

ERIM REPORT SERIES RESEARCH IN MANAGEMENT
ERIM Report Series reference number ERS-2001-57-LIS
Publication October 2001
Number of pages 23
Email address corresponding author rlentink@fbk.eur.nl
Address Erasmus Research Institute of Management (ERIM)

Rotterdam School of Management / Faculteit Bedrijfskunde
Erasmus Universiteit Rotterdam
P.O. Box 1738
3000 DR Rotterdam, The Netherlands
Phone: +31 10 408 1182
Fax: +31 10 408 9640
Email: info@erim.eur.nl
Internet: www.erim.eur.nl

Bibliographic data and classifications of all the ERIM reports are also available on the ERIM website:

www.erim.eur.nl

A DECISION SUPPORT SYSTEM FOR CREW PLANNING IN
PASSENGER TRANSPORTATION USING A FLEXIBLE BRANCH-AND-

PRICE ALGORITHM
RICHARD FRELING, RAMON M. LENTINK AND

ALBERT P.M. WAGELMANS

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Erasmus University Digital Repository

https://core.ac.uk/display/18516629?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ERASMUS RESEARCH INSTITUTE OF MANAGEMENT

REPORT SERIES
RESEARCH IN MANAGEMENT

BIBLIOGRAPHIC DATA AND CLASSIFICATIONS
Abstract This paper discusses a decision support system for airline and railway crew planning. The system

is a state-of-the-art branch-and-price solver that is used for crew scheduling and crew rostering.
We briefly discuss the mathematical background of the solver, of which most part is covered in
the Operations Research literature. Crew scheduling is crew planning for one or a few days that
results in crew duties or pairings, and crew rostering is crew planning for at least one week for
individual crew members. Technical issues about the system and its implementation are covered
in more detail, as well as several applications. In particular, we focus on a specific aircrew
rostering application. The computational results contain an interesting comparison of results
obtained with, on one hand, the approach in which crew scheduling is carried out before crew
rostering, and, on the other hand, an approach in which these two planning problems are solved
in an integrated manner.
5001-6182 Business
5201-5982 Business Science

Library of Congress
Classification
(LCC) HD 30.23 Decision Support systems

M Business Administration and Business Economics
M 11
R 4

Production Management
Transportation Systems

Journal of Economic
Literature
(JEL)

C 44 Statistical Decision Theory, Operations Research
85 A Business General
260 K
240 B

Logistics
Information Systems Management

European Business Schools
Library Group
(EBSLG)

255 G Management Science, Operations Research
Gemeenschappelijke Onderwerpsontsluiting (GOO)

85.00 Bedrijfskunde, Organisatiekunde: algemeen
85.34
85.20

Logistiek management
Bestuurlijke informatie, informatieverzorging

Classification GOO

85.03 Methoden en technieken, operations research
Bedrijfskunde / Bedrijfseconomie
Bedrijfsprocessen, logistiek, management informatiesystemen

Keywords GOO

DSS, Scheduling, Roostermodellen, Luchtvaart, Treinverkeer
Free keywords decision support systems, crew planning, branch and bound

A Decision Support System for Crew Planning
in Passenger Transportation using a Flexible
Branch-and-Price Algorithm
RICHARD FRELING1, 2*, RAMON M. LENTINK1, 2 AND ALBERT P.M. WAGELMANS1

1 Erasmus Center for Optimization in Public Transport (ECOPT), Erasmus University Rotterdam (The
Netherlands)

2 ORTEC Consultants b.v., Gouda (The Netherlands)

E-mail: freling@few.eur.nl

Abstract: This paper discusses a decision support system for airline and railway crew planning. The
system is a state-of-the-art branch-and-price solver that is used for crew scheduling and crew rostering.
We briefly discuss the mathematical background of the solver, of which most part is covered in the
Operations Research literature. Crew scheduling is crew planning for one or a few days that results in
crew duties or pairings, and crew rostering is crew planning for at least one week for individual crew
members. Technical issues about the system and its implementation are covered in more detail, as well
as several applications. In particular, we focus on a specific aircrew rostering application. The
computational results contain an interesting comparison of results obtained with, on one hand, the
approach in which crew scheduling is carried out before crew rostering, and, on the other hand, an
approach in which these two planning problems are solved in an integrated manner.

Keywords: decision support systems, crew planning, branch and bound

1. Introduction
Crew planning for passenger transportation has received a lot of attention in the Operations

Research literature. Yet, only very recently, cases are reported where companies in the bus,

railway and airline industry are using advanced OR techniques for solving crew planning

problems (almost) optimally. With the rapidly increasing computer power in the past decade,

advanced OR techniques such as column generation are gradually becoming more and more

applicable to real life crew planning problems (see e.g. Day and Ryan (1997), Andersson et

al. (1998), Desrosiers et al. (2000), and Ryan (2000)). Crew planning occurs on several

levels, depending on the length of the planning period and whether the planning is for

strategic, tactical or operational purposes. The two most widely applied crew planning

problems are the crew scheduling problem for grouping tasks into duties, and the crew

rostering problem for assigning duties to weekly, monthly or seasonal rosters for individual

crew members.

1.1 Definition
The crew scheduling problem (CSP) is formally defined as follows: given a set of tasks with

fixed starting and ending times and locations, and given a set of rules and criteria, find the

minimum cost set of duties such that each task is included in a duty and all rules are satisfied.

* Corresponding author

 2

A task is the smallest amount of work that can be assigned to one crew member. Each duty

consists of a sequence of tasks that satisfy certain rules like maximum work time, minimum

rest time, etc. The cost function consists of a weighted sum of several criteria, such as the

number of duties or the total work time. An example of a task is Amsterdam 9:10 – London

10:50, an example of a duty is Amsterdam 8:30 – Amsterdam 17:00. A duty may also cover

more than one day, which is then often called a pairing.

The crew rostering problem (CRP) is formally defined as follows: given the same

information as for the CSP, and given a set of crew members with certain characteristics,

find the minimum cost set of rosters such that each task is included in a roster, all rules are

satisfied, and the characteristics of each crew member are taken into account. Just like a duty

for the CSP a roster is a sequence of tasks that satisfy certain rules. The difference is that

individual crew characteristics are taken into account for the CRP. Examples of such

characteristics are qualifications, pre-assigned tasks, individual requests, and the past rosters

for the crew member. The crew's past is necessary for checking laws and optimizing criteria

that extend beyond the planning period. Usually, the CSP is solved first and the resulting

duties serve as tasks for the CRP. We have experimented with integrating these two

problems, where rosters are constructed directly from the tasks that served as input for the

CSP in the definitions above (see Section 5).

Crew scheduling and rostering problems are usually modeled with set partitioning

type of formulations, and solved with column generation techniques. The focus of this paper

is not on these basic models and techniques for crew scheduling and rostering. Many papers

have already been published on column generation techniques for crew planning, see e.g.

Desaulniers et al. (1997) and Vance et al. (1997) for recent papers on crew scheduling, and

Gamache et al. (1999) for a recent paper on crew rostering. In this paper, the focus is on how

to implement these models and techniques successfully in a decision support system, taking

all kinds of practical issues into account. Although practical applications are considered in

the theoretical papers mentioned above, most practical details (often also complicating ones)

are left out, or at least it is not mentioned how these are incorporated in the computer system.

Anyone who has implemented a branch-and-price algorithm will confirm that it is a tedious

task to do so, taking a lot of effort, and trial-and-error. It requires a combination of

experience with designing algorithms and implementing decision support systems.

1.2 Historical development
Since 1995 a decision support system for crew planning called CDR (Crew Duty Rostering)

has been developed at ORTEC Consultants BV, the Netherlands. This company is specialized

in the development, implementation and application of intelligent planning and decision

 3

support systems, encompassing models and methods from Operations Research and

Management Science. ORTEC produces systems in various areas, including aviation, vehicle

routing, human resource management, production planning, railways, and asset liability

management. The CDR system was originally designed to create and maintain rosters for

airline cockpit and cabin crew, and later also for crew working on trains.

In 1996, we implemented a simple column generation heuristic, which performed

well for a particular application. However, for other applications this heuristic algorithm did

not perform satisfactorily at all. In 1998 a new abstract implementation of the automatic

planning tool in the DSS was started. The purpose was to set up a tool that can easily be used

for different clients and applications, and that contains state-of-the-art mathematical

techniques. Many practical issues came up during the development of the system for different

applications. In Section 4, we discuss several implementation issues.

1.3 Contribution
In our view, the main contribution of our paper on a practical level is twofold:

1. We show that most of the complicating details arising in practice can be incorporated in a

branch-and-price algorithm because column generation is a very powerful and flexible

technique. Sometimes this introduces a heuristic feature in the algorithm, but this is generally

not a problem in a practical context.

2. We provide insight into implementation issues, and therefore make it easier for novices

in this field to implement branch-and-price algorithms and for the more experienced to get

ideas for improvements.

Another contribution on a more theoretical level is that we perform experiments with solving

rostering problems directly from tasks for an airline application, without first solving

scheduling problems, thus integrating crew scheduling and crew rostering. Caprara et al.

(2000) deal with a similar integration for railway applications, but they use a different

algorithmic approach.

1.4 Outline
In the next section, we discuss the mathematical background of the decision support system

for crew planning. Several general algorithmic aspects will not be discussed here because

they are already presented well in the aforementioned papers. Therefore, we briefly describe

the underlying mathematical model and a branch-and-price algorithm. In Section 3, we

discuss the functionality and purpose of the system, and the classification of constraints and

objectives used in the system. In Section 4, we focus on the implementation issues. In

 4

particular, we consider abstract implementation issues, the efficient use of computer memory

and the reduction of run time. Four applications are discussed in Section 5, of which one

airline crew rostering problem in more detail. Finally, we summarize our work in Section 6.

2. Mathematical Background
In this section, we briefly consider the underlying mathematical formulation and the solution

methodology used in the system. Throughout this paper we assume that the reader is familiar

with column generation and branch-and-price. See for example Barnhart et al. (1998) for a

general discussion. We would like to stress again that the mathematical model and techniques

to be presented next, can be found in several aforementioned papers and that they are not the

focus of this paper.

2.1 Set partitioning formulation
The generalized set partitioning model (GSP) presented below can be used to formulate most

crew planning problems arising in practice. The crew members are grouped into crew groups,

where each group consists of all crew members with identical characteristics. Let the set R

denote the set of all feasible duties or rosters, let K denote the set of all crew groups, and let I

denote the set of tasks which need to be covered. Furthermore, let Rk denote the set of

feasible duties or rosters for group k�K. GSP contains binary decision variables xr which

equal 1 if duty or roster r is selected and 0 otherwise, and continuous decision variables si

which equal the number of uncovered tasks. The cost of duty or roster r�R is denoted by cr

and the penalty for not covering task i�I is denoted by pi. Finally, bi is the number of duties

or rosters which need to cover task i�I, and dk denotes the maximum number of duties or

rosters allowed in group k��. The generalized set partitioning problem on which the

automatic planning part of the DSS is based is mathematically formulated as follows:

(GSP) Minimize ispi
Ii

 + xr cr
Rr

�

�

�

�

subject to

ii
Kk

r
Rr

b s+x
i

�� �
� �

 � i�I (i)

kr
Rr

dx
k

��
�

 � k�K (ii)

}1,0{� xr � r�R

0�is � i�I

 5

The objective usually comes down to primarily minimizing the number of uncovered

tasks, and secondarily minimizing the total cost of the duties or rosters selected in the

solution. Constraints (i) are generalized set partitioning constraints, which ensure that each

task is covered by at most bi duties or rosters. In case of planning crew members as a team,

one duty is assigned to the entire team for the CRP. That is, for the right-hand-side of

constraint (i) bi is equal to the number of crewmembers in the team. Variables si are added to

allow tasks to remain uncovered. Constraints (ii) guarantee that at most dk duties or rosters

can be assigned to each group. We assume that the intersection of the sets Rk for all k�� is

empty, that is, each duty or roster r�R is uniquely defined for one group. Variations for both

Constraints (i) and (ii) are possible by interchanging equality signs and inequality signs.

Additional constraints may be added for modeling global constraints, which deal with sets of

duties or rosters.

This model is a generalization of the model proposed in Ryan (1992) for the CRP

(see also Gamache and Soumis (1998) and Gamache et al. (1999) for slight variations). The

novelty in this formulation is the notion of groups, which generalizes the set partitioning

formulations for the CSP and CRP. In case of the CSP, there is one group and constraint (ii)

only exists in case a maximum number of duties are allowed in the solution. For the CRP

with unique characteristics for each crew member, every crew member corresponds to one

group. In practice, several crew members may have identical characteristics and can therefore

be joined in a group.

2.2 Solution approach
A disadvantage of the model above is a large number of feasible duties or rosters, which

corresponds to a large number of columns. Therefore, in order to use the model in the solution

approach, we need a column generation procedure. The state-of-the-art techniques in the

automatic planning tool are related to the general framework in the context of time constrained

routing and scheduling problems proposed by Desrosiers et al. (1995) and Desaulniers et al.

(1999). In particular, our solution approach consists of a branch-and-price algorithm for the

GSP. Branch-and-price is a special application of branch-and-bound, where column

generation is used to solve LP relaxations with a huge number of variables. Since the late

eighties several papers deal with column generation approaches for crew planning in

passenger transportation (recent papers are Desaulniers et al. (1997), Vance et al. (1997), and

Gamache et al. (1999)). The main steps of the general solution approach in the system are:

Step 1. Read the input and choose the initial set of columns.

 6

Step 2. Solve the LP relaxation with the current set of columns; this is usually called the

master problem.

Step 3. Column management: delete columns from the current LP model, and price: generate

new columns with negative reduced costs and add them to the current LP model.

If new columns are found return to Step 2.

Step 4. If stopping criteria are satisfied write the output and stop. Otherwise perform a new

branch-and-bound step, that is:

4.1 select a node to branch on,

4.2 calculate the lower bounds of the two new nodes by solving the LP relaxations

with the procedures in Steps 2 and 3,

4.3 perform fathoming rules; if an integer solution has been found that is better than

the best integer solution so far, update the best integer solution,

4.4 return to Step 4.

The crucial aspects of this approach are price, select and branch, that is, how

columns are generated in Step 3, and how nodes are selected and which branching rule is

used in Step 4. In our implementation, nodes can be selected by depth-first-search, best-first-

search, or a combination of these two. The system contains several algorithms for generating

columns based on one or more acyclic networks. For crew scheduling a single network is

used, while for crew rostering a network is used for each crew member. The networks are

defined such that each node corresponds to a task (or trip, flight, duty, etc.) and each arc

corresponds to a feasible sequence of two tasks in one duty or roster. In addition a source and

sink arc are added to each network, denoting the start and end of a duty or roster. A path in a

network corresponds to a feasible duty or roster if the path constraints are satisfied. See also

Desrochers et al. (1992) for an example of a similar network for crew scheduling. Paths

through the networks are constructed by solving a resource constrained shortest path problem

(see Desrosiers et al. (1995)). The algorithms that we have implemented are a dynamic

programming algorithm, a depth-first search algorithm, and an all-pairs shortest path

algorithm (see Freling (1997)). The choice of the algorithm depends on the application

considered, and combinations of two algorithms may also be used.

We have also implemented several branching rules. The branching rule for the exact

branch-and-price algorithm consists of branching on the arcs in the underlying networks (see

e.g. Desrosiers et al. (1995)). A branch consists of either forbidding or forcing one arc to be

in the solution. The consequence for the child nodes is that several variables are fixed to zero,

and that the corresponding networks are adjusted by deleting arcs to either force or forbid an

 7

arc to be in the solution. In case of forcing an arc to be in the solution, all other arcs leaving

and entering the corresponding nodes are deleted.

This solution approach is very robust in the sense that both the constraints defining

the feasibility of each duty or roster, and the constraints defining the feasibility of a set of

columns can be easily incorporated without changing the basic structure of the algorithm (see

Section 3.2). In addition, for large scale problems several exact and heuristic techniques can

be used in a straightforward manner to speed-up the algorithm (see Section 4).

3. A Decision Support System for Crew Planning
In this section, we discuss the functionalities and the purpose of the DSS, the classification of

the constraints and objectives in the system, and the crew classes.

3.1 Functionality and purpose of the DSS
The CDR system supports the entire planning process, which is divided in long term

planning, short term planning (rostering and operations control), realisation and evaluation.

This is depicted in Error! Reference source not found.:

[PLEASE INSERT FIGURE 1 AROUND HERE]

Starting Points are defined based on long term analyses and company rules. For

example, a starting point can be the desired service level, the desired number of crew,

training needs, hollidays, and other specific issues that influence the crew availability. The

long term planning concerns a planning for an entire season, that is based on the defined

starting point. The system helps the management to determine:

�� the capacity needed to perform the tasks.

�� the permanent and temporarily staffing levels needed to meet the required capacity.

�� allowed vacations, standbys required etc. for the given period.

The long term planning delivers several norm figures for use in the planning

department. When the norm figures are available, a planner can start with creating rosters. Of

course these norm figures influence the planner’s freedom of movement. An example of an

application of the short term module is to determine daily duties first by solving the CSP

seven times for each day of the week, and determining weekly rosters afterwards by solving

the CRP. After the roster has been published, several changes can occur due to, for example,

sickness of crew, schedule changes, delays etc. CDR supports the planner during the

coordination stage and the operations control stage. Based on reports and a user friendly

planning board, the planner will be able to handle the operational changes.

 8

Once a specific duty has been performed, corresponding data are saved into the CDR

database. For example, this concerns crew notification data such as sign-in/sign-out. To

complete the planning circle, CDR supports the planner to help making an evaluation of the

realization. The best rosters are those that take into account management as well as crew

wishes. But these are often conflicting, so it is very difficult to create a roster manually that

will keep both parties satisfied. The automatic planning tool facilitates the planner in creating

a roster that satisfies both economic and social criteria (see Section 3.2). The system concept

relies on the possibility of calculating several alternatives within a relatively short time

(What-if analysis). What-if analysis can be used on every planning process level supported by

CDR. For example, what-if analysis can be used to analyse the effects of certain policies, to

support negotiations with respect to legal regulations, to make a capacity plan, or to select the

best alternative out of several generated rosters.

3.2 Classification of constraint and objective types in the DSS
The duties and rosters that are generated by the automatic planning tool have to meet certain

labor laws and agreements in order to be feasible. Assume that we have an underlying

network representation as proposed in Section 2.2. Recall that network representation is such

that each node corresponds to a task and each arc corresponds to a feasible sequence of two

tasks in one duty or roster. A path in a network corresponds to a feasible duty or roster if the

path constraints are satisfied. We suggest three levels of constraints:

1. Coupling constraints. This concerns rules that relate to the whole set of selected duties or

rosters. Such a constraint could specify, for example, that at most 5% of all selected duties

have durations longer than 9 hours. These constraints are added to the master problem.

2. Path feasibility constraints. Rules at this level determine the feasibility of a duty or roster

(a path in a network representation). For example, the maximum length of a duty is 9½ hours.

Usually, most constraints are at this level.

3. Node/arc feasibility constraints. A constraint at this level determines if a particular task

(a node in a network representation) can be assigned to a certain crew member due to

licenses, etc. or if two tasks (or duties) can be assigned consecutively to the same duty or

roster (an arc in a network representation). For example, an arc between tasks i and j exists if

task i starts after task j has finished and a short buffer time has passed.

A similar classification holds for other network representations. Sometimes the

network representation needs to be modified in order to be able to check constraints

efficiently. For example, several home bases may exist, and each duty or roster must start and

 9

end at the same home base. In that case, it may be better to use one network for each home

base. In case of one network for each crew member, this problem would be solved if each

crew member has a unique home base. However, in one of the airline applications we worked

on (see Section 5), some crew members could be assigned to two home bases because they

lived somewhere in between.

 For the classification of objectives we can distinguish three types of possibly conflicting

objectives:

1. Efficiency: cost minimization with respect to the number of uncovered tasks and the

number of required duties or crew; other cost factors may be the number of layovers and the

total time between tasks.

2. Welfare: the workload of the rosters should be equally spread among the crew members,

and requests should be granted equally as much as possible.

3. Robustness: duties or rosters must be robust with respect to, for example, delays.

A similar classification as for the constraints is also possible: some objectives have

effect on a set of duties or rosters, some on paths, and some on nodes and/or arcs. Note that

the constraints and objectives that need to be checked at each level depend on the application,

the client, the crew type and the planning horizon. For example, for the CSP on a daily basis

only efficiency and robustness are relevant. Or, for the short term CRP, crew welfare and

robustness could be more important than efficiency if all crew members receive fixed salaries

anyway.

3.3 Crew classes
Usually, in the airline and railway industry several crew classes like cockpit and cabin crews

need to be planned. Cockpit and cabin crews usually consist of different crew functions, for

instance pilots and co-pilots for a cockpit crew. Although crew can be planned for each

function separately, it may be efficient to use crew teams of, for example, cockpit crew only

or of both cockpit and cabin crew together. Often, different duty functions can be assigned to

one crew function, for example a pilot can do both a pilot duty and a co-pilot duty. In that

case, and if crews do not need to be planned as teams, a logical decomposition is to solve the

co-pilot CRP first and all the duties that are uncovered are added to the pilot problem.

Another example of different crew classes would be train drivers and guards, see Fischetti

and Kroon (2000)). The context of crew planning for urban transit has been discussed in

detail in Odoni and Rousseau (1994). Furthermore, Desaulniers et al. (1998) have provided

an overview of different crew planning problems.

 10

4. Implementation Issues
As mentioned in the introduction, implementing a branch-and-price algorithm is not an easy

task, let alone implementing a flexible tool, suitable for a variety of applications. However, in

the literature little or no attention has been paid to the implementation of such an algorithm.

Therefore, we provide some insights into our implementation, and discuss some difficulties

we ran into and the corresponding solutions we came up with.

4.1 Abstract implementation
The framework is implemented in the C++ programming language, making fully use of its

object-oriented nature. Figure 2 shows an overview of the implementation.

[PLEASE INSERT FIGURE 2 AROUND HERE]

The optimization coordinator steers the various calls to the branch-and-price

algorithm, like solving the CSP first and then the CRP, and solving the problem for different

crew functions. There is an abstract interface with application specific information, that is,

rules checking, input & output translator (via file interface) and parameter tuning. There is

also an abstract interface with the linear programming solver (currently CPLEX 6.6, XPRESS

12.1, and a subgradient algorithm), and an abstract interface with the pricing algorithm.

An important part in such an abstract implementation is the rules checker, which also

incorporates the functionality to calculate (elements of) the objective function. Recall that

three levels of constraints and objectives can be defined. The link between the rules checker

and the integer programming (IP) solver in the figure above, correspond to the checking of

the coupling constraints that are added to the GSP. The path constraints are checked during

the network algorithm, and the node/arc constraints are checked during the construction of

the network(s). Also note that the constraints and objectives that need to be checked at each

level, depend on the application and the planning horizon. For computational efficiency it is

crucial that the path constraints can be checked as fast as possible. In our opinion, a column

generation algorithm only works well if the path constraints are checked in sequence, that is,

when building a path, each time a node is added to the path, it is not necessary to check the

entire path so far. This is achieved by keeping constraint information of the path so far. An

exception may be that one or two rules are checked at the end, when a complete path is

found. Thus the feasibility of a path up to a certain node (no matter which algorithm is used),

is checked by combining the constraint information of the path so far with the relevant

information of adding the node. For this purpose, two vectors are used: a consumption vector

with the consumption of each resource for a path up to a node, and an arc vector with the

consumption of each resource for an arc (incorporating the addition of the node to which the

 11

arc points). The network algorithm is not aware of details on these general vectors. These

details are only known at the rules checker level, which keeps the implementation of the

network algorithm general and abstract.

4.2 Efficient use of computer memory
The memory usage of a branch-and-price algorithm grows very fast with the size of the

problem. To give an idea about the memory usage, we use a CRP example where a dynamic

programming algorithm is used for the pricing problem. The larger part of memory is used by

four categories:

1. Size of the network for each crew member (mainly determined by the size of the arc

vector).

2. Size of the LP model.

3. Size of the branch-and-bound tree.

4. State space for the dynamic programming algorithm.

Advanced data structures are necessary to prevent the memory requirements from

exploding to unmanageable size, while keeping run times as low as possible. For the first

category we did not use an entire new network for each crew member. Instead, we have one

network for all crew members where we avoid the duplication of node and arc information.

For a certain crew member, the network differs by linking only those nodes and arcs in the

network that are relevant for that particular crew member. For an application with 109 crew

members, a memory reduction of a factor 6 is obtained (from 680 Mb to 112 Mb), compared

to creating a complete new network for each crew member.

The size of the LP model is managed by keeping in memory only the size of the

current model (if possible only in the internal data structures of the LP solver) at each

iteration of the algorithm. We also have an option to delete columns from the model such that

convergence of the column generation is still guaranteed (see Section 4.3). The branch-and-

bound tree is implemented as a heap, where active nodes are kept. Choosing a depth-first-

search strategy can also reduce memory usage, because the number of open problems remains

relatively small. The state space for the dynamic programming algorithm consists of a linked

list of paths at each node. The memory of these paths is never released during the algorithm

to prevent wastage of computer time due to allocating and deleting memory.

4.3 Exact strategies for computer time reduction
In Freling (1997) and in Desaulniers et al. (1999) several acceleration strategies for column

generation algorithms are suggested. In the latter paper, the strategies are categorized as pre-

processor strategies, subproblem strategies, master problem strategies, branch-and-bound

strategies, and post-optimizer strategies (i.e. reoptimization). We have not used pre-processor

 12

or post-optimizer strategies, except for some network reduction techniques (see Freling et al.

(2001)). Here, we provide a list of the strategies that we have implemented and tested. In

particular, in this section we discuss exact strategies and in the subsequent section heuristic

strategies. We have implemented all these strategies, except when mentioned otherwise.

Efficient column management
The more columns are added to the master problem in each iteration, the less column

generation iterations are necessary but the more time it takes to solve each LP problem.

Therefore, experimentation is necessary to determine the right column management strategy.

A discussion about column management strategies or related topics can be found in Bixby et

al. (1992), Kohl (1995) and Freling (1997). By experimenting with various applications, we

found a strategy that works well in general. The idea is to generate a relatively high number

of columns, add them to the LP problem, and delete a large percentage of those columns after

solving the LP problem. In that way many columns are considered but the LP problem does

not grow too fast. The number of columns that can be generated depends on the pricing

algorithm used. For all the algorithms we used in our implementation it is possible to

influence the number of columns generated. The strategy for deleting columns after solving

the LP problem is as follows (see also Freling (1997)): let q be the positive reduced cost

columns after solving the LP problem, that are selected from those columns that are added to

the master problem just before solving the LP problem. Then, delete the 0.9q columns with

the largest reduced cost.

Our computational testing confirmed that it is very beneficial to use partial pricing,

that is, to not generate columns for each group in one iteration (see also Gamache et al.

(1999)). In each iteration, we generate columns once either negative reduced columns have

been found for p1 groups, or the pricing problem has been solved for all groups. The value of

p1 is set to max(5,|K|/20) in our implementation (recall that K is the set of crew groups). If p2

is the number of negative reduced cost columns generated, then min[r, p2] columns are added

to the master problem. The value for r may also be adjusted dynamically during the algorithm

and needs to be tuned for each particular application.

Although we have not tested it, an idea to improve the partial pricing is to group crew

members if their characteristic are similar. Then, columns are generated for these groups at

once and then divided among the crew members.

Temporary relaxation of the pricing problem.
Recall that the purpose of the pricing problem is twofold: generating ‘good’ columns, and

providing a criterion for convergence of the column generation algorithm. For the second

purpose, the pricing algorithm needs to be exact, for the first purpose not. Therefore, it may

 13

be efficient to solve the pricing problem heuristically until some point and then change to an

exact algorithm (see also Sol (1994) and Gamache et al. (1999)). We have tested a strategy

called dynamic network size. We start with a sparse subnetwork by leaving out arcs, and

update the network size until the original network size is obtained. At each iteration of the

column generation procedure, the arcs in the network are sorted by increasing reduced cost.

Thus, when selecting the subnetwork at each iteration, we take the subset of arcs with the

lowest reduced cost out of each node. The reduced cost of an arc is defined as the cost of an

arc (which includes the cost of the node it points to) minus the dual value of the task

corresponding to the node it points to. The maximum number of arcs to be selected in each

iteration is increased during the column generation procedure.

Reduction of degeneracy.
A typical phenomena in column generation is that at the end of the procedure negative

reduced cost columns are still found but the LP objective value is not or almost not

improving. This is called tailling-off. Two ways to deal with it are lower bound

approximation (see Freling (1997)) and stabilized column generation (see du Merle et al.

(1999)). We have performed some preliminary tests with stabilized column generation, but

did not get significant improvements. However, Desrosiers et al. (2001) mention a large

reduction in computer time for a particular application.

4.4 Heuristic strategies for computing time reduction
The branch-and-price algorithm is very well suited to add heuristic features that speed up

solution time considerably while the solution remains close to optimality. See for example

Gamache et al. (1999). Here we discuss several of such features.

Fixed relaxation of the pricing problem
When using dynamic programming to solve the pricing problem, some constraints or criteria

can cause the state space to grow very fast. Let s and t be the source and the sink of a

network, respectively. The size of the state space depends on the number of paths from s to

each node, that is, the number of partial paths. To reduce the state space, dominance criteria

are used to remove partial paths that will not lead to the shortest s-t path. Let Pi(s) and Qi(s)

denote two partial paths from s to node i. Let Ui(t) denote a partial path from node i to the

sink t. Then Pi(s) dominates Qi(s) if the following two conditions are satisfied:

1. The (reduced) cost of Pi(s) is less or equal to the cost of Qi(s).

2. If Pi(s)�Ui(t) is infeasible, then Qi(s)�Ui(t) is also infeasible for all Ui(t).

 14

The first condition is only valid when the cost function is (monotonically) increasing

with the number of nodes in the path. The second condition is only valid when an ordering

exists for all the constraints. For example, in case of a maximum work time, the ordering

follows from the fact that less work time is always better. Thus, if maximum work time is the

only constraint, Pi(s) dominates Qi(s) if both the cost and the work time of Pi(s) are less or

equal to the cost and the work time of Qi(s). Now suppose we also have a minimum work

time constraint. Then, the dominance rule above can only be applied when both partial paths

satisfy this constraint, thus resulting in a much larger state space. Finally, suppose we have an

objective that the work time should be as close as possible to a certain fixed value, that is, the

cost function is not (monotonically) increasing. Then, dominance can only be applied once

both paths considered have exceeded the fixed value.

In practice, we have encountered several of these types of constraints and objectives

that cause the state space to grow very fast. But in none of those cases the user of the system

had a problem when we modified the constraint or objective slightly in order to deal with

them in a computationally more attractive way. For example, the minimum work time is

relaxed, and only when the path is completed (that is, it reaches t) a penalty is added when

the work time is below its minimum. In case of the objective that the work time should be as

close as possible to a fixed value, costs are only involved once the work time exceeds the

fixed value. Thus, dominance can be applied below that value as well. Experience shows that

because the intention of the constraint is to balance work time among crew members, this can

still be achieved approximately by setting the fixed value a little lower. Because a nonlinear

penalty function is used (the higher the work time the faster the penalty increases), the work

time is pushed down towards this value from above.

Another way to heuristically relax the pricing problem is to modify the exact strategy

with an increasing density of the network to a constant sparse density of the network. That is,

dynamically update the arcs considered using reduced costs, but never increase the size of the

network.

Preliminary convergence of column generation and/or branch-and-price
Other heuristic strategies that we have implemented are:

1. Stop column generation once detecting tailling-off, that is, converge without a true lower

bound.

2. Only perform a few iterations of column generation when solving the LP problem in

other nodes than the root node.

 15

3. Try to find a good feasible solution as quickly as possible using a depth-first-search

strategy during branch-and-price. Stop once a feasible solution is obtained. A possible

extension is to fix several variables to one at once in each node of the tree (see also Gamache

et al. (1999)). In this case, we branch on individual variables instead of arcs.

5. Applications of the automatic crew planning
module
The automatic planning module of the DSS has been implemented for several applications. In

this section, we briefly consider a charter airline and two railway applications and we

consider a case study for a European regional airline company in more detail in Section 5.2.

5.1 Example applications
A first version of the crew planning system with application to crew rostering has been in

operation since 1996 at a Dutch charter airline with flights within Europe. At first a simple

heuristic was implemented (see Nicoletti (1975) and Bodin et al. (1983)), but this turned out to

be unsatisfactory because the planner could manually produce better solutions. The algorithm

used successfully in the DSS was a simple column generation heuristic with a search

procedure to generated a large number of columns in advance, and then use column

generation to solve the linear programming (LP) formulation. The columns are generated by

selecting them from the pre-generated set of columns, and no new columns are generated on

the fly. After solving the LP relaxation, an integer solution was obtained by a simple branch-

and-bound algorithm without further column generation. The branch-and-bound procedure

was halted once an integer solution had been found. The input consisted of short pairings,

that is a combination of a flight from the homebase to another city and back to the homebase.

Rosters were built directly from these pairings, so no CSP problem was solved first to build

duties. Despite the simplicity of this algorithm, computational results were satisfactory from

a practical point of view. Both CPLEX and a subgradient algorithm were used to get lower

bounds, but better results were obtained with CPLEX. In a computational study, two types of

problems were tested, namely problems with up to 60 pairings and 30 crew members, and

problems with up to 225 pairings and 60 crew members. The problems in the first category

were all solved to optimality within a second of run time (on a Pentium I, 90 MHz), while the

problems in the second category were solved with a gap of at most 10% within 15 seconds of

run time. One rare exception that had been send to us by a user because he noted a large gap,

was an instance with a gap of 27%.

In Freling et al. (2001), the authors consider a case study for the Dutch Railways in

detail. We use a heuristic branch-and-price algorithm to solve CSP’s with at most 1114 tasks.

 16

This largest instance is solved in about 32 minutes (on a Pentium II/400Mhz/128Mb) with a

gap of 2.32%. The pricing problem is solved exactly by dynamic programming. The heuristic

feature is in the branching step by only performing a few iterations of column generation

when solving the LP problem in other nodes than the root node, and to try to find a good

feasible solution as quickly as possible using a depth-first-search strategy during branch-and-

price. The algorithm stops once a feasible solution is found. The extension by fixing several

variables to one at once in each node of the tree has also been tested, and resulted in a

solution with 3.69% gap in about 11 minutes on the same instance.

One of the users of the DSS is the European company Railmasters that operates

catering of the Thalys, a high speed train between major cities in west Europe. The DSS is

used for planning catering personnel working on trains. Duties are constructed manually in

the DSS, and the automatic planning module is used for a monthly CRP. Because we are

dealing with catering personnel and run time is considered more important than quality of the

solution, the branch-and-price algorithm is a bit heavy for this type of problem. Furthermore,

the problem size is about 126 crew members and about 2200 duties, which is relatively large.

An additional complication is the objective function. To minimize the number of uncovered

duties is not anymore the primary objective. This is because balancing the workload is a

company rule, and is considered more important. The uncovered tasks are assigned manually

afterwards to external personnel. Even when sequentially solving the problem week by week

and using several heuristic features the run time is still about 2 hours and 40 minutes (again

on a Pentium II/400Mhz/128Mb), which is considered too long. Therefore, the weekly

problem is split in four smaller problems by logically dividing the crews and the duties in two

subproblems. The four crew classes are obtained as follows: one type for crews with a 38-

hour per week contract, two types of crews with a 32-hour contract, and one type for crew

with a 20 and 25-hour contract. Then, the total run time is about 80 minutes. This is

acceptable, but we have also developed a simple algorithm where we sequentially solve an

assignment problem for each pair of days. The quality of this solution is generally acceptable,

and the run time is only about 10 to 15 minutes in total.

5.2 Application to crew rostering for a regional airline
The case study for a European regional airline company is interesting from both a practical

and a computational point of view, because the laws, regulations and company rules are very

complex. The aim of the study was to build automatically efficient weekly rosters for cockpit

crew. Distances are relatively short since the company operates domestic flights and flights

between the home country and neighbouring countries. Tasks that are input for the daily CSP

consist mainly of couples of flights. After solving the daily CSP’s, the input of the CRP is

 17

about 500 duties and about 55 crew members. Because co-pilots and pilots are planned

separately, this resulted in two problems of about half the size. Other characteristics are:

�� Multiple aircraft types.

�� A highly connected network of flights.

�� Several crew specific characteristics, among which fixed tasks, crew availability, past

workload, and licenses for aircraft types and for airports.

�� Multiple home bases per crew member.

�� A night stop (layover) off home base is allowed.

�� No dead-headings on flights, only by car or bus rides between homebases.

Each crew member has a pre-defined profile that form the input of the CRP module. Such a

profile consists mainly of fixed tasks and already granted requests. However, most requests are

not granted a priori, but are assigned during the optimization process.

Constraints & Objectives
A complicating company constraint is that each crew member needs to end a duty at the same

homebase where she/he started. In case of layovers, the crew member needs to end at the same

homebase it started it's off homebase work period. This is incorporated in the system by keeping

an extra variable in the consumption vector that denotes the start homebase.

There are too many laws and regulations to mention them all here. Some examples of

complex constraints are:

�� In every period of 7 days at least 36 hours rest period, or in every period of 10 days at

least 48 hours rest period.

�� Between each two daily duties at least 18 hours rest, and if violated, a 15-day period

starts with variable minimum allowed cumulative rest. This period ends once the cumulative

rest exceeds a norm value.

�� The maximum allowed working time is dependent on the number of landings, on the start

time of the daily duty, and, in case the minimum rest time is violated, also on the rest period

and on the working time of the previous day.

The first constraint can be interpreted in several ways. Contacting the Labour

Inspection Office that designed the rule did not clarify it because the person who designed

the rule does not work there anymore and there is nobody else who can clarify it. So, we

chose the interpretation that the company was used to, which is relatively easy to implement

in a column generation context. We keep two variables (resource consumptions), namely the

number of days since a 36 hour rest period and the number of days since a 48 hour rest

 18

period. A path cannot be extended once the extension incurs that both rules will be violated,

that is, in the past 7 days no 36 hour rest period occurred and in the past 10 days no 48 hour

rest period occurred.

Because we are dealing with weekly rosters, minimizing costs is not a main

objective. After the minimization of the number of unassigned flights, the most important

objective is to balance the workload among crew members. This considers the hours working

time, the number of dead-headings, layovers, ground time, heavy duty sequences, and

weekends off. The balancing includes the workload of the past two weeks, that is, the

workload is balanced in rolling periods of three weeks.

Algorithm
We used the same branch-and-price algorithm for the CSP and the CRP, that is, with the

same parameter values. The CSP problems are relatively small and can be solved within a

second. Although the size of the CRP problem is moderate (about 250 duties and 35 crew

members), it is still a complex problem because of the highly complex objectives and

constraints. We use dynamic programming for column generation. The only heuristic feature

of the algorithm is that not all constraints are incorporated in the dominance testing, that is,

optimal paths could be dominated. For the tests we performed the results are optimal or close

to optimal, while the memory usage and computation time is reduced significantly. We used

the set partitioning version of our algorithm, because set covering is not feasible. Overcovers

cannot always be removed afterwards, because that may cause duties to start and end at

different locations.

Computational results
We also implemented a version where rosters are built directly from flights, that is, without

first solving the CSP. In Table 1 below we compare the results for the regular sequential

approach of first scheduling then rostering with the integrated approach. For the sake of easy

comparison, the objective here is to minimize the number of uncovered tasks primarily, and

the number of crew members secondarily.

First scheduling Integrated

Data # tasks CPU # crew # not CPU # crew # not
Set (sec.) members scheduled (sec.) members scheduled
A 196 37 32 8 96 32 3
B 244 359 39 0 722 39 0
C 521 41 53 17 96657 51 0

Table 1 - Integrated scheduling & rostering

 19

The second column in the table shows the number of tasks, the third to fifth column

show, respectively, the run time (again on a Pentium II/400Mhz/128Mb), the number of crew

members, and the number of tasks that have no roster for the sequential approach. The sixth

to the eighth column show the same numbers for the integrated approach. For data set B there

is no difference in solution quality, but for data sets A and C there is a large difference. In

data set A, 5 tasks that are not assigned in the sequential approach can be assigned in the

integrated approach, and the run time is about 3 times higher. In data set C, all 17 unassigned

tasks of the sequential method could be assigned in the integrated method while using two

crews less. The run time explodes from 41 seconds to almost 27 hours. The conclusion is that

the way the duties are built can have an enormous influence on the quality of the roster

solution and the run time.

In Table 2 below, we show the results of a comparison of the branch-and-price

algorithm (B&P) with an earlier branch-and-bound version of the system (B&B) where we

used column generation only in the root node. The same objective is used as in the previous

table.

Data Algorithm CPU Duality Gap (%) # crew # not # branches
Set (sec.) co-pilot pilot members scheduled co-pilot pilot
A B & B 61 11 5 35 8 200 200
A B & P 37 0 0 32 8 17
B B & B 124 15 17 43 0 200 200
B B & P 359 0 0 39 0 28 40
C B & B 47 7 44 54 24 200 200
C B & P 41 0 0 53 17 12 1

3

3

Table 2 - Branch-and-bound vs. Branch-and-price
As mentioned in Section 5.1. this earlier version produced good quality solutions for

an application of crew rostering for a Dutch charter airline. However, as can be seen from the

table, the solutions of the B&B version can produce a gap of up to 44% which is highly

unacceptable. Note the number of branches in the last two columns. The maximum number of

branches for the B&B version is 200, but the solutions do not improve significantly when

increasing this number.

6. Summary
This paper has discussed a decision support system for airline and railway crew planning.

The focus is not on the mathematical part, since the basic ideas have been reported in other

papers, but on the system, the implementation and the applications. We give insight in several

implementation issues that usually come up when implementing a branch-and-price algorithm

for a practical application. When looking at the development of the algorithms in the system,

it is interesting to note that for the first airline application before 1996, a simple day-by-day

 20

heuristic was not appropriate. On the contrary, in the last railway application a similar simple

heuristic turned out to be more appropriate. The cause can be found in several factors, among

which the type of constraints and objectives, and the definition of the duties. In case of

regular duties of similar length a heuristic seems to have more success as compared to a more

exact method. Thus, when working in practice for each application the best method needs to

be determined. Finally, we can conclude for the comparison with the integrated scheduling

and rostering, that the way duties are built can have a huge impact on the quality of the

rosters at the cost of a huge increase in computing time.

Acknowledgements
The authors like to thank Daan Ament from ORTEC Consultants for his valuable comments.

References
Andersson, E., Housos, E., Kohl, N., Wedelin, D., 1998. Crew pairing optimization. In: Yu, G. (Ed.),

Operations Research in the airline industry, Kluwer Acadamic Publishers, Dordrecht, pp. 228-257.

Barnhart, C., Johnson, E. L., Nemhauser, G. L., Savelsbergh, M. W. P., Vance, P. H., 1998. Branch-

and-Price: column generation for solving huge integer programs, Operations Research 46 316-329.

Bixby, R., Gregory, J., Lustig, I., Marsten, R., Shanno, D., 1992. Very large-scale linear programming:

a case study in combining interior point and simplex methods, Operations Research 40 885-897.

Bodin, L., Golden, B., Assad, A., and Ball, M., 1983. Routing and scheduling of vehicles and crews: the

state of the art, Computers and Operations Research 10 (2) 63-211.

Caprara, A., Monaci, M., Toth, P., 2001. A global method for crew planning in railway applications. In:

Voß, S., Daduna, J.R. (Eds.), Computer-Aided Scheduling of Public Transport, Lecture Notes in

Economics and Mathematical Systems, 505, Springer, Berlin, pp. ?????????.

Day, P.R., Ryan, D.M., 1997. Flight attendant rostering for short-haul airline operations, Operations

Research 45 649-661.

Desaulniers G., Desrosiers J., Dumas Y., Marc S., Rioux B., Solomon M.M., Soumis F., 1997. Crew

pairing at Air France, European Journal Operational Research (97)2 245-259.

Desaulniers, G., Desrosiers, J., Gamache, M., Soumis, F., 1998. Crew scheduling in air transportation.

In: Crainic, T.G., Laporte, G. (Eds.), Fleet Management and Logistics, Kluwer Acadamic Publishers,

Boston, MA, pp. 169-185.

Desaulniers, G., Desrosiers, J., Solomon, M.M., 1999. Accelerating strategies in column generation

methods for vehicle routing and crew scheduling problems, Technical report G-99-36, GÉRAD.

Desrochers, M.,Gilbert, J., Sauve, M., Soumis, F., 1992. Subproblem modeling in a column generation

approach to the urban crew scheduling problem. In: Desrochers, M., Rousseau, J.M. (Eds.), Computer-

Aided Transit Scheduling: Proceedings of the Fifth International Workshop, Springer Verlag, Berlin,

pp. 395-405.

Desrosiers, J.. Dumas, Y., Solomon, M.M., Soumis F., 1995. Time constrained routing and scheduling.

In: Ball, M.O., Magnanti, T.L., Monma, C.L., Nemhauser, G.L. (Eds.), Handbooks in Operations

 21

Research and Management Science, volume 8: Network Routing, North-Holland, Amsterdam, pp. 35-

139.

Desrosiers, J., A. Lasry, D. McInnis, M.M. Solomon, F. Soumis, 2000. Air transat uses ALTITUDE to

manage its aircraft routing, crew pairing, and work assignment. Interfaces 30 (2) 41-53.

Desrosiers, J., Solomon, M.M., Villeneuve, D., Ben Amor, H., 2001. Stabilized column generation for

crew scheduling problems, presentation at TRISTAN IV conference, Azores Islands.

Fischetti, M, Kroon, L.G., 2000. Solving large-scale crew scheduling problems at the Dutch railways.

In: Voß, S., Daduna, J.R. (Eds.), Computer-Aided Scheduling of Public Transport, Lecture Notes in

Economics and Mathematical Systems, 505, Springer, Berlin, pp. 181-201.

Freling, R., 1997. Models and techniques for integrating vehicle and crew scheduling, PhD Thesis,

Tinbergen Institute, Erasmus University, Rotterdam.

Freling, R., Lentink R.M., Odijk, M.A., 2001. Scheduling train crews: a case study for the Dutch

Railways. In: Voß, S., Daduna, J.R. (Eds.), Computer-Aided Scheduling of Public Transport, Lecture

Notes in Economics and Mathematical Systems, 505, Springer, Berlin, pp. 153-165.

Gamache, M., Soumis, F., 1998. A method for optimally solving the rostering problem. In: Yu, G.

(Ed.), Operations Research in the airline industry, Kluwer Acadamic Publishers, Dordrecht, pp. 124–

157.

Gamache, M., Soumis, F., Marquis, G., Desrosiers, J., 1999. A column generation approach for large-

scale aircrew rostering problems, Operations Research 47 247-263.

Kohl, N., 1995. Exact methods for time constrained routing and scheduling problems, PhD Thesis,

Technical University of Denmark.

du Merle, O., Villeneuve, D., Desrosiers, J., Hansen, P., 1999. Stabilized column generation, Discrete

Mathematics 194 229-237.

Nicoletti, B., 1975. Automatic crew rostering, Transportation Science 9 33-42.

Odoni, A.R., Rousseau, J.M., 1994. Models in urban and air transportation. In: Pollock, S.M.,

Rothkopf, M.H., Barnett, A. (Eds.), Handbooks in Operations Research and Management Science,

volume 6: Operations Research and the Public Sector, North-Holland, Amsterdam, pp. 129-150.

Ryan, D.M., 1992. The solution of massive generalized set partitioning problems in aircrew rostering,

Operations Research 43 459-467.

Ryan, D.M., 2000. Optimization earns its wings, OR/MS Today 27(2) 26-30.

Vance P.H., Atamtürk, A., Barnhart, C., Gelman, E., Johnson, E.L., Krishna, A., Mahidhara, D.,

Nemhauser, G.L., Rebello, R., 1997. A heuristic Branch-and-Price approach for the airline crew pairing

problem, Technical report, Georgia Institute of Technology.

Sol, M., 1994. Column generation techniques for pickup and delivery problems, PhD thesis, Eindhoven

University of Technology.

Warburton, A., 1987. Approximation of pareto optima in multi-objective, shortest path problems,

Operations Research 35 70-79.

 22

Norm
values

Crew
rosters

Starting
points

Defining
starting points

Long term
planning

Short term
planning

Evaluation

: Process

: Results

Realization

Figure 1: The planning process

 23

Figure 2 – Abstract implementation

Output
Translator

Network
Algorithms

IP
Solver

Rules
Checker

Optimization
Coordinator

LP
Solver

Column
Generator

Input
Translator

Publications in the Report Series Research� in Management

ERIM Research Program: “Business Processes, Logistics and Information Systems”

2001

Bankruptcy Prediction with Rough Sets
Jan C. Bioch & Viara Popova
ERS-2001-11-LIS

Neural Networks for Target Selection in Direct Marketing
Rob Potharst, Uzay Kaymak & Wim Pijls
ERS-2001-14-LIS

An Inventory Model with Dependent Product Demands and Returns
Gudrun P. Kiesmüller & Erwin van der Laan
ERS-2001-16-LIS

Weighted Constraints in Fuzzy Optimization
U. Kaymak & J.M. Sousa
ERS-2001-19-LIS

Minimum Vehicle Fleet Size at a Container Terminal
Iris F.A. Vis, René de Koster & Martin W.P. Savelsbergh
ERS-2001-24-LIS

The algorithmic complexity of modular decompostion
Jan C. Bioch
ERS-2001-30-LIS

A Dynamic Approach to Vehicle Scheduling
Dennis Huisman, Richard Freling & Albert Wagelmans
ERS-2001- 35-LIS

Effective Algorithms for Integrated Scheduling of Handling Equipment at Automated Container Terminals
Patrick J.M. Meersmans & Albert Wagelmans
ERS-2001-36-LIS

Rostering at a Dutch Security Firm
Richard Freling, Nanda Piersma, Albert P.M. Wagelmans & Arjen van de Wetering
ERS-2001-37-LIS

Probabilistic and Statistical Fuzzy Set Foundations of Competitive Exception Learning
J. van den Berg, W.M. van den Bergh, U. Kaymak
ERS-2001-40-LIS

Design of closed loop supply chains: a production and return network for refrigerators
Harold Krikke, Jacqueline Bloemhof-Ruwaard & Luk N. Van Wassenhove
ERS-2001-45-LIS

� A complete overview of the ERIM Report Series Research in Management:

http://www.ers.erim.eur.nl

 ERIM Research Programs:
 LIS Business Processes, Logistics and Information Systems
 ORG Organizing for Performance
 MKT Marketing
 F&A Finance and Accounting
 STR Strategy and Entrepreneurship

 ii

Dataset of the refrigerator case. Design of closed loop supply chains: a production and return network for
refrigerators
Harold Krikke, Jacqueline Bloemhof-Ruwaard & Luk N. Van Wassenhove
ERS-2001-46-LIS

How to organize return handling: an exploratory study with nine retailer warehouses
René de Koster, Majsa van de Vendel, Marisa P. de Brito
ERS-2001-49-LIS

Reverse Logistics Network Structures and Design
Moritz Fleischmann
ERS-2001-52-LIS

Pattern-based Target Selection applied to Fund Raising
Wim Pijls, Rob Potharst & Uzay Kaymak
ERS-2001-56-LIS

A Decision Support System for Crew Planning in Passenger Transportation using a Flexible Branch-and-Price
Algorithm
ERS-2001-57-LIS
Richard Freling, Ramon M. Lentink & Albert P.M. Wagelmans

2000

A Greedy Heuristic for a Three-Level Multi-Period Single-Sourcing Problem
H. Edwin Romeijn & Dolores Romero Morales
ERS-2000-04-LIS

Integer Constraints for Train Series Connections
Rob A. Zuidwijk & Leo G. Kroon
ERS-2000-05-LIS

Competitive Exception Learning Using Fuzzy Frequency Distribution
W-M. van den Bergh & J. van den Berg
ERS-2000-06-LIS

Models and Algorithms for Integration of Vehicle and Crew Scheduling
Richard Freling, Dennis Huisman & Albert P.M. Wagelmans
ERS-2000-14-LIS

Managing Knowledge in a Distributed Decision Making Context: The Way Forward for Decision Support Systems
Sajda Qureshi & Vlatka Hlupic
ERS-2000-16-LIS

Adaptiveness in Virtual Teams: Organisational Challenges and Research Direction
Sajda Qureshi & Doug Vogel
ERS-2000-20-LIS

Assessment of Sustainable Development: a Novel Approach using Fuzzy Set Theory
A.M.G. Cornelissen, J. van den Berg, W.J. Koops, M. Grossman & H.M.J. Udo
ERS-2000-23-LIS

Applying an Integrated Approach to Vehicle and Crew Scheduling in Practice
Richard Freling, Dennis Huisman & Albert P.M. Wagelmans
ERS-2000-31-LIS

An NPV and AC analysis of a stochastic inventory system with joint manufacturing and remanufacturing
Erwin van der Laan
ERS-2000-38-LIS

 iii

Generalizing Refinement Operators to Learn Prenex Conjunctive Normal Forms
Shan-Hwei Nienhuys-Cheng, Wim Van Laer, Jan Ramon & Luc De Raedt
ERS-2000-39-LIS

Classification and Target Group Selection bases upon Frequent Patterns
Wim Pijls & Rob Potharst
ERS-2000-40-LIS

Average Costs versus Net Present Value: a Comparison for Multi-Source Inventory Models
Erwin van der Laan & Ruud Teunter
ERS-2000-47-LIS

Fuzzy Modeling of Client Preference in Data-Rich Marketing Environments
Magne Setnes & Uzay Kaymak
ERS-2000-49-LIS

Extended Fuzzy Clustering Algorithms
Uzay Kaymak & Magne Setnes
ERS-2000-51-LIS

Mining frequent itemsets in memory-resident databases
Wim Pijls & Jan C. Bioch
ERS-2000-53-LIS

Crew Scheduling for Netherlands Railways. “Destination: Curstomer”
Leo Kroon & Matteo Fischetti
ERS-2000-56-LIS

