaining four parts as a
training set. The parameter combination that produces minimal squared error
over the �ve test sets is then used to train the whole data set (consisting of all
�ve parts) and produce an out-of-sample forecast for the following month.

The main results of the experiments are presented in Table 2.1. Overall,
SVR outperforms OLS considerably and consistently in terms of RMSPE and
MAPE over the 68-month out-of-sample period from March, 1996, to October,
2001. The average monthly RMSPE over all brands for the out-of-sample period
is equal to 0.028839 for OLS. The corresponding �gure for the linear SVR is
0.008466, and for SVR with RBF kernel the RMSPE is 0.008452. Figure 2.5
shows a detailed out-of-sample monthly RMSPE performance averaged over
all brands. There are about 6 to 8 months that could visibly be considered
as out-of-sample outliers, since both OLS and SVR perform relatively worse
there. Clearly, OLS performs much worse, which suggests that SVR is capable
of mitigating the e�ect of outliers and perform better in times of relative market
distress.

Interestingly, both the linear SVR and the highly nonlinear SVR produce
more or less the same prediction results, suggesting that there is not enough
evidence in the data to favor a nonlinear relation among the dependent and
independent variables. In addition, linear SVR has performed substantially
better than OLS, suggesting that the robustness and penalization properties of
SVR have worked out well on this particular market share prediction task. As
demonstrated in P�erez-Cruz et al. (2003), factors working against OLS and in
favor of SVR are the dependent variable not being sampled from a Gaussian
distribution, the large amount of predictors relative to T , and the number of
in-sample months.
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Table 2.1: Performance results over 68 out-of-sample months (March 1996 � Oc-
tober 2001): Mean Absolute Prediction Error (MAPE) and Root Mean Squared
Prediction Error (RMSPE) for OLS, linear SVR (Lin SVR), and nonlinear SVR
with Radial Basis Function kernel (RBF SVR) models. MAPE and RMSPE
represent the average of the average monthly errors over all 36 brands during
the out-of-sample period.

improvement of improvement of
OLS Lin SVR RBF SVR Lin SVR over OLS RBF SVR over OLS

MAPE 0.012803 0.004882 0.004879 2.622 times 2.624 times
RMSPE 0.028839 0.008466 0.008452 3.406 times 3.412 times
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Figure 2.5: 68 monthly average RMSPE's over all brands for OLS, Linear SVR,
and nonlinear RBF SVR.
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It was noted above that RBF SVR gives similar forecasts to linear SVR.
Adding nonlinearities to a model with a true linear relationship may lead to
over�tting the training data and worse out-of-sample forecasts. In the case of
RBF SVR, there is no danger of over�tting as the penalization and ε-insensitive
loss function work in the direction of producing a linear relation, unless there is
su�cient evidence in the data for the presence of nonlinearities, as argued also
in Figure 2.1. What is more, Keerthi and Lin (2003) have demonstrated that
there is no need to explicitly consider linear SVR since the RBF SVR is capable
of discovering linear relations quite well.

Next we focus on the coe�cient estimates produced by OLS and the linear
SVR. Such estimates are not readily available for the nonlinear RBF SVR. As
argued from the theoretical viewpoint in Sections 2.3 and 2.4, the estimated
coe�cients in SVR are shrunk towards zero vis-a-vis the corresponding OLS
coe�cients. This e�ect can be observed for our task as well. Figures 2.6 depict
the e�ects of each of the 88 predictor variables on each of the 35 explained
variables y1,y2, . . . ,yI−1 for OLS (left column) and linear SVR (right column).
The explanatory variables are divided into three groups: the �rst group consists
of current prices, the second of the lagged prices, and the third group of lagged
market shares. Each of these e�ects does not stand for one particular period T .
Rather, it represents the average value over the 68-month out-of-sample period.
The �lled circles represent the average e�ect over the 68-month out-of-sample
period of the predictor variables on y10, the log-di�erence of the market shares
between brand 10 (Ford) and the base brand (Volvo). A key observation to
make here is the striking di�erence between the magnitude of the OLS and
linear SVR coe�cients in general.

To visualize the in�uence of particular predictors, the sign of the e�ect is of
less importance than the size. Therefore, we also present the absolute values of
the e�ects of each predictor variable on y1,y2, . . . ,yI−1 in Figure 2.7. For each
predictor variable, the sum of absolute e�ects on y1,y2, . . . ,yI−1 is depicted.
Thus, the number of di�erent shades of gray is I − 1 (or, 35 in our case). This
representation allows us to observe whether OLS and linear SVR consider the
same variables to be in�uential. For example, consider the 26 current-price
variables. A striking feature, that is not easily observable from Figure 2.6,
is that the variables that appear to play a key role in OLS estimation have
also a relatively large impact in linear SVR estimation, most notably prices
of Fiat, Ford, Mercedes, Renault, Seat, Subaru, and Volvo. In linear SVR,
there are some additional variables that stand out as important: prices of Alfa
Romeo, Citroen, Daihatsu, and others. Overall, the linear SVR coe�cients have
much lower magnitude in absolute sense, and are more evenly spread than the
corresponding OLS coe�cients.

To see how the three models di�er in predicting the market shares, we have
plotted the prediction errors for each brand. Figure 2.8 shows these plots for
OLS and Figure 2.9 for linear SVR. We do not present a representation of
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Figure 2.6: Regression weights (small dots) of the predictor variables obtained
by OLS and linear SVR for each of the 35 explained variables on average, where
the averaging is done over the 68 out-of-sample periods. The circles represent the
average (over time) e�ect of all predictor variables on a concrete explanatory
variable: the log-di�erence of the market shares of Ford and the base brand
Volvo.
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Figure 2.7: Distribution of absolute regression weights of the variables obtained
by OLS and linear SVR for each of the 68 estimation periods. The darkness of
the area indicates the density of the absolute regression weights.
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Figure 2.8: Out of sample prediction error of OLS estimation.

the errors for the nonlinear RBF SVR because there is hardly any di�erence
with the errors of linear SVR. The most striking feature again is that OLS has
several large errors whereas the largest errors of linear SVR are at least a factor
5 smaller. The error plots can be interpreted for each brand separately. To
consider one case of the residual plot for linear SVR, Volkswagen had around
January 1999 and again around January 2000 a positive error, whereas Toyota
had simultaneously two spikes of negative errors. As a consequence, the linear
SVR model apparently has underestimated the market share of Volkswagen and
overestimated the market share of Toyota at these time points.

We now turn to the comparison of OLS, linear and nonlinear SVR to that of
linear and Kernel Ridge Regression. As outlined in the introduction and Section



71

2.5 An Illustration for New Cars 61

Table 2.2: Bootstrap p-values of pairwise tests for superior predictive ability
(Hansen, 2005) over two performance criteria comparing OLS, linear SVR (Lin
SVR), linear Ridge Regression (Lin RR), and nonlinear SVR and Kernel Ridge
Regression with Radial Basis Function kernel (RBF SVR and RBF KRR). Three
values for the q randomization parameter have been used in the tests: 0.1, 0.5
and 0.9. The estimation (out-of-sample) period is March 1996 � October 2001.
The upper part of the table shows the results for the Mean Absolute Prediction
Error (MAPE) performance criterion and the lower part for the Root Mean
Squared Prediction Error (RMSPE) criterion. RMSPE (MAPE) represents
the average over 68 months of the average over 36 brands monthly RMSPE's
(MAPE's) during the estimation period.

OLS Lin SVR RBF SVR Lin RR RBF KRR

MAPE 0.012803 0.004883 0.004879 0.004871 0.004868
Benchmark Competitor
q = 0.1
OLS N/A 0 0 0 0
Lin SVR x N/A 0.46291 0.37965 0.32378
RBF SVR x x N/A 0.43005 0.40736
Lin RR x x x N/A 0.37254

q = 0.5
OLS N/A 0.00007 0.00009 0.00007 0.00008
Lin SVR x N/A 0.4759 0.41877 0.39167
RBF SVR x x N/A 0.44072 0.42857
Lin RR x x x N/A 0.34727

q = 0.9
OLS N/A 0.00004 0.00002 0.00003 0.00002
Lin SVR x N/A 0.47851 0.42097 0.40019
RBF SVR x x N/A 0.44838 0.43117
Lin RR x x x N/A 0.33249

RMSPE 0.028839 0.008466 0.008452 0.008271 0.008257
Benchmark Competitor
q = 0.1
OLS N/A 0 0 0 0
Lin SVR x N/A 0.41851 0.00062 0.00042
RBF SVR x x N/A 0.00503 0.00635
Lin RR x x x N/A 0.22524

q = 0.5
OLS N/A 0.00045 0.00038 0.0004 0.00042
Lin SVR x N/A 0.43363 0.02285 0.01822
RBF SVR x x N/A 0.04348 0.03435
Lin RR x x x N/A 0.17145

q = 0.9
OLS N/A 0.00021 0.00028 0.00027 0.00018
Lin SVR x N/A 0.43848 0.03456 0.029
RBF SVR x x N/A 0.04866 0.03931
Lin RR x x x N/A 0.15242
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Figure 2.9: Out of sample prediction error of linear SVR estimation.

(2.4.3), RR and KRR are good competitors to linear and nonlinear SVR since
all of these models share common features. In particular, these features are
the penalization of the L2 norm of the estimated coe�cients and the ability to
employ kernel functions to produce nonlinear regression surfaces.

As in SVR, RR and KRR require tuning of some model parameters. For
RR, there is only one parameter, λ. For KRR, we use the RBF kernel, and
therefore one more parameter has to be tuned � the RBF parameter γ. This
tuning was performed using a �ve-fold cross-validation validation procedure, as
in the SVR case. Before commenting on the signi�cance of the performance
di�erences, we stress that although the number of folds in the cross-validation
procedure is equal for both SVR and KRR (in the linear and nonlinear cases),
the grid for tuning the parameters is di�erent. This grid is rougher for SVR,
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Figure 2.10: Monthly performance results in terms of RMSPE and MAPE for
linear SVR and RR (panels (a) and (c)), and for RBF SVR and RBF KRR
(panels (b) and (d)).

since estimation takes much longer, mostly due to the need to tune one more
parameter, the width of the tube ε.

The two top panels of Figure 2.10 depict monthly performance results in
terms of RMSPE for the linear SVR and linear RR, and for RBF SVR and
RBF KRR, respectively. The two bottom panels of Figure 2.10 depict monthly
performance results in terms of MAPE for the linear SVR and linear RR, and
for RBF SVR and RBF KRR, respectively. What seems evident is that the
majority of the good-performing and bad-performing months coincides in all
four cases.

To test whether some of the applied techniques perform signi�cantly better
than others, we carry out pairwise tests for superior predictor ability, proposed
by Hansen (2005), who proposed a bootstrap test, carried out essentially as
follows. The input for the test are k vectors of relative performances over a
benchmark model. For pairwise testing, as in our case, k = 1, which we assume
from now on. Subsequently, B number of bootstrap samples of this vector are
created, and each time the overall relative performance is recalculated. We use
overall RMSPE and MAPE as performance measures and choose B = 100000.
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The number of times that the benchmark model outperforms the contender
out of B trials is the p-value of the test. There is one important detail. The
bootstrap samples are not created in a completely random way, that is, once an
initial point in the vector has been chosen at random, there is a speci�ed user-
de�ned chance that the following point will be chosen. This chance is governed
by a so-called q parameter. Table 2.2 shows the p-values of the pairwise relative
performance tests among all �ve estimation models for three di�erent values of
the q parameter.

In all three cases the results appear to be quite similar: OLS is signi�cantly
outperformed by all the other methods; linear SVR and RBF SVR perform
similarly; linear RR and RBF KRR perform similarly; and SVR and (K)RR
are closer to each other more in terms of MAPE rather than RMSPE. The
di�erences in the last case may well be due to di�erences in the roughness
of the grid over which parameter tuning has been performed. The similarity
between SVR and KRR (both linear and nonlinear forms) is striking. These
suggests that for our data set the penalization of model coe�cients may play a
decisive regularization role, rendering the further utilization of the ε-insensitive
loss function unnecessary.

2.6 Conclusion
The Market Share Attraction Model may su�er from estimation problems when
the model assumptions are not satis�ed. In this paper, we have introduced SVR
as an alternative estimation procedure for this model. An intuitive and self-
contained introduction to SVR was provided. To test the estimation procedures,
we compared OLS to linear and nonlinear SVR to empirical market share data
of the Dutch automobile sales of 36 brands. It was found that the prediction
by either linear or nonlinear SVR was much better than OLS. There was hardly
any di�erence between linear and nonlinear SVR indicating that for these data
it is not necessary to allow for a nonlinear prediction.

In addition, we carried out pairwise tests for superior predictive ability (pro-
posed by Hansen, 2005) between OLS, linear and nonlinear SVR, and linear and
nonlinear RR. The tests revealed that all penalization methods outperform the
base OLS model in terms of RMSPE and MAPE. There is not much evidence
however for di�erences among these methods, with the exception maybe of KRR
versus SVR (both linear and nonlinear cases), when the object of comparison
is RMSPE. Our conclusion is that for our data set the penalization of model
coe�cients is a quite e�ective departure from OLS estimation. The other two
further departures � the introduction of nonlinearity (via the RBF kernel) and
the use of a more robust loss function � do not account for a further signi�cant
improvement. These claims however are based on one data set only and cannot
be generalized on the basis this data set only.
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There are some remaining issues for SVR. For example, is there an optimal
kernel function for the Market Share Attraction Model or is the linear SVR
su�cient? What is the best procedure for tuning the manually-adjustable pa-
rameters in the SVR? Other issues are how to compute con�dence intervals
for the predictions and how to interpret the parameters of the nonlinear SVR
model.

Clearly, more experiments have to be carried out to con�rm or refute more
convincingly the applicability of SVR in marketing tasks and as a competitor to
traditional estimation techniques. Our empirical comparison suggests that when
the OLS assumption of normality of the errors in the Market Share Attraction
Model is not satis�ed, SVR is a good alternative to estimate its parameters.
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Chapter 3

Equity Style Timing using
Support Vector Regressions∗

The disappointing performance of value and small cap strategies shows that
style consistency may not provide the long-term bene�ts often assumed in the
literature. In this study we examine whether the short-term variation in the
U.S. size and value premium is predictable. We document style-timing strategies
based on technical and (macro-)economic predictors using a recently developed
arti�cial intelligence tool called Support Vector Regressions (SVR). SVR are
known for their ability to tackle the standard problem of over�tting, especially in
multivariate settings. Our �ndings indicate that both premiums are predictable
under fair levels of transaction costs and various forecasting horizons.

3.1 Introduction
There is no doubt about the importance of investment styles in modern portfolio
management. The underlying rationale for this relates to a series of in�uential
studies documenting the potential bene�ts of investing in stocks with funda-
mental commonalities or �styles�. In the past two decades, substantial evidence
surfaced suggesting that investing in portfolios of stocks with a small market
capitalization and value orientation provides a premium in the long run. The
�size premium� has been �rst reported by Banz (1981), who found a nega-
tive relation between a �rm's market capitalization and its stock performance
in the U.S. The extensively researched �value premium� has been documented
most prominently by Fama and French (1992) and Fama and French (1998) and

∗This chapter has been published as Nalbantov et al. (2006):
Nalbantov, G., Bauer, R., & Sprinkhuizen-Kuyper, I. (2006). Equity Style Timing using
Support Vector Regressions. Applied Financial Economics, 16 (15), 1095�1111.
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Lakonishok, Schleifer, and Vishny (1994). These studies showed that stocks with
typical value features such as low market-to-book (M/B), low price-to-earnings
(P/E) and low price-to-cash (P/C) ratios provided higher average returns than
so-called �growth� stocks, with high M/B, P/E and P/C ratios. These empiri-
cal �ndings induced a discussion on the source and magnitude of the value and
size premium. Some studies argued that this premium is a compensation for
holding stocks under relative distress, see for instance Chan and Chen (1991)
and Fama and French (1993). Another view, put forward in Lakonishok et al.
(1994) and Haugen and Baker (1996), is that stock markets lack e�cient pricing
ability. A third possible explanation suggested in Lo and MacKinlay (1990) is
that the obtained results are due to data snooping biases. A recent review and
update for the U.S. by Chan and Lakonishok (2004) shows that value investing
still generates promising returns in the long run. Dimson, Nagel, and Quigley
(2003) arrive at similar conclusions for the U.K. value premium.

The rather disappointing performance of small cap and value strategies dur-
ing the nineties has however pointed out that style consistency may not nec-
essarily provide superior returns in any economic regime. A relatively small
body of literature has explicitly addressed the potential bene�ts of style timing
strategies over a style consistent approach. Although most of these papers may
di�er in methodology, they all rely on the notion that the cyclical behavior of
investment styles is correlated with systematic economic and technical forces,
which could make the value and size premium partially predictable. Cooper,
Gulen, and Vassalou (2001) �nd su�cient predictability for size-sorted strategies
in the U.S., but weaker results for value-sorted strategies.1 Levis and Liodakis
(1999) �nd moderate evidence in favor of small/large rotation strategies, but
less evidence for value/growth rotation in the United Kingdom. Bauer, Der-
wall, and Molenaar (2004) �nd evidence for the pro�tability of style rotation
strategies in Japan, but point out that moderate levels of transaction costs can
already make these results less interesting in a practical context. The majority
of rotation studies employ technical (or market-based) and (macro-)economic
indicators. The dependent variables, either the value or the size premium, are
constructed using well-known style index series.

In this study we will use a similar approach by constructing the value and
size premium in the U.S. based on S&P style indices. The sign and magnitude of
both premiums will then subsequently be forecasted using a broad set of (macro-
)economic and technical predictors. In contrast to the studies mentioned above,
we will not apply a standard multifactor model framework. Factor models
in general su�er from de�ciencies intrinsic to multiple regression techniques.

1Other related work includes Ahmed, Lockwood, and Nanda (2002), Arnott, Dorian, and
Macedo (1992), Arnott, Rice, Kelso, Kiscadden, and Macedo (1989), Asness, Friedman, Krail,
and Liew (2000), Copeland and Copeland (1999), Elfakhani (2000), Jacobs and Levy (1996),
Kao and Shumaker (1999), Lucas, Van Dijk, and Kloek (2002), Mills and Jordanov (2003),
and Mun, Kish, and Vasconcello (2001).
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Most of the studies based on this methodology ex ante decide to construct
parsimonious models to avoid the problem of over�tting. Increasing the number
of factors at some point will deteriorate the out-of-sample prediction ability of
the rotation models. Levis and Liodakis (1999) for instance report empirical
results based on six factors for the size spread and eight factors for the value
spread. Although their regression window is expanding, thereby updating the
relevance of the factors through time, it does not provide the ability to add
or delete economically viable factors. In most cases the �optimal� choice of
independent variables is based on a set of statistical criteria, like adjusted R2,
the Akaike information criterion or the Schwarz criterion. These criteria are
designed to correct the inclusion of factors for the increased model complexity.
Potentially, numerous relevant variables are bound to be excluded as predictors.

A further complication arises from the fact that individual factors in a model
are usually assumed to be independent. Most linear regression models however
are likely to su�er from multi-collinearity, especially when the forecasting vari-
ables are numerous and closely related. One could therefore argue that factor
models face two pivotal challenges: �rst, how to employ a large set of poten-
tially relevant variables in a factor model without jeopardizing its predictive
power, and second, how to incorporate possible interactions between individual
variables in the course of the model-building process without deteriorating the
quality of the model.

Support Vector Regressions (SVR) have become a popular analytical tool
following a series of successful applications in �elds ranging from optical char-
acter recognition to DNA analysis (M�uller, Mika, R�atsch, Tsuda, & Sch�olkopf,
2001; Smola & Sch�olkopf, 1998). In essence, the SVR technique is used for
function estimation based on a �nite number of observations, just like the lin-
ear multiple-regression technique. Numerous potential applications of SVR in
�nance have been reported elsewhere.2 The combination of three key features
can justify a priori the utilization of the SVR tool in �nancial forecasting mod-
eling. First, SVR behave robustly even in high-dimensional feature problems
(Maragoudakis, Kermanidis, Fakotakis, & Kokkinakis, 2002), or in other words,
where the explanatory variables are numerous, and in noisy, complex domains
(Burbidge & Buxton, 2001). Second, SVR achieve remarkable generalization
ability by striking a balance between a certain level of model accuracy on a
given training data-set, and model complexity.3 And third, SVR always �nd a
global solution to a given problem (Smola, 1996; Vapnik, 1995), in sharp con-
trast with neural networks for instance. A general limitation of SVR is that they
produce point estimates rather than posterior probability distributions of the
obtained results, which follows from the fact that SVR are a nonparametric tool.

2See, e.g. Monteiro (2001), M�uller et al. (1997), Rocco S. and Moreno (2003), Smola and
Sch�olkopf (1998), and Van Gestel, Baesens, Garcia, and Van Dijcke (2003).

3Note that in real-world applications the presence of noise in regression estimation neces-
sitates the search for such a balance, see Vapnik (1995) and Woodford (2001).
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Some parameters however have to be estimated in advance via a standard pro-
cedure called �cross-validation�. This procedure, though quite computationally
extensive, additionally ensures that model selection is based on out-of-sample
rather than in-sample performance.

Using SVR we will construct models in order to predict the value and size
premiums in the U.S. stock market. Our aim is to test on a preliminary level the
performance of SVR, and not to engage in an extensive data-mining exercise.
For that reason, we build our models on historical data of 60 months, which is a
quite common horizon in the literature. Obviously, other model-building hori-
zons can be explored, but in such a way arti�cially good results could emerge,
falling pray to the data-mining critique. We compare the results of the rotation
strategies with so-called style consistent passive strategies. Furthermore, we
vary the forecast horizon (one-, three- and six-month signals), which serves as
a model-stability test, and measure the impact of a wide range of transaction
costs. The empirical section shows that style rotation strategies using signals
created by SVR produce outstanding results for both the value and the size
premiums.

The remainder of the chapter is organized as follows. Section 3.2 discusses
the choice of explanatory variables and the nature of the explained variables
(the proxies for the value and size premiums). Section 3.3 deals extensively
with Support Vector Regressions as an analytical tool and how it can be used
to predict the value and size premiums. Section 3.4 presents our main empirical
�ndings, and Section 3.5 concludes.

3.2 Data
3.2.1 Construction of the Value and Size Premium Series
The choice of an appropriate measure to determine the value premium is cru-
cial. Our main goal is to come up with a trading strategy, which can be easily
implemented in a practical context.4 In principle, long time series data from
the Center for Research in Security Prices (CRSP) can be used. Following this
venue is not well suited for a low transaction cost strategy however, since there
are no readily-available instruments (e.g. futures) to exercise such a trading
strategy in practice. As we expect the rotation strategies to have a consider-
able turnover, we conduct our analysis on the S&P Barra Value and Growth
indices (the value premium). Transaction costs are expected to be relatively
low as we are able to buy and sell futures on these indices.5 Both indices are

4In the case of for instance the High book-to-market minus Low book-to-market (HML)
series of Fama and French (1993), we can expect relatively high transaction costs as portfolios
generally exhibit unacceptable liquidity features, particularly in a monthly long/short setting.

5In practice the maximum exposure of the trading strategy is still restricted by the liquidity
features of this future.
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Figure 3.1: Cumulative performance of the value and size premiums (1988:01�
2002:12).

constructed by dividing the stocks in the S&P 500 index according to just one
single attribute: the book-to-market ratio. This procedure splits the S&P 500
index into two, mutually exclusive groups of stocks and is designed to track
these accepted investment styles in the U.S. stock market. The Value index
contains �rms with high book-to-market ratios and conversely the Growth in-
dex �rms with lower book-to-market ratios. The combination of both (market
cap weighted) indices adds up to the (market cap weighted) S&P 500.

Figure 3.1 and table 3.1 show that a strategy purely based on the value
premium would have witnessed some highly volatile periods. These series are
the returns of a long position in the Value index and a short position in the
Growth index throughout the entire sample period ranging from January 1988
to December 2002. Monthly maximum and minimum returns of this strategy
are considerably high: 9.74% and -12.02%. Summary statistics (see table 3.1)
reveal that the spread series exhibits excess kurtosis. The number of negative
performance months of this passive value strategy is approximately 47%. The
average return on an annualized basis is -0.86% with a standard deviation of
9.64%. We therefore conclude that pure and unconditional value investing in
this particular sample period has not been a very attractive trading strategy.
Furthermore, we indeed observe a cyclical pattern in the behavior of the pre-
mium. In some periods, like for instance in the last years of the previous decade,
growth stocks persistently outperformed value stocks and in other periods value
stocks clearly outperformed growth stocks. A good example of the latter is the
crisis in Technology (and hence �growth�) stocks in the beginning of this cen-
tury. A possible explanation for this phenomenon could be that the sign of the
value premium is strongly connected with the business cycle and the economic
regime. It is likely that value stocks � relative to growth stocks � gain more
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Table 3.1: Summary statistics for the value and size premiums (1988:01 -
2002:12). All numbers are annual data (in %) unless stated otherwise. The
spread series for the value premium are computed as returns of a long/short
portfolio (long S&P Barra Value index and short S&P Barra Growth index).
The spread series for the Size premium are computed as returns of a long/short
portfolio (long S&P 500 index and short S&P SmallCap 600 index). Prior to
the introduction of the S&P SmallCap 600 index in January 1994, the Frank
Russell 1000 and Frank Russell 2000 indices have been used as inputs for the
small-large calculations.

Value premium Size premium
Mean -0.86 -0.91
Standard deviation 9.64 12.04
Information ratio -0.09 -0.08
Minimum (monthly) -12.02 -15.71
Maximum (monthly) 9.74 16.78
Skewness (monthly) 0.06 0.27
Excess kurtosis (monthly) 3.15 4.31
% negative months 47.22 51.11

from a surge of economic activity and a sharp upward revision of sentiment, see
e.g. Schwob (2000). As pro�t expectations turn sharply and broadly positive
at the bottom of the economic cycle, pro�tability and earnings growth become
a less scarce resource. In such an environment portfolio managers start looking
for stocks with typical value features. This largely explains why value stocks
generally belong to cyclical industries. Moreover, value companies tend to be-
long to mature sectors of the economy. These sectors generally grow and shrink
with the economy, whereas growth companies can o�er protection during weaker
periods in the economy.

Analogously, the size premium series is created by comparing the S&P 500
index (large cap) and the S&P Small Cap 600 index.6 The passive small-large
strategy has not performed satisfactorily during our sample period as well: a
mean return of -0.91% (see �gure 3.1 and table 3.1). Investors that have followed
this strategy have experienced even greater �uctuations than those opting for the
passive value-growth strategy, as revealed by the maximum (16.78%) and min-
imum (-15.71%) monthly returns and the higher standard deviation (12.04%).
All of these �ndings cast serious doubt on the wisdom of persistently favoring

6Prior to the introduction of the S&P Small Cap 600 index in January 1994, the Frank
Russell 1000 and Frank Russell 2000 indices have been used as inputs for the small-large
calculations.
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small stocks over large stocks in the past two decades.

3.2.2 Choice of the Forecasting Variables
We will introduce two classes of forecasting variables in this section. First,
we give a brief overview of potential technical variables. Subsequently, we will
address several macro-economic variables, which might shed some light on the
behavior of the spread series. There appears to be a striking similarity between
the chronological cumulative performance of the value and size premiums (see
�gure 3.1), which suggests that the behavior of both premiums might be subject
to the same cyclical e�ects. We aim to provide a wide range of relevant fore-
casting variables, but we restrict ourselves to those claimed to be economically
interpretable in the literature on this subject.

Good examples of technical factors are the lagged value and small cap
spreads used by Levis and Liodakis (1999). Asness et al. (2000) propose two
other variables of this class: the spread in valuation multiples and expected earn-
ings growth between value portfolios and growth portfolios. Other candidates
are changes in the implied volatility of the market, see Copeland and Copeland
(1999), and price and earnings momentum in the market, see for instance Miller,
Li, and Cox (2001), Kwon and Kish (2002) and Bernstein (2001).

The class of economic variables is mainly related to economic fundamen-
tals, the business cycle and trends in corporate earnings. Examples of macro-
economic series can be found in a variety of papers on style rotation. Kao and
Shumaker (1999) document the in�uence of industrial production, the yield-
curve spread, in�ation (CPI) and the corporate credit spread on the value pre-
mium. In their view, industrial production re�ects the corporate earnings cycle.
In periods of high corporate earnings growth, the often highly leveraged value
(and small) companies pro�t disproportionately. The composite leading indica-
tors (CLI) can serve as an alternative to measure the same relationship. The
interest rate environment can also have a substantial impact on the sign of the
value premium. A yield spread widening between long government bonds and
short term T-bills will probably hurt growth companies more than value compa-
nies as their pro�ts are based further into the future. Growth stocks have longer
durations than value stocks and are therefore more interest rate sensitive. These
companies will underperform most likely in a setting with steep yield curves,
which implies rising interest rates in the future. In the study of Levis and Lio-
dakis (1999) the spread series are explained by the level of in�ation, changes in
the short-term interest rate and the equity risk premium respectively.7

In table 3.2 we list the variables actually used in our empirical analysis. In
the next section we describe and discuss the nonparametric modeling tool used:
Support Vector Regressions.

7Liew and Vassalou (2000) claim that past style performance can actually function as a
forecast for economic growth, which brings a new dimension to this literature.
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3.3 Methodology
This section describes the model-building tool (Support Vector Regression) and
the construction of the SVR rotation models. Alongside, we focus on the qual-
ities of SVR that justify their employment as a factor model tool.

3.3.1 Function Estimation with SVR
Support Vector Regressions (SVR), and Support Vector Machines (SVM) in
general, are rooted in Statistical Learning Theory, pioneered by Vapnik (1995).
In essence, SVR are just functions, named �learning machines�, of which the
basic task is to �explore� data (input-output pairs8) and provide optimally ac-
curate predictions on unseen data. Extensive descriptions of SVR and SVM
can be found, for example, in Burges (1998), Smola (1996), and Smola and
Sch�olkopf (1998). Here we present a complete, but still compact and accessible
representation of the basic SVR tool. The technical exposition follows mostly
the descriptions in the abovementioned papers.

First, it should be mentioned that the standard loss function employed in
SVR is the ε-insensitive loss function, which has the following form:

|y − f(x)|ε ≡ max{0, |y − f(x)| − ε} (3.1)

Here ε is predetermined and nonnegative, y is the true target value, x is a
vector of input variables and f(x) is the estimated target value. If the value
of the estimate f(x) of y is o�-target by ε or less, then there is no �loss�, and
no penalty will be imposed. However, if |y − f(x)| − ε > 0, then the value of
the loss function rises linearly with the di�erence between y and f(x) above
ε. In practice, the actual loss associated with a given training error is equal
to C(|y − f(x)|ε), where C is a nonnegative constant. The term |y − f(x)|ε is
denoted by ξ if y ≤ f(x)− ε, and by ξ∗ if y ≥ f(x) + ε.

Let us consider the simplest case of function estimation �rst, where there is
only one input variable, x1, one output variable, y, and l training data points,
and a linear relationship between the input and output variables (see �gure 3.2).

Notice that in the case of �gure 3.2, the total amount of loss is equal to
C(ξ + ξ∗), since there are two training errors. The SVR algorithm estimates
the parameters w1 and b of the linear function y = w1x1 + b for prespeci�ed
values of ε and C, ensuring that the resulting regression function achieves good
generalization ability. It should not be too �complex�, but, at the same time,
it should not make too many training errors. Complexity here is de�ned in
terms of ��atness� of the line, i.e. the smaller the slope of the line, the lower
the complexity. By striking a balance between the function's complexity and

8The terms �inputs� and �outputs� in the machine learning domain stand for the �indepen-
dent variables� and the �dependent variables� in the �nance domain.
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Figure 3.2: An SVR solution to the problem of estimating a relation between x1

and y. All points inside the white region in the �gure are within ε distance from
the solid, optimal regression line y = w1x1 + b, and therefore are not penalized.
However, penalties ξi and ξ∗i are assigned to the two points that lie inside the
shaded areas (given by y− (w1x1 + b) ≥ ε and (w1x1 + b)− y ≥ ε). The optimal
regression line is as �at as possible, and strikes a balance between the area of
the white region and the amount of points that lie outside this region.

accuracy on the training data in the model-construction phase, the SVR o�ers
a solution to the common problem of over�tting.

Figure 3.2 considers a one-dimensional input space, i.e. there is only one
independent variable. If the dimension of the input space equals n, we are
looking for the optimal regression function f(x) = (w · x) + b, with a vector
of input variables x = (x1, x2, . . . , xn), �weight� vector w = (w1, w2, . . . , wn),
and the inner product (w · x) = w1x1 + w2x2 + . . . + wnxn. Flatness in that
case is de�ned in terms of the Euclidean norm of the weight vector: ‖ w ‖=√

w1
2 + w2

2 + . . . + wn
2. The parameters of the linear SVR f(x) = (w · x) + b,

i.e. w, b, ξi and ξ∗i , i = 1, 2, . . . , l, can be found as the unique solution of the
(convex quadratic) optimization problem:
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Minimize
1
2
‖ w ‖2 + C

l∑

i=1

(ξi + ξ∗i ) (3.2)

Subject to
yi − (w · x)− b ≤ ε + ξi

(w · x) + b− yi ≤ ε + ξ∗i
ξi, ξ

∗
i ≥ 0

for i = 1, 2, . . . , l

The �rst term of the objective (minimization) function in equation 3.2 deals
with the complexity, and the second term deals with the accuracy (or, amount
of training errors) of the model. In general, both terms cannot be minimal (or,
close to zero) at the same time. The nonnegative parameter C determines the
trade-o� between the �atness of f(x) and the amount of tolerated deviations.
If C is large, some �atness could be lost in order to achieve greater training
accuracy.

All points on the boundary of the ε-insensitive region together with the
points outside that region (the training errors) are called �support vectors�.
The computation of the regression is solely based on the support vectors.

The minimization problem of equation 3.2 can be represented in dual form,
as a maximization problem:

Maximize

−1
2

l∑

i,j=1

(αi − α∗i )(αj − α∗j )k(xi,xj) + (3.3)

+
l∑

i=1

(αi − α∗i )yi − ε
l∑

i=1

(αi + α∗i )

Subject to
0 ≤ αi, α

∗
i ≤ C, i = 1, 2, . . . , l and

l∑

i=1

(αi − α∗i ) = 0

where k(xi,xj) = (xi · xj).
The application of the kernel function k(xi,xj) instead of the inner product

(xi ·xj) provides for the possibility to utilize other functional forms (see below).
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In SVR, the regression estimates, which result from solving equation 3.3,
take the form of:

f(x) =
l∑

i=1

(α∗i − αi)k(x,xi) + b (3.4)

The value of b can be found from the so-called Karush-Kuhn-Tucker (KKT)
conditions associated with the dual optimization problem (equation 3.3).

The training points in the series in equation 3.4 with coe�cient (α∗i − αi)
unequal to zero are exactly the support vectors. For each training point xi at
most one of the two numbers αi and α∗i is unequal to zero. For the training
points on the boundary of the ε-insensitive region holds either 0 < αi < C or
0 < α∗i < C and for the training errors outside the ε-insensitive region holds
either αi = C or α∗i = C.

Application of a kernel function transforms the original input space implicitly
into a higher-dimensional input space where an optimal linear decision surface
(corresponding to a nonlinear decision surface in the original input space) is
found. One of the most frequently applied kernels is the so-called Radial Ba-
sis Function kernel (RBF). The dimension of the feature space for the RBF is
in�nite, which on �rst sight is counterintuitive from a complexity perspective:
that should lead to over�tting. However, the literature reports very good per-
formance of SVR using the RBF kernel (see, e.g. Burges, 1998; Chang, Chen, &
Lin, 2001; M�uller et al., 2001). Possible theoretical explanations thereof have
been suggested in Burges (1998). Therefore, it appears that SVR with a RBF
kernel are able to tackle the problems of over�tting e�ectively. For this reason
we apply this kernel in our research.

The RBF kernel is de�ned as k(xi,xj) = e−γ‖xi−xj‖2 , where γ is a manually
adjustable parameter. The Radial Basis Function kernel is equal to 1 if xi = xj

and drops monotonically to zero with the Euclidean distance ‖xi−xj ‖ between
the vectors xi and xj . The greater the value of γ, the faster the function
k(xi,xj) decreases. So, for large values of γ the in�uence of a training point
will be only local and the risk of over�tting will be large. So, the larger γ,
the more �complex� the radial basis function is, and the smaller the number of
training errors.

Summarizing, we have three parameters ε, C, and γ, which have to be tuned
in order to �nd the optimal trade-o� between complexity and training accuracy
of the SVR. One of the ways to �nd the best trade-o� between these parameters
is via the standard cross-validation technique, which will be explained in Section
3.3.2.
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3.3.2 SVR Style Timing Models

We will present the construction of the value rotation model only, since the size
rotation model is constructed analogically.9

The input vectors for the SVR consist of the (historical) values for all 17
candidate explanatory factors as described in table 3.2. The outputs are the
corresponding di�erences in returns between the S&P 500 Barra Value and
Growth indices. Each SVR model is trained on the data for months t − 60 till
month t − 1 in order to predict the output for month t. In order to �nd the
optimal model parameters ε, C and γ we applied 5-fold cross-validation, a stan-
dard technique in machine learning (see, e.g. Stone, 1977; Weiss & Kulikowski,
1991) on the training data sets of 60 months. A k-fold cross-validation proce-
dure is utilized as follows: a given dataset is divided into k folders of equal size;
subsequently, a model is built on all possible (k) combinations of k − 1 folders,
and each time the remaining one folder is used for validation. The model that
achieves minimum mean sum of squared errors on average (over the k validation
folders) is considered to be the best. This best model is said to achieve mini-
mum cross-validation mean squared error, and the parameters of this model are
used in the �nal model for the prediction of month t.

The advantage of using a cross-validation procedure is that it ensures that
model selection is based entirely on out-of-sample rather than in-sample per-
formance. The disadvantage however is that the procedure is rather time-
consuming. A tiny part of the cross-validation procedure is visualized in �gure
3.3, where the vertical axis shows the cross validation minimal squared errors
for C ∈ (0, 35), while keeping ε and the kernel function parameter γ �xed at 1.0
and 0.007, respectively. As suggested by the �gure, the value for the minimum
cross-validation mean squared error is well de�ned.

The predicted output, i.e. the value premium for month t is used to decide
on our timing rotation strategy. A positive output will result in a signal �Value�
in which case we will buy the Value index and sell the Growth index, while a
negative output will result in a signal �Growth� with the opposite e�ect. In
order to avoid taking decisions based on noise, we treat an output value close
to zero as a �no signal� signal.10

The SVR small-large strategy is de�ned analogically, using S&P SmallCap
600 and S&P 500 indices.

9The software program used throughout the analysis is LIBSVM 2.4, developed by Chang
and Lin (2002).

10We used a range of (-0.05, 0.05) standard deviations relative to the average of the estimates
over the training period.
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Figure 3.3: Five-fold cross validation mean squared errors associated with the
penalty-on-error parameter C ∈ (0, 35) and �xed ε-insensitive loss function pa-
rameter (ε) at 1.0 and Radial Basis Function parameter at 0.007. The to-be-
predicted month here is April 2000. The �best� model is the one for which the
combination of the three parameters over suitable parameter ranges produces
minimal cross validation mean squared error.

3.4 Empirical Results
In this section we will present the main results from value-growth and small-
large rotation strategies using SVR with di�erent levels of transaction costs
and varying forecast horizons (one-month, three-month and six-month). Addi-
tionally, we will show the output of an equally weighted combination of both
strategies. Throughout this empirical section we show returns that could be
achieved when we would have been able to forecast the signal correctly each
month: MAX_VG (value-growth rotation) and MAX_SL (small-large rota-
tion). The input for the SVR model consists of 60 months of data on the whole
set of 17 predetermined factors. The passive style strategies are constructed in
accordance with what is expected in the literature: each month a long position
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is taken in the Value index and a short position in the Growth index. The
passive small-large strategy consistently buys the S&P SmallCap 600 index and
sells the S&P 500 index.

3.4.1 Value-Growth Rotation Strategies
Detailed results of the SVR value-growth strategy can be found in the left
part of table 3.3. What strikes most at �rst sight, is that this strategy has
produced much better results than the passive strategy in the out-of-sample
period starting January 1993 and ending December 2002.
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Table 3.2: Variables used in the style timing models based on Support Vector
Regressions.

Technical Variables
LagVmG Lagged Value/Growth spread
LagSmL Lagged Small/Large spread
VOL Volatility of the S&P 500
FPE 12-month Forward P/E of the S&P 500
MOM 6-month Momentum of the S&P 500
Pro�t cycle Year on Year change in earnings per share of

the S&P 500
PE dif Price/Earnings di�erence between Value and

Growth indices, or between S&P 500 and
Small cap indices

DY dif Di�erence between dividend yields on Value
and Growth indices, or S&P 500 and Small
cap indices
Economic Variables

Corporate Credit Spread The yield spread of (Lehman Aggregate) Baa
over Aaa

Core in�ation The 12-month trailing change in the U.S.
Consumer Price Index

Earnings-yield gap The di�erence between the forward E/P ratio of
the S&P 500 and the 10-year T-bond yield

Yield Curve Spread The yield spread of 10-year T-bonds over 3-
month T-bills

Real Bond Yield The 10-year T-bond yield adjusted for the 12-
month trailing in�ation rate

Ind. Prod U.S. Industrial Production Seasonally Adjusted
Oil Price The 1-month price change
ISM (MoM) 1-month change of U.S. I.S.M. Purchasing

Managers Index (Mfg Survey)
Leading Indicator The 12-month change in the Conference Board

Leading Indicator
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Under the assumption of zero transaction costs, the SVR strategy achieves
an annualized mean return of 10.30%, against a modest 0.24% respective return
of the passive strategy. Combining these results with the standard deviations of
returns yields (annualized) information ratios of 1.04 and 0.02, respectively. Be-
sides, even when high transaction costs of 50 basis points (bp.) (single trip) are
added into the calculations, the realized SVR-model information ratio remains
quite high (0.64), and statistically signi�cant at the 5% two-tail level. When
compared to other studies on the subject, for example Bauer and Molenaar
(2002) in the U.S. and Levis and Liodakis (1999) in the U.K., the SVR results
seem to demonstrate a signi�cant improvement. The calculated Z(equality)-
scores11 provide further evidence (in the 0 bp. and 25 bp. transaction-cost
environment) of a signi�cant performance di�erence. In addition, the SVR
strategy is able to capture 37.7%, 34.0%, and 29.3% of the return from the
MAX_VG strategy under 0 bp., 25 bp. and 50 bp. transaction costs, respec-
tively. Note that in table 3.3 only the results of the MAX_VG strategy under 50
bp. transaction costs are given. Table 3.3 further reveals that the largest three-
month and twelve-month losses associated with the SVR value-growth model
are substantially less than the respective losses incurred by the passive strategy.
Summarizing, all of these �ndings can serve as an indication of robustness of
the SVR strategy.

Figure 3.4 shows style signals associated with the SVR value-growth rotation
strategy. The predominant style signal during this period is �Growth�, with some
notable exceptions however. �Value� signals have been produced mostly in 1993,
in the beginning of 1994, and in the �rst half of 2001. Almost no �Value� signals
have been given during the periods stretching from June 1996 till August 1998,
and from June 1999 till November 2000.

Figure 3.5 presents the realized excess returns forecasted by the basic SVR
style timing strategy in the 25 bp. transaction-cost scenario. It can be seen
from the �gure that most of the accrued returns come out of the last four years
of the sample period, which actually appears to be the most volatile.

A number of further conclusions can be drawn by examining �gure 3.6. Next
to the cumulative returns from the passive strategy and the SVR strategy that
predicts the one-month-ahead return di�erence under zero transaction costs, the
�gure reveals the cumulative returns from two more strategies: the three- and
six-month-horizon SVR strategies. The latter two strategies are constructed
simply by taking the (unweighted) average of the signals produced by models
constructed up to three and up to six months before any predicted month, and
investing according to this combined signal. Our procedure is equal to that used
in Jegadeesh and Titman (1993).

The �rst striking feature is that most of the cumulative returns are accrued in
11Z(equality) measures the risk-adjusted performance di�erence between a switching Sup-

port Vector Regression strategy and the passive value-growth strategy. The Z(equality)-score
is computed in a standard way (in line with, e.g. Glantz, 1992).
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Figure 3.4: Investment signals (�value� = 1, �growth� = -1, �no signal� = 0)
produced by the SVR value-growth model investment strategy.
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Figure 3.5: Realized excess returns forecasted by the SVR value-growth invest-
ment strategy for the 25 bp. transaction costs scenario.

times of relatively higher volatility, and especially during 1993, in the beginning
of 1994, and between 1999 and 2002. The magnitude of the volatility of returns
can be observed by tracking the (monthly) changes in the cumulative returns
of the passive strategy. Larger shocks in these series correspond to greater
volatility of the value premium. A second interesting feature is that the basic
one-month-horizon SVR strategy performs better than in the case of three- and
six-month forecast horizons. A potential reason for this is that forecast signals
produced by models built in the more distant past become less accurate than
those provided by the more recent models, which are constructed using newer
information.

3.4.2 Small-Large Rotation Strategies
Detailed information on the small-large SVR strategy, the passive small-large
strategy and the maximum attainable MAX_SL strategy can be found in the
right part of table 3.3.

In the out-of-sample period the passive small-large rotation strategy achieves
an annual return of -1.26%. The optimal MAX_SL strategy provides an annual
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Figure 3.6: Accrued cumulative returns from the passive value-growth strategy
and the Support Vector Regression (SVR) one-, three-, and six-month horizon
strategies for the period January 1993 � December 2002, under no transaction
costs. The one-month horizon strategy performs best, gaining most of its accu-
mulated pro�ts during turbulent times on the �nancial market. In such periods,
the three- and six-month horizon models follow suit with a time lag, as logically
expected. During relatively calmer periods, all strategies perform similarly.

return of 27.04% in the 50 bp. transaction-cost scenario, which is 5.50% more
than the corresponding result for the MAX_VG strategy. This reveals that
the potential bene�t from size rotation seems to be much greater than the
one from the corresponding value-growth rotation. Table 3.3 shows that this
extra potential can indeed be captured. Moreover, for the zero-transaction-cost
regime, for example, the one-, three- and six-month forecast horizon small-
large strategies produce 10.71%, 8.03% and 7.73% annual returns, while the
respective results from the SVR value-growth strategies are 10.30%, 5.84% and
5.02% respectively.12 As in the value-growth case, the SVR size model is able to
capture roughly one third of the maximum attainable cumulative returns under
all considered transaction cost regimes.

As it turns out, the results from the robustness checks that were performed
on the SVR value-growth model are also valid for SVR size rotation. Under
the assumption of 50 bp. transaction costs, the realized information ratio of
0.69 from the SVR size model is signi�cant at the (two-tail) 5% level. The

12Not all these results are presented in table 3.3. They are available upon request.
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Figure 3.7: Accrued cumulative returns from the passive small-large strategy
and the Support Vector Regression (SVR) one-, three-, and six-month horizon
strategies for the period January 1993 � December 2002, under no transaction
costs. The one-month horizon strategy performs best, gaining the predominant
part of its accumulated pro�ts during turbulent times on the �nancial market.
The three- and six-month horizon models follow a very similar pattern, but
perform slightly worse. During relatively calmer periods, all strategies perform
similarly.

SVR size strategy produces signi�cantly di�erent results from the passive size
strategy. The largest three-month and, especially, twelve-month losses from
the SVR model are drastically more bearable than the ones from the passive
size strategy: -8.84% vs. -21.63% and -3.21% vs. -31.85%, respectively, under
zero transaction costs. Notice, additionally, that the one-month strategy again
outperforms the longer horizon alternatives, consistent with the �ndings of the
SVR value-growth strategy, see �gure 3.7.

3.4.3 Simultaneous Value-Growth and Size Timing
In case investors have decided to follow both the value and size SVR strategies
simultaneously at the beginning of the sample period, they would have witnessed
even greater relative gains as compared to sticking only to a single type of timing
(see table 3.4 and �gure 3.8 for details).

Indicative of this are the realized information ratios of simultaneous style
and size timing: 1.27, 1.06 and 0.84 under 0 bp., 25 bp. and 50 bp. single trip
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Table 3.4: Simultaneous passive and Support Vector Regression value-growth and small-
large rotation strategies. Summary statistics for following simultaneously passive value-growth
(VmG) and passive small-large (SmL) strategies on the one hand, and Support Vector Regres-
sion value-growth and small-large rotation strategies using a one-month forecast horizon, on
the other, for the period 1993:01 to 2002:12. The explanatory variables are listed in table 3.2.
MAX denotes the perfect foresight value-growth and small-large rotation combined strategy.
CV denotes the timing strategy based on Support Vector Regression cross validation mean
squared error. All numbers are annualized data unless stated otherwise. All strategies are
long/short monthly positions on the style and size indices. The overall position for month
t + 1 is based on the signal produced by the optimal model based on 60 months of historical
data of all explanatory factors. Transaction costs are assumed to be 0 bp., 25 bp., and 50 bp.
single trip.

simultaneous rotation
VmG plus CV CV CV MAX

SmL 0 bp 25 bp 50 bp 50 bp
Mean -0.51 10.51 8.71 6.91 24.29
Standard deviation 8.71 8.25 8.23 8.23 6.76
Information ratio -0.06 1.27∗∗∗ 1.06∗∗∗ 0.84∗∗∗ 3.59∗∗∗
Z(equality) 2.90∗∗∗ 2.43∗∗ 1.96∗ 7.11∗∗∗
Median 0.06 0.44 0.41 0.39 0.56
Minimum (monthly) -7.26 -3.86 -4.24 -4.61 -0.94
Maximum (monthly) 8.43 12.56 12.44 12.31 12.06
Skewness (monthly) 0.13 1.51 1.49 1.45 1.87
Excess kurtosis (monthly) 1.12 5.29 5.30 5.23 6.05
% negative months 49.17 33.33 37.50 40.83 7.50
Largest 3-month loss -13.20 -4.10 -5.10 -6.10 -1.17
Largest 12-month loss -26.71 -3.96 -6.34 -8.82 6.77

∗ indicates signi�cance at the (2-tail) 10% level
∗∗ indicates signi�cance at the (2-tail) 5% level
∗∗∗ indicates signi�cance at the (2-tail) 1% level

transaction cost regimes, all signi�cant at the (two-tail) 1% level. Not surpris-
ingly, these information ratios are higher than the ones associated with either
style or size timing individually, as investors actually diversify the risk associated
with each timing strategy. The information ratio of the passive simultaneous
timing strategy is negative (-0.06). Interestingly, the largest three-month and
twelve-month losses associated with simultaneous investing turn out to be quite
tolerable: -4.10% and -3.96%, assuming zero transaction costs. It appears that
it pays to diversify the market timing strategies, at least as far as value and size
timing are concerned.

Admittedly, we expect all of our �ndings to be dependent on the historical
model-building horizon and on the length of the trading period. Choosing to
trade for a longer period could come at the expense of incurring formidable
transaction costs, as noted in the Data section. Additionally, varying the length
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Figure 3.8: Accrued cumulative returns from investing simultaneously according
to the Support Vector Regression (SVR) one-month horizon value-growth and
small-large strategies on the one hand, and from investing simultaneously ac-
cording to the passive value-growth and small-large strategies during the period
January 1993 � December 2002, under di�erent transaction costs.

of the model-building horizon might yield a �best� horizon that would be di�cult
to justify. Thus, future research could concentrate on both of these issues.

3.4.4 Discussion of Results
Overall, our �ndings on the predictability of the size and the value premium
corroborate the results of previous studies for the US (Kao & Shumaker, 1999)
and other mature markets, such as the UK (Levis & Liodakis, 1999) and Japan
(Bauer et al., 2004). Our study shows that a style consistent strategy, i.e.
consistently favoring value over growth and small over large, does not neces-
sarily lead to positive returns in the long run. The proposed SVR style timing
strategies, taking full advantage of information on the market and the economic
cycle, are partially able to forecast the sign of both the value and the sign
premium. This ability is particularly evident during volatile times, and espe-
cially during the TMT bubble and its aftermath (1998-2001). Furthermore, the
transaction costs of our rotation strategies are expected to be small as futures
on well-known and liquid indices are applied. This raises the possibility that
institutional investors can exploit this strategy in real time.

Nonetheless, we should be careful in interpreting these results. Amihud and
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Mendelson (1986) for instance argue that the bid-ask bounce possibly creates an
upward bias in reported pro�ts from trading strategies. To remedy this e�ect,
they suggest adjusting transaction prices by one half of the bid-ask spread. This
actually is equivalent to adding an extra �xed amount of transaction costs to
each trade on top of what has already been assumed in our rotation strategies,
provided that the bid-ask spread remains constant through time. As we use
futures on well-known indices, it is likely that we grossly capture this e�ect by
assuming relatively high transaction costs (50 bp.). Further, non-synchronous
trading might induce spurious cross-autocorrelation between less frequently and
more frequently traded stocks, see Campbell, Lo, and MacKinlay (1997). This
particular issue might be applicable to a greater extent to the size rotation
rather than the value-growth rotation strategy, since small stocks are traded
less frequently in general. The use of a forecasting horizon of 3 and 6 months
however yields similar results. For such long horizons the market microstructure
e�ects mentioned above are less likely to be relevant.13

3.5 Conclusion
This chapter examines whether short-term directional variations in the size and
value premium in the U.S. stock market are su�ciently predictable to be ex-
ploited by means of a tactical timing strategy. As a forecasting tool, we employ
the so-called Support Vector Regressions (SVR). SVR have only recently been
developed in the arti�cial intelligence �eld and have been rarely applied in a �-
nancial context. Using SVR, we are able to circumvent the well-known problems
of over�tting, especially in multivariate settings, in an elegant way.

Our empirical �ndings clearly show that both premiums are highly pre-
dictable during the trading period. This comes at odds with the mainstream
literature that provides evidence for the long-term superiority of returns to value
vis-a-vis growth and small vis-a-vis large stocks. After adjustment for fair levels
of transaction costs this result still holds. Under high transaction cost levels,
expected to be relevant in a dynamic economic environment, it is di�cult in
practice to obtain incremental bene�ts over style consistent strategies. That is
why it is critical to develop timing strategies that can be implemented using in-
dex futures or low-cost trading baskets like exchange traded funds. In terms of
realized information ratios, a combination of both value-growth and small-large
timing produces the most interesting results.

13Additionally, we looked at strategies where we assume higher transaction costs for small
cap trades (both long and short) and short large cap trades. Results, which are available
upon request, show that it is di�cult to exploit the rotation strategy when using a basket of
individual stocks instead of futures.
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Chapter 4

Solving and Interpreting
Binary Classi�cation
Problems in Marketing with
SVMs∗

Marketing problems often involve binary classi�cation of customers into �buy-
ers� versus �non-buyers� or �prefers brand A� versus �prefers brand B�. These
cases require binary classi�cation models such as logistic regression, linear, and
quadratic discriminant analysis. A promising recent technique for the binary
classi�cation problem is the Support Vector Machine (Vapnik, 1995), which has
achieved outstanding results in areas ranging from Bioinformatics to Finance.
In this chapter, we compare the performance of the Support Vector Machine
against standard binary classi�cation techniques on a marketing data set and
elaborate on the interpretation of the obtained results.

4.1 Introduction
In marketing, quite often the variable of interest is dichotomous in nature. For
example, a customer either buys or does not buy a product, visits or does not
visit a certain shop. Some researchers and practitioners often approach such bi-
nary classi�cation problems with traditional parametric statistical techniques,

∗This chapter has been published as Nalbantov et al. (2006b):
Nalbantov, G. I., Bioch, J. C., & Groenen, P. J. F. (2006b). Solving and Interpreting Binary
Classi�cation Problems in Marketing with SVMs. In M. Spiliopoulou, R. Kruse, C. Borgelt,
A. Nurnberger, & W. Gaul (Eds.), From Data and Information Analysis to Knowledge Engi-
neering (pp. 566�573). Springer.
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such as discriminant analysis and logistic regression (Lattin, Carroll, & Green,
2003; Franses & Paap, 2001) and others employ semiparametric and nonpara-
metric statistical tools, like kernel regression (Van Heerde, Lee�ang, & Wittink,
2001; Abe, 1991, 1995) and neural networks (West, Brockett, & Golden, 1997).
Nonparametric models di�er from parametric in that they make no or less as-
sumptions about the distribution of the data. A disadvantage of nonparametric
tools in general is that they are considered to be �black boxes�. In many such
cases, the model parameters are hard to interpret and often no direct proba-
bility estimates are available for the output binary variable. A discussion on
the relative merits of both kind of techniques can be found, for instance, in
Van Heerde et al. (2001) and West et al. (1997).

In this chapter, we employ the nonparametric technique of Support Vector
Machine (SVM) (Vapnik, 1995; Burges, 1998; M�uller et al., 2001). Some desir-
able features of SVM that are relevant for marketing include good generalization
ability, robustness of the results, and avoidance of over�tting. One drawback
of SVM is the inability to interpret the obtained results easily. In marketing,
SVMs have been used by, for example, Bennett, Wu, and Auslender (1999), Cui
(2003), and Evgeniou and Pontil (2004).

Our aim is to assess the applicability of SVM for solving binary marketing
problems and, even more importantly, to provide for the interpretation of the
results. We compare SVM with standard marketing modelling tools of linear and
quadratic discriminant analysis and the logit choice model on one empirical data
set. In addition, we interpret the results of the SVM models in two ways. First,
we report probability estimates for the realizations of the (binary) dependent
variable, as proposed by Platt (1999) and implemented by Chang and Lin (2002).
Second, we use these estimates to evaluate the (possibly nonlinear) e�ects of
some independent variables on the dependent variable of interest. In this way,
we can assess the e�ect of manipulating some marketing instruments on the
probability of a certain choice between two alternatives.

The remainder of the chapter is organized as follows. First, we describe the
data used in this research. Next, we provide a brief overview of the construction
of SVM for classi�cation tasks. Sections 4.4 and 4.5 give an account of the
obtained results and their interpretation and Section 4.6 gives a conclusion.

4.2 Data
We focus on a straightforward marketing problem: how to forecast holiday
length on the basis of some general travelling and customer characteristics.
These data have been collected by Erasmus University Rotterdam in 2003. Table
4.1 provides descriptive statistics for the data set. The dependent variable,
holiday length, has been dichotomized into �not more than 14 days� and �more
than 14 days�. In total, there are 708 respondents. The outcome alternatives
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Table 4.1: Descriptive statistics of the predictor variables for the holiday data
set split by holiday length. For the categorical variables, the relative frequency
is given (in %) and for numerical variables, the mean.

Holiday length in days Holiday length in days
Variable ≤ 14 > 14 Variable ≤ 14 > 14
Transport Destination
Car 39.8 34.2 Inside Europe 87.7 66.7
Airplane 48.0 58.2 Outside Europe 12.3 33.3
Other 12.2 7.6 Accommodation

Full board Camping 17.5 27.9
Yes 25.7 18.3 Apartment 29.5 24.0
No 74.3 81.7 Hotel 33.6 27.6

Sunshine Other 19.4 20.5
Important 83.9 88.5 Season
Not important 16.1 11.5 High 38.6 43.2

Big expenses Low 61.4 56.8
Made 26.0 26.5 Having children
Not made 74.0 73.5 Yes 31.6 40.2

Mean no. of children 0.35 0.49 No 68.4 59.8
Mean age group 3.95 4.52 Mean income group 2.23 2.67

are quite balanced: 51.7% of the respondents have spent more than two weeks
and 48.3% not more than two weeks of holidays. Eleven explanatory variables
were available, some of which are categorical: destination, mode of transport,
accommodation, full/nonfull board and lodging, sunshine availability, (other)
big expenses, in/out of season, having/not having children, number of children,
income group and age group.

4.3 Support Vector Machines for Classi�cation
Support Vector Machines (SVM) are rooted in statistical learning theory (Vap-
nik, 1995) and can be applied to both classi�cation and regression problems.
We consider here the supervised learning task of separating examples that be-
long to two classes. Consider a data set of n explanatory vectors {xi}n

i=1 from
Rm and corresponding classi�cation labels {yi}n

i=1, where yi ∈ {−1, 1}. Thus,
in the marketing data set, −1 identi�es short holiday length (≤ 14 days) and
1 identi�es long holiday length (> 14 days). The SVM method �nds the ori-
ented hyperplane that maximizes the closest distance between observations from
the two classes (the so-called �margin�), while at the same time minimizes the
amount of training errors (Vapnik, 1995; Cristianini & Shawe-Taylor, 2000;
Burges, 1998). In this way, good generalization ability of the resulting function
is achieved, and therefore the problem of over�tting is mitigated.

The explanatory vectors x from the original space Rm are usually mapped
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into a higher dimensional, space, where their coordinates are given by Φ(x). In
this case, the optimal SVM hyperplane is found as the solution of the following
optimization problem:

maxα

∑n
i=1 αi − 1

2

∑n
i,j=1 αiαjyiyjk(xi,xj) (4.1)

subject to 0 ≤ αi ≤ C, i = 1, 2, · · · , n, and
∑n

i=1 yiαi = 0,

where k(xi,xj) = Φ(xi)′Φ(xj) is a kernel function that calculates dot prod-
ucts of explanatory vectors xi and xj in feature space. Intuitively, the ker-
nel determines the level of proximity between any two points in the feature
space. Common kernels in SVM are the linear k(xi,xj) = (x′ixj) , polynomial
k(xi,xj) = (x′ixj+1)d and Radial Basis Function k(xi,xj) = exp(−γ||xi−xj ||2)
ones, where d and γ and manually adjustable parameters. The feature space im-
plied by the RBF kernel is in�nite-dimensional, while the linear kernel preserves
the data in the original space. Maximizing the term −∑n

i,j=1 αiαjyiyjk(xi,xj)
corresponds to maximizing the margin between the two classes, which is equal
to the distance between hyperplanes with equations

∑n
i=1 yiαik(xi,x)+ b = −1

and
∑n

i=1 yiαik(xi,x)+ b = 1. The manually adjustable constant C determines
the trade-o� between the margin and the amount of training errors. The α's
are the weights associated with the observations. All observations with nonzero
weights are called �support vectors�, as they are the only ones that determine
the position of the optimal SVM hyperplane. This hyperplane consists of all
points x which satisfy

∑n
i=1 yiαik(xi,x)+b = 0. The b parameter is found from

the so-called Kuhn-Tucker conditions associated with (4.1).
The importance of binary classi�cation methods lies in how well they are

able to predict the class of a new observation x. To do so with SVM, the
optimal separation hyperplane

∑n
i=1 yiαik(xi,x) + b = 0 that is derived from

the solution ({αi}n
i=1, b) of (4.1) is used:

f(x) = sign(g(x)) = sign

(
n∑

i=1

yiαik(xi,x) + b

)
,

where sign(a) = −1 if a < 0, sign(a) = 1 if a ≥ 0.
For interpretation, it is often important to know not only the predicted bi-

nary outcome, but also its probability. One way to derive posterior probabilities
for the estimated class membership f(xi) of observation xi has been proposed
by Platt (1999). His approach is to �t a sigmoid function to all estimated g(xi)
to derive probabilities of the form:

P (y = 1|g(xi)) = pi = (1 + exp(a1g(xi) + a2))−1,

where a1 and a2 are estimated by minimizing the negative log-likelihood of the
training data:

min
a1,a2

−
n∑

i=1

(
yi + 1

2
log(pi) + (1− yi + 1

2
) log(1− pi)

)
.
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Table 4.2: Hit rates (in %) of di�erent learning methods for the vacation data
set. Approximately 85% and 15% of each data set are used for training and test-
ing, respectively. LDA, QDA and logit stand for Linear Discriminant Analysis,
Quadratic Discriminant Analysis and logit choice model.

lin poly RBF
Sample LDA QDA logit SVM SVM SVM
Training ≤ 14 days 68.2 69.2 63.3 73.0 78.9 77.5

> 14 days 63.3 67.5 66.2 60.5 59.2 61.4
Overall 65.7 68.3 64.8 66.5 68.7 69.8

Test ≤ 14 days 64.2 54.7 60.4 58.5 75.5 71.7
> 14 days 56.4 54.6 65.5 49.1 45.5 52.7
Overall 60.2 54.6 63.0 53.7 60.2 62.0

4.4 Experiments and Results

We de�ne a training and a test sample, corresponding to 85% and 15% of the
original data set, respectively. Our experiments have been carried out with the
LIBSVM software (Chang & Lin, 2002). We have constructed three SVM mod-
els, which di�er in the transformation of the original data space, that is, using
the linear, the polynomial of degree 2 (d = 2) and the RBF kernel. Table 4.2
shows detailed results of the SVM models as well as competing classi�cation
techniques in marketing such as linear discriminant analysis (LDA), quadratic
discriminant analysis (QDA), and the logit choice model. The manually ad-
justable parameters C and γ have been estimated via a �ve-fold cross-validation
procedure. As a result, the parameters for the linear, polynomial and RBF SVM
models have been set as follows: C = 2.5, C = 0.004 and d = 2, C = 3500 and
γ = 0.0013.

The overall performance of SVM on the test set is comparable to that of
the standard marketing techniques. Among SVM models, the most �exible one
(RBF-SVM) is also the most successful at generalizing the data. The average hit
rate on the test set of all techniques considered centers at around 59%. There is
no substantial distinction among the performance of all models, except for the
QDA and linear SVM models, which relatively underperform. In such a setting
we generally favor those models that can be better interpreted.
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4.5 Interpreting the In�uence of the Explanatory
Variables

The classical SVM appears to lack two main interpretation aspects shared by the
standard models of LDA, QDA, and logit choice model. First, for the standard
models, coe�cient estimates for each explanatory variable are available and can
be interpreted as the direct e�ect of a change in one of the independent variables
on the dependent variable, while keeping all other independent variables �xed.
The same interpretation is possible for the linear SVM model, since the original
data space is preserved, and thus individual coe�cient estimates are available.
For all the other types of SVM this direct variable e�ect can be highly nonlinear
and is not directly observable. The SVM with RBF kernel, for example, implies
in�nitely many number of explanatory variables, and thus in�nitely many co-
e�cients for each of these variables, which makes interpretation impossible at
�rst sight.

Second, the coe�cient estimates obtained from the standard models can
be used to derive the e�ect of each explanatory variable on the probability of a
certain binary outcome. Although classical SVM does not output outcome prob-
abilities, one can use here the proposed probability estimates by Platt (1999),
discussed in Section 4.3. Interestingly, these probability estimates can help to
derive individual variable e�ects also for the nonlinear SVM. For interpretation
purposes, all that is needed is to visualize the relationship between a given ex-
planatory variable and the probability to observe one of the two possible binary
outcomes, while keeping the rest of the explanatory variables �xed. Thus, even
for the SVM with RBF kernel it is not necessarily to know the coe�cients for
each data dimension in order to infer the in�uence of individual variables.

Next, we interpret the results of the SVM model with RBF kernel on the
vacation data set and compare them with those from the logit model. Consider
Figures 4.1 and 4.2 that show the relationships between some of the independent
variables and the probability to go on a vacation for more than two weeks, for the
logit and RBF-SVM models respectively. In each of the panels, the remaining
explanatory variables are kept �xed at their average levels. The dashed lines
denote the probability of the �average� person to go on a vacation for more than
two weeks.

The �rst striking feature to observe is the great degree of similarity between
both models. Although the RBF-SVM model is very �exible, the estimated ef-
fects for variables such as �Having children�, �Big expenses�, and �In season� are
close to linear, just as the logit model predicts. The main di�erence between
both techniques is best illustrated by the predicted e�ect of the �Age group�
variable. The SVM model suggests that both relatively younger and relatively
older holiday makers tend to have (on average) a higher probability to choose
for the longer vacation option than the middle-aged ones, which makes sense
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Figure 4.1: In�uences of individual explanatory variables on the probability to
spend more than two weeks on a vacation for the logit model.
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Figure 4.2: In�uences of individual explanatory variables on the probability to
spend more than two weeks on a vacation for the RBF-SVM model.

intuitively. The logit model cannot capture such an e�ect by its de�nition as
it imposes a monotonically increasing (or decreasing) relationship between the
explanatory variables and the probability of a certain outcome. The RBF-SVM
model, on the other hand, is free to impose a highly nonlinear such relationship
via the mapping of the original data into a higher-dimensional space. Moreover,
since the SVM model does not su�er from monotonicity restrictions, it reports
nonmonotonically ordered outcome probabilities for each of the �Accommoda-
tion� variable categories (see Figure 4.2). Although one cannot conclude here
that SVM is immune to the need to optimally scale the variables prior to model
estimation, it is clear that it o�ers a better protection from arbitrary coding of
unordered categorical variables than the logit model does.

The marketing implications of the results obtained by SVM can be derived
directly from Figure 4.2. By considering the e�ects of changes in individual
variables, marketeers can infer which ones are most e�ective and, as a result of
this, streamline the advertising e�orts accordingly. Thus, it seems most e�ective
to o�er longer-than-two-week vacations to customers with the following pro�le:
relatively older, with high income, small number of children or no children at
all, preferring to have sunshine available most of the time, and to a destination
outside Europe.

4.6 Conclusion
We have analyzed a marketing classi�cation problem with SVM for binary clas-
si�cation. We have also compared our results with those of standard marketing
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tools. Although the classical SVM exhibits superior performance, a general de-
�ciency is that the results are hard to interpret, especially in the nonlinear case.
To facilitate such an interpretation, we have constructed relationships between
the explanatory and (binary) outcome variable by making use of probabilities
for the SVM output estimates obtained from an approach proposed by Platt
(1999). Ultimately, this allows for the possibility to evaluate the e�ectiveness
of di�erent marketing strategies under di�erent scenarios. In terms of inter-
pretation of the results, it appears that SVM models can give two advantages
over standard techniques. First, highly nonmonotonic e�ects of the explana-
tory variables can be detected and visualized. And second, which comes as a
by-product of the �rst, the SVM appears to model adequately the e�ects of
arbitrarily coded unordered categorical variables.
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Chapter 5

Instance-Based Penalization
Methods for Classi�cation

In this chapter, several instance-based large-margin classi�ers are put forward:
Support Hyperplanes, Nearest Convex Hull classi�er, and Soft Nearest Neigh-
bor. The techniques are examined from a common �t-versus-complexity frame-
work and study the links between them. Finally, the performance of these tech-
niques is compared vis-a-vis each other as well as other standard classi�cation
methods.

5.1 Introduction
Recently, three classi�cation methods have been introduced in the literature:
Support Hyperplanes (SH) (Nalbantov et al., 2006a), Nearest Convex Hull
classi�er (NCH) (Nalbantov, Groenen, & Bioch, 2007) and Soft Nearest Neigh-
bor (SNN) (Nalbantov, Bioch, & Groenen, 2008). All of them can be classi�ed
as instance-based large-margin penalization classi�ers. In the following, we ar-
gue why these three techniques should perform well based on their favorable
generalization qualities. We speci�cally look at links between Support Vector
Machines (SVM), SH, NCH and SNN and approach them intuitively from a com-
mon generalization error-versus-complexity point of view. The instance-based
nature of the SH, NCH, and SNN arises from the fact that these classi�ers do
not output an explicit formulation of a decision boundary between the classes.
Rather, the classi�cation of each test point is carried out independently of the
classi�cation of other test points.

The chapter is organized as follows. First, we brie�y revise the role of penal-
ization/capacity control for learners in general and argue that the error-versus-
complexity paradigm (see e.g. Hastie et al., 2001; Vapnik, 1995; Shawe-Taylor
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& Cristianini, 2004) could be applied to instance-based techniques. Second,
we make an intuitive comparison between SVM, SH, NCH, and SNN in the
so-called separable case, where the classes of the training data are perfectly
divisible (or, separable) by a hyperplane. Finally, we present some empirical
results and conclude.

5.2 Penalization in Learning
The need for penalization in learning techniques has long been discussed in both
the statistical and arti�cial intelligence/machines learning/data mining commu-
nities. Examples of techniques that explicitly employ some kind of penalization
are Ridge Regression, Lasso, Support Vector Machines, Support Vector Regres-
sion, etc. See, for example, Hastie et al. (2001) for a review of such methods.
Penalization is referred to the practice of purposefully decreasing the ability of
a given learner to cope with certain tasks. This ability is referred to as the
learner's complexity or capacity (see e.g. Vapnik, 1995). Arguably, a decreased
learner's capacity is responsible for a better prediction performance by mitigat-
ing the problem of over�tting. Data over�tting occurs when a learner �ts the
training data too well, producing very low amount of errors. The amount of
errors is referred to as the empirical risk, the empirical error, or the loss. The
main idea behind penalization techniques is that the sum empirical error plus
capacity control term should be minimized to achieve good prediction results on
new data, or in other words, to achieve good generalization ability. In general, if
the empirical error over the training data set is rather small, implying a possible
over�tting of the training data, then the capacity of the learner is expected to
be high. Thus, the generalization sum � empirical error plus capacity � would
be relatively high. Hence the need to put up with some increased empirical
error over the training data set, which is to be more than o�set by a decrease
in the learner's capacity. The latter decrease could come about by explicitly
penalizing in some way the class of functions to which a learner belongs.

Instance-based, or lazy classi�cation techniques do not have an explicit rule
or a decision boundary derived from the training data with which to classify all
new observations, or instances. Rather, a new rule for classifying a test instance
is derived each time such an instance is given to the learner. A good example
of a lazy technique is k-Nearest Neighbor (kNN).

At �rst sight, a direct application of the idea for penalization on instance-
based learners seems hard to materialize. The reason is that penalization in
general is applied to a given class of functions, or learners. In the end, one
optimal function out of this class should be chosen to classify any test obser-
vation. This optimal learner produces a minimal generalization sum. The idea
for penalization can however also be applied to instance-based classi�ers. In
this case the function (taken from a given function class) that is used for the
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Figure 5.1: Binary classi�cation with SVM, SH, NCH, and SNN in Panels (a),
(b), (c) and (d), respectively. In all cases, the classi�cation of test point x is
determined using hyperplane h, which is in general di�erent for each method.
Equivalently, x is labeled +1 (−1) if it is farther away from set S− (S+).

classi�cation of a particular test instance should be penalized.
Below we give an intuitive account of three rather new instance-based clas-

si�cation techniques, SH, NCH, and SNN. We approach them from a common
generalization framework and discuss the links between them and SVM.

5.3 Three Instance-Based Classi�cation Methods
Given a data set that is separable by a hyperplane and consists of positive and
negative observations, let us assume that we would like to classify a new obser-
vation x using a hyperplane, denoted as h. There are two types of hyperplanes:
(a) hyperplanes that classify correctly all training data points (called for short
consistent hyperplanes) and (b) hyperplanes that do not classify correctly all
training data points (called for short inconsistent hyperplanes). For the sake of
clarity, we consider any hyperplane to be consistent if it does not misclassify
any training points.

There are two main factors to be considered in choosing the appropriate h.
First, h should not be too close to x. Intuitively speaking, the farther h is from
x, the greater the con�dence we have in the classi�cation label h assigns to x.
Second, h should not make too many mistakes when it classi�es the training
data. If one chooses h to be extremely far from x, then at one point h will
misclassify either all positive or all negative observations. On the other hand, if
h classi�es correctly all training points, then h might be too close to x, in which
case our con�dence in the label it assigns to x is smaller. Thus, in general one
cannot have both a big distance between h and x, and a big degree of consistency
of h with respect to the training data. A balance between these two desirable
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properties has unavoidably to be sought. The strife to choose an h that is
highly consistent with the training data is referred to as the strife to minimize
the empirical risk, empirical error, or training error. The idea to demand h to
be as far away from x as possible can be thought of as a sort of regularization or
penalization: the smaller the distance between h and x, the greater the penalty
associated with the classi�cation of x. The intuitive assertion here is that the
degree of penalization could be proxied by a certain distance. In sum, when
classifying a test point x using a hyperplane, given a separable binary training
data set, one is faced with the familiar penalty plus error paradigm (see e.g.
Hastie et al., 2001; Vapnik, 1995; Shawe-Taylor & Cristianini, 2004). Below we
cast four classi�cation methods, SVM, SH, NCH, and SNN, in the light of this
paradigm. The hyperplane h with which to classify a new observation x is in
general di�erent for each of these techniques. See Figure 5.1 for a running toy
example.

The h hyperplane in Support Vector Machine classi�cation (see Figure 1a)
is de�ned as the farthest-away from x consistent hyperplane that is parallel
to another consistent hyperplane, h2, in such a way that the distance between
these two hyperplanes (referred to as the �margin�) is maximal. Since h is
consistent with the training data, the empirical error it makes on the data is
zero. The magnitude of the penalty associated with the classi�cation of x can
be considered to be positively related to the inverse of the distance between
x and h (1/d1 in terms of Figure 1a). The (theoretical) instance-based SVM
classi�cation algorithm can be stated as follows: �rst add x to the data set with
−1 label and compute the distance d1 to h (as de�ned above). Second, add x to
the data set with +1 label and compute the distance d∗1 to h2. Third, classify
x using h (that is, as −1) if d1 > d∗1; classify x using h2 (as +1) if d1 < d∗1;
otherwise, if d1 = d∗1, the classi�cation of x is undetermined.

The h hyperplane in SH classi�cation (see Figure 1b) is de�ned as the
farthest-away from x consistent hyperplane. Since h is consistent with the train-
ing data, the empirical error it makes on the data is zero. The magnitude of the
penalty associated with the classi�cation of x can be considered to be positively
related to the inverse of the distance to h (1/d2 in terms of Figure 1b). It can
be shown that d2 ≥ d1 always. Therefore, the sum empirical error plus penalty
for SH is always smaller than the corresponding sum for SVM, suggesting that
SH may possess better generalization ability than SVM. The SH classi�cation
algorithm can be stated as follows. First, add x to the training data set with
−1 label and compute the distance d2 to h. Note that h is consistent with both
the original training data and with x. That is, h assigns label −1 to x. Second,
add x to the original data set with +1 label and compute the distance d∗2 to
h2. In this case, h2 is de�ned as the farthest-away hyperplane from x that is
consistent with both x and the original training data. Third, classify x using h
(that is, as −1) if d2 > d∗2; classify x using h2 (as +1) if d2 < d∗2; otherwise, if
d2 = d∗2, the classi�cation of x is undetermined.
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The h hyperplane in NCH classi�cation (see Figure 1c) is de�ned as the
farther of two hyperplanes. The �rst one is the hyperplane farthest away from
x that is consistent with all positive observations and x, where x has label −1.
The second one if the hyperplane farthest away from x that is consistent with all
the negative observations and x, where x has label +1. E�ectively, x is classi�ed
as +1 (−1) if it is closer to the convex hull of +1 (−1) points. The magnitude of
the penalty associated with the classi�cation of x is considered to be positively
related to the inverse of the distance from x to h (1/d3 in terms of Figure 1c).
It can be shown that d3 ≥ d2 ≥ d1 always. However, the empirical error on
the training set is not guaranteed to be equal to zero. This happens because h
should be consistent with at least all positive or all negative observations, and
not with both all negative and all positive observations. Thus, the generalization
sum training error plus penalty is not guaranteed to be smaller for NCH than for
SH or SVM. The NCH classi�cation algorithm can be stated as follows. First,
add x to the training data set with −1 label and compute the distance d3 to h,
the hyperplane that is consistent with all +1 points and x. This distance is the
distance between x and the convex hull of the positive points. Second, add x
to the training data set with +1 label and compute the distance d∗3 to h2, the
hyperplane that is consistent with all −1 points and x. Third, classify x using
h (that is, as −1) if d3 > d∗3; classify x using h2 (as +1) if d3 < d∗3; otherwise,
if d3 = d∗3, the classi�cation of x is undetermined.

The SNN classi�cation can also be presented along similar lines as SVM, SH,
and NCH. In the separable case, SNN is equivalent to the classical First Nearest
Neighbor (1NN) classi�er. The h hyperplane in 1NN classi�cation (see Figure
1d) is the farther of two hyperplanes. The �rst one is farthest away from x
hyperplane that is consistent with the closest positive observation and x, where
x has label −1. The second hyperplane is the farthest away from x hyperplane
that is consistent with the closest negative observation and x, where x has label
+1. E�ectively, x is classi�ed as +1 (−1) if its closest training point has label
+1 (−1). The magnitude of the penalty associated with the classi�cation of
x is considered to be positively related to the inverse of the distance from x
to h (1/d4 in terms of Figure 1d). It can be shown that d4 ≥ d3 ≥ d2 ≥ d1

always, suggesting (somewhat counterintuitively) that 1NN provides for the
greatest penalization among the four techniques under consideration. However,
the empirical error in 1NN on the training data set is certainly not guaranteed
to be equal to zero. In fact, h is not even guaranteed to be consistent with
either all positive or all negative points, as the case is in NCH classi�cation, as
well as in SH and SVM classi�cation. Thus, the h hyperplane in 1NN is likely
to commit the greatest amount of errors on the training data set as compared
to SVM, SH and NCH. Consequently, the generalizability sum empirical error
plus penalty may turn out to be the highest. Note however that it could also
turn out to be the lowest for some x, in which case 1NN exhibits the highest
generalization ability. The 1NN classi�cation algorithm can be (theoretically)
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stated as follows. First, add x to the training data set with label −1 and
compute the distance d4 to h, the hyperplane that is consistent with x and the
closest positive point. Second, add x to the training data set with +1 label and
compute the distance d∗4 to h2, the hyperplane that is consistent with x and
the closest negative point. Third, classify x using h (that is, as −1) if d4 > d∗4;
classify x using h2 (as +1) if d4 < d∗4; otherwise, if d4 = d∗4, the classi�cation of
x is undetermined.

5.4 Alternative Speci�cations
In the separable case, there is an alternative, but equivalent, formulation of the
SVM, SH, NCH, and SNN techniques in terms of distances to sets as opposed to
distances to hyperplanes. The corresponding sets for each technique are depicted
in Figure 1 as shaded areas. A common classi�cation rule for all methods can
be de�ned as follows: a new point x should be classi�ed as −1 if it is farther
from set S+ than from set S−; x should be classi�ed as +1 if it is farther from
set S− than from set S+; otherwise, if the distance to both S+ and S− is the
same, the class of x is undetermined as x lies on the decision boundary. Sets
S+ and S− are de�ned di�erently for each method.

For SVM, set S+ is de�ned as the set of all points that are classi�ed as +1
by all hyperplanes that lie inside the SVM margin. Set S− is similarly de�ned
as the set of all points that are classi�ed as −1 by all hyperplanes that lie inside
the SVM margin.

For SH, set S+ is the set of all points classi�ed as +1 by all hyperplanes that
are consistent with the training data. The latter include all hyperplanes that
lie inside the SVM margin plus all the rest of the consistent hyperplanes. Ana-
logically, set S− is de�ned as the set of all points that are classi�ed as −1 by all
consistent hyperplanes. The collection of all consistent hyperplanes is referred
to in the literature as the version space (Mitchell, 1997) of hyperplanes with
respect to a given training data set. A conservative version-space classi�cation
rule is to classify a test point x only if all consistent hyperplanes assign one and
the same classi�cation label to it (Smirnov, Sprinkhuizen-Kuyper, Nalbantov,
& Vanderlooy, 2006), or in other words if x belongs to either S+ or S−.

For the NCH classi�er, set S+ is the set of all points that are classi�ed as +1
by all hyperplanes that are consistent with the positively-labeled data points.
In other words, S+ is the convex hull of the positive observations. Set S− is
de�ned as the set of all points that are classi�ed as −1 by all hyperplanes that
are consistent with the negatively-labeled data points. Thus, S− is the convex
hull of the negative points.

Lastly, for the 1NN classi�er, which is the hard-margin version of the SNN
classi�er, the S+ set consists of just one point: the closest to x positively-labeled
point. Set S− also consists of just one point: the closest to x negatively-labeled
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point.

5.5 Estimation
We now review the estimation of SVM, SH, NCH, and SNN. Further details
can be found, e.g., in Burges (1998), Vapnik (1995), Nalbantov et al. (2006a,
2007, 2008). We examine a common setup for the four techniques: a binary
classi�cation data set {xi, yi}l

i=1, where each xi is an n-dimensional vector of
values for the predictor variables and each yi is either a +1 or a −1 observation
label. The classi�cation task is: given a test point x, output its predicted
label. Each of the techniques solves an optimization problem to �nd an optimal
hyperplane, w∗′x + b∗ = 0, with which to classify the test observation in the
way presented in Section 5.3. Here w is a vector of hyperplane coe�cients, b is
the intercept, and the asterisk (∗) indicates optimal values.

5.5.1 Support Vector Machines
SVM solve the classi�cation task by maximizing the so-called margin between
the classes. In the separable case, the margin is equal to the distance between
the convex hulls of the two classes at the optimal SVM solution (Vapnik, 1995).
Formally, the margin is equal to the distance between hyperplanes w′x+b = −1
and w′x+ b = 1, presented already as h and h2 in Figure 1a. Thus, the margin
equals 2/||w||. Maximizing the margin is equivalent to minimizing the term
||w||2/2 = w′w/2. Formally, to �nd the SVM hyperplane h, one solves the
following optimization problem:

min
w,b

1
2
w′w (5.1)

s.t. yi(w′xi + b) ≥ 1, i = 1, 2, . . . , l.

If there is no hyperplane that is able to separate the classes, so-called slack
variables ξi are introduced. This case is referred to as the nonseparable case or
the class-overlapping case. Then, problem (5.1) becomes:

min
w,b,ξ

1
2
w′w + C

l∑

i=1

ξi (5.2)

s.t. yi(w′xi + b) ≥ 1− ξi, ξi ≥ 0, i = 1, 2, . . . , l,

where C > 0 is a manually adjustable constant that regulates the trade-o�
between the penalty term w′w/2 and the loss

∑l
i=1 ξi.

Optimization problem (5.2) can be dualized as:
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max
α

∑l
i=1 αi − 1

2

∑l
i,j=1 αiαjyiyj(x′ixj) (5.3)

s.t. 0 ≤ αi ≤ C, i = 1, 2, . . . , l, and
∑l

i=1 yiαi = 0,

where the αi's are the Lagrange multipliers associated with (5.2). The advan-
tage of the dual is that di�erent nonlinear mappings x → φ(x) of the data can
easily handled. Thus, if one �rst transforms the data into a higher-dimensional
space, where the coordinates of the data points are given by φ(x) instead of x,
then the dot product x′ixj will appear as φ(xi)′φ(xj) in the dual optimization
problem. There exist so-called kernel functions κ(xi,xj) ≡ φ(xi)′φ(xj) that
compute this dot product e�ciently, without explicitly carrying the transfor-
mation mapping. Popular kernels are the linear, κ(xi,xj) = x′ixj , polynomial
of degree d, κ(xi,xj) = (x′ixj +1)d and the Radial Basis Function (RBF) kernel
κ(xi,xj) = exp(−γ||xi − xj ||2). The mapping x → φ(x) when the RBF ker-
nel is used corresponds to a mapping into an in�nite-dimensional space. The
manually-adjustable γ parameter of the RBF kernel determines the proximity
of any two points in this in�nite-dimensional space.

5.5.2 Support Hyperplanes
In the separable case, the h hyperplane in SH classi�cation, with which to
classify test point x, can be found as the solution of the following optimization
problem:

min
w,b,yl+1

1
2
w′w (5.4)

s.t. yi(w′xi + b) ≥ 0, i = 1, 2, . . . , l

yl+1(w′x + b) = 1, yl+1 ∈ {−1, 1}.

This problem is partially combinatorial due to the constraint that the predicted
label of x, yl+1, can take on only two values. Therefore, one usually solves
two separate optimization subproblems: in the �rst one yl+1 = +1, and in the
second one yl+1 = −1. The value of yl+1 that minimizes the objective function
in (5.4) is the predicted label of x. Note that the distance between x and h is
de�ned as 1/

√
w∗′w∗ by the equality constraint yl+1(w′x + b) = 1.

In the nonseparable case, SH introduce slack variables ξi, similarly to SVM. As
a result, the nonseparable version of (5.4) becomes:
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min
w,b,yl+1,ξ

1
2
w′w + C

l∑

i=1

ξi (5.5)

s.t. yi(w′xi + b) ≥ 0− ξi, ξi ≥ 0, i = 1, 2, . . . , l

yl+1(w′xl+1 + b) = 1, yl+1 ∈ {−1, 1}.

As in (5.4), two separate optimization problems have to be solved to determine
the optimal yl+1. Each of these two subproblems can be dualized as:

max
α

αl+1 − 1
2

∑l+1
i,j=1 αiαjyiyj(x′ixj) (5.6)

s.t. 0 ≤ αi ≤ C, i = 1, 2, . . . , l, and
∑l+1

i=1 yiαi = 0.

Similarly to SVM, di�erent kernels can be substituted for the dot product x′ixj .

5.5.3 Nearest Convex Hull Classi�er
The optimization problem for the NCH classi�er is almost identical to the SH
one. The only di�erence is that in each of the two optimization subproblems
observations from only one class are considered. This property enables NCH to
handle the multi-class classi�cation case with ease, unlike SVM and SH. In the
two-class problem at hand, let us denote with S+ the set of observations that
belong to the positive class and with S− the set of observations that belong to
the negative class. Next, two optimization problems are solved, one per each
class k:

min
wk,bk

1
2
w′

kwk (5.7)

s.t. w′
kxi + bk ≥ 0, i ∈ Sk

−(w′
kx + bk) = 1.

The distance from x to the kth class is de�ned as 1/
√

w∗
k
′w∗

k by the equality
constraint in (5.7). The class associated with the smallest such distance is
assigned to the test point x. Notice that this distance is inversely related to the
objective function w′

kwk/2. Therefore, the class k that achieves the maximal
value for this objective function should be assigned to x.

In the nonseparable case, each of the optimization subproblems is expressed
as:
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min
wk,bk,ξ

1
2
w′

kwk + C
∑

i∈Sk

ξi (5.8)

s.t. w′
kxi + bk ≥ 0− ξi, ξi ≥ 0, i ∈ Sk

−(w′
kx + bk) = 1,

where the ξ's are slack variables. In dual form, (5.8) becomes:

max
α

αlk+1 − 1
2

∑lk+1
i,j=1 αiαjyiyj(x′ixj) (5.9)

s.t. 0 ≤ αi ≤ C, i = 1, 2, . . . , lk, and
∑lk+1

i=1 yiαi = 0,

allowing for the employment of kernel functions, as in SVM and SH. Here i =
1, 2, . . . , lk denotes the elements of class k.

5.5.4 Soft Nearest Neighbor
In the separable case, SNN is equivalent to the 1NN classi�er. Instead of com-
puting the distances between x and all data points to determine the nearest
neighbor of x however, SNN take a di�erent approach. Observe that the dis-
tance to the nearest neighboring point is equal to the maximal radius of a
(hyper)sphere with center x that does not contain any training data points. To
�nd this radius r, one solves the following optimization problem:

max r2 (5.10)
s.t. r2 ≤ ||xi − x||2, i = 1, 2, . . . , l.

In SNN classi�cation, one �rst �nds the distances between x and the closest
point from each of the two (or, in general k) classes. Point x is then assigned
to the class, which such point is closer/closest to x. Denoting with S+ and S−
the sets of positive and negative observations, respectively, SNN thus solve one
optimization problem per each class k, of the form:

max r2 (5.11)
s.t. r2 ≤ ||xi − x||2, i ∈ Sk.

The class that produces the minimal value for the objective function R2 of (5.11)
is then assigned to point x. Similarly to the SVM, SH and NCH approaches,
one can introduce slack variables ξi. In this case (5.11) becomes:
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max R2 − C
∑

i∈Sk

ξi (5.12)

s.t. R2 ≤ ||xi − x||2 + ξi, ξi ≥ 0, i ∈ Sk.

The C > 0 parameter controls the trade-o� between the length of the radius
and amount of training errors. A training error occurs if a point lies inside
the hypersphere. Each of the k quadratic optimization problems (5.12) can be
expressed in dual form as:

min
α

∑

i∈Sk

αi(x′ixi − 2(x′ix) + x′x) (5.13)

s.t. 0 ≤ αi ≤ C, i ∈ Sk, and
∑

i∈Sk

αi = 1.

This formulation allows for the employment of di�erent kernels, which can re-
place the dot products x′ixi, x′ix and x′x. Notice that unlike (5.12), (5.13) is a
linear programming problem.

5.6 Comparison Results
The basic optimization algorithms for SH, NCH, and SNN classi�cation, (5.6),
(5.9) and (5.13) respectively, are implemented via a modi�cation of the freely
available LIBSVM software (Chang & Lin, 2006). We tested the performance
of SH, NCH, and SNN on several small- to middle-sized data sets that are freely
available from the SlatLog and UCI repositories (Newman, Hettich, Blake, &
Merz, 1998) and have been analyzed by many researchers and practitioners
(see, among others, Breiman, 1996; King, Feng, & Sutherland, 1995; Lim, Loh,
& Shih, 1995; Perlich, Provost, & Simono�, 2003): Sonar, Voting, Wisconsin
Breast Cancer (W.B.C.), Heart, Australian Credit Approval (A.C.A.), and Hep-
atitis (Hep.). Detailed information on these data sets can be found on the web
sites of the respective repositories. We stop short of carrying out an extensive
experimental study, since this falls out of the main scope of the chapter. Fur-
thermore, large data sets are harder to handle due to the instance-based nature
of the SH, NCH, and SNN classi�ers.

We compare the results of SH, NCH and SNN to those of several state-of-art
techniques: Support Vector Machines (SVM), Linear and Quadratic Discrimi-
nant Analysis (LDA and QDA), Logistic Regression (LR), Multi-layer Percep-
tron (MLP), k-Nearest Neighbor (kNN), Naive Bayes classi�er (NB) and two
types of Decision Trees � Decision Stump (DS) and C4.5. The experiments
for the NB, LR, MLP, kNN, DS and C4.5 methods have been carried out with
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Table 5.1: Leave-one-out accuracy rates (in %) of the Support Hyperplanes
(SH), Nearest Convex Hull (NCH) and Soft Nearest Neighbor (SNN) classi�ers
as well as some standard methods on several data sets. Rbf, 2p and lin stand for
Radial Basis Function, second-degree polynomial and linear kernel, respectively

Sonar Voting W.B.C. Heart A.C.A. Hep.

SH rbf 91.35 96.77 97.42 85.56 87.39 87.7
SH 2p 87.98 96.31 96.85 81.90 86.70 86.45
SH lin 79.80 96.77 97.00 85.56 86.80 86.45
NCH rbf 91.35 95.85 97.42 85.56 86.38 85.16
NCH 2p 90.38 85.48 97.14 82.59 85.36 84.52
NCH lin 87.98 95.85 97.28 84.07 86.09 84.52
SNN rbf 88.46 94.47 97.42 85.19 85.80 87.10
SNN 2p 76.92 94.01 97.28 80.74 85.51 85.16
SNN lin 87.50 93.78 97.28 85.56 85.65 85.16
SVM rbf 88.94 96.54 97.00 85.56 87.39 86.45
SVM 2p 82.21 96.31 96.85 81.11 79.86 86.45
SVM lin 80.77 96.77 96.85 85.56 87.10 86.45
NB 67.30 90.32 95.99 82.96 77.10 83.23
LR 73.08 96.54 96.14 83.70 86.38 83.87
LDA 75.48 95.85 95.99 83.70 85.80 85.81
QDA 74.88 94.24 91.42 81.48 85.22 83.87
MLP 81.25 94.93 94.99 78.89 84.78 79.35
kNN 86.54 93.32 97.00 84.44 85.94 85.81
DS 73.08 95.85 92.42 76.30 85.51 79.35
C4.5 71.15 97.00 95.28 75.19 83.77 80.00

the WEKA learning environment using default model parameters, except for
kNN. We refer to Witten and Frank (2005) for additional information on these
classi�ers and their implementation. We measure model performance by the
leave-one-out (LOO) accuracy rate. For our purposes � comparison between
the methods � LOO seems to be more suitable than the more general k-fold
cross-validation (CV), because it always yields one and the same error rate es-
timate for a given model, unlike the CV method, because it involves a random
split of the data into several parts.

Table 1 presents performance results for all methods considered. Some meth-
ods, namely kNN, SH, NCH, SNN and SVM, require tuning of model parame-
ters. In these cases, we report only the highest LOO accuracy rate obtained by
performing a grid search for tuning the necessary parameters.

Overall, the instance-based penalization classi�ers SH, NCH and SNN per-



123

5.7 Conclusion 113

form quite well on all data sets. Most notably, SH achieve best accuracy rates
on �ve data sets. NCH replicate this success three times. SVM also perform
best on three data sets. The SNN classi�er achieves best accuracy rate on just
two data sets, but �ve times out of six performs better than its direct competi-
tor, kNN. The rest of the techniques show relatively less favorable and more
volatile results. For example, the C4.5 classi�er performs best on the Voting
data set, but achieves rather low accuracy rates on two other data sets � Sonar
and Heart. Note that not all data sets are equally easy to handle. For instance,
the performance variation over all classi�ers on the Voting and Breast Cancer
data sets is rather low, whereas on the Sonar data set it is quite substantial.

5.7 Conclusion
We have studied from a common generalization perspective three classi�cation
methods recently introduced in the literature: Support Hyperplanes, Nearest
Convex Hull classi�er and Soft Nearest Neighbor. In addition, we have compared
them to the popular Support Vector Machines. A common theme in SH, NCH,
and SNN is their instance-based nature. In addition, these methods strive to �nd
a balance between learner's capacity and learner's �t over the training data. Last
but not least, the techniques can be kernelized, which places them also in the
realm of kernel methods. We have provided a rather intuitive treatment of these
techniques and the generalization framework from which they are approached.
Further research could concentrate on more detailed such treatment and on the
derivation of theoretical test-error bounds. Extensive experiments with di�erent
loss functions, such as the quadratic one, have also to be carried out. Last but
not least, ways to improve the computational speed can also be explored.
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Chapter 6

Classi�cation with Support
Hyperplanes∗

A new classi�cation method is proposed, called Support Hyperplanes (SHs).
To solve the binary classi�cation task, SHs consider the set of all hyperplanes
that do not make classi�cation mistakes, referred to as semi-consistent hyper-
planes. A test object is classi�ed using that semi-consistent hyperplane, which
is farthest away from it. In this way, a good balance between goodness-of-�t
and model complexity is achieved, where model complexity is proxied by the
distance between a test object and a semi-consistent hyperplane. This idea
of complexity resembles the one imputed in the width of the so-called margin
between two classes, which arises in the context of Support Vector Machine
learning. Class overlap can be handled via the introduction of kernels and/or
slack variables. The performance of SHs against standard classi�ers is promising
on several widely-used empirical data sets.

6.1 Introduction
Consider the task of separating two classes of objects from each other on the ba-
sis of some shared characteristics. In general, this separation problem is referred
to as the (binary) classi�cation task. Some well-known approaches to this task
include (binary) Logistic Regression, k-Nearest Neighbor, Decision Trees, Naive
Bayes classi�er, Linear and Quadratic Discriminant Analysis, Neural Networks,
and more recently, Support Vector Machines (SVMs).

∗This chapter has been published as Nalbantov et al. (2006a):
Nalbantov, G. I., Bioch, J. C., & Groenen, P. J. F. (2006a). Classi�cation with Support
Hyperplanes. In J. F�urnkranz, T. Sche�er, & M. Spiliopoulou (Eds.), ECML 2006: 17th
European Conference on Machine Learning (pp. 703�710). Springer Berlin/Heidelberg.
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(a) (b)

x x

h
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h
+1 h
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Figure 6.1: Two equivalent ways to apply the SVMs classi�cation rule. In
Panel (a), the test point x receives the label (+1) assigned using hyperplane
h0,

∑l
i=1 yiαiκ(xi,x) + b = 0. In Panel (b), the same test point receives the

label (+1) assigned using the farthest away semi-consistent hyperplane from it
(h−1,

∑l
i=1 yiαiκ(xi,x) + b = −1), which is parallel to another semi-consistent

hyperplane (h+1,
∑l

i=1 yiαiκ(xi,x) + b = 1) in such a way that the distance
between these two hyperplanes is maximal.

Support Hyperplanes (SHs) is a new instance-based large margin classi�-
cation technique that provides an implicit decision boundary using a set of
explicitly de�ned functions. For SHs, this set consists of all hyperplanes that do
not misclassify any of the data objects. Each hyperplane that belongs to this set
is called a semi-consistent hyperplane with respect to the data. We �rst treat
the so-called separable case � the case where the classes are perfectly separable
by a hyperplane. Then we deal with the nonseparable case via the introduction
of kernels and slack variables, similarly to SVMs. The basic motivation behind
SHs is the desire to classify a given test object with that semi-consistent hy-
perplane, which is most likely to classify this particular object correctly. Since
for each new object there is a di�erent such semi-consistent hyperplane, the
produced decision surface between the classes is implicit.

An advantage of the SHs method is that it is robust against outliers and
avoids over�tting. Further, we demonstrate empirically that the SHs decision
boundary appears to be relatively insensitive to the choice of kernel applied to
the data. The SHs approach is more conservative than SVMs, for instance, in
the sense that the hyperplane determining the classi�cation of a new object is
more distant from it than any of the hyperplanes forming the so-called margin
in SVMs. It can be argued that the SHs approach is more general than SVMs
by means of a formulation of the SHs decision boundary that is nested into the
formulation of the SVMs decision boundary.
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6.2 Support Vector Machines for Classi�cation
We start with an account of the SVM classi�er, developed by Vapnik (Vap-
nik, 1995) and co-workers. SVMs for binary classi�cation solve the follow-
ing task: given training data {xi, yi}l

i=1 from Rn × {−1, 1}, estimate a func-
tion f : Rn → {−1, 1} such that f will classify correctly unseen observations
{xj , yj}l+1+m

j=l+1 . In SVMs, the input vectors {xi}l
i=1 are usually mapped from

Rn into a higher-dimensional space via a mapping ϕ, in which the vectors are
denoted as {ϕ(xi)}l

i=1. In this higher-dimensional (or, feature) space, the SVM
method �nds the hyperplane that maximizes the closest distance between the
observations from the two classes, the so-called margin, while at the same time
minimizes the amount of training errors (Burges, 1998; Cristianini & Shawe-
Taylor, 2000; Vapnik, 1995). The optimal SVM hyperplane is found by solving
the following quadratic optimization problem:

max
α

∑l
i=1 αi − 1

2

∑l
i,j=1 αiαjyiyjκ(xi,xj) (6.1)

s.t. 0 ≤ αi ≤ C, i = 1, 2, . . . , l, and
∑l

i=1 yiαi = 0,

where κ(xi,xj) = ϕ(xi)′ϕ(xj) is a Mercer kernel that calculates inner prod-
uct of input vectors xi and xj mapped in feature space. Using the optimal
α's of (6.1) the SVM hyperplane h0, w′ϕ(x) + b = 0, can be expressed as∑l

i=1 yiαiκ(xi,x) + b = 0. Here, w is a vector of hyperplane coe�cients, and
b is the intercept. A test observation x receives the class label assigned using
h0, as shown in Fig. 6.1a. Stated equivalently, x is classi�ed using the farthest-
away hyperplane that is semi-consistent with the training data, which is parallel
to another semi-consistent hyperplane in such a way that the distance between
these two hyperplanes is maximal (see Fig. 6.1b).

6.3 Support Hyperplanes
6.3.1 De�nition and Motivation
Just like SVMs, the SHs address the classi�cation task. Let us focus on the
so-called linearly separable case, where the positive and negative observations
of a training data set D are perfectly separable from each other by a hyperplane.
Consider the set of semi-consistent hyperplanes. Formally, a hyperplane with
equation w′x+ b = 0 is de�ned to be semi-consistent with a given data set if for
all data points i = 1, 2, . . . , l, it holds that yi(w′xi+b) ≥ 0; the same hyperplane
is de�ned to be consistent with the data if for all data points i = 1, 2, . . . , l, it
holds that yi(w′xi + b) > 0. The basic motivation behind Support Hyperplanes
(SHs) is the desire to classify a test observation x with that semi-consistent
hyperplane, which is in some sense the most likely to assign the correct label to
x. The extent of such likeliness is assumed to be positively related to the distance
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(a) (b)

a
b

x x

Figure 6.2: Classi�cation with Support Hyperplanes in two steps. At stage one
(Panel (a)), a test point x is added as class ��� to the original data set that
consists of �+� and ��� labeled points, and the distance a from x to the farthest
away semi-consistent hyperplane is computed. At stage two (Panel (b)), x is
added to the original data set as class �+�, and the distance b from x to the
farthest away semi-consistent hyperplane is computed. If a > b (a < b), then x
is assigned to class ��� (�+�).

between x and any semi-consistent hyperplane. Thus, if x is more distant from
hyperplane ha than from hyperplane hb, both of which are semi-consistent with
D, then ha is considered more likely to classify x correctly than hyperplane
hb. This leads to the following classi�cation rule of SHs: a test point x should
be classi�ed using the farthest-away hyperplane from x that is semi-consistent
with the training data. Intuitively, this hyperplane can be called the �support
hyperplane� since it supports its own judgement about the classi�cation of x
with greatest self-con�dence; hence the name Support Hyperplanes for the whole
method. For each test point x the corresponding support hyperplane is di�erent.
Therefore, the entire decision boundary between the two classes is not explicitly
computed. A point is de�ned to lie on the SHs decision boundary if there exist
two di�erent semi-consistent hyperplanes that are farthest away from it. SHs
consider the distance between a test point x and a semi-consistent hyperplane
as a proxy for complexity associated with the classi�cation of x. Under this
circumstance, the best generalizability is achieved when one classi�es x with
the so-called support hyperplane: the semi-consistent hyperplane that is most
distant from x. If one however considers the width of the margin as a proxy for
complexity, then the SVM hyperplane achieves the best generalizability. Notice
that by de�nition the support hyperplane is at least as distant from x as any of
the two semi-consistent hyperplanes that form the margin of the optimal SVM
hyperplane, which makes the SHs method relatively more conservative. Let us
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now argue more formally that the SH approach generalizes SVM by means of
a formulation of the SHs decision boundary that is part of a formulation of
the SVMs decision boundary. A point x is de�ned to lie on the implicit SHs
separation surface if the following three conditions are met: (1) x is equally
distant from two hyperplanes, (2) these two hyperplanes are semi-consistent
with the training data, and (3) the distance between point x and any of the two
hyperplanes is maximal. Next, observe that a point x is de�ned to lie on the
explicit SVMs optimal hyperplane if and only if the three conditions above plus
an additional fourth condition are all satis�ed: (4) the two (semi-consistent)
hyperplanes are parallel to each other.

6.3.2 Estimation
Given a linearly separable data set D, {xi, yi}l

i=1, from Rn×{−1, 1}, SHs classify
a test point xl+1 using that semi-consistent hyperplane with respect to D, which
is most distant from xl+1. Formally, in order to �nd the support hyperplane
w′x + b = 0 of point xl+1, one solves the following quadratic optimization
problem:

min
w,b,yl+1

1
2
w′w (6.2)

s.t. yi(w′xi + b) ≥ 0, i = 1, 2, . . . , l

yl+1(w′xl+1 + b) = 1

The distance between the support hyperplane w′x + b = 0 and xl+1 is de�ned
as 1/

√
w′w by the last constraint of (6.2), irrespective of the label yl+1. This

distance is maximal when 1
2w

′w is minimal. The role of the �rst l inequality
constraints is to ensure that the support hyperplane is semi-consistent with the
training data.

Optimization problem (6.2) is partially combinatorial, since not all variables
are continuous: the label yl+1 can take only two discrete values. Therefore, in
order to solve (6.2), two distinct optimization subproblems should we solved
(see Fig. 6.2). One time (6.2) is solved when yl+1 equals +1, and another time
when yl+1 equals −1. Each of these optimization subproblems has a unique
solution, provided that the extended data set {xi, yi}l+1

i=1 is separable. In case
the two solutions yield the same value for the objective function 1

2w
′w, the

test point xl+1 lies on the SHs decision boundary and the classi�cation label is
undetermined. If the extended data set has become nonseparable when yl+1 is
labeled, say, +1, then the respective optimization subproblem does not have a
solution. Then, xl+1 is assigned the opposite label, here −1.

The implicit nature of SHs provides for the property that the SHs decision
boundary is in general nonlinear, even in case the original data is not mapped
into a higher-dimensional space. Figure 6.3 demonstrates that this property
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does not hold in general for SVMs. This �gure also illustrates that the SHs
decision boundary appears to be less sensitive to the choice of kernel and kernel
parameters than the respective SVMs boundary.

We now treat the so-called (linearly) nonseparable case. A training data
set is said to be nonseparable if there does not exist a single hyperplane that
is consistent with it. SHs deal with the nonseparable case in the same way
as SVMs: by introducing so-called slack variables. For SHs, this procedure
amounts to solving the following quadratic optimization problem:

min
w,b,yl+1,ξ

1
2
w′w + C

l∑

i=1

ξi (6.3)

s.t. yi(w′xi + b) ≥ 0− ξi, ξi ≥ 0, i = 1, 2, . . . , l

yl+1(w′xl+1 + b) = 1.

Note that in (6.3) the points that are incorrectly classi�ed are penalized linearly
via

∑l
i=1 ξi. If one prefers a quadratic penalization of the classi�cation errors,

then the sum of squared errors
∑l

i=1 ξ2
i should be substituted for

∑l
i=1 ξi in

(6.3). One can go even further and extend the SHs algorithm in a way analogical
to LS-SVM (Gestel et al., 2004) by imposing in (6.3) that constraints yi(w′xi +
b) ≥ 0− ξi hold as equalities, on top of substituting

∑l
i=1 ξ2

i for
∑l

i=1 ξi.
Each of the two primal subproblems pertaining to (6.3) can be expressed in

dual form1 as:

max
α

αl+1 − 1
2

∑l+1
i,j=1 αiαjyiyj(x′ixj) (6.4)

s.t. 0 ≤ αi ≤ C, i = 1, 2, . . . , l, and
∑l+1

i=1 yiαi = 0,

where the α's are the Lagrange multipliers associated with the respective sub-
problem. In the �rst subproblem yl+1 = 1, while in the second subproblem
yl+1 = −1. The advantage of the dual formulation (6.4) is that di�erent Mercer
kernels can be employed to replace the inner product x′ixj in (6.4), just like in
the SVMs case. The (l + 1) × (l + 1) symmetric positive-de�nite matrix with
elements ϕ(xi)′ϕ(xj) on the ith row and jth column is called the kernel matrix.

The SHs approach can also be theoretically justi�ed by observing that a
kernel matrix used by SHs can be modi�ed to represent the original SHs opti-
mization problem as an SVM problem. It turns out that the theoretical under-
pinnings for SVMs can also be transferred to the SHs method. More details will
be provided in Nalbantov, Bioch, and Groenen (2006c).

1The derivation of the dual problem resembles the one used in SVMs (see, e.g., Burges,
1998).
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SH, linear kernel

SVM, linear kernel

SH, RBF kernel, γ=5

SVM, RBF kernel, γ=5

SH, RBF kernel,γ=35

SVM, RBF kernel,γ=35

Figure 6.3: Decision boundaries for SHs and SVMs using the linear, κ(xi,xj) =
x′ixj , and the RBF, κ(xi,xj) = exp(−γ ‖ xi − xj ‖2), kernels on a linearly
separable data set. The dashed contours for the SHs method are iso-curves
along which the ratio of two distances is constant: the distance from a test
point to the farthest semi-consistent hyperplane when it is added to the data
set one time as �+�, and another time as ���.

6.4 Experiments on Some UCI and SlatLog Data
Sets

The basic optimization algorithm for Support Hyperplanes (6.4) is implemented
via a modi�cation of the freely available LIBSVM software (Chang & Lin, 2006).
We tested the performance of Support Hyperplanes on several small- to middle-
sized binary data sets that are freely available from the SlatLog and UCI repos-
itories (Newman et al., 1998) and have been analyzed by many researchers and
practitioners (e.g., among others, Breiman, 1996; King et al., 1995; Lim et al.,
1995; Perlich et al., 2003): Sonar, Voting, Wisconsin Breast Cancer (W.B.C.),
Heart, Australian Credit Approval (A.C.A.), and Hepatitis (Hep.). Detailed in-
formation on these data sets can be found on the web sites of the respective
repositories.

We compare the results of SHs to those of several state-of-art techniques:
Linear and Quadratic Discriminant Analysis (LDA and QDA), Logistic Regres-
sion (LR), Multi-layer Perceptron (MLP), k-Nearest Neighbor (kNN), Naive
Bayes classi�er (NB) and two types of Decision Trees � Decision Stump (DS)
and C4.5. The experiments for the NB, LR, MLP, kNN, DS and C4.5 meth-
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Table 6.1: Leave-one-out accuracy rates (in %) of the Support Hyperplanes
classi�er as well as some standard methods on several binary data sets. Rbf, 2p
and lin stand for Radial Basis Function, second-degree polynomial and linear
kernel, respectively

Sonar Voting W.B.C. Heart A.C.A. Hep.

SH rbf 91.35 96.77 97.42 85.56 87.39 87.7
SH 2p 87.98 96.31 96.85 81.90 86.70 86.45
SH lin 79.80 96.77 97.00 85.56 86.80 86.45
SVM rbf 88.94 96.54 97.00 85.56 87.39 86.45
SVM 2p 82.21 96.31 96.85 81.11 79.86 86.45
SVM lin 80.77 96.77 96.85 85.56 87.10 86.45
NB 67.30 90.32 95.99 82.96 77.10 83.23
LR 73.08 96.54 96.14 83.70 86.38 83.87
LDA 75.48 95.85 95.99 83.70 85.80 85.81
QDA 74.88 94.24 91.42 81.48 85.22 83.87
MLP 81.25 94.93 94.99 78.89 84.78 79.35
kNN 86.54 93.32 97.00 84.44 85.94 85.81
DS 73.08 95.85 92.42 76.30 85.51 79.35
C4.5 71.15 97.00 95.28 75.19 83.77 80.00

ods have been carried out with the WEKA learning environment using default
model parameters, except for kNN. We refer to Witten and Frank (2005) for
additional information on these classi�ers and their implementation. We mea-
sure model performance by the leave-one-out (LOO) accuracy rate. For our
purposes � comparison between the methods � LOO seems to be more suitable
than the more general k-fold cross-validation (CV), because it always yields
one and the same error rate estimate for a given model, unlike the CV method
(which involves a random split of the data into several parts). Table 1 presents
performance results for all methods considered. Some methods, namely kNN,
SHs and SVMs, require tuning of model parameters. In these cases, we report
only the highest LOO accuracy rate obtained by performing a grid search for
tuning the necessary parameters. Overall, the accuracy rates of Support Hyper-
planes exhibit �rst-rate performance on all six data sets: �ve times out of six the
accuracy rate of SHs is the highest one. SVMs follow closely, and the rest of the
techniques show relatively less favorable and more volatile results. For example,
the C4.5 classi�er performs best on the Voting data set, but achieves rather low
accuracy rates on two other data sets � Sonar and Heart. Note that not all data
sets are equally easy to handle. For instance, the performance variation over all
classi�ers on the Voting and Breast Cancer data sets is rather low, whereas on
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the Sonar data set it is quite substantial.

6.5 Conclusion
We have introduced a new technique that can be considered as a type of an
instance-based large margin classi�er, called Support Hyperplanes (SHs). SHs
induce an implicit and generally nonlinear decision surface between the classes
by using a set of (explicitly de�ned) hyperplanes. SHs classify a test observation
using the farthest-away hyperplane from it that is semi-consistent with the data
used for training. This results in a good generalization quality. Although we
have treated just the binary case, the multi-class extension can easily be carried
out by means of standard methods such as one-against-one or one-against-all
classi�cation. A potential weak point of SHs, also applying to SVMs, is that it is
not clear a priori which type of kernel and what value of the tuning parameters
should be used. Furthermore, we do not address the issue of attribute selection
and the estimation of class-membership probabilities. Further research could
also concentrate on the application of SHs in more domains, on faster imple-
mentation suitable for analyzing large-scale data sets, and on the derivation of
theoretical test-error bounds.
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A Some Properties and Interpretation of Support
Hyperplanes in the Separable Case
A.1 Background
Support Hyperplanes (SH) can be viewed as a technique whereby the classi�ca-
tion of a test point is done via computing distances to sets. This is particularly
evident in the so-called linearly separable case. In this case the SH method pos-
sesses a number properties that portray it as an intuitively appealing method
that outputs a classi�cation label of a test point based on its distances to (two)
well-de�ned sets. The separable case is also important as a platform for laying
down arguments in favor of SH over SVM, as viewed from the goodness-of-�t
versus complexity aspect. This aspect is also referred to in the literature as loss
versus penalty or bias versus variance.

Let us introduce some notation. A two-class data set D, {xi, yi}l
i=1, from

Rn × {−1, 1} is referred to as being separable if there exists at least one hy-
perplane that is consistent with it. In other words, there exist coe�cients w
and b, such that for all i = 1, 2, . . . , l, yi(w′xi + b) > 0. It is convenient to
de�ne three sets of points for a separable data set, as depicted in Figure 6.4.
First, let U(+) be the set of points which are classi�ed as �+� (or, 1) by all
consistent hyperplanes. Next, let U(−) be the set of points which are classi�ed
as ��� (or, −1) by all consistent hyperplanes, and let the Version Space Volume
(VSV ) denote the rest of the points; refer to Smirnov, Sprinkhuizen-Kuyper,
and Nalbantov (2004) and Smirnov et al. (2006), who use these sets in the
context of the classi�cation technique Version Space Support Vector Machines
(VSSVM). For ease of exposition, we write that a hyperplane with coe�cients
w and b �crosses� or �intersects� a given set of points if there exist at least two
points xi and xj from this set such that w′xi + b > 0 and w′xj + b < 0. Also, a
hyperplane �touches� a set of points if there exists at least one point p from this
set for which w′xp +b = 0 and there do not exist two points xi and xj from this
set such that w′xi + b > 0 and w′xj + b < 0. The smallest distance between
objects A and B is denoted by distance(A,B). The SVM separating hyperplane
is denoted by hSVM , while the hyperplanes that form the SVM margin are de-
noted by hm1 and hm2. Finally, CH (+) and CH (−) stand for the convex hulls
of the �+� and ��� points, respectively.

A.2 Properties
Lemma 1. Let D be a separable data set. Then, U(+) and U(−) are nonempty
and convex.

Proof. Suppose U(−) is not convex. Then, there exist t ∈ (0, 1) and points
xB ∈ U(−) and xC ∈ U(−) such that xA = txB + (1 − t)xC 6∈ U(−). Since
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(a) (b)
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Figure 6.4: Panel (a): sets U(+), U(−), and VSV, as well as a test point x with
its distances to U(+) and U(−). Panel (b): The convex hulls of �+� and ���
points, the SVM hyperplane (hSVM ), and the two hyperplanes that form the
SVM margin, hm1 and hm2.

xA 6∈ U(−), xB ∈ U(−), and xC ∈ U(−), there exists a semi-consistent hyperplane
w′x + b = 0 such that w′xB + b ≤ 0, w′xC + b ≤ 0 and w′xA + b > 0. This,
however, is impossible since w′xA + b = w′(txB + (1 − t)xC) + tb + (1 − t)b
= t(w′xB + b) + (1− t)(w′xC + b) ≤ 0. Therefore, U(−) is convex. (Note that
xA 6∈ U(+)).

Lemma 2. Let D be a separable data set. Then, the support hyperplane touches
either U(+), or U(−), or both.

Proof. Suppose that the support hyperplane (sh) does not touch either U(+) or
U(−) (that is, sh is strictly consistent with respect to U(+) and U(−)). Then,
there exists a set of hyperplanes parallel to sh, within ε > 0 distance from sh,
which are also consistent with U(+) and U(−). More concretely, there exists a
semi-consistent hyperplane sh′, which is a better candidate for a farthest-away
semi-consistent hyperplane than the original sh, which contradicts the de�nition
of sh. Therefore, sh touches either U(+), or U(−), or both. Note that sh cannot
strictly intersect U(+) or U(−) by de�nition.

Lemma 3. Let D be a separable data set and let (1) hyperplane h1 touch U(+)

at point xA (that is, w′xA = 0); (2) h1 cross U(−); and (3) point xB ∈ U(−) be
a point for which w′xB + b = 0. Then, h1 crosses U(+) (that is, there exists at
least one point ∈ h1 that is strictly inside U(+)).

Proof. Consider point xC , such that point xA is between point xC and point
xB . In other words, xC = (1/t)xA − ((1 − t)/t)xB , t ∈ (0, 1). Since xC is a
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linear combination of xA and xB , and both xA and xB ∈ h1, it follows that
xC ∈ h1. Now, for each semi-consistent hyperplane �i� we have:

∣∣∣∣
wixA + bi ≥ 0
wixB + bi < 0 ⇒ wi((1/t)xA − ((1− t)/t)xB) + bi > 0 ⇒ wixC + bi > 0.

Therefore, xC is strictly inside U(+). Conclusion: h1 crosses U(+).

Theorem 1. Let D be a separable data set and xA be a point in the version
space volume (VSV). Then, distance(xA,sh) is equal to the distance between
point xA and the farthest of the sets U(+) and U(−) from point xA.
Proof. Suppose distance(sh,xA) < distance(U(+),xA). The case with U(−)

is analogous. Since U(+) is convex, the line segment representing the
distance(U(+),xA) is perpendicular to a hyperplane (h1) that touches U(+)

at a point xB (but does not cross U(+)). By Lemma 3 it follows that h1 is
semi-consistent with U(−) (because if it crosses U(−), it will be inconsistent
(=cross) with U(+)). Therefore, h1 is a better candidate for a farthest-away
semi-consistent hyperplane than the current (true) support hyperplane. This
is a contradiction. Thus, distance(sh,xA) ≥ distance(U(+),xA). By analogy,
distance(sh,xA) ≥ distance(U(−),xA).

Assume, without loss of generality, that distance(U(+),xA) > distance(U(−),xA)
> 0. Suppose distance(sh,xA) > distance(U(+),xA). Now, let us show that sh
cannot touch only U(−) (that is, it must also touch U(+)). If sh touches U(−)

only, then the solution of the support hyperplanes optimization problem is the
distance from point xA to the convex hull of the negative observations, and
point xA is labelled as �positive� in the solution. Thus, xA and U(−) are on
di�erent sides of h1. Therefore, distance(xA,sh) ≤ distance(xA,U(−)), which is
a contradiction (distance(sh,xA) > distance(U(+),xA) ≥ distance(sh,xA)). So,
h1 touches U(+). Therefore, distance(sh,xA) ≤ distance(U(+),xA).

Overall conclusion: distance(U(+),xA) = distance(sh,xA).

Theorem 1 allows us to view the SHs as a conceptual extension of the famous
Nearest-Neighbor technique, the di�erence being that SHs compute distances
to sets rather than to individual points.
Lemma 4. Let D be a separable data set and let point xA ∈ convex hull of the
negative observations. Then xA ∈ U(−).
Proof. For each negative point in the data set we have that all semi-consistent
hyperplanes do not misclassify them. Therefore, all (convex combinations of)
points from the convex hull of the negative observations will likewise be not
misclassi�ed. Thus, the convex hull of the negative observations is a subset of
U(−).
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Lemma 5. Let D be a separable data set. Then, all points from U(+) and U(−)

lie outside the SVM margin.

Proof. Assume that point xA ∈ U(−), but it is also inside the margin. All hy-
perplanes ∈ SVM margin are semi-consistent by de�nition, including h1 and
h2 (the hyperplanes that form the margin). So, one of the two marginal hy-
perplanes classi�es xA as �positive�. Thus, not all semi-consistent hyperplanes
classify xA as �negative�, which is a contradiction with the assumption that
point xA ∈ U(−). Conclusion: xA lies outside the margin.

Lemma 6. Let D be a separable data set. Then, the SVM hyperplane separates
U(+) and U(−) with the widest possible margin.

Proof. The two SVM hyperplanes that form the margin touch the convex hulls of
the negative and positive examples (as shown, e.g., in Bennett & Bredensteiner,
2000). Moreover, the convex hulls of the positive and negative observations
are subsets of U(+) and U(−), respectively. Therefore, the SVM hyperplane
cannot separate U(+) and U(−) with a bigger margin than that between the
convex hulls of the negative and positive observations. These two margins can
be equal, however, as can be seen from Lemma 5. Since the SVM hyperplane
is unique, it follows that it separates U(+) and U(−) with the widest possible
margin.

Lemma 7. Let D be a separable data set that consists of l + 1 points. The
Support Hyperplanes optimization problem can be represented as an SVM opti-
mization problem, where a special (Mercer) kernel is being applied.

Proof. The SVM optimization problem can be stated as:

max
α

∑l+1
i=1 αi − 1

2

∑l+1
i,j=1 αiαjyiyj(x′ixj) (6.5)

s.t. 0 ≤ αi, i = 1, 2, . . . , l + 1, and
∑l+1

i=1 yiαi = 0,

The SH optimization problem can be stated as:

max
α

αl+1 − 1
2

∑l+1
i,j=1 αiαjyiyj(x′ixj) (6.6)

s.t. 0 ≤ αi, i = 1, 2, . . . , l + 1, and
∑l+1

i=1 yiαi = 0.

In order to convert the SVM formulation into an SH one, the main idea is to
add a positive number to each diagonal entry of the kernel matrix XX ′, which
will absorb the sum

∑l
i=1 αi in the SVM optimization formulation. So,

∑l
i=1 αi

will be incorporated in XX ′. This can be done only if all alpha's are known, in
the following way: 2/αi has to be added to the ith diagonal element of XX ′ in
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the SVM formulation in case αi 6= 0 and i 6= l + 1.

The SVM high-dimensional vector dot product thus becomes:

(xi1,xi2, . . . ,xin,
√

2 δij√
αi

)′(xj1,xj2, . . . ,xjn,
√

2 δij√
αj

),

where δij = 1 if i = j, and δij = 0 if i 6= j.
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Chapter 7

Nearest Convex Hull
Classi�cation

Consider the classi�cation task of assigning a test object to one of two or more
possible groups, or classes. An intuitive way to proceed is to assign the object
to that class, to which the distance is minimal. As a distance measure to a class,
we propose here to use the distance to the convex hull of that class. Hence the
name Nearest Convex Hull (NCH) classi�cation for the method. Convex-hull
overlap is handled through the introduction of slack variables and kernels. In
spirit and computationally the method is therefore close to the popular Sup-
port Vector Machine (SVM) classi�er. Advantages of the NCH classi�er are its
robustness to outliers, good regularization properties and relatively easy han-
dling of multi-class problems. We compare the performance of NCH against
state-of-art techniques and report promising results.

7.1 Introduction
There are many approaches to the classi�cation task of separating two or more
groups of objects on the basis of some shared characteristics. Existing techniques
range from Linear Discriminant Analysis (LDA), Quadratic Discriminant Anal-
ysis (QDA) and Binary Logistic Regression to Decision Trees, Neural Networks,
Support Vector Machines (SVM), etc. Many of those classi�ers make use of
some kind of a distance metric (in some n-dimensional space) to derive classi-
�cation rules. Here, we propose to use another such classi�er, called Nearest
Convex Hull (NCH) classi�er.

As the name suggests, the so-called hard-margin version of the NCH classi�er
assigns a test object x to that group of training objects, which convex hull is
closest to x. This involves solving an optimization problem to �nd the distance
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to each class. Algorithms for doing so have been proposed in the literature
under the general heading of �nding the minimum distance between convex
sets (see, e.g., Vapnik, 1995; Bennett & Bredensteiner, 2000). We confer also
to Luxburg and Bousquet (2004) for a more general discussion on distance-
based classi�cation. Existing o�-the-shelf algorithms however cannot be directly
applied for classi�cation tasks where a mixture of a soft-margin and a hard-
margin approaches is required. In the separable, hard-margin case, a problem
arises if x lies inside the convex hulls of two or more groups, since its distance
to these convex hulls is e�ectively equal to zero and the classi�cation of x is
undetermined. To deal with this problem, we introduce a soft-margin version
of the NCH classi�er, where convex-hull overlap between x and a given class is
penalized linearly. The di�erence with the soft-margin SVM approach lies in
the requirement that the soft approach is applied to all data points except the
test point x. As an alternative solution to convex-hull overlaps, one could map
the training data from the original space into a higher-dimensional space where
convex-hull overlap can be avoided. A combination of both approaches is also
possible.

The linear (and not, for example, quadratic) penalization of the errors gives
rise to the robustness-to-outliers property of NCH. Another advantage of NCH
in terms of computational speed arises in the context of multi-class classi�ca-
tion tasks. This occurs because only same-class objects are considered in the
estimation of a (soft) distance to a convex hull, and not the whole data set.
The decision surface of the NCH classi�er is not explicitly computed because
the classi�cation process for each test point is independent of the classi�cation
process for other test points. That is why the classi�cation process is instance-
based in nature. In sum, the NCH method can be considered as a type of
instance-based large-margin classi�er.

The chapter is organized as follows. First we provide some intuition behind
the NCH classi�er and a formal de�nition of it. Next, we discuss the technical
aspects of the classi�er � derivation and implementation. Finally, we show some
experimental results on popular data sets and then conclude.

7.2 Nearest Convex Hull Classi�er: De�nition
and Motivation

At the outset, consider a binary data set of positive and negative objects 〈I+, I−〉
from Rn. Formally, the task is to separate the two classes of objects with a
decision surface that performs well on a test data set. This task is formalized as
�nding a (target) function f : Rn → {−1, 1} such that f will classify correctly
unseen observations. The extension to the multi-class case is straightforward.
The decision rule of the NCH classi�er is the following: a test point x should be
assigned to that class, which convex hull is closest to x.
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Figure 7.1: Classi�cation of a test point x with SVM in Panels (a) and (c), and
NCH in Panels (b) and (d) on a binary data set. In Panel (a), the white band
has the largest possible width, which is equal to twice the margin, shown in
Panel (c). The points to the left and to the right of the band form shaded sets
S− and S+, respectively. Test point x receives label +1 since it is farther from
S− than S+. In Panel (b) point x is classi�ed as −1 since it is farther from
the convex hull of the positive points, CH+, than from the convex hull of the
negative points, CH−.

Let us consider the so-called separable case where the classes are separable by
a hyperplane and draw an intuitive comparison between NCH and the popular
SVM classi�er. See Figure 7.1 for an illustrative binary classi�cation example.
Panels (a) and (c) refer to SVM classi�cation, and Panels (b) and (d) refer to
NCH classi�cation. In SVM classi�cation, the target function is a hyperplane of
the form w′x + b = 0, where w is a vector of coe�cients and b in the intercept.
The SVM hyperplane w∗′x+b∗ = 0 (denoted as hSVM) is the one that separates
the classes with the widest margin, where a margin is de�ned as the distance
between a (separating) hyperplane and the closest point to it from the training
data set. In terms of Figure 7.1, Panel (a), the width of white band is equal
to twice the margin, which is shown in Panel (c). The closest point to hSVM is
de�ned to lie on the hyperplane w∗′x+ b∗ = 1 if this point is positively labeled,
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or on the hyperplane w∗′x + b∗ = −1 if this closest point is negatively labeled.
For all points x that lie outside the margin it holds that either w∗′x + b∗ < −1
or w∗′x + b∗ > 1. The former set of points is de�ned as S−, and the latter set
of points is de�ned as S+. For any test point x, the SVM classi�cation rule can
be formulated as follows: a test point x should be classi�ed as −1 if it is farther
away from set S+ than from set S−; otherwise x receives label +1.

It has been argued (see, e.g., Burges, 1998; Vapnik, 1995) that SVM classi-
�cation searches for a balance between empirical error (or, the goodness-of-�t
over the training data) and complexity, where complexity is proxied by the dis-
tance between sets S+ and S− (that is, twice the margin). In the separable
case at hand, the empirical error of hSVM is zero since it �ts the data perfectly.
Also, complexity and margin width are inversely related: the larger the margin,
the lower the associated complexity. The balance between empirical error and
complexity can intuitively be approached from an instance-based viewpoint as
well. In this case, complexity is imputed in the classi�cation of each separate
test object/instance. Thus, the larger the distance from a test object x to the
farther one of the two sets S+ and S−, the lower the complexity associated with
the classi�cation of x.

The NCH classi�er can also be considered from a �t-versus-complexity stand-
point. Let us denote by CH+ and CH− the set of points that form the convex
hulls of the positive and negative objects, respectively (see Figure 7.1, Panel
(b)). Somewhat similarly to SVM, in NCH classi�cation one considers the dis-
tance to the farther one of the two convex hulls CH+ and CH− as a proxy for
the complexity associated with the classi�cation of x. Quite interestingly, this
distance is always as big as or bigger than the distance from x to the farther of
sets S+ and S−. This property holds since the convex hull of the +1 (−1) points
is a subset of S+ (S−), as can be seen in Figure 7.1. Therefore, if one considers
the distance to the farther-away convex hull as a proxy for complexity associated
with the classi�cation of x, then NCH classi�cation is characterized by a lower
complexity than SVM classi�cation. However, the �t over the training data
of NCH may turn out to be inferior to SVM in some cases. Let hFCH denote
the hyperplane that is tangent to the farther-away convex hull of same-class
training data points, and is perpendicular to the line segment that represents
the distance between x and this convex hull, as in Figure 7.1, Panel (d). Thus,
the distance between x and hFCH equals the distance between x and the far-
ther convex hull. E�ectively, in NCH classi�cation x is classi�ed using hFCH.
Notice that by de�nition hFCH separates without an error either the positive
or the negative observations, depending on which convex hull is farther from x.
Thus, hFCH is not guaranteed to have a perfect �t over the whole data set that
consists of both positive and negative points, as illustrated in Figure 7.1, Panel
(d). As a consequence, it is not clear a priory whether NCH or SVM will strike
a better balance between �t and complexity in the classi�cation of a given point
x: there is a gain for NCH coming from decreased complexity (in the form of an
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increased distance) vis-a-vis SVM on the one hand, accompanied by a potential
loss arising from a possible increased empirical error of hFCH over the whole
training data set, on the other.

NCH has the property that the extent of proximity to a given class is de-
termined without taking into consideration objects from other classes. This
property contrasts with the SVM approach, where the sets S+ and S− are not
created independently of each other. A similar parallel can be drawn between
LDA and QDA methods. In LDA, one �rst determines the Mahalanobis dis-
tances from x to the centers of the classes using a common pooled covariance
matrix and then classi�es x accordingly. In QDA, one uses a separate covari-
ance matrix for each class. Analogically, the NCH classi�er �rst determines the
Euclidean distance from x to the convex hulls of each of the classes and then
classi�es x accordingly. In sum, loosely speaking one may think of the shift
from SVM to NCH as resembling the shift from LDA to QDA.

7.3 Estimation
7.3.1 Separable Case
Consider a data set of l objects from k di�erent groups, or classes. Let lk
denote the number of objects in the kth class. According to NCH, a test point x
is assigned to that class, to which the distance is minimal. In the separable case,
the distance to a class is de�ned as the distance to the convex hull of the objects
from that class. The algorithm for classifying x can be described as follows (see
Figure (7.2)): �rst, compute the distance from x to the convex hull of each of
the k classes; second, assign to x the label of the closest class. Formally, to
�nd the distance from a test point x to the convex hull of the nearest class, the
following quadratic optimization problem has to be solved for each class k:

min
wk,bk

1
2
w′

kwk (7.1)

such that w′
kxi + bk ≥ 0, i = 1, 2, . . . , lk

−(w′
kx + bk) = 1

The distance between hyperplane w′
kx+bk = 0 and x is de�ned as 1/

√
w′

kwk

by the last constraint of (7.1). This distance is maximal when 1
2w

′
kwk is min-

imal. At the optimum, it represents the distance from x to the convex hull
of class k. The role of the �rst lk inequality constraints is to ensure that the
hyperplane classi�es correctly each point that belongs to class k. E�ectively,
for each of the k classes, the lk same-class objects are assigned label 1, and the
test point is assigned label −1. Eventually, x is assigned to that class to which
the distance is minimal, that is, which corresponding value for the objective
function in (7.1) is maximal.
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x x x

(a) (b) (c)

a b

Figure 7.2: Classi�cation of a test point x with NCH on the binary data set in
Panel (a) in two steps. At stage one (Panel (b)), a test point x is added to a
data set that contains only the positive class, and the distance a from x to the
convex hull of this class is computed. At stage two (Panel (c)), x is added to a
data set that contains only the negative class, and the distance b from x to the
convex hull of this class is computed. If a > b (a < b), then x is assigned to
the negative (positive) class.

7.3.2 Nonseparable Case
Optimization problem (7.1) can be solved for each k only if the test point lies
outside the convex hull of each class k. A further complication arises if some
of the convex hulls overlap. Then a test point could lie simultaneously in two
or more convex hulls and its classi�cation label would be undetermined. To
cope with these situations, so-called slack variables can be introduced, similarly
to the SVM approach. Consequently, the nonseparable version of optimization
problem (7.1) that has to be solved for each class k becomes:

min
wk,bk,ξ

1
2
w′

kwk + C

lk∑

i=1

ξi (7.2)

such that. w′
kxi + bk ≥ 0− ξi, ξi ≥ 0, i = 1, 2, . . . , lk

−(w′
kx + bk) = 1.

Note that in (7.2) the points that are incorrectly classi�ed are penalized linearly
via the term

∑lk
i=1 ξi. If one prefers a quadratic penalization of the classi�cation

errors, then the sum of squared errors
∑lk

i=1 ξ2
i should be substituted for

∑lk
i=1 ξi

in (7.2). One can go even further and extend the NCH algorithm in a way
analogical to LS-SVM (Gestel et al., 2004) by imposing in (7.2) that constraints
w′

kxi +bk ≥ 0−ξi hold as equalities, on top of substituting
∑lk

i=1 ξ2
i for

∑lk
i=1 ξi.

Each of the k (primal) optimization problems pertaining to (7.2) can be
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expressed in dual form1 as:

max
α

αlk+1 − 1
2

∑lk+1
i,j=1 αiαjyiyj(x′ixj) (7.3)

such that 0 ≤ αi ≤ C, i = 1, 2, . . . , lk, and
∑lk+1

i=1 yiαi = 0,

where the α's are the Lagrange multipliers associated with the respective kth

primal problem. Here αlk+1 is the Lagrange multiplier associated with the
equality constraint −(w′

kx+bk) = 1. In each problem yi = 1, i = 1, 2, . . . , lk and
ylk+1 = −1. The advantage of the dual formulation (7.3) is that di�erentMercer
kernels can be employed to replace the inner product x′ixj in (7.3) in order to
obtain nonlinear decision boundaries, just like in the SVM case. Three popular
kernels are linear κ(xi,xj) = x′ixj , polynomial of degree d κ(xi,xj) = (x′ixj+1)d

and the Radial Basis Function (RBF) kernel κ(xi,xj) = exp(−γ ‖ xi − xj ‖2),
where the manually-adjustable γ parameter determines the proximity between
xi and xj .

A total of k NCH optimization problems have to be solved to determine the
class of any test point x. This property provides for the fact that the NCH deci-
sion boundary is in general implicit and nonlinear, even in case the original data
is not mapped into a higher-dimensional space via a kernel. Figure 7.3 demon-
strates that this property does not hold in general for Support Vector Machines,
for instance. This �gure also illustrates that the NCH decision boundary ap-
pears to be less sensitive to the choice of kernel and kernel parameters than the
respective SVM boundary.

Technically speaking, in case the convex hulls do not overlap, NCH could
be solved using the standard SVM optimization formulation (see, e.g., Vapnik,
1995; Burges, 1998). In this case one searches for the widest margin between
each of the k classes and a test point x. This margin represents the distance
from x to the convex hull of the kth class. The class for which the margin is
smallest is the winning one. The standard nonseparable-case SVM formulation
cannot however be automatically applied to the nonseparable NCH case, since
the equality constraint in (7.2) will not be satis�ed in general.

7.4 Experiments on Some UCI and SlatLog Data
Sets

The basic optimization algorithm for Nearest Convex Hull classi�cation (7.3) is
implemented via a modi�cation of the freely available LIBSVM software (Chang
& Lin, 2006). We tested the performance of NCH on several small- to middle-
sized data sets that are freely available from the SlatLog and UCI repositories

1The derivation of the dual problem resembles the one used in SVM (see, e.g., Burges,
1998).
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NCH, linear kernel NCH, RBF kernel, γ=5 NCH, RBF kernel,γ=35

SVM, RBF kernel,γ=35SVM, RBF kernel, γ=5SVM, linear kernel

Figure 7.3: Decision boundaries for NCH and SVM using the linear and RBF
kernels on a linearly separable data set. The dashed contours for the NCH
method are iso-curves along which the ratio of the distances to the two convex
hulls is constant.

(Newman et al., 1998) and have been analyzed by many researchers and prac-
titioners (e.g., among others, Breiman, 1996; King et al., 1995; Lim et al.,
1995; Perlich et al., 2003): Sonar, Voting, Wisconsin Breast Cancer (W.B.C.),
Heart, Australian Credit Approval (A.C.A.), and Hepatitis (Hep.). Detailed in-
formation on these data sets can be found on the web sites of the respective
repositories.

We compare the results of NCH to those of several state-of-art techniques:
Support Vector Machines (SVM), Linear and Quadratic Discriminant Analysis
(LDA and QDA), Logistic Regression (LR), Multi-layer Perceptron (MLP), k-
Nearest Neighbor (kNN), Naive Bayes classi�er (NB) and two types of Decision
Trees � Decision Stump (DS) and C4.5. The experiments for the NB, LR, MLP,
kNN, DS and C4.5 methods have been carried out with the WEKA learning
environment using default model parameters, except for kNN. We refer to Wit-
ten and Frank (2005) for additional information on these classi�ers and their
implementation. We measure model performance by the leave-one-out (LOO)
accuracy rate. Because we aim at comparing several methods, LOO seems to
be more suitable than the more general k-fold cross-validation (CV), because it
always yields one and the same error rate estimate for a given model, unlike the
CV method (which involves a random split of the data into several parts).

Table 1 presents performance results for all methods considered. Some meth-
ods, namely kNN, NCH and SVM, require tuning of model parameters. In these
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Table 7.1: Leave-one-out accuracy rates (in %) of the Nearest Convex Hull
classi�er as well as some standard methods on several data sets. Rbf, 2p and
lin stand for Radial Basis Function, second-degree polynomial and linear kernel,
respectively

Sonar Voting W.B.C. Heart A.C.A. Hep.

NCH rbf 91.35 95.85 97.42 85.56 86.38 85.16
NCH 2p 90.38 85.48 97.14 82.59 85.36 84.52
NCH lin 87.98 95.85 97.28 84.07 86.09 84.52
SVM rbf 88.94 96.54 97.00 85.56 87.39 86.45
SVM 2p 82.21 96.31 96.85 81.11 79.86 86.45
SVM lin 80.77 96.77 96.85 85.56 87.10 86.45
NB 67.30 90.32 95.99 82.96 77.10 83.23
LR 73.08 96.54 96.14 83.70 86.38 83.87
LDA 75.48 95.85 95.99 83.70 85.80 85.81
QDA 74.88 94.24 91.42 81.48 85.22 83.87
MLP 81.25 94.93 94.99 78.89 84.78 79.35
kNN 86.54 93.32 97.00 84.44 85.94 85.81
DS 73.08 95.85 92.42 76.30 85.51 79.35
C4.5 71.15 97.00 95.28 75.19 83.77 80.00

cases, we report only the highest LOO accuracy rate obtained by performing
a grid search for tuning the necessary parameters. Overall, the NCH classi�er
performs quite well on all data sets, and achieves best accuracy rates on three
data sets. SVM also perform best on three data sets. The rest of the techniques
show relatively less favorable and more volatile results. For example, the C4.5
classi�er performs best on the Voting data set, but achieves rather low accuracy
rates on two other data sets � Sonar and Heart. Note that not all data sets
are equally easy to handle. For instance, the performance variation over all
classi�ers on the Voting and Breast Cancer data sets is rather low, whereas on
the Sonar data set it is quite substantial.

7.5 Conclusion
We have introduced a new technique that can be considered as a type of
an instance-based large-margin classi�er, called Nearest Convex Hull classi�er
(NCH). NCH assigns a test observation to the class, which convex hull is closest.
Convex-hull overlap is handled via the introduction of slack variables and/or ker-
nels. NCH induces an implicit and generally nonlinear decision surface between
the classes. One of the advantages of NCH is that an extension from binary
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to multi-class classi�cation tasks can be carried out in a straightforward way.
Others are its alleged robustness to outliers and good generalization qualities.
A potential weak point of NCH, which also holds for SVM, is that it is not clear
a priori which type of kernel and what value of the tuning parameters should be
used. Furthermore, we do not address the issue of attribute selection and the
estimation of class-membership probabilities. Further research could also con-
centrate on the application of NCH in more domains, on faster implementation
suitable for analyzing large-scale data sets, and on the derivation of theoretical
test-error bounds.
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SVM-Maj: A Majorization
Approach to Linear Support
Vector Machines with
Di�erent Hinge Errors∗

Support vector machines (SVM) are becoming increasingly popular for the pre-
diction of a binary dependent variable. SVMs perform very well with respect to
competing techniques. Often, the solution of an SVM is obtained by switching
to the dual. In this paper, we stick to the primal support vector machine (SVM)
problem, study its e�ective aspects, and propose varieties of convex loss func-
tions such as the standard for SVM with the absolute hinge error as well as the
quadratic hinge and the Huber hinge errors. We present an iterative majoriza-
tion algorithm that minimizes each of the adaptations. In addition, we show
that many of the features of an SVM are also obtained by an optimal scaling
approach to regression. We illustrate this with an example from the literature
and do a comparison of di�erent methods on several empirical data sets.

8.1 Introduction
An increasingly more popular technique for the prediction of two groups from
a set of predictor variables is the support vector machines (SVM, see, e.g.,

∗This chapter has been published as Groenen, Nalbantov, and Bioch (2008):
Groenen, P.J.F., Nalbantov, G. & Bioch, J.C. (2008). SVM-Maj: a majorization approach to
linear support vector machines with di�erent hinge errors. In Advances in Data Analysis and
Classi�cation (Vol. 2, pp. 149�162). Berlin/Heidelberg.
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Vapnik, 2000). Although alternative techniques such as linear and quadratic
discriminant analysis, neural networks, and logistic regression can also be used
to analyze this data analysis problem, the prediction quality of SVMs seems to
compare favorably with respect to these competing models. Another advantage
of SVMs is that they are formulated as a well-de�ned optimization problem
that can be solved through a quadratic program. A second valuable property
of the SVM is that the derived classi�cation rule is relatively simple and can
be readily applied to new, unseen samples. A potential disadvantage is that
the interpretation in terms of the predictor variables in nonlinear SVM is not
always possible. In addition, the usual dual formulation of an SVM may not be
so easy to grasp.

In this paper, we restrict our focus to linear SVMs. We believe that this
paper makes several contributions on three themes. First, we o�er a nonstan-
dard way of looking at linear SVMs that makes the interpretation easier. To
do so, we stick to the primal problem and formulate the SVM in terms of a
loss function that is regularized by a penalty term. From this formulation, it
can be seen that SVMs use robusti�ed errors. Apart from the standard SVM
loss function that uses the absolute hinge error, we advocate two other hinge
errors, the Huber and quadratic hinge errors, and show the relation with ridge
regression. Note that recently, Rosset and Zhu (2007) also discusses the use of
di�erent errors in SVMs including these two hinge errors.

The second theme of this paper is to show the connection between optimal
scaling regression and SVMs. The idea of optimally transforming a variable so
that a criterion is being optimized has been around for more than 30 years (see,
for example, Young, 1981; Gi�, 1990). We show that optimal scaling regression
using an ordinal transformation with the primary approach to ties comes close
to the objective of SVMs. We discuss the similarities between both approaches
and give a formulation of SVM in terms of optimal scaling.

A third theme is to develop and extend the majorization algorithm of Groe-
nen et al. (2007) to minimize the loss for any of the hinge errors. We call this
general algorithm SVM-Maj. The advantage of majorization is that each itera-
tion is guaranteed to reduce the SVM loss function until convergence is reached.
As the SVM loss functions with convex hinge errors such as the quadratic and
Huber hinge errors are convex, the majorization algorithm stops at a minimum
after a su�cient number of iterations. For the case of the Huber and quadratic
hinge, the SVM-Maj algorithm turns out to yield computationally very e�cient
updates amounting to a single matrix multiplication per iteration. Through
SVM-Maj, we contribute to the discussion on how to approach the linear SVM
quadratic problem.

Finally, we provide numerical experiments on a suite of 14 empirical data
sets to study the predictive performance of the di�erent errors in SVMs and
compare it to optimal scaling regression. We also compare the computational
e�ciency of the majorization approach for the SVM to several standard SVM
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solvers.
Note that this paper is a signi�cantly extended version of Groenen et al.

(2007).

8.2 The SVM Loss Function
Here, we present a rather non-mainstream view on explaining how SVM work.
There is a quite close relationship between SVM and regression. We �rst in-
troduce some notation. Let the matrix of quantitative predictor variables be
represented by the n×m matrix X of n objects and m variables. The grouping
of the objects into two classes is given by the n × 1 vector y, that is, yi = 1
if object i belongs to class 1 and yi = −1 if object i belongs to class −1. The
exact labeling −1 and 1 to distinguish the classes is not important. The weights
used to make a linear combination of the predictor variables is represented by
the m× 1 vector w. Then, the predicted value qi for object i is

qi = c + x′iw, (8.1)

where x′i is row i of X and c is an intercept. As an illustrative example, consider
Figure 8.1a with a scatterplot of two predictor variables, where each row i is
represented by a point labeled `+' for the class 1 and `o' for class −1. Every
combination of w1 and w2 de�nes a direction in this scatter plot. Then, each
point i can be projected onto this line. The main idea of the SVM is to choose
this line in such a way that the projections of the points of class 1 are well
separated from those of class −1. The line of separation is orthogonal to the
line with projections and the intercept c determines where exactly it occurs. The
length ‖w‖ of w has the following signi�cance. If w has length 1, that is, ‖w‖ =
(w′w)1/2 = 1, then Figure 8.1a explains fully the linear combination (8.1). If w
does not have length 1, then the scale values along the projection line should be
multiplied by ‖w‖. The dotted lines in Figure 8.1a show all those points that
project to the lines at qi = −1 and qi = 1. These dotted lines are called the
margin lines in SVMs. With three predictor variables, the objects are points in
a three dimensional space, w still de�nes a direction, but all points that project
on w at the same locations now form a plane and in higher dimensionality form
a hyperplane. Thus, with more than two predictor variables, there will be a
separation hyperplane and the margins are also hyperplanes. Summarizing, the
SVM has three sets of parameters that determine its solution: (1) the weights
normalized to have length 1, that is, w/‖w‖, (2) the length of w, that is, ‖w‖,
and (3) the intercept c.

An error is counted in SVMs as follows. Every object i from class 1 that
projects such that qi ≥ 1 yields a zero error. However, if qi < 1, then the error is
linear with 1− qi. Similarly, objects in class −1 with qi ≤ −1 do not contribute
to the error, but those with qi > −1 contribute linearly with qi + 1. Thus,
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Figure 8.1: Panel a. gives projections of the observations in groups 1 (+) and
−1 (o) onto the line given by w1 and w2. Panel b. shows the absolute hinge
error function f1(qi) for class 1 objects (solid line) and f−1(qi) for class −1
objects (dashed line).

objects that project on the wrong side of their margin contribute to the error,
whereas objects that project on the correct side of their margin yield zero error.
Figure 8.1b shows the error functions for the two classes. Because of its hinge
form, we call this error function the absolute hinge error.

As the length of w controls how close the margin lines are to each other, it
can be bene�cial for the number of errors to choose the largest ‖w‖ possible, so
that fewer points contribute to the error. To control the ‖w‖, a penalty term
that is dependent on ‖w‖ is added to the loss function. The penalty term also
avoids over�tting of the data.

Let G1 and G−1 respectively denote the sets of class 1 and −1 objects. Then,
the SVM loss function can be written as

LSVM(c,w) (8.2)
=

∑
i∈G1

max(0, 1− qi) +
∑

i∈G−1
max(0, qi + 1) + λw′w

=
∑

i∈G1
f1(qi) +

∑
i∈G−1

f−1(qi) + λw′w
= Class 1 errors + Class −1 errors + Penalty for

nonzero w,

where λ > 0 determines the strength of the penalty term. In this notation, the
arguments (c,w) indicate that LSVM(c,w) needs to be minimized with respect
to the arguments c and w. For similar expressions, see Hastie et al. (2001) and
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Vapnik (2000). Note that (8.3) can also be expressed as

LSVM(c,w) =
n∑

i=1

max(0, 1− yiqi) + λw′w,

which is closer to the expressions used in the SVM literature.
Once a solution c and w is found that minimizes (8.3), we can determine

how each object contributes to the error. Each object i that projects on the
correct side of its margin contributes with zero error to the loss. Therefore, these
objects could be removed from the analysis without changing the minimum of
(8.3) and the values of c and w where this minimum is reached. The only objects
determining the solution are those projecting on or at the wrong side of their
margin thereby inducing error. Such objects are called support vectors as they
form the fundament of the SVM solution. Unfortunately, these objects (the
support vectors) are not known in advance and, therefore, the analysis needs to
be carried out with all n objects present in the analysis. It is the very essence of
the SVM de�nition that error free data points have no in�uence on the solution.

From (8.3) it can be seen that any error is punished linearly, not quadrat-
ically. Therefore, SVMs are more robust against outliers than a least-squares
loss function. The idea of introducing robustness by absolute errors is not new.
For more information on robust multivariate analysis, we refer to Huber (1981),
Vapnik (2000), and Rousseeuw and Leroy (2003). In the next section, we discuss
two other error functions, one of which is robust.

In the SVM literature, the SVM loss function is usually presented as follows
(Burges, 1998):

LSVMClas(c,w, ξ) = C
∑

i∈G1

ξi + C
∑

i∈G2

ξi +
1
2
w′w, (8.3)

subject to 1 + (c + w′xi) ≤ ξi for i ∈ G−1 (8.4)
1− (c + w′xi) ≤ ξi for i ∈ G1 (8.5)
ξi ≥ 0, (8.6)

where C is a nonnegative parameter set by the user to weigh the importance
of the errors represented by the so-called slack variables ξi. If object i in G1

projects at the correct side of its margin, that is, qi = c + w′xi ≥ 1, then
1− (c +w′xi) ≤ 0 so that the corresponding ξi can be chosen as 0. If i projects
on the wrong side of its margin, then qi = c+w′xi < 1 so that 1−(c+w′xi) > 0.
Choosing ξi = 1− (c + w′xi) gives the smallest ξi satisfying the restrictions in
(8.4), (8.5), and (8.6). Therefore, ξi = max(0, 1− qi) and is a measure of error.
For class −1 objects, a similar derivation can be made. Note that in the SVM
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literature (8.3) and (8.6) are often expressed more compactly as

LSVMClas(c,w, ξ) = C
n∑

i=1

ξi +
1
2
w′w,

subject to yi(c + w′xi) ≤ 1− ξi for i = 1, . . . , n

ξi ≥ 0.

If we choose C as (2λ)−1 then

LSVMClas(c,w, ξ)

= (2λ)−1


 ∑

i∈G1

ξi +
∑

i∈G−1

ξi + 2λ
1
2
w′w




= (2λ)−1


 ∑

i∈G1

max(0, 1− qi) +
∑

i∈G−1

max(0, qi + 1) + λw′w




= (2λ)−1LSVM(c,w).

showing that the two formulations (8.3) and (8.3) are exactly the same up to a
scaling factor (2λ)−1 and yield the same c and w. The advantage of (8.3) lies
in that it can be interpreted as a (robust) error function with a penalty. This
quadratic penalty term is used for regularization much in the same way as in
ridge regression, that is, to force the wj to be close to zero. The penalty is
particularly useful to avoid over�tting. Furthermore, it can be easily seen that
LSVM(c,w) is a convex function in c and w as all three terms are convex in c
and w. The minimum of LSVM(c,w) must be a global one as the function is
convex and bounded below by zero. Note that the formulation in (8.3) allows
the problem to be treated as a quadratic program. However, in Section 8.5, we
optimize (8.3) directly by the method of iterative majorization.

8.3 Other Error Functions
An advantage of clearly separating error from penalty is that it is easy to apply
other error functions. Instead of the absolute hinge error in Figure 8.2a, we
can use di�erent de�nitions for the errors f1(qi) and f−1(qi). A straightforward
alternative for the absolute hinge error is the quadratic hinge error, see Fig-
ure 8.2b. This error simply squares the absolute hinge error, yielding the loss
function

LQ−SVM(c,w) =
∑

i∈G1

max(0, 1− qi)2 +
∑

i∈G−1

max(0, qi + 1)2 + λw′w, (8.7)
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a. Absolute hinge error.

c. Huber hinge error.

b. Quadratic hinge error.

d. Quadratic error.

Figure 8.2: Four error functions: a. the absolute hinge error, b. the quadratic
hinge error, c. the Huber hinge error, and d. the quadratic error.

see also,Vapnik (2000) and Cristianini and Shawe-Taylor (2000). It uses the
quadratic error for objects that have prediction error and zero error for correctly
predicted objects. An advantage of this loss function is that both error and
penalty terms are quadratic. In Section 8.5, we see that the majorizing algorithm
is very e�cient because in each iteration a linear system is solved very e�ciently.
A disadvantage of the quadratic hinge error is that outliers can have a large
in�uence on the solution.

An alternative that is smooth and robust is the Huber hinge error, see Fig-
ure 8.2c. This hinge error was called �Huberized squared hinge loss� by Rosset
and Zhu (2007). Note that Chu, Keerthi, and Ong (2003) proposed a similar
function for support vector regression. The de�nition of the Huber hinge is
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Table 8.1: De�nition of error functions that can be used in the context of SVMs.

Error f−1(qi)
Absolute hinge max(0, qi + 1)
Quadratic hinge max(0, qi + 1)2

Huber hinge h−1(qi) = (1/2)(k + 1)−1 max(0, qi + 1)2 if qi ≤ k
h−1(qi) = qi + 1− (k + 1)/2 if qi > k

Quadratic (qi + 1)2

f+1(qi)
Absolute hinge max(0, 1− qi)
Quadratic hinge max(0, 1− qi)2

Huber hinge h+1(qi) = 1− qi − (k + 1)/2 if qi ≤ −k
h+1(qi) = (1/2)(k + 1)−1 max(0, 1− qi)2 if qi > −k

Quadratic (1− qi)2

found in Table 8.1 and the corresponding SVM problem is de�ned by

LH−SVM(c,w) =
∑

i∈G1

h+1(qi) +
∑

i∈G−1

h−1(qi) + λw′w. (8.8)

The Huber hinge error is characterized by a linearly increasing error if the error is
large, a smooth quadratic error for errors between 0 and the linear part, and zero
for objects that are correctly predicted. The smoothness is governed by a value
k ≥ −1. The Huber hinge approaches the absolute hinge for k ↓ −1, so that the
Huber hinge SVM loss solution can approach the classical SVM solution. If k is
chosen too large, then the Huber hinge error essentially approaches the quadratic
hinge function. Thus, the Huber hinge error can be seen as a compromise
between the absolute and quadratic hinge errors. As we will see in Section 8.5,
it is advantageous to choose k su�ciently large, for example, k = 1, as is done
in Figure 8.2c. A similar computational e�ciency as for the quadratic hinge
error is also available for the Huber hinge error.

In principle, any robust error can be used. To inherit as much of the nice
properties of the standard SVM it is advantageous that the error function has
two properties: (1) if the error function is convex in qi (and hence in w), then
the total loss function is also convex and hence has a global minimum that can
be reached, (2) the error function should be asymmetric and have the form of a
hinge so that objects that are predicted correctly induce zero error.

In Figure 8.2d the quadratic error is used, de�ned in Table 8.1. The quadratic
error alone simply equals a multiple regression problem with a dependent vari-
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able yi = −1 if i ∈ G−1 and yi = 1 if i ∈ G1, that is,

LMReg(c,w) =
∑

i∈G1

(1− qi)2 +
∑

i∈G−1

(1 + qi)2 + λw′w

=
∑

i∈G1

(yi − qi)2 +
∑

i∈G−1

(yi − qi)2 + λw′w

=
∑

i

(yi − c− x′iw)2 + λw′w

= ‖y − c1−Xw‖2 + λw′w. (8.9)

Note that for i ∈ G−1 we have the equality (1 + qi)2 = ((−1)(1 + qi))2 =
(−1− qi)2 = (yi − qi)2. LMReg(c,w) has been extensively discussed in Suykens,
Van Gestel, De Brabanter, De Moor, and Vandewalle (2002). To show that
(8.9) is equivalent to ridge regression, we center the columns of X and use JX
with J = I− n−111′ being the centering matrix. Then (8.9) is equivalent to

LMReg(c,w) = ‖y − c1− JXw‖2n−111′ + ‖y − c1− JXw‖2J + λw′w

= ‖y − c1‖2n−111′ + ‖Jy − JXw‖2 + λw′w, (8.10)

where the norm notation is de�ned as ‖Z‖2A = tr Z′AZ =∑n
i=1

∑n
j=1

∑K
k=1 aijzikzjk. Note that (8.10) is a decomposition in three

terms with the intercept c appearing alone in the �rst term so that it can
be estimated independently of w. The optimal c in (8.10) equals n−11′y.
The remaining optimization of (8.10) in w simpli�es into a standard ridge
regression problem. Hence, the SVM with quadratic errors is equivalent to
ridge regression. As the quadratic error has no hinge, even properly predicted
objects with qi < −1 for i ∈ G−1 or qi > 1 for i ∈ G1 can receive high error. In
addition, the quadratic error is nonrobust, hence can be sensitive to outliers.
Therefore, ridge regression is more restrictive than the quadratic hinge error
and expected to give worse predictions in general.

8.4 Optimal Scaling and SVM
Several ideas that are used in SVMs are not entirely new. In this section, we
show that the application of optimal scaling known since the 1970s has almost
the same aim as the SVM. Optimal scaling in a regression context goes back
to the models MONANOVA (Kruskal, 1965), ADDALS (Young, De Leeuw, &
Takane, 1976a), MORALS (Young, De Leeuw, & Takane, 1976b), and, more
recently, CatREG (Van der Kooij, Meulman, & Heiser, 2006; Van der Kooij,
2007). The main idea of optimal scaling regression (OS-Reg) is that a variable y
is replaced by an optimally transformed variable ŷ. The regression loss function
is not only optimized over the usual weights, but also over the optimally scaled
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Figure 8.3: Optimal scaling transformation ŷ of the dependent variable y. Panel
a. shows an example transformation for the OS-Reg, Panel b. for SVM.

variable ŷ. Many transformations are possible, see, for example, Gi� (1990).
However, to make OS-Reg suitable for the binary classi�cation problem, we
use the so-called ordinal transformation with the primary approach to ties that
allows to untie the tied data. This transformation was proposed in the context
of multidimensional scaling to optimally scale the ordinal dissimilarities. As we
are dealing with two groups only, this means that the only requirement is to
constrain all ŷi in G−1 to be smaller than or equal to all ŷj in G1. An example
of such a transformation is given in Figure 8.3a.

OS-Reg can be formalized by minimizing

LOS−Reg(ŷ,w) =
n∑

i=1

(ŷi − x′iw)2 + λw′w = ‖ŷ −Xw‖2 + λw′w (8.11)

subject to ŷi ≤ ŷj for all combinations of i ∈ G−1 and j ∈ G1 and ŷ′ŷ = n.
The latter requirement is necessary to avoid the degenerate zero-loss solution
of ŷ = 0 and w = 0. Without loss of generality, we assume that X is column
centered here. In the usual formulation, no penalty term is present in (8.11),
but here we add it because of ease of comparison with SVMs.

The error part of an SVM can also be expressed in terms of an optimally
scaled variable ŷ. Then, the SVM loss becomes

LSVM−Abs(ŷ,w, c) =
n∑

i=1

|ŷi − x′iw − c|+ λw′w (8.12)

subject to ŷi ≤ −1 if i ∈ G−1 and ŷi ≥ 1 if i ∈ G1. Clearly, for i ∈ G−1 a zero
error is obtained if x′iw + c ≤ −1 by choosing ŷi = x′iw + c. If x′iw + c > −1,
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then the restriction ŷi ≤ −1 becomes active so that ŷi must be chosen as −1.
Similar reasoning holds for i ∈ G1, where ŷi = x′iw + c if x′iw + c ≥ 1 (yielding
zero error) and ŷi = 1 if x′iw + c < 1.

Just as the SVM, OS-Reg also has a limited number of support vectors. All
objects i that are below or above the horizontal line yield zero error. All objects
i that are have a value ŷi that is on the horizontal line generally give error,
hence are support vectors.

The resemblances of SVM and OS-Reg is that both can be used for the
binary classi�cation problem, both solutions only use the support vectors, and
both can be expressed in terms of an optimal scaled variable ŷ. Although,
the SVM estimates the intercept c, OS-Reg implicitly estimates c by leaving
the position free where the horizontal line occurs, whereas the SVM attains
this freedom by estimating c. One of the main di�erences is that OS-Reg uses
squared error whereas SVM uses the absolute error. Also, in its standard form
λ = 0 so that OS-Reg does not have a penalty term. A �nal di�erence is
that OS-Reg solves the degenerate zero loss solution of ŷ = 0 and w = 0 by
imposing the length constraint ŷ′ŷ = n whereas the SVM does this through
setting a minimum di�erence of 2 between ŷi and ŷj if i and j are from di�erent
groups.

In some cases with λ = 0, we found occasionally OS-Reg solutions where one
of the groups collapsed at the horizontal line and the some objects of the other
group were split into two points: one also at the horizontal line, the other at a
distinctly di�erent location. In this way, the length constraint is satis�ed, but
it is hardly possible to distinguish the groups. Fortunately, these solutions do
not occur often and they never occurred with an active penalty term (λ > 0).

8.5 SVM-Maj: A Majorizing Algorithm for SVM
with Robust Hinge Errors

The SVM literature often solves the SVM problem by changing to the dual of
(8.3) and expressing it as a quadratic program that subsequently is solved by
special quadratic program solvers. A disadvantage of these solvers is that they
may become computationally slow for large number of objects n (although fast
specialized solvers exist). Here, we use a di�erent minimization approach based
on iterative majorization (IM) algorithm applied to the primal SVM problem.
One of the advantages of IM algorithms is that they guarantee descent, that
is, in each iteration the SVM loss function is reduced until no improvement is
possible. As the resulting SVM loss function for each of the three hinge errors
is convex, the IM algorithm will stop when the estimates are su�ciently close
to the global minimum. The combination of these properties forms the main
strength of the majorization algorithm. In principle, a majorization algorithm
can be derived for any error function that has a bounded second derivative as
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most robust errors have.
The general method of iterative majorization can be understood as follows.

Let f(q) be the function to be minimized. Then, iterative majorization makes
use of an auxiliary function, called the majorizing function g(q,q), that is de-
pendent on q and the previous (known) estimate q. There are requirements on
the majorizing function g(q,q): (1) it should touch f at the supporting point y,
that is, f(q) = g(q,q), (2) it should never be below f , that is, f(q) ≤ g(q,q),
and (3) g(q,q) should be simple, preferably linear or quadratic in q. Let q∗ be
such that g(q∗,q) ≤ g(q,q), for example, by choosing q∗ = arg minq g(q,q∗).
As the majorizing function is never below the original function, we obtain the
so called sandwich inequality

f(q∗) ≤ g(q∗,q) ≤ g(q,q) = f(q).

This chain of inequalities shows that the update q∗ obtained by minimizing the
majorizing function never increases f and usually decreases it. This constitutes
a single iteration. By repeating these iterations, a monotonically nonincreasing
(generally a decreasing) series of loss function values f is obtained. For convex
f and after a su�cient number of iterations, the IM algorithm stops at a global
minimum. More detailed information on iterative majorization can be found in
De Leeuw (1994), Heiser (1995), Lange, Hunter, and Yang (2000), Kiers (2002),
and Hunter and Lange (2004) and an introduction in Borg and Groenen (2005).

An additional property of IM is useful for developing the algorithm. Suppose
we have two functions, f1(q) and f2(q), and each of these functions can be
majorized, that is, f1(q) ≤ g1(q,q) and f2(q) ≤ g1(q,q). Then, the function
f(q) = f1(q)+ f2(q) can be majorized by g(q) = g1(q,q)+ g2(q,q) so that the
following majorizing inequality holds:

f(q) = f1(q) + f2(q) ≤ g1(q,q) + g2(q,q) = g(q,q).

For notational convenience, we refer in the sequel to the majorizing function as
g(q) without the implicit argument q.

To �nd an algorithm, we need to �nd a majorizing function for (8.3). For
the moment, we assume that a quadratic majorizing function exists for each
individual error term of the form

f−1(qi) ≤ a−1iq
2
i − 2b−1iqi + c−1i = g−1(qi) (8.13)

f1(qi) ≤ a1iq
2
i − 2b1iqi + ci = g1(qi). (8.14)

Then, we combine the results for all terms and come up with the total majorizing
function that is quadratic in c and w so that an update can be readily derived.
In the next subsection, we derive the SVM-Maj algorithm for general hinge
errors assuming that (8.13) and (8.14) are known for the speci�c hinge error.
In the appendix, we derive g−1(qi) and g1(qi) for the absolute, quadratic, and
Huber hinge error SVM.
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8.5.1 The SVM-Maj Algorithm
Equation (8.3) was derived with the absolute hinge error in mind. Here, we
generalize the de�nitions of the error functions f−1(q) and f1(q) in (8.3) to
be any of the three hinge errors discussed above so that LQ−SVM and LH−SVM

become special cases of LSVM. For deriving the SVM-Maj algorithm, we assume
that (8.13) and (8.14) are known for these hinge losses. Figure 8.4 shows that
this is the case indeed. Then, let

ai =
{

max(δ, a−1i) if i ∈ G−1,
max(δ, a1i) if i ∈ G1,

(8.15)

bi =
{

b−1i if i ∈ G−1,
b1i if i ∈ G1,

(8.16)

ci =
{

c−1i if i ∈ G−1,
c1i if i ∈ G1.

(8.17)

Summing all the individual terms leads to the majorization inequality

LSVM(c,w) ≤
n∑

i=1

aiq
2
i − 2

n∑

i=1

biqi +
n∑

i=1

ci + λ
m∑

j=1

w2
j . (8.18)

It is useful to add an extra column of ones as the �rst column of X so that X
becomes n× (m + 1). Let v′ = [c w′] so that qi = c + x′iwi can be expressed as
q = Xv. Then, (8.3) can be majorized as

LSVM(v) ≤
n∑

i=1

ai(x′iv)2 − 2
n∑

i=1

bix′iv +
n∑

i=1

ci + λ
m+1∑

j=2

v2
j

= v′X′AXv − 2v′X′b + cm + λv′Pv

= v′(X′AX + λP)v − 2v′X′b + cm, (8.19)

where A is a diagonal matrix with elements ai on the diagonal, b is a vector
with elements bi, and cm =

∑n
i=1 ci, and P is the identity matrix except for

element p11 = 0. If P were I, then the last line of (8.19) would be of the same
form as a ridge regression. Di�erentating the last line of (8.19) with respect to
v yields the system of equalities linear in v

(X′AX + λP)v = X′b. (8.20)

The update v+ solves this set of linear equalities, for example, by Gaussian
elimination, or, less e�ciently, by

v+ = (X′AX + λP)−1X′b. (8.21)
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Because of the substitution v′ = [c w′], the update of the intercept is c+ = v1

and w+
j = v+

j+1 for j = 1, . . . ,m. The update v+ forms the heart of the
majorization algorithm for SVMs.

Extra computational e�ciency can be obtained for the quadratic and Huber
hinge errors for which a−1i = a1i = a for all i and this a does not depend on q.
In these cases, (8.21) simpli�es into

v+ = (aX′X + λP)−1X′b.

Thus, the m×n matrix S = (aX′X+λP)−1X′ can be computed once and stored
in memory, so that the update (8.21) simply amounts to setting v+ = Sb. In
this case, a single matrix multiplication of the m × n matrix S with the n × 1
vector b is required to obtain an update in each iteration. Therefore, SVM-Maj
for the Huber and quadratic hinge will be particularly e�cient, even for large n
as long as m is not too large.

The SVM-Maj algorithm for minimizing the SVM loss function in (8.3)
is summarized in Algorithm 1. Note that SVM-Maj handles the absolute,
quadratic, and Huber hinge errors. The advantages of SVM-Maj are the follow-
ing. First, SVM-Maj approaches the global minimum closer in each iteration.
In contrast, quadratic programming of the dual problem needs to solve the dual
problem completely to have the global minimum of the original primal problem.
Secondly, the progress can be monitored, for example, in terms of the changes
in the number of misclassi�ed objects. If no changes occur, then the iterations
can be stopped. Thirdly, the computational time could be reduced, for example,
by using smart initial estimates of c and w available from a previous cross vali-
dation run. Note that in each majorization iteration a ridge regression problem
is solved so that the SVM-Maj algorithm can be seen as a solution to the SVM
problem via successive solutions of ridge regressions.

A visual illustration of a single iteration of the SVM-Maj algorithm is given
in Figure 8.5 for the absolute hinge SVM. We �xed c at its optimal value and
the minimization is done only over w, that is, over w1 and w2. Therefore, each
point in the horizontal plane represents a combination of w1 and w2. In the
same horizontal plane, the class 1 points are represented as open circles and the
class −1 points as closed circles. The horizontal plane also shows the separation
line and the margins corresponding to the current estimates of w1 and w2. It
can be seen that the majorization function is indeed located above the original
function and touches it at the dotted line, that is, at the current w1 and w2.
At the location (w1, w2) where this majorization function �nds its minimum,
LSVM(c,w) is lower than at the previous estimate, so LSVM(c,w) has decreased.
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Algorithm: SVM-Maj
input : y,X, λ, ε, Hinge, k
output: ct,wt

t = 0;
Set ε to a small positive value;
Set w0 and c0 to random initial values;
if Hinge = Huber or Quadratic then

if Hinge = Quadratic then a = 1;
if Hinge = Huber then a = (1/2)(k + 1)−1;
S = (aX′X + λP)−1X′;

end
Compute LSVM(c0,w0) according to (8.3);
while t = 0 or (Lt−1 − LSVM(ct,wt))/LSVM(ct,wt) > ε do

t = t + 1;
Lt−1 = LSVM(ct−1,wt−1);
Comment:Compute A and b for different hinge errors
if Hinge = Absolute then

Compute ai by (8.22) if i ∈ G−1 and by (8.25) if i ∈ G1;
Compute bi by (8.23) if i ∈ G−1 and by (8.26) if i ∈ G1;

else if Hinge = Quadratic then
Compute bi by (8.29) if i ∈ G−1 and by (8.32) if i ∈ G1;

else if Hinge = Huber then
Compute bi by (8.35) if i ∈ G−1 and by (8.38) if i ∈ G1;

end
Make the diagonal matrix A with elements ai;
Comment:Compute update
if Hinge = Absolute then

Find v by that solves (8.20): (X′AX + λP)v = X′b;
else if Hinge = Huber or Quadratic then

v = Sb;
end
Set ct = v1 and wtj = vj+1 for j = 1, . . . , m;

end
Algorithm 1: The SVM majorization algorithm SVM-Maj.
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Table 8.2: Information on the 14 data sets used in the experiments. n1 and n−1

are the number of observations with yi = 1 and yi = −1, respectively. Sparsity
equals the percentage of zeros in the data set. A data set with scaled attributes
has maximum values +1 and minimum values −1.

Dataset Source n n1 n−1 m Sparsity Notes
Australian UCI 690 307 383 14 20.04
Breast_cancer_w UCI 699 458 241 9 0.00
Heart_statlog UCI 270 120 150 13 0.00 Standardized data
Hepatitis UCI 155 123 32 19 39.86
Sonar UCI 208 97 111 60 0.07
Voting UCI 434 167 267 16 45.32
Liver-disorders LibSVM 345 200 145 6 0.00
Liver-disorders2 LibSVM 345 200 145 6 0.92 Scaled attributes
Diabetes LibSVM 768 500 268 8 0.00
Diabetes2 LibSVM 768 500 268 8 0.15 Scaled attributes
Ionosphere LibSVM 351 225 126 34 11.59 Scaled attributes
German.number LibSVM 1000 300 700 24 0.00
German.number2 LibSVM 1000 300 700 24 4.16 Scaled attributes
Splice LibSVM 1000 517 483 60 0.00

8.6 Experiments
To investigate the performance of the various variants of SVM algorithms, we
report experiments on several data sets from the UCI repository (Newman et al.,
1998) and the home page of LibSVM software (Chang & Lin, 2006). These data
sets cover a wide range of characteristics such as extent of being unbalanced (one
group is larger than the other), number of observations n, ratio of observations
to attributes m/n, and sparsity (the percentage of nonzero attribute values xij).
More information on the data sets are given in Table 8.2.

In the experiments, we applied the standard absolute hinge (ε-insensitive),
the Huber hinge and quadratic hinge SVM loss functions. All experiments have
been carried out in Matlab 7.2, on a 2.8Ghz Intel processor with 2GB of memory
under Windows XP. The performance of the majorization algorithms is com-
pared to those of the o�-the-shelf programs LibSVM, BSVM (Hsu & Lin, 2006),
SVM-Light (Joachims, 1999), and SVM-Perf (Joachims, 2006). Although these
programs can handle nonlinearity of the predictor variables by using special
kernels, we limit our experiments to the linear kernel. Note that not all of these
SVM-solvers are optimized for the linear kernel. In addition, no comparison
between majorization is possible for the Huber hinge loss function as it is not
supported by these solvers.

The numerical experiments address several issues. First, how well are the
di�erent hinge losses capable of predicting the two groups? Second, we focus on
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the performance of the majorization algorithm with respect to its competitors.
We would like to know how the time needed for the algorithm to converge scales
with the number of observations n, the strictness of the stopping criterion, and
with λ; what is a suitable level for the stopping criterion.

To answer these questions, we consider the following measures. First, we
de�ne convergence between two steps as the relative decrease in loss between
two subsequent steps, that is, by Ldiff = (Lt−1 − Lt)/Lt. The error rate in the
training data set is de�ned as the number of misclassi�ed cases. To measure
how well a solution predicts, we de�ne the accuracy as the percentage correctly
predicted out-of-sample cases in 5-fold cross validation.

8.6.1 Predictive Performance for the Three Hinge Errors
It is interesting to compare the performance of the three hinge loss functions.
Consider Table 8.3, which compares the 5-fold cross-validation accuracy for the
three di�erent loss function. For each data set, we tried a grid of λ values (λ = 2p

for p = −15,−14.5,−14, . . . , 7.5, 8 where 2−15 = 0.000030518 and 28 = 256).
Alongside are given the values of the optimal λ's and times to convergence (stop
whenever Ldiff < 3×10−7). From the accuracy, we see that there is no one best
loss function that is suitable for all data sets. The absolute hinge is best in 5
of the cases, the Huber hinge is best in 4 of the cases, and the quadratic hinge
is best in 7 of the cases. The total number is greater than 14 due to equal
accuracies. In terms of computational speed, the order invariably is: absolute
hinge is the slowest, Huber hinge is faster, and the quadratic hinge is the fastest.

The implementation of optimal scaling regression was also done in MatLab,
but the update in each iteration for ŷ by monotone regression using the primary
approach to ties was calculated by a compiled Fortran subroutine. Therefore,
the CPU time is not comparable to those of the other SVM methods that were
solely programmed in MatLab. Optimal scaling regression performs well on
three data sets (Breast cancer, Diabetes and Diabetes2) where the accuracy is
better than the three SVM methods. On the remaining data sets, the accuracy
is worse or much worse when compared to the SVM methods. It seems that
in some cases OS regression can predict well, but its poor performance for the
majority of the data sets makes it hard to use it as a standard method for
the binary classi�cation problem. One of the reasons for the poor performance
could be due to solutions where all ŷis of one of the two classes collapses in
the inequality constraint and the ŷis of the other class remain to have variance.
In a transformation plot like Figure 8.3 this situation means that the vertical
scatter of either the −1 or 1 class collapses into a single point. By de�nition,
the SVM transformation cannot su�er from this problem. More study is needed
to understand if the collapse is the only reason for bad performance of OS-Reg,
and, if possible, provide adaptations that make it work better for more data
sets.
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Table 8.3: Performance of SVM models for the three hinge loss functions (Abs.,
Hub., and Quad.) and optimal scaling regression (OS). The optimal λ = 2p is
computed by 5 fold cross validation. CPU-time to convergence for the optimal
λ and the prediction accuracy (in %) is obtained for the 14 di�erent test data
sets from Table 8.2.
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8.6.2 Computational E�ciency of SVM-Maj
To see how computationally e�cient the majorization algorithms are, two types
of experiments were done. In the �rst experiment, the majorization algorithm
is studied and tuned. In the second, the majorization algorithm SVM-Maj for
the absolute hinge error is compared with several o�-the-shelf programs that
minimize the same loss function.

As the majorization algorithm is guaranteed to improve the LSVM(c,w) in
each iteration by taking a step closer to the �nal solution, the computational
e�ciency of SVM-Maj is determined by its stopping criterion. The iterations of
SVM-Maj stop whenever Ldiff < ε. It is also known that majorization algorithms
have a linear convergence rate (De Leeuw, 1994), which can be slow especially
for very small ε. Therefore, we study the relations between four measures as
they change during the iterations: (a) the di�erence between present and �nal
loss, Lt − Lfinal, (b) the convergence Ldiff , (c) CPU time spent sofar, and (d)
the di�erence between current and �nal within sample error rate.

Figure 8.6 shows the relationships between these measures for three exem-
plary data sets: Liver disorders, Sonar and Australian. Note that in Figures 8.6c
and 8.6d the direction of the horizontal axis is reversed so that in all four panels
the right side of the horizontal axis means more computational investment. Fig-
ure 8.6a draws the relationship between CPU-time and Lt − Lfinal, with Lfinal

the objective function values obtained at convergence with ε = 3×10−7. Notice
that in most of the cases the �rst few iterations are responsible for the bulk
of the decreases in the objective function values and most of the CPU time
is spent to obtain small decreases in loss function values. Figure 8.6b shows
the relationship between Lt − Lfinal and the convergence Ldiff that is used as a
stopping criterion. The two lower panels show the development of the within
sample error rate and CPU time (Figure 8.6c) and convergence Ldiff (Figure
8.6d). To evaluate whether it is worthwhile using a looser stopping criterion,
it is in instructive to observe the path of the error rate over the iterations (the
lower right panel). It seems that the error rate stabilizes for values of Ldiff be-
low 10−6. Nevertheless, late-time changes sometimes occur in other data sets.
Therefore, it does not seem recommendable to stop the algorithm much earlier,
hence our recommendation of using ε = 3× 10−7.

The analogues of Figures 8.6 and 8.7 were also produced for the Huber
hinge and quadratic hinge loss functions. Overall, the same patterns as for
the absolute hinge function can be distinguished, with several di�erences: the
objective function decreases much faster (relative to CPU time), and the error
rate stabilizes already at slightly greater values for the convergence criterion.
In addition, the number of iterations until convergence by and large decline
(vis-a-vis the absolute hinge function).

Figure 8.7 investigates how sensitive the speed of SVM-Maj is relative to
changes in the values of λ for four illustrative datasets (Splice, German-number
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with scaled attributed, Ionosphere, and Sonar). As expected, the relationship
appears to be decreasing. Thus, for large λ the penalty term dominates LSV M

and SVM-Maj with the absolute hinge does not need too many iterations to
converge. Note that the same phenomenon is in general observed for the other
SVM-solvers as well so that, apparently, the case for large λ is an easier problem
to solve.

8.6.3 Comparing E�ciency of SVM-Maj with Absolute
Hinge

The e�ciency of SVM-Maj can be compared with o�-the-shelf programs for the
absolute hinge error. As competitors of SVM-Maj, we use LibSVM, BSVM,
SVM-Light, and SVM-Perf. Note that the BSVM loss function di�ers from the
standard SVM loss function by additionally penalizing the intercept. Neverthe-
less, we keep BSVM in our comparison to compare its speed against the others.
We use the same 14 data sets as before. As SVM-Maj, LibSVM, SVM-Light,
and SVM-Perf minimize exactly the same loss function LSVM they all should
have the same global minimum. In addition to LSVM, the methods are compared
on speed (CPU-time in seconds) at optimal levels of the λ = 2p (or equivalent)
parameter. Note that the optimal levels of λ could di�er slightly between meth-
ods as the o�-the-shelf programs perform their own grid search for determining
the optimal λ, that could be slightly di�erent from those reported in Table 8.3.
We note that the relationship between the λ parameter in SVM-Maj and the C
parameter in LibSVM and SVM-light is given by λ = 0.5/C. For SVM-Maj, we
choose three stopping criteria, that is, the algorithm is stopped whenever Ldiff

is respectively smaller than 10−4, 10−5, and 10−6.
For some data sets, it was not possible to run the o�-the-shelf programs,

sometimes because the memory requirements were too large, sometimes because
no convergence was obtained. Such problems occurred for three data sets with
SVM-Perf and two data sets with SVM-Light. Table 8.4 shows the results.
Especially for ε = 10−6, SVM-Maj gives solutions that are close to the best
minimum found. Generally, Lib-SVM and SVM-Light obtain the lowest LSVM.
SVM-Maj performs well with ε = 10−6, but even better values can be obtained
by a stronger convergence criterion. Even though the loss function is slightly
di�erent, BSVM �nds proper minima but is not able to handle all data sets. In
terms of speed SVM-Maj is faster than its competitors in almost all cases. Of
course, a smaller ε increases the CPU-time of SVM-Maj. Nevertheless, even for
ε = .0001 good solutions can be found in a short CPU-time.

These results are also summarized in Figure 8.8, where SVM-Maj is used
with the default convergence criterion of ε = 3 × 10−7. As far as speed is
concerned (see Figure 8.8a), SVM-Maj ranks consistently amongst the fastest
method. The quality of SVM-Maj is also consistently good as it has the same
loss function as the global minimum with di�erences occurring less then 0.01.
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Note that SVM-Perf �nds consistently much higher loss function values than
SVM-Maj, LibSVM and SVM-Light. Generally, the best quality solutions are
obtained by LibSVM and SVM-Light although they tend to use more CPU time
reaching it.

8.7 Conclusions and Discussion
We have discussed how linear SVM can be viewed as a the minimization of
a robust error function with a regularization penalty. The regularization is
needed to avoid over�tting in the case when the number of predictor variables
increases. We provided a new majorization algorithm for the minimization
of the primal SVM problem. This algorithm handles the standard absolute
hinge error, the quadratic hinge error, and the newly proposed Huber hinge
error. The latter hinge is smooth everywhere yet is linear for large errors. The
majorizing algorithm has the advantage that it operates on the primal, is easy
to program, and can easily be adapted for robust hinge errors. We also showed
that optimal scaling regression has several features in common with SVMs.
Numerical experiments on fourteen empirical data sets showed that there is
no clear di�erence between the three hinge errors in terms of cross validated
accuracy. The speed of SVM-Maj for the absolute hinge error is similar or
compares favorably to the o�-the-shelf programs for solving linear SVMs.

There are several open issues and possible extensions. First, the SVM-Maj
algorithm is good for situations where the number of objects n is (much) larger
than the number of variables m. The reason is that each iteration solves an
(m + 1) × (m + 1) linear system. As m grows, each iteration becomes slower.
Other majorization inequalities can be used to solve this problem yielding fast
iterations at the cost of making (much) smaller steps in each iteration. A sec-
ond limitation is the size of n. Eventually, when n gets large, the iterations
will become slow. The good thing about SVM-Maj is that each iteration is
guaranteed to improve the SVM-Loss. The bad thing is that at most linear
convergence can be reached so that for large n one has to be satis�ed with an
approximate solution only. However, for m not too large and even reasonably
large n, SVM-Maj should work �ne and be competitive. The SVM-Maj for the
quadratic and Huber hinge are computationally more e�cient than the absolute
hinge, so they result in a faster algorithm, even for reasonably large n.

Second, this paper has focussed on linear SVMs. Nonlinearity can be brought
in in two ways. In Groenen et al. (2007), we proposed to use optimal scaling
for the transformation of the predictor variables. Instead of using kernels, we
propose to use I-splines to accommodate nonlinearity in the predictor space.
The advantage of this approach is that it can be readily applied in any linear
SVM algorithm. The standard way of introducing nonlinearity in SVMs is by
using kernels. We believe that this is also possible for SVM-Maj and intend to
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study this possibility in future publications.
SVMs can be extended to problems with more than two classes in several

ways. If the extension has error terms of the form f1(q) or f−1(q) then the
present majorization results can be readily applied for an algorithm. We be-
lieve that applying majorization to SVMs is a fruitful idea that opens new
applications and extensions to this area of research.
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A Majorizing the Hinge Errors
Here we derive the quadratic majorizing functions for the three hinge functions.

A.1 Majorizing the Absolute Hinge Error
Consider the term f−1(q) = max(0, q + 1). For notational convenience, we drop
the subscript i for the moment. The solid line in Figure 8.2a shows f−1(q).
Because of its shape of a hinge, we have called this function the absolute hinge
function. Let q be the known error q of the previous iteration. Then, a majoriz-
ing function for f−1(q) is given by g−1(q, q) at the supporting point q = 2. We
want g−1(q) to be quadratic so that it is of the form g−1(q) = a−1q

2−2b−1q+c−1.
To �nd a−1, b−1, and c−1, we impose two supporting points, one at q and the
other at −2− q. These two supporting points are located symmetrically around
−1. Note that the hinge function is linear at both supporting points, albeit with
di�erent gradients. Because g−1(q) is quadratic, the additional requirement that
f−1(q) ≤ g−1(q) is satis�ed if a−1 > 0 and the derivatives at the two supporting
points of f−1(q) and g−1(q) are the same. More formally, the requirements are
that

f−1(q) = g−1(q),
f ′−1(q) = g′−1(q),

f−1(−2− q) = g−1(−2− q),
f ′−1(−2− q) = g′−1(−2− q),

f−1(q) ≤ g−1(q).

It can be veri�ed that the choice of

a−1 = 1
4 |q + 1|−1, (8.22)

b−1 = −a−1 − 1
4 , (8.23)

c−1 = a−1 + 1
2 + 1

4 |q + 1|, (8.24)

satis�es all these requirements. Figure 8.4a shows the majorizing function g−1(q)
with supporting points q = 1.5 as the dotted line.

For Class 1, a similar majorizing function can be found for f1(q) = max(0, 1−
q). However, in this case, we require equal function values and �rst derivative
at q and at 2− q, that is, symmetric around 1. The requirements are

f1(q) = g1(q),
f ′1(q) = g′1(q),

f1(2− q) = g1(2− q),
f ′1(2− q) = g′1(2− q),

f1(q) ≤ g1(q).
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Choosing

a1 = 1
4 |1− q|−1 (8.25)

b1 = a1 + 1
4 (8.26)

c1 = a1 + 1
2 + 1

4 |1− q| (8.27)

satis�es these requirements. The functions f1(q) and g1(q) with supporting
points q = 2 or q = 0 are plotted in Figure 8.4a.

Note that a−1 is not de�ned if q = −1. In that case, we choose a−1 as a small
positive constant δ that is smaller than the convergence criterion ε (introduced
below). Strictly speaking, the majorization requirements are violated. How-
ever, by choosing δ small enough, the monotone convergence of the sequence of
LSVM(w) will be no problem. The same holds for a1 if q = 1.

A.2 Majorizing the Quadratic Hinge Error
The majorizing algorithm for the SVM with the quadratic hinge function is
developed along the same lines as for the absolute hinge function. However,
because of its structure, each iteration boils down to a matrix multiplication
of a �xed m × n matrix with an n × 1 vector that changes over the iterations.
Therefore, the computation of the update is of order O(nm) which is more
e�cient than the majorizing algorithm for the absolute hinge error.

To majorize the term f−1(q) = max(0, q +1)2 is relatively easy. For q > −1,
f−1(q) coincides with (q + 1)2. Therefore, if q > −1, (q + 1)2 can be used to
majorize max(0, q +1)2. Note that (q +1)2 ≥ 0 so that (q +1)2 also satis�es the
majorizing requirements for q < 1. For the case q ≤ −1, we want a majorizing
function that has the same curvature as (q + 1)2 but touches at q, which is
obtained by the majorizing function (q + 1 − (q + 1))2 = (q − q)2. Therefore,
the majorizing function g−1 = a−1q

2 − 2b−1q + c−1 has coe�cients

a−1 = 1, (8.28)

b−1 =
{

q if q ≤ −1
−1 if q > −1 , (8.29)

c−1 =
{

1− 2(q + 1) + (q + 1)2 if q ≤ −1
1 if q > −1 . (8.30)

Similar reasoning can be held for f1(q) = max(0, 1 − q)2 which has majorizing
function g1 = a1q

2 − 2b1q + c1 and coe�cients

a1 = 1, (8.31)

b1 =
{

1 if q ≤ 1
q if q > 1 , (8.32)

c1 =
{

1 if q ≤ 1
1− 2(1− q) + (1− q)2 if q > 1 . (8.33)
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Again, ai, bi, and ci are de�ned as in (8.15), (8.16), and (8.17), except that δ in
(8.15) can be set to 0, so that ai = 1 = a for all i.

A.3 Majorizing the Huber Hinge Error
The majorizing algorithm of the Huber hinge error function shares a similar
e�ciency as for the quadratic hinge: the coe�cients a1 and a−1 are the same
for all i, so that again an update boils down to a matrix multiplication of a
matrix of order m× n with an n× 1 vector.

To majorize h−1(q) we use the fact that the second derivative of h−1(q)
is bounded. For q ≥ k, h−1(q) is linear with �rst derivative h′−1(q) = 1, so
that its second derivative h′′−1(q) = 0. For q ≤ −1, h−1(q) = 0, so that here
too h′′−1(q) = 0. Therefore, h′′−1(q) > 0 only exists for −1 < q < k, where
h′′−1(q) = 1. Therefore, for −1 < q < k, the quadratic majorizing function is
equal to h−1(q), for q ≤ −1 and q ≥ k, a quadratic majorizing function with
the same second derivative of (1/2)(k + 1)−1 is produced that touches at the
current estimate q. Let the majorizing function g−1 = a−1q

2 − 2b−1q + c−1 has
coe�cients

a−1 = (1/2)(k + 1)−1, (8.34)

b−1 =





a−1q if q ≤ −1
−a−1 if − 1 < q < k
a−1q − 1/2 if q ≥ k

, (8.35)

c−1 =





a−1q
2 if q ≤ −1

a−1 if − 1 < q < k
1− (k + 1)/2 + a−1q

2 if q ≥ −k
. (8.36)

It may be veri�ed for any q from the three intervals that h−1(q) = g−1(q) and
h′−1(q) = g′−1(q) hold. In addition, g′′−1(q) = (1/2)(k + 1)−1 ≥ h′′−1(q) for all
q (as long as k > −1) so that the second derivative d′′−1(q) of the di�erence
function d−1(q) = g−1(q) − h−1(q) equals g′′−1(q) − h′′−1(q) ≥ 0 indicating that
d−1(q) is convex. As g−1(q) touches h−1(q) at q, d−1(q) = 0, so that, combined
with convexity of d−1(q) the inequality d−1(q) ≥ 0 must hold implying the
majorizing inequality h−1(q) ≤ g−1(q) for all q with equality at q.

For h1(q) similar reasoning can be held. Let the majorizing function g1 =
a−1q

2 − 2b−1q + c−1 has coe�cients
a1 = (1/2)(k + 1)−1, (8.37)

b1 =





1/2 + a1q if q ≤ −k
a1 if − k < q < 1
a1q if q ≥ 1

, (8.38)

c1 =





1− (k + 1)/2 + a−1q
2 if q ≤ −k

a1 if − k < q < 1
a1q

2 if q ≥ 1
. (8.39)
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Note that a−1 and a1 are exactly the same and both independent of q.
Therefore, the curvature of the majorizing functions for all Huber hinge errors
is the same. This property is exploited in the simple update derived from (8.22).
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Figure 8.4: Quadratic majorization functions for (a) the absolute hinge error,
(b) the Huber hinge error, and (c) the quadratic hinge error. The supporting
point is q = 1.5 both for the Group −1 and 1 error so that the majorizing
functions touch at q = q = 1.5.
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Figure 8.5: Illustrative example of the iterative majorization algorithm for SVMs
in action where c is �xed and w1 and w2 are being optimized. The majorization
function touches LSVM(c,w) at the previous estimates of w (the dotted line)
and a solid line is lowered at the minimum of the majorizing function showing
a decrease in LSVM(c,w) as well.
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Figure 8.6: The evolution of several statistics (see text for details) of three
datasets: Australian (dotted lines), Sonar (dash-dot lines), and Liver Disorders
(scaled, solid lines). Values of λ's are �xed at optimal levels for each dataset.
Loss function used: absolute hinge.
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Table 8.4: Comparisons between SVM solvers: time to convergence in CPU sec.
and objective values. The values of λ = 2p's are �xed at levels close to the
optimal ones of Table 8.3.
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A number of topics have not been explicitly addressed in this thesis or have just
been mentioned in passing. This has been done with a view to keeping the sub-
ject matter more focused and compendious. Future research could, for instance,
concentrate on further developments of the proposed techniques, �nding more
links with established methods, applications to more areas and real-life data
sets, etc. On the other hand, a number of conclusions can be made from this
thesis. One of the main ones is that penalization is a powerful means to improve
model performance, where the model under consideration is usually considered
to be unbiased or, at least, very �exible to changes in the data. This result is
by no means new, but since it is not really universally acknowledged, there may
still appear more pieces of academic research (like this one) before it becomes
so. The penalization aspect is not new, but its application to instance-based
classi�cation methods is. This has proved to be a pretty happy �marriage�, at
least given the initial positive results. In this case, the act of penalization ma-
terializes as the change in the soft distance to (local) sets, where the soft size of
the sets varies. So, the bigger the size of the set, which generally translates into
a smaller soft distance to the set from a test point of interest, the greater the
function-smoothing e�ect of penalization. An additional contribution here is the
introduction of kernels into the proposed instance-based penalization techniques.
This idea has been borrowed from the Support Vector Machines literature, but
there is no a priori reason as to why it should be possible to apply it in the
instance-based case. In the end, it turns out that the introduction of kernels
into the picture improves the model performance dramatically.

Leaving aside the instance-based aspect for moment, another major conclu-
sion is that established kernel-based penalization methods can be allied to both
readily-available application tasks and to enhance the performance of existing
non-penalization estimation methods. For example, Support Vector Regres-
sions have successfully been applied to handle a Financial investment strategy.
Support Vector Machines have been shown to perform quite well on a Market-
ing data set. A way to improve the interpretability of the individual e�ects of
the inputs on the output variable has also been proposed here. Finally, Sup-
port Vector Regressions have been implanted inside a state-of-art econometric
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model for predicting market shares, which has improved the results of this model
tremendously.

Last but not least, the proposed majorization algorithm opens the door for
non-experts who would like to solve the Support Vector Machine optimization
problem in a fast and easy-to-follow way. Potentially, this algorithm can be
further enhanced to handle nonlinear cases and similar optimization problems.
Ideally, it might be possible to generalize the algorithms to handle a vast number
of penalization techniques using one common approach. This could prove quite
handy and popularize research into the area on the side of both experts and,
especially, non-experts.

A number of topics have been left out of the main discussion line of the thesis.
The fact that some topics are missing is not so crucial, as it is not meant to be
used as a reference guide, but nevertheless I would like to comment on the next-
in-line points of interest. A quite important venue that has not been followed is
pursuing explicitly the forces that a�ect the interplay between bias and variance,
or if one likes, error and complexity, for instance-based classi�cation methods in
general, and in particular for the instance-based methods in this thesis. There
is also no discussion on the di�erence between inductive bias, or model bias, and
estimation bias. Arguably, these two combine forces to give rise to the �bias� as
used in the sense when we speak about the bias-variance trade-o�. Next, possible
extensions to unsupervised tasks have also been left out. Also, throughout
the thesis the cross-validation technique has been used for model selection, or
parameter-tuning, without a deep explanation as to why this approach deserves
to be so ubiquitous. Other approaches to model selection exist, some of which
are based, for example, on (assumed) knowledge of the underlying noise in
the output variable. Prominent such approaches are the Bayesian approach
(or, Bayesian information criterion), Akaike information criterion, the Vapnik-
Chervonenkis dimension, the parametric and nonparametric bootstrap method
and others. For some of these approaches it is obvious how to apply in our
framework, for others it is not. Actually, cross-validation can be thought of as
a simpli�ed bootstrap method for model selection.

In addition, there is none or almost none reference to Bayesian Economet-
rics or maximum-likelihood estimation. The latter is particularly applicable in
case we would like to adjust our model as much as possible to the underlying
noise of the dependent variable. However, if we have a priori a loss function in
mind, such as the squared-error loss function, then we would ultimately like to
minimize this loss rather than the loss implied by the distribution of the noise.
Interestingly, sometimes it is the penalized maximum likelihood estimation that
produces better out-of-sample performance. For example, the optimal parame-
ter in Ridge Regression estimation on �nite data with a known Gaussian noise of
the dependent variable and inherently linear input-output relation is not zero.
The case where it is zero corresponds to OLS and maximum-likelihood estima-
tion. The non-zero parameter value case corresponds to Ridge Regression and
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penalized maximum-likelihood estimation. It is hard to believe at �rst sight
that the maximum-likelihood estimation is not optimal in the case of Gaussian
noise and linear relation between the explained and explanatory variables. The
reason as to why this happens is that we have a �nite data set from which to
estimate our (linear) model. As they say in Economics, we are in a �second-
best scenario�. That is, if we have an in�nite data set here, then we would use
maximum-likelihood estimation, as it is the optimal estimation method. How-
ever, in case we do not have an in�nite data set, then we cannot any more
expect that this method would still be optimal. Therefore, we �nd ourselves in
a situation, where a method that is not optimal in the ideal setting turns out to
be more preferable than the method that is optimal in the ideal case. To give a
simple example from Economics, imagine a market for a product in which there
is perfect competition, which is an ideal case scenario. The competition drives
the price down to a level at which each �rm sells the product at a price at which
it does not make any pro�ts or losses. Setting such a price is the best strategy
for any �rm. If a �rm sets a slightly higher price, then it will loose all of its
(potential) clients and incur losses equal, at least, to the cost of production. If
we move away from the perfect-competition case, then setting a price such that
the production costs can just be covered may not be optimal. Say, we have
a �rm that is a monopolist, that is, it is the only one that produces a certain
product. Clearly, it is not optimal for a monopolist to set the price that is
optimal in the perfect-competition case! The optimal monopolistic price would
de�nitely be relatively higher. This extensive example comes also to show that
it is not only Statistics and Machine Learning that have realized that some kind
of regularization, or change of method, is more optimal in non-ideal cases.

The list of lightly-touched topics is by no means �nished. Sometimes it is
quite important not only to provide a certain prediction value or class label,
but also to have a way to say how con�dent a method is in the prediction it
makes. The majority of the methods described in this thesis fail to output
con�dence intervals for the estimates. This happens as they are nonparametric
techniques. However, if some �parametrics� are assumed, like a concrete para-
metric distribution for the noise of the output variable, then it is possible to
construct con�dence internals as well. Alternatively, if the noise is unknown,
then one could consult the so-called typicalness framework (see Melluish, Saun-
ders, Nouretdinov, & Vovk, 2001) or the version space framework (see Smirnov,
Sprinkhuizen-Kuyper, Nalbantov, & Vanderlooy, 2006) for a possible insight on
prediction con�dence.

There is little mentioning in the thesis of related penalization techniques
and links with competing regression/classi�cation methods such as Neural Net-
works, Decision Trees, Linear and Quadratic Discriminant Analysis, Logistic
Regression, Classi�cation and Regression Trees, and many, many others. Ways
to reduce the number of inputs like (Kernel) Principal Component Analysis,
which is arguably a good idea in some settings, have also not been discussed.
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Last but not least, no bounds on the test, or generalization, error have been pro-
vided for the proposed techniques. The di�culty to provide such bounds stems
from the instance-based nature of these techniques. All of the above raised
points demand attention and, I hope, will be the subject of future research.
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Summary

This thesis combines in a novel way three research areas, namely instance-based,
kernel and penalization methods. These areas are more popular in Machine
Learning rather than in Statistics or Econometrics, where they have been gain-
ing momentum in recent years. The combination has lead to new research mod-
els based on a solid foundation that exhibit outstanding performance results.
The underlying justi�cation for the models comes mainly from penalization, or
regularization, and has to do with the so-called bias-variance or �t-complexity
trade-o�. The idea that such a balance has to be sought is part of the main
motivation of the thesis.

Recent years have witnessed a wave of research that gravitates around the so-
called penalization aspect of learning, especially in supervised and unsupervised
tasks. Accordingly, a number of tools have been proposed or further developed
especially in the �elds of Statistics, Econometrics, and Machine Learning. Ba-
sically, the idea behind penalization is that under non-ideal conditions, that is
if we do not have perfect knowledge about the data, or the population, at hand,
methods that provide best solutions for the ideal case do not perform as good
as other methods. These latter methods may underperform in the ideal-case
scenario, but outperform in the non-ideal case. Basically, we are in a non-ideal
situation when the data we have is �nite, which invariably happens in practice.
Thus, the imperative need for penalization has become evident. What is penal-
ized are the models that are suitable in the ideal-case scenario, sometimes also
called the asymptotic case. In any case, if we have an in�nite amount of data
to begin with, we can (in theory) compute a population parameter of interest
as opposed to estimating it using a model.

Simultaneously with the penalization methods, the kernel methods have
gained considerable momentum. In this thesis, the term kernel is used to de-
note a way to e�ciently make calculations of data that is mapped into a space,
which dimension is higher than the dimension of the original data space. Some-
times the calculations in the higher-dimensional space can not only be carried
out more e�ciently, but a kernel actually provides the only possible means to
deal with the data in this space. On the face of it, kernelization allows for
greater model �exibility and consequently for a greater chance of over�tting,
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which is not a desirable property. It is well known that functions that �t the
training data too well do not perform well on test data in general. However, it
is the penalization that plays a crucial role in this respect. The kernel allows
for greater �exibility, which e�ect is immediately sti�ed, so to say, by the act
of penalization. The end e�ect is one of increased potential �exibility, which is
materialized in case there exist complex relations in the data. That is one of
the main reasons why the combination of kernels and penalization has produced
such powerful results: in general, if there are complex relations in the data, they
will be detected, and if the input-output relation is close to linear, then a right
level of penalization will make sure that this linear relationship is found. There
are many approaches as to how to detect the �right� penalization level, and the
one used in the thesis is the popular cross-validation.

The �nal main research area considered are the instance-based methods.
Arguably, instance-based methods have gained popularity due to the intuitive
way in which they operate. In classi�cation, for example, the proximity of a test
observation, called also a test instance, is computed to other instances within
a certain local region, and a �nal decision is made based on that information.
Instance-based methods are known for there �exibility and ability to adjust to
changes in the data. This can be viewed as both advantage and a disadvantage,
similarly to the situation with the kernels. One disadvantage is that instead of
relations in the data, there is danger of modeling mainly the noise in the data
(if there is noise). Again, however, penalization comes in handy and shields us
from this possibility. In the instance-based context of classi�cation, penalization
is proportional to the size of the local region on which the classi�cation of a test
observation is based. Actually, a material revelation of penalization can be found
in the computed so-called soft distance to local sets. These sets are a point (or
points), the convex hull of points, and the set of points classi�ed correctly by all
the functions from a given function class. To each of these local sets corresponds
a proposed method: Soft Nearest Neighbor, Nearest Convex Hull classi�er, and
Support Hyperplanes, respectively.

The purpose of this thesis is twofold. First, a number of real life applications
have been examined, where the performance of penalized and non-penalized (de-
fault) models have been compared. Usually, the penalized models signi�cantly
outperform conventional methods. In practice, this happens even if the only
obstacle in front of the ideal-case model is the fact that the data set at hand
is �nite, that is, even if all the other ideal-case conditions are satis�ed, such as
normality of the noise, independence of the observations, etc. Concretely, estab-
lished penalization methods such as Support Vector Regression, Ridge Regres-
sion and Support Vector Machines have be shown to outperform non-penalized
models in tasks from the areas of Finance and Marketing. Chapters 2 to 4 are
devoted to this application-driven theme. Chapter 2 is a demonstration of how
synergies between an established econometric model, the Market Share Attrac-
tion Model, and a kernel-based penalization model, Support Vector Regressions



187

Summary 177

can be exploited. In particular, the econometric-based model is taken as given,
and consequently its parameters are estimated in a more robust way. The end
result is a tremendous improvement in prediction performance. Chapter 3 is a
successful application of Support Vector Regressions to a Financial investment
strategy, and Chapter 4 discusses the application of Support Vector Machines
to a Marketing classi�cation task. Next to relatively superior results, the latter
chapter also reports ways to provide better interpretability of the individual
e�ects of each of the inputs on the output variable.

The second purpose of the thesis is to put forward three new instance-based
kernel penalization techniques. These include Soft Nearest Neighbor (discussed
in part in Chapter 5), Support Hyperplanes (Chapter 6), Nearest Convex Hull
classi�cation (Chapter 7). A common theme in these methods is that they are
all instance-based in nature. Next to the potential concomitant advantages and
disadvantages, this means that even if they outperform existing methods, they
are bound to work quite slowly. It turns out that two (quadratic) optimization
problems have to be solved in order to output the predicted value of a single
test point, which hinders for the time being the application of these methods to
large data sets. Nevertheless, the speed of computing machines is constantly in-
creasing, which is a positive sign in this respect. This means that instance-based
approaches may become even more popular in the future. Another positive sign
is that the prediction performance of the new techniques seems excellent so far.
Arguably, this is mainly due to the combination of the three elements: kernel,
penalization, and instance-based. Chapter 5 is the chapter that discusses the
three proposed techniques at one place and points out their similarities and
di�erences. Alongside, these techniques are compared to the popular Support
Vector Machines classi�er, which is not an instance-based method. It turns out
that some of the new methods, especially Support Hyperplanes, perform con-
sistently better than the rest. One of the main reasons for this could be hidden
in the relatively better balance that it strikes between �t and complexity, or
bias and variance. This trade-o� has extensively been discussed in the chapter.
Further research in this respect could concentrate on deriving so-called test-
error, or generalization, bounds, which arguably would point out exactly the
magnitude of the bias and variance forces that interweave to provide superior
test accuracies. In addition, more links could be established between existing
state-of-the-art techniques and the proposed ones in this thesis.

Finally, the last chapter of the thesis, Chapter 8, puts forward a new iterative
majorization algorithm to solve the linear Support Vector Machines in the so-
called primal optimization formulation. Some advantages of it are that it is
rather straightforward to implement, it is fast, and it can accommodate easily
several convex error functions, such as the SVM absolute-hinge, the Huber-
hinge, and, the quadratic-hinge error.
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Nederlandse samenvatting
(Summary in Dutch)

De onderwerpen van dit proefschrift vallen zowel binnen het vakgebied econome-
trie als arti�ciele intelligentie. Via de centrale thema's statistische regressie en
classi�catie draagt dit proefschrift bij aan de literatuur doordat er nieuwe wor-
den classi�catiemethoden worden voorgesteld en nieuwe toepassingen gegeven
worden van bestaande methoden op het gebied van �nanciering en marketing.

Het grootste gedeelte van deze dissertatie richt zich op de zogenaamde loss-
versus-penalty classi�catietechnieken. Dergelijke technieken bouwen voort op de
aanname dat een model niet te ingewikkeld maar ook niet te simpel zou moeten
zijn om goed te kunnen voorspellen. Een belangrijke reden voor het gebruiken
van een penalty is dat in de praktijk niet alle mogelijke data punten, maar een
eindig aantal beschikbaar zijn. De nieuwe technieken die voorgesteld worden
zijn Support Hyperplanes, Nearest Convex Hull classi�catie en Soft Nearest
Neighbor.

Naast deze nieuwe technieken, bespreekt dit proefschift ook nieuwe toepassin-
gen van enkele standaard loss-versus-penalty methoden. Zo worden Support
Vector Machines (SVMs) toegepast voor classi�catie op �nanciele tijdreeksen.
In een andere toepassing wordt het marktaandeel van automerken over de tijd
voorspeld met Support Vector Regression (SVR) toegepast op het Market Share
Attraction model. In de laatste toepassing wordt SVM gebruikt op een classi�-
catieprobleem in marketing.

Een ander deel van het proefschrift richt zich op nieuwe en e�ciente oplossin-
gen van SVMs met het zogenaamde majorizatiealgoritme SVM-Maj. Dit algo-
ritme geeft de mogelijkheid om verschillende zogenaamde loss-functies te ge-
bruiken binnen SVM-achtige methoden.
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Ðåçþìå
(Summary in Bulgarian)

Ïðåäìåòüò íà òîçè íàó÷åí òðóä å â ñôåðàòà íà èêîíîìåòðèÿòà è èçêóñòâåíèÿ
èíòåëåêò è ïî-êîíêðåòíî, ðåãðåñèîííèÿ è êëàñèôèêàöèîííèÿ ñòàòèñòè÷åñêè
àíàëèç. Ïðåäëîæåíè ñà íîâè êëàñèôèêàöèîííè ïîäõîäè, ðåäîì ñ ïðèëîæå-
íèÿ íà òðàäèöèîííè òàêèâà â îáëàñòòà íà ôèíàíñèòå è ìàðêåòèíãà.

Â ïî-ãîëÿìàòà ñè ÷àñò, äèñåðòàöèÿòà ôîêóñèðà âúðõó ðàçâèòèåòî íà
ñòàíäàðòíè ìåòîäè, èçâåñòíè ñ îáùîòî íàèìåíîâàíèå áàëàíñèîííè ìåòîäè.
Òåçè ìåòîäè èìàò â îñíîâàòà ñè ñõâàùàíåòî, ÷å ìîäåë, êîéòî èìà íà ðàç-
ïîëîæåíèå îãðàíè÷åí íàáîð îò äàííè íå òðÿáâà äà å íèòî òâúðäå ñëîæåí,
íèòî òâúðäå ïðîñò, çà äà ïðèòåæàâà äîáðà ïðåäñêàçàòåëíà ñïîñîáíîñò. Â
äèñåðòàöèÿòà ñà ïðåäëîæåíè òðè íîâè áàëàíñèîííè ïîäõîäà: ïîääúðæàùè
õèïåððàâíèíè, êëàñèôèêàöèÿ ñïîðåä íàé-áëèçêàòà êîíâåêñíà îáâèâêà, è
ïñåâäî íàé-áëèçúê ïðèìåð.

Çàåäíî ñ íîâèòå ïîäõîäè, äèñåðòàöèÿòà ïðåäëàãà è íîâè ïðèëîæåíèÿ íà
íÿêîè òðàäèöèîííè áàëàíñèîííè ìåòîäè. Êîíêðåòíî, òîâà ñà ïðèëîæåíèÿ
íà ìåòîäà íà ïîääúðæàùèòå âåêòîðè çà êëàñèôèêàöèîíåí è ðåãðåñèîíåí
àíàëèç âúðõó ôèíàíñîâî ïðîãíîçèðàíå, ðåøàâàíå íà òàêà-íàðå÷åíèÿ àòðàê-
öèîíåí ìîäåë íà ïàçàðíèÿ äÿë, è ðåøàâàíå è èíòåðïðåòèðàíå íà áèíàðíè
êëàñèôèêàöèîííè çàäà÷è â ìàðêåòèíãà.

Îñâåí òîâà, òîçè íàó÷åí òðóä ïðåäëàãà åäèí íîâ, åôåêòèâåí íà÷èí çà
ðåøàâàíå íà îïòèìèçàöèîííèÿ ïðîáëåì ïðèñüù íà ìåòîäà íà ïîääúðæà-
ùèòå âåêòîðè, ÷ðåç òàêà-íàðå÷åíèÿ ìàæîðèçèðàù àëãîðèòúì. Òîçè àëãî-
ðèòúì ïîçâîëÿâà äà ñå èçïîëçâàò ìíîæåñòâî òàêà-íàðå÷åíè ôóíêöèè íà
çàãóáàòà ïðè îïòèìèçèðàíåòî íà ïî-îáùè ìåòîäè, ïîäîáíè íà òîçè íà ïîä-
äúðæàùèòå âåêòîðè.
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l)ESSAYS ON SOME RECENT PENALIZATION METHODS 
WITH APPLICATIONS IN FINANCE AND MARKETING

The subject of this PhD research is within the areas of Econometrics and Artificial Intel -
li gence. More concretely, it deals with the tasks of statistical regression and classification
analysis. New classification methods have been proposed, as well as new applications of
established ones in the areas of Finance and Marketing.

The bulk of this PhD research centers on extending standard methods that fall under
the general term of loss-versus-penalty classification techniques. These techniques build
on the premises that a model that uses a finite amount of available data to be trained on
should neither be too complex nor too simple in order to possess a good forecasting
ability. New proposed classification techniques in this area are Support Hyperplanes,
Nearest Convex Hull classification and Soft Nearest Neighbor.

Next to the new techniques, new applications of some standard loss-versus-penalty
methods have been put forward. Specifically, these are the application of the so-called
Support Vector Machines (SVMs) for classification and regression analysis to financial time
series forecasting, solving the Market Share Attraction model and solving and interpreting
binary classification tasks in Marketing.

In addition, this research focuses on new efficient solutions to SVMs using the so-called
majorization algorithm. This algorithm provides for the possibility to incorporate various
so-called loss functions while solving general SVM-like methods.
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