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Abstract

Using data from the universe of Danish manufacturing firms

and workers over the period 1995-2007, we estimate output gains

linked to productivity spillovers through worker mobility, and

calculate the shares in these gains accrued to firms, to the workers

who bring spillovers, and to the rest of the workers. Applying our

results to the manufacturing sector as a whole, the total output

gains average at 0.16% per year, of which 80% is retained by the

firms, 15% by the rest of the workers, and only 5% goes to the

workers who bring spillovers. We therefore conclude that output

gains through worker mobility are largely a positive externality

for hiring firms.
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1 Introduction

The importance of knowledge spillovers across firms as a factor affecting

economic performance motivates a literature on the mechanisms facil-

itating these spillovers. One such mechanism operates through worker

mobility between firms, whereby newly hired workers carry knowledge

produced in their previous firms to their new firms. Our study de-

velops a unified empirical framework to estimate the outcomes of this

mechanism for firm productivity and worker compensation. We use

matched employer-employee data from the universe of Danish manu-

facturing firms and workers to construct a measure of firms’ exposure to

spillovers through worker mobility. Starting with estimating the produc-

tivity gains from spillovers to the hiring firms, we then proceed to the

corresponding wage gains enjoyed by the workers in those firms. Tak-

ing these two gains together, we estimate the total output gain for the

economy and its distribution between the hiring firms, the workers who

bring spillovers, and the rest of the workers.

Recent research on innovation has demonstrated that worker mobility

plays an important role in research and development (R&D) spillovers

and technology transfers, by finding a link between the movements of

workers involved in R&D and citations by their new employers of the

patents granted to their previous employers (Almeida and Kogut, 1999;

Song, Almeida and Wu, 2003; Oettel and Agrawal, 2008; Singh and

Agrawal, 2011). A related theoretical literature on spillovers from for-

eign direct investment (FDI), including Fosfuri et al. (2001), Markussen

(2001) and Glass and Saggi (2002), has argued that workers moving
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from more productive foreign firms to less productive domestic firms

may facilitate productivity spillovers thanks to the access to superior

technologies and business practices of their previous employers. This ar-

gument has been supported with direct empirical evidence in Gorg and

Strobl (2005), Poole (2012) and Balsvik (2011), all of which studies have

found significant productivity and wage differences between the firms

depending on the shares of workers with a foreign-firm experience that

they employed. Stoyanov and Zubanov (2012) have extended this em-

pirical literature by linking worker mobility to productivity spillovers in

all firms regardless of their domicile. They found, in particular, that lag-

ging firms can improve their performance by hiring workers from more

productive firms. Our results reinforce this finding by the application of

a richer and more rigorous analytical framework.

The progress in identifying productivity gains to firms traceable to

worker mobility notwithstanding, the possible wage gains to the work-

ers who bring spillovers are studied less well. While the very term

“spillovers” implies that hiring firms gain from worker mobility more

than it costs to them, whether these gains are a pure externality or the

outcome of a functioning market for knowledge is an important empiri-

cal question. If firms are aware of productivity gains from hiring certain

workers, they will compete with each other in attracting these workers

by offering part of the ensuing productivity gains as a wage premium to

them. In fact, a perfectly competitive labor market with complete infor-

mation would allocate all the gains to the workers. At the other extreme,

the absence of a wage premium to moving workers with spillover poten-

tial will mean the absence of a market for their knowledge, implying that
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spillovers through worker mobility are indeed a pure externality. Com-

petition among firms on the one hand, and various market imperfections

on the other, will settle the wage premium to gains ratio somewhere be-

tween these two extremes, revealing the extent to which firms consider

this knowledge in their hiring and R&D decisions.

The relatively thin literature on the consequences of spillovers through

worker mobility for wages, including Pesola (2011), Balsvik (2011) and

Poole (2012), has documented wage gains to workers moving from foreign

to domestic firms. Of these studies, our method is closest to Balsvik’s

(2011) who has developed a unified analytical framework for estimating

productivity and wage spillovers through worker mobility. Estimating

the gains from spillovers to firms and workers jointly is important: do-

ing so allows a comparison of the magnitudes of these gains, providing

a direct answer to the question of our interest. Thus, Balsvik (2011)

found that while new workers with foreign-firm experience are 20% more

productive than similar workers without such experience, they receive

a wage premium of only 1-3%. This finding implies that productivity

gains from worker mobility are appropriated mostly by firms and are,

therefore, largely an extrenality. Our results are consistent with hers.1

To outline our empirical method, we identify as workers who bring

spillovers those coming from firms more productive than their receiving

firm (we call such workers spillover potentials). Intuitively, assuming

that differences in knowledge possessed by firms are reflected in produc-

tivity differences, workers hired from more productive firms will bring

superior knowledge that will improve the performance of their new firms.

By the same logic, and controlling for their personal characteristics,
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hiring workers from less productive firms should be neutral to perfor-

mance. Our empirical results support both these intuitions. Our mea-

sure of firms’ exposure to spillovers through worker mobility, which we

call productivity gap, is the difference in the logarithms of total factor

productivities (TFP) of the sending and receiving firms averaged across

spillover potentials in each firm and year, times their share in the firm’s

workforce. To make this measure operational, we first recover TFP from

a Cobb-Douglas production function estimated on our data, and then

re-estimate the production function with the gap included, whereby we

obtain the coefficient on the gap that measures the productivity gains

to firms hiring spillover potentials. We calculate the corresponding wage

premium to spillover potentials, as well as eventual wage gains to other

workers, from the coefficients on the gap in the individual and firm-

average wage equations, using a simple wage decomposition.

We find that firms gain in TFP after hiring spillover potentials. These

gains, proportionate to the productivity gap, last several years after the

hiring and, given the magnitude of the gap, are larger when spillover

potentials come from the same industry group and increase with their

skill group. We calculate that the TFP gains traceable to spillovers

through worker mobility for the Danish manufacturing sector as a whole

are 0.13% per year, or about a tenth of its annual TFP growth averaged

over the sample period (1995-2007). Compared to other wise similar

workers, spillover potentials receive a wage premium proportional to

their individual productivity gap. This premium is 1.07% for an average

spillover potential, which, given their small share in the total workforce

(about 2%), amounts to just 0.023% of the total wage bill in the sector
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per year.

Spillover potentials are not the only workers who gain in wages. In

fact, we find that the total sectoral wage bill increase linked to spillover

potentials is 0.09% per year, implying that other workers gain 0.07% per

year from the presence of spillover potentials in their firms.2 Putting

together the TFP and wage gains, we calculate the total contribution of

worker mobility to the Danish manufacturing sector’s output at 0.16%

per year. Of this total output gain, 80% is retained by firms hiring

spillover potentials, 15% goes to other workers, and only 5% accrues to

spillover potentials themselves. Our finding that firms appropriate most

of the gains from worker mobility suggests that knowledge transferred

by spillover potentials is largely a positive externality enjoyed by firms

without paying for it in full. Yet, this externality does not seem to go

entirely unnoticed by firms, as spillover potentials receive higher wage

premium than do other workers (1.07% vs. 0.07%).

Our study extends the literature on spillovers through worker mo-

bility, which has so far concentrated on R&D workers or workers going

from foreign to domestic firms, to the case of workers moving between

any two firms. Our results for the productivity gains to firms and wage

gains to spillover potentials, obtained for this more general case and ap-

plicable to the entire Danish manufacturing sector, are consistent with

this literature. We therefore argue that the source of spillovers through

mobility – private knowledge developed in the worker sending firms –

is not confined to the relatively few pioneering firms, but is in fact to

be found, in various quantities, in all firms. Similarly, the lack of an

efficient market for the knowledge carried by spillover potentials seems
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to be a universal phenomenon. Yet, our finding that workers other than

spillover potentials also benefit from spillovers, albeit very little, sug-

gests that the productivity and total wage gains from spillovers are not

so vastly different as one may think by looking at the wages of spillover

potentials alone.

Our method, which has enabled us to produce some of the find-

ings hitherto unreported, is another contribution to the literature. The

method has three useful features. First, our measure of exposure to

spillovers is applicable to any firm, regardless of its R&D intensity or

domicile, allowing replication of our findings on large employer-employee

data from industries or countries, which have now become increasingly

available. Second, the analytical framework we employ in this study

permits estimating productivity and wage gains from spillovers through

worker mobility simultaneously, based on the same measure of exposure

to spillovers. The high degree of unification achieved in our framework

allows us to compare the gains from spillovers to firms not only with the

wage gains to spillover potentials alone, but also with the wage gains

to other workers. Third, extensions of our method, which we present in

this paper, enable researchers to estimate gains from spillovers within

the same and different industries, by spillover potentials’ skill group,

and over time. These extensions are useful as they help produce a richer

empirical picture of spillovers through worker mobility.

The rest of the paper is organized as follows. Section 2 deals with the

productivity gains to firms that hire spillover potentials, presenting the

analytical framework for their estimation (Section 2.1), the data (Section

2.2) and the regression results (Section 2.3). In Section 3, we extend our
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analysis to the workers and calculate the total gains from worker mobility

and their distribution between the firms, the spillover potentials and the

rest of the workers. Section 4 presents three extensions of our main

analysis: productivity and wage gains from worker mobility within and

between industries (Section 4.1), the same by moving workers’ skill level

(Section 4.2), and the evolution of these gains in time (Section 4.3).

Section 5 concludes with a summary of our findings.

2 Productivity gains from worker mobility to firms

In this section, we estimate the productivity gains to firms from hiring

spillover potentials as compared to hiring none. Our starting point is

the method featured in Balsvik (2011) which she applied to calculating

the productivity advantage to domestic firms from hiring workers with

recent experience at foreign-owned firms. Applying her method to a

Cobb-Douglas production function with shares of workers with different

types of past experience, she found that a 10% increase in the share of

workers with foreign-firm experience was linked to about 1% increase in

output by the domestic firms employing them – the result suggesting

the presence of productivity spillovers from foreign to domestic firms

through worker mobility. We extend and refine this method by allowing

the productivity gains from hiring spillover potentials to vary depending

on the technological distance between their previous and new firms, re-

gardless of their domicile, and on the degree of knowledge transferability

between the two firms.
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2.1 Estimation issues

To estimate the productivity gains to firms, we begin by modeling firm

i’s output in year t, Yit, as a Cobb-Douglas production function,

Yit = AitK
βk
it L

βl
itM

βm
it , (1)

where L denotes labor input, K and M are capital and materials in-

puts, A is the total factor productivity (TFP), and βk, βl and βm are

input elasticities. Labor input is heterogeneous as there are workers

with and without spillover potential whose productivity may therefore

differ. Hence, we specify Lit in efficiency units as follows:

Lit =LRit + δit · LSit

= (LRit + LSit)(1− sit + sit · δit)

= (LRit + LSit)(1 + sit · (δit − 1)), (2)

where LS is the labor input by spillover potentials in nominal units,

s is their share in total workforce, LR is the labor input by the rest

of the workers employed in year t, also in nominal units, and δit ≥ 1

is the function that measures labor productivity advantage of spillover

potentials (LPA) over the rest of the workers, which we specify later in

this section.3 From equation (2), the overall labor productivity gain due

to the presence of spillover potentials (OLPG) and the resulting total
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factor productivity gain to the receiving firm (TFPG) are:

OLPGit = 1 + sit · (δit − 1)

TFPGit = [1 + sit · (δit − 1)]βl (3)

Before specifying δit, spillover potentials have to be identified. The

total workforce in the firm comprises the workers on the payroll as of the

end of year t (November in our data) who fall into one of three groups:

i) those who were hired earlier than in year t− 1, ii) those hired in year

t, and iii) those hired in year t−1. In identifying spillover potentials, we

focus on the latter group. One reason for picking this group, rather than

the new hires in year t, is lack of information in our data on the exact

date in the year when the worker joined the firm. More importantly, the

workers hired in t are unlikely to have spent enough time in their new

firms to affect their productivity by means of the knowledge from their

previous firms, since communicating and implementing this knowledge

is likely to take longer than the average tenure of such workers in t (six

months, assuming constant intensity of hiring throughout the year). In

fact, as we show in our earlier work (Stoyanov and Zubanov, 2012),

no productivity gains traceable to spillover potentials were detected in

their new firms in the year of their hiring. We explore the spillover

potential of the workers hired earlier than in year t− 1, who might still

reveal some knowledge from their previous firms, in an extension of our

baseline empirical model in Section 4.3.

While there is no formal model of knowledge spillovers through worker

mobility on which to base our measure of spillover potentials’ LPA, δit,
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the digest of the existing empirical literature presented in the introduc-

tion suggests two important characterizations for such measure. First,

to the extent that it is the knowledge from their previous firms that

makes spillover potentials relatively more productive, their LPA must be

proportionate to the technological distance between their sending and

receiving firms. Hence, assuming that better technology translates into

higher productivity, we define spillover potentials as the workers hired

in year t − 1 and coming from more productive sending firms. Second,

given the technological distance between the sending and receiving firms,

spillover potentials’ LPA should be proportionate to the degree of knowl-

edge transferability from sending to receiving firms, which depends, in

particular, on the commonality of technology used by the two firms. The

following specification for δit combines both these characterizations:

δit =

NS
it∏

j=1

ASj,i,t−2
Ai,t−2


η

NS
it

, (4)

where NS
it is the number of spillover potentials employed in firm i ac-

cording to our definition above, ASj,i,t−2 is the TFP of worker j’s sending

firm in year t − 2, and 0 ≤ η < 1 is a parameter measuring the degree

of knowledge transferability. Year t − 2 is chosen as the point in time

to measure δit because this is the last full year during which spillover

potentials were known to have been at their previous firms and to have

had access to knowledge there. It is easy to see that, given our definition

of spillover potentials, δit in (4) is guaranteed to be at or above 1, as

postulated in equation (2), since ASj,i,t−2/Ai,t−2 ≥ 1, and that it increases
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with the productivity difference between sending and receiving firms and

with the knowledge transferability parameter η.

Putting the expression for labor input in efficiency units (equation

(2)) back into the production function (1) and taking logarithms, noting

that ln(x+ 1) ≈ x for x close to 0, gives

yit = ait + βkkit + βllit + βmmit + βl(δit − 1)sit, (5)

where y, a, k, l,m are the logarithms of output, TFP and the factor in-

puts. Further, putting the expression for δit from (4) into equation (5),

we obtain

yit = ait + βkkit + βllit + βmmit + βl · η · gapit · sit (6)

The term

gapit =

∑NS
it

j=1

(
aSj,i,t−2 − ai,t−2

)
NS
i,t−1

,

which we call the productivity gap, reflects the technological distance

between the sending and receiving firms averaged across the spillover

potentials in firm i. Its coefficient in equation (6), βlη, indicates the im-

portance of both labor intensity of production technology and knowledge

transferability between sending and receiving firms in shaping the mag-

nitude of productivity gains to firms through worker mobility. Lastly,

the gap’s effect is moderated by the share of spillover potentials in the

workforce, sit, which affects the exposure of receiving firms to knowledge

coming from spillover potentials: the more of them in the workforce, the

higher the exposure and hence the larger the gain.4
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We estimate equation (6) in two steps. At the first step, we estimate

the production function equation:

yit = βkkit + βllit + βmmit + uit, (7)

which enables us to construct the productivity gap from the residual

output uit for every firm and year. The term uit can be broken down to

two mutually orthogonal components – the TFP term observed by the

firm, ãit, and an unobserved random productivity shock eit:

uit = ãit + eit

At the same time, from equation (6),

uit = ait + βlη

∑NS
it

j=1

(
aSj,t−2 − ai,t−2

)
NS
it

sit

Thus, the effect of our main interest, βl · η · gapit · sit, is shared between

ãit and eit: it is part of ãit to the extent that firms observe spillovers in

year t from workers hired in t− 1.

It is important to distinguish between the residual output compo-

nents ãit and eit, because ãit being observable to the firm (but not to the

econometrician) at the time when factor inputs are chosen may affect

its decisions on their quantities, causing a bias in the input elasticities’

ordinary least squares (OLS) estimates. To control for the possible si-

multaneity of productivity shocks and input factor choices, Olley and

Pakes (1996), henceforth OP, devised a two-step estimation procedure.

At the first step of it, labor and materials input elasticities are estimated
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from equation (7) where ãit is approximated by a polynomial in capital

and investments called a control function in the literature.5 The assump-

tions that capital input is chosen in the previous year, upon observing

the contemporaneous TFP, ãi,t−1, and that the process generating ãit

is first-order Markov, are used to derive moment conditions from which

the capital input elasticity is computed at the second step.

Our implementation of the OP estimator differs from the original in

that we allow for a second-order Markov process in TFP by specifying

control functions for both ãi,t−1 and ãi,t−2. This extension is required

because the residual output in period t depends implicitly on the TFP in

period t−2 via the productivity gap. For the control functions for ãi,t−1

and ãi,t−2 to be separately identified, at least one more proxy variable for

productivity is needed in addition to investments. Of the broad array

of accounting data available to us, we construct four such proxies (all in

logs): investment and divestment in buildings and land, and machinery

and equipment. The reader is invited to consult the Appendix to this

paper for further technical details.

One limitation of the OP estimator, pointed out in Ackerberg, Caves

and Frazer (2006), is that the coefficients on labor and material inputs

may not be identifiable because, if they are chosen at the same time

with investments, these two inputs will be collinear with the control

function. Therefore, our third, and preferred, estimation method for

equation (7) relies on Wooldridge (2009) estimator, which strengthens

parameter identification by bringing the moment conditions proposed

by Levinsohn and Petrin (2003) together with the moment conditions

on lagged materials and labor inputs in a unified general method of
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moments framework, producing what is known as the WLP estimator.

We implement this estimator using the following moment conditions:

E

(
e′it ×

[
kit ki,t−1 ki,t−2 li,t−1 li,t−2mi,t−1mi,t−2

])
= 0

Overidentification tests do not reveal any problems with this choice of

moment conditions. Again, more details on our implementation of the

WLP estimator is available in the Appendix.

Having estimated the factor input elasticities, we recover the residual

output,

ûit = yit − β̂kkit − β̂llit − β̂mmit, (8)

the share of spillover potentials in each firm and year, ŝit, which we

derive from the condition ûSj,i,t−2 − ûi,t−2 > 0 tested for each worker j

hired by firm i in year t− 1, and the gap:6

ĝapit =

∑NS
i,t−1

j=1 ûSj,i,t−2 − ûi,t−2
NS
i,t−1

(9)

We will use the estimated ûit, ĝapit and ŝit at the next stage of the esti-

mation procedure. Note that we measure the gap in terms of the residual

output rather than its component ãit alone. We do so to ensure that the

gap as we measure it captures all potentially transferable knowledge that

affects the firm’s productivity, not only the part of it that the firm itself

observes and reacts upon with its choice of inputs.

At the second step of our estimation procedure, we use the residual

output, the share of spillover potentials, and the gap as defined above

to estimate the coefficient βlη in equation (6). From this coefficient we
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will recover the knowledge transferability parameter η, the last element

required for estimating spillover potentials’ LPA as the function of the

gap and the overall labor and total factor productivity gains linked to it

(equations (3)). The first specification we employ to estimate βlη is the

fully specified production function (6) with the gap, lags of residual out-

put, estimated at the first step of the procedure, and additional controls

included:

yit = ait + βkkit + βllit + βmmit + χ1controlsit

+θ1ĝapitŝit +
∑2

p=1 µ1pûi,t−p + φkt + ε1,it,
(10)

where φkt is the industry-year fixed effect, ε1,it is the random error term,

and θ1 = βlη. Two lags of residual output are included in order to

capture autocorrelation in residual output, which, if present, would bias

the coefficient on the gap, because the gap is a function of the second lag

of own and sending firms’ residual output. Since equation (10) includes

variables estimated at the first step, from equation (7), the standard

errors of its coefficients are bootstrapped. The standard error of η̂ =

θ̂1/β̂l is computed using delta method.

A potential problem with estimating the coefficient on the gap from

equation (10) is that it may be underestimated to the extent that the

gap is part of the TFP shock ãit observed and acted upon by the firm.

If this is the case, that part of the gap’s effect will be captured by the

control function in the OP and WLP estimators. An alternative, and

arguably unbiased, estimate for the gap’s coefficient is available from

the direct regression of the estimated residual output on the gap and
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controls:

ûit =χ2controlsit

+θ2ĝapitŝit +
∑2

p=1 µ2pûi,t−p + φkt + ε2,it

(11)

The estimates θ̂2 and θ̂1 will be equal if the effect of the gap sits en-

tirely in the random shock component of the output, eit, implying that

the productivity advantage of spillover potentials does not influence the

receiving firm’s choice of factor inputs in the same year. Otherwise, θ̂1

will be less than θ̂2.

In estimating LPA it is important to distinguish its two sources: hu-

man capital and exposure to knowledge. The interest of this paper is

to identify the LPA as the function of exposure to knowledge, holding

human capital fixed. This task can be accomplished by means of two

mutually supportive additions to our estimation framework. First, we

control for the possibility that spillover potentials may differ in human

capital endowment from other workers by including in our regressions the

observed (age, gender, experience, education and occupation) as well as

unobserved human capital characteristics calculated separately for each

worker group. We infer the worker’s unobserved human capital by esti-

mating the firm- and individual-specific components in his or her wage

using the method developed in Abowd, Kramarz and Margolis (1999).

Their method uses worker movements between firms as the source of

variance to identify individual- and firm-specific components of wages,

by running the following wage equation:

wjit = λ+ zjtω + ξj + ψi + vjit, (12)
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where wjit denotes logarithm of the wage of worker j employed in firm i

in year t, zjt is the vector of worker j’s observable characteristics, ψi is the

firm fixed effect, ξj is the worker fixed effect, and vjit is a random error

term. Having estimated (12), we calculate for every worker a measure of

his or her human capital as the wage net of the firm-specific effect and

the general constant term:

hjit = wjit − λ− ψi,

which we then aggregate up to the firm level, producing

h̄it =
1

Nit

Nit∑
i=1

(wjit − λ− ψi)

Subtracting the firm-specific component ψi from the wage renders our

measure of human capital free from firm-specific influences (such as com-

pensation policies) which may also be correlated with sending firm’s

productivity entering our measure of the gap. The measure of spillover

potentials’ human capital is constructed from their wages in year t− 2,

the last full year when they were employed in their previous firms.

As a second extension to our estimation framework, aimed at identi-

fying the gap’s effect controlling for human capital, we look at the gaps

formed by workers coming from more as well as less productive firms,

labelled positive and negative gaps, respectively. To the extent that the

gap’s effect is driven by human capital, the coefficients on the positive

and negative gaps will be equal, since better-quality workers will im-

prove performance by contributing to the receiving firm’s human capital
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stock, just as hiring worse-quality ones will deteriorate it. On the other

hand, if the gap’s coefficient reflects spillovers, there will be a significant

positive effect only of the positive gap, formed by the spillover poten-

tials as we have defined them; the knowledge embedded in workers with

a negative gap, coming from technologically inferior firms, will just be

neutral to the receiving firm’s productivity. Thus, the presence of the

human capital component in the estimated gap’s effect can be gauged

by the extent to which the positive and negative gaps’ coefficients are

equal.

Summing up, the equations we estimate are equations (10) and (11)

with the positive and negative gaps entering separately:

yit = ait + βkkit + βllit + βmmit + χ1controlsit

+θ+1 ĝap
+
it ŝ

+
it + θ−1 ĝap

−
it ŝ
−
it +

∑2
p=1 µ1pûi,t−p + φkt + ε1,it,

(13)

and

ûit =χ2controlsit

+θ+2 ĝap
+
it ŝ

+
it + θ−2 ĝap

−
it ŝ
−
it +

∑2
p=1 µ2pûi,t−p + φkt + ε2,it,

(14)

where

ĝap+it =

∑NS+
i,t−1

j=1

(
ûSj,t−2 − ûi,t−2

)
NS+
i,t−1

,

ĝap−it =

∑NS−
i,t−1

j=1

(
ûSj,t−2 − ûi,t−2

)
NS−
i,t−1

, (15)

NS+
i,t−1, N

S−
i,t−1 are the numbers of workers coming from more and less

productive firms, respectively, hired by receiving firm i in year t−1, and
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ŝ+, ŝ− are their respective shares in the total workforce of that firm.

2.2 Data

Our empirical analysis requires information on workers’ current and pre-

vious employers, necessitating the use of matched employer-employee

data. Such data are available from Statistics Denmark. The first dataset

we use is the Integrated Database for Labor Market Research (IDA), cov-

ering the total population of individuals aged 15-65 residing in Denmark

during the period from 1980 to 2007. Detailed information are available

on individual socio-economic characteristics: age, gender, employment

status, annual salary and income from other courses, experience, level

of education, and skill group. All working individuals are matched to

firms where they were employed in the last week of November of each

year. The firm data (FIDA) include: industry affiliation, book value of

physical capital, sales, workforce size, labor costs, purchases of materi-

als and energy inputs, as well as detailed data on investments which we

use at the first step of our estimation procedure. FIDA covers the entire

population of firms, of which those with 50 or more workers are surveyed

annually, and the rest are surveyed less frequently with the observations

in-between interpolated. In our analysis, we use the part of the matched

IDA and FIDA data coming from the manufacturing sector.

[Table 1 about here.]

Table 1 lists descriptive statistics measured at the firm and worker

level, calculated on the sample used in our regression analysis. An av-

erage firm produces 9.3 million (=e9.137 × 1, 000) Danish Kroner (1.65

million US$) worth of goods per year, employing 10.5 workers and DKK
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1.7 billion and 3.4 million worth of capital and materials. Many firms

had had an exposure to productivity gains through hiring spillover po-

tentials, since for the duration of the sample period hiring such workers

took place in about a third (24.3 thousand) of observations. Firms hir-

ing spillover potentials are different from the rest of the sample in that

they have larger size (28.8 vs. 10.5 workers), produce more output per

worker, employ more skilled workers (75% mid-skilled or above vs. 63%),

and pay higher wages (192.5 vs. 178.6 thousand DKK per year). Our

statistical analysis will control for these differences to determine the part

played by spillover potentials in their superior performance.

Our sample, counting 1.8 million worker-year observations and 72.6

thousand firm-year observations, is about a third of the universe of man-

ufacturing firms and workers. However, it covers 87% and 86% of the

sector’s output and employment, respectively, because it includes dis-

proportionately more larger-than-average firms which tend to provide

more complete data and to stay alive longer. Therefore, what happens

on this sample will be representative of the Danish manufacturing sector

as a whole. To be able to project our statistical findings to the sectoral

level, we use the concept of representative firm (the last column in Ta-

ble 1). The representative firm is different from the average firm in that

the statistics for the representative firm are averages of the underlying

firm-level data weighted by the respective firm’s share in total output.

Therefore, the representative firm is larger than average on output and

factor input measures. Thanks to such weighting, the effects on the rep-

resentative firm’s output, calculated from our regression coefficients, will

be the same for the manufacturing sector as a whole.
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Turning to workers’ data, an average worker is aged 41.6, earning

280.4 thousand DKK per year, and is most likely to be a college-educated

male working in a medium-skilled occupation in a large firm (average

210.2 workers). The discrepancies in the averages at the firm and worker

levels exist because larger firms, whose weight in total observations at the

worker level is greater, produce and pay more. Applying to firm-level ob-

servations their weights in total employment levels off these differences;

indeed, the worker-level averages are close to those for the representa-

tive firms, since firms’ weights in total output are close to their weights

in total employment. The average worker changes firms once every ten

years (more frequently in smaller firms); however, the share of spillover

potentials in total observations is only about 2%.7 Zooming in on those

rare 2%, an average spillover potential is younger (37.4 vs. 41.6), less

experienced and less well-paid (257 vs. 280.4 thousand DKK per year)

than the rest of the workers. A further analysis will establish whether

they are paid a wage premium by their receiving firms compared to

otherwise similar workers.

2.3 Results

Before we discuss regression results for equations (13) and (14), reported

in Tables 3 and 4 respectively, let us briefly review the estimates for in-

put elasticities, β̂k, β̂l, β̂m, and the residual output, û, obtained at the

first stage of our estimation procedure from equation (7). Because these

estimates are nearly identical to the input elasticities obtained at the

second stage from equation (13), we rely on Table 3 to assist their pre-

sentation. The input elasticities are within the range of magnitudes
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reported in the literature but differ between the three estimators. The

labor and capital input elasticities decrease as we control for TFP shocks

affecting factor inputs in columns (4)-(9), while the materials input elas-

ticity tends to increase. The returns to scale, around 0.95 as estimated

by OLS (columns 1-3), decrease to 0.87 in OP (columns 4-6). Adding

extra moment conditions in WLP (columns 7-9) raises the returns to

scale to 0.93 due to changes in the coefficients on labor and materi-

als, which coefficients are likely to be unstable in the OP framework

because of the problems with their identifiability mentioned in Section

2.1. Although not all differences in the OLS, OP and WLP estimates

render themselves to simple explanations, the three estimators produce

very similar measures of residual output with pairwise correlations of

0.94-0.98, depending on the pair. The similarity of the residual output

measures implies that our measures of the positive and negative gaps do

not vary much with the production function estimator.

[Table 2 about here.]

Table 2 reports the descriptive statistics for three important variables

obtained at the first stage of the estimation procedure, which we will use

later in illustrating our main statistical results. These variables are: the

positive gap (ĝap+it) for each of the estimators we have used, the share

of spillover potentials as we have defined them (s+it), and the product

of the gap and the share of spillover potentials (ĝap+its
+
it). The averages

are available at the firm and worker level. The averages at the worker

level are representative of the entire workforce; therefore, we will use

them in illustrating what spillovers through worker mobility mean for the

workers (Section 3.2). The firm-level averages are reported in the simple
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and weighted forms, with weights proportionate to firms’ shares in total

output, to make them applicable to the representative firm. Since in this

section we discuss results for firms, we concentrate on the weighted firm-

level statistics in Table 2. Looking at these statistics, spillover potentials

make up around 2% (depending on the estimator) of the representative

firm’s workforce, their gaps averaging at 0.25-0.29. The small share of

spillover potentials in the representative firm will limit the productivity

advantage that they deliver to it. In fact, the representative firm has gap

times share, ĝap+its
+
it , of only 0.0062-0.0070. In our preferred specification

(WLP), the representative firm counts 1.88% of its workforce as spillover

potentials, whose average gap is 0.2725, and has gap times share of

0.0064.

[Table 3 about here.]

Turning to the results in Table 3, obtained at the second stage of our

estimation procedure, our main findings are a positive and statistically

significant coefficient on the positive gap, and an insignificant one on the

negative gap. The difference between the positive and negative gaps’ co-

efficients suggests that human capital brought in by new workers cannot

explain the effect of gap on productivity, since this explanation would

imply equal coefficients on the two gaps. To help isolate factors other

than knowledge spillovers that can operate through the gap, as well as

to pinpoint their sources, we run three specifications of the production

function equation with different sets of additional controls. The first

specification (columns 1, 4, 7) includes the Abowd, Kramarz and Mar-

golis (1999) human capital measure (calculated separately for spillover

potentials and the rest of the workers), industry-year fixed effects and
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two lags of residual output. The second specification (columns 2, 5, 8)

includes the same controls plus firm characteristics: separations rate,

and shares of new workers hired from more and less productive firms.

Finally, the third, and most complete, specification (columns 3, 6, 9)

includes the same plus other observable characteristics of the workers,

averaged at the firm level: age, gender, experience, education and occu-

pation group within the firm. Comparing the positive gap’s coefficients

across these specifications, we see that its effect is mostly influenced by

the observed characteristics of the workers, many of which are related

to human capital. Yet, most of the positive gap’s effect survives these

controls. Since the negative gap’s effect is small, both statistically and

economically, we will concentrate on the results for the positive gap.

Using the regression coefficients in Table 3, we now calculate the logs

of OLPG, TFPG and LPA as defined in Section 2.1 (equations (3) and

(4)):

lnOLPGit = η̂ · ĝap+it · ŝ+it

lnTFPGit = β̂l · η̂ · ĝap+it · ŝ+it

lnLPAit = η̂ · ĝap+it

It must be noted that the assumption underlying equation (2) and the

latter calculation is that other workers do not become more produc-

tive by learning from spillover potentials, which process we cannot ob-

serve. Therefore, the LPA as defined above is in fact the upper bound-

ary of spillover potentials’ labor productivity advantage. Clearly, its

lower boundary, based on the assumption that every worker learns from
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spillover potentials and becomes equally productive with them, is equal

to the OLPG.

Starting with the most complete OLS specification (column 3), the

positive gap’s coefficient 0.244 implies that TFPG to receiving firm from

hiring spillover potentials is 0.244 of their average gap times the cor-

responding share in the workforce. For instance, a firm hiring 10%

of its workforce from 10% more productive firms will produce 0.244%

(= 0.244 × 0.1 × 0.1) more output with the same inputs than a similar

firm hiring no spillover potentials. Dividing the gap’s coefficient by labor

input elasticity, 0.423, renders the knowledge transferability parameter

η̂ = 0.576. Given our assumption that it is the knowledge difference

that underlies the sending–receiving firms’ productivity gap, η̂ = 0.576

implies that a large share, nearly 60%, of this knowledge is transferable

between firms despite technological and other barriers that may hin-

der this transfer (more on the role of common technology in spillovers

through worker mobility in Section 4.1). The OLPG is thus 0.576 of

the average gap times share, and the LPA of spillover potentials is 0.576

of the average gap. Applying these results to the representative firm

(OLS-estimated gap 0.2531 and gap times share 0.0062, Table 2), the

implied TFPG to this firm is 0.15% per year, linked to a 0.36% OLPG

and LPA of 14.6%.

However, the OLS estimate for the gap’s coefficient may be subject

to two biases. The first is caused by the positive gap’s correlation with

the receiving firm’s TFP shock, which is not controlled by the OLS esti-

mator. The second is due to labor input’s positive correlation with the

same shock affecting the estimate of βl, again not addressed in OLS. Ap-
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plying the OP and WLP estimators that control for both these biases,

we observe that, compared to the OLS, the positive gap’s coefficient has

reduced in magnitude and is now 0.15-0.17 in the most complete regres-

sion specifications (columns 6 and 9). Confirming our expectations, this

decrease suggests that firms experiencing a positive TFP shock tend to

hire from relatively more productive firms. Yet, controlling for this corre-

lation, the implied TFPG to a firm hiring 10% of its workforce from 10%

more productive firms is still a non-negligible 0.169% (= 0.169×0.1×0.1,

based on the most complete specification estimated with our preferred

WLP, column 9). The WLP estimation results also point out to OLS

overestimating labor input elasticity, implying that firms’ labor input

is positively correlated with the TFP shock that they can observe. Ac-

counting for this correlation produces a labor input elasticity estimate of

0.333 (column 9), lower that 0.423 produced by OLS. Applying WLP to

the production function equation (13) produces somewhat lower implied

effects for the representative firm: a TFPG of 0.11% per year linked to

a 0.32% OLPG thanks to spillover potentials’ LPA of 13.9%.

There may still be a downward bias in the gap’s coefficient esti-

mated from the production function equation (13) because part of the

gap’s effect may have been captured by the control function for TFP

shocks. Indeed, turning to the estimation results for the residual out-

put regression (equation (14)) in Table 4, which we estimate in the same

specifications and with the same estimators, we observe somewhat larger

coefficients on the positive gap: 0.197 in our preferred specification (col-

umn 9). Similarly to (13), the coefficient on the negative gap is small in

magnitude and insignificant in all specifications, supporting our earlier
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conclusion that the observed gap’s effect is unlikely to be explained by

spillover potentials’ human capital. The gap’s coefficient 0.197 and the

knowledge transferability parameter 0.592 imply that a receiving firms’s

TFPG is 0.197 of its gap times share, which is linked to hiring spillover

potentials whose LPA over the rest of its workers is 0.592 of their average

productivity gap.

[Table 4 about here.]

Applying these results to the representative firm gives the implied

TFPG of 0.13% per year. This gain is linked to a 0.379% OLPG thanks

to hiring spillover potentials who are, on average, 15% more productive

than otherwise similar workers in that firm. By virtue of its representa-

tiveness of the whole manufacturing sector, we conclude that the sector

as a whole grows by the same 0.13% per year, which is 10.1% of its

annual TFP growth averaged over the sample period. It may thus be

conjectured that, if there had been no spillovers through worker mobility

in the Danish manufacturing sector, its TFP growth would have been a

tenth less than actually observed. Notice that the way we measure labor

input implies that these gains are net of the possible wage gains accrued

to the workers, which we turn to in the following section.

3 Wage gains linked to spillover potentials

We have shown that receiving firms enjoy productivity gains after hiring

spillover potentials net of any extra wage costs, such as a wage premium

that might have been paid to them. Such wage premium is possible as

competition ensures that factor inputs are rewarded depending on their

productivity. For instance, Balsvik (2011) finds that the wage paid by
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domestic firms to new workers with foreign-firm experience is up to 4%

higher (depending on the tenure at the foreign firm) than the wage paid

to otherwise similar new workers without such experience, and up to

7% higher compared to stayers. Estimating the wage premium paid to

spillover potentials is the first task of this section.

[Figure 1 about here.]

Despite the fact that spillover potentials’ average pay is lower than

global average (Table 1), there are signs in the data suggesting that they

earn more than similarly qualified other workers in their new firms. Fig-

ure 1 illustrates the dynamics of wages of the workers who changed firms

in 2001 (the midpoint of our sample’s time span) versus the workers who

did not. To isolate wage differences having to do with the workers’ ob-

servable characteristics, we plot the residuals from the wage equation

with and without firm fixed effects. Looking at Figure 1’s left panel

(wage residuals without firm fixed effects), we observe spillover poten-

tials’ wages relative to those of otherwise similar workers in the entire

labor force. Spillover potentials saw a drop in their wages in the last

two years before the move, after which period their wages gradually re-

covered though never quite reaching the global average or the wages of

other moving workers who are not spillover potentials. These dynamics,

however, are likely to be influenced by the moving workers’ destinations,

since spillover potentials move to less productive firms, which pay lower

wages on average, and other moving workers go to more productive firms

paying more. Indeed, adding sending and receiving firms’ fixed effects

(Figure 1’s right panel), we see that, relative to the average wage of

similar workers at their new firms, spillover potentials receive a small
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premium.

The second task we attempt is to estimate wage gains to other work-

ers linked to spillover potentials. The possibility for these gains arises

from other workers’ becoming more productive through learning from

spillover potentials. Alternatively, even if their productivity stays the

same, other workers may still profit by sharing in their firm’s produc-

tivity gains through wage bargaining actuated by fairness-related com-

parisons (Smith, 1996), especially that the differences between spillover

potentials and otherwise similar workers are typically not highly percep-

tible. Estimating gains to other workers will complete the calculation of

the full gains from spillovers through worker mobility, as well as their

distribution between the three parties: the firms, the spillover potentials

themselves, and the other workers.

3.1 Estimation issues

To estimate the wage premium paid to spillover potentials, we run the

wage equation specified at the individual worker level with the positive

and negative productivity gaps in it:

lnwjit = γ+ĝap+jit + γ−ĝap−jit + φit

+ξ · controlsjit + vjit, (16)

where lnwjit is log wage of worker j (not necessarily a spillover potential)

in firm i in year t (one year after the job move, if any), vjit is the

random error term, and ĝap+jit and ĝap−jit are the positive and negative

productivity gaps defined for each worker separately, as the residual
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output difference between the worker’s previous and new firms in year

t− 2. Thus ĝap+jit = 0 for a worker coming from a less productive firm,

ĝap−jit = 0 for a worker coming from a more productive firm, and ĝap−jit =

ĝap+jit = 0 for a job stayer. We include the firm-year fixed effect φit to

isolate firm-wide influences on wages, such as compensation policies or

firm productivity level, that may be correlated with the individual gap.

The inclusion of φit leads us to interpret the positive gap’s coefficient γ+

as the fraction of the gap paid as the wage premium to spillover potential

j in firm i in year t on top of the average wage in that firm and year.

The controls vector includes worker characteristics (firm character-

istics are subsumed by the firm-year fixed effects): age, gender, educa-

tion, skill group, experience, two dummy variables indicating whether a

worker comes from a more or a less productive firm, Abowd, Kramarz

and Margolis (1999) measure of human capital estimated from equation

(12) separately for spillover potentials from more and less productive

firms and the rest of the workforce, and dummy variables corresponding

to the number of job transitions during the sample period. Standard

errors in equation (16) are clustered at the firm level.

To calculate the effect of spillover potentials on other workers’ wages,

we first estimate the gap’s effect on log average wage (denoted lnwit) in

the receiving firm i in year t, running the firm-level wage equation:

lnwit = Γ+ĝap+it ŝ
+
it + Γ−ĝap−it ŝ

−
it + Φi + τkt

+Ξ · controlsit +
2∑
p=1

δpûi,t−p + Vit, (17)

where ĝap+it and ĝap−it are the positive and negative gaps at the firm level,
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as defined in equations (15), ŝ+it and ŝ+it are the shares of workers corre-

sponding to the gaps, Φi and τkt are firm and industry-year fixed effects,

controls include firm and worker average characteristics (the same as in

the individual wage equation (16)), and Vit is the random error term.

Equation (17) is analogous to the individual wage equation (16) except

that it is specified at the firm level and includes firm fixed effects. It is

important to note that we run equation (17) using weighted OLS, with

weights proportionate to the firms’ shares in total employment, as we

wish to make inferences for the average worker in our sample.

Combining the estimates from equations (16) and (17), the total wage

gain to spillover potential j in firm i and year t, linked to the knowledge

he or she brings, is

γ+
[
ĝap+jit − ĝap

+
it ŝ

+
it

]︸ ︷︷ ︸
premium on top
of average wage

+ Γ+ĝap+it ŝ
+
it︸ ︷︷ ︸

average
wage gain

(18)

We use (18) further to calculate the average wage gain to the workers

other than spillover potentials. Assuming that this gain is proportionate

to the gap times the share of spillover potentials in the workforce, the
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following decomposition of the average wage gain to all workers applies:

Γ+ĝap+it ŝ
+
it︸ ︷︷ ︸

average gains
per worker, all

= ŝ+it ·

γ+ NS+
i,t−1∑
j=1

1

NS+
i,t−1

[
ĝap+jit − ĝap

+
it ŝ

+
it

]
+ Γ+ĝap+it ŝ

+
it


︸ ︷︷ ︸

average gains
per worker,

spillover potentials

+(1− ŝ+it) · (x · ĝap
+
it ŝ

+
it)︸ ︷︷ ︸

av. gains
p/worker,
the rest

, (19)

where coefficient x measures the implied effect of a firm’s exposure to

spillovers, ĝap+it ŝ
+
it , on the wages of the rest of its workers. Because it in-

volves the share of spillover potentials in the firm, varying by worker and

year, it is convenient to apply this decomposition to the average worker

whose data are reported in the “Workers” part of Table 2. Thanks to

the average worker’s representativeness, the results of this decomposition

will also apply to the manufacturing sector’s labor force as a whole, which

will enable us to relate the gains to all the workers to the gains to all the

firms in the sector that we estimated in Section 2.3. Drawing on our pre-

ferred productivity regression specification (WLP), the average worker is

employed in the firm where ŝ+it = 2.14% of employees are spillover poten-

tials whose average gap is
(
NS+
i,t−1

)−1∑NS+
i,t−1

j=1 ĝap+jit = 0.2456, resulting in

the gap times share ĝap+it ŝ
+
it = 0.0053. These statistics are different from

their equivalents for the representative firm because firms’ shares in total

output, though close, are not equal to their shares in total employment.
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3.2 Results

Table 5 presents estimation results for the individual wage equation (16)

run with the gap values estimated previously with OLS, OP and WLP

estimators. Consistent with our earlier results, the negative gap’s coeffi-

cient, γ−, is small and insignificant, implying no extra wage premium to

the new workers who are not spillover potentials. The positive and sig-

nificant coefficient on the positive gap, γ+, implies that there is indeed a

wage premium to spillover potentials proportionate to their correspond-

ing productivity gap. Comparing the estimates in specifications with and

without controls, we conclude that a large part of this wage premium

can be explained by the characteristics of the workers who receive it, as

the coefficient on the positive gap goes down in magnitude as we add

worker controls. In the end, with all controls included in our preferred

specification (column 6), the wage premium to spillover potentials on top

of the average wage in a given firm and year is 0.041 of their (positive)

productivity gap. For the average spillover potential, whose gap is above

the firm average by 0.24 (=0.2456, the average spillover potential’s gap,

minus 0.0053, the gap times share averaged at the worker level), this

coefficient implies a wage premium of 0.98% on top of the contempo-

rary average wage within his or her firm, controlling for other relevant

characteristics. Relative to the sample average real wage growth, 4%

per year, this premium is not insignificant. However, because spillover

potentials make up only 2.14% of the workforce, their wage premium

makes little difference to the total wage bill, increasing it by a mere

0.021% compared to the hypothetical case of no worker mobility across
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firms.

[Table 5 about here.]

The estimates from the firm-average wage equation (17) are presented

in Table 6. The coefficient on the positive gap, Γ+, is consistently posi-

tive and significant across the estimators and specifications, whereas the

negative gap’s coefficient is, as before, small and insignificant. Similarly

to the individual wage equation (16) (Table 5), part of the link between

the average positive gap and wages can be explained by worker charac-

teristics. Still, the positive gap’s coefficient in our most preferred and

complete specification (column 9), Γ+ = 0.170, implies that workers in

a firm hiring 10% of its workforce from 10% more productive firms gain,

on average, 0.17% (= 0.170 × 0.1 × 0.1) in wages per person per year

compared to the counterfactual of having no spillover potentials at all.

For the average worker in our sample, and hence for the manufacturing

workforce as a whole, this wage gain stands at 0.09% per year, or 2.3%

of the sector average real annual wage growth. Turning back to the

spillover potentials part of the workforce, adding this average wage gain

to spillover potentials’ average wage premium, 0.98%, we obtain their

full wage gain: 1.07% per year, paid in the year following the change of

employer.

[Table 6 about here.]

Given the estimates for γ+ and Γ+ and the characteristics of the

average worker in Table 2, the estimated coefficient x in (19) is 0.132, and

the implied implied wage gain to workers other than spillover potentials

is 0.07% per year. While this gain may seem negligible, it does imply

a considerable redistribution of wage gains from spillover potentials to
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the rest of the workers. Indeed, if the average wage gains per worker

(0.09% per year) were spillover potentials’ only, then the average spillover

potential’s wage gain would have been 4.21% (= the average, 0.09%,

divided by their share in the workforce, 2.14%) instead of the actual

1.07%.

Let us put together the estimated total gains from spillover potentials

accrued to the firms in the manufacturing sector (Section 2.3) and to

the workers (this section) to calculate the implied total output gains

and their distribution between the three parties: the firms, the spillover

potentials, and the rest of the workers. Recall from Section 2.3 that

TFPG to the firms in the sector, net of the wage costs, are 0.13% per

year. Adding to this figure the corresponding increase in the total wage

costs times labor input elasticity, 0.09%× 0.333, the total output gains

become 0.16%. Most of these gains, roughly 80% (= 0.13%/0.16%),

remains with the firms. Of the 20% that is left to workers, a quarter 8

accrues to spillover potentials, and the remainder goes to the rest. Thus,

spillover potentials themselves receive only about 5% of the output gains

that they bring to their receiving firms.

The low wage premium that spillover potentials earn relative to the

productivity advantage they bring suggests the presence of information

asymmetry, and possibly other frictions, in the labor market for them,

preventing their labor productivity advantage being fully converted into

a wage premium. Reaching out to the existing literature on the same

topic, we calculate from Balsvik’s (2011) findings that a wage premium

for foreign-firm experience is 5-15% of the LPA thanks to this experi-

ence.9 Though on the low side of the range of her estimates, our 5%
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result is not inconsistent with hers, since the signal sent by a former

foreign firm employee of his or her ability is more perceptible than the

signal sent by an average spillover potential in our sample, and should

therefore attract a larger wage premium. Hence, information asymme-

try between spillover potentials and their new employers, which is larger

in our general case than when a worker is known to have worked at a

foreign firm before, can plausibly explain why spillover potentials’ wage

premium, relative to their labor productivity advantage, is low.

4 Extensions

4.1 Productivity and wage gains from worker mo-

bility within and between industries

As the movement of workers is not confined by a particular industry,

spillover potentials with the same productivity gap may bring varying

productivity gains depending on the industry of their origin, since the

knowledge they bring may have varying degree of transferability. Our

analytical framework can be extended to differentiate between produc-

tivity gains through worker mobility within and between industries, by

allowing the knowledge transferability parameter 0 ≤ η < 1 in equation

(4) for our measure of firms’ exposure to spillovers, δit, to vary depend-

ing on the spillover potential’s industry of origin. In this section, we

implement this extension by calculating the gaps (ĝap+it , ĝap
−
it) and cor-

responding worker shares (ŝ+it , ŝ
−
it) separately for the workers hired from

within (high η) and outside (low η) each industry group, and by repeat-

ing the previous analysis for firms and workers with the newly specified
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measures. There are nine two-digit industries (NACE classification) in

the manufacturing sector, and 55% of all job changes took place within

the same industry.

[Table 7 about here.]

Table 7 lists the regression results for the residual output equation

(14) and individual and firm average wage equations (16) and (17). The

positive gap’s estimate in column 6 is much larger for spillover poten-

tials moving within the same industry (about 0.4) than for those moving

between industries (0.09). The difference between these estimates re-

veals the importance of knowledge transferability in facilitating spillovers

through worker mobility between firms: thanks to common production

technology, knowledge is more transferable within than across industries,

resulting in higher productivity gains for a given gap. The negative gap’s

coefficient is small and insignificant regardless of the industry, reinforc-

ing our earlier conclusion that human capital transfer cannot explain our

results.

Turning to the estimates for the individual wage equation (16) in

columns 1-3, we see that, despite the difference in productivity gains

brought in by spillover potentials previously employed in the same and

different industries, their individual wage gains, as a share of their gap,

are nearly the same. The coefficient on the same-industry positive gap in

the firm average wage regression (0.178, column 9) is close to its analogue

in Table 6 (0.17) estimated for all spillover potentials. It is somewhat

larger, though not significantly, than the same coefficient for spillover

potentials coming from different industries (0.142). Taken together, the

similarity of wage premiums to spillover potentials and dissimilarity of
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productivity gains to firms does not suggest a strong link between the

two, reinforcing our previous conclusion that spillovers through worker

mobility are largely a positive externality to hiring firms.

4.2 Productivity and wage gains by worker skill

level

So far in our analysis we have used the measure of a firm’s exposure to

spillovers through worker mobility, η·gapit·sit, which assumes that, given

the share of spillover potentials in the workforce (sit), the productivity

gains from spillovers increase with the productivity gap between the

sending and receiving firms (gapit), and with transferability of technol-

ogy between sending and receiving firms (η). However, given these firm-

level characteristics, productivity gains brought by spillover potentials,

as well as their wages, may still vary depending on the attributes of those

workers. One such attribute, on which we focus in this section, is skill

group, since spillover potentials in higher-skill groups will have better

access to the knowledge of their previous firms than those in lower-skill

groups. Using the Statistics Denmark’s definitions of skill groups based

on the International Standard Classification of Occupations, we classify

all workers into one of the four skill groups: low-skilled, mid-skilled,

high-skilled, and managers. Accordingly, we construct the positive and

negative gaps (ĝap+it , ĝap
−
it) and corresponding worker shares (ŝ+it , ŝ

−
it) for

each skill group separately and reestimate equations (14), (16) and (17)

with these newly defined variables.

The results, presented in Table 9, reveal considerable heterogeneity in

the implied productivity gains to firms from hiring spillover potentials
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belonging to different skill groups. Consistent with our expectations,

the labor productivity advantage (LPA, part of the coefficient θ+2 ) of

spillover potentials in higher skill groups (highly-skilled and managers)

is much larger than that of the lower skill groups, although even less

skilled spillover potentials still contribute to the hiring firm’s productiv-

ity. Spillover potentials’ contribution to the average wages in their re-

ceiving firms (coefficient Γ+) is proportional to their LPA; for instance,

hiring a manager from a more productive firm increases everyone’s wages

more than hiring a less skilled worker from the same firm. However,

spillover potentials’ own wage premium (coefficient γ+) as a share of

their gap remains fairly stable and small, around 5%.

The total gains to firms and workers implied by the regression co-

efficients above depend on the shares of spillover potentials from dif-

ferent skill groups in the workforce. Calculating the implied gains for

the representative firm and the average worker in the same way as ear-

lier in sections 2.3 and 3.2 (bottom of Table 9), we find that, although

managers have the highest LPA (0.3), the overall productivity gains en-

joyed by firms from hiring them (TFPG=0.047%) are close to mid-skilled

spillover potentials’ (TFPG=0.054%), since managers are scarce. The

wage gains follow the same pattern. It is also worth mentioning that

the distribution of the total gains from spillover potentials between the

firms, the spillover potentials themselves and the rest of the workers is

fairly stable across the skill groups, with firms retaining around 80% of

the total gains. Thus, the extent of the positive externality created by

the movement of workers from more to less productive firms, which we

have found in this study, does not seem to depend on spillover potentials’
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skill group.

4.3 The dynamics of spillover potentials’ produc-

tivity advantage and wage premium

One possible explanation for observing that spillover potentials retain

only a small portion of the gains they bring to their receiving firms in

their first year of tenure is information asymmetry regarding their value.

As their tenure progresses, therefore, one should see a closer link be-

tween their labor productivity advantage and wage premium. Another

explanation is that their wage premium is deferred as the receiving firms

try to ensure a continuation of their tenure. Such deferred compensa-

tion implies that the wage premium will continue to be paid in the years

after joining the new firm, even though spillover potentials’ productivity

advantage is exhausted. However, spillover potentials’ contribution to

their new firm’s productivity may last as well, for two reasons. First,

since productivity follows an autoregressive process, the gap’s effect one

year after hiring, reported in Tables 3 and 4, will carry over to the fol-

lowing years through the autoregressive terms. Second, the gap may, in

principle, have its own dynamics, unrelated to TFP shocks, influenced

by the length of time it takes to transfer the knowledge from sending to

receiving firms and to implement it, as well as by the gradual deprecia-

tion of that knowledge. In this section, we estimate the dynamics of the

wage premium paid to spillover potentials and relate it to the dynamics

of their contribution to productivity of their receiving firms.

Our method of estimating the dynamics of gap’s effect on wages and

firm productivity is based on regressing future wages and residual output
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on current values of the gap and other controls:

ûi,t+q = θ+q ĝap
+
its

+
it + θ−q ĝap

−
its
−
it

+χqcontrolsit +

q+1∑
p=0

µp,qûi,t−2+p + φkt + εi,t+q, q ≥ 1 (20)

lnwj,i,t+q = γ+q ĝap
+
jit + γ−q ĝap

−
jit + φit

+ξq · controlsjit + vj,i,t+q, (21)

lnwi,t+q = Γ+
q ĝap

+
its

+
it + Γ−q ĝap

−
its
−
it + Φi + τkt

+Ξq · controlsit +
2∑
p=1

δp,qûi,t−p + Vi,t+q, (22)

where the notations are the same as in the residual output and wage

equations (14), (16) and (17) presented earlier. An adaptation of the

local projections method developed in Jordà (2005), this method is easy

to implement and is robust to possible dynamic misspecifications in the

underlying equations (14), (16) and (17). The coefficients γ+q and Γ+
q

estimate the effect of the positive gap on wages q + 1 years after join-

ing the new firm, and the coefficients θ+q and θ−q measure the effects of

the positive and negative gaps-times-share on residual output. The full

wage premium paid to spillover potentials is calculated for each q using

equation (19).

[Table 8 about here.]

The results, reported in Table 8, show that productivity gains to hir-

ing firms persist several years after hiring spillover potentials, reaching its
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peak in the third year and receding thereafter. In other words, spillover

potentials continue to contribute to their new firm’s productivity several

years after being hired, implying that the total gains to firms from hiring

spillover potentials, realized over several years, are larger than the gains

one year after hiring estimated earlier in the paper. For illustration, do-

ing the same calculations as in Section 2.3 with the gap times share for

the representative firm (Table 2) shows that it a firm manages to hire

spillover potentials at this rate for five consecutive years, its cumulative

TFPG in the sixth year will be 0.7% – a large number, but of course not

many firms will be so successful in their hiring.

The wage premium paid to spillover potentials and to incumbent

workers persists for four years after hiring and then declines sharply in

the fifth year. Relative to their LPA, average wage premium of spillover

potentials remains low. In fact, the shares of the firms, the spillover

potentials and the incumbent workers in the total output gain remain

stable over the five year period. The stability of spillover potentials’ wage

premium relative to their LPA as time progresses does not support our

suppositions that it is either deferred in order to retain them or raises

gradually over time and information asymmetry is resolved. Rather,

spillover potentials continue receive a stably low wage premium years

after being hired.

5 Conclusion

The central ambition of this paper has been to estimate the gains from

spillovers through worker mobility to the firms and to the workers, in

order to determine the extent to which these gains are a pure, uncom-
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pensated externality. We began with calculating productivity gains to

firms from hiring workers previously employed at more productive firms,

whom we call spillover potentials. The theory based on which we have

anticipated these gains is that such workers, thanks to their access to

better, more efficient technology at their previous firms, can bring some

of the knowledge developed there to their new employers. We have pro-

posed an empirical method, the key element of which is the measure

of firms’ exposure to outside knowledge through hiring spillover poten-

tials. Applying this method, we find that firms with a higher exposure

to such knowledge enjoy larger productivity gains. These gains amount

to 0.13% per year for the representative firm (and hence for the entire

manufacturing sector), or a tenth of the sector’s TFP growth, and per-

sist for several years. We also find that productivity gains from spillover

potentials are larger when they come from the same industry group and

when they belong to a higher skill group, both of which findings add im-

portant characterizations to our main story without principally altering

it.

In the remainder of our study, we have looked at the gains to workers

traceable to spillovers through worker mobility, and at the distribution

of the gains from hiring spillover potentials between the firms and the

workers. Linking individual wages and productivity gap, we have found

that spillover potentials gain in wages in proportion to their gap, the

gain averaging at 1.07% in the first year after being hired. Furthermore,

aided by a simple framework to estimate individual and average wage

gains linked to spillover potentials, we have found that workers other

than spillover potentials also gain in wages proportionate to their firm’s
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exposure to outside knowledge as summarized in our measure of produc-

tivity gap. Turning to the distribution of the total gains between the

firms and the workers, the workers’ gains are, and remain so for up to

five years after hiring, only about a fifth of the total, of which spillover

potentials themselves retain only a quarter. We therefore conclude that

worker mobility between more and less productive firms is largely a posi-

tive externality for the latter, helping their growth by giving cheap access

to superior knowledge developed elsewhere.
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6 Appendix - Modified Olley and Pakes (1996) and

Wooldridge (2009) estimation procedures

Here we provide a detailed description of the estimation procedures,

other than OLS, used for the construction of our TFP and productivity

gap measures. Reconsider the production function equation (7):

yit = βllit + βmmit + βkkit + uit

where residual output uit includes a component observable to the firm

at time t, ãit, and an unobservable productivity shock eit:

uit = ãit + eit

Factor inputs may be correlated with ãit, causing a bias to their OLS

estimates. We discuss two estimators dealing with this bias – the Olley

and Pakes (1996) and Wooldridge (2009), also known as Wooldridge-

Levinsohn-Petrin (WLP) estimator. Both estimators have been exten-

sively discussed in the previous studies; however, their common versions

assume a first-order Markov process in ãit. This assumption is at odds

with most of our empirical analysis, since our specification for spillover

potentials’ labor productivity advantage (equation (4)) implies that out-

put in period t depends on ãit−2 through the productivity gap term. The

main purpose of this appendix is to explain how we modify these esti-

mators to allow for a second-order Markov process in ãit, which is more
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appropriate for our empirical analysis.

6.1 Modified Olley and Pakes (OP) procedure

The OP approach to deal with the bias to the factor inputs’ estimates

due to their correlation with ãit is to proxy ãit with other observables

linked with it. A simple theory identifies such observables. Assuming

the capital stock at time t is a deterministic function of capital stock

and investments in the previous period,

kit = ρki,t−1 + ii,t−1, (23)

where 0 < ρ < 1 accounts for the depreciation of capital. Pakes (1994)

showed that the investment function iit = f1t (kit, ãit) that solves the dy-

namic profit maximization problem is monotonically increasing in capi-

tal stock and productivity and thus can be inverted to express ãit as a

function of observable capital and investments:

ãit = gt (kit, iit)

In the first stage of the OP procedure, gt (kit, iit) is substituted back

into the production fucntion to control for ãit. Since function gt (·) is

unknown, it is approximated with a third degree polinomial in kit and iit,

called the control function. Adding the control function in the regression

prevents the identification of βk because kit is collinear with it. However,

the first stage does allow to identify βl and βm, and to obtain fitted values

of the term Φ̂it = βkkit + gt (kit, iit) that includes βk. In order to identify

βk, the second stage of the OP estimator proceeds by assuming that ãit
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follows a first-order Markov process and thus can be decomposed into

its conditional expectation as of time (t− 1) and the error term ξit:

ãit = E [ãit|ãit−1] + ξit = f (ãit−1) + ξit

Given the assumption on capital dynamics (equation (23)), the moment

condition E [kit|ξit] = 0 is used to identify βk, where f (·) is approx-

imated by a third degree polinomial and ãi,t−1 = Φ̂i,t−1 − βkki,t−1 =

gt−1 (ki,t−1, ii,t−1).

Our definition of spillover potential’s labor productivity advantage

as a function of the sending–receiving firms’ productivity distance two

years prior implies that output in period t depends on ãit−2 through the

productivity gap term. Therefore, if the distribution of ãit depends on its

realization in period (t− 2), the estimate of the gap’s coefficient will be

biased. For example, if ãit follows an AR(2) process, the coefficient βlη

in equation (6) will have a negative bias when the second autoregression

coefficient is positive, which is indeed the case in our data. To address

this problem, we allow the productivity term ãit to follow a second-order

Markov process, whereby productivity shocks observed one year prior

would also matter for current investment and input factors decisions.

The assumption that ãit follows a second-order Markov process re-

sults in the optimum investment choice becoming a function of both ãit

and ãi,t−1:

iit = f1t (kit, ãit, ãit−1)

The problem with this modification of the investment function is that

the control function for ãit can no longer be constructed in the same way
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as in the classical version of OP because ãit and ãi,t−1 cannot be sepa-

rately identified with investments alone. There must be another control

variable bit, in addition to investments, that firms optimally choose in t

given available information, for our estimation problem to be solved. If

there are two control variables chosen optimally conditional on the state

variables, then bit = f2t (kit, ãit, ãit−1), or
(
iit
bit

)
= Gt (kit, ãit, ãit−1), where

Gt = (f1t, f2t). Assuming that G is a bijection of (ãit, ãit−1) to (iit, bit),

it can be inverted to obtain ãit = G−1t (kit, iit, bit). Then the first stage

of the OP proceeds as usual with the function G−1t (·) used to control

for the productivity shock approximated by a third degree polynomial

in kit, iit, and bit. In that stage we obtain consistent estimates of βl and

βm, as well as fitted values of
(
G−1t + βkkit−1

)
= F̂t. In the second stage

the coefficient on capital is estimated from

yit− β̂llit− β̂mmit = βkkit +λ
(
F̂t−1 − βkkit−1; F̂t−2 − βkkit−2

)
+ eit + ξit,

where the function λ is approximated by a polynomial in its two argu-

ments.

We implement the above procedure using four control variables that

are optimally chosen by firms in each time period. These include: expen-

diture on construction and acquisition of buildings and land; purchases

of machinery and equipment; total sales of buildings and land; and total

disposal of machinery and equipment. While the first two will reflect a

firm’s response to positive productivity shocks, the latter two will reveal

the firm’s adjustments to negative shocks.
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6.2 Modified Wooldridge procedure

The OP method has been criticized recently for a possible identification

problem with β̂l and β̂m in the first stage. If labor and materials are

chosen optimally and simultaneously with other control variables, they

will also be functions of the observables at time t: lit = l1 (kit, ait, ait−1),

mit = m1 (kit, ait, ait−1). Thus, variable inputs will be collinear to poly-

nomial approximations of the control function and coefficients βl and βm

will not be identifiable in the first stage. Wooldridge (2009) proposed a

modification of the OP procedure which relaxes the strict exogeneity as-

sumption of the variable inputs. With ãit following a first-order Markov

process, it can be expressed as

ãit = f (ãit−1) + ξit = f [gt (kit−1, iit−1)] + ξit (24)

Substituting (24) back into production function, one obtains

yit = βllit + βmmit + βkkit + f [gt (kit−1, iit−1)] + ξit + eit (25)

Since lit and mit are correlated with ξit, while E [ξit|lit−1,mit−1] =

0, lit−1 and mit−1 are used as instruments for lit and mit. As with

the OP, unknown function f [gt (·)] is approximated with a third degree

polynomial in kit−1 and iit−1 .

Allowing the productivity shock ãit to follow a second-order Markov
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process, equations (24) and (25) become

ãit = f (ãit−1, ãit−2) + ξit

= f [gt (kit−1, iit−1, bit−1) , gt−1 (kit−2, iit−2, bit−2)] + ξit

yit = βllit + βmmit + βkkit

+f [gt (kit−1, iit−1, bit−1) , gt−1 (kit−2, iit−2, bit−2)] + ξit + eit (26)

Equation (26) again can be estimated by GMM approximating f [gt (·) , gt−1 (·)]

with polynomials in its arguments and the following moment conditions

used to identify the factor inputs’ coefficients:

E [ξit + eit|lit−1,mit−1, kit, kit−1, iit−1, bit−1, kit−2, iit−2, bit−2] = 0
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Notes

1This said, the wages relative to productivity gains seem to vary

depending on the worker. Thus, in a related study, Markusen and Trofi-

menko (2009) focussed on a particular group of workers, foreign experts,

showing on Colombian data that recruiting one by a domestic firm raises

its value added per worker and average wage by 11% each. Contrary to

Balsvik’s (2011) and our results, their findings imply that productivity

gains from new workers are distributed proportionally between the firms

and the workers.

2Although we cannot identify the source of this wage gain, learn-

ing from spillover potentials or a positive wage externality unrelated to

productivity can be offered as possible explanations.

3Although, for simplicity of exposition, in equation (2) we abstract

from other factors affecting efficiency units of labor, such as human cap-

ital, we do control for many such factors in our empirical analysis.

4Our specification of spillover potentials’ LPA assumes that the ex-

posure to knowledge from spillover potentials is linear in their share in

the workforce. While we realize that this assumption may be restrictive,

especially in the presence of learning by other workers, we choose to

proceed with it for its simplicity and consistency with the specification

for labor input in efficiency units in equation (2). Allowing for sit to

enter (6) nonlinearly as a robustness check (available on request) does

not change our main results.

5Levinsohn and Petrin (2003) proposed, as an alternative to OP, to

proxy TFP with a polynomial in capital and materials inputs. The
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advantage of their approach is its efficiency, since materials input is not

as lumpy as investments which contain many zeros in real data. It has,

however, identification issues as we explain below.

6In constructing the gap measure, we discard the top and bottom 1%

of observations to remove likely outliers.

7Another 2% are workers moving from less to more productive firms.

For the rest of the job changers, information on sending firms is not

available. The reasons include: non-manufacturing sending firms, long

spells of unemployment, or entry on the labor market.

8The total wage gains by spillover potentials, 1.07%, multiplied by

their share in the workforce, 0.0214, increases the total wage bill by

0.023%, which is a quarter of the average wage increase linked to spillover

potentials, 0.09%.

9This ratio was calculated by dividing the wage premium to new

workers with MNE experience net of the wage premium to moving work-

ers without such experience (1% for those with a tenure at the previous

firm between 1 and 3 years, 3% for those with a longer tenure) by the

labor productivity difference between such workers, 20%.
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Figure 1. Wage profile of spillover potentials relative to other workers 

 
Notes: On this figure all job changes are as of 2001. 
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Table 1. Mean values for selected firms' and workers' characteristics 

  Workers Firms 

Represen- 
tative firm 

  

All workers Spillover 
potentials All firms 

Firms that 
hire 

spillover 
potentials 

Log wage 12.544 12.457 12.093 12.168 12.352 
Log human capital 0.106 0.049 0.025 0.011 0.016 
High school (share) 0.341 0.312 0.385 0.395 0.378 
College (share) 0.602 0.633 0.578 0.567 0.562 
University (share) 0.057 0.056 0.036 0.038 0.06 
Low skilled (share) 0.154 0.125 0.374 0.252 0.184 
Mid skilled (share) 0.606 0.640 0.502 0.593 0.595 
High skilled (share) 0.133 0.128 0.064 0.084 0.124 
Managers (share) 0.107 0.108 0.060 0.072 0.097 
Age 41.6 37.43 40.25 38.51 39.94 
Log Experience 9.669 9.433 9.293 9.281 9.45 
Male (share) 0.701 0.755 0.700 0.719 0.693 
Separation rate 0.099 0.125 0.132 0.159 0.095 
Hiring rate 0.092 0.194 0.081 0.156 0.091 
Log employment 5.348 4.57 2.348 3.359 5.314 
Log output 12.443 11.539 9.137 10.191 12.381 
Log capital stock 10.833 9.920 7.439 8.520 10.774 
Log material input 11.506 10.697 8.136 9.268 11.451 
Number of obs. 1,816,843 38,838 72,586 24,337 72,586 
Notes: Summary statistics is calculated for the time period 1995-2007. Representative firm is defined as 
the average manufacturing industry output weighted by firms' share in total output.  

 

  



Table 2. Summary statistics for productivity gap and share of spillover potentials 

  FIRMS 

 
OLS OP WLP 

 

Simple 
mean 

Weighted 
mean 

Std. 
dev. 

Simple 
mean 

Weighted 
mean 

Std. 
dev. 

Simple 
mean 

Weighted 
mean 

Std. 
dev. 

Gap positive 0.3007 0.2531 0.3102 0.4209 0.2927 0.3822 0.3701 0.2725 0.3692 
Share of spillover 
potentials 

0.0280 0.0213 0.0607 0.0276 0.0183 0.0580 0.0268 0.0188 0.0579 

(Gap positive)*share 0.0077 0.0062 0.0193 0.0116 0.0070 0.0290 0.0097 0.0064 0.0257 

 
WORKERS 

 
OLS OP WLP 

  
Simple 
mean 

Weighted 
mean 

Std. 
dev. 

Simple 
mean 

Weighted 
mean 

Std. 
dev. 

Simple 
mean 

Weighted 
mean 

Std. 
dev. 

Gap positive 0.2257  0.2357 0.2811  0.2470 0.2456  0.2331 
Share of spillover 
potentials 

0.0261   0.0209   0.0214   
(Gap positive)*share 0.0059   0.0524 0.0059   0.0538 0.0053   0.0492 
Notes: Summary statistics is calculated for the time period 1995-2007.  TFP, positive gaps and shares of spillover potentials were 
constructed from the production function estimated by OLS in columns (1)-(3), two-step semi-parametric estimator by Olley and 
Pakes (1996) in columns (4)-(6), and one-step GMM estimator by Wooldridge (2009) in columns (7)-(9). Weighted means are 
constructed as the average across firms weighed by their shares in total industry output. 

  



Table 3. Estimation results for production function with productivity gaps 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) 
  OLS OLS OLS OP OP OP WLP WLP WLP 

Labor (𝛽𝑙) 
0.420** 0.420** 0.423** 0.417** 0.420** 0.416** 0.330** 0.330** 0.333** 
(0.003) (0.003) (0.003) (0.010) (0.006) (0.004) (0.002) (0.002) (0.002) 

Materials (𝛽𝑚) 0.474** 0.474** 0.471** 0.438** 0.439** 0.437** 0.579** 0.579** 0.579** 
(0.003) (0.003) (0.003) (0.010) (0.006) (0.004) (0.002) (0.002) (0.002) 

Capital (𝛽𝑘) 0.053** 0.053** 0.054** 0.020** 0.020** 0.021** 0.018** 0.018** 0.018** 
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

Gap positive (𝜃1+) 0.205** 0.279** 0.244** 0.214** 0.211** 0.148** 0.205** 0.194** 0.169** 
(0.040) (0.059) (0.049) (0.031) (0.043) (0.043) (0.037) (0.054) (0.053) 

Gap negative (𝜃1−) 0.093 0.119 0.156 -0.043 -0.031 -0.003 0.011 0.023 -0.045 
(0.079) (0.119) (0.123) (0.062) (0.078) (0.052) (0.129) (0.124) (0.124) 

Controls for firm 
characteristics NO YES YES NO YES YES NO YES YES 

Controls for new and 
incumbent worker 
characteristics 

NO NO YES NO NO YES NO NO YES 

R2 0.980 0.980 0.980 0.983 0.983 0.983 0.091 0.102 0.975 
N 105,478 105,478 105,478 71,464 71,464 71,464 72,574 72,574 72,574 

Gap positive/L 0.488** 0.663** 0.576** 0.513** 0.505** 0.356** 0.621** 0.588** 0.509** 
(0.095) (0.141) (0.116) (0.075) (0.103) (0.105) (0.112) (0.164) (0.159) 

Gap negative/L 0.221 0.284 0.369 -0.103 -0.073 -0.007 0.029 0.070 -0.135 
(0.182) (0.283) (0.291) (0.142) (0.177) (0.136) (0.394) (0.369) (0.372) 

Notes: The dependent variable is the log of firm's output. * significant at 5%, ** significant at 1%. Standard errors in 
parentheses are obtained by bootstrap. The estimation method for production function is OLS in columns (1)-(3), two-step 
semi-parametric estimator by Olley and Pakes (1996) in columns (4)-(6), and one-step GMM estimator by Wooldridge (2009) in 
columns (7)-(9). The time period covered is 1995-2007. All specifications include Abowd, Kramarz and Margolis (1999) measure 
of human capital calculated separately for the workers hired from more and less productive firms, as well as for the incumbent 
workers, industry-year fixed effects, and estimated productivity shocks in periods (t-1) to (t-2) as additional controls. Firm 
characteristics include separation rates and shares of new workers from less and more productive firms in total employment. 
Worker observable characteristics include gender, age, experience, education, and occupation.  

 

  



Table 4. Estimation results for the TFP equation with productivity gaps 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) 

 
OLS OLS OLS OP OP OP WLP WLP WLP 

Gap positive (𝜃2+) 
0.165** 0.311** 0.271** 0.241** 0.248** 0.198** 0.206** 0.237** 0.197** 
(0.043) (0.054) (0.060) (0.029) (0.046) (0.045) (0.034) (0.055) (0.052) 

Gap negative (𝜃2−) -0.100 -0.075 -0.042 -0.074 0.075 0.058 0.140 0.102 0.060 
(0.091) (0.135) (0.139) (0.140) (0.135) (0.136) (0.148) (0.141) (0.141) 

Controls for firm 
characteristics NO YES YES NO YES YES NO YES YES 

Controls for new and 
incumbent worker 
characteristics 

NO NO YES NO NO YES NO NO YES 

R2 0.363 0.364 0.365 0.490 0.490 0.494 0.667 0.402 0.405 
N 105,427 105,427 105,427 71,433 71,433 71,433 72,611 72,611 72,611 

Labor elasticity 0.420 0.420 0.423 0.417 0.420 0.416 0.330 0.330 0.333 
(0.001) (0.001) (0.001) (0.010) (0.006) (0.004) (0.002) (0.002) (0.002) 

Gap positive/L 0.393** 0.740** 0.641** 0.578** 0.590** 0.476** 0.624** 0.718** 0.592** 
(0.110) (0.145) (0.155) (0.102) (0.145) (0.144) (0.135) (0.203) (0.203) 

Gap negative/L -0.238 -0.179 -0.099 -0.177 0.179 0.139 0.424 0.309 0.180 
(0.259) (0.424) (0.426) (0.386) (0.633) (0.641) (0.471) (0.470) (0.845) 

Notes: The dependent variable is the log of firm's TFP. * significant at 5%, ** significant at 1%. Standard errors in parentheses 
are obtained by bootstrap. The TFP is estimated by OLS in columns (1)-(3), two-step semi-parametric estimator by Olley and 
Pakes (1996) in columns (4)-(6), and one-step GMM estimator by Wooldridge (2009) in columns (7)-(9). The time period covered 
is 1995-2007. All specifications include Abowd, Kramarz and Margolis (1999) measure of human capital calculated separately for 
the workers hired from more and less productive firms, as well as for the incumbent workers, industry-year fixed effects, and 
estimated TFP shocks in years (t-1) to (t-2) as additional controls. Firm characteristics include separation rates and shares of new 
workers from less and more productive firms in total employment. Worker observable characteristics include gender, age, 
experience, education, and occupation.  

 

  



Table 5. Estimation results for the individual wage equation with productivity gaps 

  (1) (2) (3) (4) (5) (6) 

 
OLS OLS OP OP WLP WLP 

Gap positive (𝛾+) 0.029** 0.035** 0.066** 0.030** 0.060** 0.041** 
(0.009) (0.008) (0.013) (0.009) (0.015) (0.009) 

Gap negative  (𝛾−) 0.016 0.008 0.017 0.010 0.019 0.010 
(0.009) (0.006) (0.012) (0.009) (0.012) (0.011) 

 Wage premium relative to labor productivity advantage 
  0.039 0.054 0.112 0.063 0.084 0.069 
Controls for new and incumbent 
worker characteristics NO YES NO YES NO YES 

R2 0.484 0.662 0.507 0.656 0.508 0.657 
N 2,821,996 2,372,697 2,047,672 1,813,356 2,051,518 1,816,843 
Notes: The dependent variable is the log of worker's wage. * significant at 5%, ** significant at 1%. The TFP is 
estimated by OLS in columns (1)-(2), two-step semi-parametric estimator by Olley and Pakes (1996) in columns 
(3)-(4), and one-step GMM estimator by Wooldridge (2009) in columns (5)-(6). Standard errors in parentheses 
are clustered by firm. The time period covered is 1995-2007. All specifications include firm-year fixed effects, 
dummy variables for job changers coming from more and less productive firms, Abowd, Kramarz and Margolis 
(1999) measure of human capital calculated separately for the workers hired from more and less productive 
firms, as well as for the incumbent workers, and dummy variables for the number of job transitions during the 
sample period. Worker observable characteristics include gender, age, experience, education, and occupation.  

 

  



Table 6. Estimation results for the firm-average wage equation with productivity gaps 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) 

 
OLS OLS OLS OP OP OP WLP WLP WLP 

Gap positive (Γ+) 0.213** 0.206** 0.116** 0.356** 0.293** 0.168** 0.374** 0.277** 0.170** 
(0.070) (0.063) (0.038) (0.057) (0.061) (0.052) (0.056) (0.063) (0.054) 

Gap negative (Γ−) 0.172 0.091 0.026 0.011 0.035 -0.024 0.064 0.087 0.029 
(0.093) (0.074) (0.025) (0.051) (0.049) (0.042) (0.063) (0.060) (0.054) 

Controls for firm 
characteristics NO YES YES NO YES YES NO YES YES 

Controls for new and 
incumbent worker 
characteristics 

NO NO YES NO NO YES NO NO YES 

R2 0.604 0.614 0.669 0.662 0.663 0.693 0.659 0.662 0.692 
N 105,427 105,427 105,427 71,433 71,433 71,433 72,611 72,611 72,611 
Share of spillover 
potentials 0.0213 0.0213 0.0213 0.0183 0.0183 0.0183 0.0188 0.0188 0.0188 

Average (gap 
positive)*share 0.0062 0.0062 0.0062 0.0070 0.0070 0.0070 0.0064 0.0064 0.0064 

Implied coefficient x in 
equation (19) 0.183 0.176 0.080 0.289 0.226 0.137 0.313 0.216 0.128 

Average effect on wage 
of incumbent workers 0.0011 0.0011 0.0005 0.0020 0.0016 0.0010 0.0020 0.0014 0.00082 

Average effect on wage 
of spillover potentials 0.0098 0.0097 0.0109 0.0277 0.0273 0.0127 0.0228 0.0222 0.01505 

Effect on average wage 0.0013 0.0013 0.0007 0.0025 0.0021 0.0012 0.0024 0.0018 0.00109 
Notes: The dependent variable is the firm-year average of log wage. * significant at 5%, ** significant at 1%. The TFP is estimated 
by OLS in columns (1)-(3), two-step semi-parametric estimator by Olley and Pakes (1996) in columns (4)-(6), and one-step GMM 
estimator by Wooldridge (2009) in columns (7)-(9). Standard errors in parentheses are clustered by firms. Time period covered is 
1995-2007. All specifications include Abowd, Kramarz and Margolis (1999) measure of human capital calculated separately for the 
workers hired from more and less productive firms, as well as for the incumbent workers, firm fixed effects, industry-year fixed 
effects, estimated productivity shocks in periods (t-1) to (t-2), dummy variables for job changers coming from more and less 
productive firms, and dummy variables for the number of job transitions during the sample period. Firms' characteristics include 
separation rate, shares of new workers from less and more productive firms in total employment, log of labor and capital in the 
hiring firm.  Workers' observable characteristics include gender, age, experience, education, and occupation.  

  



Table 7. Productivity and wage gains from worker mobility within and between industry groups 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) 

 
Individual wage equation TFP equation Firm wage equation 

 
OLS OP WLP OLS OP WLP OLS OP WLP 

Gap positive, same 
industry 

0.020** 0.034** 0.036** 0.490** 0.380** 0.405** 0.130** 0.186** 0.178** 
(0.008) (0.011) (0.011) (0.101) (0.090) (0.119) (0.061) (0.065) (0.065) 

Gap positive, diff. 
industry 

0.035** 0.040** 0.039** 0.129* 0.090* 0.084 0.068 0.136 0.142 
(0.009) (0.010) (0.010) (0.065) (0.050) (0.055) (0.062) (0.219) (0.177) 

Gap negative, same 
industry 

0.023** 0.021* 0.024* 0.143 0.135 0.117 0.046 0.033 0.071 
(0.009) (0.013) (0.013) (0.193) (0.117) (0.116) (0.059) (0.049) (0.065) 

Gap negative, diff. 
industry 

-0.009 0.001 0.003 -0.227 -0.072 0.023 0.004 -0.067 0.004 
(0.009) (0.011) (0.011) (0.184) (0.140) (0.114) (0.152) (0.062 (0.070) 

R2 0.671 0.665 0.665 0.365 0.494 0.405 0.669 0.693 0.692 
N 2,374,181 1,815,753 1,819,330 105,380 71,412 72,586 105,380 71,412 72,586 
Notes: The dependent variable is the log of individual worker's wage in columns (1)-(3), firm's TFP in columns (4)-(6), and the log 
of firm-year average wage in columns (7)-(9). TFP and productivity gaps were constructed from the Cobb-Douglas production 
function estimated by one-step GMM estimator by Wooldridge (2009). * significant at 5%, ** significant at 1%. Time period 
covered is 1995-2007. Specifications (1)-(3) include firm-year fixed effects, dummy variables for job changers coming from more 
and less productive firms, human capital measure calculated separately for the workers hired from more and less productive 
firms, as well as for the incumbent workers, dummy variables for the number of job transitions during the sample period, gender, 
age, experience, education, and occupation. Specifications (4)-(9) include industry-year fixed effects, estimated TFP shocks in 
years (t-1) to (t-2), separation rates and shares of new workers from less and more productive firms in total employment, and 
firm-year average of employees characteristics such as gender, age, experience, education, occupation, human capital measures 
of the workers hired from more and less productive firms and of the incumbent workers. Specifications (7)-(9) also include firm 
fixed effects. 

 

  



Table 8. Productivity and wage gains from worker mobility in the years after hiring. 

  (1) (2) (3) (4) (5) 
  Year 1 Year 2 Year 3 Year 4 Year 5 

𝜃2+ 0.198 0.208 0.264 0.239 0.158 
𝛾+ 0.042 0.051 0.047 0.045 0.021 
Γ+ 0.184 0.214 0.253 0.224 0.122 
OLPG 0.00363 0.00381 0.00484 0.00438 0.00289 
TFPG 0.00121 0.00127 0.00161 0.00146 0.00096 
LPA 0.13438 0.14117 0.17917 0.16220 0.10723 
Average gain per worker, overall 0.00064 0.00075 0.00089 0.00078 0.00043 
Average gain per worker, spillover potentials 0.00982 0.01189 0.01116 0.01062 0.00502 
Average gain per worker, other workers 0.00049 0.00057 0.00072 0.00062 0.00035 
Share of gain retained by the firm 84.92% 83.57% 84.52% 84.81% 87.14% 
Share of gain retained by spillover potentials 3.68% 4.17% 3.12% 3.29% 2.42% 
Share of gain retained by other workers 11.40% 12.25% 12.36% 11.90% 10.44% 
Notes: Time period covered in 1995-2007. TFP measure used to define spillover potentials was constructed from the 
Cobb-Douglas production function estimated by one-step GMM estimator by Wooldridge (2009).  

 

  



Table 9. Productivity and wage gains from mobility of workers with different skills 

  (1) (2) (3) (4) 
Spillover potentials by skill group:  Low skill Mid skill High skill Manager 
𝜃2+ 0.163 0.148 0.389 0.569 
𝛾+ 0.026 0.036 0.035 0.063 
Γ+ 0.127 0.162 0.394 0.531 
OLPG 0.00050 0.00162 0.00105 0.00140 
TFPG 0.00017 0.00054 0.00035 0.00047 
LPA 0.07147 0.10858 0.21813 0.30228 
Average gain per worker, overall 0.00009 0.00053 0.00028 0.00035 
Average gain per worker, spillover potentials 0.00676 0.00885 0.00943 0.01856 
Average gain per worker, other workers 0.00009 0.00041 0.00026 0.00031 
Share of gain retained by the firm 84.86% 75.50% 78.84% 79.83% 
Share of gain retained by spillover potentials 3.19% 5.69% 1.91% 2.43% 
Share of gain retained by other workers 11.95% 18.81% 19.25% 17.74% 
Share in labor force 0.28% 1.37% 0.27% 0.23% 
Notes: Time period covered in 1995-2007. TFP measure used to define spillover potentials was 
constructed from the Cobb-Douglas production function estimated by one-step GMM estimator by 
Wooldridge (2009).  
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