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Abstract

In the first chapter of this book the basic results within convex
and quasiconvex analysis are presented. In Section 2 we consider
in detail the algebraic and topological properties of convex sets
within Rn together with their primal and dual representations.
In Section 3 we apply the results for convex sets to convex and
quasiconvex functions and show how these results can be used to
give primal and dual representations of the functions considered
in this field. As such, most of the results are well-known with the
exception of Subsection 3.4 dealing with dual representations of
quasiconvex functions. In Section 3 we consider applications of
convex analysis to noncooperative game and minimax theory, La-
grangian duality in optimization and the properties of positively
homogeneous evenly quasiconvex functions. Among these result an
elementary proof of the well-known Sion’s minimax theorem con-
cerning quasiconvex-quasiconcave bifunctions is presented, thereby
avoiding the less elementary fixed point arguments. Most of the
results are proved in detail and the authors have tried to make
these proofs as transparent as possible. Remember that convex
analysis deals with the study of convex cones and convex sets and
these objects are generalizations of linear subspaces and affine sets,
thereby extending the field of linear algebra. Although some of the
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proofs are technical, it is possible to give a clear geometrical inter-
pretation of the main ideas of convex analysis. Finally in Section
5 we list a short and probably incomplete overview on the history
of convex and quasiconvex analysis.

keywords: Convex Analysis, Quasiconvex Analysis, Noncoopera-
tive games, Minimax, Optimization theory.

1 Introduction.

In this chapter the fundamental questions studied within the field of
convex and quasiconvex analysis are discussed. Although some of these
questions can also be answered within infinite dimensional real topolog-
ical vector spaces our universe will be the finite dimensional real linear
space Rn equipped with the well-known Euclidean norm ‖.‖. Since con-
vex and quasiconvex analysis can be seen as the study of certain sets, we
consider in Section 2 the basic sets studied in this field and list with or
without proof the most important algebraic and topological properties
of those sets. In this section a proof based on elementary calculus of
the important separation result for disjoint convex sets in Rn will be
given. In Section 3 we introduce the so-called convex and quasiconvex
functions and show that the study of these functions can be reduced to
the study of the sets considered in Section 2. As such, the formulation
of the separation result for disjoint convex sets is now given by the dual
representation of a convex or quasiconvex function. In Section 4 we will
discuss important applications of convex and quasiconvex analysis to op-
timization theory, game theory and the study of positively homogeneous
evenly quasiconvex functions. Finally in Section 5 we consider some of
the historical developments within the field of convex and quasiconvex
analysis.

2 Sets studied within convex and quaisconvex
analysis.

In this section the basic sets studied within convex and quasiconvex
analysis in Rn are discussed and their most important properties listed.
Since in some cases these properties are well-known we often mention
them without any proof. We introduce in Subsection 2.1 the definition
of a linear subspace, an affine set, a cone and a convex set in Rn together
with their so-called primal representation. Also the important concept of
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a hull operation applied to an arbitrary set is considered. In Subsection
2.2 the topological properties of the sets considered in Subsection 2.1 are
listed and in Subsection 2.3 we prove the well-known separation result
for disjoint convex sets. Finally in Subsection 2.4 this separation result
is applied to derive the so-called dual representation of a closed convex
set. In case proofs are included we have tried to make these proofs
as transparent and simple as possible. Also in some cases these proofs
can be easily adapted, if our universe is an infinite dimensional real
topological vector space. Most of the material in this section together
with the proofs can be found in Lancaster and Tismenetsky (cf.[47]) for
the linear algebra part, while for the convex analysis part the reader
is referred to Rockafellar (cf.[63]) and Hiriart-Urruty and Lemaréchal
(cf.[34], [35]).

2.1 Algebraic Properties of Sets.

As already observed our universe will always be the n-dimensional Eu-
clidean space Rn and any element of Rn is denoted by the vector x =
(x1, ..., xn)>, xi ∈ R or y = (y1, ..., yn)>, yi ∈ R. The inner product
< ., . >: Rn × Rn → R is then given by

< x,y >:=
∑n

i=1
xiyi = x>y,

while the Euclidean norm ‖.‖ is defined by

‖x‖ := 2
√

< x,x >.

To simplify the notation, we also introduce for the sets A,B ⊆ Rn and
α, β ∈ R the Minkowsky sum αA + βB given by

αA + βB := {αx + βy : x ∈ A,y ∈ B}.

The first sets to be introduced are the main topic of study within linear
algebra (cf.[47]).

Definition 1 A set L ⊆ Rn is called a linear subspace if L is nonempty
and αL + βL ⊆ L for every α, β ∈ R. Moreover, a set M ⊆ Rn is called
affine if αM + (1− α)M ⊆ M for every α ∈ R.

The empty set ∅ and Rn are extreme examples of an affine set. Also
it can be shown that the set M is affine and 0 ∈ M if and only if M
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is a linear subspace and for each nonempty affine set M there exists a
unique linear subspace LM satisfying

M = LM + x (1)

for any given x ∈ M (cf.[63]).
Since Rn is a linear subspace, we can apply to any nonempty set S

⊆ Rn the so-called linear hull operation and construct the set

lin(S) := ∩{L : S ⊆ L and L a linear subspace}. (2)

For any collection of linear subspaces Li, i ∈ I containing S it is obvious
that the intersection ∩i∈ILi is again a linear subspace containing S and
this shows that the set lin(S) is the smallest linear subspace containing
S. The set lin(S) is called the linear hull generated by the set S and if S
has a finite number of elements the linear hull is called finitely generated.
By a similar argument one can construct, using the so-called affine hull
operation, the smallest affine set containing S. This set, denoted by
aff(S), is called the affine hull generated by the set S and is given by

aff(S) := ∩{M : S ⊆ M and M an affine set}. (3)

If the set S has a finite number of elements, the affine hull is called
finitely generated. Since any linear subspace is an affine set, it is clear
that aff(S) ⊆ lin(S). To give a so-called primal representation of these
sets we introduce the next definition.

Definition 2 A vector x is a linear combination of the vectors x1, ...,xk

if

x =
∑k

i=1
αixi, αi ∈ R, 1 ≤ i ≤ k.

A vector x is an affine combination of the vectors x1, ...,xk if

x =
∑k

i=1
αixi, αi ∈ R, 1 ≤ i ≤ k and

∑k

i=1
αi = 1

A linear combination of the nonempty set S is given by the set
∑k

i=1 αiS
with αi ∈ R, 1 ≤ i ≤ k, while an affine combination of the same set is
given by the set

∑k
i=1 αiS with

∑k
i=1 αi = 1 and αi ∈ R, 1 ≤ i ≤ k.

A trivial consequence of Definitions 1 and 2 is given by the next
result which also holds in infinite dimensional linear spaces.
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Lemma 3 A nonempty set L ⊆ Rn is a linear subspace if and only if it
contains all linear combinations of the set L. Moreover, a nonempty set
M ⊆ Rn is an affine set if and only if it contains all affine combinations
of the set M.

The result in Lemma 3 yields a primal representation of a linear
subspace and an affine set. In particular, we obtain from Lemma 3 that
the set lin(S) (aff(S)) with S ⊆ Rn nonempty equals all linear (affine)
combinations of the set S. This means

lin(S) = ∪∞k=1{
∑k

i=1
αiS : αi ∈ R} (4)

and

aff(S) = ∪∞k=1{
∑k

i=1
αiS : αi ∈ R and

∑k

i=1
αi = 1}. (5)

For any nonempty sets S1 ⊆ Rn and S2 ⊆ Rm one can now show using
relation (4) that

lin(S1 × S2) = lin(S1)× lin(S2) (6)

and using relation (5) that

aff(S1 × S2) = aff(S1)× aff(S2). (7)

Also, for A : Rn → Rm a linear mapping, it is easy to verify that

A(lin(S)) = lin(A(S)) (8)

and for A : Rn → Rman affine mapping, that

A(aff(S)) = aff(A(S)). (9)

Recall a mapping A : Rn → Rm is called linear if

A(αx + βy) = αA(x) + βA(y)

for every α, β ∈ R and x,y ∈ Rn and it is called affine if

A(αx + (1− α)y) = αA(x) + (1− α)A(y)

for every α ∈ R and x,y ∈ Rn. Moreover, in case we apply relation (7)
to the affine mapping A : R2n → Rn, given by A(x,y) = αx + βy, with
α, β ∈ R and use relation (9) the following rule for the affine hull of the
sum of sets is easy to verify.
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Lemma 4 For any nonempty sets S1, S2 ⊆ Rn and α, β ∈ R it follows
that

aff(αS1 + βS2) = αaff(S1) + βaff(S2).

Another application of relations (4) and (5) yields the next result.

Lemma 5 For any nonempty set S ⊆ Rn and x0 belonging to aff(S)
it follows that aff(S) = x0 + lin(S − x0).

An improvement of Lemma 3 is given by the observation that any
linear subspace (affine set) of Rn can be written as the linear or affine
hull of a finite subset S ⊆ Rn. To show this improvement one needs to
introduce the next definition (cf.[47]).

Definition 6 The vectors x1, ...,xk are called linearly independent if∑k

i=1
αixi = 0 and αi ∈ R ⇒ αi = 0, 1 ≤ i ≤ k.

Moreover, the vectors x1, ...,xk are called affinely independent if∑k

i=1
αixi = 0 and

∑k

i=1
αi = 0 ⇒ αi = 0, 1 ≤ i ≤ k.

For k ≥ 2 an equivalent characterization of affinely independent vec-
tors is given by the observation that the vectors x1, ...,xk are affinely
independent if and only if the vectors x2−x1, ...,xk−x1 are linear inde-
pendent (cf.[34]). To explain the name linearly and affinely independent
we observe that the vectors x1, ...,xk are linearly independent if and
only if any vector x belonging to the linear hull lin({x1, ...,xk}) can be
written as a unique linear combination of the vectors x1, ...,xk. More-
over, the vectors x1, ...,xk are affinely independent if and only if any
vector x belonging to the affine hull aff({x1, ...,xk}) can be written as
a unique affine combination of the vectors x1, ...,xk. The improvement
of Lemma 3 is given by the following result well-known within linear
algebra (cf.[47]).

Lemma 7 For any linear subspace L ⊆ Rn containing nonzero elements
there exists a set of linearly independent vectors x1, ...,xk, k ≤ n satis-
fying lin({x1, ...,xk}) = L. Also for any nonempty affine set M ⊆ Rn

there exists a set of affinely independent vectors x0, ...,xk, k ≤ n satisfy-
ing aff({x0, ...,xk}) = M.
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By Lemma 7 any linear subspace L ⊆ Rn containing nonzero ele-
ments can be represented as the linear hull of k ≤ n linearly independent
vectors. If this holds, the dimension dim(L) of the linear subspace L is
given by k. Since any x belonging to L can be written as a unique lin-
ear combination of linearly independent vectors this shows (cf.[47]) that
dim(L) is well defined for L containing nonzero elements. If L = {0}
the dimension dim(L) is by definition equal to 0. To extend this to affine
sets we observe by relation 1 that any nonempty affine set M is parallel
to its unique subspace LM and the dimension dim(M) of a nonempty
affine set M is now given by dim(LM ). By definition the dimension of
the empty set ∅ equals −1. Finally, the dimension dim(S) of an arbi-
trary set S ⊆ Rn is given by dim(aff(S)). In the next definition we will
introduce the sets which are the main objects of study within the field
of convex and quasiconvex analysis.

Definition 8 A set C ⊆ Rn is called convex if αC + (1− α)C ⊆ C for
every 0 < α < 1. Moreover, a set K ⊆ Rn is called a cone if αK ⊆ K
for every α > 0.

The empty set ∅ is an extreme example of a convex set and a cone.
An affine set is clearly a convex set but it is obvious that not every convex
set is an affine set. This shows that convex analysis is an extension of
linear algebra. Moreover, it is easy to show for every cone K that

K convex ⇔ K + K ⊆ K. (10)

Finally, for A : Rn → Rm an affine mapping and C ⊆ Rn a nonempty
convex set it follows that the set A(C) is convex, while for A : Rn → Rm

a linear mapping and K ⊆ Rn a nonempty cone the set A(K) is a cone.
To relate convex sets to convex cones we observe for R+ := [0,∞)

and any nonempty set S ⊆ Rn that the set

R+(S × {1}) := {(αx, α) : α ≥ 0,x ∈ S} ⊆ Rn+1

is a cone. This implies by relation (10) that the set R+(C × {1}) is a
convex cone for any convex set C ⊆ Rn. It is now clear for any nonempty
set S ⊆ Rn that

R+(S × {1}) ∩ (Rn × {1}) = S × {1} (11)

and so any convex set C can be seen as an intersection of the convex cone
R+(C × {1}) and the affine set Rn × {1}. This shows that convex sets
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are closely related to convex cones and by relation (11) one can study
convex sets by only studying affine sets and convex cones containing 0.
We will not pursue this approach but only remark that the above relation
is sometimes useful. Introducing an important subclass of convex sets,
let a be a nonzero vector belonging to Rn and b ∈ R and

H<(a, b) := {x ∈ Rn : aᵀx < b}. (12)

The set H<(a, b) is called a halfspace and clearly this halfspace is a
convex set. Moreover, the set H≤(a, b) := {x ∈ Rn : aᵀx ≤ b} is also
called a halfspace and this set is also a convex set. Another important
subclass of convex sets useful within the study of quasiconvex functions
is given by the following definition (cf.[23]).

Definition 9 A set Ce ⊆ Rn is called evenly convex if Ce = Rn or Ce

is the intersection of a collection of halfspaces H<(a, b).

Clearly the empty set ∅ is evenly convex and since any halfspace
H≤(a, b) can be obtained by intersecting the halfspaces H<(a, b+ 1

n), n ≥
1 it also follows that any halfspace H≤(a, b) is evenly convex. In Sub-
section 2.3 it will be shown that any closed or open convex set is evenly
convex. However, there exist convex sets which are not evenly convex.

Example 10 If C := {(x1, x2) : 0 ≤ x1 ≤ 1, 0 ≤ x2 < 1}∪{(1, 1)}, then
it follows that C is convex but not evenly convex.

Since Rn is a convex set, we can apply to any nonempty set S ⊆ Rn

the so-called convex hull operation and construct the nonempty set

co(S) := ∩{C : S ⊆ C and C a convex set}. (13)

For any collection of convex sets Ci, i ∈ I containing S it is obvious
that the intersection ∩i∈ICi is again a convex set containing S and this
shows that the set co(S) is the smallest convex set containing S. The
set co(S) is called the convex hull generated by the set S and if S has
a finite number of elements the convex hull is called finitely generated.
Since Rn is by definition evenly convex one can construct by a similar
argument using the so-called evenly convex hull operation the smallest
evenly convex set containing the nonempty set S. This set, denoted by
ec(S), is called the evenly convex hull generated by the set S and is given
by

ec(S):= ∩ {Ce : S ⊆ Ce and Ce an evenly convex set}. (14)
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Since any evenly convex set is convex it follows that co(S) ⊆ ec(S).
By the so-called canonic hull operation one can also construct the

smallest convex cone containing the nonempty set S, and the smallest
convex cone containing S ∪ {0}. The last set is given by

cone(S) := ∩{K : S ∪ {0} ⊆ K and K a convex cone}. (15)

Unfortunately this set is called the convex cone generated by S (cf.[63]).
Clearly the set cone(S) is in general not equal to the smallest convex cone
containing S unless the zero element belongs to S. To give an alternative
characterization of the above sets we introduce the next definition.

Definition 11 A vector x is a canonical combination of the vectors
x1, ...,xk if

x =
∑k

i=1
αixi, αi ≥ 0, 1 ≤ i ≤ k.

The vector x is called a strict canonical combination of the same vectors
if αi > 0, 1 ≤ i ≤ k. A vector x is a convex combination of the vectors
x1, ...,xk if

x =
∑k

i=1
αixi and

∑k

i=1
αi = 1, αi > 0.

A canonical combination of the nonempty set S is given by the set∑k
i=1 αiS with αi ≥ 0, 1 ≤ i ≤ k, while a strict canonical combina-

tion of the same set is given by
∑k

i=1 αiS with αi > 0, 1 ≤ i ≤ k. Finally
a convex combination of the set S is given by the set

∑k
i=1 αiS with∑k

i=1 αi = 1, αi > 0, 1 ≤ i ≤ k.

A trivial consequence of Definitions 8 and 11 is given by the next
result which also holds in infinite dimensional linear spaces.

Lemma 12 A nonempty set K ⊆ Rn is a convex cone (convex cone
containing 0) if and only if it contains all strict canonical (canonical)
combinations of the set K. Moreover, a nonempty set C ⊆ Rn is a convex
set if and only if it contains all convex combinations of the set C.

The result in Lemma 12 yields a primal representation of a convex
cone and a convex set. In particular, we obtain from Lemma 12 that the
set cone(S) (co(S)) with S ⊆ Rn nonempty equals all canonical (convex)
combinations of the set S. This means

cone(S) = ∪∞k=1{
∑k

i=1
αiS : αi ≥ 0} (16)
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and
co(S) = ∪∞k=1{

∑k

i=1
αiS :

∑k

i=1
αi = 1, αi > 0}. (17)

We observe that the representations of cone(S) and co(S), listed in rela-
tions (16) and (17), are the “convex equivalences” of the representation
of lin(S) and aff(S) given by relations (4) and (5). Moreover, to relate
the above representations, it is easy to see that

cone(S) = R+(co(S)). (18)

Since by relations (16) and (17) a convex cone containing 0 (convex set)
can be seen as a generalization of a linear subspace (affine set) one might
wonder whether a similar result as in Lemma 7 holds. Hence we wonder
whether any convex cone containing 0 (convex set) can be seen as a
canonical (convex) combination of a finite set S.

Example 13 Contrary to linear subspaces it is not true that any convex
cone containing 0 is a canonical combination of a finite set. An example
is given by the so-called L2 or ice-cream cone K = {(x, t) : ‖x‖ ≤ t} ⊆
Rn+1.

Despite this negative result it is possible in finite dimensional linear
spaces to improve for canonical hulls and convex hulls the representation
given by relations (16) and (17). In the next result it is shown that any
element belonging to cone(S) with S containing nonzero elements can
be written as a canonical combination of at most n linearly independent
vectors belonging to S. This is called Caratheodory’s theorem for canon-
ical hulls. Using this result and relation (11) a related result holds for
convex hulls and in this case linearly independent is replaced by affinely
independent and at most n is replaced by at most n + 1. Clearly this
result (cf.[63]) is the “convex equivalence” of Lemma 7.

Lemma 14 If S ⊆ Rn is a set containing nonzero elements, then for
any x belonging to cone(S) there exists a set of linearly independent
vectors x1, ...,xk, k ≤ n belonging to S such that x can be written as a
canonical combination of these vectors. Moreover, for any x ∈ co(S)
there exists a set of affinely independent vectors x1, ...,xk, k ≤ n + 1
belonging to S such that x can be written as a convex combination of
these vectors.

Proof. Clearly for 0 ∈ cone(S) the desired result holds and so x ∈
cone(S) should be nonzero. By relation (16) there exists some finite set
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{x1, ...,xk} and αi > 0, 1 ≤ i ≤ k satisfying x =
∑k

i=1 αixi. If the vectors
xi, 1 ≤ i ≤ k are linearly independent, then clearly k ≤ n and we are
done. Otherwise, there exists a nonzero sequence βi, 1 ≤ i ≤ k satisfying
0 =

∑k
i=1 βixi and without loss of generality we may assume that the

set I := {1 ≤ i ≤ k : βi > 0} is nonempty. If ε := min{αi
βi

: i ∈ I} > 0
and i∗ := arg min{αi

βi
: i ∈ I} we obtain that

x =
∑k

i=1
(αi − εβi)xi =

∑k

i=1,i6=i∗
(αi − εβi)xi

and so x can be written as a strict canonical combination of at most k−1
vectors. Applying now the same procedure again until we have identified
a subset of {x1, ...,xk} consisting of linearly independent vectors the
first part follows. To show the result for convex hulls it follows for any
x ∈ co(S) that (x, 1) belongs to co(S)×{1} ⊆ R+(co(S)×{1}} ⊆ Rn+1.
By relation (18) the set R+(co(S) × {1}} is the convex cone generated
by S × {1} and by the first part the vector (x, 1) can be written as
a canonical combination of at most n + 1 linearly independent vectors
(xi, 1) ∈ S × {1}. Hence one can find positive scalars αi satisfying x =∑k

i=1 αixi, k ≤ n + 1 and
∑k

i=1 αi = 1 and since the vectors (xi, 1) ∈
S × {1} are linearly independent if and only if the vectors xi ∈ S are
affinely independent the desired result follows. �

Although in the above lemma k ≤ n for cones and k ≤ n + 1 for
convex hulls it is easy to see that n can be replaced by dim(S) ≤ n.
This concludes our discussion on algebraic properties of linear subspaces,
affine sets, convex sets, and convex cones. In the next subsection we
investigate topological properties of these sets.

2.2 Topological properties of sets.

In this subsection we focus on the topological properties of the different
classes of sets used within linear algebra and convex analysis. To start
with affine sets one can show the following result. This result can be
easily verified using Lemma 7 (cf.[46]).

Lemma 15 Any affine set M ⊆ Rn is closed.

An important consequence of Lemma 15 is given by the following
observation. For a given set S ⊆ Rn let int(S) and cl(S) denote the
interior, respectively the closure of the set S. By Lemma 15 we obtain
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cl(S) ⊆ aff(S) ⊆ lin(S) and this yields by the monotonicity of the hull
operation that

aff(cl((S))) = aff(S) and lin(cl(S)) = lin(S). (19)

Opposed to affine sets it is not true that convex cones and convex sets
are closed. However, as will be shown later, the algebraic property con-
vexity and the topological property closed are necessary and sufficient to
give a so-called dual representation of a set. Due to this important rep-
resentation one needs beforehand easy sufficient conditions on a convex
set to be closed. Recall that every affine set can be seen as the affine hull
of a finite set of affinely independent vectors and this property implies
that every affine set is closed. By this observation it seems reasonable
to consider convex sets which are the convex hull of a smaller set and
identify which property on the smaller set S one needs to guarantee that
the convex set co(S) is closed. Looking at the following counterexample
it is not sufficient to impose that the set S is closed and this implies that
we need a stronger property on S.

Example 16 If S = {0} ∪ {(x, 1) : x ≥ 0}, then S is closed and its
convex hull given by co(S) = {(x1, x2) : 0 < x2 ≤ 1, x1 ≥ 0} ∪ {0} is
clearly not closed.

In the above counterexample the closed set S is unbounded and this
prevents co(S) to be closed. Imposing now the additional property that
the closed set S is bounded or equivalently compact, one can show that
co(S) is compact and hence closed. Using relation (18) this also yields a
way to identify for which sets S the set cone(S) is closed. So finiteness
of the generator S for affine sets should be replaced by compactness of S
for convex hulls. To prove the next result we first introduce the so-called
unit simplex

∆n+1 := {α :
∑n+1

i=1
αi = 1 and αi ≥ 0} ⊆ Rn+1.

If the function f : ∆n+1 × Sn+1 → Rn with Sk denoting the k-fold
Cartesian product of the set S ⊆ Rn is given by

f(α,x1, ...,xn+1) =
∑n+1

i=1
αixi,

then by Lemma 14 it follows that

co(S) = f(∆n+1 × Sn+1). (20)

Using relation (20) one can now show the following result (cf.[34]).
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Lemma 17 If the nonempty set S ⊆ Rn is compact, then the set co(S)
is compact. Moreover, if S is compact and 0 does not belong to co(S),
then the set cone(S) is closed.

Proof. It is well known, that the set ∆n+1 × Sn+1 is compact (cf.[64])
and this shows by relation (20) and f a continuous function that co(S)
is compact. To verify the second part we observe by relation (18) that
cone(S) = R+(co(S)) and so we need to show that the set R+(co(S))
is closed. Consider now an arbitrary sequence tnxn, n ∈ N belonging
to R+(co(S)) satisfying limn↑∞ tnxn = y. This implies limn↑∞ tn‖xn‖ =
‖y‖ and since 0 /∈ co(S) and co(S) is compact there exists a subsequence
N0 ⊆ N with limn∈N0↑∞ xn = x∞ ∈ co(S) and x∞ 6= 0. Hence we obtain

0 ≤ limn∈N0↑∞ tn = limn∈N0↑∞
tn ‖ xn ‖
‖ xn‖

=
‖y‖
‖ x∞ ‖

:= t∞ < ∞.

and so y = t∞x∞ ∈ R+(co(S)), showing the desired result. �

The following example shows that the condition 0 /∈ co(S) cannot be
omitted in Lemma 17.

Example 18 If the condition 0 /∈ S is omitted in Lemma 17, then the
set cone(S) might not be closed as shown by the following example. Let
S = {(x1, x2) : (x1 − 1)2 + x2

2 ≤ 1}. Clearly S is compact and 0 ∈ S.
Moreover, by relation (18) it follows that cone(S) = {(x1, x2) : x1 >
0} ∪ {0} and this set is not closed.

An immediate consequence of Caratheodory’s theorem (Lemma 14)
and Lemma 17 is given by the next result for convex cones generated by
some nonempty set S.

Lemma 19 If the set S ⊆ Rn contains a finite number of elements,
then the set cone(S) is closed.

Proof. For the finite set S we consider the finite set V := {I : I ⊆ S
and the set I consists of linearly independent vectors}. By Lemma 14 it
follows that cone(S) = ∪I∈V cone(I). Since each I belonging to V is a
finite set of linearly independent vectors the set I is compact and 0 does
not belong to co(I). This shows by Lemma 17 that cone(I) is closed for
every I belonging to V and since V is a finite set the result follows. �

Next we introduce within a finite dimensional linear space the defi-
nition of a relative interior point, generalizing the notion of an interior
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point. A similar notion can also be defined within a so-called (infinite
dimensional) locally convex topological vector space (cf.[58]).

Definition 20 If E := {x ∈ Rn : ‖x‖ < 1}, a vector x ∈ Rn is called
a relative interior point of the set S ⊆ Rn if x belongs to aff(S) and
there exists some ε > 0 such that

(x + εE) ∩ aff(S) ⊆ S.

The relative interior ri(S) of any set S is given by ri(S) := {x ∈ Rn : x
is a relative interior point of S}. The set S ⊆ Rn is called relatively open
if S equals ri(S) and it is called regular if ri(S) is nonempty.

As shown by the next example it is quite natural to assume that x
belongs to aff(S). This assumption implies that ri(S) ⊆ S.

Example 21 Consider the set S = {0}×[−1, 1] ⊆ R2 and let x = (1, 0).
Clearly the set aff(S) is given by {0} × R and for ε = 1 it follows that
(x + E)∩ aff(S) ⊆ S. If one would delete in the definition of a relative
interior point the condition that x must belong to aff(S), then according
to this, the vector (1, 0) would be a relative interior point of the set S.
However, the vector (1, 0) is not an element of S and so this definition
is not natural.

By Definition 20 it is clear for S ⊆ Rn full dimensional or equivalently
aff(S) = Rn that relative interior means interior and hence relative
refers to relative with respect to aff(S). By the same definition, we also
obtain that every affine manifold is relatively open. Moreover, since by
Lemma 15 the set aff(S) is closed it follows that cl(S) ⊆ aff(S) and so
it is useless to introduce closure relative to the affine hull of a given set
S. Contrary to the different hull operations the relative interior operator
is not a monotone operator. This means that S1 ⊆ S2 does not imply
that ri(S1) ⊆ ri(S2).

Example 22 If C1 = {0} and C2 = [0, 1], then both sets are convex and
ri(C1) = {0} and ri(C2) = (0, 1). This shows C1 ⊆ C2 and ri(C1) *
ri(C2).

To guarantee that the relative interior operator is monotone we need
to impose the additional condition that aff(S1) = aff(S2). If this holds
it is easy to check that

S1 ⊆ S2 ⇒ ri(S1) ⊆ ri(S2). (21)
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By the above observation it is important to know which different sets
cannot be distinguished by the affine hull operator. The next lemma
shows that this holds for the sets S, cl(S), co(S) and cl(co(S)). This
result can be easily verified using cl(co(S)) ⊆ aff(S).

Lemma 23 It follows for every nonempty set S ⊆ Rn that

aff(S) = aff(cl(S)) = aff(co(S)) = aff(cl(co(S))).

By relation (21) and Lemma 23 we obtain ri(S) ⊆ ri(cl(S)) ⊆
ri(cl(co(S))) and ri(S) ⊆ ri(co(S)) for arbitrary sets S ⊆ Rn. More-
over, by relation (7) it is easy to verify that

ri(S1 × S2) = ri(S1)× ri(S2). (22)

Since we also like to show aff(ri(S)) = aff(S) an alternative definition
of a relative interior point is given by the next lemma.

Lemma 24 If the set S ⊆ Rn is regular, then the vector x is a relative
interior point of the set S if and only if x belongs to aff(S) and there
exists some ε > 0 such that (x + εE) ∩ aff(S) ⊆ ri(S).

Proof. We only need to verify the if implication. Let x be a relative
interior point of the set S. This means x ∈ aff(S) and there exists some
ε > 0 such that (x+ εE)∩aff(S) ⊆ S. Since x ∈ aff(S) we obtain that
(x + δE)∩ aff(S) is nonempty for every δ > 0 and so we may consider
any point y belonging to (x + ε

2E) ∩ aff(S). Clearly y ∈ aff(S) and
y+ ε

2E ⊆ x+εE and this shows (y+ ε
2E)∩ aff(S) ⊆ S. Hence y belongs

to ri(S) and we have verified that (x + ε
2E) ∩ aff(S) ⊆ ri(S). �

The next result shows for regular sets S ⊆ Rn that the affine hull
operation cannot distinguish the sets ri(S) and S and so this lemma can
be seen as an extension of Lemma 23.

Lemma 25 If the set S ⊆ Rn is regular, then it follows that aff(ri(S)) =
aff(S).

Proof. It is clear that aff(ri(S)) ⊆ aff(S) and to show the converse
inclusion it is sufficient to verify that S\ri(S) ⊆ aff(ri(S)). Let x ∈
S\ri(S). Since the set S is regular one can find some y ∈ ri(S) ⊆ S and
so by Lemma 24 there exists some ε > 0 satisfying

(y + εE) ∩ aff(S) ⊆ ri(S). (23)
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Clearly the set [y,x] := {(1−α)y + αx : 0 ≤ α ≤ 1} belongs to co(S) ⊆
aff(S) and this implies by relation (23) that (y + εE) ∩ [y,x] ⊆ ri(S).
This means that the halfline starting in y and passing through x1 ∈
(y+ εE)∩ [y,x] ⊆ ri(S) is a subset of aff(ri(S)) and contains x. Hence
x belongs to aff(ri(S)) and so S\ri(S) ⊆ aff(ri(S)). �

An immediate consequence of Lemmas 24 and 25 is given by the
observation that for any regular set S ⊆ Rn it follows that x is a relative
interior point of S if and only if x belongs to aff(ri(S)) and there exists
some ε > 0 satisfying (x + εE)∩ aff(ri(S)) ⊆ ri(S). This implies for
every regular set S ⊆ Rn that ri(ri(S)) = ri(S), and since by definition
ri(∅) = ∅, we obtain for any set S ⊆ Rn that

ri(ri(S)) = ri(S). (24)

Keeping in mind the close relationship between affine hulls and con-
vex sets and the observation that nonempty affine sets are regular (in
fact ri(M) = M !) we might wonder whether convex sets are regular.
This is indeed the case as the following result shows (cf.[63]).

Lemma 26 Every nonempty convex set C ⊆ Rn is regular.

Although convexity is not a necessary condition for a set to be regular
it follows by the definition of a regular set that at least around any
relative interior point the set must be “locally” convex. A set, which
clearly violates this condition, is the set Q of rational numbers and this
set is therefore not regular. Besides convexity of the set C the proof of
Lemma 26 uses also that C is a subset of a finite dimensional linear space.
If the last condition does not hold and C is an infinite dimensional convex
subset of a locally convex topological vector space, then the above result
might not hold. We will now list some important properties of relative
interiors. To start with this, we first verify the following technical result.

Lemma 27 If S1, S2 ⊆ Rn are nonempty sets, then it follows for every
0 < α < 1 that

(αS1 + (1− α)S2) ∩ aff(S1) ⊆ αS1 + (1− α)(S2 ∩ aff(S1)).

Proof. Consider for 0 < α < 1 the vector y = αx1 + (1 − α)x2 with
xi ∈ Si, i = 1, 2 and y ∈ aff(S1). It is now necessary to verify that x2

belongs to S2∩aff(S1). By the definition of y and 0 < α < 1 we obtain
that

x2 =
1

1− α
y − α

1− α
x1 ∈

1
1− α

aff(S1)−
α

1− α
S1,
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and so it follows that x2 belongs to aff(S1). Hence the vector x2 belongs
to S2 ∩ aff(S1) and this shows the desired result. �

Applying now Lemma 27, the next important result for convex sets
can be shown. This result will play a prominent role in verifying the
topological properties of convex sets.

Lemma 28 If C ⊆ Rn is a nonempty convex set, then it follows for
every 0 ≤ α < 1 that

αcl(C) + (1− α)ri(C) ⊆ ri(C).

Proof. To prove the above result it is sufficient to show that αcl(C) +
(1− α)x2 ⊆ ri(C) for any x2 ∈ ri(C) and 0 < α < 1. Clearly this set is
a subset of aff(C) and since x2 belongs to ri(C) ⊆ C there exists some
ε > 0 satisfying

(x2 +
(1 + α)ε
1− α

E) ∩ aff(C) ⊆ C. (25)

Moreover, since cl(C) ⊆ ∩ε>0(C + εE) it follows that cl(C) ⊆ C + εE,
and this implies

αcl(C) + (1− α)x2 + εE ⊆ αC + (1− α)(x2 +
(1 + α)ε
1− α

E).

Applying now Lemma 27 and relation (25) we obtain by the convexity
of the set C that

(αcl(C) + (1− α)x2 + εE) ∩ aff(C) ⊆ αC + (1− α)C ⊆ C

and this shows the result. �

By Lemmas 26 and 28 it follows for any nonempty convex set C that
the set ri(C) is nonempty and convex. Also, since cl(C) = ∩ε>0(C +εE)
we obtain that cl(C) is a convex set. An easy and important consequence
of Lemma 28 is given by the observation that the relative interior opera-
tor cannot distinguish the convex sets C and cl(C). A similar observation
holds for the closure operator applied to the convex sets ri(C) and C.
The next result also plays an important role in the proof of the weak
separation result to be discussed in Subsection 2.3.

Lemma 29 If C ⊆ Rn is a nonempty convex set, then it follows that

cl(ri(C)) = cl(C) and ri(C) = ri(cl(C)).
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Proof. To prove the first formula we only need to check that cl(C) ⊆
cl(ri(C)). To verify this we consider x ∈ cl(C) and select some y be-
longing to ri(C). By Lemma 28 the half-open line segment [y,x) belongs
to ri(C) and this implies that the vector x belongs to cl(ri(C)). Hence
cl(C) ⊆ cl(ri(C)) and the first formula is verified. To prove the second
formula, it follows immediately by relation (21) that ri(C) ⊆ ri(cl(C)).
To verify ri(cl(C)) ⊆ ri(C) consider an arbitrary x belonging to
ri(cl(C)) and so one can find some ε > 0 satisfying

(x + εE) ∩ aff(cl(C)) ⊆ cl(C). (26)

Moreover, since ri(C) is nonempty, construct for some y ∈ ri(C) the
line T := {(1 − t)x + ty : t ∈ R} through the points x and y. Since
x ∈ ri(cl(C)) and y ∈ ri(C) it follows that T ⊆ aff(cl(C)) and so by
relation (26) there exists some µ < 0 satisfying y1 := (1 − µ)x + µy ∈
cl(C). This shows

x =
1

1− µ
y1 −

µ

1− µ
y, (27)

and since y1 ∈ cl(C) and y ∈ ri(C) this implies by Lemma 28 and
relation (27) that x ∈ ri(C). Hence it follows that ri(cl(C)) ⊆ ri(C),
and this proves the second formula. �

In the above lemma one might wonder whether the convexity of the
set C is necessary. In the following example we present a regular set
S with ri(S) and cl(S) convex and S not convex and this set does not
satisfy the result of Lemma 29.

Example 30 Let S = [0, 1] ∪ ((1, 2] ∩Q). This set is clearly not convex
and ri(S) = (0, 1) while cl(S) = [0, 2]. Moreover, ri(cl(S)) 6= ri(S) and
cl(ri(S)) 6= cl(S).

We will now give a primal representation of the relative interior of a
convex set S (cf.[63]).

Lemma 31 If S ⊆ Rn is a nonempty convex set, then it follows that

ri(S) = {x ∈ Rn : ∀y∈cl(S) ∃µ<0 such that (1− µ)x + µy ∈ S}.

The above result is equivalent to the geometrically obvious fact that
for S a convex set and any x ∈ ri(S) and y ∈ S the line segment [y,x]
can be extended beyond x without leaving S. Also, by relation (24) and
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Lemma 29 another primal representation of ri(S) with S a convex set is
given by

ri(S) = {x ∈ Rn : ∀y∈cl(S) ∃µ<0 such that (1− µ)x + µy ∈ ri(S)}.

Since affine mappings preserve convexity it is also of interest to know how
the relative interior operator behaves under an affine mapping. Using
Lemma 31 one can show the next result (cf.[63]).

Lemma 32 If A : Rn → Rm is an affine mapping and C ⊆ Rn is a
nonempty convex set, then it follows that A(ri(C)) = ri(A(C)). More-
over, if C ⊆ Rm is a nonempty convex set satisfying A−1(ri(C)) := {x ∈
Rn : A(x) ∈ ri(C)} is nonempty, then ri(A−1(C)) = A−1(ri(C)).

As shown by the following counterexample the condition A−1(ri(C))
is nonempty cannot be omitted in the previous lemma.

Example 33 Let A : R → R given by A(x) = 1 for all x ∈ R and
let C := [0, 1] ⊂ R. Then clearly ri(C) = (0, 1), A−1(ri(C)) = ∅ and
ri(A−1(C)) = R.

An immediate consequence of Lemma 32 is given by the observation
that

ri(αS1 + βS2) = αri(S1) + βri(S2), (28)

for any α, β ∈ R and Si ⊆ Rn, i = 1, 2 convex sets. To conclude our dis-
cussion on topological properties for sets we finally mention the following
result (cf.[63]).

Lemma 34 If the sets Ci, i ∈ I are convex and ∩i∈Iri(Ci) is nonempty,
then it follows that cl(∩i∈ICi) = ∩i∈Icl(Ci). Moreover, if the set I is
finite, we obtain ri (∩i∈ICi) = ∩i∈Iri(Ci).

As shown by the next counterexample it is necessary to assume in
Lemma 34 that the intersection ∩i∈Iri(Ci) is nonempty.

Example 35 Let C1 = {x ∈ R2 : x1 > 0, x2 > 0} ∪ {0} and C2 =
{x ∈ R2 : x2 = 0}. It is obvious that ri(C1) = {x : x1 > 0, x2 > 0}
and ri(C2) = C2, and so we obtain ri(C1) ∩ ri(C2) = ∅ and ri(C1 ∩
C2) 6= ri(C1) ∩ ri(C2). For the same example it is also easy to see that
cl(C1 ∩ C2) 6= cl(C1) ∩ cl(C2).

19



In the following counterexample we show that the second result listed
in Lemma 34 does not hold if the set I is not finite.

Example 36 Let I = (0,∞) and Cα = [0, 1+α], α > 0. For this example
it follows ri(∩α>0Cα) = ri([0, 1]) = (0, 1), and since ri(Cα) = (0, 1 + α)
for each α > 0, we obtain ∩α>0ri(Cα) = (0, 1].

This last example concludes our discussion of topological properties
of convex sets. In the next subsection we will discuss basic separation
results for those sets.

2.3 Separation of convex sets.

For a nonempty convex set C ⊆ Rn consider for any y ∈ Rn the so-called
minimum norm problem given by

v(y) := inf{‖ x− y ‖2: x ∈ C}. (P (y))

If additionally C is closed, a standard application of the Weierstrass
theorem (cf.[64]) shows that for every y the optimal objective value
v(y) in the above optimization problem is attained. To verify that the
minimum norm problem has a unique solution, observe for any z1, z2

belonging to Rn that

‖z1 + z2‖2 + ‖z1−z2‖2 = 2‖z1‖2 + 2‖z2‖2. (29)

For every x1 6= x2 belonging to C it follows by relation (29) with zi

replaced by xi − y for i = 1, 2 that

‖1
2
(x1 + x2)− y‖2 <

1
2
‖x1 − y‖2 +

1
2
‖x2 − y‖2,

and so for xi, i = 1, 2 different optimal solutions of the minimum norm
problem (P (y)) we obtain that ‖1

2(x1+x2)−y‖2 < v(y). Since the set C
is convex and hence 1

2(x1 + x2) belongs to C, this yields a contradiction
and the optimal solution is therefore unique. Denoting now this optimal
solution by pC(y) one can show the following result (cf.[34]).

Lemma 37 For any y ∈ Rn and C ⊆ Rn a nonempty closed convex set
it follows that

z = pC(y) ⇔ z ∈ C and (z− y)ᵀ(x− z) ≥ 0 for every x ∈ C.

Moreover, for every x ∈ C the triangle inequality

‖x− pC(y)‖2 + ‖pC(y)− y‖2 ≤ ‖x− y‖2

holds.
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Proof. To show the only if implication we observe that

0 ≤ (z− y)ᵀ(x− z) = −‖z− y‖2 + (z− y)>(x− y)

and this shows by the Cauchy-Schwarz inequality (cf.[46])

0 ≤ (z− y)ᵀ(x− z) ≤ −‖z− y‖2 + ‖z− y‖‖x− y‖ (30)

for every x ∈ C. If y ∈ C we obtain, substituting x = y in relation
(30), that 0 ≤ −‖z − y‖2 and by the nonnegativity of ‖.‖2 this yields
0 = ‖z − y‖2. Also, using y ∈ C, we obtain y = pC(y) and so z = y =
pC(y). Moreover, if y /∈ C, then ‖z−y‖ > 0 and this implies by relation
(30) that ‖z − y‖ ≤ ‖x − y‖ for every x ∈ C. Hence z is an optimal
solution and by the uniqueness of this solution we obtain z = pC(y). To
verify the if implication, it follows for z = pC(y) that z ∈ C and since
C is convex this shows

‖z− y‖2 ≤ ‖αx + (1− α)z− y‖2 = ‖z− y+α(x− z)‖2 (31)

for every x ∈ C and 0 < α < 1. Rewriting relation (31) we obtain for
every 0 < α < 1 that 2(z − y)>(x − z) + α‖x − z‖2 ≥ 0 and letting
α ↓ 0 the desired inequality follows. To show the triangle inequality, we
observe using ‖z1‖2 − ‖z2‖2 =< z1 − z2, z1 + z2 > for every z1, z2 that

‖x− pC(y)‖2 − ‖x− y‖2 =< y − pC(y), 2x− y − pC(y) > .

The last term equals −‖pC(y)− y)‖2 + 2 < y− pC(y),x− pC(y) > and
applying now the first part yields the desired inequality. �

Actually the above result is nothing else than the first order necessary
and sufficient condition for a minimum of a convex function on a closed
convex set. We will now prove one of the most fundamental results in
convex analysis. This result has an obvious geometric interpretation
and serves as a basic tool in deriving dual representations. In infinite
dimensional locally convex topological vector spaces the next result is
also known as the Hahn-Banach theorem (cf.[65]).

Theorem 38 If C ⊆ Rn is a nonempty convex set and y does not belong
to the set cl(C), then there exists some nonzero vector y0 ∈ Rn and ε > 0
with y>0 x ≥ y>0 y + ε for every x belonging to cl(C). In particular, the
vector y0 := pcl(C)(y)− y satisfies this inequality.
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Proof. By Lemma 37 we obtain for every x ∈ cl(C) and the nonzero
vector y0 := pcl(C)(y)− y that y>0 x ≥ y0

>pcl(C)(y). This shows

y>0 x ≥ ‖y0‖2 + y>0 y (32)

and since y0 6= 0 the desired result follows. �

The nonzero vector y0 belonging to cl(C) − y is called the normal
vector of the separating hyperplane

H=(a, a) := {x ∈ Rn : a>x = a},

a = y0 and a = y0
ᵀy+ ε

2 , and this hyperplane strongly separates the
closed convex set cl(C) and y. Since y0 6= 0 we may take as a normal
vector of the hyperplane the vector y0‖y0‖−1 and this vector has norm
1 and belongs to cone(cl(C)− y).

The strong separation result of Theorem 38 can be used to prove
the following “weaker” separation result valid under a weaker condition
on the point y. Instead of y does not belong to cl(C) we assume that
y does not belong to ri(C). By Theorem 38 it is clear that we may
assume without loss of generality that y belongs to the relative boundary
rbd(C) := cl(C)\ri(C) of the convex set C ⊆ Rn.

Theorem 39 If C ⊆ Rn is a nonempty convex set and y does not belong
to ri(C), then there exists some nonzero vector y0 belonging to the unique
linear subspace Laff(C) satisfying y>0 x ≥ y>0 y for every x ∈ C. Moreover,
for the vector y0 there exists some x0 ∈ C such that yᵀ

0x0 > y>0 y.

Proof. Consider for every n ∈ N the set (y + n−1E)∩ aff(cl(C)). By
Lemma 29 it follows that y does not belong to ri(cl(C)) and so there
exists some vector yn satisfying

yn /∈ cl(C) and yn ∈ (y + n−1E) ∩ aff(cl(C)). (33)

The set cl(C) is a closed convex set and by relation (33) and Theorem
38 one can find some vector y∗n ∈ Rn satisfying

‖ y∗n ‖= 1, y∗n ∈ cone(cl(C)− yn) ⊆ Laff(C) and y∗ᵀn x ≥ y∗ᵀn yn (34)

for every x ∈ cl(C). The sequence {y∗n : n ∈ N} belongs to a compact
set and so there exists a convergent subsequence {y∗n : n ∈ N0} with

limn∈N0↑∞ y∗n = y0. (35)
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This implies by relations (33), (34) and (35) that

yᵀ
0x = limn∈N0↑∞ y∗ᵀn x ≥ limn∈N0↑∞ y∗>n yn = yᵀ

0y (36)

for every x ∈ cl(C) and

y0 ∈ Laff(C) and ‖ y0‖ = 1. (37)

Suppose now that there does not exist some x0 ∈ C satisfying yᵀ
0x0 >

yᵀ
0y. By relation (36) this implies that yᵀ

0(x− y) = 0 for every x ∈ C and
since y belongs to cl(C) ⊆ aff(C) we obtain by relation (4) and Lemma 5
that yᵀ

0z = 0 for every z belonging to Laff(C). Since by relation (37) the
vector y0 belongs to Laff(C) this implies ‖ y0 ‖2= 0 and so we contradict
‖ y0 ‖= 1. Hence it must follow that there exists some x0 ∈ C satisfying
yᵀ

0x0 > y>0 y and this proves the desired result. �

The separation of Theorem 39 is called a proper separation between
the set C and the vector y. One can also introduce proper separation
between two convex sets.

Definition 40 The convex sets C1, C2 ⊆ Rn are called properly sepa-
rated if there exist some y0 ∈ Rn satisfying

infx∈C1 y>0 x ≥ supx∈C2
y>0 x and y>0 x1 > y>0 x2

for some x1 ∈ C1 and x2 ∈ C2.

An immediate consequence of Theorem 39 is given by the next result.

Theorem 41 If the convex sets C1,C2 ⊆ Rn satisfy ri(C1)∩ri(C2) = ∅,
then the two sets can be properly separated.

Proof. By relation (28) we obtain for α = 1 and β = −1 that ri(C1 −
C2) = ri(C1)− ri(C2), and this shows ri(C1)∩ ri(C2) = ∅ if and only if
0 /∈ ri(C1 − C2). Applying now Theorem 39 with y = 0 and the convex
set given by C1 − C2, the result follows. �

The above separation results are the corner stones of convex and
quasiconvex analysis. Observe in infinite dimensional locally convex
topological vector spaces one can show similar separation results under
stronger assumptions on the convex sets C1 and C2 (cf.[65],[17],[58]).
An easy consequence of the separation results is given by the observa-
tion that closed convex sets and relatively open convex sets are evenly
convex. These convex sets play an important role in duality theory for
quasiconvex functions.
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Lemma 42 If the nonempty convex set C ⊆ Rn is closed or relatively
open, then C is evenly convex.

Proof. If C = Rn, the result follows by definition and so we may suppose
that the closed set C is a proper subset of Rn. Hence there exists some
y /∈ C and this implies by Theorem 38 that there exists some a ∈ Rn

and b ∈ R satisfying C ⊆ H<(a, b). This shows that the set HC of all
open halfspaces H satisfying C ⊆ H is nonempty and by the definition
of HC it is clear that C ⊆ ∩{H : H ∈ HC}. Again by Theorem 38 one
can show using contradiction that C equals ∩{H : H ∈ HC} and this
shows that every closed convex set is evenly convex. To verify the second
result, we observe Hcl(C) ⊆ HC and since Hcl(C) is nonempty by the first
part, it follows that HC is nonempty and C ⊆ ∩{H : H ∈ HC}. To show
that C = ∩{H : H ∈ HC} we assume by contradiction that there exists
some y /∈ C with y ∈ H for every H ∈ HC . Due to y /∈ C it follows by
Theorem 39 that there exists some nonzero y0 ∈ Laff(C) satisfying

y>0 x ≥ y>0 y (38)

for every x ∈ C. Since the convex set C is relatively open there exists
for every x ∈ C some ε > 0 satisfying x − εy0 ∈ C and so by relation
(38) we obtain for every x ∈ C that y>0 x = y>0 (x−εy0)+ε‖y0‖2 > y>0 y.
Hence the open halfspace H<(a, b) := {x ∈ Rn : a>x <b} with a := −y0

and b := −y>0 y belongs to HC and since y /∈ H<(a, b) this contradicts
y ∈ H for every H belonging to HC . �

This concludes our discussion of separation results of convex sets. In
the next subsection we will use these separation results to derive dual
representations for convex sets.

2.4 Dual representations of convex sets.

In contrast to the primal representation of a linear subspace, affine set,
convex cone and convex set discussed in Subsection 2.1 we can also give
a so-called dual representation of these sets. From a geometrical point
of view a primal representation is a representation from “within” the
set, while a dual representation turns out to be a representation from
“outside” the set. Such a characterization can be seen as an improvement
of the hull operation given by relations (2), (3), (16) and (17). We start
with linear subspaces or affine sets (cf.[47]).
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Definition 43 If S ⊆ Rn is some nonempty set, then the nonempty set
S⊥ ⊆ Rn given by S⊥ := {x∗ ∈ Rn : xᵀx∗ = 0 for every x ∈ S} is called
the orthogonal complement of the set S.

It is easy to verify that the orthogonal complement S⊥ of the set S
is a linear subspace. Moreover, a basic result (cf.[47]) in linear algebra
is given by the following.

Lemma 44 For any linear subspace L it follows that (L⊥)⊥ = L.

By Lemma 44 a so-called dual representation of any linear hull lin(S)
with S nonempty can be constructed. Using S ⊆ lin(S) it follows by
Lemma 44 that (S⊥)⊥ ⊆ (lin(S)⊥)⊥ = lin(S). Since lin(S) is the small-
est linear subspace containing S and (S⊥)⊥ is clearly a linear subspace
containing S the previous inclusion implies

(S⊥)⊥ = lin(S). (39)

The alternative representation of lin(S) in relation (39) is called a dual
representation. To construct a dual representation for an affine hull we
observe by Lemma 5 and the dual representation of a linear hull that
aff(S) = x0 +((S−x0)⊥)⊥ for x0 belonging to aff(S). Since it is easy
to verify that (S − x0)⊥ = (S − x1)⊥ for every x1 ∈ aff(S) we obtain
for affine hulls the dual representation

aff(S) = x0 + ((S − x1)⊥)⊥ (40)

for every x0,x1 ∈ aff(S).
Next we discuss the dual representation of a closed convex set con-

taining 0 and a closed convex cone. This dual representation will be
verified by means of the strong separation result listed in Theorem 38.
Recall first the definition of a support function.

Definition 45 If S ⊆ Rn is some nonempty set, then the function σS :
Rn → (−∞,∞] given by σS(s) := sup{sᵀx : x ∈ S} is called the support
function of the set S.

An equivalent formulation of Theorem 38 involving the support func-
tion of the closed convex set C is given by the following result.

Theorem 46 If C ⊆ Rn is a proper nonempty convex set, then it follows
that x0 ∈ cl(C) if and only if s>x0 ≤ σcl(C)(s) for every s ∈ Rn.
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Proof. Clearly x0 ∈ cl(C) implies that sᵀx0 ≤ σcl(C)(s) for every s
belonging to Rn. To show the reverse implication let sᵀx0 ≤ σcl(C)(s)
for every s ∈ Rn and suppose by contradiction that x0 /∈ cl(C). By
Theorem 38 there exists some nonzero vector y0 ∈ Rn and ε > 0 satis-
fying −y>0 x ≤ −y>0 x0 − ε for every x belonging to cl(C). This implies
σcl(C)(−y0) ≤ −y>0 x0−ε < −y>0 x0, contradicting our initial assumption
and so it must follow that x0 belongs to cl(C). �

To generalize the dual representation of linear subspaces in Lemma
44 to the larger class of closed convex sets containing 0 we need to
generalize the orthogonality relation given in Definition 43.

Definition 47 If S ⊆ Rn is a nonempty set, then the set S0, given by
S0 := {x∗ ∈ Rn : xᵀx∗ ≤ 1 for every x ∈ S}, is called the polar of the
set S. Moreover, the bipolar S00 of the set S is defined by S00 := (S0)0.

The polar S0 of a nonempty set S ⊆ Rn is a nonempty closed convex
set and satisfies S0 = (cl(S))0. If the nonempty set K ⊆ Rn is a convex
cone, then it is easy to show that K0 = {x∗ ∈ Rn : xᵀx∗ ≤ 0 for every
x ∈ K} and K0 is a closed convex cone, while for L a linear subspace
it follows that L0 = L⊥. Hence the polar operator applied to a linear
subspace reduces to the orthogonal operator and can therefore be seen as
a generalization of this operator. To prove a generalization of Lemma 44
it is convenient to introduce the so-called Minkowski functional (cf.[65]).
Recall in the next definition that inf{∅} := ∞.

Definition 48 The Minkowski functional or gauge of the nonempty set
S ⊆ Rn is given by the function γS : Rn → [0,∞] defined by

γS(s) := inf{t > 0 : s ∈ tS}.

As shown by the next result the support function of any set S con-
taining the zero vector 0 equals the gauge of the closed convex polar
S0.

Lemma 49 If S ⊆ Rn is a nonempty set containing 0, then it follows
that σcl(S)(s) = γS0(s) for every s ∈ Rn.

Proof. Since 0 belongs to cl(S), it follows that the support function
σcl(S) of the set cl(S) is nonnegative. Consider now the following two
cases. If σcl(S)(s0) = 0, we obtain t−1s>0 x ≤ 0 for every t > 0 and x ∈ S.
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This shows t−1s0 ∈ S0 for every t > 0 and so γS0(s0) = 0 = σcl(S)(s0).
Moreover, if σcl(S)(s0) > 0, we obtain using σcl(S) = σS that

0 < σS(s0) = inf{t > 0 : s>0 x ≤ t,x ∈ S} = inf{t > 0 :
s0

t
∈ S0}

and this shows the desired result. �

Finally we can prove the so-called bipolar theorem for closed convex
sets containing 0, generalizing Lemma 44. This representation can be
seen as a so-called dual representation of a closed convex set containing
0.

Theorem 50 If C ⊆ Rn is a nonempty convex set with 0 ∈ cl(C), then
it follows that C00 = cl(C).

Proof. It is obvious that cl(C) ⊆ C00 and so we only need to verify the
reverse inclusion. Since for any s ∈ Rn satisfying γC0(s) < ∞ it follows
that

(γC0(s) + ε)−1s ∈ C0

for every ε > 0, we obtain for every x0 ∈ C00 that s>x0 ≤ γC0(s) + ε.
This implies s>x0 ≤ γC0(s) and since this inequality trivially holds for
γC0(s) = ∞ we obtain by Lemma 49 that s>x0 ≤ σcl(C)(s) for every s.
Applying now Theorem 46 shows x0 ∈ cl(C) and we have checked that
C00 ⊆ cl(C). �

By a similar approach as used after Lemma 44 it is easy to construct
a dual representation of the convex set co(S ∪ {0}) with S a nonempty
set. First we observe by the definition of the polar operator and using
Theorem 50 that S00 ⊆ (co(S ∪ {0})00 = cl(co(S ∪ {0})). Since S00 is a
closed convex set containing S ∪ {0} and cl(co(S ∪ {0})) is the smallest
closed convex set containing S∪{0} we obtain by the previous inclusion
the general formula

S00 = cl(co(S ∪ {0}}). (41)

The formula, listed in relation (41), is called the bipolar theorem for arbi-
trary sets S ⊆ Rn. Replacing Theorem 46 by its equivalent version valid
in locally convex topological vector spaces one can verify using a simi-
lar proof the bipolar theorem (cf.[10], [37]) in locally convex topological
vector spaces.

An important special case of Theorem 50 is given by K00 = cl(K)
with K a convex cone. By means of similar proof techniques (cf.[67]) it
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is also possible to give a dual representation of the relative interior ri(K)
of a convex cone K. Without proof we now list the following result. For
related results, valid in infinite dimensional topological vector spaces,
the reader should consult [38].

Theorem 51 For any nonempty convex cone K ⊆ Rn it follows that

x ∈ ri(K) ⇔ x ∈ (K⊥)⊥ and x∗>x < 0 for x∗ ∈ K0 ∩ (K⊥)⊥\{0}.

This concludes our section on sets. In the next section we will con-
sider functions studied within convex and quasiconvex analysis.

3 Functions studied within convex and quasi-
convex analysis.

In this section we first introduce in Subsection 3.1 the different classes
of functions studied within convex and quasiconvex analysis and derive
their algebraic properties. These algebraic properties are an easy con-
sequence of two important relations between functions and sets and the
properties of sets derived in Subsection 2.1. Also from Subsection 2.1
we know how to apply hull operations to sets and using this it is also
possible to construct so-called hull functions. These different hull func-
tions are also introduced in Subsection 3.1 and their properties will be
derived. In Subsection 3.2 topological properties of functions are intro-
duced together with some of the ”topological” hull functions. It will
turn out that especially the class of lower semicontinuous functions is
extremely important in this field. Finally in Subsections 3.3 and 3.4 dual
characterizations of the considered functions will be derived. The key
results in these sections are the Fenchel-Moreau theorem within convex
analysis and its generalization to the so-called evenly quasiconvex and
lower semicontinuous quasiconvex functions.

3.1 Algebraic Properties of Functions.

In this subsection we relate functions to sets and use the algebraic prop-
erties of sets given in Subsection 2.1 to derive algebraic properties of
functions. To start with this approach, let f : Rn → [−∞,∞] be an
extended real valued function and associate with f its so-called epigraph

epi(f) := {(x, r) ∈ Rn+1 : f(x) ≤ r}. (42)
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A related set is the strict epigraph

ẽpi(f) := {(x, r) ∈ Rn+1 : f(x) < r}. (43)

Within convex analysis it is now useful to represent a function f by the
obvious relation (cf.[63])

f(x) = inf{r : (x, r) ∈ epi(f)}. (44)

By definition inf{∅} = ∞ and this only happens if the vector x does
not belong to the so-called effective domain

dom(f) := {x ∈ Rn : f(x) < ∞} (45)

of the function f. By this observation it follows that dom(f) is nonempty
if and only if epi(f) is nonempty and if this holds we obtain

dom(f) = A(epi(f)) (46)

with A the projection of Rn+1 onto Rn given by A(x, r) = x. As shown
by the following definition, the representation of the function f given by
relation (44) is useful in the study of convex functions.

Definition 52 The function f : Rn → [−∞,∞] is called convex if the
set epi(f) is convex. Moreover, the function f : Rn → [−∞,∞] is called
positively homogeneous if the set epi(f) is a cone.

An equivalent definition of a convex function is given by the next
result, which is easy to verify.

Lemma 53 A function f : Rn → [−∞,∞] is convex if and only if the
set ẽpi(f) is convex.

Using Lemma 53 we obtain that a function f : Rn → [−∞,∞] is
convex if and only if for every 0 < α < 1

f(αx1 + (1− α)x2) < αr1 + (1− α)r2 (47)

whenever f(xi) < ri ∈ R. In case we know additionally that f > −∞ we
obtain by relation (44) that f is convex if and only if for every 0 < α < 1

f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2) (48)

and so we recover the more familiar definition of a convex function. An
important special case satisfying relation (48) is given by f > −∞ and
dom(f) is nonempty. If this holds the function f is called proper. Also
the next result is easy to verify.
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Lemma 54 The function f : Rn → [−∞,∞] is positively homogeneous
if and only if f(αx) = αf(x) for every x ∈ Rn and α > 0.

To investigate under which operations on convex functions this prop-
erty is preserved we observe for any collection of functions fi, i ∈ I that

epi(sup i∈Ifi) = ∩i∈Iepi(fi). (49)

Since the intersection of convex sets is again convex we obtain by rela-
tion (49) that the function supi∈Ifi is convex if fi is convex for every
i ∈ I. Moreover, by relation (48), it follows that any strict canonical
combination of the convex functions fi > −∞, i = 1, 2 is again convex.

In case we use the representation of a function f, given by relation
(44), and the various hull operations on a set defined in Subsection 2.1
it is easy to introduce the various so-called hull functions of f. The first
hull function is given by the next definition (cf.[63]). In this volume the
various hull functions, given in this subsection and the next, are also
discussed by Crouzeix (cf.[11]).

Definition 55 For any function f : Rn → [−∞,∞] the function fc :
Rn → [−∞,∞], given by fc(x) := inf{r : (x, r) ∈ co(epi(f))}, is called
the convex hull function of the function f.

The next result yields an interpretation of the convex hull function
of a function f. Recall that the convex hull of the empty set is again the
empty set.

Lemma 56 For any function f : Rn → [−∞,∞] the convex hull func-
tion fc is the greatest convex function majorized by f . Moreover, it
follows that ẽpi(fc)) ⊆ co(epi(f)) ⊆ epi(fc) and dom(fc) = co(dom(f)).

Proof. Without loss of generality we may assume that epi(f) or equiv-
alently dom(f) is nonempty. Since co(epi(f)) is a convex set we obtain
by Definition 55 for every ri > fc(xi), i = 1, 2 that fc(αx1 +(1−α)x2) <
αr1 + (1 − α)r2 for every 0 < α < 1. This shows by relation (47) that
the function fc is convex. Moreover, if h ≤ f and h is convex, then
co(epi(f)) ⊆ co(epi(h)) = epi(h) and so fc is the greatest convex func-
tion majorized by f. Using again Definition 55 it is also easy to ver-
ify that ẽpi(fc) ⊆ co(epi(f)) ⊆ epi(fc). To show the last part of this
lemma, let x ∈ dom(fc) and so (x, r) ∈ co(epi(f)) for every r > fc(x).
This implies by relation (46) that x ∈ A(co(epi(f)) = co(A(epi(f)) =
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co(dom(f)) with A the projection of Rn+1 onto Rn and we have verified
dom(fc) ⊆ co(dom(f)). Also, for x ∈ co(dom(f)), we obtain by relation
(46) that x ∈ A(co(epi(f))) and so x belongs to dom(fc) showing the
reverse inclusion. �

In general it follows that epi(fc) 6= co(epi(f)). A direct consequence
of Lemma 56 and the fact that supi∈I fi is convex for fi, i ∈ I a collection
of convex functions, is the often used representation of the function fc

given by

fc(x) = sup{h(x) : h ≤ f and h is a convex function}. (50)

Next to the epigraph of a function f : Rn → [−∞,∞] one also
considers the so-called lower-level set L(f, r), r ∈ R of the function f
given by

L(f, r) := {x ∈ Rn : f(x) ≤ r}. (51)

A related set is the strict lower-level set of the function f of level r
represented by

L̃(f, r) := {x ∈ Rn : f(x) < r}. (52)

Within quasiconvex analysis it is now useful to represent a function f
by the obvious relation (cf.[15])

f(x) = inf{r : x ∈ L(f, r)}. (53)

As shown by the following definition, the representation of the function
f, given by relation (53), is useful in the study of quasiconvex functions.

Definition 57 The function f : Rn → [−∞,∞] is called quasiconvex
if for every r ∈ R the lower-level set L(f, r) is convex. Moreover, the
function f is called evenly quasiconvex if for every r ∈ R the lower level
set L(f, r) is evenly convex.

To derive the relation between convex and quasiconvex functions we
observe that epi(f) ∩ (Rn × {r}) = L(f, r) × {r} for every r ∈ R. This
implies that a convex function is also a quasiconvex function. Since each
monotonic (increasing or decreasing) function f : R → R is quasiconvex,
but not necessarily convex, the converse is not true. For quasiconvex
functions a similar result as in Lemma 53 can be easily verified.

Lemma 58 A function f : Rn → [−∞,∞] is quasiconvex if and only if
the set L̃(f, r) is convex for every r ∈ R.
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To recover a more familiar representation of a quasiconvex function
it can be shown easily (cf.[2]) that a function f : Rn → [−∞,∞] is
quasiconvex if and only if f(αx1 + (1 − α)x2) ≤ max{f(x1), f(x2)} for
every 0 < α < 1.

As for convex functions, one is interested under which operations
on quasiconvex functions this property is preserved. Clearly for any
collection of functions fi, i ∈ I it follows that

L(sup i∈Ifi, r) = ∩i∈IL(fi, r) (54)

and this shows that the function supi∈I fi is quasiconvex if fi is quasi-
convex for every i ∈ I. Opposed to convex functions, it is not true that
a strict canonical combination of quasiconvex functions is quasiconvex
and this is shown by the following example.

Example 59 Let fi : R → R, i = 1, 2 be given by f1(x) = x and

f2(x) = x2 for |x| ≤ 1 and f2(x) = 1 otherwise.

These functions are quasiconvex, but it is easy to verify by means of a
picture that the sum of the two functions is not quasiconvex.

Using relation (53), one can apply the different hull operations to the
lower level set. The first hull function constructed in this way is listed
in the next definition (cf.[15], [11]).

Definition 60 For any function f : Rn → [−∞,∞] the function fq :
Rn → [−∞,∞], given by fq(x) := inf{r : x ∈ co(L(f, r))}, is called the
quasiconvex hull function of the function f.

The next result (cf.[15]) yields an interpretation of the quasiconvex
hull function of a function f.

Lemma 61 For any function f : Rn → [−∞,∞] the quasiconvex hull
function fq is the greatest quasiconvex function majorized by f. More-
over, it follows that L(fq, r) = ∩β>rco(L(f, β)) for every r ∈ R.

Proof. Again we may assume without loss of generality that dom(f) is
nonempty. By Definition 60 it follows that L(fq, r) ⊆ ∩β>rco(L(f, β)).
Since it is obvious that the reverse inclusion holds, we obtain L(fq, r) =
∩β>rco(L(f, β)). By this relation it is clear that the function fq is qua-
siconvex and applying a similar argument as in Lemma 56 to lower level
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sets it can be shown that this function is the greatest quasiconvex func-
tion majorized by f. �

A direct consequence of Lemma 61 and the fact that supi∈I fi is
quasiconvex for fi, i ∈ I a collection of quasiconvex functions, is the
often used representation of fq given by

fq(x) = sup{h(x) : h ≤ f and h quasiconvex function}. (55)

To conclude this subsection, we consider a hull function based on
evenly convex sets (cf.[55], [11]). It will turn out that this function plays
an important role in duality theory for quasiconvex functions.

Definition 62 For any function f : Rn → [−∞,∞] the function fec :
Rn → [−∞,∞], given by fec(x) := inf{r : x ∈ ec(L(f, r))}, is called the
evenly quasiconvex hull function of the function f.

As done for the quasiconvex hull function one can show by a similar
proof the following result (cf.[55]).

Lemma 63 For any function f : Rn → [−∞,∞] the evenly quasiconvex
hull function fec is the greatest evenly quasiconvex function majorized by
f . Moreover, it follows that L(fec, r) = ∩β>rec(L(f, β)) for every r ∈ R.

A direct consequence of Lemma 63 and the fact that supi∈I fi is
evenly quasiconvex for fi, i ∈ I a collection of evenly quasiconvex func-
tions, is the often used representation of fec given by

fec(x) = sup{h(x) : h ≤ f , h evenly quasiconvex function}. (56)

Since an evenly quasiconvex function is clearly a quasiconvex function it
holds that fec ≤ fq. This concludes our discussion of algebraic properties
of convex and quasiconvex functions. In the next subsection we will
consider topological properties of functions.

3.2 Topological properties of functions.

In this subsection we first introduce the class of lower semicontinuous
functions. These functions play an important role within the theory of
convex functions.
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Definition 64 If f : Rn → [−∞,∞] is some function, then this func-
tion is called lower semicontinuous at x ∈ Rn if lim infy→x f(y) = f(x)
with

lim infy→x f(y) := supε>0 inf{f(y) : y ∈ x + εE}. (57)

Moreover, the function f : Rn → [−∞,∞] is called upper semicontinuous
at x ∈ Rn if the function −f is lower semicontinuous at x and it is
called continuous at x if it is both lower and upper semicontinuous at x.
The function f : Rn → [−∞,∞] is called lower semicontinuous (upper
semicontinuous) if f is lower semicontinuous (upper semicontinuous) at
every x ∈ Rn and it is called continuous if it is both upper and lower
semicontinuous.

We mostly abbreviate lower semicontinuous by l.s.c.. To relate the
above definition of liminf to the liminf of a sequence we observe for every
sequence yk, k ∈ N that lim infk↑∞ f(yk) := limn↑∞ infk≥n f(yk). Using
this definition one can easily show the following result.

Lemma 65 The function f : Rn → [−∞,∞] is l.s.c. at x ∈ Rn if and
only if lim infk↑∞ f(yk) ≥ f(x) for every sequence yk, k ∈ N satisfying
limk↑∞ yk = x ∈ Rn.

Using Lemma 65 the following important characterization of l.s.c.
functions can be proved (cf.[63], [1]).

Theorem 66 If f : Rn → [−∞,∞] is an extended real valued function,
then the following conditions are equivalent:

1. The function f is l.s.c..

2. The set epi(f) is closed.

3. The set L(f, r) is closed for every r ∈ R.

It is useful to know under which operations on l.s.c. functions this
property is preserved. Since epi(supi∈I fi) = ∩i∈Iepi(fi) and the inter-
section of closed sets is again a closed set we obtain by Theorem 66 that
the function supi∈Ifi is l.s.c. if each function fi, i ∈ I is l.s.c.. Also it
follows for every finite set I that epi(mini∈I fi) = ∪i∈Iepi(fi) and this
shows by Theorem 66 and the fact that a finite union of closed sets
is closed, that the function mini∈Ifi is l.s.c. if each fi, i ∈ I is l.s.c..
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Finally, for arbitrary functions fi : Rn → (−∞,∞], i = 1, 2 we obtain
that

L(f1 + f2, r)c = ∪q∈Q(L(f1, r − q)c ∪ L(f2, q)c)

with Ac denoting the complement of the set A ⊆ Rn and this implies
using Theorem 66 that the function αf1 +βf2 is l.s.c. for every α, β ≥ 0,
if the functions fi > −∞, i = 1, 2 are l.s.c..

To verify the next theorem we introduce for any function f : Rn →
[−∞,∞] the (possibly empty) set of continuous real valued minorants
Cf of f given by

Cf := {h : h ≤ f and h is a real valued continuous function}.

In the next result it is now shown that any l.s.c. function can be seen
as a pointwise limit of an increasing sequence of real valued continuous
functions.

Theorem 67 For any function f : Rn → (−∞,∞] the following condi-
tions are equivalent:

1. The function f is l.s.c..

2. There exists an increasing sequence of continuous functions (hm)m∈N
satisfying f(x) = limm↑∞ hm(x) for every x ∈ Rn.

3. f(x) = sup{h(x) : h ∈ Cf} with Cf nonempty.

Proof. We only give a proof of 1 ⇒ 2 since the other implications are
obvious. We first show the desired result for a nonnegative uniformly
bounded function f. Actually, if the function f is nonnegative and uni-
formly bounded, then the sequence fm : Rn → [0,∞),m ∈ N given by
fm(x) := inf{f(z) + m‖x− z‖ : z ∈ Rn} is increasing, converges point-
wise to f(x) and each fm is continuous (actually Lipschitz continuous
with Lipschitz constant m!). To reduce the general case of a proper l.s.c.
function f to this special case, replace the proper l.s.c. function f by
the nonnegative uniformly bounded l.s.c. function g = k ◦ f , where
k(x) = 1

2π + arctan(x) and apply the first part. Hence there exists an
increasing sequence gm of continuous functions converging pointwise to
g. Use now that the function k : (−∞,∞] → (0, π] is one-to-one, strictly
increasing and continuous with a continuous inverse k←and select the
sequence hm := k← ◦ gm. �

By Theorem 67 we obtain that the set of l.s.c. functions is the
smallest set of functions, which are closed under taking the sup operation
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to any collection of functions belonging to this set and which contain the
set of continuous real valued functions.

As in the previous subsection, we are going to introduce hull oper-
ations related to functions. In this case topological properties will be
involved. First we consider the so-called l.s.c. hull function of a function
f (cf.[63], [11]).

Definition 68 For any function f : Rn → [−∞,∞] the function f :
Rn → [−∞,∞], given by f(x) := inf{r : (x, r) ∈ cl(epi(f))}, is called
the l.s.c. hull function of the function f.

In the next result an interpretation of the l.s.c. hull function of a
function f is given.

Lemma 69 For any function f : Rn → [−∞,∞] the l.s.c. hull function
f is the greatest l.s.c. function majorized by f. Moreover, its epigraph
equals cl(epi(f)) and dom(f) ⊆ dom(f) ⊆ cl(dom(f)). If additionally
dom(f) is a convex set, it follows that ri(dom(f)) = ri(dom(f)).

Proof. By Definition 68 we obtain (x, r) ∈ epi(f) ⇔ ∀ε>0 (x, r +
ε) ∈ cl(epi(f)) ⇔ (x, r) ∈ cl(epi(f)). This means that epi(f) equals
cl(epi(f)) and by Theorem 66 the function f is l.s.c.. Moreover, if
h ≤ f and h is l.s.c., then by Theorem 66 we obtain cl(epi(f)) ⊆
cl(epi(h)) = epi(h) and so it follows that h ≤ f. To verify the last part
we may assume without loss of generality that dom(f) is nonempty.
Since f ≤ f it follows that dom(f) ⊆ dom(f) and by relation (46)
we obtain dom(f) = A(cl(epi(f)) ⊆ cl(A(epi(f)) = cl(dom(f)). Fi-
nally, if dom(f) is a nonempty convex set it follows by Lemma 29 that
ri(dom(f)) = ri(cl(dom(f))) and since dom(f) ⊆ dom(f) ⊆ cl(dom(f))
we obtain ri(dom(f)) = ri(dom(f)). �

A direct consequence of Lemma 69 and the fact that supi∈I fi is
l.s.c. for fi, i ∈ I a collection of l.s.c. functions, is the often used
representation of f given by

f(x) = sup{h(x) : h ≤ f and h is a l.s.c. function }. (58)

For nondecreasing functions f : R → [−∞,∞] it is possible to give a
more detailed description of the l.s.c. hull function f of f. To show this
result we first introduce the next definition.
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Definition 70 For any function f : R → [ − ∞,∞] the function f♦ :
R → [−∞,∞] is given by

f♦(t) := sups<t f(s).

The next result is needed in the proof of a dual representation of a
l.s.c. quasiconvex function.

Lemma 71 For any nondecreasing function f : R → [−∞,∞] it follows
that f(t) = f♦(t) for every t ∈ R.

Proof. Since the function f is nondecreasing, it is easy to verify that f♦

is nondecreasing and f♦ ≤ f. We now verify that the function f♦ is l.s.c.
and so by Theorem 66 we need to check that the lower-level set L(f♦, r)
is closed for every r ∈ R. Assume now by contradiction that there exists
some r0 ∈ R such that the set L(f♦, r0) is not closed. Hence there exists
a sequence {tn : n ∈ N} ⊆ L(f♦, r0) with t∞ := limn↑∞ tn and t∞ does
not belong to L(f♦, r0). Since f♦ is nondecreasing and f♦(t∞) > r0 it
follows that tn < t∞ for every n ∈ N and by Definition 70 one can find
some s0 < t∞ satisfying f(s0) > r0. This implies that there exists some
tn satisfying s0 < tn < t∞ and so f♦(tn) ≥ f(s0) > r0 contradicting
tn belongs to L(f♦, r0). Therefore f♦ is l.s.c. and using f♦ ≤ f it
follows by relation (58) that f♦ ≤ f. Suppose now by contradiction
that f♦(t0) < f(t0) for some t0. By relation (57) and f is l.s.c. this
implies that there exists some ε > 0 satisfying f(t) > f♦(t0) for every
t0 − ε ≤ t ≤ t0 + ε and so

f(t0 − ε) ≥ f(t0 − ε) > f♦(t0) ≥ f(t0 − ε).

This yields a contradiction and the result is proved. �

The next result relates f to f and this result is nothing else than a
“function value translation” of the original definition of the l.s.c. hull
function f of f.

Lemma 72 For any function f : Rn → [−∞,∞] and x ∈ Rn it follows
that f(x) = lim infy→x f(y).

Proof. Since f ≤ f and f is a l.s.c. function we obtain that f(x) =
lim infy→x f(y) ≤ lim infy→x f(y). Suppose now by contradiction that
f(x) < lim infy→x f(y). If this holds, then clearly f(x) < ∞ and by
the definition of liminf there exists some finite γ and ε > 0 satisfying
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f(x+y) > γ > f(x) for every y ∈ εE. This implies that the open set (x+
εE)× (−∞, γ) containing the point (x, f(x)) has an empty intersection
with epi(f). However, by Lemma 69 it follows that (x, f(x)) belongs
to cl(epi(f)) and so every open set containing (x, f(x)) must have a
nonempty intersection with epi(f). Hence we obtain a contradiction and
so the result is proved. �

By Lemma 72 and Definition 64 it follows immediately that

f is l.s.c. at x ⇔ f(x) = f(x). (59)

Using Theorem 66 and Lemmas 69 and 72 one can show that the l.s.c.
hull operation applied to functions preserves the convexity and quasi-
convexity property.

Lemma 73 If the function f : Rn → [−∞,∞) is convex (quasiconvex),
then also the l.s.c. hull function f of f is convex (quasiconvex).

Proof. If the function f is convex, then epi(f) is a convex set and hence
also cl(epi(f)) is a convex set. Since by Lemma 69 the epigraph of f
is given by cl(epi(f)) this shows that f is a convex function. To verify
that f is quasiconvex for f quasiconvex we need to verify by Lemma 58
that the set L̃(f, r) is convex for every r ∈ R. If the vectors xi, i = 1, 2
belong to L̃(f, r) it follows by Lemma 72 that

inf{f(y) : y ∈ xi + εE} ≤ f(xi) < r

for every ε > 0 and i = 1, 2. This implies for every ε > 0 and i = 1, 2
that there exists some vector yi,ε ∈ xi + εE satisfying

f(yi,ε) ≤ r0 :=
1
2
(max{f(x1), f(x2)}+ r) < r

Applying now the quasiconvexity of the function f we obtain for every
0 < α < 1 that

f(αy1,ε + (1− α)y2,ε) ≤ max{f(y1,ε), f(y2,ε)} ≤ r0

and since the vector αy1,ε + (1 − α)y2,ε belongs to the set αx1 + (1 −
α)x2 + εE this yields

inf{f(y) : y ∈ αxi + (1− α)x2 + εE} ≤ r0 < r
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for every ε > 0. Using again Lemma 72 we obtain

f(αx1 + (1− α)x2) = lim infy→αx1+(1−α)x2
f(y) ≤ r0 < r

and it follows that αx1 + (1− α)x2 belongs to L̃(f, r). �

To improve Lemma 72 for convex functions f we need to give a rep-
resentation of the relative interior of the epigraph of a convex function.
This representation is an immediate consequence of the following obser-
vation. If f : Rn → [−∞,∞] is a convex function and f(x) is finite for
some x, then clearly {x} × (f(x),∞) = ri({x} × [f(x),∞)) and so

{x} × (f(x),∞) = ri(({x} × R) ∩ epi(f)). (60)

A similar observation also holds for f(x) = −∞ and this shows that
relation (60) is valid for every x ∈ dom(f). Also by relation (46) and
Lemma 32 we obtain

ri(dom(f)) = ri(A(epi(f))) = A(ri(epi(f))) (61)

with A : Rn+1 → Rn the projection on Rn and so it follows by relation
(61) that

x ∈ ri(dom(f)) ⇔ ({x} × R) ∩ ri(epi(f)) 6= ∅. (62)

Since the set {x} × R is affine and therefore relatively open we obtain
by relation (62) that the conditions of Lemma 34 hold and hence by
relation (60) we obtain

{x} × (f(x),∞) = ({x} × R) ∩ ri(epi(f)) (63)

for every x ∈ ri(dom(f)). Using this equality the next representation is
easy to verify.

Lemma 74 If the function f : Rn → [−∞,∞] is convex and dom(f) is
nonempty, then the set ri(epi(f)) is nonempty and

ri(epi(f)) = {(x, r) ∈ Rn+1 : f(x) < r,x ∈ ri(dom(f))}.

Proof. If x belongs to ri(dom(f)) and f(x) < r it follows by relation
(63) that (x, r) ∈ ri(epi(f)). To show the reverse inclusion we proceed
as follows. If (x, r) belongs to ri(epi(f)) then by relation (61) we obtain
x ∈ ri(dom(f)). Applying now relation (63) yields f(x) < r. �

In case f is a convex function with dom(f) nonempty, the result of
Lemma 72 can be improved as follows.
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Lemma 75 If the function f : Rn → [−∞,∞] is convex and dom(f) is
nonempty, then f(x) = limt↓0 f(x + t(y− x)) for every y ∈ ri(dom(f)).
Moreover, if x ∈ ri(dom(f)), then it follows that f(x) = f(x).

Proof. By Lemma 72 it is obvious that f(x) ≤ lim inft↓0 f(x+ t(y−x)).
If f(x) = ∞ then the result holds by the previous inequality and so we
assume f(x) < ∞. This implies that (x, r) ∈ epi(f) = cl(epi(f)) for
every r > f(x) and since y ∈ ri(dom(f)) it follows by Lemma 74 that
(y, r1) ∈ ri(epi(f)) for every r1 > f(y). Applying now Lemma 28 we
obtain for every 0 < t < 1 that ((1− t)x+ ty, (1− t)r+ tr1) ∈ epi(f) and
this shows f(x + t(y− x)) = f(ty + (1− t)x) ≤ tr1 + (1− t)r. Hence it
follows that lim supt↓0 f(x + t(y− x)) ≤ r and since r > f(x) we obtain
lim supt↓0 f(x+ t(y−x)) ≤ f(x). This proves the first part and to verify
the second part we first observe that the convex set dom(f) is nonempty
and so by Lemma 26 the set ri(dom(f)) is nonempty. By Lemma 69
and 74 and f is convex it now follows that

{(x, r) ∈ Rn+1 : f(x) < r,x ∈ ri(dom(f))} = ri(cl(epi(f)).

This implies using Lemma 29 and f is convex that

{(x, r) ∈ Rn+1 : f(x) < r,x ∈ ri(dom(f))} ⊆ epi(f), (64)

and by contradiction we obtain f(x) ≥ f(x) for every x ∈ ri(dom(f)).
Since always f(x) ≤ f(x) the proof is completed. �

We now introduce the most important hull function used within the
field of convex analysis (cf.[63], [11]).

Definition 76 For any function f : Rn → [−∞,∞] the function fc :
Rn → [−∞,∞], given by fc(x) := inf{r : (x, r) ∈ cl(co(epi(f)))}, is
called the l.s.c. convex hull function of the function f.

Using now a similar approach as in Lemma 69 one can prove the
following result.

Lemma 77 For any function f : Rn → [−∞,∞] the l.s.c. convex hull
function fc is the greatest l.s.c. convex function majorized by f. More-
over, it follows that epi(fc) = cl(co(epi(f))), dom(fc) ⊆ dom(fc)) ⊆
cl(dom(fc)) and ri(dom(fc)) = ri(dom(fc)).
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A direct consequence of Lemma 77 and the fact that supi∈I fi is
a l.s.c. convex function for fi, i ∈ I a collection of l.s.c. convex functions,
is the often used representation of fc given by

fc(x) = sup{h(x) : h ≤ f and h is a l.s.c. convex function}. (65)

To relate the various hull functions based on relation (44) we observe
by Lemmas 56 and 73 that the function fc is convex and l.s.c. Since
fc ≤ f ≤ f this shows by Lemma 77 that fc ≤ fc. Also by Lemmas 56
and 77 it holds that the l.s.c. function fc is bounded from above by fc.
This implies by Lemma 69 that fc ≤ fc and combining both inequalities
yields

fc(x) = fc(x) (66)

for every x ∈ Rn. An immediate consequence of relation (66) is now
given by the chain of inequalities

fc(x) ≤ fc(x) ≤ f(x) and fc(x) ≤ f(x) ≤ f(x). (67)

for every x ∈ Rn. We finally consider hull functions based on the lower
level set (cf.[15],[11]).

Definition 78 For any function f : Rn → [−∞,∞] the function fq :
Rn → [−∞,∞], given by fq(x) := inf{r : x ∈ cl(co(L(f, r)))}, is called
the l.s.c. quasiconvex hull function of the function f.

Using a similar approach as in Lemma 61 one can show the following
result.

Lemma 79 For any function f : Rn → [−∞,∞] the l.s.c. quasiconvex
hull function fq is the greatest l.s.c. quasiconvex function majorized by f.
Moreover, it follows that L(fq, r) = ∩β>rcl(co(L(f, β))) for every r ∈ R.

A direct consequence of Lemma 79 and the fact that supi∈I fi is
a l.s.c. quasiconvex function for fi, i ∈ I a collection of l.s.c. quasiconvex
functions, is the often used representation of fq given by

fq(x) = sup{h(x) : h ≤ f and h is a l.s.c. quasiconvex function}. (68)

To relate the various hull functions based on relation (53) we first observe
by Lemma 42 that every closed convex set is evenly convex and so it
follows that

fq(x) ≤ fec(x) ≤ fq(x) ≤ f(x). (69)
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for every x ∈ Rn. Moreover, using fq ≤ f ≤ f, relation (68) and Lemma
73 we obtain fq ≤ fq and since by relation (69) and Lemma 79 also
fq = fq ≤ fec ≤ fq, this finally yields

fq(x) = fec(x) = fq(x) (70)

for every x ∈ Rn. The above representations of the hull functions do
not depend on the fact that the domain is finite dimensional and so
we can also introduce the same hull functions in linear topological vec-
tor spaces (cf.[56]). In the next two subsections we consider the dual
representations of some of the hull functions.

3.3 Dual representations of convex functions.

In this subsection we will consider in detail properties of convex func-
tions, which can be derived using the strong and weak separation results
for nonempty convex sets. In particular, we will discuss a dual repre-
sentation of a l.s.c. convex function f satisfying f > −∞. As always in
mathematics one likes to approximate complicated functions by simpler
functions. For convex functions these simpler functions are given by the
so-called affine minorants.

Definition 80 For any function f : R → [−∞,∞] the affine function
a : Rn → R, given by a(x) = aᵀx+α, with a ∈ Rn and α ∈ R is called an
affine minorant of the function f if f(x) ≥ a(x) for every x belonging to
Rn. Moreover, the possibly empty set of affine minorants of the function
f is denoted by Af .

Since any affine minorant a of a function f is continuous and convex
it is easy to verify the following result.

Lemma 81 For any function f : Rn → [−∞,∞] it follows that Af =
Afc = Afc

= Afc
.

Proof. We only give a proof of the above result for Af nonempty. Since
by relations (67) and (66) we know that fc = fc ≤ fc ≤ f it follows
immediately that Afc

= Afc
⊆ Afc ⊆ Af . Moreover, if the function

a belongs to Af , then clearly a ≤ f and a is continuous and convex.
This implies by relation (65) that a ≤ fc and hence the affine function
a belongs to Afc

. �

Since an affine function is always finite valued the set Af is empty
if there exists some x ∈ Rn satisfying f(x) = −∞ and so it is necessary
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to consider functions f : Rn → (−∞,∞]. In Theorem 83 necessary and
sufficient conditions are given for Af to be nonempty. To prove this
result we first need to verify the next important lemma.

Lemma 82 If f : R → [−∞,∞] is an arbitrary function and fc(x0) is
finite for some x0, then the set Af is nonempty.

Proof. It follows that the vector (x0, fc(x0)−1) does not belong to the set
epi(fc). By Lemma 77 the nonempty set epi(fc) is convex and closed and
applying Theorem 38, there exists some nonzero vector (y0, β) satisfying

y>0 x + βr > y>0 x0 + β(fc(x0)− 1)

for every (x,r) ∈ epi(fc). Since (x0, fc(x0)) belongs to epi(fc) this implies
β > 0 and so for every (x,r) ∈ epi(fc) the inequality

r > −β−1y>0 (x− x0) + fc(x0)− 1 (71)

holds. By relation (71) it follows by contradiction that fc(x) > −∞
for every x ∈ dom(fc) and this yields using dom(f) ⊆ dom(fc) that
(x, fc(x)) ∈ epi(fc) for every x ∈ dom(f). Substituting this into relation
(71) we obtain

f(x) ≥ fc(x) > −β−1y>0 (x− x0) + fc(x0)− 1

for every x ∈ dom(f). Since the previous inequality trivially holds for
x /∈ dom(f) the function a(x) : = −β−1y>0 (x − x0) + fc(x0) − 1 is an
affine minorant of f and the desired result is proved. �

Using Lemma 82 one can show the following theorem.

Theorem 83 For any function f : Rn → [−∞,∞] the following condi-
tions are equivalent:

1. The set Af is nonempty.

2. fc > −∞.

3. fc > −∞.

Proof. If the set Af is nonempty then for any a ∈ Af we obtain by
relation (65) that fc(x) ≥ a(x) for every x ∈ Rn, and this shows the
implication 1 ⇒ 3. Due to fc ≤ fc the implication 3 ⇒ 2 is obvious.
To show the implication 2 ⇒ 1 consider some f satisfying fc > −∞.
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In case dom(fc) is empty it follows that f ≡ ∞ and so trivially Af is
nonempty. Therefore assume that dom(fc) is nonempty. By Lemma 56
this is a nonempty convex set and so by Lemma 26 one can find some
x0 ∈ ri(dom(fc)). Since fc > −∞ is a convex function it follows by
Lemma 75 that −∞ < fc(x0) = fc(x0) = fc(x0) < ∞ and so we have
found some x0 satisfying fc(x0) is finite. Applying now Lemma 82 yields
Af is nonempty and the result is proved. �

As shown by the following example it is not true that Af is nonempty
for f > −∞.

Example 84 For the concave function f : R → R given by f(x) = −x2

it is easy to verify that co(epi(f)) = R2 and f > −∞. Hence we obtain
that Afc is empty and this yields by Lemma 81 that Af is empty.

To prove an important representation for a subclass of convex func-
tions we introduce the following definition.

Definition 85 The function f : Rn → [−∞,∞] belongs to the set Γ(Rn)
if f is convex and l.s.c. and f > −∞.

It is now possible to prove the following representation for the set
Γ(Rn). This result is known as Minkowski’s theorem.

Theorem 86 For any function f : Rn → [−∞,∞] it follows that

f ∈ Γ(Rn) ⇔ f(x) = sup{a(x) : a ∈ Af} and the set Af is nonempty.

Proof. If the function f : Rn → [−∞,∞] has the representation f(x) =
sup{a(x) : a ∈ Af} and the set Af is nonempty, then clearly the function
f is l.s.c., convex and f > −∞ and so f belongs to Γ(Rn). To prove
the reverse implication, we observe for f ∈ Γ(Rn) that fc = f > −∞
and this shows by Theorem 83 that the set Af is nonempty and hence
f(x) ≥ sup{a(x) : a ∈ Af} > −∞. Suppose now by contradiction that
f(x0) > sup{a(x0) : a ∈ Af} for some x0 ∈ Rn. Hence one can find
some γ ∈ R satisfying

f(x0) > γ > sup{a(x0) : a ∈ Af}, (72)

and so (x0, γ) /∈ epi(f). If epi(f) is empty, then the affine function
a(x) = γ is an affine minorant of f and this contradicts relation (72).
Therefore we assume that epi(f) is nonempty and since this set is closed
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and convex there exists by Theorem 38 a nonzero vector (y0, β) and
ε > 0 satisfying

y>0 x + βr ≥ y>0 x0 + βγ + ε (73)

for every (x, r) ∈ epi(f). Since for (x, r) ∈ epi(f) and h > 0 the vector
(x, r+h) belongs to epi(f) it follows by relation (73) that β ≥ 0. Consider
now the two cases f(x0) < ∞ and f(x0) = ∞. If f(x0) < ∞ we obtain
by relation (73) replacing (x, r) by (x0, f(x0)) that β(f(x0) − γ) ≥ ε
and this implies using relation (72) that β > 0. Hence by relation (73)
it holds that

f(x) ≥ a(x) := −β−1y>0 (x− x0) + γ

for every x belonging to dom(f) and we have found some a ∈ Af sat-
isfying a(x0) = γ contradicting relation (72). If f(x0) = ∞ and β > 0
in relation (73), then by the same proof we obtain a contradiction and
so we consider the last case f(x0) = ∞ and β = 0. Introduce now the
affine function a0 : Rn → R, given by

a0(x) = −y>0 (x− x0) + ε.

By relation (73) a0(x) ≤ 0 for every x ∈ dom(f) and a0(x0) > 0. Since
Af is nonempty, select some a ∈ Af and by relation (72) it follows
that λ0 := a0(x0)−1(γ − a(x0) > 0. Introducing now the affine function
aλ0 : Rn → R given by

aλ0(x) := a(x) + λ0a0(x)

we obtain aλ0(x0) = γ and since a0(x) ≤ 0 for every x ∈ dom(f) and
a ∈ Af we also obtain aλ0 ∈ Af . Hence aλ0 is an affine minorant of
f satisfying aλ0(x0) = γ and this contradicts relation (72) showing the
desired result. �

An immediate consequence of Minkowski’s theorem and Lemma 81
is listed in the next result.

Theorem 87 If f : Rn → [−∞,∞] is a function satisfying fc > −∞,
then it follows that fc(x) = fc(x) = sup{a(x) : a ∈ Af} and the set Af

is nonempty.

Proof. By relation (66) and Theorem 86 we obtain that fc(x) = fc(x) =
sup{a(x) : a ∈ Afc

} with the set Afc
is nonempty. Applying now Lemma

81 the desired result follows. �

In Theorem 87 we only guarantee that any function fc > −∞ can be
approximated from below by affine functions. However, it is sometimes
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useful to derive an approximation formula in terms of the original func-
tion f . This formula was first constructed in its general form by Fenchel
(cf.[21]) and it has an easy geometrical interpretation (cf.[28]).

Definition 88 For any function f : Rn → [−∞,∞] the function f∗ :
Rn → [−∞,∞] given by f∗(a) := sup{a>x−f(x) : x ∈ Rn} is called the
conjugate function of the function f. The function f∗∗ : Rn → [−∞,∞]
given by f∗∗(x) := sup{a>x − f∗(a) : a ∈ Rn} is called the biconjugate
function of f.

By the above definition it is immediately clear that the conjugate
function f∗ is convex and l.s.c.. Moreover, if the function f : Rn →
[−∞,∞] is proper and the setAf of affine minorants is nonempty, then it
is easy to verify that the function f∗ is also proper. As shown by the next
result the biconjugate function has a clear geometrical interpretation.

Lemma 89 If f : Rn → [−∞,∞] is an arbitrary function satisfying Af

is nonempty, then it follows that (a, r) ∈ epi(f∗) if and only if a ∈ Af

with a(x) = a>x− r. Additionally, it holds that f∗∗(x) = sup{a(x) : a ∈
Af} for every x ∈ Rn.

Proof. To verify the equivalence relation we observe for a(x) = a>x−r ≤
f(x) for every x ∈ Rn that r ≥ f∗(a) = sup{a>x −f(x) : x ∈ Rn} or
(a, r) ∈ epi(f∗). Moreover, if (a, r) ∈ epi(f∗) we obtain r ≥ f∗(a) and
this implies for every x ∈ Rn that a(x) = a>x − r ≤ f(x). To prove
the relation for the biconjugate function it follows by the definition of
epi(f∗) that f∗∗(x) = sup{a>x− r : (a, r) ∈ epi(f∗)}. Since by the first
part (a, r) ∈ epi(f∗) if and only if a(x) = a>x− r is an affine minorant
of f, this shows that f∗∗(x) = sup{a(x) : a ∈ Af} for every x ∈ Rn and
hence the equality for the biconjugate function is verified. �

To prove one of the most important theorems in convex analysis we
introduce the definition of the closure of the function f .

Definition 90 If f : Rn → [−∞,∞] is an arbitrary function, then the
closure cl(f) : Rn → [−∞,∞] of the function f is given by

cl(f) :=
{

f if f > −∞
−∞ otherwise

.

Clearly the function cl(f) is l.s.c. and satisfies cl(f) ≤ f. Also it is
easy to verify by Lemma 89, Theorem 83 and using Af = Af that

cl(f)∗ = f∗ (74)
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for any convex function f. The next result is known as the Fenchel-
Moreau theorem and is one of the most important results in convex
analysis.

Theorem 91 For any function f : Rn → [−∞,∞] it follows that f∗∗(x) =
cl(fc)(x) for every x ∈ Rn.

Proof. If fc(x0) = −∞ for some x0 ∈ Rn then f∗ ≡ ∞. To show this,
suppose by contradiction that f∗(a0) < ∞ for some a0. This implies the
existence of some r ∈ R satisfying r ≥ a>0 x − f(x) for every x ∈ Rn

and so the function a(x) = a>0 x− r is an affine minorant of f . Hence by
relation (65) we obtain that fc(x0) > −∞ and this contradicts our initial
assumption. Since f∗ ≡ ∞ we obtain f∗∗ ≡ −∞ and by Definition 90
we obtain f∗∗ = cl(fc). In case fc > −∞ the result follows by Theorem
87 and Lemma 89. �

An important consequence of the Fenchel-Moreau theorem is given
by the following result. Recall a function is sublinear, if it is positively
homogeneous and convex.

Lemma 92 Any l.s.c. sublinear function f : Rn → (−∞,∞] has the
representation

f(x) = sup{a>x : a ∈ C}

with C = {a ∈ Rn : f∗(a) ≤ 0} a nonempty closed convex set.

Proof. By the Fenchel Moreau theorem it follows that

f(x) = f∗∗(x) = supa∈Rn{a>x− f∗(a)}.

Since f is positively homogeneous we obtain by Lemma 54 that

αf∗(a) = supx∈Rn{a>(αx)− f(αx)} = f∗(a)

for every α > 0 and a ∈ Rn and this shows that f∗(a) ∈ {∞,−∞, 0}.
If f∗(a) = ∞ for every a ∈ Rn, then f∗∗(x) = −∞ for every x and this
shows by the Fenchel Moreau theorem that f(x) = −∞ for every x,
contradicting f > −∞. Therefore f∗ is not identically ∞ and this yields
that the set C is not empty. Again by the Fenchel Moreau theorem we
obtain

f(x) = f∗∗(x) = supa∈Rn{a>x− f∗(a)} = supa∈C a>x.
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and since the function f∗ is l.s.c. and convex the nonempty set C is
closed and convex. �

Finally we introduce the so-called subgradient set of a function at a
point.

Definition 93 For any function f : Rn → [−∞,∞] and x0 ∈ Rn the
subset of Rn consisting of those vectors a0 satisfying f(x) ≥ f(x0) +
aᵀ

0(x− x0) for every x ∈ Rn is called the subgradient set of the function
f at the point x0. This set is denoted by ∂f(x0) and its elements are
called subgradients.

If f(x0) = −∞, then clearly ∂f(x0) = Rn and so it is sufficient to
consider those x0 ∈ Rn satisfying f(x0) > −∞. Moreover, if f(x0) >
−∞ and dom(f) is empty, then again ∂f(x0) = Rn and hence we only
need to consider f(x0) > −∞ and dom(f) is not empty. If x0 /∈
dom(f) or f(x0) = ∞, then this implies, using dom(f) is nonempty,
that ∂f(x0) = ∅ and so the only interesting case which remains is given
by f(x0) finite. It is now relatively easy to prove for f(x0) finite that
∂f(x0) 6= ∅ is equivalent to another condition related to the conjugate
function.

Lemma 94 If f : Rn → [−∞,∞] is an arbitrary function satisfying
f(x0) is finite for some x0, then it follows that a0 ∈ ∂f(x0) if and only
if f(x0) + f∗(a0) = a>0 x0.

Proof. If a0 ∈ ∂f(x0) then by definition f(x) ≥ f(x0) + a>0 (x − x0)
for every x and this implies using f(x0) is finite that a>0 x0 − f(x0) ≥
a>0 x − f(x) for every x. Hence we obtain that a>0 x0 − f(x0) = f∗(a0)
and this shows the equality. To verify the reverse implication is trivial
and so we omit its proof. �

Up to now we did not show any existence result for the subgradient
set of f at x0 in case f(x0) is finite. Such a result will be given by the
next theorem.

Theorem 95 If the function f : Rn → [−∞,∞] is convex and f(x0) is
finite for some x0 ∈ ri(dom(f)), then the set ∂f(x0) is nonempty.

Proof. If x0 ∈ ri(dom(f)) and f(x0) is finite we obtain by Lemma 74
that (x0, f(x0)) /∈ ri(epi(f)). This implies by the convexity of the set
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epi(f) and Theorem 39 that there exists some nonzero vector (y0, β) ∈
Laff(epi(f)) satisfying

yᵀ
0x + βr ≥ yᵀ

0x0 + βf(x0) (75)

for (x, r) ∈ epi(f). Moreover, using (x0, f(x0) + h) belongs to epi(f)
for every h ≥ 0, we obtain β ≥ 0 and to show that β > 0 assume by
contradiction that β = 0. Hence it follows by relation (75) that

yᵀ
0x ≥ yᵀ

0x0 (76)

for every (x, r) ∈ epi(f). Since aff(epi(f)) = aff(dom(f))× R and so

Laff(epi(f)) = Laff(dom(f)) × R

we know that y0 belongs to Laff(dom(f)). This implies, using x0 be-
longs to ri(dom(f)), that there exists some ε > 0 satisfying x0 − εy0 ∈
dom(f) and applying now relation (76) with x replaced by x0 − εy0

yields −ε‖y0‖2 ≥ 0. Hence it follows that (y0, β) = 0 and we obtain
a contradiction. Therefore it must hold that β > 0 and dividing now
the inequality in relation (75) by β > 0 and using that f(x) is finite for
every x ∈ dom(f) yields

f(x) ≥ f(x0)− β−1yᵀ
0(x− x0)

for every x ∈ dom(f). This shows that the vector a0 = −β−1y0 is a
subgradient of the function f at the point x0 and so ∂f(x0) is a nonempty
set. �

In case x0 does not belong to ri(dom(f)) for some convex function
f it might happen that f does not have a subgradient at the point x0.
This is shown by the following example.

Example 96 Consider the convex function f : R → (−∞,∞] given by
f(x) = −

√
x for x ≥ 0 and f(x) = ∞ otherwise. Clearly 0 belongs to

the relative boundary of dom(f) but ∂f(0) is empty.

In case the function f > −∞ is a sublinear function one can show
the following improvement of Theorem 95 replacing the condition 0 ∈
ri(dom(f)) by the condition 0 ∈ dom(f).

Theorem 97 If the function f : Rn → (−∞,∞] is sublinear and 0 ∈
dom(f), then the set ∂f(0) is nonempty and ∂f(0) = {a ∈ Rn : f∗(a) ≤
0}.
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Proof. Since f is convex it follows that fc = f > −∞ and this implies by
Theorem 83 that Af is nonempty and so f is a proper function. Since
by Definition 52 and Lemma 69 the function f is also sublinear one may
apply Lemma 92 and this shows f(x) = sup{a>x : a ∈ C} with C =
{a ∈ Rn : f

∗(a) ≤ 0} a nonempty closed convex set. By relation (74)
and f = cl(f) it follows that f

∗ = f∗ and so C = {a ∈ Rn : f∗(a) ≤ 0}.
We will now verify that ∂f(0) = C. By the definition of f∗ we obtain
for a ∈ C that f(x) ≥ a>x for every x ∈ Rn. Since f(0) is finite and f
positively homogeneous it follows that f(0) = 0 and so it follows that
a ∈ ∂f(0). This shows C ⊆ ∂f(0) and to verify the reverse inclusion we
observe for every a ∈ ∂f(0) that f(x) ≥ a>x for every x. This implies
f∗(a) ≤ 0 and so a belongs to C. Hence C = ∂f(0) is nonempty and the
proof is completed. �

In Theorem 97 we actually show for f : Rn → (−∞,∞] sublinear
and 0 ∈ dom(f) that

f(x) = sup{a>x : a ∈ ∂f(0)} and ∂f(0) 6= ∅. (77)

A nice implication of Theorem 95 is the observation that convex func-
tions have remarkable continuity properties. Before showing this result
we need the following technical lemmas.

Lemma 98 If the vectors zi ∈ Rn, 1 ≤ i ≤ k ≤ n form an orthonor-
mal system and the set P is the convex hull generated by the set S =
{z1, ..., zk,−z1, ...,−zk}, then it follows that

k−
1
2 E ∩ lin({z1, ..., zk}) ⊆ P.

Proof. Since the vectors zi, 1 ≤ i ≤ k form an orthonormal system we
obtain for any vector α> = (α1, ..., αk) ∈ Rk that

‖
∑k

i=1
αizi‖2 = ‖α‖2. (78)

Applying now the Cauchy-Schwartz inequality to the inner product of
the vectors |α|> := (|α1|, ..., |αk|) and e> = (1, ..., 1) it follows that∑k

i=1
|αi| =< |α|, e >≤ ‖α‖k

1
2

and this implies by relation (78) that

‖
∑k

i=1
αizi‖ ≥ k−

1
2

∑k

i=1
|αi|. (79)
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Consider now an arbitrary vector y belonging to k−
1
2 E∩lin({z1, ..., zk}).

Since the vectors zi, 1 ≤ i ≤ k are independent, there exists a unique
vector α> = (α1, ..., αk) ∈ Rk such that

y =
∑

i∈I
αizi +

∑
i/∈I
−αi(−zi)

with I := {1 ≤ i ≤ k : αi > 0}. Applying now the inequality in relation
(79) it follows that

k−
1
2 ≥ ‖y‖ ≥ k−

1
2

(∑
i∈I

αi +
∑

i/∈I
−αi

)
and this shows that the vector y belongs to P. �

Another result which is needed in the proof of Theorem 100 is given
by the following lemma.

Lemma 99 If the function f : Rn → (−∞,∞] is convex and for some
x0 and δ > 0 there exists some finite constants m,M satisfying m ≤
f(x) ≤ M for every x belonging to (x0 + 2δE) ∩ dom(f), then one can
find some L > 0 satisfying

|f(x1)− f(x2)| ≤ L‖x1 − x2‖

for every x1,x2 belonging to (x0 + δE) ∩ ri(dom(f)).

Proof. Let x1 and x2 be two different vectors belonging to (x0 + δE) ∩
ri(dom(f)). This yields that the vector x1 − x2 belongs to Laff(dom(f))

and since x1 is a relative interior point of the convex set dom(f) one can
find some 0 < ε < δ satisfying

x3 := x1 + ε‖x1 − x2‖−1(x1 − x2) ∈ dom(f). (80)

Hence the vector x3 belongs to (x0 +2δE)∩dom(f) and by relation (80)
we obtain

x1 =
‖x1 − x2‖

‖x1 − x2‖+ ε
x3 +

ε

‖x1 − x2‖+ ε
x2.

Using now relation (48) and the fact that the function f is bounded from
above and below on (x0 +2δE)∩dom(f) it follows for L := ε−1(M −m)
that

f(x1)− f(x2) ≤
‖x1 − x2‖

‖x1 − x2‖+ ε
(f(x3)− f(x2)) ≤ L‖x1 − x2‖.
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Reversing the roles of x1 and x2 yields a similar bound for f(x2)−f(x1)
and the desired inequality is verified. �

The above property of the function f is called Lipschitz continuity
on the set (x0 + δE) ∩ ri(dom(f)). Using Lemmas 99, 98 and Theorem
95 one can now show the next result, which is an improvement of Lemma
75.

Theorem 100 If f : Rn → (−∞,∞] is a convex function, then it fol-
lows that f is continuous on ri(dom(f)) and Lipschitz continuous on
every compact subset of ri(dom(f)).

Proof. If x0 ∈ ri(dom(f)) one can find some ε > 0 satisfying

(x0 + 2εE) ∩ aff(dom(f)) ⊆ dom(f). (81)

To give a more detailed characterization of aff(dom(f)) we observe by
Lemma 7, that there exists a set of k ≤ n linearly independent vectors
z1, ..., zk satisfying Laff(dom(f)) = lin{z1, ..., zk} and so

aff(dom(f)) = x0 + lin({z1, ..., zk}). (82)

Without loss of generality (Use the well-known Gram-Schmidt orthogo-
nalization process (cf.[47])) we may assume that the set {z1, ..., zk} is an
orthonormal system. By relations (82) and (81) and dom(f) a convex
set it follows that the set x0 + P with P the convex hull generated by
the set S = {εz1, ..., εzk,−εz1, ...,−εzk} belongs to dom(f). Also by the
convexity of the function f and relation (48) we obtain that

f(x) ≤ max{f(x0 + εzi), f(x0 − εzi), 1 ≤ i ≤ k} < ∞

for every x ∈ x0 + P. Since by Lemma 98 there exists some γ > 0
satisfying

(x0 + γE) ∩ aff(dom(f)) ⊆ P.

this shows that the function f is bounded from above on (x0 + γE) ∩
dom(f). Using Theorem 95 we also obtain that the function f is bounded
from below on (x0 + γE) ∩ dom(f) and applying now Lemma 99 with
2δ replaced by γ yields the desired result. �

This concludes our discussion on dual representations and conjuga-
tion for convex functions. In the next subsection we consider the same
topic for quasiconvex functions.
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3.4 Dual representations of quasiconvex functions.

In this section we study dual representations of evenly quasiconvex and
l.s.c. quasiconvex functions. Most of the results of this section can be
found in [56]. Unfortunately in [56] no geometrical interpretation of
the results are given and for such an interpretation the reader should
consult [28]. In [56] it is shown, that one can use the same approach
as in convex analysis and this results in proving that certain subsets
of quasiconvex functions can be approximated from below by so-called
c-affine functions with c : R → [−∞,∞] belonging to a given class C
of extended real valued univariate functions. Recall that a function is
called univariate if its domain is given by R. As in convex analysis the
used approximations and the generalized biconjugate functions have a
clear geometrical interpretation (cf.[28]). To start with this approach we
introduce in the next definition the class of c-affine functions. More
general classes of so-called coupling functions a are discussed in this
volume by Mart́ınez-Legaz (cf.[49]).

Definition 101 For a given univariate function c : R → [−∞,∞] the
function a : Rn → [−∞,∞] is called a c-affine function, if there exist
some a ∈ Rn and r ∈ R such that a(x) = c(a>x)+r for every x ∈ Rn. If
C denotes a subset of the set of extended real valued univariate functions
the function a is called a C-affine function, if for some c ∈ C the function
a is a c-affine function. The function a is called a C-affine minorant of
the function f : Rn → [−∞,∞] if a(x) ≤ f(x) for every x ∈ Rn and
a is a C-affine function. The set CAf denotes now the (possibly empty)
set of C-affine minorants of f.

To specify the set C we first consider the set C0 of extended real valued
nondecreasing univariate functions c : R → [−∞,∞] and the proper
subset C1 ⊆ C0 of extended real valued nondecreasing l.s.c. univariate
functions. Since for any c ∈ Ci, i = 0, 1 and r ∈ R also the function
c∗ : R → [−∞,∞], given by c∗(t) = c(t) + r, belongs to Ci, i = 0, 1, we
observe for these classes of extended real valued univariate functions that
the class of Ci-affine functions, i = 0, 1 reduces to the set of functions
a : Rn → [−∞,∞], given by a(x) = c(a>x) for some a ∈ Rn and c ∈ Ci.
Clearly C1Af ⊆ C0Af and since the function a : Rn → [−∞,∞] with
a(x) = −∞ for every x ∈ Rn belongs to the set C1, we obtain that C1Af

is nonempty for every f : Rn → [−∞,∞]. This is a major difference
with the set of affine minorants of a function f, since this set might be
empty. Observe in Theorem 83 we showed that this set is nonempty if
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and only if fc > −∞. One can now show the following result for C-affine
functions with C either equal to C1 or C0.

Lemma 102 If a : Rn → [−∞,∞] is C0-affine, then the function a is
evenly quasiconvex. Moreover, if a is C1-affine, then the function a is
l.s.c. and quasiconvex.

Proof. If a is a C0-affine function, then there exists some c ∈ C0 and
a ∈ Rn such that L(a, r) = {x ∈ Rn : a>x ∈ L(c, r)} for every r ∈ R
with L(c, r) the lower level set of the function c. Since c is nondecreasing,
this lower level set is either empty or an interval given by (−∞, βr) or
(−∞, βr] with βr := sup{t ∈ R : c(t) ≤ r}. Hence the set L(a, r) is either
empty or an open or closed halfspace and this shows that L(a, r) is evenly
convex. Similarly for c ∈ C1 we obtain, using Theorem 66, that L(c, r)
is empty or (−∞, βr] and hence L(a, r) is empty or a closed halfspace.
This shows that the function a is quasiconvex and by Theorem 66 it is
also l.s.c.. �

By Lemma 61, 63, 79 and 102 and fq = fq ≤ fec ≤ fq ≤ f (see
relations (69) and 70).) one can show, applying a similar proof as in
Lemma 81, that the following result holds.

Lemma 103 For any function f : Rn → [−∞,∞] it follows that C0Af =
C0Afec and C1Af = C1Afq = C1Afq

= C1Afq
.

Contrary to functions studied in convex analysis, we do not have to
determine for which extended real valued functions the sets CiAf , i = 1, 2
are nonempty and so we can start generalizing Minkowsky’s theorem (see
Theorem 86) to evenly quasiconvex and l.s.c. quasiconvex functions. In
the proof of this generalization and in the remainder of this subsection
an important role is played by the following functions.

Definition 104 For any function f : Rn → [−∞,∞] and a ∈ Rn, let
ca : R → [−∞,∞] denote the function ca(t) := inf{f(y) : a>y ≥ t}.

It is now possible to show the following result.

Theorem 105 If f : Rn → [−∞,∞] is an evenly quasiconvex function,
then f(x) = sup{a(x) : a ∈ C0Af} for every x ∈ Rn. Moreover, if f is
an l.s.c. quasiconvex function, then f(x) = sup{a(x) : a ∈ C1Af} for
every x ∈ Rn.
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Proof. Since the set C0Af is nonempty, we obtain by the definition of
C0Af that f(x) ≥ sup{a(x) : a ∈ C0Af} for every x ∈ Rn. Suppose now
by contradiction that f(x0) > sup{a(x0) : a ∈ C0Af} for some x0 and
so there exists some γ ∈ R satisfying

f(x0) > γ > sup{a(x0) : a ∈ C0Af}. (83)

If the set L(f, γ) is empty, it follows that f(x) > γ for every x ∈ Rn

and choosing c(t) = γ for every t ∈ R and a(x) = c(a>x) with a ∈ Rn

arbitrary, we obtain that a ∈ C1Af ⊆ C0Af contradicting relation (83).
Therefore the set L(f, γ) is nonempty and since the function f is evenly
quasiconvex one can find a collection of vectors (ai, bi)i∈I satisfying

L(f, γ) = ∩i∈IH
<(ai, bi). (84)

By relation (83) the vector x0 does not belong to L(f, γ) and this shows
by relation (84) that there exists some i ∈ I with a nonzero ai satisfying
a>i x0 ≥ bi. This implies again by relation (84) that

{y ∈ Rn : a>i y ≥ a>i x0} ⊆ {y ∈ Rn : f(y) > γ}. (85)

Since the vector ai is nonzero, the function cai , given in Definition 104,
is nondecreasing and so the function a(x) := cai(a

>
i x) is C0-affine and by

relation (85) it satisfies a(x0) ≥ γ. Also for every x ∈ Rn we obtain that
a(x) ≤ f(x) and so we have constructed a C0-affine minorant a of the
function f satisfying a(x0) ≥ γ. This contradicts relation (83) and hence
we have shown that f(x) = sup{a(x) : a ∈ C0Af} for every x ∈ Rn. To
verify the representation for f quasiconvex and l.s.c. we again assume
by contradiction that there exists some γ ∈ R satisfying

f(x0) > γ > sup{a(x0) : a ∈ C1Af} (86)

for some x0. If the convex set L(f, γ) is empty then as in the first part
we obtain a contradiction. Therefore the closed convex set L(f, γ) is
nonempty and since by relation (86) it holds that x0 does not belong
to L(f, γ), there exist by Theorem 38 some nonzero vector a0 ∈ Rn and
β ∈ R satisfying a>0 x < β < a>0 x0 for every x ∈ L(f, γ). This implies for
every y satisfying a>0 y ≥ β that f(y) > γ and so ca0(β) ≥ γ. Introducing
now the function a(x) := c♦

a0
(a>0 x) with c♦

a0
(t) listed in Definition 70 this

implies

a(x0) = c♦
a0

(a>0 x0) = sups<a>0 x0
ca0(s) ≥ ca0(β) ≥ γ.
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By Lemma 71 the function c♦
a0

is l.s.c. and c♦
a0

(a>0 x) ≤ ca0(a
>
0 x) ≤

f(x) for every x. Hence we have constructed a C1-affine minorant a of
the function f satisfying a(x0) ≥ γ and this contradicts relation (86).
Therefore f(x) = sup{a(x) : a ∈ C1Af} for every x ∈ Rn and the proof
is completed. �

By Theorem 105 it is clear that the set of C1-affine (C0-affine functions)
play the same role for l.s.c. quasiconvex functions (evenly quasiconvex
functions) as the affine functions do for l.s.c. convex functions. However,
besides this observation, it is also interesting to investigate the question
whether these sets of C-affine minorants are the smallest possible class
satisfying the above property. In this section we will also pay atten-
tion to this question. An immediate consequence of Theorem 105 and
Lemma 103 is given by the next result.

Theorem 106 For any function f : Rn → [−∞,∞] it follows that
fec(x) = sup{a(x) : a ∈ C0Af} and fq(x) = fq(x) = sup{a(x) : a ∈
C1Af} for every x ∈ Rn.

Proof. By Theorem 105 we obtain fec(x) = sup{a(x) : a ∈ C0Afec}
and since by Lemma 103 it holds that C0Af = C0Afec the first formula
follows. The second formula can be verified similarly. �

Studying the proof of Theorem 105 for evenly quasiconvex functions
one can actually show the following improvement of Theorem 106.

Theorem 107 If f : Rn → [−∞,∞] is an arbitrary function, then it
follows for every x ∈ Rn that

fec(x) = supa∈Rn ca(a>x)

with the function ca given in Definition 104.

Proof. It follows for every a and x ∈ Rn that ca(a>x) ≤ f(x). Since
ca ∈ C0 this implies by Lemma 102 that the function x → ca(a>x) is
evenly quasiconvex and so by Lemma 63 we obtain for every x ∈ Rn that
fec(x) ≥ supa∈Rn ca(a>x). Suppose now by contradiction that fec(x0) >
supa∈Rn ca(a>x0) for some x0 and so there exists some γ ∈ R satisfying

fec(x0) > γ > supa∈Rn ca(a>x0). (87)

If the set L(fec, γ) is empty we obtain f(x) ≥ fec(x) > γ for every x ∈ Rn

and this implies ca(a>x0) ≥ γ for every a ∈ Rn contradicting relation
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(87). Therefore the set L(fec, γ) is nonempty and since by Lemma 63
the function fec is evenly quasiconvex one can find a collection of vectors
(ai, bi)i∈I satisfying

L(fec, γ) = ∩i∈IH
<(ai, bi). (88)

By relation (87) we know x0 does not belong to L(fec, γ) and so by
relation (88) there exists some i ∈ I and a nonzero vector ai satisfying
a>i x0 ≥ bi. This implies using f(x) ≥ fec(x) for every x ∈ Rn and
relation (88) that

{y ∈ Rn : a>i y ≥ a>i x0} ⊆ {y ∈ Rn : f(y) > γ}

and so it follows that cai(a
>
i x0) ≥ γ. This yields supa∈Rn ca(a>x0) ≥

cai(a
>
i x0) ≥ γ contradicting relation (87). This shows the desired rep-

resentation and our proof is completed. �

Also for l.s.c. quasiconvex functions one can show the following im-
provement of Theorem 105. Observe this formula is more complicated
than the corresponding formula for evenly quasiconvex functions.

Theorem 108 If f : Rn → [−∞,∞] is an arbitrary function, then it
follows for every x ∈ Rn that

fq(x) = fq(x) = supa∈Rn ca(a>x) = supa∈Rn c♦
a (a>x)

with ca denoting the l.s.c. hull of the function ca and c♦
a listed in Defi-

nition 70.

Proof. By Lemma 71 and relation (70) it is sufficient to show for every
x ∈ Rn that fq(x) = supa∈Rn c♦

a (a>x). To verify this we first observe for
every a and x ∈ Rn that ca(a>x) ≤ f(x) and so we obtain c♦

a (a>x) ≤
f(x) for every x. By Lemma 71 the function c♦

a : R → [−∞,∞] is l.s.c.
and nondecreasing and this implies by Lemma 102 that x → c♦

a (a>x) is
quasiconcex and l.s.c.. Therefore we obtain for every x that

fq(x) ≥ supa∈Rn c♦
a (a>x).

Suppose now by contradiction that fq(x0) > supa∈Rn c♦
a (a>x0) for some

x0 and so there exists some γ ∈ R satisfying

fq(x0) > γ > supa∈Rn c♦
a (a>x0). (89)
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If the set L(fq, γ) is empty we obtain f(x) ≥ fq(x) > γ and we obtain
as in Theorem 107 a contradiction with relation (89). Therefore, the
closed convex set L(fq, γ) is nonempty and since by relation (89) it
holds that x0 does not belong to L(fq, γ) there exist by Theorem 38
some nonzero vector a0 ∈ Rn and β ∈ R satisfying a>0 x < β < a>0 x0 for
every x ∈ L(fq, γ). Hence it follows for every y satisfying a>0 y ≥ β that
f(y) ≥ fq(y) > γ and this yields ca0(β) ≥ γ. Using this observation we
obtain

c♦
a0

(a>0 x0) = sups<a>0 x0
ca0(s) ≥ ca0(β) ≥ γ

and this contradicts relation (89) completing the proof. �

It is also possible to show for every a ∈ Rn that the function c♦
a is

actually the inverse of another function.

Lemma 109 It f : Rn → [−∞,∞] is a function with dom(f) nonempty
and the function ha : R → [−∞,∞],a ∈ Rn is given by ha(α) :=
sup{a>y : y ∈ L(f, α)}, then it follows for every t ∈ R that

c♦
a (t) = inf{α ∈ R : ha(α) ≥ t}.

Proof. Since dom(f) is nonempty, there exists some α ∈ R satisfying
L(f, α) is nonempty. If for some α0 ∈ R it follows that ha(α0) ≥ t, then
for every s < t there exists some y0 satisfying f(y0) ≤ α0 and a>y0 ≥ s.
This implies α0 ≥ f(y0) ≥ ca(s) and hence inf{α ∈ R : ha(α) ≥ t} ≥
ca(s). Since s < t we obtain inf{α ∈ R : ha(α) ≥ t} ≥ sups<t ca(s) =
c♦
a (t) and to show equality we assume by contradiction that there exists

some t0 satisfying

inf{α ∈ R : ha(α) ≥ t0} > c♦
a (t0).

If this holds one can find some α0 satisfying α0 > c♦
a (t0) and ha(α0) < t0.

Hence there exists some ε > 0 satisfying α0 > c♦
a (t0) and ha(α0) <

t0 − ε. Since ha(α0) < t0 − ε we obtain for every y satisfying a>y ≥
t0 − ε that f(y) > α0. This implies ca(t0 − ε) ≥ α0 and it follows
α0 > c♦

a (t0) ≥ ca(t0 − ε) ≥ α0. This is clearly a contradiction and so the
proof is completed. �

In case dom(f) is empty and so f ≡ ∞ and we use the well-known
convention that sup{∅} = −∞ and inf{∅} = ∞ then it is easy to verify
that the above relation still holds. The next result first verified in [15]
is an immediate consequence of Lemma 109 and Theorem 108.
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Theorem 110 If f : Rn → [−∞,∞] is an arbitrary function, then it
follows that fq(x) = fq(x) = supa∈Rn inf{α ∈ R : supy∈L(f, α) a

>y ≥ a>x}
for every x ∈ Rn.

Actually the result in Theorem 107 and 108 can be seen as a gen-
eralization of the Fenchel-Moreau theorem for l.s.c. convex hulls. To
show this we need to generalize the notion of conjugate and biconjugate
functions used within convex analysis. Since we are dealing with ex-
tended real valued functions we use the convention that (−∞)+(+∞) =
(+∞) + (−∞) = −∞ and −(−∞) = ∞.

Definition 111 Let C be a nonempty collection of extended real valued
univariate functions. For any function f : Rn → [−∞,∞] and c ∈ C the
function f c(a) := sup{c(a>x)− f(x) : x ∈ Rn} is called the c-conjugate
function of the function f. The function fCC(x) := sup{c(x>a)− f c(a) :
a ∈ Rn, c ∈ C} is called the bi-C-conjugate function of f.

By a similar proof as in Lemma 89 it is easy to give a geometrical
interpretation of the biconjugate function.

Lemma 112 For C a nonempty collection of extended real valued uni-
variate functions and f : Rn → [−∞,∞] an arbitrary function it follows
that (a, r) ∈ epi(f c) if and only if a ∈ CAf with a(x) = c(a>x)− r and
c ∈ C. Additionally, it holds that fCC(x) = sup{a(x) : a ∈ CAf} for
every x ∈ Rn.

Combining now Lemma 112 and Theorem 106 we immediately obtain
for the sets Ci, i = 0, 1 the following generalization of the Fenchel-Moreau
theorem.

Theorem 113 For any function f : Rn → [−∞,∞] it follows that
fC0C0(x) = fec(x) and fC1C1(x) = fq(x) = fq(x) for every x ∈ Rn.

Proof. By Lemma 112 we obtain fCiCi(x) = sup{a(x) : a ∈ CiAf}, i =
0, 1 and this shows by Theorem 106 the desired result. �

By Theorem 107, 108 and 113 we obtain the formulas

fC0C0(x) = fec(x) = supa∈Rn ca(a>x)

and
fC1C1(x) = fq(x) = fq(x) = supa∈Rn c♦

a (a>x) (90)
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for every x ∈ Rn. Considering these formulas we now wonder whether
it is possible to achieve the same result using a smaller set of extended
real valued univariate functions.

Definition 114 For any r ∈ R the function cr : R → [−∞,∞] is given
by cr(t) = −∞ for t < r and cr(t) = r for every t ≥ r. The set Cr ⊆ C0

consists now of all functions cr, r ∈ R, while the set Cr consists of all
functions cr, r ∈ R with cr the l.s.c. hull of the function cr.

If f : Rn → (−∞,∞] is an arbitrary function, then for r ∈ R and
a 6= 0 we obtain

f cr(a) = max{−∞, sup{r − f(y) : a>y ≥ r}} = r − ca(r) (91)

with ca defined in Definition 104. Moreover, for a = 0 and r ≤ 0, it
follows that f cr(0) = sup{cr(0) − f(y) : y ∈ Rn} = r − inf{f(y) : y ∈
Rn} and this shows

f cr(0) = r − c0(r) = r − c0(0), r ≤ 0. (92)

Also for r > 0 it is easy to verify that f cr(0) = −∞ and so we have
computed for every r ∈ R the cr-conjugate function of the function f.
To evaluate the cr-conjugate function of f we observe by Lemma 71
that cr(t) = −∞ for every t ≤ r and cr(t) = r for every t > r. Again
considering a 6= 0 it follows that

f cr(a) = max{−∞, sup{r − f(y) : a>y > r}} (93)

= r − inf{f(y) : a>y > r}.

Moreover, for a = 0 and r < 0, we obtain that

f cr(0) = sup{cr(0)− f(y) : y ∈ Rn} (94)
= r − inf{f(y) : y ∈ Rn} = r − c0(r),

while for r ≥ 0 it is easy to verify that f cr(0) = −∞. Using the above
computations we will first evaluate in the proof of Lemma 115 the bi-
Cr-conjugate function of a function f : Rn → (−∞,∞], while in the
proof of Lemma 116 the same computation will be carried out for a
bi-Cr-conjugate function of the same function f.

Lemma 115 For every x ∈ Rn and f : Rn → (−∞,∞] it follows for
every x ∈ Rn that

fCrCr(x) = supa∈Rn inf{f(y) : a>y ≥ a>x} = fec(x).
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Proof. By relation (92) and f cr(0) = −∞ for every r > 0 we obtain
using the convention −∞− (−∞) = −∞+∞ = −∞ that

supr∈R{cr(0)− f cr(0)} = supr≤0 c0(0) = c0(0). (95)

Also by relation (91) and (−∞)− (−∞) = (−∞) +∞ = −∞ it follows
for every x that

supa 6=0, r∈R{cr(a>x)− f cr(a)} = supa 6=0, r≤a>x, r∈R ca(r).

This shows, using ca is nondecreasing for every a 6= 0, that

supa 6=0, r∈R{cr(a>x)− f cr(a)} = supa 6=0 ca(a>x) (96)

and so fCrCr(x) = supa∈Rn ca(a>x) using relations (95) and (96). This
shows the first equality and the second one is already listed in Theorem
107. �

The next result yields a similar result as Lemma 115 for a quasiconvex
and l.s.c. function.

Lemma 116 For every x ∈ Rn and f : Rn → (−∞,∞] it follows for
every x ∈ Rn that

fCrCr(x) = supa∈Rn sups<a>x inf{f(y) : a>y ≥ s} = fq(x) = fq(x).

Proof. By relation (93) and f cr(0) = −∞ for every r ≥ 0 we obtain
using −∞− (−∞) = −∞+∞ = −∞ that

supr∈R{cr(0)− f cr(0)} = supr<0 c0(r) = c♦
0(0). (97)

Also by relation (92) and (−∞)− (−∞) = (−∞) +∞ = −∞ it follows
with h(x) := supa 6=0, r∈R{cr(a>x)− f cr(a)} that

h(x) = supa 6=0, r<a>x, r∈R inf{f(y) : a>y > r}. (98)

Since inf{f(y) : a>y > r} ≥ ca(r) for every r ∈ R and a 6= 0 we obtain
by relation (98) that

h(x) ≥ sup a 6=0, r<a>x, r∈R ca(r) = supa 6=0 c♦
a (a>x). (99)

Applying now relations (90), (97) and (99) it holds for every x ∈ Rn

that
fCr Cr(x) ≥ supa∈Rn c♦

a (a>x) = fq(x) = fC1C1(x). (100)
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Since Cr ⊆ C1 it follows that fC1C1 ≥ fCr Cr and this shows by relation
(100) the desired result. �

In the last two lemmas we have shown that it is sufficient for any
function f satisfying f > −∞ to consider the class of Cr-affine minorants
and the class of Cr-affine minorants for approximating fec, respectively
fq. This concludes the section on quasiconvex duality. In the next section
we will discuss some important applications.

4 On applications of convex and quasiconvex
analysis.

In this section we will discuss different applications of the theory of con-
vex and quasiconvex analysis. In Subsection 4.1 we consider applications
to noncooperative game theory, while in Subsection 4.2 we discuss its
applications to optimization problems and in particular to Lagrangian
duality. Finally in Subsection 4.3 we will use the duality representation
of evenly quasiconvex functions to show that every positively homoge-
neous evenly quasiconvex function satisfying f(0) = 0 and f > −∞ is
actually the minimum of two positively homogeneous l.s.c. convex func-
tions. This result was first verified by Crouzeix (cf.[15]) for a slightly
smaller class of quasiconvex functions and serves as a very nice applica-
tion of quasiconvex duality.

4.1 Minimax Theorems and Noncooperative Games.

To introduce the field of infinite antagonistic game theory (cf.[72]) we as-
sume that the set of pure strategies of player 1 is given by some nonempty
set A ⊆ Rn, while the set of pure strategies of player 2 is given by
B ⊆ Rm. If player 1 chooses the pure strategy a ∈ A and player 2
chooses the pure strategy b ∈ B, then player 2 has to pay to player 1 an
amount f(a,b) with f : A×B → [0,∞] a given function. This function
is called the payoff function and for simplicity this function is taken to
be nonnegative. Since player 1 likes to gain as much profit as possible,
but at the moment he does not know how to achieve this, he first decides
to compute a lower bound on his profit. To compute this lower bound
player 1 argues as follows : if he decides to choose action a ∈ A, then it
follows that he wins at least infb∈B f(a,b) irrespective of the action of
player 2. Therefore a lower bound on the profit for player 1 is given by

r∗ := supa∈A infb∈B f(a,b). (101)
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Similarly player 2 likes to minimize his losses but since he does not know
how to achieve this he also decides to compute first an upper bound on
his losses. To compute this upper bound player 2 argues as follows. If he
decides to choose action b it follows that he loses at most supa∈A f(a,b)
and this is independent of the action of player 1. Therefore an upper
bound on his losses is given by

r∗ := infb∈B supa∈A f(a,b). (102)

Since the profit of player 1 is at least r∗ and the losses of player 2 is at
most r∗ and the losses of player 2 are the profits of player 1 it follows
directly that r∗ ≤ r∗. In general r∗ < r∗, but under some properties on
the action set and payoff function one can show that r∗ = r∗. By the
above inequality it follows immediately that r∗ = r∗ for r∗ = −∞ and so
we assume in the remainder of this section that r∗ > −∞. The equality
r∗ = r∗ is called a minimax result and if additionally inf and sup are
attained an optimal strategy for both players can be easily derived. For
player 1 it is possible to achieve at least a profit r∗, independent of the
action of player 2, while for player 2 it is possible to achieve at most a
loss r∗ independent of the action of player 1. Since r∗ = r∗ := v and both
players have opposite interests, they will choose an action which achieves
the value v and so player 1 will choose that action a0 ∈ A satisfying

infb∈B f(a0,b) = maxa∈A infb∈B f(a,b).

Moreover, player 2 will choose that strategy b0 ∈ B satisfying

supa∈A f(a,b0) = minb∈B supa∈A f(a,b).

Since for r∗ = r∗ and the additional assumption that the infimum and
supremum are attained, it is clear how the optimal strategies should be
chosen we will investigate in this subsection for which payoff functions
and strategies the minimax result r∗ = r∗ holds. Before discussing this,
we give the following example for which this equality does not hold.

Example 117 Consider the continuous payoff function f : [0, 1]×[0, 1] →
[0,∞) given by f(a, b) = (a − b)2. For this function it holds for every
0 ≤ a ≤ 1 that infb∈[0,1](a− b)2 = 0 and so r∗ := sup0≤a≤1 inf0≤b≤1(a−
b)2 = 0. Moreover, it follows that sup0≤a≤1(a− b)2 = (1− b)2 for every
0 ≤ b < 1

2 and sup0≤a≤1(a − b)2 = b2 for every 1
2 ≤ b ≤ 1. This shows

r∗ := inf0≤b≤1 sup0≤a≤1(a−b)2 = 1
4 and so r∗ does not equal r∗. For this

example it is not obvious which strategies should be selected by the two
players.
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By extending the sets of the so-called pure strategies of each player
it is possible to show under certain conditions that the extended game
satisfies a minimax result. In the next definition we introduce the set of
mixed strategies.

Definition 118 For a nonempty set D of pure strategies and d ∈ D let
εd denote the one-point probability measure concentrated on the set {d}
and denote by PD the set of all probability measures on D with a finite
support.

Introducing the unit simplex ∆k := {α :
∑k

i=1 αi = 1, αi ≥ 0, 1 ≤
i ≤ k} it follows by Definition 118 that λ belongs to the set PD if and
only if there exist some k ∈ N and set {d1, ...,dk} ⊆ D consisting of
different elements such that

λ =
∑k

i=1
λiεdi

, (λ1, ..., λk) ∈ ∆k and λi > 0.

Clearly the set PD can seen as the convex hull of the set {εd : d ∈ D} and
so it is convex. A game theoretic interpretation of a strategy λ ∈ PD

is now given by the following. If a player with pure strategy set D
selects the mixed strategy λ =

∑k
i=1 λiεdi

∈ PD, then with probability
λi, 1 ≤ i ≤ k this player will use the pure strategy di ∈ D. By this
interpretation it is clear that the set D of pure strategies can be identified
with the set of one-point Borel probability measures {εd : d ∈ D}. We
now assume that player 1 uses the set PA of mixed strategies and the
same holds for player 2 using the set PB. This means that the payoff
function f should be extended to a function fe : PA ×PB → R and this
extension is given by

fe(λ, µ) :=
∑k

i=1

∑l

j=1
λiµjf(ai,bj) (103)

with λ =
∑k

i=1 λiεai ∈ PA and µ =
∑l

j=1 µjεbj
∈ PB. This extension

represents the expected profit for player 1 or expected loss of player 2
if player 1 selects the mixed strategy λ ∈ PA and player 2 selects the
mixed strategy µ ∈ PB. Without any conditions on the pure strategy
sets A and B and the function f one can show the next result.

Lemma 119 For any set A and B of pure strategies it follows that

infµ∈PB
supλ∈PA

fe(λ, µ) = infµ∈PB
supa∈A fe(εa, µ)

and
supλ∈PA

infµ∈PB
fe(λ, µ) = supλ∈PA

infb∈B fe(λ, εb).
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Proof. Since {εa : a ∈ A} ⊆ PA it follows that

infµ∈PB
supλ∈PA

fe(λ, µ) ≥ infµ∈PB
supa∈A fe(εa, µ).

To verify the reverse inequality we observe for every mixed strategy
µ ∈ PB, λ ∈ PA and relation (103) that fe(λ, µ) ≤ supa∈A fe(εa, µ). This
implies

supλ∈PA
fe(λ, µ) ≤ supa∈A fe(εa, µ)

and so the first formula is verified. The second formula follows by sym-
metry. �

It is now possible to show that the extended game given by fe and
the mixed strategy sets PA and PB satisfies a minimax result under some
topological conditions on the function f and the sets A and B of pure
strategies. The next result was first given by Ville (cf.[70], [18], [72])
using a much more complicated proof. In the next alternative proof we
only use the separation result for convex sets listed in Theorem 41 and
the well-known result that a continuous function on a compact set is
uniformly continuous (cf.[43]).

Theorem 120 If the pure strategy sets A ⊆ Rn and B ⊆ Rm are com-
pact and the function f : A × B → R is continuous, then it follows
that

infµ∈PB
supλ∈PA

fe(λ, µ) = supλ∈PA
infµ∈PB

fe(λ, µ).

Proof. It is easy to see that the inequality ≥ holds and so we only need to
verify the reverse inequality. By Lemma 119 it is now sufficient to show
that infµ∈PB

supa∈A fe(εa, µ) ≤ supλ∈PA
infb∈B fe(λ, εb). By scaling we

may assume that

supλ∈PA
infb∈B fe(λ, εb) = 1 (104)

and so we need to show that

infµ∈PB
supa∈A fe(εa, µ) ≤ 1

Assume now by contradiction that there exists some γ > 0 satisfying

supa∈A fe(εa, µ) ≥ 1 + γ (105)

for every µ ∈ PB. Since the function f is continuous on the compact set
A × B, it is well-known (cf.[64], [43]) that the function f is uniformly
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continuous on A×B. Hence there exists some δ > 0 such that for every
a1,a2 ∈ A satisfying ‖a1 − a2‖ ≤ δ it follows that supb∈B |f(a1,b) −
f(a2,b| ≤ γ

2 . This implies for every a1,a2 ∈ A satisfying ‖a1 − a2‖ ≤ δ
that

supµ∈PB
|fe(εa1 , µ)− fe(εa2 , µ)| ≤ γ

2
. (106)

Since A is compact one can find a finite set I ⊆ A satisfying A ⊆
∪a∈I(a + δE) and this shows by relations (106) and (105) that

maxa∈I fe(εa, µ) ≥ supa∈A fe(εa, µ)− γ

2
≥ 1 +

γ

2
(107)

for every µ ∈ PB. Introducing the convex set V given by

V := co({(fe(εa, εb))a∈I ,b ∈ B}) ⊆ R|I|

it follows by the definition of V that z> = (z1, ..., z|I|) belongs to V if
and only if there exists some mixed strategy µ ∈ PB satisfying z> =
(fe(εa, µ))a∈I . This implies by relation (107) that

V ⊆ {z ∈ R|I| : max1≤i≤|I| zi ≥ 1 +
γ

2
}

and so the convex sets {z ∈ R|I| : max1≤i≤|I| zi < 1 + γ
2} and V are

disjoint. Applying now Theorem 41 one can find some mixed strategy
λ ∈ PI satisfying infb∈B fe(λ, εb) ≥ 1 + γ

2 and this contradicts relation
(104). �

Actually the result in Theorem 120 holds under weaker topologi-
cal conditions on the function f. However the proof of that result uses
the Riesz representation theorem for the set of continuous functions on
a compact Hausdorff space, the Banach-Alaoglu theorem and infinite
dimensional separation (cf.[29]) and is beyond the scope of this chap-
ter. The result listed in Theorem 120 is the most important result in
infinite antagonistic game theory and fits within a chain of equivalent
minimax theorems (cf.[27]). For one of these equivalent minimax results
another alternative proof using also finite dimensional separation is given
in [26]. Although not listed in [27], one result which also fits within this
chain is the famous Sion’s minimax theorem (cf.[66]) for quasiconcave-
quasiconvex bifunctions.

Theorem 121 If A ⊆ Rn is compact and convex, B ⊆ Rm is convex
and the function f : A×B → R satisfies a → f(a,b) is quasiconcave and
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upper semicontinuous for every b ∈ B and b → f(a,b) is quasiconvex
and lower semicontinuous for every a ∈ A, then it follows that

maxa∈A infb∈B f(a,b) = infb∈B maxa∈A f(a,b).

This result was proved using the Knaster-Kuratowski-Mazurkiewicz
(KKM) lemma (cf.[74]). This lemma is the basis of fixed point theory
and nonlinear functional analysis. It is also possible to give a more el-
ementary proof of Sion’s minimax theorem based on finite dimensional
separation between convex sets. However, the most elementary proof
of Sion’s minimax theorem is given by an adaptation of the so-called
level set method due to Joó (cf.[40], [41], [42]). This method first trans-
lates the minimax equality into an equivalent geometrical condition of
a nonempty intersection of a collection of upper level sets. Under the
assumptions of Sion’s minimax theorem it is now possible to verify this
geometrical condition using compactness arguments and the well-known
elementary topological result that every convex set is connected (cf.[36]).
To start with our analysis we first introduce for every a ∈ A and b ∈ B
the functions fa : B → R and fb : A → R defined by

fa(b) = fb(a) := f(a,b). (108)

Also we introduce for every r ∈ R and b ∈ B the upper-level set
U(fb, r) ⊆ A given by

U(fb, r) := {a ∈ A : fb(a) ≥ r}. (109)

It is now easy to show the following result (cf.[41]).

Lemma 122 It follows that r∗ = r∗ if and only if ∩b∈BU(fb, r) 6= ∅ for
every r < r∗.

Proof. If r∗ = r∗ > −∞, then for every r < r∗ there exist by the
definition of r∗ some a0 ∈ A satisfying infb∈B f(a0,b) > r. This shows
that a0 belongs to the intersection ∩b∈BU(fb, r) and so ∩b∈BU(fb, r) is
nonempty. To verify the reverse implication it is sufficient to verify that
r∗ ≥ r∗ or equivalently r∗ > r∗ − ε for every ε > 0. Consider now r :=
r∗− ε for some ε > 0. By our assumption it follows that the intersection
∩b∈BU(fb, r) is nonempty and so there exists some a0 ∈ A satisfying
infb∈B f(a0,b) ≥ r. This implies that r∗ = supa∈A infb∈B f(a,b) ≥ r
and so the proof is completed. �

By Lemma 122 we need to show that ∩b∈BU(fb, r) 6= ∅ for every
r < r∗. Before proving this result we consider an arbitrary finite set
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{b0,b1, ...,bk} ⊆ B and introduce the affine mapping p : [0, 1] → B,
given by

p(λ) = λb0 + (1− λ)b1, (110)

and the set valued mapping Φr : [0, 1] → 2A, given by

Φr(λ) = (∩k
i=2U(fbi

, r)) ∩ U(fp(λ), r). (111)

To verify the main result we need the following elementary lemma.

Lemma 123 If the functions fa : B → R are quasiconvex on the convex
set B for every a ∈ A, then it follows for every λ0, λ1 ∈ [0, 1] and
0 < α < 1 that

Φr(αλ0 + (1− α)λ1) ⊆ Φr(λ0) ∪ Φr(λ1)

for every r ∈ R.

Proof. If the vector a belongs to Φr(αλ0 +(1−α)λ1), then by definition
a ∈ ∩k

i=2U(fbi
, r) and f(a, p(αλ0 + (1− α)λ1)) ≥ r. This implies, using

p is affine, that
f(a, αp(λ0) + (1− α)p(λ1)) ≥ r (112)

and by the quasiconvexity of the functions fa we obtain by relation (112)
that max{f(a, p(λ0)), f(a, p(λ1))} ≥ r. Hence it follows that a belongs
to Φr(λ0) ∪ Φr(λ1) and the result is proved. �

In order to prove the next important lemma we denote by F(B) the
set of all finite subsets of B.

Lemma 124 If the functions fb : A → R are quasiconcave and upper
semicontinuous for every b ∈ B and the functions fa : B → R are
quasiconvex and lower semicontinuous for every a ∈ A, then it follows
for every J belonging to F(B) and r < r∗ that ∩b∈JU(fb, r) 6= ∅.

Proof. If J is a subset of B consisting of one element the result clearly
holds by the definition of r∗ listed in relation (102). Suppose now for all
sets J belonging to F(B) and consisting of at most k elements that

∩b∈JU(fb, r) 6= ∅ (113)

for every r < r∗. To prove the result for all sets J belonging to F(B)
consisting of at most k + 1 elements, we assume by contradiction that
there exists some set J = {b0, ...,bk} ⊆ B and some r < r∗ satisfying

∩k
i=0U(fbi

, r) = ∅. (114)
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Consider now for the points b0 and b1 the set valued mapping Φr :
[0, 1] → 2A given by relation (111). By our induction hypothesis listed
in relation (113) and the assumption that the functions fb,b ∈ B are
quasiconcave and upper semicontinuous we obtain that the sets Φr(λ)
are nonempty, closed and convex for every 0 ≤ λ ≤ 1. By relation (114)
it follows that

Φr(0) ∩ Φr(1) = ∅ (115)

and so the nonempty sets

Si := {0 ≤ λ ≤ 1 : Φr(λ) ⊆ Φr(i)}, i = 0, 1

are disjoint and S0 ∪ S1 ⊆ [0, 1]. To show that S0 ∪ S1 = [0, 1] consider
for a given 0 ≤ λ ≤ 1 the closed sets

Ai := Φr(λ) ∩ Φr(i), i = 0, 1. (116)

By Lemma 123 we obtain that Φr(λ) ⊆ Φr(0) ∪ Φr(1) and so

A0 ∪A1 = Φr(λ). (117)

Also by relation (115) the sets A0 and A1 are disjoint and since Φr(λ)
is convex and hence connected (cf.[36]) we obtain by relation (117) that
either A0 or A1 is empty. This implies using again Lemma 123 that
Φr(λ) ⊆ Φr(0) or Φr(λ) ⊆ Φr(1) and so λ ∈ S0 ∪ S1. Hence we have
shown that the sets S0 and S1 satisfy

S0 ∩ S1 = ∅ and S0 ∪ S1 = [0, 1]. (118)

We will now verify that the sets S0 and S1 are open in [0, 1] and to do
so consider some λ0 ∈ S0 (a similar proof applies to S1). Since Φr(λ0) is
nonempty for every r < r∗ it follows by the definition of Φr(λ0) that

supa∈A infb∈B0 f(a,b) ≥ r∗ > r

with B0 := {b2, ...,bk, λ0b0 + (1− λ0)b1}. This means that there exists
some a0 ∈ ∩k

i=2U(fbi
, r) satisfying

f(a0, λ0b0 + (1− λ0)b1) > r (119)

and by lower semicontinuity of the function fa0 and relation (119) there
exist some ε > 0 such that

f(a0, λb0 + (1− λ)b1) > r
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for every λ ∈ N := (λ0−ε, λ0+ε)∩[0, 1]. Hence we obtain that a0 ∈ Φr(λ)
for every λ ∈ N and since λ0 ∈ S0 this implies by relations (118) and
(115) that Φr(λ) ⊆ Φr(0) for every λ ∈ N . Hence S0 is an open set and
since similarly S1 is open we obtain by relation (118) and [0, 1] connected
at either S0 or S1 is empty. This yields a contradiction with Si, i = 0, 1
nonempty and so relation (114) cannot hold. �

It is now possible to give a proof of Sion’s minimax result.

Proof. (Sion’s minimax theorem). Since A is compact and fb is upper
semicontinuous we obtain that the set U(fb, r) is compact. By the finite
intersection property for compact sets we obtain by Lemma 124 that
∩b∈BU(fb, r) 6= ∅ for every r < r∗ and this shows by Lemma 122 that
r∗ = r∗. Since A compact and fb upper semicontinuous and fa lower
semicontinuous it follows by a standard argument that we may replace
sup by max . �

Actually we can also apply Sion’s minimax theorem to prove Theo-
rem 120. Looking at the proof of Theorem 120 we observe in relation
(107) that

infµ∈PB
maxa∈I fe(εa, µ) ≥ 1 +

γ

2
with I belonging to F(A). This shows by Lemma 119 that

infµ∈PB
maxλ∈PI

fe(λ, µ) ≥ 1 +
γ

2
. (120)

To the expression in relation (120) we may now apply Sion’s minimax
theorem and so we obtain

maxλ∈PI
infµ∈PB

fe(λ, µ) ≥ 1 +
γ

2

and in a similar way we obtain a contradiction with relation (104). In
the next subsection we will consider applications of convex analysis to
optimization theory.

4.2 Optimization theory and duality.

In this subsection we will show how the tools of convex analysis can be
used within optimization theory. In particular we introduce the dual
of an optimization problem and derive some important properties of
this dual problem. To start with a general introduction to optimization
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theory let f : Rn → [−∞,∞] be an arbitrary function and consider the
so-called primal optimization problem given by

v(P ) := inf{f(x) : x ∈ Rn}. (P )

In this optimization problem the infimum need not be attained. Since
f represents an extended real valued function the above optimization
problem also covers optimization problems with restrictions. Associate
now with the function f a function F : Rn × Rm → [−∞,∞] satisfy-
ing F (x,0) = f(x) for every x and consider the so-called perturbation
function p : Rm → [−∞,∞] given by

p(y) := inf{F (x,y) : x ∈ Rn}. (121)

It is easy to verify (remember the strict epigraph and the effective domain
of a function are listed in relation (43) and (45)!) that

ẽpi(p) = A(ẽpi(F )) and dom(p) = A(dom(F )) (122)

with A : Rn+m → Rm the projection of Rn+m onto Rm given by A(x,y) =
y. Also by the definition of the function F we obtain that p(0) = v(P ).
In the next definition we introduce the dual of the optimization problem
(P ) (cf.[63]).

Definition 125 The so-called dual problem of optimization problem (P )
is given by

v(D) := sup{−p∗(a) : a ∈ Rm} (D)

with p∗ the conjugate function of p listed in Definition 88.

By Definitions 125 and 88 it follows that v(D) = p∗∗(0) and since
p∗∗(0) ≤ p(0) the inequality v(D) ≤ v(P ) always holds. We are now
interested under which conditions on the perturbation function p it fol-
lows that v(D) = v(P ). If v(P ) = −∞, then the inequality v(D) ≤ v(P )
implies v(D) = v(P ) = −∞ and every a ∈ Rm is an optimal solution of
the dual problem (D). Therefore we only need to consider v(P ) > −∞.
Consider now the cases v(P ) is finite and v(P ) = ∞. Observe the last
case only happens if dom(f) is empty. For v(P ) finite, one can now show
the following result. This result is a direct consequence of Theorem 91
giving a dual characterization of a convex function (Fenchel-Moreau the-
orem) and Theorem 95.
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Theorem 126 If the function p : Rm → [−∞,∞] is convex and p(0) is
finite, then it follows that

v(P ) = v(D) ⇔ the function p is l.s.c.at 0.

Moreover, if 0 belongs to ri(dom(p)), then the dual problem has an op-
timal solution and v(D) = v(P ).

Proof. Since the function p is convex, l.s.c. at 0 and p(0) finite it
follows by relations (59) and (66) that pc(0) = pc(0) = p(0) = p(0) is
finite and this implies by Lemma 82 that Ap is nonempty. Therefore
p(x) > −∞ for every x and by the Fenchel-Moreau theorem (Theorem
91) we obtain v(P ) = p(0) = p(0) = p∗∗(0) = v(D). To prove the reverse
implication we observe by Theorem 91 and v(P ) = v(D) is finite that
p(0) = p∗∗(0) = cl(p)(0) is finite. Hence it must follow by Definition 90
that p(0) = p(0) and by relation (59) the function p is l.s.c. at 0. To show
the second part it follows by Theorem 95 that ∂p(0) is nonempty and
by Lemma 94 it is now easy to verify that any a0 ∈ ∂p(0) is an optimal
solution of the dual problem. Moreover, by Lemma 75 we obtain that
p(0) = p(0) and we can apply the first part. �

Finally we consider the case v(P ) = ∞. In general it does not hold
even for p convex and l.s.c. in 0 that v(P ) = v(D). To show this we
will discuss in Example 131 a linear programming problem satisfying
v(P ) = ∞ and v(D) = −∞.

If f : Rn → R is some real valued function and g : Rn → Rm a vector
valued function represented by g(x) := (g1(x), ..., gm(x)), gi : Rn → R,
then an important special case of optimization problem (P ) is given by

inf{f(x) : g(x) ∈ −K,x ∈ D} (P1)

with K ⊆ Rm a nonempty convex cone and D ⊆ Rn some nonempty
set. The above optimization problem includes some important classes of
optimization problems listed in the following example.

Example 127

1. If f(x) = c>x and g(x) = Ax − b with A some m × n matrix,
K = {0} ⊆ Rm and D = Rn

+, then optimization problem (P1)
reduces to the linear programming problem (cf.[4], [54], [19])

inf{c>x : Ax = b,x ≥ 0}.
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2. If f(x) = c>x and g(x) = Ax − b with A some m × n matrix,
K = {0} ⊆ Rm and D ⊆ Rn is some closed convex cone, then
optimization problem (P1) reduces to a so-called conic convex pro-
gramming problem (cf.[53]), given by

inf{c>x : Ax = b,x ∈ D}.

3. If m = n and g(x) = −x, then optimization problem (P1) re-
duces to a so-called generalized geometric programming problem
(cf.[57]), given by

inf{f(x) : x ∈ K ∩D}.

4. If the nonempty convex cone K ⊆ Rm is given by K = Rp
+ × {0}

with 0 ∈ Rm−p, p ≤ m and the set D = Rn, then optimization
problem (P1) reduces to the classical nonlinear programming prob-
lem (cf.[3], [54], [19])

inf{f(x) : gi(x) ≤ 0, i = 1, ..., p, gi(x) = 0, p + 1 ≤ i ≤ n}.

For optimization problem (P1) the so-called Lagrangian perturbation
scheme is used and this means that the function F : Rn×Rm → [−∞,∞]
is given by

F (x,y) =
{

f(x) for x ∈ D and g(x) ∈ −K + y
∞ otherwise

.

For this specific choice of F we obtain by relation (121) that

p(y) = inf{f(x) : x ∈ D,y ∈ g(x) + K}. (123)

Using the representation of p, listed in relation (123), one can give a more
detailed expression of the dual problem. Observe this dual problem is
called the Lagrangian dual problem.

Lemma 128 If the function θ : K0 → [−∞,∞] is given by θ(a) =
inf{f(x) − a>g(x) : x ∈ D}, then the Lagrangian dual of optimization
problem (P1) equals

v(LD) := sup{θ(a) : a ∈ K0}. (LD)
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Proof. By the definition of the function p it follows for every a ∈ Rn

that

−p∗(a) = − supy∈Rm{a>y − inf{f(x) : y ∈ g(x) + K,x ∈ D}}
= − supy∈Rm sup{a>y − f(x): y ∈ g(x) + K,x ∈ D}
= inf{f(x)− a>y : y ∈ g(x) + K,x ∈ D}.

This shows

−p∗(a) = inf{f(x)− a>(g(x) + k) : k ∈ K,x ∈ D}

and to simplify the above expression we first consider a vector a belong-
ing to K0. Since by definition a>k ≤ 0 for every k ∈ K and 0 ∈ cl(K)
this implies

−p∗(a) = inf{f(x)− a>g(x): x ∈ D} = θ(a).

Moreover, if the vector a does not belong to K0 one can find some
k0 ∈ K satisfying a>k0 > 0. Since αk0 ∈ K for every α > 0 and the
set D is not empty this yields −p∗(a) = −∞ and the desired result is
verified. �

By Lemmas 126 and 128 the following result about the Lagrangian
dual problem is easy to derive.

Theorem 129 If the primal problem is represented by (P1) and the vec-
tor valued function h : Rn → Rm+1 is given by h(x) := (g(x), f(x)) and
satisfies h(D) + (K × (0,∞)) is convex and 0 ∈ ri(g(D) + K), then it
follows that ∞ > v(P1) = v(LD) and the Lagrangian dual problem (LD)
has an optimal solution.

Proof. Since by assumption 0 belongs to ri(g(D) + K) ⊆ g(D) + K we
obtain that the feasible region of the optimization problem (P1) is not
empty and this shows v(P1) < ∞. For v(P1) = −∞ the result follows
immediately and so we only consider v(P1) is finite. To apply Theorem
126 we first need to verify whether the function p is convex. It is easy
to check that

ẽpi(F ) = {(x,y, r) ∈ Rn+m+1 : y ∈ g(x) + K,x ∈ D and r > f(x)}

and this implies by relation (122) that ẽpi(p) = h(D)+(K× (0,∞)). By
assumption this set is convex and hence by Lemma 53 the perturbation
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function p is convex. Also by relation (122) we obtain ri(dom(p)) =
ri(g(D) + K) and applying Lemma 128 and Theorem 126 the desired
result follows. �

The condition 0 ∈ ri(g(D) + K) is known in the literature as the
generalized Slater condition. Observe, if f is a convex function and g
is a so-called K-convex vector valued function (cf.[73], [6]), then it fol-
lows that ẽpi(F ) is a convex set and hence also h(D) + (K × (0,∞)) is
convex. Also it is possible to prove related results under slightly weaker
conditions (cf.[25],[24]). As shown by the next lemma the Lagrangian
dual (LD) of a conic convex programming problem is again a conic con-
vex programming problem. Due to the recent developments in interior
point methods this class of optimization problems became very impor-
tant (cf.[53]).

Lemma 130 If the primal problem (P1) is a conic convex programming
problem given by

inf{c>x :Ax = b,x ∈ D}

with D ⊆ Rn some closed convex cone and there exists some x0 ∈ ri(D)
satisfying Ax0 = b, then it follows that

∞ > v(P1) = v(LD) = inf{a>b : A>a− s = c, s ∈ D0}

and the last dual conic convex optimization problem has an optimal so-
lution.

Proof. By part 2 of Example 127 we know that a conic convex pro-
gramming problem is a special case of optimization problem (P1) with
K = {0} ⊆ Rm, the vector valued function h, listed in Theorem 129,
given by h(x) = (Ax−b, c>x) and D ⊆ Rn a closed convex cone. Clearly
for this choice the set h(D) + ({0} × (0,∞)) is convex. Moreover, by
Lemma 32 the generalized Slater condition reduces to

0 ∈ ri(g(D) + {0}) = ri(A(D)− b) = A(ri(D))− b

and by our assumption this condition is satisfied. Therefore the above
result is an immediate consequence of Theorem 129 once we have eval-
uated θ(a) for a ∈ K0 = Rm. Observe now that

θ(a) = inf{c>x− a>(Ax− b) : x ∈ D} (124)

= a>b+ inf{(c−A>a)>x : x ∈ D}
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and since

inf{(c−A>a)>x : x ∈ D} =
{

0 for A>a− c ∈ D0

−∞ otherwise

the desired result follows by Theorem 129. �

Using Lemma 130 with D = Rn
+ it follows that the Lagrangian dual

of the linear programming problem inf{c>x : Ax = b,x ≥ 0} is given
by sup{b>a :A>a ≤ c} and so this dual problem reduces to the ordinary
dual listed in many text books (cf.[4]). Since the set D = Rn

+ is a poly-
hedral convex cone (cf.[63]), the generalized Slater condition in Lemma
130 can be replaced by the condition that the feasible region of the linear
programming problem is nonempty. Actually it can be shown for every
polyhedral convex cone D that the associated conic convex programming
problem reduces to a linear programming problem and so it is only useful
to consider conic convex programming problems with a nonpolyhedral
convex cone D. It is also possible to extend the above duality results for
conic convex programming problems to a larger class of problems than
the one having a generalized Slater point and for more details on this
the reader is referred to [67]. To conclude this section we consider the
following example of a linear programming problem satisfying v(P ) = ∞
and v(D) = −∞.

Example 131 Consider the linear programming problem

inf{−x1 − x2 : x1 − x2 ≥ 1,−x1 + x2 ≥ 1,x ∈ R2
+}.

Clearly this optimization problem has an empty feasible region and so
v(P1) = ∞. Penalizing the restrictions x1−x2−1 ≥ 0 and −x1+x2−1 ≥
0 using the nonpositive Lagrangian multipliers a1 and a2 we obtain that
the Lagrangian function θ : R2

+ → [−∞,∞) is given by

θ(a) = inf{x1(λ1 − λ2 − 1) + x2(λ2 − λ1 − 1) : x ∈ R2
+}

Observe now for every a ∈ R2
+ that

a1 − a2 − 1 ≥ 0 ⇒ a2 − a1 − 1 ≤ −2

and
a2 − a1 − 1 ≥ 0 ⇒ a1 − a2 − 1 ≤ −2

and by this observation it follows that θ(a) = −∞ for every a ∈ R2
+ or

equivalently v(D) = −∞.
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One can also use the same Lagrangian perturbation scheme and the
dual representation of an evenly quasiconvex function and the corre-
sponding cr-conjugate function to introduce the so-called surrogate dual.
Due to limited space we will not discuss the properties of such a dual but
refer the reader to the literature cited in [28]. This concludes our discus-
sion on duality and optimization problems. In the next subsection we
will consider the structure of positively homogeneous evenly quasiconvex
functions.

4.3 Positively homogeneous evenly quasiconvex functions
and dual representations.

In this subsection the dual representation of an evenly quasiconvex func-
tion is used to show a remarkable property of a positively homogeneous
evenly quasiconvex function. In [11] a similar property is also derived
for a positively homogeneous quasiconvex function. As such the results
in [11] apply to a larger class of functions, but are slightly weaker. Also
the proof technique used in [11] is more direct and based on the geo-
metrical aspects of convexity, whereas the approach used in this chapter
is a natural consequence of the dual representation of an evenly quasi-
convex function discussed in Subsection 3.4. To start with the dual ap-
proach we consider a positively homogeneous evenly quasiconvex func-
tion f : Rn → (−∞,∞] satisfying 0 ∈ dom(f). Since f is positively
homogeneous and f(x) > −∞ for every x we obtain by Lemma 54 that
0 ∈ dom(f) if and only if f(0) = 0. Considering for every a ∈ Rn the
function ca : R → [−∞,∞),given by

ca(t) := inf{f(y) : a>y ≥ t}, (125)

(see also Definition 104) it is easy to verify the next result.

Lemma 132 If f : Rn → [−∞,∞] is positively homogeneous, then for
every a ∈ Rn it follows that the function ca : Rn → [−∞,∞] is positively
homogeneous and nondecreasing.

Proof. For any nonzero vector a it is obvious by relation (125) that the
function ca is nondecreasing. Also by Lemma 54 we obtain for every
α > 0 and t ∈ R that

ca(αt) = inf{f(αy) : a>y ≥ t} = αca(t)
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and so the result is verified for every nonzero a. Moreover, for a = 0, we
obtain for every α > 0 and t ≤ 0 that

c0(αt) = inf{f(y) : y ∈ Rn} = inf{f(αy) : y ∈ Rn} = αc0(t),

while for α > 0 and t > 0 it follows using the convention inf{∅} =
∞, that c0(αt) = inf{∅} = ∞ = αc0(t). Trivially the function c0 is
nondecreasing and the proof is completed. �

To analyze the behaviour of a positively homogeneous evenly quasi-
convex function f satisfying f(x) > −∞ for every x and 0 ∈ dom(f), we
first decompose this function. Using a slightly different decomposition
as done by Crouzeix (cf.[15],[11]) we introduce the nonnegative function
f+ : Rn → [0,∞], given by

f+(x) :=
{

0 if x ∈ L̃(f, 0)
f(x) otherwise

. (126)

with the strict lower-level set L̃(f, 0) of the function f of level 0 listed
in relation (52). Using now f(x) > −∞ for every x and 0 ∈ dom(f)
we immediately obtain that f+(0) = f(0) = 0. Moreover, the function
f− : Rn → (−∞,∞] is given by

f−(x) =
{

f(x) if x ∈ cl(L̃(f, 0))
∞ otherwise

. (127)

To analyze the function f− it is only interesting to consider positively ho-
mogeneous evenly quasiconvex functions f satisfying L̃(f, 0) is nonempty.
If this holds, we obtain by Lemma 54 that L̃(f, 0) is a nonempty convex
cone and since 0 ∈ cl(L̃(f, 0)) it follows that f−(0) = f(0) = 0. Also for
every r ∈ R we obtain that

L̃(f−, r) = cl(L̃(f, 0)) ∩ L̃(f, r) (128)

and this yields for r = 0 that L̃(f−, 0) = L̃(f, 0). By relation (127) we
therefore obtain for L̃(f, 0) is not empty that

dom(f−) ⊆ cl(L̃(f, 0)) = cl(L̃(f−, 0)). (129)

Since trivially f−(x) ≥ f(x) for every x it is easy to verify considering
the cases f(x) ≥ 0 and f(x) < 0 that

f(x) = min{f+(x), f−(x)} (130)

for every x ∈ Rn. For the functions f+ and f− one can now show the
following result.
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Lemma 133 If f : Rn → [−∞,∞] is a positively homogeneous evenly
quasiconvex function, then the functions f+ and f− are positively homo-
geneous and evenly quasiconvex.

Proof. Since f is positively homogeneous and evenly quasiconvex (and
hence quasiconvex) we obtain by Lemma 54 and 58 that L̃(f, 0) is a
(possibly empty) convex cone. This implies again by Lemma 54 that f+

is positively homogeneous. To show that f+ is evenly quasiconvex we
observe that L(f+, r) = L(f, r) for every r > 0. Also by the definition of
f+ we obtain

L(f+, 0) = L̃(f, 0) ∪ {x : x /∈ L̃(f, 0) and f(x) ≤ 0} = L(f, 0).

This shows, using the fact that f+ is a nonnegative function and f
is evenly quasiconvex, that also f+ is evenly quasiconvex. To verify the
same result for f− we observe, since cl(L̃(f, 0)) is also a (possibly empty)
convex cone, that f− is positively homogeneous. Moreover, for every
r ∈ R we know by relation (128) that L(f−, r) = cl(L̃(f, 0)) ∩ L(f, r)
and applying Lemma 42 and f is evenly quasiconvex it follows that f−
is evenly quasiconvex. �

We will now apply the dual representation of an evenly quasiconvex
function and show the following result for a nonnegative positively ho-
mogeneous evenly quasiconvex function f with 0 ∈ dom(f). A related
result is also discussed in [11]. Recall that a function is called sublinear,
if it is positively homogeneous and convex.

Lemma 134 If f : Rn → [−∞,∞] is a nonnegative positively homoge-
neous evenly quasiconvex function with 0 ∈ dom(f), then f is a nonneg-
ative l.s.c. sublinear function.

Proof. By the dual representation of an evenly quasiconvex function (see
Theorem 107) we obtain that

f(x) = fec(x) = supa∈Rn ca(a>x). (131)

Since f ≥ 0 it follows by the definition of ca that ca is a nonnegative
function for every a ∈ Rn. Moreover, using f(0) = 0 and 0 ≤ ca(0) ≤
f(0) we obtain ca(0) = 0. Also for x ∈ Rn and a ∈ Rn satisfying a>x ≤ 0
it follows by the monotonicity of ca that 0 ≤ ca(a>x) ≤ ca(0) = 0 and
this implies ca(a>x) = 0 for every a>x ≤ 0. Moreover, for a>x > 0 we
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obtain by Lemma 132 that ca(a>x) = raa>x with ra := ca(1) ≥ 0 and
combining both observations yields

ca(a>x) = max{raa>x,0}

for every a ∈ Rn. Applying now relation (131) yields

f(x) = supa∈Rn max{raa>x, 0} = max{supa∈Rn raa>x, 0} (132)

and since x → supa∈Rn raa>x is a l.s.c. sublinear function the desired
result follows by relation (132). �

Since by relation (126) we obtain that f+(x) = max{f(x), 0} and
for f positively homogeneous and evenly quasiconvex the function f+

is also positively homogeneous and evenly quasiconvex (Lemma 133)
we may apply Lemma 134 and so we obtain the result that f+ is a
nonnegative l.s.c. sublinear function in case the function f is positively
homogeneous, evenly quasiconvex, 0 ∈ dom(f) and f(x) > −∞ for every
x. Finally we will show the following result for a positively homogeneous
evenly quasiconvex function f satisfying L̃(f, 0) nonempty, dom(f) ⊆
cl(L̃(f, 0)) and f(x) > −∞ for every x..

Lemma 135 If f : Rn → (−∞,∞] is a positively homogeneous evenly
quasiconvex function with 0 ∈ dom(f) ⊆ cl(L̃(f, 0)), then f is a nonpos-
itive l.s.c. sublinear function.

Proof. By the dual representation of an evenly quasiconvex function we
obtain (see Theorem 107) that

f(x) = supa∈Rn ca(a>x). (133)

If the vector a does not belong to the polar cone (L̃(f, 0))0, then there
exists some x0 satisfying f(x0) < 0 and r := a>x0 > 0. By Lemma 132
this yields for every t > 0 that

ca(t) = ca(tr−1r) = tr−1ca(r) ≤ tr−1f(x0) < 0

and so ca(∞) := limt↑∞ ca(t) = −∞. Since the function ca is nonde-
creasing, this shows that ca(t) = −∞ for every t ∈ R and using the fact
that f(x) > −∞ for every x and relation (133) we obtain

f(x) = sup{ca(a>x) : a ∈ (L̃(f, 0))0}. (134)
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If the vector a belongs to (L̃(f, 0))0 and a>x ≥ t > 0 for some x ∈ Rn,
then clearly x does not belong to cl(L̃(f, 0)). Since dom(f) ⊆ cl(L̃(f, 0))
this implies that f(x) = ∞ and so we have shown for every a belonging
to (L̃(f, 0))0 that

ca(t) = ∞ for every t > 0. (135)

To analyze ca(t) for a ∈ (L̃(f, 0))0 and t ≤ 0 we first assume that there
exists some x0 satisfying f(x0) < 0 and a>x0 = 0. By Lemma 132 it
holds that αca(0) = ca(0) for every α > 0 and since ca(0) ≤ f(x0) < 0
we obtain that ca(0) = −∞ . Hence it follows that ca(t) ≤ ca(0) = −∞
for every t ≤ 0 and we have shown for every a ∈ (L̃(f, 0))0, for which
there exists some x0 ∈ L̃(f, 0) satisfying a>x0 = 0, that

ca(t) = −∞ for every t ≤ 0 (136)

Using again the fact that f(x) > −∞ for every x and relations (134),
(135) and (136) yields

f(x) = sup{ca(a>x) : a ∈ D} (137)

for every x ∈ Rn with

D := {a ∈ (L̃(f, 0))0 : a>y < 0 for every y ∈ L̃(f, 0)}.

We will now analyze the behaviour of x → ca(a>x) for an arbitrary a
belonging to D. If a>x > 0 it follows by relation (135) that ca(a>x) =
∞. Also, if a>x = 0, then for every y satisfying a>y ≥ a>x = 0 we
obtain, using a ∈ D, that f(y) ≥ 0 and since 0 ∈ dom(f) this implies
ca(a>x) = 0. Finally, for a ∈ D and a>x < 0 it follows by Lemma 132
that ca(a>x) = qaa>x with qa := −ca(−1) and since L̃(f, 0) is nonempty
we obtain by relation (137) that 0 < qa ≤ ∞. Hence we have shown for
every a ∈ D that

ca(a>x) =
qaa>x if a>x < 0
0 if a>x = 0
∞ if a>x < 0

. (138)

Again by relation (137) and f(x) > −∞ for every x we obtain that the
set D0 := {a ∈ D : 0 < qa < ∞} is nonempty and by relations (138)
and (137) this shows

f(x) = sup{ca(a>x) : a ∈ D0}. (139)
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Since for a ∈ D0 it follows that −∞ < ca(a>x) = qaa>x for a>x ≤ 0
and∞ otherwise, this is clearly a l.s.c. sublinear function and by relation
(139) the desired result follows. �

Since by Lemma 133 and relation (127) the function f− satisfies
the conditions of Lemma 135 for f a positively homogeneous evenly
quasiconvex function with 0 ∈ dom(f) and f(x) > −∞ for every x it
follows that f− is a nonpositive l.s.c. sublinear function. Using relation
(130) and Lemma 133 up to 135 the following remarkable result follows
immediately.

Theorem 136 If f : Rn → (−∞,∞] is a positively homogeneous evenly
quasiconvex function and 0 ∈ dom(f), then f can be written as the
minimum of a nonpositive l.s.c. sublinear function and a nonnegative
l.s.c. sublinear function.

Proof. If L̃(f, 0) is empty then f is a nonnegative function and the result
follows by Lemma 134. Moreover, if L̃(f, 0) is nonempty, then by relation
(130) it follows that f = min(f+, f−) and applying the observations after
Lemma 134 and 135 yields the desired result. �

By Theorem 136 every positively homogeneous evenly quasiconvex
function f satisfying f(x) > −∞ for every x and 0 ∈ dom(f) must be
the minimum of two l.s.c. sublinear functions and so it is also l.s.c.. By
relation (77) these l.s.c. sublinear functions can be written as support
functions. This is a rather remarkable result, which does not hold in
general for evenly quasiconvex functions. As an example we mention
the evenly quasiconvex function sign(x) given by

sign(x) = −1 if x < 0, sign(0) = 0 and sign(x) = 1 if x > 0

which is neither upper or lower semicontinuous at 0. To conclude this
subsection we observe that Theorem 136 is an extension of the main
result in Crouzeix (cf.[15]). For related results see also [14], [13],[12] and
[11]. Introducing now the Dini upper directional derivative d → f ′+(x,d)
given by

f ′+(x,d):= lim supt↓0 t−1(f(x + td)− f(x))

(cf.[30],[11]) it is possible to use the above so-called Crouzeix representa-
tion theorem for positively homogeneous quasiconvex functions to ana-
lyze the global behaviour of the function d → f ′+(x,d) for f quasiconvex
(cf.[15], [44], [45], [33],[11]). This concludes our discussion of positively
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homogeneous evenly quasiconvex functions and dual representations. In
the next section we mention some milestone papers and books within
the long history of convex and quasiconvex analysis.

5 Some remarks on the history of convex and
quasiconvex analysis.

In this section1 we will discuss the origin of the important notions used
in convex and quasiconvex analysis. It seems that the field of convex ge-
ometry and convex bodies in two and three dimensional space was first
studied systematically by H.Brunn (cf.[7], [8]) and Minkowski (cf.[51]).
Brunn (cf.[9]) and Minkowski (cf.[52]) also proved the existence of sup-
port hyperplanes. Also at the end of 19th and the beginning of the
20th century Farkas showed in a series of papers (cf.[45], [61]) the al-
ternative theorem for linear inequality systems and this result became
known as Farkas lemma within linear programming. Although this re-
sult was listed with an incorrect proof in some of his earlier papers a
correct proof of this result appeared in [20]. More fundamental ideas
about the related field of necessary optimality conditions for nonlinear
optimization subject to inequality constraints can be found in papers
by Fourier, Cournot, Gauss, Ostrogradsky, and Hamel (cf.[61]). On the
other hand, more early references related to the study of convex sets are
listed in the reprinted version of the 1934 book of Bonnesen and Fenchel
(cf.[5]), Fenchel (cf.[22]), Valentine (cf.[68]) and Varberg (cf.[62]). Also
at the beginning of the 20th century convex functions were introduced
by Jenssen (cf.[39]) and more than forty years later a thorough study of
conjugate functions in Rn was initiated by Fenchel (cf.[21]). Although
Mandelbrojt (cf.[48]) already introduced the conjugate function in Rn

for n = 1 (cf.[69]), it was Fenchel, who first realized the importance of
the conjugacy concept in convex analysis. Four years before the mile-
stone paper of Fenchel, also the first book on convex functions written
in French by Popoviciu (cf.[60]) was published. In the English scien-
tific community the unpublished lecture notes by Fenchel (cf.[22]) were
a long time the main source of references. This book served as the main
inspiration for the classical book of Rockafellar (cf.[63]) as noted in its
preface. Also in this preface it is mentioned that Prof. Tucker sug-
gested the name convex analysis and this became the standard word for

1The authors like to thank Prof.J.Kolumbán (Cluj) and Prof. S.Komlósi (Pecs)
for pointing out some of the early developments.
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this field. The introduction of quasiconvex functions started later. Al-
though in most of the literature de Finetti ([16]) is mentioned as being
the first author introducing quasiconvex functions, these functions were
already considered by von Neumann (cf.[71] and independently Popovi-
ciu (cf.[59]). Actually von Neumann (cf.[71]) already proved in 1928 a
minimax theorem on simplices for bifunctions which are quasiconcave in
one variable and quasiconvex in the other variable. A generalization of
this result was rediscovered by Sion (cf.[66]) 30 years later. For more de-
tails on the development of quasiconvex functions the reader is referred
to [2]. To develop results for the surrogate dual concept developed by
Glover (cf.[31]) an adhoc approach involving the cr-conjugate function
was initiated by Greenberg and Pierskalla (cf.[32]). Their results were
generalized and put into the proper framework of dual representations
by Crouzeix in a series of milestone papers (cf.[12], [13], [15], [14]). In
these papers Crouzeix focussed his attention on the dual representation
of the l.s.c. hull of a quasiconvex function. Although Fenchel (cf.[23])
already introduced the concept of an evenly convex set the usefulness
of this concept leading to a more symmetrical dual representation of an
evenly quasiconvex function was discovered independently by Passy and
Prisman (cf.[55]) and Mart́ınez Legaz (cf.[50]). This concludes our short
excursion, which is by no means complete, to the history of convex and
quasiconvex analysis.
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imization Algorithms I. Number 305 in Grundlehren der Mathema-
tischen Wissenschaften. Springer Verlag, Berlin, 1993.

[35] Hiriart-Urruty, J.B. and C. Lemaréchal. Convex Analysis and Min-
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