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Abstract

A new measure of the complexity of optimal economic decisions is introduced. It is based

on the level of detail of information (no information; ordinal; and cardinal information)

that is required to establish optimality. A detailed example involving sequential group

decision making is provided. It is shown that the type of links between successive agents

determines the degree of complexity. The measure is also illustrated in the realm of

matching problems.
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1 Introduction

This paper is concerned with the complexity of economic decision problems. Such concerns

form one of the mainstays of recent formal approaches to bounded rationality, see for example
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Rubinstein (1998). The measure proposed in this paper is new. It is based on the level of

detail of information (cardinal, ordinal, no information) that is required to determine the set

of optimal solutions to a decision problem. It can be usefully applied to matching problems

and collective or group decision problems.

In matching or assignment problems, the aim is to match two groups of entities|medical

students and hospitals, marriageable men and women, workers and managers. As, say, both

medical students looking for internships and hospitals di�er in their characteristics (e.g.,

preferences over educational programs, responsibilities and salary o�ered for applicants; de-

sired �nal grades or class standings for hospitals, see Roth (1984)), the value of the match is

likely to depend on the precise match of the underlying characteristics. Suppose, following

Becker (1973), that marriageable men and women di�er in a trait, x and y, respectively,

with x1 < : : : < xn and y1 < : : : < yn, and that the value generating function f(x; y) is

complementary, fxy > 0. Then in equilibrium matching is positively assortative. That is,

likes are matched, or (xi; yi), i = 1; : : : ; n. Note that one only has to be able to order men

and women on the basis of this trait. That is, ordinal information about the traits of men

and women is suÆcient (and necessary) to characterize this optimal matching. Kremer and

Maskin (forthcoming), in their study of growing wage inequality and segregation by skill in

the USA, use a matching function between employees with nonmonotonic marginal products,

f(x; y) = max(xy
2
; x

2
y). Shimer and Smith (2000) note that for this production function

\matching patterns are not easily characterized" (p. 346). Using the complexity measure

introduced in this paper, I am able to indicate that this increased diÆculty of characterizing

value maximizing matches stems exactly from the fact that ordinal information is no longer

suÆcient. Instead, cardinal information is required as can be seen from a simple example.

Suppose there are just two types of workers, high ability H and low ability L < H, and

suppose there are two workers of each type. It would be value maximizing for high ability

workers and low ability workers to segregate in separate �rms instead of forming mixed �rms
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if and only if H
3
+L

3
> 2LH

2
or H >

1

2
(1+

p
5)L. Clearly, to verify which matching pattern

is best, ordinal information about the characteristics of the employees (\H is larger than L")

is no longer suÆcient, and this is the reason the assignment problem is more complicated.

This example suggests that a useful classi�cation of matching problems in terms of their

complexity can be based on the required degree of detail of information (cardinal; ordinal; no

information) regarding the entities that are to be matched. Such a measure may be thought

to give a �rst, coarse and qualitative classi�cation that can be further re�ned. In the above

example there are just two ability levels. Adding a third, intermediate ability level further

complicates the matching problem but this would not show up in the measure of complexity

proposed here.

In the next section I show how a measure of complexity based on the varying informational

demands imposed on an organizational designer can be used to classify simple sequential

group decision structures. It will be shown that, depending on the type of links between

successive decision makers, ensuring optimality requires no information, ordinal information,

or cardinal information about the qualities of the individual decision makers. The third

section concludes by comparing the present approach to complexity with other approaches

that can be found in the literature.

2 An Example

2.1 The Model

As the model in this section is merely used to illustrate how one can classify decision structures

in terms of their degree of complexity, I use the simplest model I am aware of, the one

introduced by Sah and Stiglitz (1986).

Assume there is a project that can be either of good quality, q = g (which is the case with

probability �) or of bad quality, q = b. If implemented, a good project gives rise to pro�t X

while a bad project leads to a loss Y .
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An agent i 2 I = f1; : : : ; ng can either accept, A, or reject, R, a project. Ideally, one

would like the agents to accept all good projects and to reject all bad projects. However,

following Sah and Stiglitz (1986) I assume that every agent i 2 I is fallible: pg
i
< 1, i.e., the

probability with which agent i accepts a good project is smaller than one, and p
b

i
> 0, or

the probability with which agent i accepts bad projects is larger than zero. Agent i will be

called better than j if the former accepts more good projects, p
g

i
> p

g

j
, and less bad projects,

p
b

i
< p

b

j
. Such a situation will be denoted by i � j.

Assumption 1 The agents i 2 I are ordered: 1 � 2 � 3 � : : : � n.

This assumption excludes discussion of situations in which an agent i accepts both more good

and more bad projects than agent j. Moreover, the possibility of identical agents is ignored.

Let T be the set of pro�les of f(pg
1
; p

b

1
); : : : ; p

g

n; p
b

n)g.

One interpretation, o�ered by Sah and Stiglitz (1986), of the behavioural assumption is

that agents receive a binary signal and have a decision rule that is exogenously �xed and

does not depend on their position in the decision structure. As this paper is concerned with

the introduction of a measure of complexity, I feel that the simplicity of this assumption is

acceptable. It is the simplest model I am aware of that allows for heterogeneity of agents. It

would certainly be worthwhile to study the complexity of decision structures in the presence

of richer behavioural assumptions. Alternatively, one could view the agents as tests that are

run by various departments to check the viability of a product. The errors they make are

then simply statistical type I and type II errors, and it seems quite plausible that the quality

of individual tests does not depend on tests run by other parts of the organization.

Now think of an \organizational designer" who has got on the one hand a group of error{

prone employees, the qualities of whom she may or may not know, and, on the other hand,

a decision structure containing positions to which she wants to assign these employees. She

wants to answer the question whether it is possible to know ex{ante on the basis of the

possibly limited knowledge she possesses about the capabilities of her employees whether she
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can correctly assign them to the positions in the decision structure. Employees will be said

to have been correctly assigned if changing their positions does not increase the expected

pro�t the decision structure generates.

A decision procedure speci�es both a structure � and an assignment �.

De�nition 1 A decision procedure is a pair (�; �). The decision structure � is a �nite,

directed, rooted binary tree. An assignment � : I ! � is a mapping from the set of agents I

to the set of positions �. Let S be the set of structures.1

Structures that satisfy De�nition 1 will be called admissible structures. An example of

an admissible decision structure is shown in Figure 1. The nodes stand for organizational

� �a �aa

�ar

�arr

A

R

A

R

A

R

R

A

A

R

Figure 1: A decision structure �

departments, bureaus or desks and the directed edges represent the direction of 
ow of

projects. The label on an edge starting at a node is associated with the action taken at that

node. Carter (1971) shows various tree-like decision structures that resemble the ones studied

here.

Since a structure is a binary tree, every node � can be reached by just one, �nite, ordered

1Note that the assignment is a mapping from agents to nodes, not from nodes to agents. This implies no

limitation in the framework studied here as I exclude the possibility of identical agents. Note moreover that

one needs to increase the number of agents with the number of positions.
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series of accept and/or reject decisions. Every node will be indexed by this series of decisions.

For example, a node that is reached after an acceptance and a subsequent rejection, will be

denoted by �ar. The root is denoted by �. That part of the structure that starts with the

node �aa is itself a structure and will be called a sub{structure. It will be indexed by the

unique series of decisions through which it can be reached: �aa. It will be useful to let j, l

and k stand for a �nite series of a's and r's. The symbol �j may stand for the root � and

analogously �j may denote the whole structure �.

For every pair of nodes (�j ; �l), let !jl denote the �rst common predecessor of �j and �l.

Graphically, this is the �rst node that is both on the path back from �j to the root � and on

the path back from �l to the root. �(!jl) is the substructure that starts with !jl. I call this

the smallest substructure that contains both �j and �l.

Example In Figure 1, !ar;aa = �a, and therefore the sub{structure �(!ar;aa) equals �a.

Since in what follows all admissible decision structures will be classi�ed, the basic building

blocks with which one can build these admissible structures recursively have to be introduced.

Figures 2 (a), (b) and (d) are useful in this respect.

� �a

A

R

A

R

(a) hierarchical

�

�r

A

R

A

R

(b) polyarchical

�
A

�r �ra

R

A

R

A

R

(c) hybrid

� �a

A A

R

�r

R

A

R

(d) omniarchical

Figure 2: Building blocks (a), (b) and (d). Hybrid (c)

De�nition 2 There are three building blocks. The �rst is a hierarchical building block,
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consisting of a node �, a generic sub{structure �a connected to � by an arrow labeled A. This

is illustrated in Figure 2 (a). Such a connection will be denoted by �H�a. A polyarchical

building block is the second building block: it consists of a node �, a generic sub{structure

�r connected to � by an arrow labeled R. It is depicted in Figure 2 (b). This connection

will be denoted by �P�r. Finally, an omniarchical building block consists of a node �, a

sub{structure �a connected by an edge labeled A to �, and a sub{structure �r connected to �

by an edge with label R. This building block will be denoted by O(�;�a;�r) and is illustrated

in Figure 2 (d).

The distinguishing feature of the omniarchical building block (or of an omniarchy for that

matter) is the presence of a node, �, that cannot make a �nal decision: whether the agent at

� decides to reject or to accept a project his decision will not be �nal, the project will always

be screened by yet another agent. The role of this agent is to allocate projects to either the

substructure �a or �r.

Using these three building blocks, one can construct any admissible decision structure

recursively by \�lling in" the appropriate substructure(s) with one of the above three building

blocks.

Example (continued) The structure in Figure 1 is uniquely described by the expression

� = �HO(�a; �aa; �arP�arr).

A structure that contains only hierarchical (polyarchical) building blocks is called a pure

hierarchy (pure polyarchy). A pure structure refers to either of these. A hybrid structure is

made up of both hierarchical and polyarchical building blocks. A simple example is provided

in Figure 2 (c). Formally, it can be described as �X�iX : : : �l, with X equal to either H or

P. A structure will be called dual if it contains at least one omniarchical building block.2

The probability with which a decision procedure (�; �) accepts a project of quality q is

2I use the terms hierarchy and polyarchy only to remain in line with Sah and Stiglitz (1986). Both

hierarchical and polyarchical decision structures as de�ned here can be part of real world hierarchies.
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denoted by p
q
(�; �). The structure � determines the form of the mathematical expression,

whereas the assignment � �xes the speci�c values of the variables of the expression. Exploiting

the fact that � can be recursively constructed, the form p(�) of p
q
(�; �) can be de�ned as

follows:

p(�) =

8
>>>>>><
>>>>>>:

p(�)p(�a) if � = �H�a

p(�) + (1� p(�))p(�r) if � = �P�r

p(�)p(�a) + (1� p(�))p(�r) if � = O(�;�a;�r)

(1)

Example (continued) Consider the example of � = �HO(�a; �aa; �arP�arr) depicted in

Figure 1. Its probability function equals

p(�) = p(�) [p(�a)p(�aa) + (1� p(�a)) (p(�ar) + (1� p(�ar))p(�arr))] (2)

The assignment � determines how agents are assigned to positions. For a given structure let

� be the set of assignments of agents to nodes.

Example (continued) Consider the structure � = �HO(�a; �aa; �arP�arr) and suppose

that the assignment of agents (1; 2; 3; 4; 5) equals �(1) = �, �(2) = �a, �(3) = �aa, �(4) = �ar

and �(5) = �arr. The probability with which organization (�; �) accepts a project of good

quality then becomes

p
g
(�; �) = p

g

1
[p

g

2
p
g

3
+ (1� p

g

2
)(p

g

4
+ (1� p

g

4
)p

g

5
)] (3)

The expected pro�t of an organization (�; �) equals

E(�;�; �) = �Xp
g
(�; �)� (1� �)Y p

b
(�; �) (4)

Let C : S �T ! � be the correspondence such that C(�; t) is the set of optimal assignments

given the structure � and pro�le t.

In what follows, use will be made of so{called pair{wise switches. By a pair{wise switch

I mean a switch of the position of a pair of agents i and j, initially located at �l and �m,

respectively, in a given structure �. This pair{wise switch leaves the position of all other
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agents una�ected. The switch may or may not change the expected pro�t of the organization,

�E(�;�l; �m):

�Xp
g
(� ! !l;m) 

g
(�l; �m)� (1� �)Y p

b
(� ! !l;m) 

b
(�l; �m) (5)

where

 
q
(�l; �m) := (p

q

i
� p

q

j
)f

q
(�n�l; �m) (6)

for q 2 fg; bg.

Before providing an example, let me discuss the components of Equations 5 and 6. The

probability with which a project reaches !l;m equals p
q
(� ! !l;m). The term p

q

i
� p

q

j
is

the di�erence in probability with which the agents that are being switched accept a project.

This is multiplied by f
q
(�n�l; �m), a term that takes as its arguments the probabilities of

acceptance of whoever has been allocated to nodes in the set �n�l; �m. This set consists of

!l;m, the nodes on the paths connecting !l;m with �l and �m, respectively, and any nodes that

succeed either �l or �m. Neither �l nor �m, the nodes where agents i and j are positioned,

are part of this set. The multiplicative relationship between p
q

i
� p

q

j
involving agents i and

j located at nodes �l and �m, and f
q
(�n�l; �m), a set of nodes excluding both �l and �m,

stems from the nature of the admissible structures and the fact that no agent appears more

than once in the organization.

It is crucial to distinguish (i) the set of nodes �n�l; �m and the function f
q
(�) de�ned

on it from (ii) the substructure �(!l;m) and the related function p
q
(�(!l;m)). The latter

function is a probability function, whereas f
q
(�) is not. Instead, it is merely a function of the

characteristics of the agents located at nodes in the set �n�l; �m.

Example (continued) Suppose �(1) = �, �(2) = �a, �(3) = �aa, �(4) = �ar and �(5) =

�arr, and suppose agents 3 and 4 are switched. Then p
q
(� ! !aa;ar) = p

q

1
, and

f
q
(�n�aa; �ar) = p

q

2
+ p

q

5
(1� p

q

2
)� (1� p

q

2
) (7)

Clearly, this is not the probability with which some admissible decision structure accepts a
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project. 3

Although the agents i 2 I are ordered, the organizational designer may not have the

required level of detail of information to determine the optimal assignment. For a given �,

say that

1. no information is needed to determine the optimal assignments if C(�; t) is the same

for all t 2 T ;

2. ordinal information is needed to determine the optimal assignments if, the preceding

condition does not hold, but for any two pro�les t and t
0
such that the agents have the

same ordinal ranking, C(�; t) = C(�; t
0
);

3. otherwise cardinal information is needed to determine the optimal assignments.

These informational requirements induce an ordering on the set of admissible structures in

terms of their complexity. The more information is required, the more complex the structure.

2.2 Analysis

The aim is to partition the space of admissible organizational structures in terms of the

detail of information (no information, ordinal, or cardinal information) that is necessary and

suÆcient to �nd the assignment(s) that maximize(s) the expected pro�t for a given structure.

To establish this level one has to check the level of information used in deriving the

necessary and suÆcient conditions that characterize optimal assignments. Establishing the

best assignments can be done by comparing the expected pro�ts of a structure for all possible

assignments. As was anticipated in the previous section, particularly useful are the pro�t

comparisons that result from a pair{wise switch of agents. Such pair{wise switches play an

important role in the proofs of the propositions for the following reason.

Suppose (PA) holds, where (PA) stands for \ordinal information (respectively, no infor-

mation) is not suÆcient to correctly assign any pair of agents i and j to a designated pair of
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nodes (�l; �m) of a given structure �, irrespective of the assignment of the remaining agents

to the remaining nodes."

If (PA) holds, then ordinal information (no information) is not suÆcient to establish

global optimality of any assignment: one necessary condition for an assignment to be globally

optimal is that a pair{wise switch starting at this assignment cannot lead to an improvement.

If (PA) holds|a statement concerning all possible assignments of agent, hence including the

optimal one|ordinal information (no information) is not suÆcient to verify that this is the

case.

Note that (PA) involves all possible assignments of agents within a given structure. It may

therefore seem cumbersome to use (PA) as a means for rejecting the hypothesis that ordinal

information (no information) is suÆcient to establish global optimality. In practice it is not.

Checking whether (PA) holds for a speci�c pair of nodes (�l; �m) depends predominantly on

the functional form of f
q
(�n�l; �m). Large part of the proofs therefore amount to judiciously

choosing pairs of nodes such that (PA) holds. The gist of much of the proofs used to show

that, say, ordinal information is not suÆcient to establish global optimality can be seen from

the following example.

Example (continued) Suppose � = �O(�a; �aa; �arP�arr), and �(1) = �, �(2) = �a,

�(3) = �aa, �(4) = �ar and �(5) = �arr. From the example on page 8 we know that

switching agents 3 and 4 gives rise to a change in probability of acceptance equal to

p
q

1
(p

q

3
� p

q

4
) [p

q

2
+ p

q

5
(1� p

q

2
)� (1� p

q

2
)] (8)

where the expression in square brackets is f
q
(�n�aa; �ar). If ordinal information is to be

suÆcient to establish that the initial assignment is better (or worse), the expression in equa-

tion 8 should have opposite signs for projects of di�erent qualities. Were this not the case,

because, say, both the probability with which good projects and the probability with which

bad projects are accepted rise, the net e�ect on expected pro�t would depend on the exact

characteristics of the agents (in combination with �, X and Y ), i.e., on cardinal information.
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Note that

sign p
g

1
= sign p

b

1
(9)

holds and that

sign (p
g

3
� p

g

4
) = �sign (p

b

3 � p
b

4) (10)

holds by assumption. Hence, for ordinal information to be suÆcient to determine the better

assignment

sign f
g
(�n�aa; �ar) = sign f

b
(�n�aa; �ar) (11)

must hold. If one only possesses ordinal information about the agents, and one does not know

the exact probabilities of acceptance, these probabilities could be arbitrarily close to 1 for good

projects and arbitrarily close to 0 for bad projects. However, in that case f
g
(�n�aa; �ar) " 1,

whereas f
b
(�n�aa; �ar) # �1, implying that f q(�) takes on opposite signs for argument values

close to 1 and 0, respectively. Therefore, ordinal information is not enough to determine

whether agent 3 or 4 should be assigned to �aa or �ar. Now observe that conditions 9 and 10

hold independent of the identity of the agents and that the line of reasoning that showed

that condition 11 does not hold can be applied for all possible assignments of agents to nodes

in �n�aa; �ar. In particular, it can also be applied to the globally optimal assignment. This

shows that ordinal information is not suÆcient to characterise the globally optimal assignment

in � = �HO(�a; �aa; �arP�arr). 3

This example demonstrates the usefulness of pair{wise switches. I am now ready to give two

lemmas that formally state the relevance of pair{wise switches.

Lemma 1 Consider a structure �, an assignment of agents i and j to nodes �l and �m,

respectively, and any assignment of agents to the remaining nodes. Switch the position of

agents i and j and consider the resulting di�erence in expected pro�t �E(�;�l; �m). If the

condition

f
q
(�n�l; �m) � 0 (12)
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for q 2 fg; bg does not hold for any pair of assignment of agents, then \no information" is

not suÆcient to correctly allocate agents to �l and �m.

The proof is simple. If \no information" about the quality of the heterogeneous agents

is to be suÆcient to �nd the best assignment, the expected pro�t should not depend on

the assignment of agents. In particular, no pair{wise switch should lead to a change in

organizational performance: �E(�;�l; �m) = 0 for all possible assignments and all nodes.

Given that p
q

i
� pq

j
6= 0 for all i 6= j, and p

q
(� ! !l;m) > 0 for all pairs of nodes (�l; �m), the

only way to ensure �E(�;�l; �m) = 0 is by imposing the condition in Equation 12. 2

Lemma 2 provides the main tool for rejecting the hypothesis that ordinal information is

suÆcient for classes of structures.

Lemma 2 Consider a structure �, an assignment of agents i and j to nodes �l and �m,

respectively, and any assignment of agents to the remaining nodes. Switch the position of

agents i and j and consider the resulting di�erence in expected pro�t �E(�;�l; �m). If the

condition

sign[f
g
(�n�l; �m)] = sign[f

b
(�n�l; �m)] (13)

cannot be shown to hold for any assignment of agents using ordinal information only, then

ordinal information is not suÆcient to establish the globally optimal assignment of agents to

�l and �m.
3

Structures for which cardinal information is necessary (and suÆcient) are therefore charac-

terized in a negative way, as those for which ordinal information is not suÆcient. Lemma 1

can now be used to reject the hypothesis that \no information" is suÆcient in hybrid or dual

structures.

Proposition 1 If � is hybrid or dual, \no information" is not suÆcient to establish the

optimal assignment.

3The proof of this lemma and of all other results can be found in the appendix.
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Lemma 2 is used to distinguish structures for which ordinal information is suÆcient from

those for which cardinal information is required. If one merely possesses ordinal information,

establishing the sign of f
q
(�n�j ; �l) for both q = b and q = g may be problematic, and

typically requires imposing restrictions on the structure � of which the nodes are part. The

�ve lemmas that follow are instrumental in this respect.

Suppose the organizational designer only has ordinal information at her disposition, and

she wants to �nd out whether a single agent accepts more good or bad projects than an

organization with structure �. In some sense, the single agent must be less demanding

than �. That is, the structure � must require acceptance by both its �rst agent and the

consecutive substructure for any ordering of the agents. Lemma 3 makes this precise.

Lemma 3 Assume � contains at least two nodes and is hybrid or pure and assume there

exists a node �m such that �m 62 �. If � is not equal to

� = �H�a (14)

then ordinal information is not suÆcient to establish that pq(�m) > p
q
(�) holds for either

q = g or q = b, irrespective of the assignment of agents to nodes.

Condition 14 ensures that � accepts fewer projects than its �rst agent. Hence, if the single

agent at �m accepts more projects of a certain type than the �rst agent of � | a statement

that can be checked using ordinal information only | then one knows that the single agent

accepts more projects than �.

Similarly, Lemma 4 states that if one wants to show that � accepts more good projects

(or bad ones) than a single agent, then the structure must allow for the possibility of imple-

mentation after rejection by the �rst agent. In some sense, � must be laxer than the single

agent.

Lemma 4 Assume � contains at least two nodes and is hybrid or pure and assume there
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exists a node �m such that �m 62 �. If � is not equal to

� = �P�r (15)

then ordinal information is not suÆcient to establish that pq(�m) < p
q
(�) holds for either

q = g or q = b, irrespective of the assignment of agents to nodes.

Condition 15 ensures that � accepts more projects than its �rst agent. Hence, if the single

agent at �m accepts less projects of a certain type than the �rst agent of � | a statement

that can be veri�ed using ordinal information only | then one knows that the single agent

accepts less projects than �.

Suppose one only possesses ordinal information of the agents, and suppose one wants to

establish that a single agent i accepts both more good and bad projects (or less good and

bad projects) than a hybrid or pure structure �. Lemma 5 characterizes the necessary and

suÆcient conditions this structure should satisfy, and the required ordering of the agents at

its two �rst nodes �l and �m relative to the single agent such that this can be established.

Firstly, the single agent should be of intermediate quality relative to the �rst two agents

of �. Moreover, if one wants to establish that the single agent accepts both more good

and more bad projects than �, this structure should require a triple check, �rst by �l,

then by �m, and �nally by the consecutive substructure, before �nal implementation. The

intermediate quality of the single agent i ensures that i accepts more good projects than

the worse agent, but also more bad projects than the better agent. The overall structure

� accepts less projects (be they good or bad) than the worst of the two �rst agents (i.e.,

p
q
(�) = p

q
(�l)p

q
(�m)p

q
(�lma) < min[p

q
(�l); p

q
(�m)]), and so still less than agent m. The

intermediate quality of the single agent i ensures that i accepts more good projects than the

worse agent, but also more bad projects than the better agent.

If instead one wants to establish that the single agent accepts less bad, but also less good

projects than �, then implementation by � should still be possible after rejection by both �l

and �m. The overall structure � accepts more projects (be they good or bad) than the best
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of the two �rst agents (i.e., pq(�) = p
q
(�l) + (1� p

q
(�l))(p

q
(�m) + (1� p

q
(�m))p

q
(�lmr)) >

max[p
q
(�l); p

q
(�m)]), and so still more than agent i. The intermediate quality of the single

agent i ensures that i accepts less good projects than the best agent, but also less bad projects

than the worst agent. To state this formally, let �k � �m denote that the agent assigned to

node �k is better than the one at �m. A related piece of notation will be useful in the proofs:

let �k � �m denote that the agents at nodes �m and �ma can be switched without a�ecting

the expected payo�

Lemma 5 Suppose � is hybrid or pure and suppose there is a node �k 62 �. The expression

sign[p
g
(�k)� p

g
(�)] = sign[p

b
(�k)� p

b
(�)] (16)

can be shown to hold using exclusively ordinal information if and only if 9�l;�m2� : �l �

�k � �m or �m � �k � �l and � = �lH�mH�lma or � = �lP�mP�lmr

Lemma 6 addresses the following situation. Take any two hybrid structures �l and �m that

require acceptance by the �rst node and by the successive substructure, and consider any

assignment of agents to positions in these structures. Then ordinal information is not enough

to establish which of the two organizations accepts both more good and more bad projects.

This is because the restrictions one needs to impose on the ordering of agents of the two

structures to ensure that, say, �m accepts more good projects than �l, are in con
ict with

the restrictions needed to prove that �m also accepts more bad projects than �l.

Lemma 6 Assume �l and �m are hybrid, and that �l = �lH�la and �m = �mH�ma. Then

ordinal information is not suÆcient to show sign[p
g
(�l)� p

g
(�m)] = sign[p

b
(�l)� p

b
(�m)].

The point of departure for the �nal lemma is the necessary condition stated in Lemma 2. It

formalises the argument provided in the example on page page 10: if sign[f
g
(�n�l; �m)] =

sign[f
b
(�n�l; �m)] does not hold, then ordinal information is not suÆcient to correctly allocate

a pair of agents to �l and �m, as one cannot guarantee an unambiguous change in net pro�ts.
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Suppose for the sake of argument that agents are no longer error{prone, i.e., p
g

i
= 1 and

p
b

i
= 0, and suppose that in this case the necessary condition is not met, or f

g
(�n�l; �m) and

f
b
(�n�l; �m) have opposite signs. Now consider the case of agents that are only marginally

error{prone. That is, agents accept virtually all good projects and reject almost all bad

projects. Hence, irrespective of the assignment of agents to nodes, the values of f
g
(�n�l; �m)

and f
b
(�n�l; �m) are just slightly di�erent from what they are in case of no error{prone agents

(because of the continuity of f
q
(�n�l; �m)). Therefore, f

g
(�n�l; �m) and f b(�n�l; �m) are

still of opposite sign, and ordinal information is not suÆcient to correctly position agents at

nodes �l and �m.

Lemma 7 Suppose fg(�n�l; �m)! x if pg(�k)! 1 for all �k 2 �n�l; �m and f b(�n�l; �m)!

y if pb(�k) ! 0 for all �k 2 �n�l; �m. If sign[x] = �sign[y], then ordinal information is not

suÆcient to determine the optimal ordering of (agents at) �l and �m.

This lemma is very useful in the proof of Proposition 2, as f
q
(�n�l; �m) can be easily evaluated

for p
g

i
= 1 and p

b

i
= 0 for all i. Note carefully that the lemma does not state that x should

equal 1 and that y should equal 0. This does not have to hold as f
q
(�n�l; �m) is not

the probability of acceptance of some sub{structure. I am now able to prove the second

Proposition.

Proposition 2 If � is dual, ordinal information is not suÆcient to establish the optimal

assignment.

Because of Proposition 1 the search for structures for which \no information" is suÆcient

to correctly allocate agents can now be limited to the class of pure structures. It is easy to

see that no information is required to correctly assign heterogeneous agents to positions in

any pure structure. Take a pure hierarchy of n agents. Its probability of acceptance is the

product of the individual probabilities of acceptance, p
q

1
p
q

2
� � � pqn. As the product operator

is commutative, the assignment of the agents is immaterial. The same applies to a pure
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polyarchy of size n. A polyarchy accepts a project if not all its members reject it. The

probability of acceptance therefore equals 1 � (1 � p1)(1 � p2) � � � (1 � pn). Once again, the

assignment is irrelevant. That is,

Proposition 3 If a structure � is pure, then \no information" is suÆcient to correctly

allocate agents to nodes.

This proposition in combination with Proposition 2 shows that the search for structures

for which ordinal information is suÆcient can be limited to the class of hybrid structures.

Proposition 4 establishes that ordinal information is suÆcient for all hybrid structures.

Proposition 4 If a structure � is hybrid, then ordinal information is necessary and suÆcient

to correctly allocate agents to nodes.

The four Propositions 1{4 establish the main result of this paper:

Theorem Consider any decision procedure (�; �) satisfying De�nition 1, and any ordered

set of agents I. Let �� be a globally optimal assignment. \No information" is suÆcient to

�nd �� if and only if � is pure. Ordinal information is necessary and suÆcient if and only

if � is hybrid. Cardinal information is necessary (and suÆcient) as soon as � contains at

least one dual connection.

The theorem shows how to classify decision structures in terms of the minimum level of

information that is suÆcient to ensure the structures operate optimally. The classi�cation

is based on progressively �ner di�erences between agents (no di�erences, relative di�erences,

absolute di�erences) that have to be discerned to establish the optimal assignment. These

di�erences therefore form the basis of the measure of complexity introduced in this paper.

Note that the complexity of the decision structure depends on the type of links between

successive decision makers.

It is easy to extent this type of analysis to other structures. One structure that was not

discussed, because it does not fall in the class of admissible structures, has a centre collecting
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the votes cast simultaneously by individual decision makers. The centre in turn decides on the

basis of these votes whether the project should be implemented or not. As the quality of the

votes cast di�er, the optimal decision rule in this case must put weights on individual votes.

Optimal weights require cardinal information.
4
Such a decision structure falls therefore in

the class of most complex structures.

3 Discussion

In this paper, I have introduced a measure of the complexity of decision problems based on

the degree of detail of information that is required to characterize the set of optimal solutions.

It was shown how such a measure can be applied in the realm of matching and group decision

problems.

Although this notion of complexity is interesting in itself, it becomes the more so when

considered in conjunction with other dimensions along which to compare matching or group

decision problems. For example, if the organizational designer lacks the level of detail that is

required to assure optimality of an assignment of employees within a given decision structure,

various routes are open to her: she can invest in extra monitoring to obtain the missing

information; she may simplify the structure in line with the information she does have; or she

may accept a possible erroneous assignment. Whatever is the case, complexity of a structure

should be compared to its expected performance, and to its robustness. By the latter I mean

the degree to which the performance of the decision structure depends on the correctness

of the optimal assignment. A fourth aspect is the degree of sensitivity to changes in the

characteristics of the project (�, X and Y ). Because such an analysis is well beyond the

scope of this paper and because of its diÆculty in general terms, I have started to address

these trade{o�s in a situation with only three agents in Visser (2002).

When dealing with complexity, the economics literature has focused on the complexity

4Ben{Yashar and Nitzan (1997) characterize the optimal weights.
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of implementing a strategy in games. In a repeated game setting Rubinstein (1986) and

Abreu and Rubinstein (1988) measure complexity by the extent to which a player's strategy

depends on history. In particular, as strategies are represented by automata, the complexity

of a strategy is measured by the number of states of the automaton. These papers focus

on the e�ect complexity considerations have on the possible Nash equilibrium strategies and

outcomes of repeated games when players care both about payo�s and complexity. This has

been called `state complexity', to distinguish it from `response complexity', by Chatterjee

and Sabourian (2000). By the latter they mean the number of possible replies to the set of

possible histories. They combine both notions of complexity in their analysis of a repeated n-

person bargaining game, and show how such considerations reduce the multiplicity of possible

equilibrium behaviour.

Another approach to complexity can be found in Rubinstein (1993). As it studies com-

putational complexity, it is more akin to the approach advocated in the present paper. He

models consumers who di�er in terms of the type of information partition they consider when

devising their optimal responses to a price o�er by a monopolist. These di�erences in the type

of partition, as captured by the number of threshold values it may contain, re
ect di�erences

in computational abilities. This is very similar to an organizational designer who devises the

decision structure that is best given the informational limitations she faces.

Appendix: Proofs

Proof of Lemma 2 For the moment limit attention to the substructure �(!l;m). Suppose

one wants to determine whether �E(�;�l; �m) > 0. If

�E(�;�l; �m) = �X 
g
(�l; �m)� (1� �)Y  

b
(�l; �m) > 0 (A.1)

then the agents located at node �l and at �m are well positioned, while if the di�erence is

negative, the agents should switch nodes. Equation A.1 is equivalent to
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(p
g
(�l)� p

g
(�m))

(p
b
(�l)� p

b
(�m))

f
g
(�n�l; �m)

f
b
(�n�l; �m)

>
1� �

�

Y

X
for  

b
(�l; �m) > 0 (A.2)

(p
g
(�l)� p

g
(�m))

(p
b
(�l)� p

b
(�m))

f
g
(�n�l; �m)

f
b
(�n�l; �m)

<
1� �

�

Y

X
for  

b
(�l; �m) < 0 (A.3)

I show that if one is in possession of ordinal information only, Equation A.2 cannot be shown

to hold, while Equation A.3 can be shown to hold only if the condition in Equation 13 is

satis�ed.

Given the limitation to ordinal information, the values of the constituent parts on the

left hand side of Equations A.2 and A.3 are not known. Consider �rst Equation A.2. Since

both the right hand side and the denominator of the left hand sights are larger than zero,

(p
g
(�l)� p

g
(�m))f

g
(�n�l; �m) > 0 is a necessary condition for Equation A.2 to be veri�ed.

The intuition behind the proof is to �x a certain allocation of agents to nodes, and to

vary the values of the agents' characteristics, while respecting the ordering of the agents.

Remember that the word \ordering" refers to the ordering of the screening qualities of agents

at various nodes (\agent located at node �l is better than agent located at �m"). Suppose

a certain allocation � applies, inducing an ordering of agents over organizational nodes,

and conduct the following mental experiment. Keep the value of (p
b
(�l) � p

b
(�m)) and of

f
b
(�n�l; �m) �xed, while reducing the di�erence between pg(�l) and pg(�m), without violating

the ordering of �l and �m. Since �(�l; �m) contains just a �nite number of nodes, 0 �

jfg(�n�l; �m)j < M . Therefore,

(p
g
(�l)� p

g
(�m))

(pb(�l)� pb(�m))

f
g
(�n�l; �m)

f
b
(�n�l; �m)

! 0 for p
g
(�l)! p

g
(�m) (A.4)

Similarily, it can be shown that

(p
g
(�l)� p

g
(�m))

(pb(�l)� pb(�m))

f
g
(�n�l; �m)

f
b
(�n�l; �m)

!1 for p
b
(�l)! p

b
(�m) (A.5)

without violating the ordering of the agents. That is, one and the same ordering of agents

can give rise to any positive number. Hence, ordinal information is not enough to show that

Equation A.2 holds. For the same reason, ordinal information is not suÆcient in case of
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Equation A.3 if (p
g
(�l) � p

g
(�l))f

g
(��l; �m) < 0. Indeed, the only possibility when ordinal

information may be suÆcient is when

(p
g
(�l)� p

g
(�m))

(pb(�l)� pb(�m))

f
g
(�n�l; �m)

f
b
(�n�l; �m)

< 0 (A.6)

for (p
b
(�l)� p

b
(�m))f

b
(�n�l; �m) < 0. Because of Assumption 1, the expression

p
g
(�l)� p

g
(�l)

pb(�l)� pb(�l)
< 0

holds for every pair of agents and therefore, in the light of Equation A.6,

sign[f
g
(�n�l; �m)] = sign[f

b
(�n�l; �m)] (A.7)

is a necessary condition for ordinal information to be suÆcient. This is condition 13.

Extending the analysis from the substructure �(!l;m) to the full structure � adds a factor

p
g
(� ! !(�l; �m))

pb(� ! !(�l; �m))
(A.8)

to the left hand side of Equations A.2 and A.3, the value of which is not known as one

possesses ordinal information only. Its introduction can therefore not alter the conclusion

reached on the basis of the substructure as to whether ordinal information is suÆcient or not

to correctly allocate a pair of agents to �l and �m. 2

Proof of Proposition 1 Distinguish the case where � is (i) hybrid and (ii) dual. Case (i):

if one starts moving into the structure starting at the root at some point one encounters a

substructure equal to either (ia) �lH�laP�lar or (ib) �lP�lrH�lra. For notational purposes,

it will be convenient to treat �l as the root �. The original root will be denoted by �0.

Rewrite therefore (ia) and (ib) as �H�aP�ar and �P�rH�ra, respectively. In (ia), consider

any pair of agents i and j initially assigned to � and �a, respectively. Switch these agents.

The resulting di�erence in probability of acceptance equals (pi�pj)p(�ar)p(�0 ! !�;a), such

that f(�n�; �a) = p(�ar). As p(�ar) 6= 0 (if p(�ar) = 0 the structure would not be hybrid),

one can now apply Lemma 1: \no information" is not suÆcient to �nd the best allocation.

A similar line of reasoning shows that in case (ib) \no information" is not suÆcient.
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In case (ii), at some point one encounters the substructure O(�l;�la;�lr), with both �la

and �lr either simple or hybrid. One can always �nd such a substructure as � is dual. Note

that either �la or �lr or both may consist of a single node. Apply the same transformation

in notation and write � = O(�;�a;�r). Consider any pair of agents i and j initially assigned

to � and �a, respectively. Switch these agents. The ensuing di�erence in probability of

acceptance equals (pi � pj)(p(�ar) � p(�r))p(�0 ! !�;a), where �ar is possibly empty (i.e.,

when �a = �aH�aa or �a = �a, in which case p(�ar) = 0), but, by de�nition, �r contains

at least one node, �r. Hence, f(�n�; �a) = p(�ar) � p(�r). For \no information" to be

suÆcient, f(�n�; �a) � 0 must hold, implying at least that �r should be an empty structure.

This violates the requirement of � being dual. That is, \no information" is not suÆcient as

soon as a structure contains one dual connection. 2

Proof of Lemma 3 The intuition of the proof can be obtained by limiting � to two nodes.

The formal proof that follows establishes that what holds in this simple case carries over to

general structures satisfying the conditions of the lemma. Take �1 = �P�r and �2 = �H�a.

With ordinal information only it is impossible to show that the inequality p
q
(�m) > p

q
(�1) =

p
q
(�) + (1 � p

q
(�))p

q
(�r) holds: even if p

q
(�m) > max(p

q
(�); p

q
(�r)), it can still be that

p
q
(�m) < p

q
(�1). Knowledge of the ordering of the agents is not enough to make this

decidable. However, that the inequality p
q
(�m) > p

q
(�2) = p

q
(�)p

q
(�a) holds, can be shown

with ordinal information when speci�c restrictions on the ordering of (agents at) f�m; �; �ag

are satis�ed: if p
q
(�m) > p

q
(�k) or if p

q
(�m) > p

q
(�ka) holds, then clearly p

q
(�m) > p

q
(�2).

Therefore, if � is not equal to � = �kH�ka, then ordinal information cannot be suÆcient to

establish that p
q
(�m) > p

q
(�). That is, the lemma is correct in case of two nodes.

Formally, in the general case one wants to show p
g
(�m) > p

g
(�) using ordinal information

only (the same line of reasoning applies for q = b). Then, either (i) � = �P�r or (ii)

� = �H�a as Lemma 3 supposes that � is pure or hybrid. In case (i), pg(�m) > p
g
(�)

amounts to p
g
(�m) > p

g
(�l) + (1 � p

g
(�l))p

g
(�lr). This is equivalent to p

g
(�m) � p

g
(�l) >
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(1 � p
g
(�l))p

g
(�lr). Since the right hand side of this inequality is positive, one needs at

least that the left hand sight is also positive. That is, �m � �l is a necessary condition.

However, with ordinal information only this condition does not exclude for any ordering

and any �r the possibility that p
g
(�m) � p

g
(�l) almost vanishes, while the right hand side

(1� p
g
(�l))p

g
(�lr) is bounded away from zero for every �nite structure. Take, e.g., the case

where the probability of acceptance of good projects is just somewhat larger than one half

for every agent. Therefore, ordinal information is not enough in this case.

In case (ii), where � = �H�a, it is straightforward to �nd a suÆcient condition which ensures

that p
g
(�m) > p

g
(�) holds. Note that p

g
(�) equals p

g
(�)p

g
(�a). Clearly, if p

g
(�m) > p

g
(�)

holds, then p
g
(�m) > p

g
(�)p

g
(�a) holds, whatever the ordering of the nodes in �a. That is,

ordinal information can be suÆcient in this case. 2

Proof of Lemma 4 The proof used for Lemma 3 also applies, mutatis mutandis, to this

lemma. 2

Proof of Lemma 5. Once again, intuition can be provided by showing the two nodes case.

Suppose �l � �k � �m, such that p
g
(�l) > p

g
(�k) > p

g
(�m) and p

b
(�m) > p

b
(�k) > p

b
(�l)

hold. For � = �lH�m, a hierarchy, this amounts to p
g
(�k) > p

g
(�l)p

g
(�m) and p

b
(�k) >

p
b
(�l)p

b
(�m), whereas for a polyarchy, � = �lP�m, pg(�k) < p

g
(�l) + (1� pg(�l))pg(�m) and

p
b
(�k) < p

b
(�l)+(1�pb(�l))pb(�m) hold. In either case, sign[p

g
(�k)�pg(�)] = sign[p

b
(�k)�

p
b
(�)]. And now formally.

(SuÆciency). Take � = �lH�mH�lma, with �lma pure or hybrid (as � should be pure or

hybrid) and �l � �k � �m (the proof carries over, mutatis mutandis, to the case of �m � �k �

�l). From �k � �m, it follows that p
g
(�k) > p

g
(�m) > p

g
(�m)p

g
(�l)p

g
(�lma). From �l � �k,

it follows that p
b
(�k) > p

b
(�l) > p

b
(�m)p

b
(�l)p

b
(�lma). Therefore, sign[p

g
(�k) � p

g
(�)] =

sign[p
b
(�k) � p

b
(�)] = +. The same line of reasoning shows that � = �lP�mP�lmr, with

�lmr pure or hybrid and �l � �k � �m is suÆcient.
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(Necessity). Necessity can be shown by establishing that ordinal(i) when �l � �k � �m or

�m � �k � �l do not hold and (ii) when structures are complementary to � = �lH�mH�lma

and � = �lP�mP�lmr. First case (i). If the agent located at �k is better (or worse)

than both agents located at �m and �l, sign[p
q
(�k) � p

q
(�)] cannot be determined using

ordinal information only. Now case (ii). Given that Lemma 5 limits discussion to pure

and hybrid structures, the complementary structures are (ii-a) � = �lP�mH�lma and (ii-b)

� = �lH�mP�lmr. In case of (ii-a), Lemma 3 excludes the possibility of proving p
g
(�k) >

p
g
(�). Therefore, one can only attempt to show that p

g
(�k) < p

g
(�) holds, i.e., pg(�k) <

p
g
(�l) + (1 � p

g
(�l))p

g
(�m)p

g
(�lma). This requires p

g
(�k) < p

g
(�l) if ordinal information is

to be suÆcient. Similarly, for p
b
(�k) < p

b
(�) to be shown to hold using ordinal information

only, p
b
(�k) < p

b
(�l) is a necessary condition. These two conditions are in con
ict with each

other. Therefore, ordinal information is not suÆcient. The same line of reasoning shows that

ordinal information is not suÆcient in case of (ii-b). 2

Proof of Lemma 6 Intuition for the proof can be obtained by limiting attention to the case

of two nodes: both p
g

l
p
g

la
> p

g

mp
g

ma and p
b

l
p
b

la
> p

b

mp
b

ma should be shown to hold using ordinal

information only. Necessary conditions are either p
g

l
> p

g

m and p
g

la
> p

g

ma, or p
g

l
> p

g

ma and

p
g

la
> p

g

m. Take the �rst set of conditions. They amount to �l � �m and �la � �ma. This

implies for the bad projects that p
b

l
< p

b

m
and p

b

la
< p

b

ma
hold, and therefore p

b

l
p
b

la
< p

b

m
p
b

ma
,

which is the wrong sign. The same holds for the second set of conditions. This proves the

lemma in the two nodes case.

For general structures this amounts to analysing the case sign[p
g
(�l)�pg(�l)] = sign[p

b
(�l)�

p
b
(�l)] = + (This implies no limitation as one can freely interchange the structures �l and

�m). Since �l = �lH�la and �m = �mH�ma, p
q
(�l) > p

q
(�l) equals p

q
(�l)p

q
(�la) >

p
q
(�m)p

q
(�ma) for q = g; b. Necessary conditions for this inequality to be satis�ed for q = g

and q = b simultaneously using ordinal information only are

p
g
(�l) > p

g
(�m) ^ p

g
(�la) > p

g
(�ma) ^ p

b
(�l) > p

b
(�ma) ^ p

b
(�la) > p

b
(�m) (A.9)
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or

p
b
(�l) > p

b
(�m) ^ p

b
(�la) > p

b
(�ma) ^ p

g
(�l) > p

g
(�ma) ^ p

g
(�la) > p

g
(�m) (A.10)

First the conditions in A.9. It follows from Lemma 4 that if �ma is not equal to �ma =

�maH�maa then ordinal information is not suÆcient to verify p
b
(�l) > p

b
(�ma). Hence,

p
b
(�l) > p

b
(�ma)p

b
(�maa) should hold and �m � �ma. Moreover, since p

g
(�l) > p

g
(�m)

is a necessary condition, �l � �m is a necessary condition. Therefore �l � �m � �ma is

a necessary condition, which implies that p
b
(�ma) > p

b
(�l) is a necessary condition. The

latter implication together with p
b
(�l) > p

b
(�ma)p

b
(�maa) shows that p

b
(�l) > p

b
(�maa) is a

necessary condition. That is, �maa = �maaH�maaa is a necessary condition and one enters

an in�nite regress. This proves that ordinal information is insuÆcient, since the structures

are �nite. In case of condition (A.10) one enters an in�nite regress for the same reason. 2

Proof of Lemma 7 Since the function f(�n�l; �m) is continuous in its arguments, any

ordering of the nodes �k 2 �n�l; �m, with values p
g
(�k) suÆciently close to 1 satis�es

sign[f
g
(�n�l; �m)] = sign[x]. Similarily, any ordering of the nodes �k 2 �n�l; �m, with

values p
b
(�k) suÆciently close to 0 satis�es sign[f

b
(�n�l; �m)] = sign[y].

Since by assumption, sign[x] = �sign[y], this implies that whatever the ordering of the

nodes of �n�l; �m, sign[fg(�n�l; �m)] = �sign[f b(�n�l; �m)] is possible. Then, by Lemma 2,

ordinal information is not suÆcient. 2

Proof of Proposition 2 Find the substructure O(�l;�la;�lr), with both �la and �lr

either pure or hybrid. To simplify notation, let �0 denote the original root, and let �

stand for �l. Hence, consider O(�;�a;�r). Now distinguish the four mutually exclusive

and exhaustive possibilities: (i) O(�; �aH�aa; �rP�rr), (ii) O(�; �aP�ar; �rP�rr), (iii)

O(�; �aH�aa; �rH�ra) and (iv) O(�; �aP�ar; �rH�ra).

(i) Consider any pair of agents i and j, initially assigned to nodes �a and �r, respec-

tively. Switch these agents. The resulting change in the probability of acceptance equals
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(pi � pj)f(�n�a; �r)p(�0 ! !a;r), where

f(�n�a; �r) = p(�)p(�aa) + (1� p(�))p(�rr)� (1� p(�)) (A.11)

If p(�m)! 1 for all �m 2 �n�a; �r, then f(�n�a; �r)! 1 , while if p(�m)! 0 for all �m, then

f(�n�a; �r)! �1. Then, by Lemma 7, ordinal information is not suÆcient to determine the

optimal ordering of agents to �a and �r.

(ii) Consider any pair of agents i and j, initially assigned to nodes �a and �r, respectively.

Switch these agents. The resulting change in the probability of acceptance equals (pi �

pj)f(�n�a; �r)p(�0 ! !a;r), where

f(�n�a; �r) = p(�)(1� p(�ar))� (1� p(�))(1 � p(�rr)) (A.12)

If p(�m)! 0 for all �m 2 �n�a; �r, then f(�n�a; �r)! �1 and therefore if

f
q
(�n�a; �r) < 0 (A.13)

is not met for q 2 fg; bg, ordinal information is not suÆcient by Lemma 7. For q = g, this

necessary condition can be rewritten as

p
g
(�)

1� pg(�)

1� p
g
(�ar)

1� pg(�rr)
< 1 (A.14)

Given that information is ordinal, it is not known whether p
g
(�) is larger or smaller than

1/2. If one can show that for p
g
(�) > 1=2 ordinal information is not suÆcient to verify

Equation A.14, then ordinal information is not enough to �nd the optimal allocation for the

class of structures covered by case (ii). For pg(�) > 1=2, the �rst fraction on the left{hand

side of the condition is larger than one. The second fraction should therefore be \suÆciently

small" to ensure the product of the two remains below one. Ordinal information is not

suÆcient to decide whether this is the case. Cardinal information is required.

(iii) Consider any pair of agents i and j, initially assigned to nodes �a and �r, respectively.

Switch these agents. The resulting change in the probability of acceptance equals (pi �
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pj)f(�n�a; �r)p(�0 ! !a;r), where

f
q
(�n�a; �r) = p(�)p(�aa)� (1� p(�))p(�ra) (A.15)

If p(�m) ! 1 for all �m 2 �n�a; �r, then f(�n�a; �r) ! 1, and therefore, from Lemma 7 it

follows that if

f
q
(�n�a; �r) > 0 (A.16)

is not met for q 2 fg; bg, ordinal information is not suÆcient. In particular, for q = b this

amounts to

p
b
(�)

1� pb(�)

p
b
(�aa)

pb(�ra)
> 1 (A.17)

Exactly the same line of reasoning as in case (ii), but now with p
b
< 1=2 shows that ordinal

information is not suÆcient to verify this condition.

(iv) Consider any pair of agents i and j, initially assigned to nodes � and �a, respectively.

Switch these agents. The resulting change in the probability of acceptance equals (pi �

pj)f(�n�; �a)p(�0 ! !�;a), where

f(�n�; �a) = p(�ar)� p(�r)p(�ra) (A.18)

It follows from Lemma 6 that if �ar is not equal to �arP�arr ordinal information cannot be

suÆcient to decide on the sign of p
q
(�ar) � p

q
(�r)p

q
(�ra) for q 2 fg; bg. Impose therefore

�ar = �arP�arr. From this it follows that the only ordering of � and �a that can potentially

be shown to hold with ordinal information only is � � �a
5
.

Consider any pair of agents i and j, initially assigned to nodes �a and �r, respectively.

Switch these agents. The resulting change in the probability of acceptance equals (pi �
5This is true for the following reason. Note that pq(�ar) > p

q(�ar) and p
q(�r) < p

q(�r). If �r � �ar then

sign[pq(�ar)� p
q(�r)] cannot be determined with ordinal information for either q = g or q = b. If �ar � �r,

then sign[pq(�ar) � p
q(�r)] = + for q = g and additional restrictions on the ordering of agents at nodes in

�ar and �r may make ordinal information suÆcient to show sign[pb(�ar)� p
b(�r)] = +. That is, � � �a is

the only ordering that can potentially be shown using exclusively ordinal information
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pj)f(�n�a; �r)p(�0 ! !a;r), where

f(�n�a; �r) = p(�)� (p(�)p(�ar) + (1� p(�))p(�ra)) (A.19)

Clearly, if p(�)
q
<min (p

q
(�ra); p

q
(�ar)) for q = g; b, then f(�n�a; �r) < 0 for q = g; b.

If �ar = �arP�arr or �ar = �arP�arrP�arrr and �ar � � � �arr or �ar � � � �arr do

not hold, ordinal information is not suÆcient to establish whether p
q
(�) < p

q
(�ar) holds

for q = g and q = b. This follows from Lemma 5. Now note that the necessary condition

� � �a derived from Equation A.18 also applies to the relationship between � and �ar, and

between � and �arr as f�a; �ar; �arrg are connected by polyarchical connections. Hence,

� � �ar and � � �arr are necessary conditions. However, these conditions are in con
ict with

either ordering of (agents at) f�ar; �; �arrg derived from Equation A.19. Therefore, ordinal

information is not enough to derive the optimal ordering of these nodes. Exactly the same

line of reasoning applies to the case where p
q
> max (p

q
(�ra); p

q
(�ar)) for q = g; b, but this

time the �rst nodes of both �ar and �ra are connected by hierarchical connections . Finally

the case where

min(p
q
(�ra); p

q
(�ar)) < p(�)

q
< max(p

q
(�ra); p

q
(�ar)) (A.20)

and consider q = g. p
�
:= p

g
(�ra)=(1 � p

g
(�ar) + p

g
(�ra)) solves

p
g
(�)p

g
(�ar) + (1� p

g
(�))p

g
(�ra) = p

g
(�) (A.21)

in p
g
(�). Since p

� 2 (min(p
q
(�ra); p

q
(�ar));max(p

q
(�ra); p

q
(�ar))) by construction, there

exist a p
�

1
:= p

� � �1 and a p
�

2
:= p

�
+ �2, with �i > 0 such that pi

� 2 (min(p
g
(�ra); p

g
(�ar));

max(p
g
(�ra); p

g
(�ar))) , i = 1; 2 and such that changing the value of p

g
(�) from p

�
to either

p1
�
or p2

�
, does not change the ordering of � relative to the nodes in �ar and �ra. The

change of value of p
g
(�) from p

�
to either p

�

1
or p

�

2
does upset the equality of Equation A.21.

Therefore, any given ordering of the nodes of �ar, �ra and � satisfying the condition of

Equation A.20 can give rise to f
g
(�n�a; �r) = 0, f

g
(�n�a; �r) < 0, and f

g
(�n�a; �r) > 0.

That is, ordinal information is not suÆcient to establish the ordering of �a and �r. 2
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Proof of Proposition 4 As the proposition makes a statement about the entire class of hy-

brid structures and since structures can be recursively de�ned, I use mathematical induction.

In the basis step one proves that the statement holds for the basic structures with a speci�c

number of nodes. One then supposes that the statement holds for any structure containing

at most n nodes and then proves that the statement holds for any structure containing n+1

nodes. This is called the hypothesis step or the induction hypothesis.

First the basis step. Consider the two simplest hybrid structures, (i) �P�rH�ra and

(ii) �H�aP�ar. Consider case (i) and the associated probability of acceptance function

p(�) + (1 � p(�))(p(�r)p(�ra)). Obviously, the agents assigned to nodes �r and �ra can be

switched without a�ecting the performance of the organization. Hence, �r � �ra. Therefore,

what has to be established is the relationship between the agent at the �rst node and the

agents at the successive nodes. Consider any pair of agents i and j, initially assigned to nodes

� and �r, respectively. Switch these agents. Then f
q
(�) = 1 � p(�ra). As 0 < p(�ra) < 1,

this shows that the better agent should be located at �, and the worse agent at �r. Of

course, the same ordering must hold for the agents located at the pair (�; �ra). Hence,

one knows that � � �r, � � �ra, and �r � �ra are necessary conditions any globally

optimal allocation should satisfy. Remember that the agents satisfy 1 � 2 � 3. Hence,

�
�

1
= (�

�

1
(1); �

�

1
(2); �

�

1
(3)) = (�; �r; �ra) and �

�

2
= (�; �ra; �a) are the only allocations that

satisfy these necessary conditions. As they give rise to the same expected pro�t both are

globally optimal allocations. Clearly, ordinal information is necessary and suÆcient.

The same line of reasoning shows that in case (ii) the globally optimal allocation satis�es

� � �a, � � �ar, and �a � �ar. Once again, ordinal information is necessary and suÆcient.

Hence, the proposition holds for the basic hybrid structures. This completes the basis step.

Now suppose the implication holds for all hybrid structures �, �1, and �2 with at most n

nodes and consider (a) �0
= �H�, (b) �0

= �P� and (c) �0
= O(�;�1;�2).

In (a), if �0
= �H� is to be hybrid then � should be pure or hybrid. If � is a hierarchy
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then so is �
0
and so the implication is trivially true. If � is a polyarchy, then �

0
is hybrid.

Write �
0
= �H�aP�ar, with �ar a polyarchy. Therefore, pair{wise switching establishes

�a � �ar � � � � � �ar:::r. Moreover, pair{wise switching shows that � � �a should hold for

pro�ts to be maximized and by the same token � � �ar; : : : ; �ar���r etc.

As all allocations that satisfy these necessary conditions for global optimality give rise to

the same expected pro�ts, all are globally optimal. Clearly, ordinal information is necessary

and suÆcient.

If, on the other hand, � is not pure but hybrid, then, by the induction step, ordinal

information is necessary and suÆcient for � to be correctly organized. Obviously, adding

node � to �
0
does not change the level of information necessary and suÆcient to correctly

assign agents in �
0
. What has to be determined is the relationship between the agent to be

located at � and those to be assigned to nodes in �
0
.

Take any node �mj 2 � and consider �m. Then either (a-i) �m = �mH�ma or �m is the

�nal node or (a-ii) �m = �mP�mr.

In (a-i), if all links between � and �m are hierarchical connections (or if �m = �a), then

pair{wise switching shows that � � �m. If some links are polyarchical, pair{wise switching

shows that � � �m is necessary for pro�ts to be maximized.

In (a-ii), pair{wise switching establishes � � �m is necessary for pro�ts to be maximized.

Note that the pair{wise orderings of � and �m 2 � are consistent. That is, (a-i) and (a-ii)

jointly establish that in (a) pair{wise switches lead to a set of possible allocations, all of

which can easily be checked to give rise to the same expected pro�t. Hence, ordinal informa-

tion is necessary and suÆcient to characterize the globally optimal allocations. In (b), with

�
0
= �P�, the same line of reasoning applies.

Note that in case (c) the structure is not hybrid and therefore the implication is trivially

true. 2
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