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We consider the Nelder and Mead Simplex Method for the optimization of

stochastic simulation models. Existing and new adaptive extensions of the Nelder

and Mead simplex method designed to improve the accuracy and consistency of

the observed best point are studied. We compare the performance of the

extensions on a small microsimulation model, as well as on �ve test functions. We

found that gradually decreasing the noise during an optimization run is the most

preferred approach for stochastic objective functions. The amount of computation

e�ort needed for successful optimization is very sensitive to the timing of noise

reduction and to the rate of decrease of the noise. Restarting the algorithm

during the optimization run, in the sense that the algorithm applies a fresh

simplex at certain iterations during an optimization run, has adverse e�ects in our

tests for the microsimulation model and for most test functions.
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This paper investigates the performance of adaptive extensions of the Nelder and Mead

simplex method for optimization of stochastic simulation models. Although the Nelder and

Mead simplex method was originally designed for optimization of deterministic

multidimensional functions (Nelder and Mead, 1965), it is frequently used for the optimization

of stochastic objective functions. In particular, this method can be used for the optimization of

stochastic simulation models, where one tries to estimate the model parameters that optimize

some speci�c stochastic output of the simulation model. In this optimization procedure, the

stochastic simulation model is often considered as a black-box model (Pug, 1996) where the

output of the simulation model can be regarded as a stochastic function of the model

parameters.

The goal of this investigation is to �nd optimization methods that can be used for

stochastic simulation models for which the corresponding stochastic objective function has the

following characteristics (Wright, 1996):

� Calculation of this function is very expensive or time-consuming.

� Exact �rst partial derivatives of this function cannot be calculated.

� Numerical approximation of the gradient of this function is impractically expensive or

slow.

The Nelder and Mead simplex method is a potential candidate for optimization of a

function with the properties listed above, since it is a direct search method, i.e. it only uses

function values and does not require a gradient (Wright, 1996).

Our particular interest in the Nelder and Mead Simplex method stems from the need for

eÆcient algorithms for the optimization of microsimulation models for disease control. In

microsimulation models individual �ctitious life histories are simulated, where each of the

simulated individuals can be at risk for developing a certain disease. Microsimulation models

are used for the evaluation of speci�c interventions. For example, the cancer screening

microsimulation model MISCAN (Loeve et al., 1999) is used in the evaluation of mass cancer

screening programs. Microsimulation models for infectious diseases (Plaisier et al., 1990;

Plaisier et al., 1998; van der Ploeg et al., 1998) are used for evaluation of interventions such as

control of transmission of vector-borne diseases, and promotion of condom use and mass

treatment for sexually transmitted diseases.

For the evaluation of interventions the parameters of the microsimulation model have to

be quanti�ed. Only some of these parameters can be quanti�ed directly on basis of existing

knowledge. Inferences for other parameters can be obtained by optimizing the goodness-of-�t

of the simulation model on empirical data (van Oortmarssen et al., 1990). Evaluation of this

stochastic objective function is often very time-consuming.
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The Nelder and Mead simplex method is robust to small inaccuracies or stochastic

perturbations in function values since it only uses the ranks of the function values to determine

the next move, not the function values themselves (Barton and Ivey, 1991). However,

considerable noise may change the relative ranks of the function values, leading to

inappropriate termination, possibly at a solution that is far from the optimum (Barton and

Ivey, 1996). Since the �rst paper on the Nelder and Mead Simplex method, numerous

modi�cations have been proposed (for an overview, see Betteridge, Wade and Howard (1985)).

Part of these modi�cations aim at improving its performance for stochastic objective functions

or in particular for stochastic simulation models.

Some simple modi�cations that are proposed are restarting the optimization in the current

observed best point (Betteridge, Wade and Howard, 1985), and re-evaluation of the function

value in the currently observed best point (see e.g. Spendley, Hext and Himsworth (1962)).

Barton and Ivey (1991, 1996) compare a number of re-evaluation strategies and some

modi�cations of the shrinking of the simplex during the optimization. They propose a modi�ed

algorithm that improves the performance of the original Nelder and Mead simplex method, in

terms of a smaller probability of inappropriate termination of the optimization process.

Tomick, Arnold and Barton (1995) report further improvements of this modi�ed algorithm

when applied to stochastic test functions. They consider the average of a number of replicated

observations to evaluate the stochastic objective function. The number of replications used in

an iteration step is determined dynamically by considering a statistical test on the di�erences

of the function values in the current simplex. Humphrey and Wilson (1998) designed a

three-phase application of the Nelder and Mead Simplex Method that is based on restart. The

size of the initial simplex and the way the simplex is shrunk during an optimization run is

changed in each phase of their algorithm. The incentive for starting a new phase is based on

the size of the simplex, and the observed best point of the algorithm is de�ned as the

minimum of the observed best points of each of the three phases. They report improved

performance over the modi�ed algorithm by Barton and Ivey (1996).

In the optimization of a stochastic simulation model, the key issue to address is to identify

whether and when noise is dominating the optimization process. Precise timing of actions like

noise reduction or restart is very important, since otherwise the e�ect of these actions may not

be optimal. For example, the algorithm may have been drifting around already for several

iterations, or the algorithm is corrected too soon, thus preventing the algorithm to make

serious progress towards the optimum.

In this paper we will investigate and compare the performance of adaptive extensions of

the Nelder and Mead simplex method that address both the timing and the type of action to

be taken to improve the optimization process. In these extensions, we incorporate the existing

ideas found in literature as described above. At the start of each iteration of the algorithm, a
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criterion is checked to test whether the optimization process is hindered by noise. If the

criterion is ful�lled, an action is taken that adapts the evaluation of the function values and /

or the size of the simplex before the optimization routine is continued.

We consider a number of criteria that check whether the noise is dominating the

optimization process. These criteria identify when an accidentally good function evaluation

hinders the optimization process, or when the di�erences between the function values are

dominated by noise. The set of actions that we will consider are rather straightforward and

include noise reduction of the simulation model, restarting the optimization run and

re-evaluating the currently best point. We apply the criterion-action modi�cations in an

automated Nelder and Mead simplex algorithm. Therefore, the algorithm has an automated

means of identifying when noise dominates the optimization process and it is able to correct

itself when it encounters this situation.

We test the extensions for accuracy, consistency and computational e�ort. The accuracy is

measured by the error in the returned observed best point compared to the optimum.

Consistency is measured by the standard deviation of the errors resulting from repeated

application of the algorithm. Small standard deviations show that repeated application of the

algorithm gives comparable results.

The algorithms are tested on stochastic versions of well-known deterministic test

functions. We also consider a microsimulation version of a model that is frequently used in

evaluation of cancer screening policies. Although this model is a simpli�cation of

state-of-the-art models available, the model is well known and furthermore its performance can

be checked by an analytical version of the model (Day and Walter, 1984). The optima of the

test functions and the microsimulation model are known and therefore we can test for the

accuracy and consistency of the automated adaptive Nelder and Mead simplex algorithms.

The results of our tests will show that the performance of the Nelder and Mead simplex

method in stochastic optimization problems will bene�t from the proposed modi�cations. The

extensions prevent inappropriate termination of the optimization, and most of the extensions

do not increase the computational e�ort too much.

In Section 1 the standard Nelder and Mead simplex method will be described. Section 2

contains the criteria and actions that we propose to improve the method when applied to

stochastic simulation models. The remainder of the paper describes our test in Sections 3 and

4 and our test results in Section 5. We will end this paper with a conclusion and some points

for further research.

1. Simplex algorithm

In this section we describe the Nelder and Mead Simplex Method for the optimization of an

n-dimensional stochastic objective function. Without loss of generality, we assume that the
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optimization is a minimization problem. Mathematically, this problem can be described by

minimize f : D ! IR; D � IRn

where f (�) = IE (F (�)), � 2 D. Here, F (�) denotes the stochastic output for given input �,

and IE (F (�)) denotes its expected value. When optimizing a simulation model, the argument

� represents the parameters of the simulation model.

The simplex algorithm uses a simplex with (n+ 1) vertices, and evaluates the objective

function in every vertex. Based solely on the ranks of the observed function values in the

vertices of the simplex, di�erent steps can be taken, such as reection, expansion or

contracting vertices or shrinking the simplex, in order to �nd better vertices.

The original Nelder and Mead simplex algorithm (Nelder and Mead, 1965) can be

described as follows. Iteration k of the algorithm starts with the simplex resulting from the

previous iteration, consisting of the vertices
n
�
k

1 ; :::; �
k

n+1

o
and corresponding function valuesn

F

�
�
k

1

�
; :::; F

�
�
k

n+1

�o
. First, the vertex with the lowest value (�k

low
), the vertex with the

highest value (�k
hi
) and the vertex with the next-to-highest value (�k

nexthi
) are determined.

Next, vertex �khi is reected through the centroid �kcent of the remaining vertices to �nd a new

vertex �krefl:

�
k

refl = (1 + �) �kcent � ��
k

hi, � > 0

and the objective function is evaluated in vertex �k
refl

. A new simplex is then constructed as

follows:

1. If F (�krefl) � F (�khi) then the objective function is evaluated in a contracted vertex

between �khi and �
k

cent, de�ned by

�
k

c1 = ��
k

hi + (1� �) �kcent, 0 < � < 1

If F (�kc1) < F (�khi), then the new simplex is found by replacing vertex �khi with vertex �kc1,

otherwise the new simplex is found by shrinking the current simplex around vertex �k
low

,

replacing vertex �k
i
with

Æ�
k

i
+ (1� Æ) �k

low
; i = 1; :::; n + 1, �k

i
6= �

k

low
, 0 < Æ < 1

2. If F (�k
nexthi

) < F (�k
refl

) < F (�k
hi
) then the objective function is evaluated in a contracted

vertex between �krefl and �
k

cent, de�ned by

�
k

c2 = ��
k

refl + (1� �) �kcent; 0 < � < 1

If F (�kc2) < F (�krefl), then the new simplex is found by replacing vertex �khi with vertex

�
k

c2, otherwise the new simplex is found by �rst replacing vertex �khi by vertex �krefl and

subsequently shrinking the resulting simplex around vertex �klow, replacing vertex �
k

i with

Æ�
k

i + (1� Æ) �klow; i = 1; :::; n+ 1, �
k

i 6= �
k

low; 0 < Æ < 1
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3. If F (�k
low

) < F (�k
refl

) < F (�k
nexthi

) then the new simplex is found by replacing vertex �k
hi

with vertex �k
refl

.

4. If F (�k
refl

) < F (�k
low

) then the objective function is evaluated in an expanded vertex �kexp

de�ned by

�
k

exp = �
k

refl
+ (1� ) �k

cent
;  > 1

If F (�kexp) < F (�k
low

), then the new simplex is found by replacing vertex �k
hi
with vertex

�
k

exp, otherwise the new simplex is found by replacing vertex �k
hi
with vertex �k

refl
.

The next iteration starts with the new simplex
n
�
k+1
1 ; :::; �

k+1
n+1

o
. Vertex �k+1

low
is taken as

the estimator for the optimum �
� at the kth iteration. The parameters (�; �; ; Æ) are

traditionally set to (1; 0:5; 2; 0:5) (Nelder and Mead, 1965; Barton and Ivey, 1996). If a vertex

is de�ned outside the domain D, either during initialization of the �rst simplex or during an

iteration, then this vertex is projected onto the boundary of this region before evaluating it.

We will compare extensions of the Nelder and Mead simplex method on their performance

over a large preset number of evaluations, assuming that the results of the algorithm will not

improve much further if more evaluations are used. The issue of �nding an appropriate

stopping criterion will not be addressed in this paper.

In comparing the extensions, a variant of the original Nelder and Mead simplex algorithm

which includes two well-established modi�cations will serve as a benchmark algorithm (see

Figure 1). The extensions will be applied to this benchmark algorithm instead of to the

original Nelder and Mead simplex algorithm.

First, it is standard practice today to compare the expanded vertex �kexpwith the reected

vertex �krefl in the expansion step (�Aberg and Gustavsson, 1982; Morgan and Burton, 1990;

Wright, 1996; Lagarias, Reeds, Wright and Wright, 1998; McKinnon, 1998) instead of

comparing the expanded vertex with vertex �k
low

(Nelder and Mead, 1965; Barton and Ivey,

1996). Secondly, Barton and Ivey (1996) investigated the performance of a modi�cation that

re-evaluates the objective function in the best vertex at each shrink step and reduces the

simplex by 10% (Æ = 0:9) at each shrink step rather than 50% (Æ = 0:5). They found that the

modi�ed algorithm, when applied to stochastic objective functions, leads to improvements in

the expected value of the objective function at termination at the cost of more function

evaluations. Other studies (Tomick, Arnold, and Barton 1995; Humphrey and Wilson, 1998;

Neddermeijer et al., 1999) also found this modi�cation to perform signi�cantly better for

stochastic functions. We include this second modi�cation in the benchmark algorithm, since

we are especially interested in a simplex algorithm that further improves the performance on

stochastic problems with considerable noise, beyond the improvements proposed by Barton

and Ivey. Preliminary tests showed that the algorithm that results from applying the two

modi�cations to the original algorithm can indeed be used as a benchmark algorithm.
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q1,...,qn+1�

F(q1),...,F(qn+1)

determine qlow, qhi,

qnexthi and qcent

reflection:

qrefl = (1+a)qcent-aqhi

F(qrefl)³F(qhi)

contraction:

qc1=bqhi+(1-b)qcent

F(qc1)<F(qhi)

replace qhi by qc1

shrink:

qi= dqi+(1-d)qlow

i=1,...,n+1

F(qnexthi)<F(qrefl)<F(qhi)

contraction:

qc2=bqrefl+(1-b)qcent

F(qc2)<F(qrefl)

replace qhi by qc2replace qhi by qrefl

F(qlow)<F(qrefl)<F(qnexthi)

replace qhi by qrefl

F(qrefl)<F(qlow)

expansion:

qexp=gqrefl+(1-g)qcent

F(qexp)<F(qrefl)

replace qhi by qexp replace qhi by qrefl

new q1,...,qn+1�

F(q1),...,F(qn+1)

yes no yes yesno no

Figure 1. Flow chart for iteration k of the benchmark Nelder and Mead simplex algorithm

(the superscript k is suppressed for notational convenience).

Nelder and Mead (1965) mention two types of initial simplices, i.e. regular simplices and

axial or cornered simplices. �Oberg (1998) found that regular initial simplices perform better

than cornered initial simplices. In this paper, we will therefore use a regular initial simplex.

This initial simplex
n
�
0
1; :::; �

0
n+1

o
is given by :

�
0
1 =

�
�
0
1; :::; �

0
n

�

�
0
2 =

�
�
0
1 + �1; �

0
2 + �2; :::; �

0
n + �n

�

:::

�
0
n+1 =

�
�
0
1 + �1; :::; �

0
n�1 + �n�1; �

0
n + �n

�

Here,

�i =
ci

n
p
2

np
n+ 1 + n� 1

o
and �i =

ci

n
p
2

np
n+ 1� 1

o

where �01 =
�
�
0
1; :::; �

0
n

�
denotes the starting point of the optimization and the step sizes

(c1; :::; cn) determine the size of the initial simplex.
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2. Extensions

The adaptive extensions consist of a criterion that will be checked in each iteration of the

Nelder and Mead simplex algorithm, and an action that is taken when this criterion is ful�lled.

At the beginning of an iteration k, a simplex with vertices
n
�
k

1; :::; �
k

n+1

o
and the

corresponding observed function values
n
F

�
�
k

1

�
; :::; F

�
�
k

n+1

�o
are given. At this point in the

iteration a criterion is checked, and possibly an action is taken. The iteration then proceeds

with the �rst step in each iteration, i.e. the reection step.

It is important to note that when the parameters of a simulation model are being

optimized, a function evaluation consists of performing one or more simulation runs. To

evaluate a vertex � we need to specify the simulation size used for one simulation run, S, and

the number of simulation runs, N . If multiple simulation runs are used, i.e. N > 1, then the

observed function value in vertex � is de�ned as the average of the N replicated observations

F
(j)(�); j = 1; :::; N .

2.1 Criteria

2.1.1 Simplex size

We noticed that if there is considerable noise, the best function value shows no further

improvement when the size of the simplex starts to decrease. This observed function value can

still be far from the optimum. If the simplex becomes too small, the di�erences in the function

values in the (n+ 1) vertices are probably small as well, and are therefore likely to be

dominated by noise. In this case, only minor improvements of the observed best function value

are possible. Therefore, we want to detect the moment that the simplex size stops increasing

or starts to decrease.

Our �rst criterion is based on the relative size of the simplex also used in the Dennis and

Woods stopping criterion (1987). The relative size of the simplex in iteration k is de�ned as:

 k =
1

�k

max
i=1;:::;n+1

�
k
i 6=�

k
low

�ki � �
k

low

 where �k = max
�
1;
�klow


�

where k:kdenotes the Euclidian norm. We consider the di�erence in the relative sizes of the

simplices in two successive iterations, i.e.

	k =  k �  k�1

If the di�erence is smaller than some preset tolerance level, i.e. 	k < "ss, then the criterion is

ful�lled.
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2.1.2 Lack of change in function value

This criterion tests on suÆcient change in the observed function values. Using regression

analysis we examine if the observed best function value has changed signi�cantly during the

preceding iterations. If this is not the case, then we conclude that the di�erences in the

observed optima can only be attributed to noise.

At the start of iteration k, we apply regression analysis to a number (say q) of observed

best function values found in the previous q successive iterations, by determining the linear

model

y = �1x+ �0 + ", " � N(0; �2)

where the explanatory variable x is the iteration number and the dependent variable y relates

to the observed function value. If the slope �1 is not signi�cantly di�erent from zero, then we

conclude that possible di�erences in the function values can only be attributed to noise.

Although a linear model may not be the best �t for this improvement, we are solely interested

in detecting a lack of change in the function values. For this criterion we thus consider a

two-sided t-test for the null hypothesis H0 : �1 = 0 with signi�cance level �lc.

2.1.3 Dominant noise

This criterion, which originates from Tomick, Arnold, and Barton (1995), is only applicable to

algorithms that use multiple simulation runs to evaluate a vertex. The simplex algorithm

depends on the di�erences in the observed function values in the (n+ 1) vertices. The criterion

checks whether the function values are not signi�cantly di�erent from each other. If not, we

conclude that the di�erences in the function values in the vertices can only be attributed to

noise.

At the beginning of iteration k, we test the null hypothesis H0 : f
�
�
k

1

�
= f

�
�
k

2

�
= ::: = f�

�
k

n+1

�
using the observed function values

n
F

�
�
k

1

�
; :::; F

�
�
k

n+1

�o
generated from Nk�1

replicated observations, by considering an F-test with signi�cance level �dn applied to the

following data:

F
(j)

�
�
k

i

�
; j = 1; :::; Nk�1; i = 1; :::; n + 1

2.1.4 Retaining the best function value and re-evaluation of the best vertex

This criterion uniquely combines with an action, so they will be described simultaneously. If

the observed function value of the best vertex is accidentally low due to noise, then the best

point could be retained for too long. Accidental low results can possibly be corrected by

re-evaluating the best vertex. In the benchmark algorithm the best vertex is therefore

re-evaluated at each shrink step. In addition, we evaluate the often used "n+1" rule for
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re-evaluation (Spendley, Hext and Himsworth, 1962; Morgan and Deming, 1974; Shavers,

Parsons and Deming, 1979). Here, the best vertex is re-evaluated if the best vertex is retained

in (n+ 1) successive iterations, where n is the number of parameters of the objective function.

Since we already apply re-evaluation at each shrink step, we use an adjusted version of the

"n+1" rule: if the observed function value in the best vertex is retained in (n+ 1) successive

iterations then the best vertex is re-evaluated before reection is applied.

2.2 Actions

Besides re-evaluation of the best vertex we consider the actions restart and noise reduction.

2.2.1 Restart

If at the start of iteration k the chosen criterion is ful�lled, then a fresh simplex is constructed

with the same dimensions as the initial regular simplex, using the current best vertex �klow as

starting point. Various studies mention restart as a possibility for dealing with noisy objective

functions (Akitt, 1976; Gill, Murray and Wright, 1981; Betteridge, Wade and Howard, 1985II;

Walters and Deming, 1985; Wright, 1996).

2.2.2 Noise reduction

As will be obvious, decreasing the amount of noise would largely solve the diÆculties caused

by this noise. We will apply this action in two ways (Azadivar and Lee, 1988): in case a single

simulation run is used to evaluate a vertex, the simulation size is increased, whereas in case

multiple simulation runs are used, the number of replicated observations is increased.

� Increasing the simulation size

If at the start of iteration k the chosen criterion is ful�lled, then the simulation size Sk is

increased by setting Sk = bbs � Sk�1c. All vertices in the current simplex are re-evaluated

with the new simulation size, and the algorithm continues using the new simulation size

Sk. To prevent explosion of the simulation size we set Sk = min (bbs � Sk�1c , Smax).

Moreover, in order to prevent that the increase in simulation size becomes zero due to

rounding, the inequality (bs � 1)S0 � 1 should hold.

� Increasing the number of replicated observations

If at the start of iteration k the chosen criterion is ful�lled, then the number of replicated

observations Nk is increased by setting Nk = bbr �Nk�1c. All vertices in the current

simplex are re-evaluated with the new number of replicated observations, by adding

Nk �Nk�1 replications, and the algorithm continues using the new number of

replications Nk. Again, to prevent explosion of the number of replications we set

Nk = min (bbr �Nk�1c , Nmax), whereas the inequality (br � 1)N0 � 1 should hold.
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2.3 The tested extensions

The combinations of a criterion and an action that will be tested are shown in Table I.

Increasing the simulation size is only applied to the algorithms using one simulation run per

function evaluation, whereas increasing the number of replications is only applied to the

algorithms using multiple simulation runs. The extended algorithms are compared with the

benchmark algorithm denoted by BM . An initial simulation size S0 and an initial number of

replications N0 are given and for the algorithms that increase the simulation size or the

number of replications, a maximum simulation size Smax or a maximum number of replications

Nmax are given.

3. The test problems

We test the optimization algorithms on a set of �ve test functions with known optima, which

consist of a deterministic term and an stochastic error term. We also consider a

microsimulation version of an existing cancer screening model. This model has three

parameters that need to be estimated from an observed data set by constrained minimization

of a goodness-of-�t test statistic. For this particular model the optimal parameters can also be

determined analytically.

3.1 One stage - one test breast cancer screening model

The microsimulation model is a simulation implementation of the breast cancer screening

model developed by Day and Walter (1984). In this model only one disease stage, the

detectable preclinical phase (DPCP ), is modeled. At the end of the DPCP a cancer is

clinically diagnosed, usually on basis of symptoms, whereas during the DPCP a cancer can be

detected by a screening test for early detection of breast cancer. The DPCP has incidence

rate J and we assume that the duration of the DPCP is exponentially distributed with

parameter �. A cancer that is clinically detected in the period following a negative screening

test is called an interval cancer.

A screening program consisting of four annual screening rounds is modeled. The

sensitivity of the screening test, i.e. the probability that the screening test correctly identi�es

an individual as being in the DPCP (Day and Walter, 1984), is denoted with '. In each

microsimulation run a large number of individual life histories, including disease processes and

the impact of screening, is simulated. The microsimulation model results in estimates for the

detection rates at each of the screening rounds and estimates for the incidence rates of interval

cancers, for di�erent time intervals following each of the screening rounds.

The model will be applied to data from the �rst randomized trial for breast cancer

screening, viz. the HIP study (Day and Walter, 1984; Shapiro et al., 1974; van Oortmarssen et
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al., 1990). In the HIP study approximately 62,000 women, who were aged between 40 and 64

at entry, were randomly allocated to either a study group or a control group. Only the study

group was o�ered annual breast cancer screening for four years. About 65 percent of the study

group (20,166 women) agreed to take part and were screened at least once (these women all

attended the �rst screening). We will use follow-up data until 5 years after the last screening.

The results from the HIP screening trial that will be used are described by Day and Walter

(1984), and consists of 4 detection rates and 14 incidence rates of interval cancers occurring

after a previous negative test result.

The parameters J , � and ' will be estimated from the observed data set through

minimization of a chi-square goodness-of-�t test statistic. This stochastic objective function is

given by

F (J; �; ') =
18X
i=1

(Oi �Ei (J; �; '))
2

Ei (J; �; ')

where Oi is the observed number of cancers during screening round or interval i and Ei is the

number of simulated cancers during screening round or interval i, i = 1; :::; 18. The optimal

parameters of the model for the HIP data are determined using the objective function

f (J; �; ') =
18X
i=1

(Oi �Ai (J; �; '))
2

Ai (J; �; ')

where Ai is the number of cancers during screening round or interval i, i = 1; :::; 18, as

predicted by the analytical implementation of the breast cancer screening model (Day and

Walter, 1984). We determined the optimal parameters (J�; ��; '�) of the model applied to the

HIP data set by extensive enumeration (using the step sizes 10�5 for J , 10�3 for � and 10�3

for ') of f (J; �; '): f (J�; ��; '�) = f (0:0021; 0:61; 0:87) � 13:34.

3.2 The test functions

We test randomized versions of �ve deterministic nonlinear objective functions. Each of these

deterministic test functions has a unique optimum. Two of the test functions are classical,

whereas the other test functions show a characteristic behavior that in our opinion may occur

in stochastic objective functions resulting from microsimulation models. We randomize the

deterministic test functions by adding a normal distributed error term with zero mean and

standard deviation �2 to each test function. Independent random number streams are used for

each optimization run. The test functions are:

1. Rosenbrock's function

f(X1;X2) = 100
�
X2 �X

2
1

�2
+ (1�X1)

2

12



This is a classical test function (�Aberg and Gustavsson, 1982; Betteridge, Wade and

Howard, 1985I; Brumby, 1989; Hedlund and Gustavsson, 1992; Nelder and Mead, 1965;

Parker, Cave and Barnes, 1985; Phillips, 1972). The minimum, given by f (1; 1) = 0, lies

at the base of a banana-shaped valley (Gill, Murray and Wright, 1981).

2. Powell's singular function

f(X1; :::;X4) = (X1 + 10X2)
2 + 5 (X3 �X4)

2 + (X2 � 2X3)
4 + 10 (X1 �X4)

4

This often used classical test function has four parameters (Nelder and Mead, 1965;

Phillips, 1972; Brumby, 1989). The minimum is given by f (0; 0; 0; 0) = 0.

3. Symmetrical Gaussian function

f(X1;X2) = �10 exp
n
�
h
(100 �X1)

2 + (100�X2)
2
i
=15000

o

This test function is adapted from Van der Wiel (1980). Apart from a small region

around the optimum this symmetrical function is very at. The minimum is given by

f (100; 100) = �10.

4. An asymmetrical function

f(X1; :::;X8) =
8X

i=1

�
2Xi�4 + (6�Xi)

�

This function is highly asymmetrical. The minimum is given by

f (4:529; :::; 4:529) = 23:311.

5. A 5-variable paraboloid

f(X1; :::; X5) =
5X

i=1

X
2
i

This function is symmetrical and rather easy to optimize if no noise is included.

However, we observed that in case noise is imposed on the function, optimization with

the benchmark algorithm is still diÆcult. The minimum is given by f (0; 0; 0; 0; 0) = 0.

4. Experiments and statistical analysis

The tested extended algorithms and their control variables such as signi�cance and tolerance

levels are described in Tables I and II, respectively. In order to compare the algorithms in the

same way for all six objective functions, we treat an evaluation of each of the the �ve test

functions as if it were a simulation run.
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For the algorithms that use one simulation run to evaluate a vertex, we set the initial

simulation size to S0 = 50000. For the algorithms that use multiple simulation runs, we set the

initial simulation size to S0 = 10000 and the number of replications to N0 = 5. The maximum

number of replications and maximum simulation size are set to Nmax = 50 and Smax = 500000,

respectively. Furthermore, the variance �2 of the additive error term of the test functions are

set by �2 = 50000=S0. In this way, an initial simulation size S0 = 50000 corresponds to a

standard normal distributed error term. If during an iteration the simulation size is multiplied

with a factor bs, then this is modeled by dividing the variance of the error by bs.

The algorithms BM, RV-EV, SS-RS and LC-RS do not increase the simulation size or the

number of replications. In case of optimization of the test functions, the results for these

algorithms will not depend on the usage of either single or replicated observations. Therefore,

when optimizing a test function these algorithms are only run using replicated observations.

However, for the microsimulation model the results may very well depend on the use of either

a single simulation run or multiple simulation runs to evaluate a vertex. Therefore, these

algorithms are run for both settings, i.e. N0 = 1; S0 = 50000 and N0 = 5; S0 = 10000. The

algorithms are denoted with superscript 1 or 5, depending on the number of simulation runs.

The relevant information for each of the six objective functions is given in Table III. From

preliminary studies we �nd that when the settings described in Table III are applied, the

benchmark algorithm often terminates far from the optimum and the results of repeated

optimization runs can vary considerably, for all of the objective functions. For both the

microsimulation model and each of the test functions, we perform twenty optimization runs

with each optimization algorithm. The optimization runs are terminated after 250 function

evaluations. For each of the algorithms we denote the number of iterations performed in

optimization run j; j = 1; :::; 20 with Mj. For the simplex resulting from the kth iteration of

optimization run j, the best vertex is only determined in the �rst step of the next iteration

and is denoted by �
j;k+1
low

. This vertex is used as as the estimator for the optimum �
� at the kth

iteration of this optimization run. We de�ne the error in iteration k of optimization run j as

the di�erence between the expected function value in the best vertex in this iteration, �
j;k+1
low

,

and the expected function value in the optimum �
�:

�
j;k = E

�
F

�
�
j;k+1
low

��
�E (F (��)) = f

�
�
j;k+1
low

�
� f (��) ; j = 1; :::; 20

For each algorithm we consider the smallest error for each of the 20 optimization runs, denoted

by �
j

small
= mink=1;:::;Mj

�
j;k, j = 1; :::; 20, and the �nal error of the optimization runs, i.e. the

error at the end of the optimization runs, denoted by �
j

end
= �

j;Mj , j = 1; :::; 20.

For each objective function, we want to compare the accuracy, consistency and

computational e�ort of the algorithms. For each algorithm and for each of the two types of

errors that we consider, the errors resulting from the 20 optimization runs are mutually
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independent and identically distributed. The errors of the di�erent algorithms are also

mutually independent. However, as can be seen in the next section, the error distributions for

the algorithms can be quite di�erent, both in mean and variance. Therefore, to compare the

accuracy of the algorithms, we test if there is any stochastic di�erence between the algorithms

(Hollander and Wolfe, 1999), which means that we test if the probability that an error

resulting from one algorithm is smaller than an error resulting from another algorithm is

signi�cantly di�erent from 1
2
. First, we check if there is any signi�cant overall stochastic

di�erence between the algorithms, by applying the nonparametric Kruskal-Wallis test at a 5%

signi�cance level. If this is the case, then we test which extended algorithms perform

stochastically di�erent than the benchmark algorithm, using distribution-free multiple

comparisons based on the Kruskal-Wallis test at a 5% signi�cance level. We measure the

consistency of the algorithms using the standard deviation of the errors.

For the optimization runs of the six test problems, the cumulative number of individuals

that have been simulated at the end of each iteration of an optimization run is determined. We

study the computational e�ort employed by the optimization algorithms by considering only

the optimization runs for which the smallest error or the �nal error is smaller than some preset

tolerance level �. For each algorithm, the number of runs for which the smallest or �nal error

ful�lls this property is denoted by rsmall;� and rend;�, respectively. We compare the

computational e�ort of the algorithms by reporting the number of individuals that are

simulated until the error �j;k is smaller than the tolerance level � for the �rst time in these

optimization runs, j 2 f1; :::; 20g, which is denoted by E
j

end;� when the �nal error is considered

and E
j

small;� when the smallest error is considered. We consider three tolerance levels:

� = 0:5, � = 1:0, and � = 2:0.

5. Results

We compare the extended Nelder and Mead simplex algorithms and the benchmark algorithm

with respect to accuracy, consistency and computational e�ort. For all test functions and for

the microsimulation model, we �nd that there is an overall signi�cant di�erence between the

optimization algorithms with respect to accuracy for both the smallest errors and the errors at

the end of the optimization runs.

For the microsimulation model, algorithms BM, RV-EV, SS-RS and LC-RS were tested

using both one large simulation run and �ve smaller simulation runs to evaluate a point. We

do not �nd statistically signi�cant di�erences in accuracy or consistency for these two settings,

and we compare the extended algorithms with the benchmark algorithm that uses one

simulation run to evaluate a point, i.e. algorithm BM1.

The results for the test functions with respect to the accuracy, consistency and

computational e�ort of the algorithms when considering the errors at the end of the

15



optimization runs are shown in Tables IVa, IVb and IVc. For each test function, the accuracy

is represented by the average errors ��end and the consistency is represented by standard

deviations of these errors, see Column 2. Column 3 indicates whether the accuracy of an

algorithm di�ers signi�cantly from the benchmark algorithm, as indicated by the results Tend of

the distribution-free multiple comparisons based on the Kruskal-Wallis test. Tend = + = 0 = �
means that the algorithm concerned performed stochastically better / equal / worse than the

benchmark algorithm when considering the errors at the end of the optimization runs. The last

column shows rend;0:5, the number of runs for which the error at the end of the run is below

the tolerance level � = 0:5, and �Eend;0:5, the average number of individuals that are simulated

until the error is smaller than the tolerance level � for the �rst time in these optimization

runs, which is used as a measure for the computational e�ort employed by the algorithms. In

comparing the algorithms, the results for the smallest errors and tolerance levels � = 1:0 and

� = 2:0 have been inspected as well. In Table V the results for the microsimulation model are

shown, both for the smallest errors and the errors at the end at the optimization runs2.

5.1 The re-evaluation algorithm

For the �ve test functions and for the microsimulation model we �nd that re-evaluation

algorithm RV-EV does not perform signi�cantly di�erent from the benchmark algorithm with

respect to accuracy, nor does this extended algorithm seem to improve the consistency or

decrease the amount of computational e�ort needed. Re-evaluation is already part of the

shrink step of the benchmark algorithm, and it appears that the additional re-evaluation

measures that we tested are not able to further improve the optimization algorithm.

5.2 The restart algorithms

Except for the Symmetrical Gaussian function, we �nd that the restart algorithms SS-RS,

LC-RS and DN-RS perform considerably worse than the benchmark algorithm. For all restart

algorithms, we �nd that the errors frequently do no get below any of the tolerance levels �.

Apparently, restart will disrupt the optimization process, resulting in a very low accuracy. If

restart is applied, the algorithm has to start all over again, which annuls most of the progress

that was already made during the optimization run. Apparently, this is insuÆciently

compensated by the possibility of �nding a better starting point. This explanation is

supported by the increase in accuracy when tolerance or signi�cance levels are set in such a

way that restart is delayed as long as possible.

2Additional tables for the smallest errors resulting from the test functions and for tolerance levels � = 1:0 and

� = 2:0 for both the test functions and the microsimulation model are available on request from the corresponding

author.
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For the Symmetrical Gaussian function, the three restart algorithms yield considerable

improvement in the accuracy and consistency when compared to the benchmark algorithm.

The di�erent behavior for this test function is due to the di�erent nature of this problem. Any

optimization algorithm has to �nd the small region with the optimum in a virtually at

surface. Through restart, it becomes more likely that one of the vertices is placed close to this

small region.

5.3 The noise reduction algorithms

Algorithms SS-IS and LC-IS reduce the noise by increasing the simulation size, and algorithms

SS-IR, LC-IR and DN-IR reduce the noise by increasing the number of replications. Most noise

reduction algorithms perform stochastically better than the benchmark algorithm. The control

variables of the algorithms can even be chosen in such a way that the algorithms perform

substantially better than the benchmark algorithm with respect to accuracy and consistency,

but note that in practice one does not know the best values for the control variables.

The improvement found for the noise reduction techniques depends on the nature of the

objective function. For the easy �ve-variable paraboloid all but one of the noise reduction

algorithms performs better than the benchmark, whereas for the rather complex eight-variable

asymmetrical function and Powell's singular function the improvements depend on the timing

of the action and on the values of the control variables. For the Symmetrical Gaussian

function, only the algorithms SS-IS, LC-IS and DN-IR perform better than the benchmark

algorithm for some values of the control variables. However, for this test function noise is not

the main diÆculty that one needs to overcome. The at surface of the domain of this test

function is the main cause of failure for the algorithms.

Each of the criteria DN, SS and LC is able to detect whether and when noise is

dominating the optimization process. By continuing the optimization process with reduced

noise, inappropriate termination of the optimization process is prevented. For all noise

reduction algorithms, the improvement in accuracy and consistency is achieved at the cost of

an increase in the computational e�ort. For most objective functions we �nd that algorithm

DN-IR needs less additional computational e�ort than the other noise reduction algorithms.

Moreover, DN-IR is less dependent on the values of its control variables.

The dominant noise criterion detects whether determination of the true ranks of the

function values, which is crucial in each step of the simplex method, is impeded by the

presence of noise. When the DN criterion is satis�ed it is very likely that the optimization

process is hindered by the presence of noise. The other criteria are less selective, in the sense

that they can also be satis�ed if the process is still successfully iterating towards a (local)

optimum. For example, when the simplex approaches the neighborhood of the optimum, then

the simplex size will decrease due to contraction and shrinking. Hence, depending on the
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values of the control variables, the SS and LC criteria can lead to unnecessary and expensive

noise reduction measures. The DN criterion also has a built-in correction mechanism: if the

size is increased accidentally and thus too early, it will on average take longer before the

criterion is ful�lled again and a further increase in size occurs. We conclude that the noise

reduction extensions are e�ective modi�cations of the benchmark algorithm. The DN-IR

algorithm is to be preferred in view of its accuracy and its computational e�ort.

5.4 Increasing simulation size vs. increasing number of replications

Compared to the benchmark algorithm, we �nd that in general the algorithms that increase

the simulation size need more computational e�ort than the algorithms that use the same

criterion but increase the number of simulation runs used to evaluate a vertex. In the latter

case, only a number of replications are added in the current iteration, which obviously needs

less computational e�ort than re-evaluating the vertex for the increased simulation size. On

the other hand, accidentally good function values in vertices are not completely corrected, and

indeed the results for the microsimulation model show some additional improvements in

accuracy and consistency when the simulation size is increased instead of the number of

replications. However, these improvements are not worth the considerable extra computational

e�ort. For the test functions there is no clear di�erence in accuracy and consistency between

the two actions when the same criterion is applied. Thus, the use of more replications is

preferred over the use of a larger simulation size.

5.5 Applying a large simulation size

We �nd that applying an extended algorithm can lead to substantially more accurate and

consistent results, at the cost of extra computational e�ort. However, if optimizing an

objective function using the benchmark algorithm with a larger simulation size would lead to

the same results as optimizing the objective function with a more complex extended algorithm,

then there would be no point in using the extended algorithms. To investigate this, we

performed twenty optimization runs with the benchmark algorithm using replicated

observations (N0 = 5) and three di�erent large initial simulation sizes, i.e. S0 = 20000,

S0 = 50000 and S0 = 100000, for both the microsimulation model and each of the test

functions. Again the optimization runs are terminated after 250 function evaluations.

In Table VI the results for the 5 test functions and for the microsimulation model are

shown. Column 2 displays the initial simulation sizes for the benchmark algorithm. Column 3

displays the averages �"end and the standard deviations of the errors at the end of the

optimization runs. Column 4 shows rend;0:5, the number of runs that return a �nal error

smaller than 0:5, and �Eend;0:5, the average number of individuals that are simulated until the

error is smaller than the tolerance level � = 0:5 for the �rst time in these optimization runs.

18



From the results we �nd that increasing the simulation size in the benchmark algorithm

leads to higher accuracy at the cost of substantial extra computational e�ort. Many of the

noise reduction algorithms can result in a smaller average error and standard deviation than

the benchmark algorithm with a large simulation size. However, as was mentioned above, the

amount of computational e�ort needed by the noise reduction algorithms largely depends on

the chosen values of the control variables, especially for algorithms SS-IS, SS-IR, LC-IS and

LC-IR. It is likely that when one of these four noise reduction algorithms is applied without

thoughtfully choosing values for the control variables, the amount of computational e�ort

needed for an improvement in accuracy and consistency is comparable to the e�ort needed by

the benchmark algorithm with a large initial simulation size. Therefore, when applying such a

noise reduction algorithm, extra information regarding the stochastic objective function is

needed to choose the values for the control variables. On the other hand, since the

computational e�ort needed by algorithm DN-IR is considerably less dependent on the values

of the control variables, we believe that this algorithm is probably more eÆcient than the

benchmark algorithm in combination with a large initial simulation size, even if the values of

the control variables are chosen without any knowledge of the stochastic objective function.

6. Conclusion and Further Research

The Nelder and Mead simplex method is useful for the optimization of stochastic simulation

models. However, the amount of noise in the simulation model largely determines the success

of the optimization procedure. The study described in this paper is designed to improve the

performance of the Nelder and Mead simplex method when applied to the optimization of

stochastic simulation models. Several adaptive extensions of the Nelder and Mead simplex

algorithm are tested using �ve test functions, and a representative (albeit simple)

microsimulation model. These adaptive extensions include algorithms that apply restart and

re-evaluation and algorithms that gradually apply noise reduction during an optimization run.

We compared the extended algorithms to a benchmark algorithm based on the original method

by Nelder and Mead.

We �nd that relatively simple extensions of the Nelder and Mead simplex method are able

to detect whether and when noise obstructs the optimization process, and consequently,

indicate the moments when a reduction of the noise is needed to successfully continue the

optimization process. For the test microsimulation model and for most of the test functions,

gradually increasing the simulation size or the number of simulation runs used for a function

evaluation, can lead to considerable improvements in accuracy and consistency of the observed

estimator of the optimum. For one of the objective functions however we �nd that restarting

the algorithm will improve the optimization process more than decreasing the noise. This is

presumably related to the almost at surface for the entire domain for this function except for
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a small region around the optimum.

The criterion that determines the timing of noise reduction considerably inuences the

eÆciency of the algorithm, in terms of the computational e�ort needed for an improvement in

accuracy and consistency. In particular, we �nd that the amount of computational e�ort

needed by the noise reduction algorithms using the simplex size criterion or the lack of change

criterion is very sensitive to the values of the control variables of the algorithms. Therefore,

extra information on the stochastic objective function is needed to properly choose these

values. Due to the black-box nature of a stochastic simulation model, it is likely that such

information is not available. The amount of computational e�ort needed by algorithm DN-IR,

which applies the dominant noise criterion, is less dependent on the values of the control

variables. The evaluation of a stochastic simulation model is often very time-consuming, and if

no extra information on the corresponding stochastic objective function is available, algorithm

DN-IR is to be preferred over the use of the benchmark algorithm with a expensively large

simulation size.

In the tests described in this paper we use a maximum number of evaluations to end the

optimization process. However, in applications, the use of more sophisticated stopping criteria,

such as the Dennis and Woods stopping criterion (1987), should be considered. Furthermore,

some consideration should be given to the choice of the initial simplex size. We want to

emphasize the fact that the Nelder and Mead simplex method is a local search method, no

guarantee is given for �nding the global optimum. Therefore, multistart using multiple

starting points and / or multiple searches from the same starting point should always be

considered. We did not study the e�ect of multistart, since we were primarily interested in the

performance of single applications of the extended algorithms.

In this paper we focus on noise reduction algorithms that apply their adaptive measures to

all vertices used during an iteration. This type of algorithms can also be compared to modi�ed

algorithms that determine the simulation size for each separate function evaluation during the

optimization run. For example, Azadivar and Lee (1988) describe an algorithm that chooses

the simulation size for each vertex in such a way that whenever two function evaluations have

to be compared, the di�erence between the two function evaluations is statistically signi�cant.

In addition to considering alternative improvements of the Nelder and Mead simplex

algorithm, the question how this algorithm compares to other algorithms such as Stochastic

Approximation, Response Surface Methodology and Simultaneous Perturbation Stochastic

Approximation (see Kleijnen, 1998; Jacobson and Schruben, 1989; Spall, 1992; Fu, 1994) in the

optimization of stochastic objective functions also remains to be addressed.
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Table I. Tested extended Nelder and Mead Simplex algorithms�

Action

Criterion Re-evaluate best Restart (RS) Increase simulation Increase number of

vertex (EV) size (IS) replications (IR)

Retaining best RV-EV � � �

function value (RV)

Simplex size (SS) � SS-RS("ss) SS-IS("ss; bs) SS-IR("ss; br)

Lack of change (LC) � LC-RS(�lc; q) LC-IS(�lc; q; bs) LC-IR(�lc; q; br)

Dominant noise (DN) � DN-RS(�dn) � DN-IR(�dn; br)

� This table shows the tested extended algorithms, as determined by the criterion used and the subsequent

action.
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Table II. Tested settings of the optimization parameters

Action / criterion Settings

Simplex size (SS) "ss 2 f0; 0:01g

Lack of change (LC) q = 5;�lc 2 f0:01; 0:05; 0:20g

Dominant noise (DN) �dn 2 f0:01; 0:05; 0:20g

Increase simulation size (IS) bs 2 f1:25; 1:50g

Increase number of replications (IR) br 2 f1:25; 1:50g
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Table III. Initial settings for the tested functions

Objective function n Starting point Domain Step sizes

Microsimulation

model 3 (0:4; 0:6; 0:0015)

0:01 � � � 1

0 � � � 1

0:001 � J � 0:003

(0:1; 0:1; 0002)

Rosenbrock's function 2 (�1:2; 1) �25 � Xi � 25; i = 1; 2 (5; 5)

Powell's singular

function
4 (3;�1; 0; 1) �25 � Xi � 25; i = 1::; 4 (5; :::; 5)

Symmetrical

Gaussian function
2 (�100;�100) �250 � Xi � 250; i = 1; 2 (50; 50)

Asymmetrical

function
8 (�5; :::;�5) �10 � Xi � 10; i = 1; :::; 8 (2; :::; 2)

Five-variable

paraboloid
5 (3;�3; 3;�3; 3) �5 � Xi � 5; i = 1; ::; 5 (1; :::; 1)
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Table IVa. Results for Rosenbrock's function and Powell's singular function

Rosenbrock's function Powell's singular function

Algorithm ��end Tend
�
Eend;0:5(�10

5) ��end Tend
�
Eend;0:5(�10

5)

(st:dev:) (rend;0:5) (st:dev:) (rend;0:5)

BM 0.80 ( 0.27 ) n/a 37 ( 2 ) 0.25 ( 0.18 ) n/a 32 ( 17 )

RV-EV 0.76 ( 0.24 ) 0 39 ( 2 ) 0.29 ( 0.23 ) 0 34 ( 17 )

SS-RS(0) 6.79 ( 2.67 ) - - ( 0 ) 40.28 ( 4.22 ) - - ( 0 )

SS-RS(0.01) 8.31 ( 7.38 ) 0 37 ( 9 ) 63.70 ( 0.00 ) - - ( 0 )

LC-RS(0.01,5) 1.07 ( 0.00 ) - - ( 0 ) 166.93 ( 0.68 ) - - ( 0 )

LC-RS(0.05,5) 1.09 ( 0.33 ) - 87 ( 1 ) 97.14 ( 34.82 ) - - ( 0 )

LC-RS(0.20,5) 0.91 ( 0.77 ) 0 74 ( 6 ) 35.68 ( 14.76 ) - - ( 0 )

DN-RS(0.01) 0.94 ( 0.66 ) 0 106 ( 5 ) 1.72 ( 1.03 ) - - ( 0 )

DN-RS(0.05) 1.23 ( 0.76 ) 0 75 ( 2 ) 1.32 ( 0.85 ) - 45 ( 4 )

DN-RS(0.20) 0.70 ( 0.35 ) 0 66 ( 4 ) 1.25 ( 0.81 ) - 35 ( 4 )

SS-IS(0,1.25) 0.53 ( 0.20 ) + 271 ( 7 ) 0.09 ( 0.07 ) + 240 ( 20 )

SS-IS(0,1.5) 0.61 ( 0.19 ) + 271 ( 4 ) 0.08 ( 0.07 ) + 253 ( 20 )

SS-IS(0.01,1.25) 0.57 ( 0.18 ) + 295 ( 6 ) 0.13 ( 0.10 ) + 344 ( 20 )

SS-IS(0.01,1.5) 0.61 ( 0.13 ) + 318 ( 2 ) 0.08 ( 0.05 ) + 318 ( 20 )

LC-IS(0.01,5,1.25) 0.68 ( 0.19 ) 0 210 ( 3 ) 0.11 ( 0.10 ) + 322 ( 20 )

LC-IS(0.01,5,1.50) 0.63 ( 0.16 ) + 219 ( 3 ) 0.07 ( 0.04 ) + 283 ( 20 )

LC-IS(0.05,5,1.25) 0.60 ( 0.18 ) + 326 ( 4 ) 0.07 ( 0.06 ) + 286 ( 20 )

LC-IS(0.05,5,1.50) 0.63 ( 0.14 ) 0 246 ( 4 ) 0.11 ( 0.10 ) + 287 ( 20 )

LC-IS(0.20,5,1.25) 0.60 ( 0.20 ) + 128 ( 7 ) 0.13 ( 0.18 ) + 66 ( 19 )

LC-IS(0.20,5,1.50) 0.56 ( 0.17 ) + 217 ( 5 ) 0.08 ( 0.07 ) + 69 ( 20 )

SS-IR(0,1.25) 0.62 ( 0.15 ) + 198 ( 4 ) 0.13 ( 0.07 ) 0 129 ( 20 )

SS-IR(0,1.5) 0.63 ( 0.24 ) + 277 ( 5 ) 0.10 ( 0.10 ) + 191 ( 20 )

SS-IR(0.01,1.25) 0.59 ( 0.19 ) + 172 ( 7 ) 0.12 ( 0.10 ) + 215 ( 20 )

SS-IR(0.01,1.5) 0.60 ( 0.17 ) + 294 ( 6 ) 0.13 ( 0.10 ) + 279 ( 20 )

LC-IR(0.01,5,1.25) 0.54 ( 0.16 ) + 206 ( 8 ) 0.11 ( 0.11 ) + 202 ( 20 )

LC-IR(0.01,5,1.50) 0.54 ( 0.20 ) + 224 ( 8 ) 0.13 ( 0.12 ) + 236 ( 20 )

LC-IR(0.05,5,1.25) 0.61 ( 0.12 ) + 123 ( 2 ) 0.11 ( 0.08 ) + 184 ( 20 )

LC-IR(0.05,5,1.50) 0.62 ( 0.16 ) + 254 ( 5 ) 0.14 ( 0.13 ) + 227 ( 20 )

LC-IR(0.20,5,1.25) 0.54 ( 0.23 ) + 97 ( 8 ) 0.15 ( 0.13 ) 0 46 ( 19 )

LC-IR(0.20,5,1.50) 0.57 ( 0.13 ) + 181 ( 5 ) 0.14 ( 0.14 ) + 58 ( 19 )

DN-IR(0.01,1.25) 0.65 ( 0.25 ) 0 64 ( 5 ) 0.10 ( 0.09 ) + 50 ( 20 )

DN-IR(0.01,1.50) 0.48 ( 0.24 ) + 62 ( 8 ) 0.13 ( 0.09 ) + 51 ( 20 )

DN-IR(0.05,1.25) 0.51 ( 0.25 ) + 57 ( 8 ) 0.18 ( 0.14 ) 0 53 ( 19 )

DN-IR(0.05,1.50) 0.54 ( 0.15 ) + 107 ( 6 ) 0.10 ( 0.11 ) + 56 ( 20 )

DN-IR(0.20,1.25) 0.60 ( 0.25 ) + 36 ( 5 ) 0.11 ( 0.10 ) + 40 ( 20 )

DN-IR(0.20,1.50) 0.52 ( 0.23 ) + 40 ( 8 ) 0.10 ( 0.08 ) + 39 ( 20 )
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Table IVb. Results for the Symmetrical Gaussian function and the Asymmetrical function

Symmetrical Gaussian function Asymmetrical function

Algorithm ��end Tend
�
Eend;0:5(�10

5) ��end Tend
�
Eend;0:5(�10

5)

(st:dev:) (rend;0:5) (st:dev:) (rend;0:5)

BM 7.08 ( 4.23 ) n/a 12 ( 5 ) 3.24 ( 1.96 ) n/a - ( 0 )

RV-EV 4.04 ( 4.47 ) 0 16 ( 9 ) 4.13 ( 1.81 ) 0 - ( 0 )

SS-RS(0) 0.89 ( 2.19 ) + 38 ( 15 ) 5.78 ( 4.04 ) - - ( 0 )

SS-RS(0.01) 1.95 ( 3.49 ) 0 41 ( 10 ) 6.28 ( 5.11 ) - - ( 0 )

LC-RS(0.01,5) 1.42 ( 2.16 ) + 35 ( 6 ) 4.04 ( 2.99 ) 0 - ( 0 )

LC-RS(0.05,5) 0.91 ( 0.82 ) + 32 ( 7 ) 4.06 ( 3.11 ) 0 - ( 0 )

LC-RS(0.20,5) 0.92 ( 1.92 ) + 37 ( 14 ) 1.04 ( 0.62 ) + 110 ( 4 )

DN-RS(0.01) 0.86 ( 2.18 ) + 30 ( 14 ) 6.76 ( 5.75 ) - - ( 0 )

DN-RS(0.05) 0.89 ( 1.04 ) + 23 ( 11 ) 3.92 ( 2.07 ) 0 - ( 0 )

DN-RS(0.20) 1.07 ( 2.14 ) + 28 ( 12 ) 3.02 ( 1.21 ) 0 - ( 0 )

SS-IS(0,1.25) 4.50 ( 4.95 ) + 80 ( 10 ) 2.61 ( 1.98 ) 0 650 ( 3 )

SS-IS(0,1.5) 4.67 ( 4.40 ) 0 146 ( 8 ) 2.20 ( 1.90 ) + 670 ( 4 )

SS-IS(0.01,1.25) 5.07 ( 4.91 ) + 64 ( 9 ) 2.67 ( 2.30 ) 0 655 ( 2 )

SS-IS(0.01,1.5) 4.20 ( 4.80 ) + 121 ( 11 ) 1.34 ( 0.86 ) + 810 ( 1 )

LC-IS(0.01,5,1.25) 5.31 ( 4.88 ) 0 135 ( 8 ) 2.83 ( 2.41 ) 0 - ( 0 )

LC-IS(0.01,5,1.50) 3.57 ( 4.74 ) + 132 ( 12 ) 1.37 ( 1.59 ) + 625 ( 4 )

LC-IS(0.05,5,1.25) 6.96 ( 4.60 ) 0 149 ( 6 ) 4.36 ( 3.42 ) 0 - ( 0 )

LC-IS(0.05,5,1.50) 4.54 ( 4.60 ) 0 74 ( 8 ) 1.17 ( 1.46 ) + 707 ( 6 )

LC-IS(0.20,5,1.25) 4.69 ( 4.81 ) 0 70 ( 7 ) 5.17 ( 5.47 ) 0 - ( 0 )

LC-IS(0.20,5,1.50) 8.02 ( 3.62 ) 0 11 ( 2 ) 3.31 ( 2.69 ) 0 443 ( 2 )

SS-IR(0,1.25) 5.27 ( 4.60 ) 0 54 ( 7 ) 3.77 ( 3.36 ) 0 486 ( 2 )

SS-IR(0,1.5) 5.35 ( 4.87 ) 0 84 ( 9 ) 1.89 ( 1.89 ) + 468 ( 4 )

SS-IR(0.01,1.25) 4.98 ( 4.93 ) 0 27 ( 9 ) 2.42 ( 2.86 ) + 488 ( 3 )

SS-IR(0.01,1.5) 6.16 ( 4.57 ) 0 76 ( 6 ) 1.67 ( 1.82 ) + 543 ( 3 )

LC-IR(0.01,5,1.25) 6.06 ( 4.62 ) 0 73 ( 7 ) 2.96 ( 2.63 ) 0 - ( 0 )

LC-IR(0.01,5,1.50) 4.98 ( 4.98 ) 0 152 ( 10 ) 1.84 ( 2.81 ) + 595 ( 1 )

LC-IR(0.05,5,1.25) 5.01 ( 4.89 ) 0 61 ( 9 ) 2.91 ( 2.49 ) 0 - ( 0 )

LC-IR(0.05,5,1.50) 4.80 ( 4.84 ) 0 42 ( 9 ) 1.05 ( 1.14 ) + 575 ( 6 )

LC-IR(0.20,5,1.25) 6.41 ( 4.77 ) 0 70 ( 7 ) 3.46 ( 2.23 ) 0 86 ( 1 )

LC-IR(0.20,5,1.50) 6.33 ( 4.60 ) 0 62 ( 6 ) 2.51 ( 1.63 ) 0 457 ( 1 )

DN-IR(0.01,1.25) 5.51 ( 4.99 ) 0 79 ( 9 ) 3.56 ( 2.33 ) 0 - ( 0 )

DN-IR(0.01,1.50) 3.46 ( 4.74 ) + 67 ( 13 ) 2.59 ( 2.23 ) 0 411 ( 1 )

DN-IR(0.05,1.25) 3.49 ( 4.66 ) + 88 ( 12 ) 1.99 ( 2.57 ) + 235 ( 7 )

DN-IR(0.05,1.50) 2.98 ( 4.25 ) + 72 ( 12 ) 2.28 ( 1.83 ) + 226 ( 1 )

DN-IR(0.20,1.25) 5.74 ( 4.82 ) 0 74 ( 7 ) 2.94 ( 2.32 ) 0 149 ( 2 )

DN-IR(0.20,1.50) 3.88 ( 4.69 ) + 96 ( 12 ) 2.87 ( 2.08 ) 0 - ( 0 )
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Table IVc. Results for the Five-variable paraboloid

Five-variable paraboloid

Algorithm ��end Tend
�
Eend;0:5(�10

5)

(st:dev:) (rend;0:5)

BM 0.59 ( 0.52 ) n/a 27 ( 11 )

RV-EV 0.57 ( 0.36 ) 0 26 ( 8 )

SS-RS(0) 1.58 ( 2.06 ) - 62 ( 5 )

SS-RS(0.01) 8.85 ( 6.85 ) - - ( 0 )

LC-RS(0.01,5) 20.30 ( 4.53 ) - - ( 0 )

LC-RS(0.05,5) 5.69 ( 6.12 ) - 93 ( 2 )

LC-RS(0.20,5) 1.07 ( 0.68 ) 0 51 ( 3 )

DN-RS(0.01) 1.90 ( 1.24 ) - - ( 0 )

DN-RS(0.05) 1.65 ( 1.12 ) - - ( 0 )

DN-RS(0.20) 0.88 ( 0.52 ) 0 62 ( 6 )

SS-IS(0,1.25) 0.19 ( 0.12 ) + 159 ( 20 )

SS-IS(0,1.5) 0.18 ( 0.12 ) + 205 ( 19 )

SS-IS(0.01,1.25) 0.22 ( 0.19 ) + 254 ( 19 )

SS-IS(0.01,1.5) 0.12 ( 0.05 ) + 237 ( 20 )

LC-IS(0.01,5,1.25) 0.14 ( 0.11 ) + 285 ( 20 )

LC-IS(0.01,5,1.50) 0.17 ( 0.12 ) + 265 ( 20 )

LC-IS(0.05,5,1.25) 0.20 ( 0.13 ) + 242 ( 20 )

LC-IS(0.05,5,1.50) 0.17 ( 0.12 ) + 221 ( 19 )

LC-IS(0.20,5,1.25) 0.51 ( 0.41 ) 0 115 ( 12 )

LC-IS(0.20,5,1.50) 0.27 ( 0.24 ) + 156 ( 18 )

SS-IR(0,1.25) 0.19 ( 0.15 ) + 73 ( 19 )

SS-IR(0,1.5) 0.15 ( 0.11 ) + 134 ( 20 )

SS-IR(0.01,1.25) 0.15 ( 0.07 ) + 139 ( 20 )

SS-IR(0.01,1.5) 0.14 ( 0.07 ) + 174 ( 20 )

LC-IR(0.01,5,1.25) 0.19 ( 0.14 ) + 180 ( 19 )

LC-IR(0.01,5,1.50) 0.14 ( 0.12 ) + 170 ( 20 )

LC-IR(0.05,5,1.25) 0.22 ( 0.24 ) + 104 ( 19 )

LC-IR(0.05,5,1.50) 0.15 ( 0.09 ) + 164 ( 20 )

LC-IR(0.20,5,1.25) 0.29 ( 0.17 ) + 42 ( 17 )

LC-IR(0.20,5,1.50) 0.32 ( 0.39 ) + 81 ( 18 )

DN-IR(0.01,1.25) 0.18 ( 0.12 ) + 76 ( 20 )

DN-IR(0.01,1.50) 0.18 ( 0.18 ) + 99 ( 19 )

DN-IR(0.05,1.25) 0.24 ( 0.13 ) + 98 ( 20 )

DN-IR(0.05,1.50) 0.19 ( 0.16 ) + 89 ( 19 )

DN-IR(0.20,1.25) 0.26 ( 0.23 ) + 51 ( 16 )

DN-IR(0.20,1.50) 0.35 ( 0.33 ) + 92 ( 15 )
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Table V. Results for the Microsimulation Model

Algorithm ��small Tsmall
�
Esmall;0:5(�10

5) ��end Tend
�
Eend;0:5(�10

5)

(st:dev:) (rsmall;o:5) (st:dev:) (rend;0:5)

BM1 0.62 ( 0.69 ) 0 17 ( 12 ) 0.70 ( 0.68 ) 0 15 ( 10 )

BM5 0.58 ( 0.73 ) 0 21 ( 13 ) 0.67 ( 0.75 ) 0 21 ( 12 )

RV-EV5 0.63 ( 0.89 ) 0 21 ( 13 ) 0.74 ( 0.89 ) 0 21 ( 11 )

SS-RS(0)5 1.08 ( 0.56 ) - 110 ( 3 ) 1.19 ( 0.57 ) - 122 ( 2 )

SS-RS(0.01)5 1.74 ( 0.79 ) - 0 ( 0 ) 2.07 ( 0.89 ) - 0 ( 0 )

LC-RS(0.01,5)5 2.02 ( 1.27 ) - 0 ( 0 ) 2.06 ( 1.40 ) - 0 ( 0 )

LC-RS(0.05,5)5 1.91 ( 0.82 ) - 0 ( 0 ) 2.21 ( 1.12 ) - 0 ( 0 )

LC-RS(0.20,5)5 0.39 ( 0.30 ) 0 38 ( 14 ) 0.68 ( 0.59 ) 0 48 ( 9 )

DN-RS(0.01) 1.16 ( 0.87 ) - 90 ( 5 ) 1.40 ( 0.93 ) - 90 ( 5 )

DN-RS(0.05) 1.18 ( 1.11 ) - 50 ( 9 ) 1.29 ( 1.09 ) - 51 ( 7 )

DN-RS(0.20) 0.85 ( 0.69 ) 0 66 ( 9 ) 1.08 ( 0.68 ) 0 75 ( 5 )

SS-IS(0,1.25) 0.02 ( 0.02 ) + 60 ( 20 ) 0.04 ( 0.04 ) + 60 ( 20 )

SS-IS(0,1.5) 0.03 ( 0.03 ) + 102 ( 20 ) 0.06 ( 0.05 ) + 102 ( 20 )

SS-IS(0.01,1.25) 0.04 ( 0.05 ) + 129 ( 20 ) 0.07 ( 0.05 ) + 129 ( 20 )

SS-IS(0.01,1.5) 0.06 ( 0.08 ) + 156 ( 20 ) 0.09 ( 0.08 ) + 156 ( 20 )

LC-IS(0.01,5,1.25) 0.03 ( 0.03 ) + 82 ( 20 ) 0.06 ( 0.05 ) + 82 ( 20 )

LC-IS(0.01,5,1.50) 0.05 ( 0.04 ) + 129 ( 20 ) 0.07 ( 0.05 ) + 129 ( 20 )

LC-IS(0.05,5,1.25) 0.05 ( 0.08 ) + 81 ( 20 ) 0.08 ( 0.08 ) + 81 ( 20 )

LC-IS(0.05,5,1.50) 0.03 ( 0.03 ) + 70 ( 20 ) 0.05 ( 0.05 ) + 70 ( 20 )

LC-IS(0.20,5,1.25) 0.24 ( 0.50 ) + 16 ( 18 ) 0.28 ( 0.49 ) + 16 ( 18 )

LC-IS(0.20,5,1.50) 0.38 ( 0.77 ) + 33 ( 16 ) 0.41 ( 0.79 ) + 16 ( 15 )

SS-IR(0,1.25) 0.28 ( 0.51 ) 0 34 ( 18 ) 0.31 ( 0.52 ) + 32 ( 17 )

SS-IR(0,1.5) 0.06 ( 0.07 ) + 54 ( 20 ) 0.10 ( 0.08 ) + 54 ( 20 )

SS-IR(0.01,1.25) 0.03 ( 0.03 ) + 70 ( 20 ) 0.06 ( 0.05 ) + 70 ( 20 )

SS-IR(0.01,1.5) 0.02 ( 0.02 ) + 86 ( 20 ) 0.04 ( 0.04 ) + 86 ( 20 )

LC-IR(0.01,5,1.25) 0.08 ( 0.13 ) + 46 ( 20 ) 0.10 ( 0.13 ) + 46 ( 20 )

LC-IR(0.01,5,1.50) 0.04 ( 0.04 ) + 86 ( 20 ) 0.05 ( 0.05 ) + 86 ( 20 )

LC-IR(0.05,5,1.25) 0.18 ( 0.45 ) + 26 ( 19 ) 0.21 ( 0.46 ) + 26 ( 18 )

LC-IR(0.05,5,1.50) 0.07 ( 0.08 ) + 62 ( 20 ) 0.08 ( 0.09 ) + 62 ( 20 )

LC-IR(0.20,5,1.25) 0.36 ( 0.64 ) 0 20 ( 16 ) 0.39 ( 0.64 ) + 20 ( 16 )

LC-IR(0.20,5,1.50) 0.49 ( 1.04 ) 0 33 ( 17 ) 0.55 ( 1.06 ) 0 33 ( 17 )

DN-IR(0.01,1.25) 0.17 ( 0.26 ) + 52 ( 17 ) 0.20 ( 0.25 ) + 52 ( 17 )

DN-IR(0.01,1.50) 0.04 ( 0.06 ) + 40 ( 20 ) 0.06 ( 0.06 ) + 40 ( 20 )

DN-IR(0.05,1.25) 0.19 ( 0.36 ) + 65 ( 19 ) 0.22 ( 0.37 ) + 65 ( 19 )

DN-IR(0.05,1.50) 0.20 ( 0.48 ) + 46 ( 18 ) 0.23 ( 0.49 ) + 46 ( 18 )

DN-IR(0.20,1.25) 0.36 ( 0.73 ) + 23 ( 17 ) 0.39 ( 0.74 ) + 23 ( 17 )

DN-IR(0.20,1.50) 0.23 ( 0.29 ) + 41 ( 17 ) 0.26 ( 0.30 ) + 41 ( 17 )
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Table VI. Results benchmark algorithm for di�erent initial simulation sizes.�

Algorithm Initial simulation ��end �Eend;0:5(�10
5)

size S0 (st.dev.) (rend;0:5)

Rosenbrock's function 10000 0.80 ( 0.27 ) 37 ( 2 )

20000 0.65 ( 0.20 ) 75 ( 5 )

50000 0.61 ( 0.13 ) 200 ( 7 )

100000 0.52 ( 0.20 ) 370 ( 9 )

Powell's singular function 10000 0.25 ( 0.18 ) 32 ( 17 )

20000 0.18 ( 0.19 ) 60 ( 19 )

50000 0.15 ( 0.11 ) 165 ( 20 )

100000 0.10 ( 0.08 ) 307 ( 20 )

Symmetrical Gaussian function 10000 7.08 ( 4.23 ) 12 ( 5 )

20000 5.88 ( 4.70 ) 25 ( 6 )

50000 3.74 ( 4.65 ) 64 ( 12 )

100000 2.56 ( 4.37 ) 102 ( 15 )

Asymmetrical function 10000 3.24 ( 1.96 ) - ( 0 )

20000 3.02 ( 2.44 ) 93 ( 1 )

50000 2.36 ( 2.61 ) 303 ( 4 )

100000 1.11 ( 1.35 ) 673 ( 6 )

Five-variable paraboloid 10000 0.59 ( 0.52 ) 27 ( 11 )

20000 0.39 ( 0.43 ) 52 ( 17 )

50000 0.21 ( 0.14 ) 115 ( 19 )

100000 0.14 ( 0.11 ) 226 ( 20 )

Microsimulation model 10000 0.67 ( 0.75 ) 21 ( 12 )

20000 0.39 ( 0.63 ) 42 ( 18 )

50000 0.17 ( 0.25 ) 75 ( 19 )

100000 0.10 ( 0.12 ) 140 ( 20 )

� Initial number of replications N0 = 5.

The results for S0 = 10000 and N0 = 5 are taken from Tables IV and V.
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