
Column generation with dynamic duty selection for railway

crew rescheduling

Daniel Potthoff1∗, Dennis Huisman1,2, Guy Desaulniers3

1 Econometric Institute and ECOPT,

Erasmus University Rotterdam, P.O. Box 1738, NL-3000 DR Rotterdam,

The Netherlands
2 Department of Logistics, Netherlands Railways,

P.O. Box 2025, NL-3500 HA Utrecht,

The Netherlands
3 GERAD and École Polytechnique de Montréal

C.P. 6079, Succursale Centre-ville

Montréal (Québec) Canada, H3C 3AT

Econometric Institute Report EI 2008-28

December 19, 2008

Abstract

The Dutch railway network experiences about three large disruptions per day on av-
erage. In this paper, we present an algorithm to reschedule the crews when such a dis-
ruption occurs. The algorithm is based on column generation techniques combined with
Lagrangian heuristics. Since the number of duties is very large in practical instances, we
first define a core problem of tractable size. If some tasks remain uncovered in the solu-
tion of the core problem, we perform a neighborhood exploration to improve the solution.
Computational experiments with real-life instances show that our method is capable of
producing good solutions within a couple of minutes of computation time.

1 Introduction

During the last decades, Operations Research (OR) methods have been successfully applied to
solve numerous problems in passenger railway transportation. The best example is probably
the introduction of a completely new timetable on the Dutch railway network in 2006, for
∗Corresponding author. E-mail: potthoff@ese.eur.nl, Phone: +31 10 4088940, Fax: +31 10 4089162

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Erasmus University Digital Repository

https://core.ac.uk/display/18516657?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

which Netherlands Railways recently won the Franz Edelman Award (Kroon et al. (2009)). As
in this example, OR methods have mainly been used to solve planning problems (see Huisman
et al. (2005); Caprara et al. (2007) for recent surveys). However, on the day of operations,
there are also serious challenges to solve. Huge delays are one of the most annoying experiences
for railway passengers and have a significant impact on passenger satisfaction. Such delays
mainly occur during and after disruptions.

On the day of operations, unforeseen events disturb the smooth completion of the plans.
Events like infrastructure malfunctions, accidents or rolling stock breakdowns lead to a tem-
porarily reduced capacity or a complete blockage of a certain route. In the Netherlands,
there are on average three complete blockages of a route per day. As a consequence, some
trains cannot run as planned; they are delayed or even canceled. Delayed and/or canceled
trains could make the underlying rolling stock and/or crew schedules infeasible. In such a
disrupted situation, the timetable and the resource schedules need to be modified. Railway
disruption management is defined in Jespersen-Groth et al. (2007) as the process of finding a
new timetable by rerouting, delaying or canceling trains and rescheduling the resources such
that the new timetable is compatible with the resource schedules. Usually, the recovery of
the timetable, the rolling stock schedule, and the crew schedule is performed in a sequential
way. In the first step, a new timetable is proposed. This is often based on the estimated
duration of the disruption. Secondly, the rolling stock is rescheduled in a way that all trips
from the modified timetable are covered (see Nielsen (2008)). Finally, given the modified
timetable and rolling stock schedule, the crew is rescheduled. Iterations between the three
steps may be necessary when it is not possible to assign resources to one of the trips from the
proposed timetable. Of course, several disruptions can happen on the same day. Moreover,
the estimation of the disruption’s duration can be wrong. In this case, an additional recovery
is required. All together, the whole process is very dynamic in practice.

One of the most challenging problems in railway disruption management is to reschedule
the crews (drivers and conductors). The reason is that these decisions have to be made
quickly, while one has to deal with a large number of crews. For instance, the crew schedule
of the largest passenger railway operator in the Netherlands, Netherlands Railways (NS),
contains around 1,000 duties for drivers on an average workday.

In this paper, we will present an innovative approach to reschedule crews at the moment
a disruption occurs and the changes in the timetable and rolling stock schedule are given. We
call this problem the operational crew rescheduling problem (OCRSP).

The contribution of this paper is twofold. We propose a new algorithm that first applies
a heuristic based on ideas from Huisman (2007) for crew rescheduling to a subset of the
duties. However, our algorithm dynamically selects a new subset of duties if this seems
promising. This is our first contribution and this idea can be applied to many other domains
of rescheduling as well. Our second contribution lies in the fact that we test our methods
on real-life data of NS and we show that we can find good solutions in a reasonable amount

2

of time. As a result, the methods that we propose can lay the foundations for algorithmic
decision support for dispatchers in the operations control centers of NS.

The remainder of this paper is organized as follows. We give a more formal problem
description of the OCRSP in Section 2. A brief literature overview on crew rescheduling is
given in Section 3. A mathematical formulation and the outline of our solution approach
is presented in Section 4. In Section 5, we present a heuristic based on column generation
and Lagrangian relaxation to solve the OCRSP for a fixed subset of duties. In Section 6,
we discuss how we can dynamically adjust the subsets of duties. Computational results are
reported in Section 7. We finish with some concluding remarks and directions for further
research in Section 8.

2 Problem description

We will now introduce some terminology and give a description of the OCRSP. From this
point on, we will focus on train drivers. The problem of rescheduling conductors is, however,
quite similar.

The operator’s timetable contains all train movements necessary to operate the published
service trips. A service trip (commonly known as train) is operated on a line, where a line is
specified by a start and an end station and a number of intermediate stops. Furthermore, there
are a number of empty train movements and shunting activities that need to be performed in
order to efficiently use the rolling stock. An example (see Figure 1) of a line operated by NS is
the 700-line from Groningen (Gn) to Amsterdam Airport Schiphol (Shl) with 10 intermediate
stops (not all shown in the figure). Because Schiphol is an underground station with limited
space, all trains ending in Schiphol are driven empty to the nearby shunt yard Hoofddorp
(Hfdo), where they are turned. All operations that need to be performed by a driver are
represented by a task, where a task is an elementary sequence of activities starting and ending
at a relief point. Relief points are the subset of all stations where drivers can transfer from one
rolling stock unit to another one. The trains of the 700-line, for example, are split up into the
following tasks: Groningen–Zwolle (Zl), Zwolle–Amersfoort (Amf), Amersfoort–Hoofddorp.

On the day of operations the crew schedule is given by the original duties, each assigned to
a driver. These original duties are either active duties, in the sense that they are a sequence
of tasks, or reserve duties, meaning that a driver is on standby at a major station for a given
time period. All duties start and end at the same crew base, where crew bases are a subset
of the relief points. For repositioning from one relief point to another, duties can also contain
taxi trips or deadhead tasks. The latter means that a driver is traveling as a passenger on a
task.

Due to a disruption on the day of operations the timetable is modified according to the
estimated duration of the disruption. This could mean that the new timetable and the
driver duties have become incompatible. In this case it is necessary to reschedule the drivers.

3

Because NS operates very few night trains, for rescheduling it is generally sufficient to consider
a crew schedule of a single day.

Given the point in time of rescheduling, for every unfinished original duty we need to find a
replacement duty. A replacement duty is composed of all tasks of the associated original duty
that started before the time of rescheduling, and a feasible completion. Feasible completions
are (possibly empty) sequences of tasks such that the replacement duty satisfies the following
rules.

• The replacement duty needs to start and end at the same crew base associated with the
original duty. Furthermore, a replacement duty may end earlier or at the planned time.
In addition, it is allowed to end up to 60 minutes later than the planned end time of
the original duty.

• If in a replacement duty two tasks on different rolling stock units are performed af-
ter each other, then a minimum connection time between the two tasks needs to be
respected. This connection time is less during rescheduling than in the planning phase.

• Every replacement duty longer than 5 1/2 hours must contain a meal break of at least 30
minutes. Meal breaks are possible only at relief points that have a canteen. Moreover,
the working time before and after the break is not allowed to exceed 5 1/2 hours.

• Every driver is licensed to drive on certain parts of the railway network. Moreover, he
is licensed to drive certain rolling stock types. These two attributes determine the set
of tasks that can be performed by a replacement duty.

If an original duty is not affected by a disruption, one feasible completion is to follow the
sequence of tasks as in the original duty.

We will consider a small example where the route between Hoogeveen (Hgv) and Beilen
(Bl) (see Figure 1) is blocked from 7:10 to 10:10. Three train lines use this route each with a
frequency of once per hour: The 500-line (intercity) between The Hague (Gvc) and Groningen,
the earlier mentioned 700-line (intercity) between Schiphol and Groningen, and the 9100-line
(regional) from Zwolle to Groningen.

According to the emergency scenarios, the trains of the 500-line coming from Groningen
are turned in Assen (Asn) and the trains from The Hague are turned in Hoogeveen, respec-
tively. The same pattern is applied to the 700-line. The regional trains of the 9100-line
from Zwolle are turned in Meppel (Mp) and the trains from Groningen are turned in Beilen,
respectively.

Figure 2.a shows how original duty D1 from crew base Groningen was planned. At 7:10,
when the rescheduling takes place, the duty is performing task t1 belonging to the 700-line.
Since the route is blocked south of Beilen, the train is turned in Assen, which results in a
modified task tr1. This means that after performing his first task of the day the driver will be

4

Asn

Bl

Hgv

Amf

Zl

Lw
Gn

Ut
Gvc

Asd

Mp

Hfdo
Shl

Figure 1: The central and northern part of the railway network operated by NS.

back in Groningen. It is not possible to get to Zwolle in time to perform task t3 which was
supposed to be the next task. Hence duty D1 is not feasible anymore. Now we will show two
examples of feasible completions of D1. Given 7:10 as the time of rescheduling, D1 must first
complete task tr1. Then it is possible to deviate from the plan. One possibility (Figure 2.b)
would be to go by taxi from Groningen to Zwolle and drive task t6 to Amersfoort. After a meal
break (MB) in Amersfoort, task t9 to Hoofddorp on the 700-line could be performed, followed
by t11 and t13 also on the 700-line. Finally, the duty could finish with driving the regional
train (9100-line) from Zwolle to Groningen (t15). Note, that in this feasible completion the
last two tasks are the same as in the original duty, except that in the original duty the driver
was deadheading as a passenger on task t13. Another possibility shown in Figure 2.c would
be to continue driving rerouted tasks of the 700-line (tr2, t

r
4) before going from Groningen to

Zwolle (t7), also on the 700-line. After a meal break in Zwolle the driver could perform task
t10 back to Groningen. Since it is allowed to end up to 60 minutes later, the duty could finish
with driving two trains (t14, t16) of the 9100-line to Zwolle and back.

Now we can formulate the OCRSP as follows. Given the modified timetable and the
planned crew schedule, find a new crew schedule that covers as many tasks as possible such
that every original duty is assigned to one feasible completion. The objective of the OCRSP
is a trade-off between different aspects, namely feasibility, operational costs, and robustness.
We will now briefly discuss these aspects.

First of all, feasibility is very important. In contrast to crew scheduling in the planning
phase, it is not at all obvious that all tasks can be covered by a rescheduling solution. If a
task cannot be covered, canceling it would lead to a feasible crew rescheduling solution, but

5

a) t1 t3 t5 t8 MB t12 t13 t15

Gn Zl Amf Amf Asd Asd Amf Zl Gn

b) tr1 Taxi t6 MB t9 t11 t13 t15

Gn ZlGn AmfAmf Hfdo Amf Zl Gn

c) tr1 tr2 tr4 t7 MB t10 t14 t16

Gn Gn Gn Gn Zl Zl Gn Zl Gn

7:00 8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00

Time of rescheduling

task deadheading MB meal break

modified or rerouted task Taxi deadheading using a taxi

Figure 2: Examples of feasible completions for an affected original duty from crew base
Groningen (Gn).

its cancellation could destroy the underlying rolling stock circulations. This conflict needs to
be resolved and might lead to a different modified timetable, probably containing less tasks,
and different rolling stock circulations.

Operational costs are the second aspect in the objective. Compared to the airline industry,
where, especially in North America, operational costs play a major role in rescheduling (see Yu
et al. (2003) and Lettovský et al. (2000)), for European railway operators, actual operational
costs are less important, because the crew payments are mainly based on fixed salaries.
Nevertheless, some parts of a rescheduling solution influence the operational costs. Operator
specific compensations for extra work due to changed duties is a typical example. Also taxis
for repositioning, or to take home stranded drivers, create additional costs. In contrast to the
airline industry, deadheading on trains can be considered to have no additional cost.

The third criterion in the objective is robustness. Currently, humans are involved in
the implementation of every rescheduling solution and can cause a failure. A crew dispatcher
could, for example, because of the high stress level he is confronted with, forget to call a driver
and inform him about the changes. Therefore, a solution is considered to be more robust if
less original duties are changed. During rescheduling, connection times between train tasks
may be shorter compared to the planning phase. In order to minimize the possibility of delay
propagation, short connection times should be avoided if possible.

6

3 Literature review

During the last decade crew rescheduling, also known as crew recovery, has received a lot of
attention in the airline literature. The application of a crew rescheduling decision support
system at Continental Airlines (Yu et al. (2003)) won the Franz Edelman award. Stojković
et al. (1998) published the first results for a rescheduling model dealing with crew pairing and
rostering simultaneously. They apply a column generation approach for a preselected subset
of crews. Column generation in combination with core problems defined by a selection of
crews and/or time windows has also been used by Lettovský et al. (2000); Nissen and Haase
(2006); Medard and Sawhney (2007). Abdelghany et al. (2004) propose a rolling horizon
approach tailored for airlines operating a hub-and-spoke network.

To the best of our knowledge, the first attempt to come up with an approach for integral
railway disruption management was done by Walker et al. (2005). They present a model
that manipulates the timetable and the crew schedule at the same time in order to deal with
disruptions. The objective is to minimize simultaneously the deviation of the new timetable
from the original one and the actual cost of the crew schedule. One part of the model
represents the timetable adjustment, the other part corresponds to a set partitioning model
for the crew schedules. Both parts are linked in order to get a compatible solution. However,
they considered only a single line and not a complete railway network. Therefore, their
approach is not applicable to the Dutch situation.

Rezanova and Ryan (2006) present a column generation approach to railway crew reschedul-
ing. Compared to the approaches in the airline literature their method can be seen as a refined
method. Initially, they include only those original duties in the problem, which are directly
affected by the disruption. The set of tasks considered in the initial problem is the set of
tasks that have been assigned to the affected duties and end within the selected recovery
horizon. In the cases where tasks remain uncovered in the solution of the initial problem,
they propose to extend the problem by adding reserve duties and original duties that are close
to the uncovered tasks in a geographical sense. The approach was tested on instances from
the suburban railway of Copenhagen. In these instances no tasks needed to be canceled in
the solution of the initial core problem and therefore the extension step was never used.

The paper of Huisman (2007) deals with crew rescheduling, due to track maintenance,
in short-term planning. Almost all duties and tasks of the daily crew schedule of NS are
included in the optimization problem. In contrast to the OCRSP, the number of available
crews is not fixed in short-term planning. Moreover, computation times of several hours, as
reported in the paper, are acceptable in this phase but not in the operations.

4 Mathematical model and solution approach overview

In the remainder of the paper we use the following notation.

7

• S: Set of stations (in our case limited to relief points).

• D: Set of crew bases.

• N : Set of tasks which have not started at the time of rescheduling, where for every
i ∈ N we have:

– dsi: Departure station.

– dti: Departure time.

– asi: Arrival station.

– ati: Arrival time.

• ∆ = ∆A∪∆R: Set of unfinished original duties, where ∆A are active and ∆R are reserve
duties, respectively. Moreover, for every δ ∈ ∆ we have:

– csδ: The station where the original duty is at the time of rescheduling or the arrival
station of the task performed by the driver at the time of rescheduling.

– bδ: The crew base where the original duty starts and ends.

• Kδ: Set of all feasible completions for original duty δ ∈ ∆. For every feasible completion
k ∈ Kδ we have:

– cδk: Cost of feasible completion k for original duty δ. The cost of a feasible com-
pletion is zero if the duty is not modified. Otherwise, the cost is the sum of the
cost for changing a duty, the cost for taxis, and the penalties for short connection
times and overtime.

– aδik: Binary parameter indicating if task i is covered by feasible completion k or
not.

• fi: Cost for canceling task i.

We can formulate the OCRSP using binary variables xδk corresponding to the feasible
completions of duty δ and binary variables yi indicating if task i is canceled (1) or not (0).

min
∑
δ∈∆

∑
k∈Kδ

cδkx
δ
k +

∑
i∈N

fiyi (1)

s.t.
∑
δ∈∆

∑
k∈Kδ

aδikx
δ
k + yi ≥ 1 ∀i ∈ N (2)

∑
k∈Kδ

xδk = 1 ∀δ ∈ ∆ (3)

xδk, yi ∈ {0, 1} ∀δ ∈ ∆,∀k ∈ Kδ,∀i ∈ N (4)

8

In the above model, constraints (2) make sure that every task is either covered by a feasi-
ble completion or canceled. Furthermore, constraints (3) ensure that every original duty is
assigned to exactly one feasible completion.

Note that, in the above model, deadheading can occur in two ways. Firstly, a feasible
completion can explicitly use deadheading on tasks, e.g., if the driver of the original duty
does not have the required route knowledge. In this case, the corresponding aδik coefficient is
equal to 0. Secondly, a task can be overcovered in the solution to the model, then one of the
drivers has to perform the driving, the other(s) deadhead on this task, but all coefficients aδik
are equal to 1.

Recall from Section 1 that we can have about 1,000 original duties, of which about 90 are
reserve duties, in (3). Moreover, the number of set covering constraints in (2) can be up to
10,000. The number of feasible completions for an original duty can range from only a few if
the duty is almost finished when we reschedule, to millions if the duty has not started or has
just started. If rescheduling is done on the day of operations, the emphasis is on obtaining
the best possible solution within a couple of minutes of computation time rather than solving
(1)–(4) to optimality.

Moreover, a local disruption like the one described in Section 2 affects only a limited
number of original duties. Because we want to stay close to the planned schedule, it seems
highly unlikely that an original duty covering tasks only in another part of the country will
be modified in an optimal solution of (1)–(4) in this case. Therefore, it seems reasonable to
consider a core problem containing only a subset of the original duties and tasks.

The advantage of a core problem is its reduced size, which will lead to shorter computation
times. A drawback is that the solution quality might depend on the choice of the core problem.
In particular, one might be able to reduce the number of canceled tasks by increasing the size
of the core problem.

For the case of airline crew rescheduling this has been observed by Lettovský et al. (2000)
and Nissen and Haase (2006). In both papers the core problems are generated using a set
of parameters, which makes it possible for the dispatcher to solve the problem again with a
larger core problem, if he is unsatisfied with the quality of the solution obtained so far. The
drawback of this scheme is that computation times increase rapidly with the size of the core
problems.

In order to overcome this drawback, we propose a different way, illustrated in Figure 3,
of exploring promising parts of the solution space of (1)–(4). As in the other approaches, we
start with an initial core problem. This initial core problem is defined such that it has a high
probability of containing a good solution and is of a size that allows us to explore it within
a small amount of time. If tasks need to be canceled in the solution obtained for the initial
core problem, we try to cover them by exploring a neighborhood for each uncovered task in
turn. We use a heuristic based on column generation and Lagrangian relaxation to explore

9

the core problems. This heuristic is described in Section 5. In Section 6, we discuss how we
define the core problems.

Define an ini-
tial core problem

Compute an initial solu-
tion using the CG heuristic

Get the list of
uncovered tasks

Update the list of
uncovered tasks

List empty? STOP

Explore the core problem
using the CG heuristic

Remove a task from
the list and de-

fine a core problem

YES

NO

Figure 3: Overview of the algorithm

Starting with an initial feasible solution and trying to improve it iteratively by fixing
a part of the solution and reoptimizing the remaining part has been proposed for several
combinatorial problems. Examples are the heuristic of Caprara et al. (1999) for the set
covering problem, and the large neighborhood search (LNS) heuristics of Ropke and Pisinger
(2006) and Prescott-Gagnon et al. (2007) for the vehicle routing problem with time windows
and of Pepin et al. (2008) for the multiple depot vehicle scheduling problem. The latter
two papers have in common with this paper that they use heuristic column generation for
neighborhood exploration.

5 Exploring the core problems

A core problem is given by a subset ∆̄ of the original duties and a subset N̄ of the tasks.
Given ∆̄, N̄ contains the tasks that are covered by at least one δ ∈ ∆̄ plus the tasks uncovered
in the current solution. More formally a core problem reads:

10

min
∑
δ∈∆̄

∑
k∈K̄δ

cδkx
δ
k +

∑
i∈N̄

fiyi (5)

s.t.
∑
δ∈∆̄

∑
k∈K̄δ

aδikx
δ
k + yi ≥ 1 ∀i ∈ N̄ (6)

∑
k∈K̄δ

xδk = 1 ∀δ ∈ ∆̄ (7)

xδk, yi ∈ {0, 1} ∀δ ∈ ∆̄,∀k ∈ K̄δ, ∀i ∈ N̄ (8)

where K̄δ ⊆ Kδ. This subset contains all feasible completions that are represented by a path
in graph Ḡδ, discussed in Section 5.2.

To find good feasible solutions to (5) subject to (6)–(8) fast, we use a Lagrangian heuristic
similar to the one proposed by Huisman (2007). Therefore, we relax the covering constraints
(6) in a Lagrangian way introducing nonnegative Lagrangian multipliers ui, i ∈ N̄ . The
Lagrangian subproblem then becomes:

Θ(u) = min
∑
δ∈∆̄

∑
k∈K̄δ

cδkx
δ
k +

∑
i∈N̄

fiyi +
∑
i∈N̄

ui(1−
∑
δ∈∆̄

∑
k∈K̄δ

aδikx
δ
k − yi)

s.t. (7) and (8)

which can be rewritten as

Θ(u) = min
∑
i∈N̄

ui +
∑
δ∈∆̄

∑
k∈K̄δ

(cδk −
∑
i∈N̄

uia
δ
ik)x

δ
k +

∑
i∈N̄

(fi − ui)yi (9)

s.t. (7) and (8)

The Lagrangian subproblem is separable and therefore the optimal solution to it can be
found with the following procedure. In order to not violate constraints (7) we set xδk = 1
for one k ∈ arg min{c̄δk(u) : k ∈ K̄δ} for each δ ∈ ∆̄, where c̄δk(u) := cδk −

∑
i∈N̄ uia

δ
ik is the

reduced cost of feasible completion k. All other xδk variables are set to 0. Furthermore, for
each i ∈ N̄ , we set yi = 1 if fi − ui < 0 and yi = 0 otherwise.

Now the Lagrangian dual problem is to find

Θ∗ = max Θ(u), u ≥ 0

Because the number of feasible completions for every driver can still be huge we combine
Lagrangian relaxation with column generation. We assume that the reader is familiar with the
general ideas of column generation (for references see e.g. Desrosiers and Lübbecke (2005)).
We will thus consider a restricted master problem (RMP) of (7)–(9) containing only a subset
of the xδk variables. In the nth column generation iteration the xδk variables in the RMP
are given by ∪δ∈∆̄{xδk : k ∈ K̄δ

n}, where K̄δ
n ⊆ K̄δ is a subset of feasible completions. Let

Θ∗n be the optimal value of the associated Lagrangian dual problem. For every RMP we

11

use subgradient optimization (see e.g. Fisher (1981)) to approximate Θ∗n. Let u∗n be the
corresponding multiplier vector. To check if Θ∗n is a good approximation of Θ∗, or if we need
to add feasible completions to the RMP in order to potentially improve on Θ∗n, we solve a
pricing problem for every original duty δ ∈ ∆̄. The pricing problems are modeled as resource
constrained shortest path problems in dedicated graphs as described later in Section 5.2. Let
rδn := min{c̄δk(u∗n) : k ∈ K̄δ

n} be the smallest reduced cost of the already generated feasible
completions for original duty δ and zδn := min{c̄δk(u∗n) : k ∈ K̄δ} the optimal value of the
pricing problem for δ. Then the feasible completion k corresponding to zδn should be added
to the RMP if zδn − rδn < 0. Moreover, LBn := Θ∗n +

∑
δ∈∆̄ (zδn − rδn) is a lower bound on Θ∗.

Furthermore, when the subgradient method terminates, we invoke a greedy procedure to
find feasible solutions to the core problem. This procedure, which takes as input a multiplier
vector, is repeated up to maxMulti times using the multiplier vectors obtained in the last
maxMulti iterations of the subgradient algorithm. In our experiments, maxMulti was set
to 100 or 200. The greedy procedure is presented in Figure 4. First, we order the original
duties by increasing reduced cost of the xδk variables that were set to one in the Lagrangian
subproblem solution. Moreover, we set all yi = 1 (Line 1). We initialize û with the current
vector of multipliers u (Line 2). Then, we choose for every original duty the best feasible
completion with respect to quasi reduced cost depending on û (Lines 3 – 6). If there are
uncovered tasks, we try to cover them by reserve duties that are idle (Lines 9 – 13), where
idle means that we have chosen the feasible completion of their duties that covers no tasks.

Order the original duties δ ∈ ∆̄. Set yi = 1 for all i ∈ N̄ ;1

Set û = u;2

forall δ ∈ ∆̄ do3

Choose k∗(δ) ∈ arg min{c̄δk(û) : k ∈ K̄δ
n} and set the corresponding xδk∗(δ) = 1;4

Set ûi = 0 and yi = 0 for all i ∈ N̄ with aδik∗(δ) = 1;5

end6

Set ûi = fi if yi = 1 for all i ∈ N̄ ;7

Construct the set of idle reserve duties ∆̄I := {δ ∈ ∆̄R : aδik∗(δ) = 0 for all i ∈ N̄};8

forall δ ∈ ∆̄I do9

Set xδk∗(δ) = 0;10

Choose q∗(δ) ∈ arg min{cδk(û) : k ∈ K̄δ
n} and set the corresponding xδq∗(δ) = 1;11

Set ûi = 0 and yi = 0 for all i ∈ N̄ with aδiq∗(δ) = 1;12

end13

Figure 4: Greedy procedure to construct feasible solutions

When we explore a new core problem, we warm start the RMP with columns generated
earlier if possible. In order to do so, we store all generated columns in a column pool. If a

12

new core problem contains original duties that have been considered in other core problems,
we scan the column pool and add columns to the RMP if all tasks covered by the column are
included in the new core problem.

5.1 Acceleration strategies and column fixing

We apply two acceleration strategies, partial pricing and early termination, in our column
generation procedure. We stop the pricing as soon as we have found attractive columns for
30 % of the pricing problems. Note that we can compute LBn only if we solve all pricing
problems. Moreover, we terminate the column generation process when the relative gap
between LBn and Θ∗n is small, in our case below 0.1 %.

When the relative gap between the cost UB∗ of the best feasible solution found so far and
the lower bound LBn is larger than a threshold, we switch to a column fixing phase, where
we perform a depth first search in a branch and bound tree without backtracking. We may
fix the columns of several original duties in every node and we apply column generation in
every node.

For selecting the columns that we fix in a given node, we use information about how
often a column appeared in a Lagrangian subproblem solution while solving the last RMP.
For every feasible completion k for every original duty δ, we compute the ratio Rδk = sδk

U ,
where sδk is the number of times xδk was set to 1 in a Lagrangian subproblem solution during
subgradient optimization of the last RMP and U is the number of iterations performed by
the subgradient algorithm. We order the feasible completions by decreasing values of Rδk.
We start with setting the feasible completion with the largest value of Rδk to 1 and all other
feasible completions from the same original duty to 0. For the same node, we then continue
with the feasible completion with the next largest value of Rδk as long as Rδk ≥ 0.7 and the
number of original duties for which we fixed the feasible completions in this node is less than
µ percent of the original duties (µ was set to 10 in our experiments). This scheme is closely
related to the α-fixing procedure proposed by Holmberg and Yuan (2000).

5.2 Pricing problems

For every original duty δ ∈ ∆̄ we build a graph Ḡδ in which every feasible completion k that
satisfies the following criterion is represented by a path in Ḡδ: Every task i covered by k as
well as every task that is used for deadheading in k belong to N̄ . Moreover, given a vector
of Lagrangian multipliers u, the cost of every path corresponds to the reduced cost of the
feasible completion.

In these graphs we use several types of nodes and arcs in order to model the feasible
completions. The source of graph Ḡδ captures the position of original duty δ at the time of
rescheduling. There are three possibilities: The duty might not have started (i). If the duty

13

has started, the driver is either performing a task (ii), or he transfers at a station (iii). The
sink node of Ḡδ corresponds to the end of an original duty.

Besides the source and sink, we introduce a pair of nodes for the departure and the arrival
of each task i. These nodes are connected by an arc representing driving task i. A copy of
the arc is used to model deadheading of a driver on task i, if the driver is not allowed to drive
task i due to his route and/or rolling stock licenses.

A transfer arc from the arrival node of a task i to the departure node of a task j exists,
if a driver can perform task j immediately after task i. In general, this is possible if task j

starts at the end station of task i and if either the time between the arrival and the departure
is larger than the minimum connection time, or the two tasks are operated with the same
rolling stock.

Transfer arcs have a property indicating if this transfer can be used as a meal break. This
is the case if the transfer takes place at a station that has a canteen and the transfer time is
long enough.

From some stations there are taxi connections to other stations for given periods of the
day. This occurs for example if the shunting area is located far from a station or crew base.
In this case drivers travel by taxi between the stations and the shunting areas to perform
pull-out and pull-in tasks. Moreover, alternative ways of transportation might be used during
rescheduling to reposition drivers. These deadhead transfers are also modeled by taxi arcs
although they could be bus trips or trips on trains of other operators in reality.

Constructing the graphs in this way, not every path corresponds to a feasible completion
because it might violate the meal break rule. Therefore, we solve the subproblems as resource
constrained shortest path problems (see Irnich and Desaulniers (2005)). As resources we use
the working time before and after the meal break.

6 Defining the core problems

6.1 Initial core problem

After initial experiments we came up with the following selection of the subset of original du-
ties ∆̄ for the initial core problem. This selection is a good compromise between computation
time and solution quality.

We build ∆̄ in four steps. In the first step, we add all tasks which are canceled or modified
(rerouted) to N1. Secondly, we build a set N2 where we add an unmodified task j if it has
the same pair of start and end stations as one of the tasks in N1 and if its departure time
dtj lies in the interval [t0, t1 + 60 minutes], where t0 is the earliest departure time of a task
i ∈ N1 with dsi = dsj and asi = asj , t1 is the latest arrival time of a task i′ ∈ N1 with
dsi′ = dsj and asi′ = asj . In the third step we add a task j to N3 if it is part of the
same train as one of the tasks in N1 ∪ N2. Finally, we define the subset of original duties

14

∆̄ := ∆R ∪ {δ ∈ ∆A : δ covers at least one task in N1 ∪ N2 ∪ N3}. Note that we include all
reserve duties in the initial core problem.

6.2 Neighborhoods for uncovered tasks

Given our crew rescheduling problem, the largest improvement and the one we are mainly
interested in is covering tasks that have not been covered in the solution of the initial core
problem. Therefore, we are interested in neighborhood operators which, given an uncov-
ered task, define a neighborhood such that exploring the neighborhood could lead to a crew
schedule that covers more tasks.

In the first step we select a number of candidates. These duties can possibly cover the
uncovered task. Usually this would leave other tasks uncovered and in order to assign them
to other duties we select in step two for each candidate duty a number of similar duties that
offer possibilities to swap parts of the duties.

Station A

Station B

j ̂j− Time

Figure 5: Selecting replacement duties that cover tasks leaving from station A just before and
after task j.

The candidates in the first step are selected as follows (see Figure 5). Given the departure
time and station (A in the example) of the uncovered task j we look at task j− that departs
from the same station the closest before task j. Then we consider the replacement duty σ

that covers j− in the current solution and check heuristically, considering rolling stock and
route knowledge, if σ could cover j. If yes, then we select σ as a candidate and continue
the next task that departs from station A before j− until we have selected r candidates. We
repeat the procedure considering tasks that depart from station A after task j.

Furthermore, we select the replacement duty which covers task ̂, the first task that leaves
station B and goes back to station A such that a driver can transfer from j to ̂. Including
this original duty ensures that it is possible to perform task j and then deadhead back to
station A.

15

In Figure 5, we have marked in gray the tasks covered by replacement duties that have
been selected. Note that, because of missing route knowledge, task j− is not marked.

In the second step we select for every candidate the s most similar duties that have not
been selected yet. We define similarity between duties as the number of stations that are
visited around the same time. We also add a bonus if they share the same current station
and crew base. The idea behind this measure is that two duties can possibly swap parts if
they have a departure from the same station around the same time and both reach another
station later in their duty again around the same time. Given a candidate σ, another duty τ
and the set of tasks Nσ and Nτ covered by the duties, we compute the similarity as

S(σ, τ) := B(σ, τ) +
∑
i∈Nσ

∑
j∈Nτ

γij

where

γij :=

1 if dsi = dsj and |dti − dtj | ≤ ω

0 otherwise

indicates that tasks i and j depart from the same station within at most ω minutes from each
other. The bonus function B(σ, τ) := Bb(σ, τ) + Bcs(σ, τ) sums up the bonus for the same
crew base Bb and same current station Bcs, respectively. For our experiments we use

Bb(σ, τ) :=

0.6 if bσ = bτ

0 otherwise.

Bcs(σ, τ) is defined accordingly.

7 Computational experiments

We implemented our solution approach in C++ and compiled it with the Visual C++ 8.0
compiler. We ran our experiments on an Intel Pentium D processor with 2 GB RAM clocked
at 3.4 GHz.

For the objective function we specified the following cost coefficients. The value of fi
depends on the type of the task. Canceling a task from a station A to another station B

would make the underlying rolling stock schedule infeasible, therefore we set fi = 20, 000 for
these tasks. Under the mild assumption that the rolling stock assigned to a task from A

to A can be moved to the shunting area and pulled out again, these tasks leave the rolling
stock schedule intact. Since this situation is preferred from the point of view of the overall
disruption management process, we set the corresponding fi to 3, 000. The cost of each feasible
completion of a duty is zero if the duty is unchanged or the sum of penalties depending on the
way the duty is changed. We used the following values for penalties: 400 if a duty is changed,
50 for every task that is not assigned to its original duty, 1 for every transfer between two
tasks that was not used in the original plan by some duty and 1, 000 if the driver has to be

16

Location ID Time Type Affected duties

Abcoude Ac A 11:00-14:00 two sided blockage 59

Abcoude Ac B 16:30-19:30 two sided blockage 53

Beilen Bl A 07:00-10:00 two sided blockage 15

Beilen Bl B 16:00-19:00 two sided blockage 15

’s-Hertogenbosch Ht A 08:00-11:00 two sided blockage 55

’s-Hertogenbosch Ht B 15:30-18:30 two sided blockage 51

Lelystad Lls A 04:00-07:00 two sided blockage 25

Lelystad Lls B 13:00-16:00 two sided blockage 22

Zoetermeer Ztm A 08:00-11:00 reduced number of trains 21

Zoetermeer Ztm B 11:30-14:30 reduced number of trains 25

Table 1: Summary of the different scenarios

repositioned using a taxi. In the experiments we had no penalties for short connection times
and overtime.

7.1 Instances

As a starting point for our instances we remodeled five scenarios, spread over the country,
that happened in the past. All scenarios lasted about three hours. Therefore, we chose an
estimated duration of 3 hours for our remodeled instances. For every historic scenario, we
generated a second disruption with the same estimated duration but at a different time of
the day. We modified the timetable following the main ideas behind the emergency scenarios.
Because rescheduling of rolling stock is in itself a difficult optimization problem, we considered
a simplified rolling stock schedule, which can easily be adapted to the new timetable. For the
original duties we used a crew schedule that was operated by NS on a workday somewhere in
September 2007.

A general description of the 10 cases is given in Table 1. The disruptions around Abcoude,
which is located between Utrecht and Amsterdam, and around ’s-Hertogenbosch, which is
located south of Utrecht, involve heavily used routes. More than 50 original duties are affected
by the disruptions in these instances. The involved routes in the instances at Beilen and
Lelystad are not so heavily used, but the route blockages disconnect some ends of the railway
network from the remaining part. The instances at Zoetermeer also involves a heavily used
route, but in these instances a reduced number of trains can be operated on the involved
route, because it is not completely blocked.

17

7.2 Results for initial core problems

In a first series of experiments, we applied our algorithm to the described scenarios but we
solved only the initial core problems. These core problems were constructed as described
in Section 6.1. In addition, we included a number of reserve duties. Recall that the crew
schedule of NS contains about 90 reserve duties on an average workday. At the time a large
disruption occurs and rescheduling takes place, not all reserve duties might be available for
rescheduling. One reason is that reserve duties are also used when a train driver missed a
connection because of a delay. Moreover, another disruption could have happened earlier and
reserve duties might have been used in order to recover from this disruption. In order to take
this into account somehow during our experiments, we derived three sets of reserve duties
R1–R3 from a given initial plan R0 in the following way. In the set R1 (R2), every reserve duty
from R0 had a probability of 50% (25%) to be included in R1 (R2) as well. Based on drawing
a single random number between 0 and 1 for every reserve duty in R0 we obtained the sets
R1 and R2. Note here that the drawing for R2 was done independently of the drawing for
R1. This procedure resulted in sets R1 with 46 reserve duties and R2 with 20 reserve duties.
Finally, set R3 does not contain any reserve duty at all.

In Tables 2–4 we report the results for the three sets of reserve duties R1–R3, respectively.
Here the columns have the following meanings. The first column is the ID of the instance.
|∆̄| is the number of original duties in the initial core problem (finished reserve duties are
excluded) and |N̄ | is the number of set covering constraints in (6). Column LB reports the
value of LBn when terminating the column generation. UB is the value of the best feasible
solution. GAP is the percentage gap between LB and UB. Time is the computation time in
seconds. In the last five columns, we give some insight into the best feasible solution. A-A
and A-B denote the number of tasks of the types A-A and A-B that need to be canceled.
Taxi is the number of additional taxi trips used. MD is the number of active original duties
that are feasible but modified in the solution. UR is the number of reserve duties that cover
tasks in the solution. Note that the total number of original duties that are modified is the
sum of MD, UR and the number of affected duties (see Table 1).

First of all, we observe that all computation times are less than 4 minutes. The computa-
tion time mainly depends on the size of the core problems in terms of set covering constraints.
For example, for set R1, computation times range from 8 seconds for Bl B to 170 seconds for
Ht A.

Moreover, the number of canceled tasks is at most 1 for the experiments with reserve
duties and at most 2 for the experiments without reserve duties. The number of instances
where all tasks are covered in the solution, is equal to 7, 8, and 6 for sets R1, R2 and R3,
respectively. It is not surprising that without reserve duties (R3) the number of instances
where all tasks can be covered is less compared to the experiments with reserve duties (R1 and
R2). Interestingly, with R2 we can cover all tasks in more instances compared to R1, while

18

ID |∆̄| |N̄ | LB UB GAP (%) Time (s) A-B A-A Taxi MD UR

Ac A 163 602 63295 63588 0.5 144 1 0 1 5 6
Ac B 143 736 34351 34554 0.6 155 0 0 0 0 4
Bl A 80 234 10586 10586 0.0 11 0 0 1 0 2
Bl B 63 186 9541 9541 0.0 8 0 0 0 0 3
Ht A 134 617 38755 39454 1.8 170 0 0 5 0 4
Ht B 118 658 57731 58148 0.7 135 1 0 3 0 3
Lls A 81 239 17671 17775 0.6 16 0 0 5 0 5
Lls B 149 402 20003 20003 0.0 68 0 0 2 0 2
Ztm A 112 508 11976 12043 0.6 68 0 0 1 0 1
Ztm B 110 423 35192 35196 < 0.1 39 1 0 1 0 1

Table 2: Results for initial core problems with reserve R1

ID |∆̄| |N̄ | LB UB GAP (%) Time (s) A-B A-A Taxi MD UR

Ac A 137 602 45544 46303 1.7 129 0 0 1 7 5
Ac B 124 736 35335 35871 1.5 165 0 0 0 1 4
Bl A 54 234 10588 10588 0.0 8 0 0 1 0 2
Bl B 44 186 10414 10604 1.8 8 0 0 0 3 1
Ht A 108 617 39212 39699 1.2 129 0 0 6 0 2
Ht B 96 658 58951 59099 0.3 129 1 0 3 0 2
Lls A 55 239 19272 19272 0.0 10 0 0 5 0 2
Lls B 121 402 20407 20407 0.0 42 0 0 6 2 1
Ztm A 86 508 12196 12343 1.2 42 0 0 0 0 1
Ztm B 84 423 35394 35394 0.0 31 1 0 0 0 0

Table 3: Results for initial core problems with reserve R2

ID |∆̄| |N̄ | LB UB GAP (%) Time (s) A-B A-A Taxi MD UR

Ac A 117 602 87125 87969 1.0 115 2 0 1 16 -
Ac B 111 736 35924 37687 4.9 181 0 0 0 5 -
Bl A 34 234 11517 11642 1.1 9 0 0 3 0 -
Bl B 31 186 13115 14457 10.2 8 0 1 1 5 -
Ht A 88 617 39998 40208 0.5 150 0 0 7 0 -
Ht B 82 658 61914 62609 1.1 132 1 1 3 0 -
Lls A 35 239 22775 22775 0.0 7 0 0 8 1 -
Lls B 103 402 20805 21253 2.2 58 0 0 7 2 -
Ztm A 66 508 12351 12351 0.0 29 0 0 0 1 -
Ztm B 64 423 35391 35394 < 0.1 24 1 0 0 0 -

Table 4: Results for initial core problems with reserve R3

19

the absolute number of reserve duties is only 20 compared to 46 in R1. This indicates that it
is important where and when reserve duties are available for rescheduling. Furthermore, we
observe that at most 6 reserve duties are used.

Furthermore, we see that the impact of crew rescheduling on the whole crew schedule
differs significantly. The impact is limited considering the experiments with reserve duties.
Without reserve duties more duties are modified for most of the instances. In some cases, Ac
B, Lls A and Ztm A, this can compensate for the absence of reserve duties.

7.3 Results with neighborhood exploration

We have seen that the solutions to the core problems are good in terms of number of canceled
tasks especially when reserve duties are available. However, we would like to see if some of
the uncovered tasks can be covered when we explore a neighborhood as defined in Section
6.2. In the following, we only consider the instances where cancelation of tasks occur in the
solution of the initial core problem.

We present our results in Tables 5 – 8. In these tables the first column is the ID of the
instances. Column It is the number of the core problem exploration in the overall algorithm
(see Figure 3), where a 1 corresponds to the initial core problem and a number greater than 1
corresponds to a neighborhood exploration. Fixed provides the total cost of the fixed duties
when the current core problem is solved. |∆̄| and |N̄ | are the number of original duties and
set covering constraints in the core problem. LB, UB, and GAP give the values for LBn, the
best feasible solution cost and the percentage gap. TI is the computation time needed for
exploring the core problem. The next four columns show the status of the overall algorithm.
Sol, which is equal to Fixed + UB, is the objective value of the new crew schedule. TT is the
total computation time of the algorithm. A-B and A-A are the number of canceled tasks of
the corresponding types.

We first tried a relatively small neighborhood, where r and s were set to 3. When consid-
ering R1 as the set of reserve duties we can improve the solution of the initial core problems in
2 out of 3 cases and find solutions that cover all tasks (see Table 5). Exploring the neighbor-
hoods of the uncovered tasks took between 8 and 19 seconds. With R2 as the set of reserve
duties we can improve the solution in 1 of the 2 cases (Table 6).

For the case Ht B with R1, we also tried to obtain a better solution by exploring a larger
neighborhood of the uncovered task. We tried the settings r = s = 5 and r = s = 8. This
increased the size of the core problems to |∆̄| = 99 and |N̄ | = 622 for the first and |∆̄| = 190
and |N̄ | = 1383 for the second. As a result the time needed to explore the neighborhoods
went up to 44 and 373 seconds, respectively. However, we could not find better solutions in
terms of canceled tasks. We obtained similar results for the same experiments with Ht B and
R2.

20

ID It Fixed |∆̄| |N̄ | LB UB GAP (%) TI (s) Sol TT (s) A-B A-A

Ac A 1 0 163 602 63295 63588 0.5 144 63588 144 1 0
Ac A 2 41831 72 225 3363 3465 3.0 19 45296 163 0 0

Ht B 1 0 118 658 57731 58148 0.7 135 58148 135 1 0
Ht B 2 31415 60 263 26733 26733 0.0 11 58148 146 1 0

Ztm B 1 0 110 423 35192 35196 <0.1 39 35196 39 1 0
Ztm B 2 14693 72 167 1005 1005 0.0 8 15698 47 0 0

Table 5: Results for neighborhood exploration with r = 3, s = 3 using R1

ID It Fixed |∆̄| |N̄ | LB UB GAP (%) TI (s) Sol TT (s) A-B A-A

Ht B 1 0 96 658 58951 59099 0.2 129 59099 129 1 0
Ht B 2 32314 40 298 27431 27431 0.0 10 59099 139 1 0

Ztm B 1 0 84 423 35394 35394 0.0 31 35394 31 1 0
Ztm B 2 14841 47 166 1056 1056 0.0 6 15897 37 0 0

Table 6: Results for neighborhood exploration with r = 3, s = 3 using R2

In Table 7, we present the results of the neighborhood exploration with r = 4 and s = 4
when no reserve duties are present (R3). For 2 out of the 4 considered instances we can
significantly improve on the solutions of the initial core problems. Moreover, for Ztm B we
were able to find a solution that covers all tasks.

We run our algorithm again after increasing r and s to 6. With this setting, which
generates larger neighborhoods, we found better solutions for 3 of the 4 instances (see Table
8), but only for Ht B we found a solution covering more tasks compared to the smaller
neighborhood.

Comparing the results with the two different choices of r and s we can see that we can
obtain slightly better results by spending more time in exploring larger neighborhoods.

8 Summary and conclusion

We have proposed an algorithm to solve the OCRSP. Given a disruption and a real-life crew
schedule from NS, we have shown how to select a subset of the original duties in the crew
schedule such that we can find solutions of good quality within a short amount of time. This
was achieved by combining column generation and Lagrangian relaxation into a heuristic
algorithm. The proposed column fixing also enables us to obtain good solutions for the larger
instances.

Furthermore, we developed an extension, exploring neighborhoods of tasks which could
not be covered with the initial selection of duties. We have shown that with this extension,
it is possible to reduce the number of canceled tasks in many cases. This is an important

21

ID It Fixed |∆̄| |N̄ | LB UB GAP (%) TI (s) Sol TT (s) A-B A-A

Ac A 1 0 117 602 87125 87969 1.0 115 87969 115 2 0
Ac A 2 37973 48 272 49996 49996 0.0 9 87969 124 2 0
Ac A 3 41586 53 341 28591 28591 0.0 14 70177 138 1 0

Bl B 1 0 31 186 13115 14457 10.2 8 14457 8 0 1
Bl B 2 7530 36 307 6927 6927 0.0 7 14457 15 0 1

Ht B 1 0 82 658 61914 62609 1.1 132 62609 132 1 1
Ht B 2 30264 28 274 32345 32345 0.0 33 62609 165 1 1
Ht B 3 37900 25 229 24707 24709 <0.1 12 62609 177 1 1

Ztm B 1 0 64 423 35391 35394 <0.1 24 35394 24 1 0
Ztm B 2 13887 27 167 2010 2010 0.0 10 15897 34 0 0

Table 7: Results for neighborhood exploration with r = 4, s = 4 using R3

ID It Fixed |∆̄| |N̄ | LB UB GAP (%) TI (s) Sol TT (s) A-B A-A

Ac A 1 0 117 602 87125 87969 1.0 117 87969 117 2 0
Ac A 2 33200 95 556 36380 36383 <0.1 61 69583 178 1 0

Bl B 1 0 31 186 13115 14457 10.2 8 14457 8 0 1
Bl B 2 5571 67 511 8485 8485 0.0 25 14056 33 0 1

Ht B 1 0 82 658 61914 62609 1.1 131 62609 131 1 1
Ht B 2 25196 89 836 37347 37413 0.2 205 62609 336 1 1
Ht B 3 32423 86 789 28994 29199 0.7 392 61622 728 1 0

Ztm B 1 0 64 423 35391 35394 <0.1 24 35394 24 1 0
Ztm B 2 13334 84 613 2563 2563 0.0 52 15897 76 0 0

Table 8: Results for neighborhood exploration with r = 6, s = 6 using R3

22

improvement compared to algorithms which rely on an a priori defined core problem. In
our experiments, considering two sets of reserve duties, we can cover all tasks in 9 out of 10
instances. In the case where we do not consider any reserve duties, we can increase the number
of instances where no tasks need to be canceled from 6 after solving the initial core problem
to 7 by our neighborhood exploration scheme, while for 2 others we reduce the number of
canceled tasks.

We believe that the idea of neighborhood exploration can be used in other areas of
rescheduling as well. Moreover, our algorithm can easily be extended by new neighborhood
definitions. This could further improve the performance of the algorithm.

We have shown that OR methods can deal with the size, complexity and time restrictions
of crew rescheduling on the day of operations. However, railway operations are very dynamic
and major disruptions as discussed in this paper happen along with disturbances that cause
small delays. Future research challenges, probably involving simulation/optimization tech-
niques, lie in evaluating the cross-effects between delays and disruptions, the consequences
of several disruptions which are overlapping in time, and the influence of a duration that
differs from the expected duration. These should be the next steps on the way to introduce
OR-based decision support systems into control centers of passenger railway operators.

Acknowledgments

This research is made possible with support of Transumo. Transumo (TRANsition SUstain-
able MObility) is a Dutch platform for companies, governments and knowledge institutes that
cooperate in the development of knowledge with regard to sustainable mobility. Furthermore,
this research was partially sponsored by the Future and Emerging Technologies Unit of EC
(IST priority 6th FP), under contract no. FP6-021235-2 (ARRIVAL).

References

A. Abdelghany, G. Ekollu, R. Narasimhan, and K. Abdelghany. A Procative Crew Recovery
Decision Support Tool for Commercial Airlines during Irregular Operations. Annals of
Operations Research, 127:309–331, 2004.

A. Caprara, M. Fischetti, and P. Toth. A Heuristic Method for the Set Covering Problem.
Operations Research, 47:730–743, 1999.

A. Caprara, L. G. Kroon, M. Monaci, M. Peeters, and P. Toth. Passenger Railway Optimiza-
tion. In C. Barnhart and G. Laporte, editors, Transportation, volume 14, pages 129–187.
Elsevier, 2007.

J. Desrosiers and M. E. Lübbecke. A Primer in Column Generation. In G. Desaulniers,
J. Desrosiers, and M. M. Solomon, editors, Column Generation. Springer, New York, 2005.

23

M. L. Fisher. The Lagrangian Relaxation Method for Solving Integer Programming Problems.
Management Science, 27:1–18, 1981.

K. Holmberg and D. Yuan. A Lagrangian Heuristic Based Branch-and-Bound Approach for
the Capacitated Network Design Problem. Operations Research, 48:461–481, 2000.

D. Huisman. A column generation approach to solve the crew re-scheduling problem. European
Journal of Operational Research, 180:163–173, 2007.

D. Huisman, L. G. Kroon, R. M. Lentink, and M. J. C. M. Vromans. Operations Research
in passenger railway transportation. Statistica Neerlandica, 59:467–497, 2005.

S. Irnich and G. Desaulniers. Shortest Path Problems with Resource Constraints. In G. De-
saulniers, J. Desrosiers, and M. M. Solomon, editors, Column Generation. Springer, New
York, 2005.

J. Jespersen-Groth, D. Potthoff, J. Clausen, D. Huisman, L. G. Kroon, G. Maróti, and M. Ny-
have Nielsen. Disruption Management in Passenger Railway Transportation. Technical
Report EI 2007-05, Erasmus University Rotterdam, 2007.

L. G. Kroon, D. Huisman, E. Abbink, P.-J. Fioole, M. Fischetti, G. Maróti, L. Schrijver,
A. Steenbeek, and R. Ybema. The New Dutch Timetable: The OR Revolution. Interfaces,
(To appear), 2009.

L. Lettovský, E. L. Johnson, and G. L. Nemhauser. Airline Crew Recovery. Transportation
Science, 34:337–348, 2000.

C. P. Medard and N. Sawhney. Airline crew scheduling from planning to operations. European
Journal of Operational Research, 183:1013–1027, 2007.

L. K. Nielsen. A Decision Support Framework for Rolling Stock Rescheduling. Technical
Report ARRIVAL-TR-0158, Algorithms for Robust and online Railway optimization: Im-
proving the Validity and reliAbility of Large scale systems (ARRIVAL), 2008.

R. Nissen and K. Haase. Duty-period-based network model for crew rescheduling in European
airlines. Journal of Scheduling, 9:255–278, 2006.

A.-S. Pepin, G. Desaulniers, A. Hertz, and D. Huisman. Comparison of heuristic ap-
proaches for the multiple depot vehicle scheduling problem. Journal of Scheduling, (DOI
10.1007/s10951-008-0072-x), 2008.

E. Prescott-Gagnon, G. Desaulniers, and L.-M. Rousseau. A Branch-and-Price-Based Large
Neighborhood Search Algorithm for the Vehicle Routing Problem with Time Windows.
Technical Report G-2007-67, Les Cahiers du GERAD, 2007.

24

N. J. Rezanova and D. M. Ryan. The Train Driver Recovery Problem - a Set Partitioning
Based Model and Solution Method. Technical Report IMM-2006-24, Technical University
of Denmark, 2006.

S. Ropke and D. Pisinger. An Adaptive Large Neighborhood Search Heuristic for the Pickup
and Delivery Problem with Time Windows. Transportation Science, 40:455–472, 2006.

M. Stojković, F. Soumis, and J. Desrosiers. The Operational Airline Crew Scheduling Prob-
lem. Transportation Science, 32:232–245, 1998.

C. G. Walker, J. N. Snowdon, and D. M. Ryan. Simultaneous disruption recovery of a train
timetable and crew roster in real time. Computers & Operations Research, 32:2077–2094,
2005.

G. Yu, M. Argüello, S. Gao, S. M. McCowan, and A. White. A New Era for Crew Recovery
at Continental Airlines. Interfaces, 33:5–22, 2003.

25

