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1. Introduction 
Crew planning for passenger transportation has received a lot of attention in the Operations 

Research literature. Yet, only very recently, cases are reported where companies in the bus, 

railway and airline industry are using advanced OR techniques for solving crew planning 

problems (almost) optimally. With the rapidly increasing computer power in the past decade, 

advanced OR techniques such as column generation are gradually becoming more and more 

applicable to real life crew planning problems (see e.g. Day and Ryan (1997), Andersson et 

al. (1998), Desrosiers et al. (2000), and Ryan (2000)). Crew planning occurs on several 

levels, depending on the length of the planning period and whether the planning is for 

strategic, tactical or operational purposes. The two most widely applied crew planning 

problems are the crew scheduling problem for grouping tasks into duties, and the crew 

rostering problem for assigning duties to weekly, monthly or seasonal rosters for individual 

crew members. 

1.1 Definition 
The crew scheduling problem (CSP) is formally defined as follows: given a set of tasks with 

fixed starting and ending times and locations, and given a set of rules and criteria, find the 

minimum cost set of duties such that each task is included in a duty and all rules are satisfied. 
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A task is the smallest amount of work that can be assigned to one crew member. Each duty 

consists of a sequence of tasks that satisfy certain rules like maximum work time, minimum 

rest time, etc. The cost function consists of a weighted sum of several criteria, such as the 

number of duties or the total work time. An example of a task is Amsterdam 9:10 – London 

10:50, an example of a duty is Amsterdam 8:30 – Amsterdam 17:00. A duty may also cover 

more than one day, which is then often called a pairing. 

The crew rostering problem (CRP) is formally defined as follows: given the same 

information as for the CSP, and given a set of crew members with certain characteristics, 

find the minimum cost set of rosters such that each task is included in a roster, all rules are 

satisfied, and the characteristics of each crew member are taken into account. Just like a duty 

for the CSP a roster is a sequence of tasks that satisfy certain rules. The difference is that 

individual crew characteristics are taken into account for the CRP. Examples of such 

characteristics are qualifications, pre-assigned tasks, individual requests, and the past rosters 

for the crew member. The crew's past is necessary for checking laws and optimizing criteria 

that extend beyond the planning period. Usually, the CSP is solved first and the resulting 

duties serve as tasks for the CRP. We have experimented with integrating these two 

problems, where rosters are constructed directly from the tasks that served as input for the 

CSP in the definitions above (see Section 5). 

Crew scheduling and rostering problems are usually modeled with set partitioning 

type of formulations, and solved with column generation techniques. The focus of this paper 

is not on these basic models and techniques for crew scheduling and rostering. Many papers 

have already been published on column generation techniques for crew planning, see e.g. 

Desaulniers et al. (1997) and Vance et al. (1997) for recent papers on crew scheduling, and 

Gamache et al. (1999) for a recent paper on crew rostering. In this paper, the focus is on how 

to implement these models and techniques successfully in a decision support system, taking 

all kinds of practical issues into account. Although practical applications are considered in 

the theoretical papers mentioned above, most practical details (often also complicating ones) 

are left out, or at least it is not mentioned how these are incorporated in the computer system. 

Anyone who has implemented a branch-and-price algorithm will confirm that it is a tedious 

task to do so, taking a lot of effort, and trial-and-error. It requires a combination of 

experience with designing algorithms and implementing decision support systems. 

1.2 Historical development 
Since 1995 a decision support system for crew planning called CDR (Crew Duty Rostering) 

has been developed at ORTEC Consultants BV, the Netherlands. This company is specialized 

in the development, implementation and application of intelligent planning and decision 
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support systems, encompassing models and methods from Operations Research and 

Management Science. ORTEC produces systems in various areas, including aviation, vehicle 

routing, human resource management, production planning, railways, and asset liability 

management. The CDR system was originally designed to create and maintain rosters for 

airline cockpit and cabin crew, and later also for crew working on trains. 

In 1996, we implemented a simple column generation heuristic, which performed 

well for a particular application. However, for other applications this heuristic algorithm did 

not perform satisfactorily at all. In 1998 a new abstract implementation of the automatic 

planning tool in the DSS was started. The purpose was to set up a tool that can easily be used 

for different clients and applications, and that contains state-of-the-art mathematical 

techniques. Many practical issues came up during the development of the system for different 

applications. In Section 4, we discuss several implementation issues. 

1.3 Contribution 
In our view, the main contribution of our paper on a practical level is twofold: 

 

1. We show that most of the complicating details arising in practice can be incorporated in a 

branch-and-price algorithm because column generation is a very powerful and flexible 

technique. Sometimes this introduces a heuristic feature in the algorithm, but this is generally 

not a problem in a practical context. 

2. We provide insight into implementation issues, and therefore make it easier for novices 

in this field to implement branch-and-price algorithms and for the more experienced to get 

ideas for improvements. 

 

Another contribution on a more theoretical level is that we perform experiments with solving 

rostering problems directly from tasks for an airline application, without first solving 

scheduling problems, thus integrating crew scheduling and crew rostering. Caprara et al. 

(2000) deal with a similar integration for railway applications, but they use a different 

algorithmic approach. 

1.4 Outline 
In the next section, we discuss the mathematical background of the decision support system 

for crew planning. Several general algorithmic aspects will not be discussed here because 

they are already presented well in the aforementioned papers. Therefore, we briefly describe 

the underlying mathematical model and a branch-and-price algorithm. In Section 3, we 

discuss the functionality and purpose of the system, and the classification of constraints and 

objectives used in the system. In Section 4, we focus on the implementation issues. In 
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particular, we consider abstract implementation issues, the efficient use of computer memory 

and the reduction of run time. Four applications are discussed in Section 5, of which one 

airline crew rostering problem in more detail. Finally, we summarize our work in Section 6. 

2. Mathematical Background 
In this section, we briefly consider the underlying mathematical formulation and the solution 

methodology used in the system. Throughout this paper we assume that the reader is familiar 

with column generation and branch-and-price. See for example Barnhart et al. (1998) for a 

general discussion. We would like to stress again that the mathematical model and techniques 

to be presented next, can be found in several aforementioned papers and that they are not the 

focus of this paper. 

2.1 Set partitioning formulation 
The generalized set partitioning model (GSP) presented below can be used to formulate most 

crew planning problems arising in practice. The crew members are grouped into crew groups, 

where each group consists of all crew members with identical characteristics. Let the set R 

denote the set of all feasible duties or rosters, let K denote the set of all crew groups, and let I 

denote the set of tasks which need to be covered. Furthermore, let Rk denote the set of 

feasible duties or rosters for group k�K. GSP contains binary decision variables xr which 

equal 1 if duty or roster r is selected and 0 otherwise, and continuous decision variables si 

which equal the number of uncovered tasks. The cost of duty or roster r�R is denoted by cr 

and the penalty for not covering task i�I is denoted by pi. Finally, bi is the number of duties 

or rosters which need to cover task i�I, and dk denotes the maximum number of duties or 

rosters allowed in group k��. The generalized set partitioning problem on which the 

automatic planning part of the DSS is based is mathematically formulated as follows: 

(GSP) Minimize ispi 
Ii

 + xr cr 
Rr

�

�

�

�
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The objective usually comes down to primarily minimizing the number of uncovered 

tasks, and secondarily minimizing the total cost of the duties or rosters selected in the 

solution. Constraints (i) are generalized set partitioning constraints, which ensure that each 

task is covered by at most bi duties or rosters. In case of planning crew members as a team, 

one duty is assigned to the entire team for the CRP. That is, for the right-hand-side of 

constraint (i) bi is equal to the number of crewmembers in the team. Variables si are added to 

allow tasks to remain uncovered. Constraints (ii) guarantee that at most dk duties or rosters 

can be assigned to each group. We assume that the intersection of the sets Rk for all k�� is 

empty, that is, each duty or roster r�R is uniquely defined for one group. Variations for both 

Constraints (i) and (ii) are possible by interchanging equality signs and inequality signs. 

Additional constraints may be added for modeling global constraints, which deal with sets of 

duties or rosters. 

This model is a generalization of the model proposed in Ryan (1992) for the CRP 

(see also Gamache and Soumis (1998) and Gamache et al. (1999) for slight variations). The 

novelty in this formulation is the notion of groups, which generalizes the set partitioning 

formulations for the CSP and CRP. In case of the CSP, there is one group and constraint (ii) 

only exists in case a maximum number of duties are allowed in the solution. For the CRP 

with unique characteristics for each crew member, every crew member corresponds to one 

group. In practice, several crew members may have identical characteristics and can therefore 

be joined in a group. 

2.2 Solution approach 
A disadvantage of the model above is a large number of feasible duties or rosters, which 

corresponds to a large number of columns. Therefore, in order to use the model in the solution 

approach, we need a column generation procedure. The state-of-the-art techniques in the 

automatic planning tool are related to the general framework in the context of time constrained 

routing and scheduling problems proposed by Desrosiers et al. (1995) and Desaulniers et al. 

(1999). In particular, our solution approach consists of a branch-and-price algorithm for the 

GSP. Branch-and-price is a special application of branch-and-bound, where column 

generation is used to solve LP relaxations with a huge number of variables. Since the late 

eighties several papers deal with column generation approaches for crew planning in 

passenger transportation (recent papers are Desaulniers et al. (1997), Vance et al. (1997), and 

Gamache et al. (1999)). The main steps of the general solution approach in the system are: 

 

Step 1. Read the input and choose the initial set of columns. 
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Step 2. Solve the LP relaxation with the current set of columns; this is usually called the 

master problem. 

Step 3. Column management: delete columns from the current LP model, and price: generate 

new columns with negative reduced costs and add them to the current LP model. 

If new columns are found return to Step 2. 

Step 4. If stopping criteria are satisfied write the output and stop. Otherwise perform a new 

branch-and-bound step, that is: 

4.1 select a node to branch on, 

4.2 calculate the lower bounds of the two new nodes by solving the LP relaxations 

with the procedures in Steps 2 and 3, 

4.3 perform fathoming rules; if an integer solution has been found that is better than 

the best integer solution so far, update the best integer solution, 

4.4 return to Step 4. 

The crucial aspects of this approach are price, select and branch, that is, how 

columns are generated in Step 3, and how nodes are selected and which branching rule is 

used in Step 4. In our implementation, nodes can be selected by depth-first-search, best-first-

search, or a combination of these two. The system contains several algorithms for generating 

columns based on one or more acyclic networks. For crew scheduling a single network is 

used, while for crew rostering a network is used for each crew member. The networks are 

defined such that each node corresponds to a task (or trip, flight, duty, etc.) and each arc 

corresponds to a feasible sequence of two tasks in one duty or roster. In addition a source and 

sink arc are added to each network, denoting the start and end of a duty or roster. A path in a 

network corresponds to a feasible duty or roster if the path constraints are satisfied. See also 

Desrochers et al. (1992) for an example of a similar network for crew scheduling. Paths 

through the networks are constructed by solving a resource constrained shortest path problem 

(see Desrosiers et al. (1995)). The algorithms that we have implemented are a dynamic 

programming algorithm, a depth-first search algorithm, and an all-pairs shortest path 

algorithm (see Freling (1997)). The choice of the algorithm depends on the application 

considered, and combinations of two algorithms may also be used. 

We have also implemented several branching rules. The branching rule for the exact 

branch-and-price algorithm consists of branching on the arcs in the underlying networks (see 

e.g. Desrosiers et al. (1995)). A branch consists of either forbidding or forcing one arc to be 

in the solution. The consequence for the child nodes is that several variables are fixed to zero, 

and that the corresponding networks are adjusted by deleting arcs to either force or forbid an 
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arc to be in the solution. In case of forcing an arc to be in the solution, all other arcs leaving 

and entering the corresponding nodes are deleted. 

This solution approach is very robust in the sense that both the constraints defining 

the feasibility of each duty or roster, and the constraints defining the feasibility of a set of 

columns can be easily incorporated without changing the basic structure of the algorithm (see 

Section 3.2). In addition, for large scale problems several exact and heuristic techniques can 

be used in a straightforward manner to speed-up the algorithm (see Section 4). 

3. A Decision Support System for Crew Planning 
In this section, we discuss the functionalities and the purpose of the DSS, the classification of 

the constraints and objectives in the system, and the crew classes. 

3.1 Functionality and purpose of the DSS 
The CDR system supports the entire planning process, which is divided in long term 

planning, short term planning (rostering and operations control), realisation and evaluation. 

This is depicted in Error! Reference source not found.: 

[PLEASE INSERT FIGURE 1 AROUND HERE] 
 

Starting Points are defined based on long term analyses and company rules. For 

example, a starting point can be the desired service level, the desired number of crew, 

training needs, hollidays, and other specific issues that influence the crew availability. The 

long term planning concerns a planning for an entire season, that is based on the defined 

starting point. The system helps the management to determine: 

 

�� the capacity needed to perform the tasks. 

�� the permanent and temporarily staffing levels needed to meet the required capacity. 

�� allowed vacations, standbys required etc. for the given period. 

 
The long term planning delivers several norm figures for use in the planning 

department. When the norm figures are available, a planner can start with creating rosters. Of 

course these norm figures influence the planner’s freedom of movement. An example of an 

application of the short term module is to determine daily duties first by solving the CSP 

seven times for each day of the week, and determining weekly rosters afterwards by solving 

the CRP. After the roster has been published, several changes can occur due to, for example, 

sickness of crew, schedule changes, delays etc. CDR supports the planner during the 

coordination stage and the operations control stage. Based on reports and a user friendly 

planning board, the planner will be able to handle the operational changes. 
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Once a specific duty has been performed, corresponding data are saved into the CDR 

database. For example, this concerns crew notification data such as sign-in/sign-out. To 

complete the planning circle, CDR supports the planner to help making an evaluation of the 

realization. The best rosters are those that take into account management as well as crew 

wishes. But these are often conflicting, so it is very difficult to create a roster manually that 

will keep both parties satisfied. The automatic planning tool facilitates the planner in creating 

a roster that satisfies both economic and social criteria (see Section 3.2). The system concept 

relies on the possibility of calculating several alternatives within a relatively short time 

(What-if analysis). What-if analysis can be used on every planning process level supported by 

CDR. For example, what-if analysis can be used to analyse the effects of certain policies, to 

support negotiations with respect to legal regulations, to make a capacity plan, or to select the 

best alternative out of several generated rosters. 

3.2 Classification of constraint and objective types in the DSS 
The duties and rosters that are generated by the automatic planning tool have to meet certain 

labor laws and agreements in order to be feasible. Assume that we have an underlying 

network representation as proposed in Section 2.2. Recall that network representation is such 

that each node corresponds to a task and each arc corresponds to a feasible sequence of two 

tasks in one duty or roster. A path in a network corresponds to a feasible duty or roster if the 

path constraints are satisfied. We suggest three levels of constraints: 

 

1. Coupling constraints. This concerns rules that relate to the whole set of selected duties or 

rosters. Such a constraint could specify, for example, that at most 5% of all selected duties 

have durations longer than 9 hours. These constraints are added to the master problem. 

2. Path feasibility constraints. Rules at this level determine the feasibility of a duty or roster 

(a path in a network representation). For example, the maximum length of a duty is 9½ hours. 

Usually, most constraints are at this level. 

3. Node/arc feasibility constraints. A constraint at this level determines if a particular task 

(a node in a network representation) can be assigned to a certain crew member due to 

licenses, etc. or if two tasks (or duties) can be assigned consecutively to the same duty or 

roster (an arc in a network representation). For example, an arc between tasks i and j exists if 

task i starts after task j has finished and a short buffer time has passed. 

 
A similar classification holds for other network representations. Sometimes the 

network representation needs to be modified in order to be able to check constraints 

efficiently. For example, several home bases may exist, and each duty or roster must start and 
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end at the same home base. In that case, it may be better to use one network for each home 

base. In case of one network for each crew member, this problem would be solved if each 

crew member has a unique home base. However, in one of the airline applications we worked 

on (see Section 5), some crew members could be assigned to two home bases because they 

lived somewhere in between. 

 For the classification of objectives we can distinguish three types of possibly conflicting 

objectives: 

 

1. Efficiency: cost minimization with respect to the number of uncovered tasks and the 

number of required duties or crew; other cost factors may be the number of layovers and the 

total time between tasks. 

2. Welfare: the workload of the rosters should be equally spread among the crew members, 

and requests should be granted equally as much as possible. 

3. Robustness: duties or rosters must be robust with respect to, for example, delays. 

 
A similar classification as for the constraints is also possible: some objectives have 

effect on a set of duties or rosters, some on paths, and some on nodes and/or arcs. Note that 

the constraints and objectives that need to be checked at each level depend on the application, 

the client, the crew type and the planning horizon. For example, for the CSP on a daily basis 

only efficiency and robustness are relevant. Or, for the short term CRP, crew welfare and 

robustness could be more important than efficiency if all crew members receive fixed salaries 

anyway. 

3.3 Crew classes 
Usually, in the airline and railway industry several crew classes like cockpit and cabin crews 

need to be planned. Cockpit and cabin crews usually consist of different crew functions, for 

instance pilots and co-pilots for a cockpit crew. Although crew can be planned for each 

function separately, it may be efficient to use crew teams of, for example, cockpit crew only 

or of both cockpit and cabin crew together. Often, different duty functions can be assigned to 

one crew function, for example a pilot can do both a pilot duty and a co-pilot duty. In that 

case, and if crews do not need to be planned as teams, a logical decomposition is to solve the 

co-pilot CRP first and all the duties that are uncovered are added to the pilot problem. 

Another example of different crew classes would be train drivers and guards, see Fischetti 

and Kroon (2000)). The context of crew planning for urban transit has been discussed in 

detail in Odoni and Rousseau (1994). Furthermore, Desaulniers et al. (1998) have provided 

an overview of different crew planning problems. 
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4. Implementation Issues 
As mentioned in the introduction, implementing a branch-and-price algorithm is not an easy 

task, let alone implementing a flexible tool, suitable for a variety of applications. However, in 

the literature little or no attention has been paid to the implementation of such an algorithm. 

Therefore, we provide some insights into our implementation, and discuss some difficulties 

we ran into and the corresponding solutions we came up with. 

4.1 Abstract implementation 
The framework is implemented in the C++ programming language, making fully use of its 

object-oriented nature. Figure 2 shows an overview of the implementation. 

 
[PLEASE INSERT FIGURE 2 AROUND HERE] 
 

The optimization coordinator steers the various calls to the branch-and-price 

algorithm, like solving the CSP first and then the CRP, and solving the problem for different 

crew functions. There is an abstract interface with application specific information, that is, 

rules checking, input & output translator (via file interface) and parameter tuning. There is 

also an abstract interface with the linear programming solver (currently CPLEX 6.6, XPRESS 

12.1, and a subgradient algorithm), and an abstract interface with the pricing algorithm. 

An important part in such an abstract implementation is the rules checker, which also 

incorporates the functionality to calculate (elements of) the objective function. Recall that 

three levels of constraints and objectives can be defined. The link between the rules checker 

and the integer programming (IP) solver in the figure above, correspond to the checking of 

the coupling constraints that are added to the GSP. The path constraints are checked during 

the network algorithm, and the node/arc constraints are checked during the construction of 

the network(s). Also note that the constraints and objectives that need to be checked at each 

level, depend on the application and the planning horizon. For computational efficiency it is 

crucial that the path constraints can be checked as fast as possible. In our opinion, a column 

generation algorithm only works well if the path constraints are checked in sequence, that is, 

when building a path, each time a node is added to the path, it is not necessary to check the 

entire path so far. This is achieved by keeping constraint information of the path so far. An 

exception may be that one or two rules are checked at the end, when a complete path is 

found. Thus the feasibility of a path up to a certain node (no matter which algorithm is used), 

is checked by combining the constraint information of the path so far with the relevant 

information of adding the node. For this purpose, two vectors are used: a consumption vector 

with the consumption of each resource for a path up to a node, and an arc vector with the 

consumption of each resource for an arc (incorporating the addition of the node to which the 
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arc points). The network algorithm is not aware of details on these general vectors. These 

details are only known at the rules checker level, which keeps the implementation of the 

network algorithm general and abstract. 

4.2 Efficient use of computer memory 
The memory usage of a branch-and-price algorithm grows very fast with the size of the 

problem. To give an idea about the memory usage, we use a CRP example where a dynamic 

programming algorithm is used for the pricing problem. The larger part of memory is used by 

four categories: 

1. Size of the network for each crew member (mainly determined by the size of the arc 

vector). 

2. Size of the LP model. 

3. Size of the branch-and-bound tree. 

4. State space for the dynamic programming algorithm. 

Advanced data structures are necessary to prevent the memory requirements from 

exploding to unmanageable size, while keeping run times as low as possible. For the first 

category we did not use an entire new network for each crew member. Instead, we have one 

network for all crew members where we avoid the duplication of node and arc information. 

For a certain crew member, the network differs by linking only those nodes and arcs in the 

network that are relevant for that particular crew member. For an application with 109 crew 

members, a memory reduction of a factor 6 is obtained (from 680 Mb to 112 Mb), compared 

to creating a complete new network for each crew member. 

The size of the LP model is managed by keeping in memory only the size of the 

current model (if possible only in the internal data structures of the LP solver) at each 

iteration of the algorithm. We also have an option to delete columns from the model such that 

convergence of the column generation is still guaranteed (see Section 4.3). The branch-and-

bound tree is implemented as a heap, where active nodes are kept. Choosing a depth-first-

search strategy can also reduce memory usage, because the number of open problems remains 

relatively small. The state space for the dynamic programming algorithm consists of a linked 

list of paths at each node. The memory of these paths is never released during the algorithm 

to prevent wastage of computer time due to allocating and deleting memory. 

4.3 Exact strategies for computer time reduction 
In Freling (1997) and in Desaulniers et al. (1999) several acceleration strategies for column 

generation algorithms are suggested. In the latter paper, the strategies are categorized as pre-

processor strategies, subproblem strategies, master problem strategies, branch-and-bound 

strategies, and post-optimizer strategies (i.e. reoptimization). We have not used pre-processor 
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or post-optimizer strategies, except for some network reduction techniques (see Freling et al. 

(2001)). Here, we provide a list of the strategies that we have implemented and tested. In 

particular, in this section we discuss exact strategies and in the subsequent section heuristic 

strategies. We have implemented all these strategies, except when mentioned otherwise. 

Efficient column management 
The more columns are added to the master problem in each iteration, the less column 

generation iterations are necessary but the more time it takes to solve each LP problem. 

Therefore, experimentation is necessary to determine the right column management strategy. 

A discussion about column management strategies or related topics can be found in Bixby et 

al. (1992), Kohl (1995) and Freling (1997). By experimenting with various applications, we 

found a strategy that works well in general. The idea is to generate a relatively high number 

of columns, add them to the LP problem, and delete a large percentage of those columns after 

solving the LP problem. In that way many columns are considered but the LP problem does 

not grow too fast. The number of columns that can be generated depends on the pricing 

algorithm used. For all the algorithms we used in our implementation it is possible to 

influence the number of columns generated. The strategy for deleting columns after solving 

the LP problem is as follows (see also Freling (1997)): let q be the positive reduced cost 

columns after solving the LP problem, that are selected from those columns that are added to 

the master problem just before solving the LP problem.  Then, delete the 0.9q columns with 

the largest reduced cost. 

Our computational testing confirmed that it is very beneficial to use partial pricing, 

that is, to not generate columns for each group in one iteration (see also Gamache et al. 

(1999)). In each iteration, we generate columns once either negative reduced columns have 

been found for p1 groups, or the pricing problem has been solved for all groups. The value of 

p1 is set to max(5,|K|/20) in our implementation (recall that K is the set of crew groups). If p2 

is the number of negative reduced cost columns generated, then min[r, p2] columns are added 

to the master problem. The value for r may also be adjusted dynamically during the algorithm 

and needs to be tuned for each particular application. 

Although we have not tested it, an idea to improve the partial pricing is to group crew 

members if their characteristic are similar. Then, columns are generated for these groups at 

once and then divided among the crew members. 

Temporary relaxation of the pricing problem. 
Recall that the purpose of the pricing problem is twofold: generating ‘good’ columns, and 

providing a criterion for convergence of the column generation algorithm. For the second 

purpose, the pricing algorithm needs to be exact, for the first purpose not. Therefore, it may 
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be efficient to solve the pricing problem heuristically until some point and then change to an 

exact algorithm (see also Sol (1994) and Gamache et al. (1999)). We have tested a strategy 

called dynamic network size. We start with a sparse subnetwork by leaving out arcs, and 

update the network size until the original network size is obtained. At each iteration of the 

column generation procedure, the arcs in the network are sorted by increasing reduced cost. 

Thus, when selecting the subnetwork at each iteration, we take the subset of arcs with the 

lowest reduced cost out of each node. The reduced cost of an arc is defined as the cost of an 

arc (which includes the cost of the node it points to) minus the dual value of the task 

corresponding to the node it points to. The maximum number of arcs to be selected in each 

iteration is increased during the column generation procedure. 

Reduction of degeneracy. 
A typical phenomena in column generation is that at the end of the procedure negative 

reduced cost columns are still found but the LP objective value is not or almost not 

improving. This is called tailling-off. Two ways to deal with it are lower bound 

approximation (see Freling (1997)) and stabilized column generation (see du Merle et al. 

(1999)). We have performed some preliminary tests with stabilized column generation, but 

did not get significant improvements. However, Desrosiers et al. (2001) mention a large 

reduction in computer time for a particular application. 

4.4 Heuristic strategies for computing time reduction 
The branch-and-price algorithm is very well suited to add heuristic features that speed up 

solution time considerably while the solution remains close to optimality. See for example 

Gamache et al. (1999). Here we discuss several of such features. 

Fixed relaxation of the pricing problem 
When using dynamic programming to solve the pricing problem, some constraints or criteria 

can cause the state space to grow very fast. Let s and t be the source and the sink of a 

network, respectively. The size of the state space depends on the number of paths from s to 

each node, that is, the number of partial paths. To reduce the state space, dominance criteria 

are used to remove partial paths that will not lead to the shortest s-t path. Let Pi(s) and Qi(s) 

denote two partial paths from s to node i. Let Ui(t) denote a partial path from node i to the 

sink t. Then Pi(s) dominates Qi(s) if the following two conditions are satisfied: 

 

1. The (reduced) cost of Pi(s) is less or equal to the cost of Qi(s). 

2. If Pi(s)�Ui(t) is infeasible, then Qi(s)�Ui(t) is also infeasible for all Ui(t). 
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The first condition is only valid when the cost function is (monotonically) increasing 

with the number of nodes in the path. The second condition is only valid when an ordering 

exists for all the constraints. For example, in case of a maximum work time, the ordering 

follows from the fact that less work time is always better. Thus, if maximum work time is the 

only constraint, Pi(s) dominates Qi(s) if both the cost and the work time of Pi(s) are less or 

equal to the cost and the work time of Qi(s). Now suppose we also have a minimum work 

time constraint. Then, the dominance rule above can only be applied when both partial paths 

satisfy this constraint, thus resulting in a much larger state space. Finally, suppose we have an 

objective that the work time should be as close as possible to a certain fixed value, that is, the 

cost function is not (monotonically) increasing. Then, dominance can only be applied once 

both paths considered have exceeded the fixed value. 

In practice, we have encountered several of these types of constraints and objectives 

that cause the state space to grow very fast. But in none of those cases the user of the system 

had a problem when we modified the constraint or objective slightly in order to deal with 

them in a computationally more attractive way. For example, the minimum work time is 

relaxed, and only when the path is completed (that is, it reaches t) a penalty is added when 

the work time is below its minimum. In case of the objective that the work time should be as 

close as possible to a fixed value, costs are only involved once the work time exceeds the 

fixed value. Thus, dominance can be applied below that value as well. Experience shows that 

because the intention of the constraint is to balance work time among crew members, this can 

still be achieved approximately by setting the fixed value a little lower. Because a nonlinear 

penalty function is used (the higher the work time the faster the penalty increases), the work 

time is pushed down towards this value from above. 

Another way to heuristically relax the pricing problem is to modify the exact strategy 

with an increasing density of the network to a constant sparse density of the network. That is, 

dynamically update the arcs considered using reduced costs, but never increase the size of the 

network. 

Preliminary convergence of column generation and/or branch-and-price 
Other heuristic strategies that we have implemented are: 

 

1. Stop column generation once detecting tailling-off, that is, converge without a true lower 

bound. 

2. Only perform a few iterations of column generation when solving the LP problem in 

other nodes than the root node. 
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3. Try to find a good feasible solution as quickly as possible using a depth-first-search 

strategy during branch-and-price. Stop once a feasible solution is obtained. A possible 

extension is to fix several variables to one at once in each node of the tree (see also Gamache 

et al. (1999)). In this case, we branch on individual variables instead of arcs. 

5. Applications of the automatic crew planning 
module 
The automatic planning module of the DSS has been implemented for several applications. In 

this section, we briefly consider a charter airline and two railway applications and we 

consider a case study for a European regional airline company in more detail in Section 5.2. 

5.1 Example applications 
A first version of the crew planning system with application to crew rostering has been in 

operation since 1996 at a Dutch charter airline with flights within Europe. At first a simple 

heuristic was implemented (see Nicoletti (1975) and Bodin et al. (1983)), but this turned out to 

be unsatisfactory because the planner could manually produce better solutions. The algorithm 

used successfully in the DSS was a simple column generation heuristic with a search 

procedure to generated a large number of columns in advance, and then use column 

generation to solve the linear programming (LP) formulation. The columns are generated by 

selecting them from the pre-generated set of columns, and no new columns are generated on 

the fly. After solving the LP relaxation, an integer solution was obtained by a simple branch-

and-bound algorithm without further column generation. The branch-and-bound procedure 

was halted once an integer solution had been found. The input consisted of short pairings, 

that is a combination of a flight from the homebase to another city and back to the homebase. 

Rosters were built directly from these pairings, so no CSP problem was solved first to build 

duties. Despite the simplicity of this algorithm, computational results were satisfactory from 

a practical point of view. Both CPLEX and a subgradient algorithm were used to get lower 

bounds, but better results were obtained with CPLEX. In a computational study, two types of 

problems were tested, namely problems with up to 60 pairings and 30 crew members, and 

problems with up to 225 pairings and 60 crew members. The problems in the first category 

were all solved to optimality within a second of run time (on a Pentium I, 90 MHz), while the 

problems in the second category were solved with a gap of at most 10% within 15 seconds of 

run time. One rare exception that had been send to us by a user because he noted a large gap, 

was an instance with a gap of 27%. 

In Freling et al. (2001), the authors consider a case study for the Dutch Railways in 

detail. We use a heuristic branch-and-price algorithm to solve CSP’s with at most 1114 tasks. 
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This largest instance is solved in about 32 minutes (on a Pentium II/400Mhz/128Mb) with a 

gap of 2.32%. The pricing problem is solved exactly by dynamic programming. The heuristic 

feature is in the branching step by only performing a few iterations of column generation 

when solving the LP problem in other nodes than the root node, and to try to find a good 

feasible solution as quickly as possible using a depth-first-search strategy during branch-and-

price. The algorithm stops once a feasible solution is found. The extension by fixing several 

variables to one at once in each node of the tree has also been tested, and resulted in a 

solution with 3.69% gap in about 11 minutes on the same instance. 

One of the users of the DSS is the European company Railmasters that operates 

catering of the Thalys, a high speed train between major cities in west Europe. The DSS is 

used for planning catering personnel working on trains. Duties are constructed manually in 

the DSS, and the automatic planning module is used for a monthly CRP. Because we are 

dealing with catering personnel and run time is considered more important than quality of the 

solution, the branch-and-price algorithm is a bit heavy for this type of problem. Furthermore, 

the problem size is about 126 crew members and about 2200 duties, which is relatively large. 

An additional complication is the objective function. To minimize the number of uncovered 

duties is not anymore the primary objective. This is because balancing the workload is a 

company rule, and is considered more important. The uncovered tasks are assigned manually 

afterwards to external personnel. Even when sequentially solving the problem week by week 

and using several heuristic features the run time is still about 2 hours and 40 minutes (again 

on a Pentium II/400Mhz/128Mb), which is considered too long. Therefore, the weekly 

problem is split in four smaller problems by logically dividing the crews and the duties in two 

subproblems. The four crew classes are obtained as follows: one type for crews with a 38-

hour per week contract, two types of crews with a 32-hour contract, and one type for crew 

with a 20 and 25-hour contract. Then, the total run time is about 80 minutes. This is 

acceptable, but we have also developed a simple algorithm where we sequentially solve an 

assignment problem for each pair of days. The quality of this solution is generally acceptable, 

and the run time is only about 10 to 15 minutes in total. 

5.2 Application to crew rostering for a regional airline 
The case study for a European regional airline company is interesting from both a practical 

and a computational point of view, because the laws, regulations and company rules are very 

complex. The aim of the study was to build automatically efficient weekly rosters for cockpit 

crew. Distances are relatively short since the company operates domestic flights and flights 

between the home country and neighbouring countries. Tasks that are input for the daily CSP 

consist mainly of couples of flights. After solving the daily CSP’s, the input of the CRP is 
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about 500 duties and about 55 crew members. Because co-pilots and pilots are planned 

separately, this resulted in two problems of about half the size. Other characteristics are: 

 

�� Multiple aircraft types. 

�� A highly connected network of flights. 

�� Several crew specific characteristics, among which fixed tasks, crew availability, past 

workload, and licenses for aircraft types and for airports. 

�� Multiple home bases per crew member. 

�� A night stop (layover) off home base is allowed. 

�� No dead-headings on flights, only by car or bus rides between homebases. 

 
Each crew member has a pre-defined profile that form the input of the CRP module. Such a 

profile consists mainly of fixed tasks and already granted requests. However, most requests are 

not granted a priori, but are assigned during the optimization process. 

Constraints & Objectives 
A complicating company constraint is that each crew member needs to end a duty at the same 

homebase where she/he started. In case of layovers, the crew member needs to end at the same 

homebase it started it's off homebase work period. This is incorporated in the system by keeping 

an extra variable in the consumption vector that denotes the start homebase. 

There are too many laws and regulations to mention them all here. Some examples of 

complex constraints are: 

�� In every period of 7 days at least 36 hours rest period, or in every period of 10 days at 

least 48 hours rest period. 

�� Between each two daily duties at least 18 hours rest, and if violated, a 15-day period 

starts with variable minimum allowed cumulative rest. This period ends once the cumulative 

rest exceeds a norm value. 

�� The maximum allowed working time is dependent on the number of landings, on the start 

time of the daily duty, and, in case the minimum rest time is violated, also on the rest period 

and on the working time of the previous day. 

The first constraint can be interpreted in several ways. Contacting the Labour 

Inspection Office that designed the rule did not clarify it because the person who designed 

the rule does not work there anymore and there is nobody else who can clarify it. So, we 

chose the interpretation that the company was used to, which is relatively easy to implement 

in a column generation context. We keep two variables (resource consumptions), namely the 

number of days since a 36 hour rest period and the number of days since a 48 hour rest 
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period. A path cannot be extended once the extension incurs that both rules will be violated, 

that is, in the past 7 days no 36 hour rest period occurred and in the past 10 days no 48 hour 

rest period occurred. 

Because we are dealing with weekly rosters, minimizing costs is not a main 

objective. After the minimization of the number of unassigned flights, the most important 

objective is to balance the workload among crew members. This considers the hours working 

time, the number of dead-headings, layovers, ground time, heavy duty sequences, and 

weekends off. The balancing includes the workload of the past two weeks, that is, the 

workload is balanced in rolling periods of three weeks. 

Algorithm 
We used the same branch-and-price algorithm for the CSP and the CRP, that is, with the 

same parameter values. The CSP problems are relatively small and can be solved within a 

second. Although the size of the CRP problem is moderate (about 250 duties and 35 crew 

members), it is still a complex problem because of the highly complex objectives and 

constraints. We use dynamic programming for column generation. The only heuristic feature 

of the algorithm is that not all constraints are incorporated in the dominance testing, that is, 

optimal paths could be dominated. For the tests we performed the results are optimal or close 

to optimal, while the memory usage and computation time is reduced significantly. We used 

the set partitioning version of our algorithm, because set covering is not feasible. Overcovers 

cannot always be removed afterwards, because that may cause duties to start and end at 

different locations. 

Computational results 
We also implemented a version where rosters are built directly from flights, that is, without 

first solving the CSP. In Table 1 below we compare the results for the regular sequential 

approach of first scheduling then rostering with the integrated approach. For the sake of easy 

comparison, the objective here is to minimize the number of uncovered tasks primarily, and 

the number of crew members secondarily. 

 
First scheduling Integrated

Data # tasks  CPU  # crew  # not CPU  # crew  # not 
Set (sec.) members scheduled (sec.) members scheduled
A 196 37 32 8 96 32 3
B 244 359 39 0 722 39 0
C 521 41 53 17 96657 51 0

Table 1 - Integrated scheduling & rostering 
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The second column in the table shows the number of tasks, the third to fifth column 

show, respectively, the run time (again on a Pentium II/400Mhz/128Mb), the number of crew 

members, and the number of tasks that have no roster for the sequential approach. The sixth 

to the eighth column show the same numbers for the integrated approach. For data set B there 

is no difference in solution quality, but for data sets A and C there is a large difference. In 

data set A, 5 tasks that are not assigned in the sequential approach can be assigned in the 

integrated approach, and the run time is about 3 times higher. In data set C, all 17 unassigned 

tasks of the sequential method could be assigned in the integrated method while using two 

crews less. The run time explodes from 41 seconds to almost 27 hours. The conclusion is that 

the way the duties are built can have an enormous influence on the quality of the roster 

solution and the run time. 

In Table 2 below, we show the results of a comparison of the branch-and-price 

algorithm (B&P) with an earlier branch-and-bound version of the system (B&B) where we 

used column generation only in the root node. The same objective is used as in the previous 

table. 

 
Data Algorithm  CPU Duality  Gap (%)  # crew  # not # branches
Set (sec.) co-pilot  pilot members scheduled co-pilot pilot
A B & B 61 11 5 35 8 200 200
A B & P 37 0 0 32 8 17
B B & B 124 15 17 43 0 200 200
B B & P 359 0 0 39 0 28 40
C B & B 47 7 44 54 24 200 200
C B & P 41 0 0 53 17 12 1

3

3

Table 2 - Branch-and-bound vs. Branch-and-price 
As mentioned in Section 5.1. this earlier version produced good quality solutions for 

an application of crew rostering for a Dutch charter airline. However, as can be seen from the 

table, the solutions of the B&B version can produce a gap of up to 44% which is highly 

unacceptable. Note the number of branches in the last two columns. The maximum number of 

branches for the B&B version is 200, but the solutions do not improve significantly when 

increasing this number. 

6. Summary 
This paper has discussed a decision support system for airline and railway crew planning. 

The focus is not on the mathematical part, since the basic ideas have been reported in other 

papers, but on the system, the implementation and the applications. We give insight in several 

implementation issues that usually come up when implementing a branch-and-price algorithm 

for a practical application. When looking at the development of the algorithms in the system, 

it is interesting to note that for the first airline application before 1996, a simple day-by-day 
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heuristic was not appropriate. On the contrary, in the last railway application a similar simple 

heuristic turned out to be more appropriate. The cause can be found in several factors, among 

which the type of constraints and objectives, and the definition of the duties. In case of 

regular duties of similar length a heuristic seems to have more success as compared to a more 

exact method. Thus, when working in practice for each application the best method needs to 

be determined. Finally, we can conclude for the comparison with the integrated scheduling 

and rostering, that the way duties are built can have a huge impact on the quality of the 

rosters at the cost of a huge increase in computing time. 
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