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In this paper we consider a semiparametric version of the test for seasonal unit roots
suggested by Hyllebergngle Grangerand Yoo (1990Journal of Econometrics

44, 215-238)The asymptotic theory is based on the analysis of a simple regression
problem and the results apply to tests at any given frequency in the réhge.

Monte Carlo simulations suggest that the test may have more power than the para-
metric test of Hylleberg et a{1990) On the other handhe semiparametric version
suffers from severe size distortions in some situations

1. INTRODUCTION

Seasonally observed economic time series often display persistent changes in
seasonal fluctuations class of models that is able to describe such patterns is
the autoregressive time series process with seasonal unit l@srequency
domain such processes exhibit spectral poles at seasonal frequ&icasthe
current focus on seasonal cointegratiog(d_ee 1992 Engle Grangey Hylle-
berg and Lee 1993) and model based seasonal adjustment procedures (see Sec-
tions 12-14 of Hyllebergl 992 Breitung 1994) it is important that one can rely
on adequate test statistics for such roots in univariate procdsgisberg En-
gle, Grangeyand Yoo (1990) (henceforth HEGY) and Beaulieu and Miron (1993)
employed an autoregressive framework to account for serial correlations of the
errors

Because the empirical performance of the tests critically depends on an appro-
priate lag augmentation of the auxiliary model @hyselsLee and Noh 1994
Hylleberg 1995) it is desirable to consider a semiparametric approach in the
spirit of Phillips (1987) Phillips and Perron (1988and Schmidt and Phillips
(1992) An obvious advantage of such an approach is that we do not need to
assume that the data are generated by an autoregressive model with known order
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asin e.g., HEGY. Furthermorethis approach can be shown to be robust against
particular forms of structural breaks (Amsler and L£895)

When testing for integration at a frequency¥@, < 7, the implied hypothesis
is two-dimensionalThis means that the test regression involves two regressors
for the same frequencye show that the Wald test for the joint hypothesis is
asymptotically equivalent to a simple function of thstatistics from two bivar-
iate regressionghus a simple nonparametric correction of the joint test is ob-
tained from correcting the correspondirgtatisticsWhereas most of the literature
is concerned with tests at quarterly frequengcgs results apply to tests at any
given frequency

There are further advantages of Phillips—Perron-type.t&sis limiting dis-
tribution of the test statistic does not depend on the frequency in the (@nge
Thus we need not apply different sets of critical values as in HEGY or Franses
(1990) Moreover tests at different seasonal frequencies are independent and
thereforeitis not necessary to include all nonstationary terms associated with the
range of seasonal frequenci€ur simulations suggest that this may lead to a
substantial gain in powelHowever similarly to the Phillips—Perron type of tests
for (nonseasonal) unit rogteur tests may perform poorly if there is a near MA
unit root corresponding to the root under test

This paper is organized as follows Section 2we outline the testing problem
and provide details of the relevant null and alternative hypoth&geshow that
the test statistics can be based on simple regression models involving only one or
two variablesIn Section 3a score-type test statistic is derivathe asymptotic
theory for the bivariate regression problem is considered in Sectiamdtin
Section 5 a Wald-type test for the joint hypothesis is suggesiteel application
for the case of multiple unit roots is discussed in SectioBdktion 7 presents
some results concerning the small sample properties of the nevaresSec-
tion 8 concludesAll proofs can be found in the Appendix

2. THE TEST PROBLEM

Let{Z;}(t=0, £1, £2,...) be a seasonal time series wilseasonal period#
is assumed that the “seasonal differences” admit the (Wold) representation

Vi =1 -L9Z = p+u, (1)
whereu is an unknown constant anglis a random variable witk(u,) = 0. The
model implies that the mean df is of the form

s
E(Z,) = bt + >, my,
j=1

wheremy is a dummy variable witim; = &, for (t — 1)modS+ 1 =jandm; =0
otherwiseSimilar deterministics are considered)., in HEGY and Beaulieu and
Miron (1993) For the random sequenée } we make the following assumption
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Assumption 1 The termu, is generated by a linear process with= ¢, +
Cier—1 + Cog_p + -+ = c(L)e, 2;21j2¢? < oo, and{e} is a white noise se-
quence WithE(e;) = 0, E(e?) = o2, and sup{E|e|?>"°} < oo for somes > 0.

A similar set of assumptions is useglg., by Ahn (1993) The additional as-
sumption of square-summaubility is required for the existence of the Beveridge—
Nelson decomposition that is used below (Phillips and Std92)

With respect to representation (1) it may be the case that the series is “over-
differenced” in the sense that the application of the seasonal difference operator
(1 — LS) imposes unit roots on the lag polynoméL ). The roots of 1 — z5| =
0 are of the fornz, = €'« with w, = 27k/S(k = 0,...,S— 1). For everS which
we will assume in the following discussigrthe pairs(w,,ws-,) are associated
with complex conjugate roots far = 1,...,(S/2 — 1), whereas the roots corre-
sponding tawg = 0 andws/, = 7 are realAccordingly, we factorize the seasonal
difference filter as

s/2-1
1-L5=@1-L@+L) J] 1-eeL)d—e L)
k=1

S/2-1
1-L)2+L) [] [1-2codwoL + L2]
k=1

S/2
= [IV.(L),
k=0
where
1-1L fork =0
V.(L)=1{1-2codw,)L +L? fork=12,...,82—-1
1+L fork = /2.

Under the null hypothesis we assume thgs integrated at frequeney,, i.e.,
the factorV, (L) is necessary to obtain a bounded spectrum).aMore precisely
we will employ the following definition of integration at frequenay;:

DEFINITION 1. A series{&f} is (first order) integrated at frequenc =
w, = mif Xy = V. (L)&{ possesses a spectral density) with 0 < f,(w,) < co.

Similar definitions were suggested by HEGillips and Solo (1992)and
Gregoir and Laroque (1993Jo obtain a test of the hypothesis

Ho: Z; is integrated at frequenay,
we write
ye=(1-19Z
= V.(LV(L) L - LHZ
= V(L& (2)
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whereéf = V(L) (1 — LS)Z,. WheneveZ, is integrated at frequenay,, ££ is
integrated atv, as well However Z; may be integrated at some other seasonal
frequencieswhereast{ has a bounded spectrum fer# o, by Assumption 1
Under the alternative hypothesis it is assumed Zhatas a bounded spectrum at
w, SO that the spectral density xf= V,(L)Z, satisfiesf,(w,) = 0.

Following Ahtola and Tiao (1987 a Dickey—Fuller type of test for integration
at frequencyw, can be obtained by means of a simple least-squares regression
Assuming the deterministic paby = E(£{) to be knownthe regression equa-
tion for 0 < w, < 7 takes the form
(Yo = ) = Aa(€{C1 — Diy) + Ap(é2 — D) + &, 3)
whereeg, is a stationary error term obeying Assumptiot$ing (2) the regression
(3) can be rewritten as
(& = D{) = (A1 + 2cosw, ) (€1 — Di€1) + (A, — D(&f, — Di<y) + &,

(4)

and thus the parametera,; and A, measure the deviation from the polynomial
V.(L). Forw, = 7 the regression is

(Yr — ) = A1(€1 — D) + &
The mean function is defined as

. Yo + y1COStw, + y,Sintw,, for0< w, <

- {yo + v, (—1)t for w, = .

This function has the property th¥}.(L) D¢ is a constant

It follows from Definition 1 thatH, implies the parameter restrictions
Hi: A1 =2A,=0
in (3). An attractive and simple test for this kind of null hypothesis is obtained by
applying the score principle

3. A SCORE-TYPE TEST STATISTIC

Following Schmidt and Phillips (1992) we first consider the score test for the
special situation thai, is a Gaussian white noise procedée confine ourselves
to the cases & w, < 7r. The casev, = 7 can be treated straightforwardly
First, we need to specify appropriate initial conditions §¢t For convenience

we will assume that the process startsat—1 so thatt — D =0 fort = -2
and by using (4) we get
551 = Dfl + e71

= 7yp + Y1CO0Sw, — y2SiNw, + €_y,

&6 =D§ + e+ (A + 2COSw, )€1

=%Yo+ y1+ &+ (A + 2C0sw, )€y,

where we assume_; ~ N(0,0?), e ~ N(0,08), andE(e_, &) = 0.
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Apart from a constant the concentrated log-likelihood function for model (3) is
1
‘CC(AI’ /\2’70’71’72) = _5 |Og(§51 - Dfl)z

1

) log[£é6 — D§ — (A1 + 2cosw, ) (€5, — D*)]?
T -1 u K K

) logy T t_El[yt — @~ A (€ — DY)

= A&t — Dt'(—z)]z}-

Under the null hypothesis we hapue= (2 — 2 cosw,.) yo and the maximum like-
lihood (ML) estimates of the restricted likelihood functidg(A, = 0, A, = 0,
v0,Y1,7Y2) are obtained as

1
Yo = 5 2 cosw, )
Y1 =66 — Yo
N _ffl — Yo — ¥1COSw,
Y2 Sinw, ’

wherey = T"1S(,y,. Let £° = L£(A1,A2,70,71,72), whereL(-) denotes the
log-likelihood function It can be shown that

a£0 T . A A .
BTV D — 90— Facodt — Do, — P2sin(t — Do, }
1lHy, t=1
X {yr — (2 — 2 cosw,) Yo}
aEO T A A A )
EY o 2 {€{<2 — Yo — v1c08t — Qw, — Posin(t — 2w, }
21H, t=1

X {y; — (2 — 2 cosw,) Yo}

Analogously to Schmidtand Phillips (199#)ese expressions can be rewritten as

aL(+) T

— | « <5, 5
|, 2T (5)
L(+) T _

—| « >V, 6
e |, 2V (6)
where

Yt:yl_ya

Y =2codw )Y, — Y, + %, fort=1..,T, (7)

andY< = 0fort < 0.
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The expressions in (5) and (6) indicate that the scores are similar to the scores
for testing the hypotheses = 0 anda, = 0 in the auxiliary regression equation

% = ar V%1 + ap V<o + 0. (8)
Hence the score principle suggests testing the null hypothesis
Hé’: ap = Oy = O

by applying ordinary least squares (OLS) to.(B)e difference between a test of
this hypothesis and a testdf is that in (8) the unknown parameters of the mean
function are replaced by estimaténderHy we havel; = y; — ¥, and by virtue
of Assumption 1the errors behave like a demeaned stationary series

The case of testing against integration at frequency zero is considered by
Schmidt and Phillips (1992) and Ahn (1998) the following section we con-
sider the asymptotic theory for the caseQv, = 7r.

4. ASYMPTOTIC THEORY FOR THE BIVARIATE REGRESSION

In this section we analyze the asymptotic properties of the least-squares estimator
of ¢y in the regression

Vi = thl + Uy, 9

wherel = 1 orl = 2. The null hypothesisly impliesq, = 0,1 = 1,2, andd; = §;
so that under the null hypothesis the least-squares estimator is

-
2 Y 5
a = =T
> (V)2
t=1+1

As will become apparent in Section the asymptotic theory for such bivariate
regressions can be used to derive the null distribution of a test based on the
multiple regression (8)

First we consider the asymptotic behavior of the sequé&ficEor 0< w, < ,
the generating scheme f§ is given by

- 1

Y= o 2 gisint —j + Do, (10)
t—1

= > ¢V withy = (sinw,) *sin(j + Do, (11)
=0

= {Assin(t + 1w, — Bfcos(t + Dw, ), (12)

Sinw,
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whereAr = 3i_, §, cosjw, andBf = 3j_, ¥ sinjo, (cf. Chan and Wei1988
p. 385) Forw, = 7 we have
t

Z cos(t — j)m

2 ¥¥%%5,  ¢% = cosjm

= —A¥?cogt + 1)7.

In contrast to the case of testing for a unit root at frequency zero it can be shown
that the inclusion of a constant term does not affect the limiting behavior by
considering

t t
Ar = 21(yj — ) CoSjw, — (Elcosjwk>(y —
1= 1=
=A+Oy(TY?) for0<w,=m, (13)
whereAs = 3_; (Y, — w) cosjw,. Similarly we geBf = Bf + O,(T ~¥/2), where

Bf = E,Ll(yj — w) Sinjw,.. The following lemma follows easily from Chan and
Wei (1988 Sect 3.3).

LEMMA1. Let¥, be ademeaned white noise sequence obeying Assunption
andY, is constructed as i110). Then as T— oo,
0]
.

VR 25mwKU WA (r) dWs(r) — f wz(r)dwl(r)}

(i)
.
T Z tZo% = ZSInwK[f Wi (r) dVs(r) — f Wo(r) dVf¢ (r)]
(iii)
T3 0= e | [ o+ [ wortar
(iv)
T 2 1 1
thEz?l\?tK:%;s::‘[Lwl(r)zdr+ fo Wz(r)zdr],
where
dVf“(r) = cosw, dWi(r) + sinw, dW,(r), (14)
dV5(r) = cosw, dWs(r) — sinw, dW,(r), (15)

and W(r), W;x(r) are independent standard Brownian motions
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Using these results it is straightforward to derive the limiting distributions of
the least-squares estimates@fanda, in (9) for the special case that= (1 —
LS)Z, is a white noise sequence

To derive the limiting distribution for the more general case of Assumption 1
we state the following lemmavhich can be seen as a Beveridge—Nelson type of
decomposition for seasonally integrated processes

LEMMA 2. Let u = c(L)¢; be a linear process obeying Assumptibwith
spectral densitP < f,(w) < cofor 0 = w = 7. There exists a decomposition=x
X + v, such that xis white noise withv/ar(x;) = 27f,(w,) and

t
(= (Sinw) Y ysint—j+ Do, for0<o,<w
-1

t
= >vycost—j)m forw,=m
=1

has a bounded spectral density o= o < 7.

It is important to note thax, may be correlated with, . for k € Z. If the
spectral density ofi, has a global minimum a#,, then an orthogonal decompo-
sition is possibleln general such a decomposition is not unigfe@r our purpose
it is sufficient to know that at least one valid decomposition exisis not nec-
essary to construct the serigsandv, empirically

Using Lemmas 1 and 2 the limiting distribution of the least-squares estimator
of a1 in (9) can be obtained as follows

THEOREM 1 Assume thatycan be represented as i), where y obeys
Assumptiori. Under the null hypothesisHwe have for0 < w, < 77 and T— oo

Zsinwk[fo(r)dMé*(r) - fwz*(r)dv\&*(r)] + (01/6")

T&l =

’

JWf(r)zdr + sz*(r)2 dr

\/27Tfu(w,<)[ le*(r)dV\g(r) - sz*(f)dV\/f(r)] + (01/V6%)

(r\/fwl*(r)2 dr + sz*(r)zdr

where all integrals run fron® to 1, W;*(r ), W5'(r ) are two independent Brownian
motions

g = mfu(w,)
- 2siii(w,)’

[e'e]
o1 = 2 ‘/fj'ilE(Ululﬂ),
=1

andyj is defined in(11).

’
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Remark A Similarly, for w, = 7 it can be shown that

_ f W) AW (r) + /27t ()]

T&l =

JWl*(r)Zdr

— 27y () fo(r)de(r) + (o5/V2mty(m)
t; =

o /le*(r)Zdr

Remark B It should be noted that the use of Lemma 2 implies that the Brown-
ian motions involved are different from those of Lemmai§ pointed out by a
co-editor it is possible to construct the Beveridge—Nelson decomposition using
the results of Phillips and Solo (1998ect 4). However the resulting nonsta-
tionary sequence has a phase shift so that our initial conditions are violated
Although it is possible to adapt the limit theory for alternative initial conditjons
we prefer to use a decomposition that satisfies the required initial conditibas
drawback of our decomposition, isowevey that it implies different Brownian
motions andthus cannot be related directly to the limiting expressions of
Lemma 1 Neverthelesdor practical purposes like simulating critical values this
does not cause any problems

Remark C The limiting distributions foiT@, andt;, are obtained from replac-
ing dWi*(r) anddW'(r) by

dVy*(r) = cosw, dW(r) + sinw, dWs'(r),
d\5*(r) = cosw, dW5'(r) — sinw, dW;"(r).
Furthermorepf is replaced bys = 32, /< sE(Uz Uy ;).

Remark D We can construct test statistics asymptoticailyt depending on
nuisance parameteras

.
(Tl > Vm) - o0f
Q@) = : (16)
T2 > (Y2

t=1+1

T —~
< > w.m) — Tof

t=I1+1

Qlty) = (17)

\/27Tfu(wK) > (%2

t=1+1

forl =12
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Remark E In practice the unknown quantitiés(w,.) andp{ have to be re-
placed by estimategollowing Phillips (1987) the spectral density can be esti-
mated by applying an appropriate windaag.,
m-—j+1

2m — fu(@,) = G0 + 2 3, cosljw,) ————

j=1
where = T304 41 (% — @& %) (% — @& %~,_;) andmis the truncation
lag. Similarly, the parametep; can be estimated using

m-—j+1

,Z. 1 WG (19)

Gjs (18)

5. THE JOINT TEST

In this section we consider the joint test of the hypothegis= a, = 0 in the
auxiliary regression model (8fror the case of uncorrelated erraitse following
theorem gives the limiting distributions of the least-squares estimatodsg ford
a, and the Wald statistic for the null hypothesis= «, = 0.

THEOREM 2 Lety be generated bgl), where ysatisfies Assumptidhwith
c(L) = 1 Thenthe leastsquares estimators 68) are asymptotically distributed
as

0}
fwl(r) dVi<(r) + fwz(r)d\_/zk(r)
le(r)zdr + sz(r)Zdr

s

TCAYJ_ = -2

0
[ avisoy + [ e avs o

\/fwl(r)zdr + sz(r)zdr

fwl(r)dv\&(r) + fwz(r)dV\é(r)

Qq )

(iii)

TCAYZ = -2

’

le(r)Zdr + sz(r)Zdr
)
[ e + [ e awecr

\/fwl(r)zdr+ sz(r)zdr

s )
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where

dVi(r) = —cosw, dWi(r) — sinw, dWs(r),

dV5(r) = sinw, dW(r) — cosw, dWs(r).

For the Wald statistic of a joint test ofJda; = a, = 0 we hae
v)

2

fwl(r)dvvl(r) + fwz(r)dV\é(r)

\/fwl(r)zdr + sz(r)zdr

fwl(r)dmé(r) - fwz(r)dV\&(r)

\/fwl(r)z dr + fwz(r)z dr

Part (iii) of this theorem was already established by Chan and Wei (1988
Corollary 33.8). In the Appendix we give a slightly different proof for complete-
nessAs a resultthe limiting distributions ofy, andA (a4, &,) do not depend on
the frequency,., whereas the limiting distribution @¥, depends ow,.. Similar
results using a different representation of the limiting distributipnere ob-
tained by Ahtola and Tiao (1987%imulated critical values for the Wald statistic
are given in Table 1

The following lemma considers the asymptotic relationship between the Wald
statistic and the-statistics of the bivariate regression.(Jhis relationship is
valid for the case of correlated errors so that the result can be used to construct a
modified statistic based on the analysis of Section 4

A(&L&Z) =

2

LEMMA 3. Let y be generated as ifil), where the error yobeys Assump
tion 1. For the Wald statistic of Kl: «; = @, = O we hae

A(Gy,d,) = t2 — 2 coqw,)ta, ta, + t2, + 0(1).

TABLE 1. Critical values for the Wald statistic

Significance level ao 005 001
T=50 489 644 102

T =100 486 632 983
T =150 485 628 970
T =200 485 626 964
T =400 484 623 955
T=o 4.83 620 946

Note: The critical values are obtained by fitting a regression line to 30 empirical
critical values forT € [30,500] using 10000 Monte Carlo replications eaclihe
regressors ar€ ~* and a constanOther powers oT turned out to be negligiblé=or
details see Davidson and McKinnon (1993)
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For the special case, = /2, the Wald statistic has the same asymptotic
distribution as(tZ, + t2), which was already noticed by Engle et &l993)

Combining this result with the results of Sectigradnodified test statistic can
be constructed as

A" = Q(ts,)? — 2codw,)Q(tz,)Qlta,) + Qltz,)? (20)

such that the limiting distribution is the same as in the case of uncorrelated errors

6. MULTIPLE UNIT ROOTS

Sofarwe have considered tests for the hypothesis that the time series is integrated
ata single frequencyn practice howeveyitis likely that seasonal time series are
integrated at several frequencibsthis section we therefore consider the case of
multiple unit roots

Assume that a serieg has two unit roots such that = V;(L)V,(L) is sta-
tionary with nonzero spectral densities:atandw,. In other wordsthe serie&;
is integrated at frequencies andw,. It is assumed that, is tested for a unit root
atw, with the technique suggested previou3ljus we construcy, = Vi(L)Z, —
meanl,(L)Z,] and¥,“ asin (10) Then two bivariate regressions according to (9)
are performed to test the hypothesgs= 0 anda, = 0. Because in this casg
andY;< are integrated at frequenay, Ta, andTa, will diverge asT — co. As a
consequence the Wald test suggested in Section 5 will reject with probability one
asT approaches infinitywhetherZ, is integrated at frequenay, or not To per-
form the test for a single unit root it is therefore important to remove all unit roots
at other frequencies

In many applicationshowevey the number and frequencies of unit roots are
unclearlt may therefore be desirable to perform a joint test including all possible
unit roots of the serie#\ straightforward generalization of the tests suggested in
Section 3 is

(82)-1
§i = ag1 Y21 + ago1 N2+ D @1V + eV + By, (21)
k=1
where
~ t
W=§w
s

t
V2= 3 (-1,
£

The hypothesis that, is integrated at all frequencies,, k = 0,...,5/2 implies
aO,l = e = aS/Z,l = 0 andaLZ = .. = aS/Z—LZ = O
To discuss the properties of a test based on, (g&)following lemma is useful
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LEMMA 4. Let¥, be a demeaned stationary process with nonzero spectral
density at the seasonal frequencigsandw,, k # |. Then for the sequences

t
Yk = (sinw,)* Elyj sinlt—j+ Do, for0<w<m
fom

t
=> (_1)H)7j forwy =
=1
~ t
Y, = (sinw) ™t >, §sin(t — j + Doy for0<w <
=1
we hae

.
> VY = 0,(T).
t=1

From this lemma it follows that iZ; is integrated at all seasonal frequencies
the regressors in (21) are “asymptotically orthogdndence the multivariate
estimates of the parameters have the same asymptotic distribution as the bivariate
regressions considered in Sectiarilother wordsin the bivariate regressions
(9) with a particular frequency,, the coefficientsy, with | # k can be seen as
nuisance parametefs

7. SMALL SAMPLE PROPERTIES

In this section we report some results on the small sample properties of the new
test In order to compare the performance of the Phillips—Perron-type tests with
the parametric HEGY test&e consider three different data-generating processes

DGPL Z, = pu — pZe_1 + U,
DGP2Z = p — pZi_» + W,
DGP3Z, = p + pZi_s + .

If p = 1, DGP1 and DGP2 have single seasonal unit roots at frequepey
andw, = /2, respectivelyand DGP3 is integrated at frequencieg0ands/2.
To study the size of the tests we thereforeset 1, whereas we lefp| < 1 to
study the powetAs in Ghysels et al(1994) the errors are generated by the MA
process

U = € — 0161 — 0464,

where the values fat, andé, are the same as in Ghysels et(&b94) The errors
€; are uncorrelatedll(0,1) random variables

To apply the test procedure of HEGie MA process for the errors is approx-
imated by an AR process of sufficient ordEpr the subsequent simulations we
consider AR(4) and AR(8) approximatianghe corresponding tests are labeled
as HEGY (4) and HEGY (8)According to the standard model formulation we
include seasonal dummies in all cases and add a linear time trend for.DGP3
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For the nonparametric estimatesfgfw,) and o we use the Newey-West
weighting scheme witlm = 4 andm = 8. For testing at frequency we use
the statisticQ(t5,) defined in (17) It follows from Remark A in Section 4 that
—Q(tz,) has the same asymptotic distribution as the Dickey—Fulkatistic
for a test at frequency zero without an intercef¢cordingly we apply the
critical values given in Fuller (1976}or a test atv, = 7/2 we use the mod-
ified Wald statisticA*(m) given in (20) where the truncation lag is given in
parenthesed-or all simulations we s€f = 100 the nominal significance level
is 0.05, and 5000 Monte Carlo replications are used

Table 2 presents the empirical sizes of the tests at frequetncesd /2.
Letting #; = 6, = O we observe a moderate size bias for both test procedures
Because the critical values for the tests do not account for the lag, G
differences between actual and nominal significance levels may occue(gee
Cheung 1995)

Settingd, andd, different to zergwe are able to assess the ability of the tests
to correct for correlated errarf 6, = —1 the MA polynomial has a unit root
corresponding to frequenay, whereas fol, = 1 the MA polynomial has unit
roots according to the frequencies®) 2, andr. In these cases the corresponding
unitroots of the AR polynomial canceind the null hypothesis is violatgdence
we expect a poor performance of the respective tests whefeiseclose to—1
orf,is close to 1This is what we observe in Table B there is a “near cancel-
lation” of the relevant rogthe Phillips—Perron-type tests perform very pooily
similar observation is made in the case of testing for a unit root at frequency zero
(Schwert 1989 Pantula1991) On the other handhe parametric test (HEGY)
seems to be able to deal with such situations by choosing a sufficient augmenta-
tion lag Atheoretic explanation for this finding is given by Perron and Ng (1996)

If 6, = 0.9 or6, = —0.9 the roots of the MA polynomial are quite different
from the respective roots of the AR polynomi@hereforeit does not come as a
surprise that in these cases the tests perform much bittesugh the Phillips—
Perron-type tests still have a tendency to overreject the null hypothlesisias
is moderate and only slightly larger than for the case of uncorrelated errors

Table 3 presents the power of the tests against alternativesowittl. As a
result of the size distortions reported in Tabjev2 confine ourselves to the case
01 = 04 = 0, for which the size bias is small in all cas&som the simulation re-
sults it emerges that the Phillips—Perron-type tests are much more powerful than
the HEGY test procedur&his isin particular true for DGP1 and DGPhere are
different reasons that may explain this findifgst, if there is a unit root at a sin-
gle frequencyit is expected that a test considering only one frequency—such as
the Phillips—Perron type of test—is superi®econdit is known that the power of
parametric tests deteriorates rapidly with an increasing augmentatjovhaeas
the power of the Phillips—Perron variantis not as sensitive with respect to the trun-
cation lag Third, estimating the deterministic part under the null hypothesis leads
to a more parsimonious specification of the regressimtead of includingsea-
sonal dummies (and a time trendhly a constant is required in our test
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TaBLE 2. Empirical sizes

DGPl w, =7

01 04 HEGY (4) HEGY (8) —Q(tz,), m=14 —Q(tg,), m=38

-0.9 0 0282 Q099 Q956 Q970
0 -0.9 0.104 Q025 Q012 Q022
0 0 0035 Q034 Q053 Q054
0.9 0 0040 Q036 Q029 Q025
0 09 0.678 Q325 Q793 Q739

DGP2 w, = m/2

01 04 HEGY (4) HEGY (8) A*(4) A*(8)

-0.9 0 0048 Q043 Q081 Q091
0 -0.9 0122 Q047 Q142 Q103
0 0 0050 Q046 Q065 Q078
0.9 0 0049 Q042 Q084 Q090
0 09 0.915 Q553 Q893 Q843

DGP3 w, =7

01 04 HEGY (4) HEGY (8) —Q(tz,), m=4 —Q(tz,),m=38

-0.9 0 0606 Q161 Q961 Q974
0 -0.9 0.091 Q022 Q013 Q023
0 0 0032 Q030 Q052 Q052
0.9 0 0032 Q028 Q030 Q026
0 09 0.702 Q307 Q806 Q754

DGP3 w, = m/2

01 04 HEGY (4) HEGY (8) A*(4) A*(8)

-0.9 0 0051 Q040 Q087 Q093
0 -0.9 0113 Q037 Q143 Q101
0 0 0044 Q042 Q064 Q077
0.9 0 0046 Q038 Q081 Q089
0 09 0.935 Q0562 Q892 Q843

Note: The entries present the rejection frequencies,008 Monte Carlo replications of the respective model with
p = L.HEGY(K) refers to the (for w, = ) andF (for w, = 7/2) statistics as defined in HEG¥here the regression
includesk lagged seasonal differences constantseasonal dummiesnd for DGP3J a linear time trendThe
statisticA*(m) is defined in (20)wheremindicates the truncation lag of the estimad¢sandf,(w,) defined in (18)
and (19)

8. CONCLUDING REMARKS

Following Schmidt and Phillips (1992)ve consider score-type tests for integra-
tion at seasonal frequencieBecause the resulting test statistics are asymp-
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TaBLE 3. Empirical power

DGPl w, =7
p HEGY (4) HEGY (8) —Q(tz), m=14 —Q(tg,), m=38
0.95 Q073 Q057 Q300 Q306
0.90 0135 Q095 Q648 Q652
0.80 0301 Q173 Q896 Q888
0.60 0543 Q276 Q949 Q948
DGP2 w, = 7/2
p HEGY (4) HEGY (8) A*(4) A*(8)
0.95 0081 Q069 Q192 Q211
0.90 0125 Q094 Q404 Q427
0.80 0291 Q183 Q745 Q739
0.60 0667 Q375 Q910 Q893
DGP3 w, = 7
p HEGY (4) HEGY (8) —Q(tz), m=14 —Q(tg,),m=38
0.95 0044 Q037 Q083 Q085
0.90 Q049 Q044 Q133 Q134
0.80 Q077 Q062 Q252 Q251
0.60 0202 Q127 Q520 Q504
DGP3 w, = m/2
p HEGY (4) HEGY(8) A*(4) A*(8)
0.95 0061 Q056 Q115 Q133
0.90 Q079 Q069 Q188 Q209
0.80 0142 Q101 Q357 Q376
0.60 0396 Q233 Q641 0624

Note: This table presents the rejection frequencies, 008 Monte Carlo replications of the respective model with
various values op andf, = 6, = 0. HEGY (k) refers to the (for w, = 7) andF (for w, = 7/2) statistics as defined
in HEGY, where the regression includédagged seasonal differenges constantseasonal dummiesind for
DGP3 alinear time trendThe statistic\*(m) is defined in (20)wheremindicates the truncation lag of the estimates
o1 andf,(w,) defined in (18) and (19)

totically equivalent to a function ofstatistics from bivariate regressigrike
asymptotic theory is based on the analysis of a simple regression prdiolem
order to account for serially correlated err@asonparametric correction similar
to the one suggested by Phillips and Perron (1988) is.used

In a limited Monte Carlo investigation we found that our tests share the well-
known merits and deficiencies of unit root tests involving nonparametric correc-
tion for short run dynamicgAlthough they are able to outperform tests using a
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parametric correction based on an autoregressive approximation with respect to
power the semiparametric tests may suffer from a tremendous size bias in some
(empirically relevant) caseslence such tests cannot be recommended for gen-
eral uselt might therefore be attractive to consider modifications as considered
by Perron and Ng (1996\Whenever the parametric tests require a high augmen-
tation lag which is often the case when using monthly dét@ semiparametric
variants are an attractive alternative because the power of the test is more robust
to the choice of the truncation lag

NOTES

1. Aspointed out by a refereé is possible to extend the analysis to odd valueStofcover e.g.,
day-of-the-week effectdHowever for the ease of exposition we follow the previous literature and
focus on evers

2. We are indebted to an anonymous refemgleo suggested this interpretation ta us
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APPENDIX

Proof of Lemma 2. Consider the spectral representationuof

U = f e dG,(w)

-

fﬂ Mo)e'™ dGy(w) + fj [1— AMw)]e"™ dGy(w)

- f_: e dG (w) + fﬂ e" dG,(w),

wheredG,(w) = A(w) dGy(w), dG,(w) = [1 — A (w)] dG,(w), and

fu(w,)

AMw) = folw)

Hencewe haveE[|dG(w)|?] = fu(w,) dw for 0 = w =< 7. Accordingly, components with
the desired properties can be found by letting = [T e dG,(w) and v; =
7 e dG,(w). The variance o%; is obtained as

EG@) = f " (@) do = 27f,(w,),

which completes the proof u

Proof of Theorem 1. Let ¥, = X; + @, wherex; andd, are demeaned analogsxefand
v, having the properties as stated in LemmardX, /i are defined as in (10)vherey;
is replaced by, and#, respectivelyThen Y;* = X + /. From Lemma 2 it follows that
{tis Op(1) and from Lemma 1(iii) we deduce
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1

17
T2 (Yt 1)2 = 2 2 (X{il)z + op(l)
t=2

27f (0, ) )
= Tﬂgw:[fwl*(r)zdr + JWz*(r)2dr],

whereW;*(r) andWs'(r) represent two independent Brownian motions
Next, we give a useful lemma

HM-{

LEMMAS. Let a(L) be a lag polynomial of order < co and % and y are two mean
zero sequences such that

lim sup {T PE(X )2 =0

T jefd,..

and

T

T 2 [a(L)x ]y

t=m+1

corverges in probability to a constant for sorie> 0. Then the sequence

T—m
T2 x[alLl™hy]

t=1
corverges in probability to the same limit

Proof of Lemma 5. The lemma follows immediately from
T

T73< > agX Y tarX iyt e+ amxt—th>

t=m+1

T—m
= T_8< D AoXe Ve + X Yeeq + o athYt+m)

=1
m—1m—i—1 m—1 m—i
2 Z AXT-j-i Y1) — Z Z ai X Yj+i
i=0 j=0 i=0 j=1
T—m
2 > x[all Myl + 0,(D). u

Using Lemma 5 andl?V, (L) = V(L) for frequencies 6< w, < 7 andLV,(L™?) =
V.(L) for w, = 7 we have for < w, < 7

T T
SVEaT = > (X + ) (X + By)
= =

T-1
(Xt 1R+ L%+ L) + D Kol + Op().

t=1

Il
qu

From Lemma 1(i) it follows that

T
—1 va
> Xia%
t=2

K= o
2 sinw,

2

[JWf(r)dV\é*(r) - sz*(r)dV\/f(r)]-
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BecauseE(X< %) = 0 andT 23, (Y*.1% — X&1%) converges in probability to
E[T 1 Sa(%e 1y — X)) = E[T 13, %15 ] we get

o2
2 sinw,

T ~
TIY Y= UWf(r)dwz*m - fwz*(r)dv\&*(r)]
t=2
.
+ E[T12\7t’ilyt].
t=2

Finally,

§
E[T‘l > \?flyt]
t=2

lim E(%197)

lim E [( > ‘ﬁjKlVTj)YT]
T j=1

<1 E(urur—y)

Il
M

1

J

Il
[is]
X

With these results the limiting distributions fax andt;, follow easily n

Proof of Theorem 2.
(i) From the results of Chan and Wei (1988 386) and Lemma 1(iv) it follows that
(Ve IV,

DV D (YEo)?

— T*Z i v K\ 2 1 COS{UK + 1
= I:21( ) cosw, 1 0p(1)
o2 ) ) 1 COSw,
= Asit o, le(r) dr + sz(r) dr coso, 1 (A1)

and thus
A -1 D Y9 — cosw, D, Vi<,
[iﬂ] - {S‘”Zwkzmﬂz} o B RN )
@2 D Yo% — cosw, D) Y1 %
(A.2)

Using Lemma 1 we get

T3 %oy — cosw, 3 Va9 |

- —<02/2>[ [worawion + | Wz(r)sz(r)].
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From (A.2) and Lemma 1(iii) we obtain

fwl(r)dV\&(r) + sz(r)dV\é(r)

TLAYZ = -2

le(r)zdr + sz(r)zdr

(if) The limiting distribution fort,, follows immediately from (i) and Lemma. 1
(iii) Using (A.2) and Lemma 1 yields

T [ > Y49 — cosw, D, Vt'izY/t]
o2
=2 sinw,

[fwl(dV\é — cosw, d\s) + fWZ(_d\N_L + cosw, dVl)}

0.2
- [ le(sinwK dW, + cosw, dW,)

+ sz(—sinwK dW + cosw, sz)]

_(0'2/2)|:JW1d\_/1K + JWdeZK],

where for notational convenienceve omit the argument) in the integrals
(iv) The limiting distribution fort;, follows immediately from (iii) and Lemma.1
(v) Itis easy to verify that

1 COSw,
=RR
COSw, 1

with

1 0
R= .
COSw, Sinw,

so that using (AL) we have

T
A(&l,&Z) = 0'72[Sin2 wK&ZZ + (&1 + &2 COS(UK)Z] 2 (?t’il)z + Op(l). (A3)
t=2

Using (A.2) we get

&y + cOSw, &y = & + 0p(T1).

From Theorem 1 we obtain the distribution@f as a special case withy'(r) =
Wi(r), W5 (r) = Wx(r), 27f,(w,) = o2, andpf = 0. Hence

Zsinw,([fwl(r)d\/\&(r) - fwz(r)de(r)]

&1:»

le(r)zdr + fwz(r)zdr
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Finally, using Theorem 2(iii) the limiting distribution of (&, &;) can easily be

derived
Proof of Lemma 3. From (A2) we get

iy S V<)2 = —— [t t.] + o,(1

ay t:z:z( I*l) - SInwK [ ay Codwr{) &2] Op( )7
T _ ) o

az,/t:Ez(YH) = Sha. [ta, — COSw,)ts, ] + 0p(1).

Inserting these expressions in.B) gives after some simple manipulations

A&y, a,) = tZ, — 2 codw,)ta, ta, + t2, + 0p(1).

Proof of Lemma 4. It is convenient to introduce the “vector of seasons notdtion
where we stack the seasonal periods of a year into a v8atao this we explicitly indi-
cate the year by = 1,...,N and the seasonal period by= 1,...,S so thaty; = u + U,
is equivalent toy, s and V¥ is equivalent toYX. For convenienceet the sample period
startan=1,s= 1and end at = N, s= S Define theSXx 1 vectoru(n) = [Un1,...,Un s]’
and the multivariate partial sum process

gan 0
21 uT,l

U(n) =

zlu”z = 2": u(r)

=1

n
2 uT,S
[r=1 g

andU(0) = 0. Then by using (11) we have under the null hypothesis
Ya'a
Vn‘fz

Yk(n) = = VkU(n — 1) + @ku(n) + Oy(T 2, (A.4)

k
Yn, S

where the(i, j) elements of the matricek* and®* are given by

Wi =gl
and

Y-, fori—j—1>0
DY = _

0 otherwise

Becausel¥¥' = 0 fork # | we get
1N - 1N 2 N
N nZ‘,lY"(n)’Y'(n) =N rglu(n)’nb"’d)'u(n) N nZtlu(n — 1)'w*d'u(n) + 0,(1)

= 0,(1). m



