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In this paper we consider a semiparametric version of the test for seasonal unit roots
suggested by Hylleberg, Engle, Granger, and Yoo (1990, Journal of Econometrics
44, 215–238)+ The asymptotic theory is based on the analysis of a simple regression
problem, and the results apply to tests at any given frequency in the range~0,p#+
Monte Carlo simulations suggest that the test may have more power than the para-
metric test of Hylleberg et al+ (1990)+On the other hand, the semiparametric version
suffers from severe size distortions in some situations+

1. INTRODUCTION

Seasonally observed economic time series often display persistent changes in
seasonal fluctuations+ A class of models that is able to describe such patterns is
the autoregressive time series process with seasonal unit roots+ In a frequency
domain such processes exhibit spectral poles at seasonal frequencies+ Given the
current focus on seasonal cointegration (e+g+, Lee, 1992; Engle, Granger, Hylle-
berg, and Lee, 1993) and model based seasonal adjustment procedures (see Sec-
tions 12–14 of Hylleberg, 1992; Breitung, 1994), it is important that one can rely
on adequate test statistics for such roots in univariate processes+ Hylleberg, En-
gle,Granger, andYoo (1990) (henceforth HEGY) and Beaulieu and Miron (1993)
employed an autoregressive framework to account for serial correlations of the
errors+

Because the empirical performance of the tests critically depends on an appro-
priate lag augmentation of the auxiliary model (cf+Ghysels, Lee, and Noh, 1994;
Hylleberg, 1995) it is desirable to consider a semiparametric approach in the
spirit of Phillips (1987), Phillips and Perron (1988), and Schmidt and Phillips
(1992)+ An obvious advantage of such an approach is that we do not need to
assume that the data are generated by an autoregressive model with known order
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as in, e+g+, HEGY+ Furthermore, this approach can be shown to be robust against
particular forms of structural breaks (Amsler and Lee, 1995)+

When testing for integration at a frequency 0, vk , p, the implied hypothesis
is two-dimensional+ This means that the test regression involves two regressors
for the same frequency+ We show that the Wald test for the joint hypothesis is
asymptotically equivalent to a simple function of thet-statistics from two bivar-
iate regressions+ Thus, a simple nonparametric correction of the joint test is ob-
tained from correcting the correspondingt-statistics+Whereas most of the literature
is concerned with tests at quarterly frequencies, our results apply to tests at any
given frequency+

There are further advantages of Phillips–Perron-type tests+ The limiting dis-
tribution of the test statistic does not depend on the frequency in the range~0,p#+
Thus, we need not apply different sets of critical values as in HEGY or Franses
(1990)+ Moreover, tests at different seasonal frequencies are independent and,
therefore, it is not necessary to include all nonstationary terms associated with the
range of seasonal frequencies+ Our simulations suggest that this may lead to a
substantial gain in power+ However, similarly to the Phillips–Perron type of tests
for (nonseasonal) unit roots, our tests may perform poorly if there is a near MA
unit root corresponding to the root under test+

This paper is organized as follows+ In Section 2,we outline the testing problem
and provide details of the relevant null and alternative hypotheses+We show that
the test statistics can be based on simple regression models involving only one or
two variables+ In Section 3, a score-type test statistic is derived+ The asymptotic
theory for the bivariate regression problem is considered in Section 4, and in
Section 5 a Wald-type test for the joint hypothesis is suggested+ The application
for the case of multiple unit roots is discussed in Section 6+ Section 7 presents
some results concerning the small sample properties of the new test, and Sec-
tion 8 concludes+ All proofs can be found in the Appendix+

2. THE TEST PROBLEM

Let $Zt % ~t 5 0,61,62, + + + ! be a seasonal time series withSseasonal periods+ It
is assumed that the “seasonal differences” admit the (Wold) representation

yt 5 ~1 2 LS!Zt 5 m 1 ut , (1)

wherem is an unknown constant andut is a random variable withE~ut ! 5 0+ The
model implies that the mean ofZt is of the form

E~Zt ! 5 bt 1 (
j51

S

mjt ,

wheremjt is a dummy variable withmjt 5 aj for ~t 2 1!modS1 15 j andmjt 5 0
otherwise+Similar deterministics are considered, e+g+, in HEGY and Beaulieu and
Miron (1993)+ For the random sequence$ut % we make the following assumption+
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Assumption 1+ The termut is generated by a linear process withut 5 et 1
c1et21 1 c2et22 1 {{{ 5 c~L!et , (j51

` j 2cj
2 , `, and $et % is a white noise se-

quence withE~et ! 5 0, E~et
2! 5 s2, and supt $E6et 621d% , ` for somed . 0+

A similar set of assumptions is used, e+g+, by Ahn (1993)+ The additional as-
sumption of square-summability is required for the existence of the Beveridge–
Nelson decomposition that is used below (Phillips and Solo, 1992)+

With respect to representation (1) it may be the case that the series is “over-
differenced” in the sense that the application of the seasonal difference operator
~1 2 LS! imposes unit roots on the lag polynomialc~L!+ The roots of61 2 zS65
0 are of the formzk 5 eivk with vk 5 2pk0S~k 5 0, + + + ,S2 1!+ For evenS,which
we will assume in the following discussion,1 the pairs~vk,vS2k! are associated
with complex conjugate roots fork 5 1, + + + ,~S02 2 1!, whereas the roots corre-
sponding tov0 5 0 andvS02 5 p are real+Accordingly,we factorize the seasonal
difference filter as

~1 2 LS! 5 ~1 2 L!~1 1 L! )
k51

S0221

~1 2 eivkL!~1 2 e2ivkL!

5 ~1 2 L!~1 1 L! )
k51

S0221

@1 2 2 cos~vk!L 1 L2#

5 )
k50

S02

¹k~L!,

where

¹k~L! 5 5
1 2 L for k 5 0

1 2 2 cos~vk!L 1 L2 for k 5 1, 2, + + + ,S02 2 1

1 1 L for k 5 S02+

Under the null hypothesis we assume thatZt is integrated at frequencyvk, i+e+,
the factor¹k~L! is necessary to obtain a bounded spectrum atvk+More precisely,
we will employ the following definition of integration at frequencyvk:

DEFINITION 1+ A series$jt
k% is ~ first order! integrated at frequency0 #

vk # p if xt 5 ¹k~L!jt
k possesses a spectral density fx~v! with 0 , fx~vk! , `+

Similar definitions were suggested by HEGY, Phillips and Solo (1992), and
Gregoir and Laroque (1993)+ To obtain a test of the hypothesis

H0: Zt is integrated at frequencyvk

we write

yt 5 ~1 2 LS!Zt

5 ¹k~L!¹k~L!21~1 2 LS!Zt

5 ¹k~L!jt
k , (2)
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wherejt
k 5 ¹k~L!21~1 2 LS!Zt +WheneverZt is integrated at frequencyvk, jt

k is
integrated atvk as well+ However, Zt may be integrated at some other seasonal
frequencies, whereasjt

k has a bounded spectrum forv Þ vk by Assumption 1+
Under the alternative hypothesis it is assumed thatZt has a bounded spectrum at
vk so that the spectral density ofxt 5 ¹k~L!Zt satisfiesfx~vk! 5 0+

Following Ahtola and Tiao (1987), a Dickey–Fuller type of test for integration
at frequencyvk can be obtained by means of a simple least-squares regression+
Assuming the deterministic partDt

k 5 E~jt
k! to be known, the regression equa-

tion for 0 , vk , p takes the form

~ yt 2 m! 5 l1~jt21
k 2 Dt21

k ! 1 l2~jt22
k 2 Dt22

k ! 1 et , (3)

whereet is a stationary error term obeyingAssumption 1+Using (2) the regression
(3) can be rewritten as

~jt
k 2 Dt

k! 5 ~l1 1 2 cosvk!~jt21
k 2 Dt21

k ! 1 ~l2 2 1!~jt22
k 2 Dt22

k ! 1 et ,
(4)

and, thus, the parametersl1 andl2 measure the deviation from the polynomial
¹k~L!+ For vk 5 p the regression is

~ yt 2 m! 5 l1~jt21
k 2 Dt21

k ! 1 et +

The mean function is defined as

Dt
k 5 Hg0 1 g1 costvk 1 g2 sin tvk for 0 , vk , p

g0 1 g1~21!t for vk 5 p+

This function has the property that¹k~L!Dt
k is a constant+

It follows from Definition 1 thatH0 implies the parameter restrictions

H0
' : l1 5 l2 5 0

in (3)+An attractive and simple test for this kind of null hypothesis is obtained by
applying the score principle+

3. A SCORE-TYPE TEST STATISTIC

Following Schmidt and Phillips (1992) we first consider the score test for the
special situation thatut is a Gaussian white noise process+We confine ourselves
to the cases 0, vk , p+ The casevk 5 p can be treated straightforwardly+

First,we need to specify appropriate initial conditions forjt
k + For convenience

we will assume that the process starts att 5 21 so thatjt
k 2 Dt

k 5 0 for t # 22
and by using (4) we get

j21
k 5 D21

k 1 e21

5 g0 1 g1 cosvk 2 g2 sinvk 1 e21,

j0
k 5 D0

k 1 e0 1 ~l1 1 2 cosvk!e21

5 g0 1 g1 1 e0 1 ~l1 1 2 cosvk!e21,

where we assumee21 ; N~0,s1
2!, e0 ; N~0,s0

2!, andE~e21e0! 5 0+
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Apart from a constant the concentrated log-likelihood function for model (3) is

Lc~l1,l2,g0,g1,g2! 5 2
1

2
log~j21

k 2 D21
k !2

2
1

2
log@j0

k 2 D0
k 2 ~l1 1 2 cosvk!~j21

k 2 D21
k !# 2

2
T

2
logHT 21 (

t51

T

@ yt 2 m 2 l1~jt21
k 2 Dt21

k !

2 l2~jt22
k 2 Dt22

k !# 2J +
Under the null hypothesis we havem 5 ~2 2 2 cosvk!g0 and the maximum like-
lihood (ML) estimates of the restricted likelihood functionLc~l1 5 0, l2 5 0,
g0,g1,g2! are obtained as

[g0 5
1

2 2 2 cosvk
Sy

[g1 5 j0
k 2 [g0

[g2 5 2
j21

k 2 [g0 2 [g1 cosvk

sin vk
,

where Sy 5 T 21 (t51
T yt + Let L0 [ L~l1,l2, [g0, [g1, [g2!, whereL~{! denotes the

log-likelihood function+ It can be shown that

]L0

]l1
*
H0

} (
t51

T

$jt21
k 2 [g0 2 [g1 cos~t 2 1!vk 2 [g2 sin~t 2 1!vk%

3 $ yt 2 ~2 2 2 cosvk! [g0%

]L0

]l2
*
H0

} (
t51

T

$jt22
k 2 [g0 2 [g1 cos~t 2 2!vk 2 [g2 sin~t 2 2!vk%

3 $ yt 2 ~2 2 2 cosvk! [g0%+

Analogously to Schmidt and Phillips (1992), these expressions can be rewritten as

]Lc~{!

]l1
*
H0

} (
t52

T

EYt21
k Iyt , (5)

]Lc~{!

]l2
*
H0

} (
t53

T

EYt22
k Iyt , (6)

where

Iyt 5 yt 2 Sy,
EYt
k 5 2 cos~vk! EYt21

k 2 EYt22
k 1 Iyt , for t 5 1, + + + ,T, (7)

and EYt
k 5 0 for t # 0+
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The expressions in (5) and (6) indicate that the scores are similar to the scores
for testing the hypothesesa1 5 0 anda2 5 0 in the auxiliary regression equation

Iyt 5 a1 EYt21
k 1 a2 EYt22

k 1 Iut + (8)

Hence, the score principle suggests testing the null hypothesis

H0
'' : a1 5 a2 5 0

by applying ordinary least squares (OLS) to (8)+ The difference between a test of
this hypothesis and a test ofH0

' is that in (8) the unknown parameters of the mean
function are replaced by estimates+ UnderH0

'' we have Iut 5 yt 2 Sy, and by virtue
of Assumption 1, the errors behave like a demeaned stationary series+

The case of testing against integration at frequency zero is considered by
Schmidt and Phillips (1992) and Ahn (1993)+ In the following section we con-
sider the asymptotic theory for the case 0, vk # p+

4. ASYMPTOTIC THEORY FOR THE BIVARIATE REGRESSION

In this section we analyze the asymptotic properties of the least-squares estimator
of al in the regression

Iyt 5 al EYt2l
k 1 Ivt , (9)

wherel 5 1 or l 5 2+ The null hypothesisH0
'' impliesal 5 0, l 5 1,2, and Ivt 5 Iyt

so that under the null hypothesis the least-squares estimator is

[al 5
(

t5l11

T

EYt2l
k Iyt

(
t5l11

T

~ EYt2l
k !2

+

As will become apparent in Section 5, the asymptotic theory for such bivariate
regressions can be used to derive the null distribution of a test based on the
multiple regression (8)+

First we consider the asymptotic behavior of the sequenceEYt
k + For 0, vk , p,

the generating scheme forEYt
k is given by

EYt
k 5

1

sinvk
(
j51

t

Iyj sin~t 2 j 1 1!vk (10)

5 (
j50

t21

cj
k Iyt2j with cj

k 5 ~sinvk!21 sin~ j 1 1!vk (11)

5
1

sinvk
$ DAt

k sin~t 1 1!vk 2 DBt
k cos~t 1 1!vk%, (12)
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where DAt
k 5 (j51

t Iyj cosjvk and DBt
k 5 (j51

t Iyj sin jvk (cf+ Chan and Wei, 1988,
p+ 385)+ For vk 5 p we have

EYt
S02 5 (

j51

t

Iyj cos~t 2 j !p

5 (
j50

t21

cj
S02 Iyt2j , cj

S02 5 cosjp

5 2 DAt
S02 cos~t 1 1!p+

In contrast to the case of testing for a unit root at frequency zero it can be shown
that the inclusion of a constant term does not affect the limiting behavior by
considering

DAt
k 5 (

j51

t

~ yj 2 m! cosjvk 2 S(
j51

t

cosjvkD~ Sy 2 m!

5 At
k 1 Op~T 2102! for 0 , vk # p, (13)

whereAt
k 5 (j51

t ~ yj 2 m! cosjvk+Similarly we get DBt
k 5 Bt

k 1 Op~T 2102!,where
Bt

k 5 (j51
t ~ yj 2 m! sin jvk+ The following lemma follows easily from Chan and

Wei (1988, Sect+ 3+3)+

LEMMA 1 + Let Iyt be a demeaned white noise sequence obeying Assumption1
and EYt is constructed as in~10!+ Then, as Tr `,

(i)

T 21 (
t52

T

EYt21
k Iyt n

s2

2 sinvk
FE

0

1

W1~r ! dW2~r ! 2 E
0

1

W2~r ! dW1~r !G,
(ii)

T 21 (
t53

T

EYt22
k Iyt n

s2

2 sinvk
FE

0

1

W1~r ! dV2
k~r ! 2 E

0

1

W2~r ! dV1
k~r !G,

(iii)

T 22 (
t51

T

~ EYt
k!2 n

s2

4 sin2 vk
FE

0

1

W1~r !2 dr 1 E
0

1

W2~r !2 drG,
(iv)

T 22 (
t52

T

EYt21
k EYt

k n
s2 cosvk

4 sin2 vk
FE

0

1

W1~r !2 dr 1 E
0

1

W2~r !2 drG,
where

dV1
k~r ! 5 cosvk dW1~r ! 1 sinvk dW2~r !, (14)

dV2
k~r ! 5 cosvk dW2~r ! 2 sinvk dW1~r !, (15)

and W1~r !,W2~r ! are independent standard Brownian motions+

206 JÖRG BREITUNG AND PHILIP HANS FRANSES



Using these results it is straightforward to derive the limiting distributions of
the least-squares estimates ofa1 anda2 in (9) for the special case thatyt 5 ~1 2
LS!Zt is a white noise sequence+

To derive the limiting distribution for the more general case of Assumption 1
we state the following lemma, which can be seen as a Beveridge–Nelson type of
decomposition for seasonally integrated processes+

LEMMA 2 + Let ut 5 c~L!et be a linear process obeying Assumption1 with
spectral density0 , fu~v! ,` for 0 # v # p+ There exists a decomposition ut 5
xt 1 vt such that xt is white noise withVar~xt ! 5 2pfu~vk! and

zt
k 5 ~sinvk!21 (

j51

t

vj sin~t 2 j 1 1!vk for 0 , vk , p

5 (
j51

t

vj cos~t 2 j !p for vk 5 p

has a bounded spectral density for0 # v # p+

It is important to note thatxt may be correlated withvt1k for k [ Z+ If the
spectral density ofut has a global minimum atvk, then an orthogonal decompo-
sition is possible+ In general such a decomposition is not unique+ For our purpose
it is sufficient to know that at least one valid decomposition exists+ It is not nec-
essary to construct the seriesxt andvt empirically+

Using Lemmas 1 and 2 the limiting distribution of the least-squares estimator
of a1 in (9) can be obtained as follows+

THEOREM 1+ Assume that yt can be represented as in~1!, where ut obeys
Assumption1+ Under the null hypothesis H0

'' we have for0 , vk , p and Tr`

T Ja1 n

2 sinvk FEW1
*~r ! dW2

*~r ! 2 EW2
*~r ! dW1

*~r !G 1 ~®1
k0uk!

EW1
*~r !2 dr 1 EW2

*~r !2 dr

,

t Ja1
n

%2pfu~vk!FEW1
*~r ! dW2

*~r ! 2 EW2
*~r ! dW1

*~r !G 1 ~®1
k0#uk!

s!EW1
*~r !2 dr 1 EW2

*~r !2 dr

,

where all integrals run from0 to 1,W1
*~r !,W2

*~r ! are two independent Brownian
motions,

uk 5
pfu~vk!

2 sin2~vk!
,

®1
k 5 (

j51

`

cj21
k E~u1u11j !,

andcj
k is defined in~11!+

TESTS FOR SEASONAL UNIT ROOTS 207



Remark A+ Similarly, for vk 5 p it can be shown that

T Ja1 n

2EW1
*~r ! dW1

*~r ! 1 @®1
k02pfu~p!#

EW1
*~r !2 dr

t Ja1
n

2%2pfu~p!EW1
*~r ! dW1

*~r ! 1 ~®1
k0%2pfu~p!!

s!EW1
*~r !2 dr

Remark B+ It should be noted that the use of Lemma 2 implies that the Brown-
ian motions involved are different from those of Lemma 1+ As pointed out by a
co-editor, it is possible to construct the Beveridge–Nelson decomposition using
the results of Phillips and Solo (1992, Sect+ 4)+ However, the resulting nonsta-
tionary sequence has a phase shift so that our initial conditions are violated+
Although it is possible to adapt the limit theory for alternative initial conditions,
we prefer to use a decomposition that satisfies the required initial conditions+The
drawback of our decomposition is, however, that it implies different Brownian
motions and, thus, cannot be related directly to the limiting expressions of
Lemma 1+Nevertheless, for practical purposes like simulating critical values this
does not cause any problems+

Remark C+ The limiting distributions forT Ja2 andt Ja2
are obtained from replac-

ing dW1
*~r ! anddW2

*~r ! by

dV1
*k ~r ! 5 cosvk dW1

*~r ! 1 sinvk dW2
*~r !,

dV2
*k~r ! 5 cosvk dW2

*~r ! 2 sinvk dW1
*~r !+

Furthermore, ®1
k is replaced by®2

k 5 (j52
` cj22

k E~u1u11j !+

Remark D+ We can construct test statistics asymptotically, not depending on
nuisance parameters, as

Q~ Jal ! 5
ST 21 (

t5l11

T

EYt2l
k IytD 2 ®1

k

T 22 (
t5l11

T

~ EYt2l
k !2

, (16)

Q~t Jal
! 5

S (
t5l11

T

EYt2l
k IytD 2 T®l

k

!2pfu~vk! (
t5l11

T

~ EYt2l
k !2

(17)

for l 5 1,2+
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Remark E+ In practice the unknown quantitiesfu~vk! and®l
k have to be re-

placed by estimates+ Following Phillips (1987) the spectral density can be esti-
mated by applying an appropriate window, e+g+,

2p 2 Zfu~vk! 5 c0 1 2 (
j51

m

cos~ jvk!
m 2 j 1 1

m 1 1
cj , (18)

wherecj 5 T 21 (t5j1l11
T ~ Iyt 2 Jal EYt2l

k !~ Iyt2j 2 Jal EYt2l2j
k ! andm is the truncation

lag+ Similarly, the parameter®l
k can be estimated using

[®l
k 5 (

j5l

m m 2 j 1 1

m 1 1
cj2l

k cj + (19)

5. THE JOINT TEST

In this section we consider the joint test of the hypothesisa1 5 a2 5 0 in the
auxiliary regression model (8)+ For the case of uncorrelated errors, the following
theorem gives the limiting distributions of the least-squares estimators fora1 and
a2 and the Wald statistic for the null hypothesisa1 5 a2 5 0+

THEOREM 2+ Let yt be generated by~1!,where ut satisfies Assumption1 with
c~L! 5 1+ Then, the least-squares estimators of~8! are asymptotically distributed
as

(i)

T [a1 n 22
EW1~r ! d PV1

k~r ! 1 EW2~r ! d PV2
k~r !

EW1~r !2 dr 1 EW2~r !2 dr

,

(ii)

t [a1
n 2

EW1~r ! d PV2
k~r ! 1 EW2~r ! d PV2

k~r !

!EW1~r !2 dr 1 EW2~r !2 dr

,

(iii)

T [a2 n 22
EW1~r ! dW1~r ! 1 EW2~r ! dW2~r !

EW1~r !2 dr 1 EW2~r !2 dr

,

(iv)

t [a2
n 2

EW1~r ! dW1~r ! 1 EW2~r ! dW2~r !

!EW1~r !2 dr 1 EW2~r !2 dr

,
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where

d PV1
k~r ! 5 2cosvk dW1~r ! 2 sinvk dW2~r !,

d PV2
k~r ! 5 sinvk dW1~r ! 2 cosvk dW2~r !+

For the Wald statistic of a joint test of H0: a1 5 a2 5 0 we have
(v)

L~ [a1, [a2! n 1 EW1~r ! dW1~r ! 1 EW2~r ! dW2~r !

!EW1~r !2 dr 1 EW2~r !2 dr 2
2

1 1 EW1~r ! dW2~r ! 2 EW2~r ! dW1~r !

!EW1~r !2 dr 1 EW2~r !2 dr 2
2

+

Part (iii) of this theorem was already established by Chan and Wei (1988,
Corollary 3+3+8)+ In the Appendix we give a slightly different proof for complete-
ness+As a result, the limiting distributions of [a2 andL~ [a1, [a2! do not depend on
the frequencyvk, whereas the limiting distribution of[a1 depends onvk+ Similar
results, using a different representation of the limiting distributions, were ob-
tained by Ahtola and Tiao (1987)+ Simulated critical values for the Wald statistic
are given in Table 1+

The following lemma considers the asymptotic relationship between the Wald
statistic and thet-statistics of the bivariate regression (9)+ This relationship is
valid for the case of correlated errors so that the result can be used to construct a
modified statistic based on the analysis of Section 4+

LEMMA 3 + Let yt be generated as in~1!, where the error ut obeys Assump-
tion 1+ For the Wald statistic of H0

'' : a1 5 a2 5 0 we have

L~ [a1, [a2! 5 t Ja1

2 2 2 cos~vk!t Ja1
t Ja2

1 t Ja2

2 1 op~1!+

Table 1. Critical values for the Wald statistic

Significance level 0+10 0+05 0+01

T 5 50 4+89 6+44 10+2
T 5 100 4+86 6+32 9+83
T 5 150 4+85 6+28 9+70
T 5 200 4+85 6+26 9+64
T 5 400 4+84 6+23 9+55
T 5 ` 4+83 6+20 9+46

Note: The critical values are obtained by fitting a regression line to 30 empirical
critical values forT [ @30,500# using 10+000 Monte Carlo replications each+ The
regressors areT 21 and a constant+ Other powers ofT turned out to be negligible+ For
details, see Davidson and McKinnon (1993)+
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For the special casevk 5 p02, the Wald statistic has the same asymptotic
distribution as~t Ja1

2 1 t Ja2

2 ), which was already noticed by Engle et al+ (1993)+
Combining this result with the results of Section 4, a modified test statistic can

be constructed as

L* 5 Q~t Ja1
!2 2 2 cos~vk!Q~t Ja1

!Q~t Ja2
! 1 Q~t Ja2

!2 (20)

such that the limiting distribution is the same as in the case of uncorrelated errors+

6. MULTIPLE UNIT ROOTS

So far we have considered tests for the hypothesis that the time series is integrated
at a single frequency+ In practice, however, it is likely that seasonal time series are
integrated at several frequencies+ In this section we therefore consider the case of
multiple unit roots+

Assume that a seriesZt has two unit roots such thatut 5 ¹1~L!¹2~L! is sta-
tionary with nonzero spectral densities atv1 andv2+ In other words, the seriesZt

is integrated at frequenciesv1 andv2+ It is assumed thatZt is tested for a unit root
atv1 with the technique suggested previously+Thus,we constructIyt 5 ¹1~L!Zt 2
mean[¹1~L!Zt # and EYt

k as in (10)+Then two bivariate regressions according to (9)
are performed to test the hypothesesa1 5 0 anda2 5 0+ Because in this caseIyt

and EYt
k are integrated at frequencyv2, T Ja1 andT Ja2 will diverge asT r `+As a

consequence the Wald test suggested in Section 5 will reject with probability one
asT approaches infinity, whetherZt is integrated at frequencyv1 or not+ To per-
form the test for a single unit root it is therefore important to remove all unit roots
at other frequencies+

In many applications, however, the number and frequencies of unit roots are
unclear+ It may therefore be desirable to perform a joint test including all possible
unit roots of the series+A straightforward generalization of the tests suggested in
Section 3 is

Iyt 5 a0,1 EYt21
0 1 aS02,1 EYt21

S02 1 (
k51

~S02!21

ak,1 EYt21
k 1 ak,2 EYt22

k 1 Ivt , (21)

where

EYt
0 5 (

j51

t

Iyj ,

EYt
S02 5 (

j51

t

~21!t2j Iyj +

The hypothesis thatZt is integrated at all frequenciesvk, k 5 0, + + + ,S02 implies
a0,1 5 {{{ 5 aS02,1 5 0 anda1,2 5 {{{ 5 aS0221,2 5 0+

To discuss the properties of a test based on (21), the following lemma is useful+

TESTS FOR SEASONAL UNIT ROOTS 211



LEMMA 4 + Let Iyt be a demeaned stationary process with nonzero spectral
density at the seasonal frequenciesvk andvl , k Þ l+ Then, for the sequences

EYt
k 5 ~sinvk!

21 (
j51

t

Iyj sin~t 2 j 1 1!vk for 0 , vk , p

5 (
j51

t

~21!t2j Iyj for vk 5 p

EYt
l 5 ~sinvl !

21 (
j51

t

Iyj sin~t 2 j 1 1!vl for 0 , vl , p

we have

(
t51

T

EYt
k EYt

l 5 Op~T !+

From this lemma it follows that ifZt is integrated at all seasonal frequencies,
the regressors in (21) are “asymptotically orthogonal+” Hence, the multivariate
estimates of the parameters have the same asymptotic distribution as the bivariate
regressions considered in Section 4+ In other words, in the bivariate regressions
(9) with a particular frequencyvk, the coefficientsal, + with l Þ k can be seen as
nuisance parameters+2

7. SMALL SAMPLE PROPERTIES

In this section we report some results on the small sample properties of the new
test+ In order to compare the performance of the Phillips–Perron-type tests with
the parametric HEGYtests,we consider three different data-generating processes:

DGP1: Zt 5 m 2 rZt21 1 ut ,
DGP2: Zt 5 m 2 rZt22 1 ut ,
DGP3: Zt 5 m 1 rZt24 1 ut +

If r 5 1, DGP1 and DGP2 have single seasonal unit roots at frequencyvk 5 p
andvk 5 p02, respectively, and DGP3 is integrated at frequencies 0,p, andp02+
To study the size of the tests we therefore setr 5 1, whereas we let6r6 , 1 to
study the power+As in Ghysels et al+ (1994), the errors are generated by the MA
process

ut 5 et 2 u1et21 2 u4et24,

where the values foru1 andu4 are the same as in Ghysels et al+ (1994)+ The errors
et are uncorrelatedN(0,1) random variables+

To apply the test procedure of HEGY, the MA process for the errors is approx-
imated by an AR process of sufficient order+ For the subsequent simulations we
consider AR(4) and AR(8) approximations+ The corresponding tests are labeled
as HEGY(4) and HEGY(8)+ According to the standard model formulation we
include seasonal dummies in all cases and add a linear time trend for DGP3+
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For the nonparametric estimates offu~vk! and ®l
k we use the Newey–West

weighting scheme withm 5 4 andm 5 8+ For testing at frequencyp we use
the statisticQ~t Ja1

! defined in (17)+ It follows from Remark A in Section 4 that
2Q~t Ja1

! has the same asymptotic distribution as the Dickey–Fullert-statistic
for a test at frequency zero without an intercept+ Accordingly, we apply the
critical values given in Fuller (1976)+ For a test atvk 5 p02 we use the mod-
ified Wald statisticL*~m! given in (20), where the truncation lag is given in
parentheses+ For all simulations we setT 5 100, the nominal significance level
is 0+05, and 5,000 Monte Carlo replications are used+

Table 2 presents the empirical sizes of the tests at frequenciesp and p02+
Letting u1 5 u4 5 0 we observe a moderate size bias for both test procedures+
Because the critical values for the tests do not account for the lag order, such
differences between actual and nominal significance levels may occur (see, e+g+,
Cheung, 1995)+

Settingu1 andu4 different to zero, we are able to assess the ability of the tests
to correct for correlated errors+ If u1 5 21 the MA polynomial has a unit root
corresponding to frequencyp, whereas foru4 5 1 the MA polynomial has unit
roots according to the frequencies 0,p02, andp+ In these cases the corresponding
unit roots of theAR polynomial cancel, and the null hypothesis is violated+Hence,
we expect a poor performance of the respective tests wheneveru1 is close to21
or u4 is close to 1+ This is what we observe in Table 2+ If there is a “near cancel-
lation” of the relevant root, the Phillips–Perron-type tests perform very poorly+A
similar observation is made in the case of testing for a unit root at frequency zero
(Schwert, 1989; Pantula, 1991)+ On the other hand, the parametric test (HEGY)
seems to be able to deal with such situations by choosing a sufficient augmenta-
tion lag+Atheoretic explanation for this finding is given by Perron and Ng (1996)+

If u1 5 0+9 or u4 5 20+9 the roots of the MA polynomial are quite different
from the respective roots of the AR polynomial+ Therefore, it does not come as a
surprise that in these cases the tests perform much better+Although the Phillips–
Perron-type tests still have a tendency to overreject the null hypothesis, the bias
is moderate and only slightly larger than for the case of uncorrelated errors+

Table 3 presents the power of the tests against alternatives withr , 1+ As a
result of the size distortions reported in Table 2, we confine ourselves to the case
u1 5 u4 5 0, for which the size bias is small in all cases+ From the simulation re-
sults it emerges that the Phillips–Perron-type tests are much more powerful than
the HEGYtest procedure+This is in particular true for DGP1 and DGP2+There are
different reasons that may explain this finding+ First, if there is a unit root at a sin-
gle frequency, it is expected that a test considering only one frequency—such as
the Phillips–Perron type of test—is superior+Second, it is known that the power of
parametric tests deteriorates rapidly with an increasing augmentation lag,whereas
the power of the Phillips–Perron variant is not as sensitive with respect to the trun-
cation lag+Third, estimating the deterministic part under the null hypothesis leads
to a more parsimonious specification of the regression+ Instead of includingSsea-
sonal dummies (and a time trend), only a constant is required in our test+
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8. CONCLUDING REMARKS

Following Schmidt and Phillips (1992), we consider score-type tests for integra-
tion at seasonal frequencies+ Because the resulting test statistics are asymp-

Table 2. Empirical sizes

DGP1, vk 5 p

u1 u4 HEGY(4) HEGY(8) 2Q~t Ja1
!, m 5 4 2Q~t Ja1

!, m 5 8

20+9 0 0+282 0+099 0+956 0+970
0 20+9 0+104 0+025 0+012 0+022
0 0 0+035 0+034 0+053 0+054
0+9 0 0+040 0+036 0+029 0+025
0 0+9 0+678 0+325 0+793 0+739

DGP2, vk 5 p02

u1 u4 HEGY(4) HEGY(8) L*~4! L*~8!

20+9 0 0+048 0+043 0+081 0+091
0 20+9 0+122 0+047 0+142 0+103
0 0 0+050 0+046 0+065 0+078
0+9 0 0+049 0+042 0+084 0+090
0 0+9 0+915 0+553 0+893 0+843

DGP3, vk 5 p

u1 u4 HEGY(4) HEGY(8) 2Q~t Ja1
!, m 5 4 2Q~t Ja1

!, m 5 8

20+9 0 0+606 0+161 0+961 0+974
0 20+9 0+091 0+022 0+013 0+023
0 0 0+032 0+030 0+052 0+052
0+9 0 0+032 0+028 0+030 0+026
0 0+9 0+702 0+307 0+806 0+754

DGP3, vk 5 p02

u1 u4 HEGY(4) HEGY(8) L*~4! L*~8!

20+9 0 0+051 0+040 0+087 0+093
0 20+9 0+113 0+037 0+143 0+101
0 0 0+044 0+042 0+064 0+077
0+9 0 0+046 0+038 0+081 0+089
0 0+9 0+935 0+562 0+892 0+843

Note:The entries present the rejection frequencies of 5,000 Monte Carlo replications of the respective model with
r 5 1+HEGY~k! refers to thet (for vk 5 p! andF (for vk 5 p02! statistics as defined in HEGY,where the regression
includesk lagged seasonal differences, a constant, seasonal dummies, and, for DGP3, a linear time trend+ The
statisticL*~m! is defined in (20), wherem indicates the truncation lag of the estimates[®l

k and Zfu~vk! defined in (18)
and (19)+
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totically equivalent to a function oft-statistics from bivariate regressions, the
asymptotic theory is based on the analysis of a simple regression problem+ In
order to account for serially correlated errors, a nonparametric correction similar
to the one suggested by Phillips and Perron (1988) is used+

In a limited Monte Carlo investigation we found that our tests share the well-
known merits and deficiencies of unit root tests involving nonparametric correc-
tion for short run dynamics+ Although they are able to outperform tests using a

Table 3. Empirical power

DGP1, vk 5 p

r HEGY(4) HEGY(8) 2Q~t Ja1
!, m 5 4 2Q~t Ja1

!, m 5 8

0+95 0+073 0+057 0+300 0+306
0+90 0+135 0+095 0+648 0+652
0+80 0+301 0+173 0+896 0+888
0+60 0+543 0+276 0+949 0+948

DGP2, vk 5 p02

r HEGY(4) HEGY(8) L*~4! L*~8!

0+95 0+081 0+069 0+192 0+211
0+90 0+125 0+094 0+404 0+427
0+80 0+291 0+183 0+745 0+739
0+60 0+667 0+375 0+910 0+893

DGP3, vk 5 p

r HEGY(4) HEGY(8) 2Q~t Ja1
!, m 5 4 2Q~t Ja1

!, m 5 8

0+95 0+044 0+037 0+083 0+085
0+90 0+049 0+044 0+133 0+134
0+80 0+077 0+062 0+252 0+251
0+60 0+202 0+127 0+520 0+504

DGP3, vk 5 p02

r HEGY(4) HEGY(8) L*~4! L*~8!

0+95 0+061 0+056 0+115 0+133
0+90 0+079 0+069 0+188 0+209
0+80 0+142 0+101 0+357 0+376
0+60 0+396 0+233 0+641 0+624

Note:This table presents the rejection frequencies of 5,000 Monte Carlo replications of the respective model with
various values ofr andu1 5 u4 5 0+HEGY~k! refers to thet (for vk 5 p! andF (for vk 5 p02! statistics as defined
in HEGY, where the regression includesk lagged seasonal differences, a constant, seasonal dummies, and, for
DGP3, a linear time trend+The statisticL*~m! is defined in (20),wherem indicates the truncation lag of the estimates
[®l
k and Zfu~vk! defined in (18) and (19)+
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parametric correction based on an autoregressive approximation with respect to
power, the semiparametric tests may suffer from a tremendous size bias in some
(empirically relevant) cases+ Hence such tests cannot be recommended for gen-
eral use+ It might therefore be attractive to consider modifications as considered
by Perron and Ng (1996)+Whenever the parametric tests require a high augmen-
tation lag, which is often the case when using monthly data, the semiparametric
variants are an attractive alternative because the power of the test is more robust
to the choice of the truncation lag+

NOTES

1+ As pointed out by a referee, it is possible to extend the analysis to odd values ofSto cover, e+g+,
day-of-the-week effects+ However, for the ease of exposition we follow the previous literature and
focus on evenS+

2+ We are indebted to an anonymous referee, who suggested this interpretation to us+
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APPENDIX

Proof of Lemma 2. Consider the spectral representation ofut :

ut 5 E
2p

p

eitv dGu~v!

5 E
2p

p

l~v!eitv dGu~v! 1 E
2p

p

@1 2 l~v!#eitv dGu~v!

5 E
2p

p

eitv dGx~v! 1 E
2p

p

eitv dGv~v!,

wheredGx~v! 5 l~v! dGu~v!, dGv~v! 5 @1 2 l~v!# dGu~v!, and

l~v! 5 ! fu~vk!

fu~v!
+

Hence,we haveE @6dGx~v!62# 5 fu~vk! dv for 0 # v # p+Accordingly, components with
the desired properties can be found by lettingxt 5 *2p

p eitv dGx~v! and vt 5
*2p

p eitv dGv~v!+ The variance ofxt is obtained as

E~xt
2! 5 E

2p

p

fu~vk! dv 5 2pfu~vk!,

which completes the proof+ n

Proof of Theorem 1. Let Iyt 5 Ixt 1 Ivt , where Ixt and Ivt are demeaned analogs ofxt and
vt having the properties as stated in Lemma 2, and FXt

k , Dzt
k are defined as in (10), where Iyt

is replaced byIxt and Ivt , respectively+ Then, EYt
k 5 FXt

k 1 Dzt
k + From Lemma 2 it follows that

Dzt
k is Op~1! and from Lemma 1(iii) we deduce
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1

T 2 (
t52

T

~ EYt21
k !2 5

1

T 2 (
t52

T

~ FXt21
k !2 1 op~1!

n
2pfu~vk!

4 sin2 vk
FEW1

*~r !2 dr 1 EW2
*~r !2 drG,

whereW1
*~r ! andW2

*~r ! represent two independent Brownian motions+
Next, we give a useful lemma+

LEMMA 5 + Let a~L! be a lag polynomial of order m, ` and xt and yt are two mean
zero sequences such that

lim
Tr`

sup
i, j[$1, + + + ,T%

$T 22dE~xi yj !
2% 5 0

and

T 2d (
t5m11

T

@a~L!xt #yt

converges in probability to a constant for somed . 0+ Then the sequence

T 2d (
t51

T2m

xt @a~L21!yt #

converges in probability to the same limit+

Proof of Lemma 5. The lemma follows immediately from

T 2dS (
t5m11

T

a0xt yt 1 a1xt21 yt 1 {{{ 1 amxt2mytD
5 T 2dS (

t51

T2m

a0xt yt 1 a1xt yt11 1 {{{ 1 amxt yt1mD
1 (

i50

m21

(
j50

m2i21

ai xT2j2i yT2j 2 (
i50

m21

(
j51

m2i

ai xj yj1i

5 T 2d (
t51

T2m

xt @a~L21!yt # 1 op~1!+ n

Using Lemma 5 andL2¹k~L21! 5 ¹k~L! for frequencies 0, vk , p andL¹k~L21! 5
¹k~L! for vk 5 p we have for 0, vk , p

(
t52

T

EYt21
k Iyt 5 (

t52

T

~ FXt21
k 1 Dzt21

k !~ Ixt 1 Ivt !

5 (
t52

T

~ FXt21
k Ixt 1 Dzt21

k Ixt 1 Dzt21
k Ivt ! 1 (

t51

T21

Ixt11 Dzt
k 1 Op~1!+

From Lemma 1(i) it follows that

T 21 (
t52

T

FXt21
k Ixt n

s2

2 sinvk
FEW1

*~r ! dW2
*~r ! 2 EW2

*~r ! dW1
*~r !G+
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BecauseE~ FXt21
k Ixt ! 5 0 and T 21 (t52

T ~ EYt21
k Iyt 2 FXt21

k Ixt ! converges in probability to
E @T 21 (t52

T ~ EYt21
k Iyt 2 FXt21

k Ixt !# 5 E @T 21 (t52
T EYt21

k Iyt # we get

T 21 (
t52

T

EYt21
k Iyt n

s2

2 sinvk
FEW1

*~r ! dW2
*~r ! 2 EW2

*~r ! dW1
*~r !G

1 EFT 21 (
t52

T

EYt21
k IytG+

Finally,

EFT 21 (
t52

T

EYt21
k IytG 5 lim

Tr`
E~ EYT21

k IyT !

5 lim
Tr`

EFS(
j51

`

cj21
k IyT2jD IyTG

5 (
j51

`

cj21
k E~uT uT2j !

5 ®1
k +

With these results the limiting distributions forJa1 andt Ja1
follow easily+ n

Proof of Theorem 2.

(i) From the results of Chan and Wei (1988, p+ 386) and Lemma 1(iv) it follows that

T 22F ( ~ EYt21
k !2 ( EYt21

k EYt22
k

( EYt21
k EYt22

k ( ~ EYt22
k !2 G

5 T 22 (
t51

T

~ EYt
k!2F 1 cosvk

cosvk 1 G 1 op~1!

n
s2

4 sin2 vk
FEW1~r !2 dr 1 EW2~r !2 drGF 1 cosvk

cosvk 1 G (A.1)

and, thus,

F [a1

[a2
G 5 Hsin2 vk ( ~ EYt21

k !2J21F( EYt21
k Iyt 2 cosvk ( EYt22

k Iyt

( EYt22
k Iyt 2 cosvk ( EYt21

k Iyt
G 1 op~T 21!+

(A.2)

Using Lemma 1 we get

T 21F( EYt22
k Iyt 2 cosvk ( EYt21

k IytG

n 2~s202!FEW1~r !dW1~r ! 1 EW2~r !dW2~r !G+
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From (A+2) and Lemma 1(iii) we obtain

T [a2 n 22
EW1~r ! dW1~r ! 1 EW2~r ! dW2~r !

EW1~r !2 dr 1 EW2~r !2 dr

+

(ii) The limiting distribution fort [a1
follows immediately from (i) and Lemma 1+

(iii) Using (A+2) and Lemma 1 yields

T 21F( EYt21
k Iyt 2 cosvk ( EYt22

k IytG
n

s2

2 sinvk
FEW1~dW2 2 cosvk dV2! 1 EW2~2dW1 1 cosvk dV1!G

5
s2

2 FEW1~sinvk dW2 1 cosvk dW1!

1 EW2~2sinvk dW1 1 cosvk dW2!G
5 2~s202!FEW1 d PV1

k 1 EW2 d PV2
kG,

where, for notational convenience, we omit the argument~r ! in the integrals+
(iv) The limiting distribution fort Ja1

follows immediately from (iii) and Lemma 1+
(v) It is easy to verify that

F 1 cosvk

cosvk 1 G 5 RR'

with

R 5 F 1 0

cosvk sinvk
G

so that using (A+1) we have

L~ [a1, [a2! 5 s22 @sin2 vk [a2
2 1 ~ [a1 1 [a2 cosvk!2# (

t52

T

~ EYt21
k !2 1 op~1!+ (A.3)

Using (A+2) we get

[a1 1 cosvk [a2 5 Ja1 1 op~T 21!+

From Theorem 1 we obtain the distribution ofJa1 as a special case withW1
*~r ! 5

W1~r !,W2
*~r ! 5 W2~r !, 2pfu~vk! 5 s2, and®1

k 5 0+ Hence,

Ja1 n

2 sinvkFEW1~r ! dW2~r ! 2 EW2~r ! dW1~r !G
EW1~r !2 dr 1 EW2~r !2 dr

+
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Finally, using Theorem 2(iii) the limiting distribution ofL~ [a1, [a2! can easily be
derived+ n

Proof of Lemma 3. From (A+2) we get

[a1!(
t52

T

~ EYt21
k !2 5

s

sinvk
@t Ja1

2 cos~vk!t Ja2
# 1 op~1!,

[a2!(
t52

T

~ EYt21
k !2 5

s

sinvk
@t Ja2

2 cos~vk!t Ja1
# 1 op~1!+

Inserting these expressions in (A+3) gives, after some simple manipulations,

L~ [a1, [a2! 5 t Ja1

2 2 2 cos~vk!t Ja1
t Ja2

1 t Ja2

2 1 op~1!+

Proof of Lemma 4. It is convenient to introduce the “vector of seasons notation,”
where we stack the seasonal periods of a year into a vector+ To do this we explicitly indi-
cate the year byn 5 1, + + + ,N and the seasonal period bys 5 1, + + + ,S, so thatyt 5 m 1 ut

is equivalent toyn,s and EYt
k is equivalent to EYn,s

k + For convenience, let the sample period
start atn5 1, s5 1 and end atn5 N, s5 S+Define theS3 1 vectoru~n! 5 @un,1, + + + ,un,S# '

and the multivariate partial sum process

U~n! 5









(
t51

n

ut,1

(
t51

n

ut,2

I

(
t51

n

ut,S









5 (
t51

n

u~t!

andU~0! 5 0+ Then, by using (11) we have under the null hypothesis

EYk~n! 5 3
EYn,1
k

EYn,2
k

I

EYn,S
k
4 5 CkU~n 2 1! 1 Fku~n! 1 Op~T 2102!, (A.4)

where the~i, j ! elements of the matricesCk andFk are given by

Cij
k 5 ci2j21

k

and

Fij
k 5 Hci2j21

k for i 2 j 2 1 . 0

0 otherwise+

BecauseCk'C l 5 0 for k Þ l we get

1

N (
n51

N

EYk~n!' EYl~n! 5
1

N (
n51

N

u~n!'Fk'F lu~n! 1
2

N (
n51

N

U~n 2 1!'Ck'F lu~n! 1 op~1!

5 Op~1!+ n
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