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Preface

The minimal function of a PhD thesis is to obtain a PhD degree. After achieving this,

the thesis might not be read any more except the preface. It is my honor that you are

reading the preface now. I would appreciate more if you could at least turn one more

page to read the table of content. From there you will find the structured picture of my

4-year PhD path.

In 2001, when I was an undergraduate student in Peking University, Prof. Shihong

Cheng passed a PhD thesis to me for reading. I benefited a lot from reading not only the

preface but its entire text. This experience lead me to the field Extreme Value Theory,

and inspired me to do a PhD on it. There is no doubt that Prof. Shihong Cheng was

expecting the current book a lot. Unfortunately, it is no longer possible for him to read

it. I dedicate this book to him for having faith on me all the time.

Statistically, 100% of the past PhD theses has confirmed that: ”there are so many

people helping me during my PhD life”. It also applies to me. To review all the stories

about all the helpful people may result in a book as thick as the thesis itself. On the other

hand, a simple list of names may include most of them but lose the details. A Chinese

solution is to pick up a few significant representatives, while the missed names are by no

means less important.

Talking about the thesis that inspired me to study Extreme Value Theory, it was pub-

lished in 1970 and read by many scientists in this field. One could imagine my excitement

when I noticed that I was going to work with the author for four years as my PhD life.

The excitement was further enhanced after I met Laurens de Haan and found out that

he is such a nice person and helpful supervisor. From the first time we met at Schiphol

airport, Laurens started to carry the heaviest suitcase of mine. Helping on the top trouble

is what Laurens always did in the past four years. With his great ideas and well-organized

working schedule, I was never in short of creativity or concrete results during my PhD

work. Besides, Laurens offered me much more in other aspects: history courses during

lunch are always for free; tours around Lisbon are the best reward for hard working. In

addition: the coffee in Laurens’ office is the magic power for studying Extreme Value

Theory.
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Inspiring a mathematician with economic theory is one of the most difficult jobs in

the world. Casper, you successfully achieved this by constantly turning the formulas

into fun. Walking between 9th floor and 8th floor is always a good refreshment for me

after working on a complicated calculation. On my way back, I always carry brilliant

economic explanations from Casper that reflects the formulas. I thank him for helping

me to understand the economic potential of my mathematical knowledge.

Life in Rotterdam is wonderful thanks to all my friends. To find one representative

is rather difficult, since there are at least two names on the very top: Francesco and

Michiel. I am quite sure that I can always count you on when something can not be done

by myself. That could be solving a problem in research, fixing bicycles, holding a great

party, or finishing half of the beer in De Smitse. Here the word ”half” does not mean

lacking of capacities from we three. It is simply because of our three ”competitors”: Chris,

Jeroen and Joop. The entire ”six-party discussions” became more and more interesting

thanks to your participation.

Tinbergen Institute offers a great atmosphere for PhD students. I would thank to all

TI staff for your patience in helping me and my fellow colleagues in 9th floor for your

kindness.

As living in a long distance from my hometown, it is very lucky for me to have so

many great Chinese friends who make my life here more home feeling. Helps from Chinese

friends dated back to the day I landed here. I would like to thank Li Deyuan for hosting

me at that moment. It is an important help for me to start my PhD smoothly.

My deepest thank should certainly goes to my mum. Four years ago, you decided not

to keep me by your side but let me do what I want. That results in an incredible amount

of difficulties for you during these years. You never asked anything back from me, instead,

always supported me from distance. This is already more than any other help.

Normally, the last paragraph of the preface is devoted to thank the other half of the

author with words like ”to my love, without your patience and help, this thesis will never

be finished.” To my dearest Yijing, our case is slightly different: I am actually quiet and

less disturbing when I was concentrating on my PhD work. Considering that I am not

hard working, in fact, you have spent more patience than regular. Without you being

aside, I may still finish the thesis, but I will definitely lose the entire colorful life. Your

endless love is the fundamental resource of my energy for being happy all the time.

There is a last thank I reserve in my heart, for keeping me brave and confident to face

any challenge in my life.

Zhou Chen, 28-08-2008
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Chapter 1

Introduction

In the 18th century, statisticians sometimes worked as consultants to gamblers. In order

to answer questions like ”If a fair coin is flipped 100 times, what is the probability of

getting 60 or more heads?”, Abraham de Moivre discovered the so-called ”normal curve”.

Independently, Pierre-Simon Laplace derived the central limit theorem, where the normal

distribution acts as the limit for the distribution of the sample mean.

Nowadays, statisticians sometimes work as consultants for economists, to whom the

normal distribution is far from a satisfactory model. For example, one may need to model

large-impact financial events in order to to answer questions like ”What is the probability

of getting into a crisis period similar to the credit squeeze in 2007 in the coming 10 years?”.

At first glance, estimating the chances of events that rarely happen or even have never

happened before sounds like a ”mission impossible”. The development of Extreme Value

Theory (EVT) shows that it is in fact possible to achieve this goal.

Different from the central limit theorem, Extreme Value Theory starts from the limit

distribution of the sample maximum. Initiated by M. Fréchet, R. Fisher and R. von

Mises, the limit theory completed by B. Gnedenko, gave the fundamental assumption in

EVT, the ”extreme value condition”. Statistically, the extreme value condition provides a

semi-parametric model for the tails of distribution functions. Therefore it can be applied

to evaluate the rare events. On the other hand, since the assumption is rather general and

natural, the semi-parametric model can have extensive applications in numerous fields.

Starting from J. Pickands, one-dimensional extreme value statistics solves the esti-

mation of rare events regarding a single random variable. The one-dimensional extreme

value statistics considers the tail of a distribution function as a specific parametric model.

This allows us to estimate the parameters by extremal observations from data. This idea

is different from a parametric approach in the sense that only the tail is parameterized

without imposing any assumption at the moderate level. Correspondingly, in estimating

the parameters, only the observations in the tail are used. Therefore, it provides a more

1



2

accurate fit for the tail compared to the regular parametric approaches that also take the

data at moderate levels into consideration. On the other hand, by using such a semi-

parametric model, it is possible to evaluate a rare event which is more extreme than the

events that we have observed. This is beyond the reach of non-parametric statistics.

Besides the one-dimensional problem, extreme value statistics can deal with multi-

variate rare events, i.e. rare events associated to random vectors. In fact, the world we

are living in is rather complicated due to dependence: most of the rare events are charac-

terized by a few (or even infinitely many) dependent random variables. This requires the

development of multi-dimensional and infinite-dimensional EVT and their corresponding

statistical methodologies. From the 1970s onwards, multivariate EVT has been gradually

established. The basic idea is similar to the one-dimensional case: parameterize the tail of

a multivariate distribution rather than the entire distribution function. However, the de-

pendence structure is now an issue. The model of the dependence structure is important

and can be non-parametric. Besides statistical analysis for rare events based on random

vectors, the concept ”tail dependence” arises in multivariate extreme value statistics. Tail

dependence characterizes the relation among a few random variables for being simultane-

ously extreme. It is rather independent from the regular dependent concept. In practice,

it successfully explains why ”bad luck never comes alone”.

Compared to one-dimensional and multi-dimensional EVT which are well developed

and applied, the infinite-dimensional EVT is still a growing field. As the theory is getting

more and more attention, it might capture more and more interest for application in the

future. Infinite-dimensional extreme value statistics considers rare events characterized

by stochastic processes that are commonly used to model randomness in time or space.

The difficulty compared to finite-dimensional case is that the dependence structure of

infinite-dimensional EVT has to be characterized on the functional space which is rather

abstract.

In this thesis, we contribute to extreme value statistics by making theoretical improve-

ment as well as applying it to finance, meteorology and economics. This chapter firstly

reviews the fundamentals of EVT and its corresponding statistical inference in Section

1.1. Then, in Section 1.2, we briefly introduce the main content of each chapter in this

thesis.



3

1.1 Extreme Value Theory

1.1.1 One-dimensional EVT

Let X1, X2, · · · be independent and identical distributed (i.i.d.) with distribution function

F . Suppose that the distribution function F is in the domain of attraction of an extreme

value distribution, i.e. there are a positive function a and a function b, such that

lim
n→∞

P

(
max
1≤i≤n

Xi − b(n)

a(n)
≤ x

)
= G(x),

for each continuous point x of G, where G is a non-degenerate distribution function. We

denote this by F ∈ D. Then a and b can be chosen such that

G(x) = Gγ(x) := exp
{−(1 + γx)−1/γ

}

for all x with 1 + γx > 0, where γ is a real constant. We call γ as the extreme value

index1. Then we also say F ∈ D(Gγ).

One way to characterize the necessary and sufficient condition of being in the domain

of attraction is the following property. The condition F ∈ D(Gγ) holds, if and only if

there exists a positive function a0 such that for all x with 1 + γx > 0,

lim
t↑x∗

P

(
X − t

a0(t)
> x|X > t

)
= (1 + γx)−1/γ =: 1−Qγ(x).

Here x∗ := sup {x : F (x) < 1} is the right endpoint of F . This means that the larger

observations in a sample approximately follow the probability distribution Qγ - the gen-

eralized Pareto distribution (GPD). Hence, it is possible to extrapolate data in the tail

of F from a GPD. Since the GPD is a parametric model, as soon as the parameter γ is

precisely estimated, it is possible to calculate the probability of rare events. This is the

essential idea of extreme value statistics.

Estimating the extreme value index, though, is by no means an easy task. One possible

approach is to extrapolate data from the empirical excesses and to fit these to a GPD by

using maximum likelihood procedure. This approach was initiated by Smith (1987) and

results in the so-called maximum likelihood estimator for the extreme value index. This

estimator performs reasonably well in practice. Theoretically, the asymptotic properties

of the estimator had been investigated by Drees et al. (2004).

1.1.2 Multi-dimensional EVT

Let us now consider the multi-dimensional case, or rather the two-dimensional case for

simplicity. Let (X, Y ) be a random vector with distribution function F . Suppose F ∈ D,

1When γ > 0, α = 1/γ is called the tail index.



4 Extreme Value Theory

i.e. if (X1, Y1), (X2, Y2), · · · are i.i.d. random vectors with distribution function F , there

are positive functions a and c and functions b and d, such that

lim
n→∞

P

(
max
1≤i≤n

Xi − b(n)

a(n)
≤ x, max

1≤i≤n

Yi − d(n)

c(n)
≤ y

)
= G(x, y),

where G is a two-dimensional distribution function with non-degenerate marginals. Then

we also say that F ∈ D(G) and G is a (multivariate) extreme value distribution.

Similar to the one-dimensional case, there exists a related two-dimensional GPD func-

tion QH , obtained for example as follows:

lim
t→∞

P

(
X − b(t)

a(t)
>

xγ1 − 1

γ1

or
Y − d(t)

c(t)
>

yγ2 − 1

γ2

|X > b(t) or Y > d(t)

)

=2

∫ 1

0

max

(
s

x
,
1− s

y

)
H(ds) =: 1−QH(x, y),

for (x, y) ∈ DH =
{

(x, y) : 2
∫ 1

0
max

(
s
x
, 1−s

y

)
H(ds) ≤ 1

}
⊃ {(x, y) : x, y ≥ 2}, where

γ1 and γ2 are the marginal extreme value indices, and H is a probability distribution

function on [0, 1] with mean 1/2. Here H characterizes the dependence in the tail. Notice

that H is quite different from the traditional dependence measures such as the correlation

coefficient. The latter measures the dependence at the moderate level. Hence it is possible

to have low correlation coefficient with a strong tail dependence and vice versa.

In multi-variate extreme value statistics, one needs to estimate the marginal param-

eters as well as the dependence measure H. For the statistics under multivariate EVT

framework, we refer to Huang (1992). With estimations for the marginal parameters

and the dependence structure, it is possible to study rare events characterized by (X,Y )

belonging to a certain set, see de Haan and Ferreira (2006, Chapter 8).

1.1.3 Infinite-dimensional EVT

Infinite-dimensional EVT studies extremes on stochastic processes. Equivalently speak-

ing, we consider extremes of random elements in a functional space. Since in application

one usually uses the continuous stochastic process, correspondingly, we consider extremes

in C[0, 1], the space of continuous functions defined on the unit interval. The setup is as

follows. Let {X(s)}s∈[0,1] be a stochastic process in C[0, 1]. Consider independent copies

X1, X2, · · · of the process X. Compose for each n a continuous stochastic process
{

max
1≤i≤n

Xi(s)

}

s∈[0,1]

.

Suppose that for some positive functions as(n) and real functions bs(n), the sequence of

processes {
max
1≤i≤n

Xi(s)− bs(n)

as(n)

}

s∈[0,1]
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converges in C[0, 1]. If this is the case, we say X ∈ D. Let us call the limiting process

{U(s)}s∈[0,1]. Then we also say X ∈ D(U).

Similar to the multi-dimensional case, the extremes on stochastic processes can also

be studied by separating the marginal parameter functions and the dependence struc-

ture. However, the dependence structure is more complicate. It is defined on a function

space. To characterize the dependence structure via a measure on some function space is

possible but not convenient for statistical applications. Recent developments of infinite-

dimensional EVT provide statistically applicable representations of the dependence struc-

ture. These approaches create possibilities to parameterize the dependence structure. By

estimating a few parameters in the parametric dependence structure, it is possible to

study the rare events characterized by the original stochastic process.

1.2 Outline

In this thesis, we study extreme value statistics from the theoretical development to its

applications, from the one-dimensional case to the infinite-dimensional case. The thesis

bundles eight papers and is partitioned into four parts.

Part I considers one-dimensional EVT which consists of three chapters. We focus on

the maximum likelihood estimator of the extreme value index initiated by Smith (1987).

In the literature of estimating the extreme value index, a minimal requirement is that

any estimator should be consistent under the extreme value condition. It has been proved

that for most known estimators a more restrictive but natural condition–the second order

condition–leads to the asymptotic normality. Roughly speaking, the second order condi-

tion specifies the speed of convergence in the extreme value condition, see de Haan and

Stadtmüller (1996).

Since for the maximum likelihood estimator no explicit form is known, the study of

its asymptotic properties is much more difficult than those cases in which the estimators

are explicit functions of the observations. Smith (1987) proved the asymptotic normality

under conditions that are rather more restrictive than the standard setup, i.e. the extreme

value condition and the second order condition. Under the second order condition, Drees

et al. (2004) proved the asymptotic normality in case the extreme value index is higher

than -1/2 but they needed to use the assumption that the estimator is not far off its real

value.

Although the maximum likelihood estimator of the extreme value index has been

widely used in applications, there are still a number of questions:

1) Does the estimator always exist? In particular, does an estimator satisfying the as-

sumptions in Drees et al. (2004) really exist? Note that the latter question is important
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for completing the proof of the asymptotic normality.

2) Does the statement ”the extreme value condition implies consistency” hold for the

maximum likelihood estimator?

3) Is it possible to extend the maximum likelihood estimator to a larger set of the extreme

value index rather than (−1/2, +∞) and prove similar asymptotic properties?

4) In practice, is it possible to construct an explicit estimator that approximates closely

the maximum likelihood estimator?

In Part I, we answer all the above questions. Chapter 2 is based on Zhou (2008b), which

gives positive answers to the first two questions. In this paper, the existence is proved for

all extreme value indices higher than −1. It is also proved that the estimator is consistent

under only the extreme value condition. Furthermore, when the second order condition is

valid, following the proof in this chapter, the existence of a maximum likelihood estimator

satisfying the restrictions in Drees et al. (2004) is a direct consequence. Hence, our result

completes the proof of the asymptotic normality in Drees et al. (2004).

The result in Chapter 2 also opens a question about the asymptotic property for the

extreme value index lying in between -1 and -1/2 when the second order condition holds.

Chapter 3 studies this problem and shows that the asymptotic normality still holds in

this region, i.e. the valid interval for the maximum likelihood estimator is now extended

to (−1, +∞). This answers question 3 above. This chapter is based on Zhou (2007).

The last chapter in Part I intends to answer question 4 above. In this chapter, we

build a 2-step estimator that is very close to the maximum likelihood estimator. The two

have the same asymptotic properties. Since the 2-step estimator can be calculated easily

as a function of the observations, it is much simpler to use in practice. This chapter is

based on Zhou (2008a).

In all, Part I fills the theoretical gap in the theory of the maximum likelihood estimator

for the extreme value index, and provides new statistical methodology for application. It

can be seen as the theoretical part of this thesis. The other three parts are devoted to

apply EVT in different fields.

Part II contains a single chapter, Chapter 5, which considers an application of multi-

variate EVT in finance. For financial investment, a well-known adagium is ”do not put

all your eggs in the same basket”. In other words, holding diversified portfolio lowers the

portfolio risk. The optimal construction of the portfolio depends on the risk of individual

securities as well as their dependence structure. When one considers extremal risks, i.e.

big losses, it is reasonable to model the individual security returns by an EVT model

and consider Value at Risk (VaR) as the risk criterion. With this setup, the risk of a big

loss is usually evaluated by the primary risk indicator–the tail index. However, in real-

ity, the tail indices across different securities in a specific market are quite close to each
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other, possibly due to arbitrage. Therefore, it is necessary to consider a secondary risk

indicator. A natural choice for this is the scale parameter in the EVT model. The risk

of a portfolio is then determined by both individual risks and the dependence structure.

In this chapter, we study the portfolio selection problem and the diversification effects

via the secondary risk indicator in a multivariate EVT framework without assuming any

parametric dependence structure. We show that diversification does not always lead to

the optimal portfolio. In case diversification has a positive effect, we propose a portfolio

selection procedure to construct the optimal portfolio. In case the diversification has a

negative effect, we propose to select the individual security with the minimum secondary

risk indicator. When the secondary risk indicators are also at the same level across all

individual securities, we propose to use a third risk indicator namely the ”probability of

dominance” to be the criterion to select the optimal individual security. Then the optimal

individual security is the one that has the minimum connection to the systematic risk.

An empirical study illustrates the entire portfolio selection procedure.

Part III considers an application of infinite-dimensional EVT in meteorology. This

part consists of two chapters which are based on Buishand et al. (2008) and de Haan and

Zhou (2008) respectively. In Chapter 6, we focus on the statistical problem of extremely

heavy rainfall. We consider daily rainfall observations at 32 stations in the province of

North Holland (The Netherlands) during 30 years. Let T be the total rainfall in this area

on one day. An important question is: what is the amount of rainfall T that is exceeded

once in 100 years? This is clearly a problem belonging to EVT. Also it is a genuinely

spatial problem, i.e. extremes on stochastic processes. We use a parametric model in

infinite-dimensional EVT to handle the dependence structure. Then it is possible to use

simulations to come up with a reasonable answer to the question above. Chapter 6 solves

the problem by a combination of resampling and simulation. One of the difficulties in

this approach is how to estimate the parameter in the parametric dependence model.

The estimation requires technical calculation to connect the marginal distributions of the

original process to the dependence parameter. The detail of this calculation is presented

in Chapter 7.

Part IV studies an extreme-value-type problem in Internet auctions. Roughly speak-

ing, the main difference between an Internet auction and the classical Dutch or English

auction is that we do not have a specific room for auction participants to sit in, i.e. we do

not know the real number of participants of a specific Internet auction. This difference is

due to the fact that, on Internet, no one could exactly observe all those potential bidders

who checked the website with or without placing a bid. However, the strategic theory of

classical auctions always requires that the number of participants is known. This missing

information creates a big difficulty in the study of Internet auctions. The following two



8 Outline

questions arises:

1) Is it possible to connect the real bidding activities with the number of potential bid-

ders?

2) Is it possible to investigate the valuations of bidders? More precisely, can we estimate

the expected final payoff to a specific Internet auction by only observing the bidding

history?

The two chapters in Part IV answer these two questions respectively. Chapter 8 is

based on de Haan et al. (2008b). In this chapter, we first show that under the independent

private value paradigm (IPVP) the valuations of the active bidders form a specific record

sequence. This fact implies that if the number n of potential bidders is large, the number

of active bidders is approximately 2 log n which explains the relative inactivity in Internet

auctions. Empirical evidence for the 2 log n rule is provided. Furthermore, this evidence

can also be interpreted as a weak test of the IPVP.

Chapter 9 is based on de Haan et al. (2008a), which approaches the second question

above. In this chapter, we continue with modeling the valuations of the active bidders

as a specific record sequence. We study the difference between the observed final payoff,

i.e. the price of the final deal and the expected final payoff. We use the EVT model

to model the distribution function of the bidder’s valuation. In order to have a realistic

model, we should at least have a finite expected final payoff. We prove that this requires

the assumption that the extreme value index is lower than 2. With this assumption

we turn to study whether the observed final payoff precisely estimates the expected final

payoff. For non-zero extreme value indicies, the observed final payoff is never a satisfactory

estimator for its expectation. However, when the extreme value index equals to 0, we

propose a subclass model and its generalized version, for which the observed final payoff

consistently estimates the expected final payoff. The chapter concludes that by modeling

the distribution function of the bidder’s valuation as an EVT model, only for zero extreme

value index, the final price of an Internet auction may reflect what the seller deserves,

while for positive or negative extreme value index, an underestimation or overestimation

case can be expected.

To sum up, besides contributing to the literature of the maximum likelihood estimator

of the extreme value index, the thesis is devoted to show different applications of ex-

treme value statistics in different fields: we apply one-dimensional, multi-dimensional and

infinite-dimensional Extreme Value Theories to microeconomics, finance and meteorology.

From those applications, it is shown that as a natural and precise model for rare events,

extreme value statistics exhibits its strong potential in applied statistics.







Part I

Maximum Likelihood





Chapter 2

Existence and Consistency of the
Maximum Likelihood Estimator for
the Extreme Value Index

2.1 Introduction

Let X1, X2, · · · be independent and identically distributed (i.i.d.) random variables from

a distribution function F . Suppose that F is in the domain of attraction of an extreme

value distribution, i.e. there exist constants an > 0 and bn, such that

F n(anx + bn) → Gγ(x), for all 1 + γx > 0

where Gγ(x) = exp(−(1 + γx)−1/γ) is the corresponding extreme value distribution func-

tion and γ ∈ R is the extreme value index (Gnedenko (1943)). Commonly, that is denoted

by F ∈ D(Gγ).

The necessary and sufficient condition of F ∈ D(Gγ) can be represented in different

ways. We state the following criterion, see e.g. de Haan (1984a).

Theorem 2.1.1 Let U :=
(

1
1−F

)←
be the left-continuous inverse function of 1/(1 − F ).

Then F ∈ D(Gγ) if and only if there exists a function a(t) > 0 such that

lim
t→∞

U(tx)− U(t)

a(t)
=

xγ − 1

γ
, (2.1)

for all x > 0.

The condition (2.1) is called the extreme value condition.

Under this setup, a major issue for estimating extremal events is the estimation of

the extreme value index γ. For γ > 0, an estimator, so-called the Hill estimator, was

suggested by Hill (1975) as follows

γ̂H =
1

k

k−1∑
i=0

log Xn,n−i − log Xn,n−k,

13
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where k is a suitable sequence such that k(n) → ∞ and k(n)/n → 0 as n → ∞, and

Xn,1 ≤ · · · ≤ Xn,n denote the order statistics of X1, X2, · · · , Xn.

There are some other estimators for general γ ∈ R, such as the Pickands’ estimator

suggested by Pickands III (1975), the moment estimator suggested by Dekkers et al.

(1989), and the UH estimator suggested by Beirlant et al. (1996).

An alternative characterization of the necessary and sufficient condition for a distri-

bution function F belonging to the domain of attraction is via the ”excess distribution

function” as in Balkema and de Haan (1974). Denote the excess distribution function

Ft(x) := P (X − t ≤ x|X > t) =
F (t + x)− F (t)

1− F (t)
.

Then F ∈ D(Gγ) is equivalent to

lim
t→x∗

Ft(xσ(t)) = Hγ(x) := 1− (1 + γx)−1/γ,

for all 1 + γx > 0, where σ(t) is a positive function and x∗ is the right endpoint of

F , i.e. x∗ = sup {x|F (x) < 1}. Hγ is the so-called generalized Pareto distribution (GPD)

function. Intuitively, the distribution function F is in the domain of attraction if and only

if the excesses above a high threshold are asymptotically generalized Pareto distributed.

Smith (1987) introduced a maximum likelihood estimator (MLE) of the extreme value

index by fitting the GPD with the empirical excesses. The maximum likelihood estimators

for the extreme value index and the scale, γ̂ML and σ̂ML, are obtained by solving the

likelihood equations. The likelihood equations are (c.f. Drees et al. (2004))

k∑
i=1

1

γ2
log

(
1 +

γ

σ
(Xn,n−i+1 −Xn,n−k)

)

−
(

1

γ
+ 1

)
(1/σ)(Xn,n−i+1 −Xn,n−k)

1 + (γ/σ)(Xn,n−i+1 −Xn,n−k)
= 0 (2.2)

k∑
i=1

(
1

γ
+ 1

)
(γ/σ)(Xn,n−i+1 −Xn,n−k)

1 + (γ/σ)(Xn,n−i+1 −Xn,n−k)
= k,

(the equations for γ = 0 are defined by continuity). Excluding γ = 0 as a solution, (2.2)

can be simplified as

1

k

k∑
i=1

log
(
1 +

γ

σ
(Xn,n−i+1 −Xn,n−k)

)
= γ (2.3)

1

k

k∑
i=1

1

1 + (γ/σ)(Xn,n−i+1 −Xn,n−k)
=

1

γ + 1
.

The equations are based on excesses Yi := Xn,n−i+1−Xn,n−k, where i = 1, · · · , k and k is

a suitable sequence of integers as in the Hill estimator.
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Grimshaw (1993) discussed a numerical way to solve the likelihood equations as follows.

From the equations (2.3), with the notation Yi, it is derived that,

(
1

k

k∑
i=1

log
(
1 +

γ

σ
Yi

)
+ 1

)
· 1

k

k∑
i=1

1

1 + (γ/σ)Yi

= 1. (2.4)

In order to write this in short hand, denote the two parts in (2.4) as functions

fn(t) :=
1

k

k∑
i=1

log(1 + tYi) + 1,

gn(t) :=
1

k

k∑
i=1

1

1 + tYi

,

hn(t) := fn(t)gn(t)− 1.

Then, it is clear that any root (γ̂, σ̂) of (2.3) satisfies hn(γ̂/σ̂) = 0. Conversely, if t∗

is a non-zero root of hn(t) = 0, we obtain (γ̂, σ̂) = (fn(t∗) − 1, (fn(t∗) − 1)/t∗) as the

solution of (2.3). With this idea, the maximum likelihood estimator can be calculated in

the following procedure:

1. find the root t∗n of hn(t) = 0;

2. γ̂ML = fn(t∗n)− 1;

3. σ̂ML = γ̂ML/t∗n.

The first step was solved in a numerical way in Grimshaw (1993). After that, the

maximum likelihood estimators of γ and σ were calculated based on the numerical root

of hn(t) = 0.

Note that (2.3) is the simplified version of (2.2) by assuming γ 6= 0, although t∗n = 0

is always a solution of hn(t) = 0, we should not take it as the proper solution. Hence, in

solving (2.3) we disregard the solution γ̂ML = 0, even if in reality γ = 0.

The asymptotic properties of the mentioned estimators, including the maximum like-

lihood estimator, have been discussed in the literature. For all of the above estimators

except the maximum likelihood estimator, it is proved that, they are consistent under the

extreme value condition (2.1). In order to get the asymptotic normality, de Haan and

Stadtmüller (1996) introduced the second order condition as

lim
t→∞

U(tx)−U(t)
a(t)

− xγ−1
γ

A(t)
= H(x), (2.5)

for all x > 0, where H(x) is assumed not to be a multiple of xγ−1
γ

, and A(t) → 0 as t →∞.

With the second order condition, the asymptotic normality of all the above estimators

has been proved. Compared to this condition, we call the extreme value condition (2.1),

the first order condition.
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In general the following two statements hold for most of the extreme value index

estimators in literature.

1) The first order condition implies the (weak) convergence;

2) The second order condition implies the asymptotic normality.

Since most of the estimators have an explicit formula, the proof of the two statements

are given by the expansion of the explicit estimator. The first statement is always proved

by the first order expansion. To obtain the second statement, further expansion based on

the second order condition is normally required.

For the maximum likelihood estimator, because it is only given by solving the likeli-

hood equations instead of an explicit formula, its asymptotic properties have to be proved

in a different way. In case γ > −1/2, Smith (1987) sketched the proof of the consistency

and asymptotic normality assuming a few extra conditions. A different proof of the second

statement i.e. the second order condition implies the asymptotic normality is provided in

Drees et al. (2004) by assuming that there exists a solution of the likelihood equations not

too far off the real value. In Proposition 3.1 of this paper, it is stated that ”Any solution

(γ̃, σ̃) of (20) satisfying (21) and log σ̃ = OP (1) admits the approximation”. Here two

more requirements on the solution are assumed. These two requirements can be equiv-

alently presented within the notations in the current chapter as follows: the asymptotic

normality result holds for any solution (γ̂, σ̂) satisfying
∣∣∣∣

γ̂

σ̂/a(n/k)
− γ

∣∣∣∣ = Op(k
−1/2) and log

σ̂

a(n/k)
= Op(1).

Although at the end of the Proposition 3.1 in Drees et al. (2004), it is stated that ”Con-

versely, there exists a solution of (20) which satisfies (28), respectively (29), and hence

also (21).” Along the lines of the proof, we can not find a clear evidence to support this

conclusion.

Therefore, the existence of the solution of the likelihood equations is still an open

question. And the existence of a solution satisfying the restrictions in Drees et al. (2004)

is particularly important to make the proof of the asymptotic normality complete. Mean-

while, it is still unclear whether the first statement holds for the maximum likelihood

estimator, i.e. whether the first order condition implies the consistency.

In this chapter, under only the first order condition, we are going to give positive

answers for the existence and consistency by proving that the following statement holds

almost surely for γ > −1: the likelihood equations are eventually solvable, and a suitable

solution sequence converges to the real γ almost surely, when the sample size goes to

infinity.

The proof of the existence of the maximum likelihood estimator is new. With second

order condition, the same proof leads to stronger asymptotic properties of the solution



17

which fulfill the restrictions in Drees et al. (2004).

In Section 2.2, the main theorem will be given. The proof for the positive case is given

in Section 2.3. Since the idea of the proofs for the negative and zero cases are essentially

the same as that of the positive case, only with more detailed calculation, the proofs are

postponed to Appendix 2.A. In Section 2.4, the result under second order condition is

discussed. Again, only the proof for the positive case is given, while the proofs for the

negative and zero case are postponed to Appendix 2.B. Section 2.5 concludes this chapter.

2.2 Main theorem

Similar to Grimshaw’s numerical way, we use the simplified version of the likelihood

equations, (2.3). The main results on the existence and consistency are given as the

following theorems.

Theorem 2.2.1 Suppose the first order condition (2.1) holds for the extreme value index

γ > −1 and γ 6= 0. If the sequence k = k(n) satisfies k(n) → ∞, k(n)/n → 0, and

k(n)/ log n →∞, then

P ({The MLE does not exist for infinitely many n}) = 0.

Or, equivalently,

P (
∞⋃

N=1

∞⋂
n=N

{The MLE exists for sample size n}) = 1.

On this probability 1 set, there exists a random integer N , such that for any sample

size n > N , there exists a suitable solution of the likelihood equations, (γ̂n, σ̂n), and this

solution satisfies

γ̂n
a.s.−→ γ

and
σ̂n

a(n/k)

a.s.−→ 1

as n →∞, where a(t) is the auxiliary function in (2.1)

If we skip the extra condition k(n)/ log n → ∞, but only keep k(n) → ∞ and

k(n)/n → 0, Theorem 2.2.1 still holds in the sense of ”in probability” instead of ”al-

most surely” as in Theorem 2.2.2.

Theorem 2.2.2 Suppose the first order condition (2.1) holds for the extreme value index

γ > −1 and γ 6= 0. If the sequence k = k(n) satisfies k(n) →∞, k(n)/n → 0, then

P ({The MLE exists for infinitely many n}) = 1.
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On this probability 1 set, the likelihood equations is solvable for infinitely many sample

sizes {ni ∈ N : 1 ≤ n1 < n2 < · · · }∞i=1. There exist suitable solutions (γ̂ni
, σ̂ni

) for each

related sample size, which satisfies

γ̂ni

P→ γ and
σ̂ni

a(ni/k(ni))

P→ 1

as i →∞.

The proof of this weak form is similar to the proof of Theorem 2.2.1. The extra

condition on k in Theorem 2.2.1 is only used to obtain the almost sure convergence.

Actually, a similar condition is also required to get almost sure convergence for other

estimators. For instance, for the Hill estimator, see Deheuvels et al. (1988). To ensure

the convergence in probability, this condition can be skipped, and the proof is simpler.

Because our purpose is to obtain the consistent solution of the likelihood equations

from a certain sample size onwards, we insist on proving the strong form.

As discussed before, the zero solution of the likelihood equations is always disregarded.

Therefore, the theorem under the case γ = 0 is different because we should prove the

existence of a non-zero solution, and it converges to zero almost surely when the sample

size goes to infinity. The theorem is stated as follows.

Theorem 2.2.3 Suppose the first order condition (2.1) holds for the extreme value index

γ = 0. Suppose that with probability 1, the following relation does not hold for sufficiently

large n,

1

2k

k∑
i=1

(Xn,n−i+1 −Xn,n−k)
2 =

(
1

k

k∑
i=1

(Xn,n−i+1 −Xn,n−k)

)2

(2.6)

If the sequence k = k(n) satisfies k(n) → ∞, k(n)/n → 0, and k(n)/(log n)c → ∞ for

some c > 1, then

P ({A non-zero solution of the likelihood equations does not exist for infinitely many n}) = 0.

Or, equivalently,

P (
∞⋃

N=1

∞⋂
n=N

{There exists a non-zero solution of the likelihood equations for sample size n}) = 1.

On this probability 1 set, there exists a random integer N , such that for any sample

size n > N , there exists a suitable solution of the likelihood equations, (γ̂n, σ̂n), and this

solution satisfies

γ̂n
a.s.−→ 0

as n →∞.
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Remark 2.2.1 The extra condition in Theorem 2.2.3 that (2.6) does not hold almost

surely ensures that zero is not the proper solution of the likelihood equations. This is

the same condition as in Drees et al. (2004), Remark 2.2. The condistion is not very

restrictive, for example, it holds when F possesses a density.

Remark 2.2.2 The condition on the sequence k is stronger than in Theorem 2.2.1. How-

ever, it is still relatively weak.

Combining Theorem 2.2.1 and Theorem 2.2.3, the existence and strong convergence of

the maximum likelihood estimator has been proved for γ > −1. This extends the scope

of the asymptotic properties as stated in the following remark.

Remark 2.2.3 The asymptotic normality of the maximum likelihood estimator is proved

only for γ > −1/2. So, up to now, the maximum likelihood estimator is only used for γ >

−1/2. Our result extends the scope of γ to γ > −1 in the sense of consistency. It means

that, although we have not obtained enough information on the asymptotic distribution of

the maximum likelihood estimator, when −1 < γ ≤ −1/2, we can still use it in the sense

of strong convergence.

2.3 Proof

With the notation U :=
(

1
1−F

)←
, the i.i.d random variables can be rewritten as {Xn}∞n=1

d
=

{U(Zn)}∞n=1, where {Zn}∞n=1 are i.i.d. random variables with distribution function 1−1/x,

x ≥ 1. Some useful lemmas about the sequence {Zn}∞n=1 will be proved in Subsection

2.3.1. After that, we prove Theorem 2.2.1 for γ > 0 in Subsection 2.3.2. The proofs for

−1 < γ < 0 and Theorem 2.2.3 (γ = 0) are in Appendix 2.A.

2.3.1 Lemmas

Let Z1, Z2, · · · be i.i.d. random variables with distribution function 1 − 1/x, x ≥ 1 and

let Zn,1 ≤ Zn,2 ≤ · · · ≤ Zn,n be the order statistics.

Lemma 2.3.1 Let φ : [1, +∞) → R be such that
∫ 1

0
φ

(
1
s

)
ds < ∞. Suppose φ(1/s) is

uniformly continuous on (0, 1]. Then for a sequence k = k(n) → ∞, k/n → 0 and

k/ log n →∞, we have

1

k

k−1∑
i=0

φ

(
Zn,n−i

Zn,n−k

)
a.s.−→

∫ 1

0

φ

(
1

s

)
ds,

as n →∞.
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Proof of Lemma 2.3.1

It is clear that 1/Zi is a random variable with uniform distribution on (0, 1]. So 1/Zn,1 ≥
1/Zn,2 ≥ · · · ≥ 1/Zn,n are the order statistics of an i.i.d. uniform sample. By applying

Theorem 3(III) in Einmahl and Mason (1988), when the sequence k(n) satisfies the above

conditions,

sup
0<s≤1

∣∣∣ n
Zn,n−dske+1

− sk
∣∣∣

(2k log log n)1/2
≤ M a.s. (2.7)

where M > 1 is a fixed number. This implies that,

n

kZn,n−dske+1

→ s a.s. (2.8)

holds uniformly for s ∈ (0, 1], where dte is the smallest integer which is greater or equal

to t. By taking s = 1 in (2.8), it becomes

n

kZn,n−k+1

→ 1 a.s.

Then, replacing k with k + 1, we get that

n

kZn,n−k

→ 1 a.s. (2.9)

Hence,

Zn,n−k

Zn,n−dske+1

→ s a.s. (2.10)

holds uniformly for s ∈ (0, 1]. If φ(1/s) is uniformly continuous on (0, 1], then

φ

(
Zn,n−dske+1

Zn,n−k

)
→ φ

(
1

s

)
a.s.

holds uniformly on s ∈ (0, 1]. It leads to

∫ 1

0

φ

(
Zn,n−dske+1

Zn,n−k

)
ds →

∫ 1

0

φ

(
1

s

)
ds a.s.

which completes the proof of Lemma 2.3.1. ¤

Lemma 2.3.2 Suppose a positive function V is regularly varying at infinity with index

γ 6= 0, i.e.

lim
t→∞

V (tx)

V (t)
= xγ,

and ψ : R+ → R+ is a monotone function, such that

lim
ε→0

∫ 1

0

ψ((1 + ε)t−γ−ε)dt =

∫ 1

0

ψ(t−γ)dt < ∞. (2.11)
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Suppose there exists a positive number E, such that for all |ε| < E, ψ((1 + ε)t−γ−ε) is

uniformly continuous on (0, 1]. Then, for a sequence k = k(n) → ∞, k/n → 0 and

k/ log n →∞, we have that

1

k

k−1∑
i=0

ψ

(
V (Zn,n−i)

V (Zn,n−k)

)
a.s.−→

∫ 1

0

ψ(t−γ)dt,

as n →∞.

Proof of Lemma 2.3.2

From Proposition 1.7(5) in Geluk and de Haan (1987), we have the following inequality.

Given any ε > 0, there exists t0, such that, for t ≥ t0 and x ≥ 1

(1− ε)xγ−ε <
V (tx)

V (t)
< (1 + ε)xγ+ε.

From the proof of Lemma 2.3.1, with the same sequence k(n), we have that Zn,n−k →∞
almost surely as n →∞. Hence, eventually,

(1− ε)

(
Zn,n−i

Zn,n−k

)γ−ε

<
V (Zn,n−i)

V (Zn,n−k)
< (1 + ε)

(
Zn,n−i

Zn,n−k

)γ+ε

.

Because ψ is a monotone function, so 1
k

∑k−1
i=0 ψ

(
V (Zn,n−i)

V (Zn,n−k)

)
is between

1

k

k−1∑
i=0

ψ

(
(1− ε)

(
Zn,n−i

Zn,n−k

)γ−ε
)

and
1

k

k−1∑
i=0

ψ

(
(1 + ε)

(
Zn,n−i

Zn,n−k

)γ+ε
)

.

Note that, according to the condition (2.11)
∫ 1

0

ψ((1 + ε)t−γ−ε)dt < ∞,

when |ε| is small enough. By applying Lemma 2.3.1, as n →∞,

1

k

k−1∑
i=0

ψ

(
(1 + ε)

(
Zn,n−i

Zn,n−k

)γ+ε
)

a.s.−→
∫ 1

0

ψ((1 + ε)t−γ−ε)dt

for small |ε| < E. Considering the condition (2.11), when ε → 0, both of the two

boundaries convergence to
∫ 1

0
ψ(t−γ)dt, which completes the proof of this lemma. ¤

2.3.2 Positive case: proof for γ > 0

When γ > 0, the auxiliary function a(t) in (2.1) satisfies a(t) ∼ γU(t). Therefore, an

approximate solution of hn(t) = 0 is t(0) := γ/(γU(Zn,n−k)) = 1/U(Zn,n−k). Note that

fn(t(0))− 1 is the Hill estimator, and

gn(t(0)) =
1

k

k∑
i=1

U(Zn,n−k)

U(Zn,n−i+1)
.
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To prove the existence, we disturb the approximate solution by a small increment

as t(δ) = 1+δ
U(Zn,n−k)

for |δ| < 1
2
. We are going to find a sequence δn > 0 such that, for

sufficiently large n, hn(t(−δn)) and hn(t(δn)) have different signs. This ensures that there

exists a root of hn(t) = 0 between t(−δn) and t(δn).

The following lemma studies the asymptotic behavior of fn and gn at t = t(0).

Lemma 2.3.3 Suppose (2.1) holds for γ > 0, the sequence k satisfies k(n)/n → 0, and

k(n)/ log n →∞ as n →∞, we have that

fn(t(0))
a.s.−→ γ + 1, (2.12)

gn(t(0))
a.s.−→ 1

γ + 1
, (2.13)

as n →∞. Furthermore, the statistic

g̃n :=
1

k

k∑
i=1

(
U(Zn,n−k)

U(Zn,n−i+1)

)2

,

satisfies that for n →∞,

g̃n
a.s.−→ 1

2γ + 1
(2.14)

Proof of Lemma 2.3.3

When γ > 0, fn(t(0))− 1 is the Hill estimator. According to the almost sure convergence

of the Hill estimator in Deheuvels et al. (1988), (2.12) holds.

For the relation (2.13), note that (2.1) implies that U is regularly varying at infinity

with index γ. By checking that Ψ(x) = 1/x satisfies condition (2.11) and tγ+ε/(1 + ε) is

uniformly continuous on [0, 1] for all |ε| < γ, we can apply Lemma 2.3.2 to obtain (2.13).

The proof of (2.14) is similar. ¤
Now we turn to find a suitable δn that serves our purpose. Given δ > 0, we first

calculate the upper bound of fn(t(δn)) and gn(t(δn)) for any 0 < δn < δ as

fn(t(δn))− fn(t(0)) =
1

k

k∑
i=1

log

(
1 +

δn(U(Zn,n−i+1)/U(Zn,n−k)− 1)

U(Zn,n−i+1)/U(Zn,n−k)

)

≤ 1

k

k∑
i=1

δn

(
1− U(Zn,n−k)

U(Zn,n−i+1)

)

= δn(1− gn(t(0))) (2.15)

and

gn(t(δn))− gn(t(0)) =
1

k

k∑
i=1

−δn(U(Zn,n−i+1)/U(Zn,n−k)− 1)
U(Zn,n−i+1)

U(Zn,n−k)

(
U(Zn,n−i+1)

U(Zn,n−k)
(1 + δn)− δn

)



23

≤ 1

k

k∑
i=1

−δn

1 + δ

(
U(Zn,n−k)

U(Zn,n−i+1)
−

(
U(Zn,n−k)

U(Zn,n−i+1)

)2
)

= − δn

1 + δ
(gn(t(0))− g̃n).

Hence,

hn(t(δn)) = fn(t(δn))gn(t(δn))− 1

< fn(t(0))gn(t(0))− 1 + δn

(
gn(t(0))(1− gn(t(0)))− fn(t(0))

gn(t(0))− g̃n

1 + δ

)

:= fn(t(0))gn(t(0))− 1 + δnAn.

Since the lower bound of fn(t(−δn)) and gn(t(−δn)) for 0 < δn < δ follows similar calculation,

we only present the result as follows

fn(t(−δn))− fn(t(0)) ≥ log(1− δ)

δ
δn(1− gn(t(0))) (2.16)

and

gn(t(−δn))− gn(t(0)) ≥ δn(gn(t(0))− g̃n).

Hence,

hn(t(−δn)) > fn(t(0))gn(t(0))− 1 + δn

(
log(1− δ)

δ
gn(t(0))(1− gn(t(0))) + fn(t(0))(gn(t(0))− g̃n)

)

+ δ2
n

log(1− δ)

δ
(1− gn(t(0)))(gn(t(0))− g̃n)

:= fn(t(0))gn(t(0))− 1 + δnBn.

We are going to choose suitable δn, such that δn → 0 almost surely as n →∞. Then,

by Lemma 2.3.3, as n →∞, we have that

An
a.s.−→ A(δ) := γ

(1+γ)2
− γ

(2γ+1)(1+δ)

Bn
a.s.−→ B(δ) := log(1−δ)

δ
γ

(1+γ)2
+ γ

2γ+1
.

By taking δ → 0, we get that

A(δ) → − γ3

(1 + γ)2(2γ + 1)
< 0

and

B(δ) → γ3

(1 + γ)2(2γ + 1)
> 0.

Hence, we use the following procedure to choose suitable δn.

1) Choose a suitable δ > 0, such that A(δ) < 0 and B(δ) > 0.

2) As n →∞, we have eventually, An < 0 and Bn > 0. Denote

δn :=
∣∣fn(t(0))gn(t(0))− 1

∣∣
((

− 1

An

) ∨ 1

Bn

)
> 0.
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From Lemma 2.3.3, it is clear that δn
a.s.−→ 0 as n → ∞. Hence, eventually, δn < δ.

By employing the inequalities on the upper bound of hn(t(δn)) and the lower bound of

hn(t(−δn)), we have that

hn(t(δn)) < fn(t(0))gn(t(0))− 1 + δnAn ≤ fn(t(0))gn(t(0))− 1−
∣∣fn(t(0))gn(t(0))− 1

∣∣ ≤ 0

and

hn(t(−δn)) > fn(t(0))gn(t(0))− 1 + δnBn ≥ fn(t(0))gn(t(0))− 1 +
∣∣fn(t(0))gn(t(0))− 1

∣∣ ≥ 0.

Hence, we proved that there exists a root of hn(t) = 0 on the interval [t(−δn), t(δn)].

Now we are going to prove the consistency. Denote the root as t∗n. Because fn is an

increasing function,

fn(t(−δn)) ≤ fn(t∗n) ≤ fn(t(δn)).

From (2.15) and (2.16), we have that

fn(t(0)) +
log(1− δ)

δ
δn(1− gn(t(0))) ≤ fn(t∗n) ≤ fn(t(0)) + δn(1− gn(t(0))).

By relation (2.12) and considering the fact that δn → 0 almost surely as n →∞, we get

that fn(t∗n)
a.s.−→ γ + 1. Hence γ̂∗n = fn(t∗n)− 1

a.s.−→ γ, i.e. γ̂∗n is strongly consistent.

To prove the almost sure convergence of σ̂∗n, we use the fact that, as t → ∞, a(t) ∼
γU(t). So, as n →∞,

a(n/k)

γXn,n−k

∼ U(n/k)

U(Zn,n−k)
.

Since U is regularly varying at infinity with index γ > 0, from (2.9) we get that

lim
n→∞

a(n/k)

γXn,n−k

= 1 a.s.

Together with the fact that δn → 0 almost surely as n →∞, it implies that

lim
n→∞

a(n/k)t(±δn)

γ
= 1 a.s.

Since t∗n lies on the interval [t(−δn), t(δn)], we get that

lim
n→∞

a(n/k)t∗n
γ

= 1 a.s.

Combining this with the almost sure convergence of γ̂∗n, the consistency of σ̂∗n = γ̂∗n
t∗n

is

proved for γ positive.

Furthermore, an interesting remark for the positive case finishes this subsection.
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Remark 2.3.1 The proof of the positive case suggested that the root of hn(t) = 0 lies on

the interval [t(−δn), t(δn)] and t(0) can be an approximate root of hn(t) = 0. This argument

leads to two observations. Practically, we can search the root of hn(t) = 0 only on the

interval [t(−δn), t(δn)] when applying Grimshaw’s numerical method. Theoretically, based on

this approximate root, we get an approximate extreme value index estimator, fn(t
(0)
n )− 1,

which is exactly the Hill estimator.

2.4 Extension under the second order condition

As discussed in Section 2.1, in order to complete the proof of asymptotic normality of

the maximum likelihood estimator for the extreme value index in Drees et al. (2004), it

is necessary to prove that under the second order condition there exists a solution (γ̂, σ̂)

such that ∣∣∣∣
γ̂

σ̂/a(n/k)
− γ

∣∣∣∣ = Op(k
−1/2) and log

σ̂

a(n/k)
= Op(1).

Notice that the consistency of the scale estimator ensures the second required relation

even under the first order condition. Hence, only the existence of a solution satisfying the

first relation should be proved. According to Grimshaw’s numerical method, the solution

(γ̂, σ̂) is derived from the root t∗n of hn(t) = 0, by the relations γ̂ = fn(t∗n)−1 and σ̂ = γ̂/t∗n.

Using this notation, the first required relation is simplified as

|t∗a(n/k)− γ| = Op(k
−1/2). (2.17)

We shall prove the following proposition.

Proposition 2.4.1 Under the second order condition with γ > −1/2, there exists a root

t∗n of hn(t) = 0 satisfying (2.17).

Here we present the proof only for γ > 0. For −1/2 < γ ≤ 0, the proof is postponed to

Appendix 2.B.

Proof of Proposition 2.4.1

When γ > 0, from the proof in Subsection 2.3.2, we get that when n is sufficiently large,

there exists a root t∗n of hn(t) = 0 lying between t(−δn) and t(δn), where t(δ) is defined as

t(δ) =
1 + δ

U(Zn,n−k)
,

and

δn =
∣∣fn(t(0))gn(t(0))− 1

∣∣
((

− 1

An

) ∨ 1

Bn

)
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is a positive sequence that goes to 0 almost surely as n →∞. Notice that in the positive

case one may take a(t) = γU(t). Hence,

t(δ)a(n/k) = γ(1 + δ)
U(n/k)

U(Zn,n−k)
.

With the second order condition, Lemma 2.3.3 can be extended to get the speed of

convergence, i.e. to prove that
√

k(fn(t(0)) − (γ + 1)) and
√

k(gn(t(0)) − 1/(γ + 1)) are

both asymptotically normally distributed as n → ∞. The asymptotic normality of fn is

in fact the asymptotic normality of Hill estimator. Since both the sequences An and Bn

converge to non-zero constant as n →∞, it is proved that
√

kδn = Op(1).

Under the second order condition,
√

k
(

U(n/k)
U(Zn,n−k)

− 1
)

is asymptotically normally dis-

tributed, see, e.g. de Haan and Ferreira (2006) Theorem 2.4.1. Therefore, combining the

above two asymptotic relations, we get that
√

k(t(δn)a(n/k)− γ) = Op(1).

A similar relation holds for t(−δn). Because t∗n lies in between t(−δn) and t(δn), it is

proved that √
k(t∗na(n/k)− γ) = Op(1),

which is equivalent to relation (2.17). Hence, under the second order condition, there

exists a suitable root t∗ verifying (2.17). ¤
From Proposition 2.4.1, we get that the extra conditions in the proof of asymptotic

normality in Drees et al. (2004) are in fact fulfilled.

2.5 Conclusion

This chapter studies the existence and consistency of the maximum likelihood estimator of

the extreme value index. Under only the first order condition, it is proved that for γ > −1,

as n → ∞, a solution of the likelihood equations eventually exists. The estimators are

consistent in the sense that γ̂ → γ and σ̂/a(n/k) → 1 almost surely as n →∞.

The asymptotic normality under second order condition has been proved by Drees

et al. (2004) for γ > −1/2. The consistency result in this chapter illustrates that the

maximum likelihood estimator can also be applied for −1 < γ ≤ −1/2.

From the proof, it is suggested that the solution lies in a specific interval in each case

(γ > 0, −1 < γ < 0 and γ = 0). Those intervals can be used in numerically solving the

likelihood equations.

The paper Drees et al. (2004) on the asymptotic normality starts from the assumption

that a sequence of solutions exist and converge to the real value with a certain speed of

convergence. The proofs in this chapter can be extended to show that such a sequence of

solutions does exist. Hence the two studies together offer exactly the asymptotic normality

result that is needed for applications.
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2.A Appendix A

Proof of existence and consistency when −1 < γ < 0

When −1 < γ < 0, (2.1) implies that U(∞) < ∞, and the function U(∞) − U(x)

is regularly varying at infinity with index γ. Similar to the positive case, now define

the sequence t(δ) as t(δ) = − 1+δ
U(∞)−Xn,n−k

. But for this case, it can only be defined for

δ ∈ (−1/2, 0), because for δ > 0, it is not ensured that 1 + t(δ)Yi > 0 for i = 1, 2, · · · , k.

So the trick in the positive case can only be used for one side. For the other side, we are

going to introduce another way to build up inequality.

Compared to the positive case, we do not find a sequence δn → 0 such that hn(t(δn)) <

0. Instead, we first prove that for some fixed δ < 0, when n is sufficiently large hn(t(δ)) < 0

holds. The following lemma studies the asymptotic behavior of fn and gn at t = t(δ).

Lemma 2.A.1 Suppose (2.1) holds for −1 < γ < 0, and the sequence k(n) satisfies

k(n) → ∞, k(n)/n → 0 and k(n)/ log n → ∞ as n → ∞, we have that, for any δ ∈
(−1/2, 0], as n →∞, the following relations hold,

fn(t(δ))
a.s.−→ f(δ) := 1 +

∫ 1

0

log((1 + δ)s−γ − δ)ds

gn(t(δ))
a.s.−→ g(δ) :=

∫ 1

0

ds

(1 + δ)s−γ − δ

hn(t(δ))
a.s.−→ h(δ) := f(δ)g(δ)− 1.

Proof of Lemma 2.A.1

They can be proved by applying Lemma 2.3.2. When γ < 0, the uniformly continuity

required by Lemma 2.3.2 is fulfilled for each relation. ¤
It is clear that f(0) = γ + 1, g(0) = 1

γ+1
and h(0) = 0, and all three functions are left

continuous at 0. Meanwhile, by calculating the left derivative of f and g at 0, we get the

left derivatives of h at 0 as

h′(0−) =

{
− γ3

(γ+1)(2γ+1)
> 0 −1/2 < γ < 0

+∞ −1 < γ ≤ −1/2

So, it is sufficient to conclude that, there exists a δ0 < 0, for any δ0 < δ < 0, when n is

sufficiently large,

hn(t(δ)n ) < 0 a.s. (2.18)

For the other side, define a different sequence

sn := − 1− 1/k

Xn,n −Xn,n−k

. (2.19)
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Our purpose is to prove that, for sufficiently large n,

hn(sn) > 0 a.s. (2.20)

The following lemma is useful in the later proof of the theorem.

Lemma 2.A.2 With the same condition on k in Lemma 2.A.1, suppose λ > 0 is a fixed

constant, then as n →∞,

∫ 1

k−1/5

log
Xn,n −Xn,n−dske+1

Xn,n −Xn,n−k

ds
a.s.−→ γ, (2.21)

∫ 1

k−1/5

1
Xn,n−Xn,n−dske+1

Xn,n−Xn,n−k
+ λ

ds
a.s.−→

∫ 1

0

dt

t−γ + λ
. (2.22)

Proof of Lemma 2.A.2

For s ∈ (k−1/5, 1],

0 <
U(∞)−Xn,n

U(∞)−Xn,n−dske+1

≤ U(∞)−Xn,n

U(∞)−Xn,n−dk4/5e+1

≤ (1 + ε)

(
Zn,n

Zn,n−dk4/5e+1

)γ+ε

.

By using (2.10), the right side goes to 0 almost surely. So, for any given τ > 0, we have

eventually

U(∞)−Xn,n < τ(U(∞)−Xn,n−dske+1).

Next, we use this to construct the bounds for
Xn,n−Xn,n−dske+1

Xn,n−Xn,n−k
as

U(∞)−Xn,n−dske+1

U(∞)−Xn,n−k

≥ Xn,n −Xn,n−dske+1

Xn,n −Xn,n−k

≥ Xn,n −Xn,n−dske+1

U(∞)−Xn,n−k

=
U(∞)−Xn,n−dske+1

U(∞)−Xn,n−k

− U(∞)−Xn,n

U(∞)−Xn,n−k

> (1− τ)
U(∞)−Xn,n−dske+1

U(∞)−Xn,n−k

which leads to
∫ 1

k−1/5

log
U(∞)−Xn,n−dske+1

U(∞)−Xn,n−k

ds ≥
∫ 1

k−1/5

log
Xn,n −Xn,n−dske+1

Xn,n −Xn,n−k

ds

>

∫ 1

k−1/5

log(1− τ) + log
U(∞)−Xn,n−dske+1

U(∞)−Xn,n−k

ds.

(2.23)

By checking that log((1 + ε)tγ+ε) is uniformly continuous on [1,∞), for |ε| < 1, we have

∫ 1

k−1/5

log
U(∞)−Xn,n−dske+1

U(∞)−Xn,n−k

ds−
∫ 1

k−1/5

log s−γds → 0 a.s.

which leads to ∫ 1

k−1/5

log
U(∞)−Xn,n−dske+1

U(∞)−Xn,n−k

ds
a.s.−→ γ
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With this result, by first taking n →∞, and then taking τ → 0 in (2.23), (2.21) is proved.

The proof of (2.22) is essentially the same. ¤
With the above lemma, the lower bound of fn(sn) can be calculated as follows,

fn(sn) = 1 +

∫ 1

0

log

(
1− 1− 1/k

Xn,n −Xn,n−k

(Xn,n−dske+1 −Xn,n−k)

)
ds

> 1 + k−1/5 log

(
1− 1− 1/k

Xn,n −Xn,n−k

(Xn,n −Xn,n−k)

)

+

∫ 1

k−1/5

log

(
1− 1

Xn,n −Xn,n−k

(Xn,n−dske+1 −Xn,n−k)

)
ds

= 1− log k

k1/5
+

∫ 1

k−1/5

log
Xn,n −Xn,n−dske+1

Xn,n −Xn,n−k

ds
a.s.−→ 1 + γ > 0 (2.24)

Similarly, for given λ > 0 when k > 1/λ,

gn(sn) =

∫ 1

0

1

1− 1−1/k
Xn,n−Xn,n−k

(Xn,n−dske+1 −Xn,n−k)

=

(∫ 1/k

0

+

∫ k−1/5

1/k

+

∫ 1

k−1/5

)
1

1− 1−1/k
Xn,n−Xn,n−k

(Xn,n−dske+1 −Xn,n−k)
ds

> 1 + 0 +

∫ 1

k−1/5

1

1− 1−λ
Xn,n−Xn,n−k

(Xn,n−dske+1 −Xn,n−k)
ds

≥ 1 +

∫ 1

k−1/5

1
Xn,n−Xn,n−dske+1

Xn,n−Xn,n−k
+ λ

ds
a.s.−→ 1 +

∫ 1

0

dt

t−γ + λ
> 0.

So, for sufficiently large n, we have eventually

hn(sn) = fn(sn)gn(sn)− 1 > (1 + γ − ε)(1 +

∫ 1

0

dt

t−γ + λ
− ε)− 1.

where ε > 0 is small enough. Taking λ → 0 and ε → 0,

(1 + γ − ε)(

∫ 1

0

dt

t−γ + λ
+ 1− ε) → γ + 2 > 1

It implies that, by choosing suitable λ, for sufficient large n, (2.20) holds.

Finally, combining (2.18) and (2.20), there must exist a root of hn(t) = 0 between sn

and t(δ), when n is sufficiently large. Denote the root as t∗n again. Similar to the positive

case, from relation (2.24), we have

γ + 1 ≤ lim inf fn(sn) ≤ lim inf fn(t∗n) ≤ lim sup fn(t∗n) ≤ lim sup fn(t(δ)) = f(δ) a.s.

Note that f(δ) → γ + 1 as δ → 0. By taking δ → 0, the consistency of γ̂∗ = fn(t∗n)− 1 is

proved. Notice that when γ < 0, a(t) ∼ −γ(U(∞) − U(t)), the proof of the consistency

of σ̂∗ is essentially the same as in the positive case.
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Proof of existence and consistency when γ = 0

When (2.1) holds for γ = 0, there are two cases: U(∞) = ∞ or U(∞) < ∞. Since the

maximum likelihood estimator is shift invariant, we can always assume that 0 < U(∞) ≤
∞ without loss of generality. Under this assumption, considering that Zn,n−k → ∞, we

assume that the considered order statistics in the likelihood equations, Xn,n−k, · · · , Xn,n,

are all positive.

From Proposition B.2.17 in de Haan and Ferreira (2006), we have the following in-

equalities. Given any ε > 0, there exists t0, such that, for tx ≥ t0 and x > 0,

−ε max(xε, x−ε) <
U(tx)− U(t)

a0(t)
− log x < ε max(xε, x−ε), (2.25)

where a0 is a specific auxiliary function such that a0(t) is a positive function and a0(t) ∼
a(t) as t → ∞. Without loss of generality, we use the notation a(t) for this specific

function a0(t) in the proof.

Suppose Zn,1 ≤ Zn,2 ≤ · · · ≤ Zn,n are the order statistics defined in Subsection 2.3.1.

The following lemmas are useful in the proof.

Lemma 2.A.3 Suppose the sequence k = k(n) satisfies that k(n) → ∞, k(n)/n → 0,

and k(n)/ log n →∞ as n →∞, then for any p > 0, as n →∞
log Zn,n − log Zn,n−k

kp

a.s.−→ 0.

Proof of Lemma 2.A.3

From (2.9), we get that, as n →∞,

n

kZn,n−k

→ 1 a.s. ⇒ log n− log k − log Zn,n−k → 0 a.s.

⇒ log n− log Zn,n−k

kp
→ 0 a.s.

By applying the law of iterated logarithm for sample maxima, (see, e.g. Shorack and

Wellner (1986) p.408),

lim sup
n→∞

log Zn,n − log n

log log n
= 1 a.s. ⇒ lim sup

n→∞

log Zn,n − log n

kp
= 0 a.s. (2.26)

where the last step is provided by k(n)/ log n →∞.

Combining these two equations above, we get that

lim sup
n→∞

log Zn,n − log Zn,n−k

kp
= 0 a.s.

Since log Zn,n − log Zn,n−k ≥ 0 always holds, the lemma is proved. ¤
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Lemma 2.A.4 Suppose (2.1) holds for γ = 0, if the sequence k = k(n) satisfies k(n) →
∞, k(n)/n → 0, and k(n)/(log n)c →∞ for some c > 1, then

Ml :=
1

k

k∑
i=1

(
U(Zn,n−i+1)− U(Zn,n−k)

a(Zn,n−k)

)l
a.s.−→ l!,

for all l ∈ N.

Proof of Lemma 2.A.4

We first prove the lemma for the case l = 1. From (2.25) we have that

1

k

k∑
i=1

U(Zn,n−i+1)− U(Zn,n−k)

a(Zn,n−k)
=

∫ 1

0

U(Zn,n−dske+1)− U(Zn,n−k)

a(Zn,n−k)
ds

≤ 1

k1/5
log

Zn,n

Zn,n−k

+
1

k1/5
ε

(
Zn,n

Zn,n−k

)ε

+

∫ 1

k−1/5

(
log

Zn,n−dske+1

Zn,k

+ ε

(
Zn,n−dske+1

Zn,n−k

)ε)
ds

=:I1 + I2 + I3 (2.27)

First of all, from Lemma 2.A.3, I1 → 0 almost surely as n → ∞. Secondly, from (2.26),

we have that for any τ > 1 when n is sufficiently large,

log Zn,n − log n ≤ τ log log n

holds almost surely. Hence, eventually, we have that Zn,n/n ≤ (log n)τ . Considering that

k(n)/(log n)c → ∞ for some c > 1, by taking τ < c, we have that Zn,n/(nk) → 0 holds

almost surely as n →∞. Combining with the fact that kZn,n−k/n → 1 almost surely, we

have that, as n →∞,
Zn,n

k2Zn,n−k

a.s.−→ 0.

By taking ε < 1/10 in (2.27), we proved that I2 → 0 almost surely as n →∞.

Thirdly, we consider I3. From (2.7), we get that for all s ∈ (k−1/5, 1] and sufficiently

large n, ∣∣∣∣
n/k

sZn,n−dske+1

− 1

∣∣∣∣ ≤ M
(2 log log n)1/2

k1/2−1/5
a.s.

Since k/(log n)c →∞ as n →∞, we get that

n/k

sZn,n−dske+1

→ 1 a.s.

holds uniformly for all s ∈ (k−1/5, 1]. Together with (2.9), we have that

Zn,n−k

sZn,n−dske+1

→ 1 a.s.

holds uniformly for all s ∈ (k−1/5, 1].
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Thus, as n →∞, ∫ 1

k−1/5

log
Zn,n−k

sZn,n−dske+1

ds → 0 a.s.

It implies that

∫ 1

k−1/5

log
Zn,n−dske+1

Zn,n−k

ds−
∫ 1

k−1/5

log

(
1

s

)
ds → 0 a.s.

as n →∞. A similar result holds for function ε
(

1
s

)ε
. Hence we have that

I3 −
∫ 1

k−1/5

(
log

(
1

s

)
+ ε

(
1

s

)ε)
ds

a.s.−→ 0,

which leads to

I3 → 1 +
ε

1− ε
,

as n →∞. Combining these three parts, we have that

lim sup
n→∞

1

k

k∑
i=1

U(Zn,n−i+1)− U(Zn,n−k)

a0(Zn,n−k)
≤ 1 +

ε

1− ε
a.s.

A similar lower bound applies. Then by taking ε → 0, the lemma under l = 1 is proved.

The proofs of the other cases are similar, the only difference in the proofs is that the

dividing point k−1/5 has to be changed into some smaller power function of k. That is

not a hurdle to pass if a correspondingly smaller ε is chosen. ¤

Lemma 2.A.5 Suppose the conditions in Lemma 2.A.4 hold. Then

lim
n→∞

∫ 1

k−1/5

log
U(Zn,n)− U(Zn,n−dske+1)

U(Zn,n)− U(Zn,n−k)
ds = 0 a.s.

Proof of Lemma 2.A.5

Since
U(Zn,n)− U(Zn,n−dske+1)

U(Zn,n)− U(Zn,n−k)
< 1,

for all s ∈ [k−1/5, 1], it is only necessary to prove that

lim inf
n→∞

∫ 1

k−1/5

log
U(Zn,n)− U(Zn,n−dske+1)

U(Zn,n)− U(Zn,n−k)
ds ≥ 0.

Since Zn,n/Zn,n−dk4/5e+1 →∞ as n →∞, for any C > 0, when n is sufficiently large,

Zn,n > e2C · Zn,n−dk4/5e+1 ≥ e2C · Zn,n−dske+1,

for all s ∈ [k−1/5, 1]. Considering that U is an increasing function, we get that

U(Zn,n)− U(Zn,n−dske+1)

a(Zn,n−dske+1)
≥ U(e2C · Zn,n−dske+1)− U(Zn,n−dske+1)

a(Zn,n−dske+1)
→ 2C a.s.
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Hence, for sufficiently large n,

U(Zn,n)− U(Zn,n−dske+1)

a(Zn,n−dske+1)
> C.

On the other hand, inequality (2.25) implies that

U(Zn,n−k)− U(Zn,n−dske+1)

a(Zn,n−dske+1)
≥ log

Zn,n−k

Zn,n−dske+1

−ε

(
Zn,n−dske+1

Zn,n−k

)ε

≥ −
(

1

ε
+ ε

)(
Zn,n−dske+1

Zn,n−k

)ε

.

The last step is a direct consequence of the fact that for all x > 1 and ε > 0, log x ≤ 1
ε
xε.

Combining the two inequalities above, we get that for all s ∈ [k−1/5, 1],

U(Zn,n)− U(Zn,n−dske+1)

U(Zn,n)− U(Zn,n−k)
=

1

1 +
U(Zn,n−dske+1)−U(Zn,n−k)

U(Zn,n)−U(Zn,n−dske+1)

>
1

1 + 1
C

(
1
ε

+ ε
) (

Zn,n−dske+1

Zn,n−k

)ε

>
1

1 + 1
C

(
1
ε

+ ε
) · 1(

Zn,n−dske+1

Zn,n−k

)ε

=: L(C, ε) ·
(

Zn,n−k

Zn,n−dske+1

)ε

.

Hence,

∫ 1

k−1/5

log
U(Zn,n)− U(Zn,n−dske+1)

U(Zn,n)− U(Zn,n−k)
ds ≥

∫ 1

k−1/5

(
log L(C, ε) + ε log

Zn,n−k

Zn,n−dske+1

)
ds

= (1− k−1/5) log L(C, ε) + ε

∫ 1

k−1/5

log
Zn,n−k

Zn,n−dske+1

ds

:= I4 + I5.

As discussed in the proof of Lemma 2.A.4, we have that, as n →∞
∫ 1

k−1/5

log
Zn,n−k

Zn,n−dske+1

ds−
∫ 1

k−1/5

log sds → 0 a.s.

Therefore I5 → −1 almost surely as n →∞. Together with the fact that I4 → log L(C, ε),

we get

lim inf
n→∞

∫ 1

k−1/5

log
U(Zn,n)− U(Zn,n−dske+1)

U(Zn,n)− U(Zn,n−k)
ds ≥ log L(C, ε)− ε.

By taking ε → 0 and Cε →∞, we proved the lemma. ¤
Now we shall prove Theorem 2.2.3. Similar to the case γ positive we shall find a

sequence δn > 0 such that hn(t(δn)) < 0 for sufficiently large n, where t(δ) is defined as

t(δ) = δ
a(Zn,n−k)

. Meanwhile, similar to the case γ negative, we shall prove that for a

sequence sn, h(sn) > 0 holds for sufficiently large n.
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We start with the sequence δn by calculating the upper bounds of fn(t(δn)) and gn(t(δn))

as follows. From the inequalities log(1 + x) < 1 + x − x2 + x3 and 1/(1 + x) < 1 − x +

x2 − x3 + x4 for all x > 0, we get

fn(t(δn))− 1 =
1

k

k∑
i=1

log

(
1 +

δn(U(Zn,n−i+1)− U(Zn,n−k))

a(Zn,n−k)

)

≤ δnM1 − δ2
n

2
M2 +

δ3
n

3
M3

gn(t(δn))− 1 =
1

k

k∑
i=1

1

1 +
δn(U(Zn,n−i+1)−U(Zn,n−k))

a(Zn,n−k)

− 1

≤ −δnM1 + δ2
nM2 − δ3

nM3 + δ4
nM4.

Combining the above two, we get that, for δn < 1

hn(t(δn)) ≤ δ2
n

(
M2

2
−M2

1

)
+ δ3

n

(
3M1M2

2
− 2M3

3

)
+ δ4

n

(
M4 − M2

2

2
− 4M1M3

3

)

+ δ5
n

(
5M2M3

6
+ M1M4

)
− δ6

n

(
M2

3

3
+

M2M4

2

)
+ δ7

n

M3M4

3

≤ δ2
n

(
M2

2
−M2

1

)
+ δ3

n

(
3M1M2

2
− 2M3

3

)

+ δ4
n

(
M4 − M2

2

2
− 4M1M3

3
+

5M2M3

6
+ M1M4 +

M3M4

3

)

:= δ2
n(P + Qδn + Rδ2

n),

where P = M2

2
−M2

1 → 0, Q = 3M1M2

2
− 2M3

3
→ −1, and R = M4− M2

2

2
− 4M1M3

3
+ 5M2M3

6
+

M1M4 + M3M4

3
→ 96 almost surely as n →∞.

Choose

δn :=
−Q−

√
Q2 − 3 |PR|
2R

> 0.

Then δn → 0 almost surely as n → ∞. Hence, for sufficiently large n, 0 < δn < 1.

Meanwhile, δn is always on the interval (
−Q−

√
Q2−4PR

2R
,
−Q+

√
Q2−4PR

2R
), which ensures that

P + Qδn + Rδ2
n < 0. Therefore, continuing with the upper bound of hn(t(δn)), we have

that, for sufficiently large n, hn(t(δn)) < 0.

For the other side, we use the sn defined in (2.19) and prove that for sufficiently large

n, hn(sn) > 0. Similar to the proof for −1 < γ < 0, we have that

fn(sn) > 1− log k

k1/5
+

∫ 1

k−1/5

log
U(Zn,n)− U(Zn,n−dske+1)

U(Zn,n)− U(Zn,n−k)
ds

a.s.→ 1.

Notice that the last step comes from Lemma 2.A.5. For gn(sn), similar to the proof for

−1 < γ < 0, by fixing λ > 0, when k > 1/λ, we have that

gn(sn) ≥ 1 +

∫ 1

k−1/5

1
Xn,n−Xn,n−dske+1

Xn,n−Xn,n−k
+ λ

≥ 1 +
1− k−1/5

1 + λ
→ 1 +

1

1 + λ
> 0.
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Therefore, for sufficiently large n, hn(sn) > (1 − ε)(1 + 1
1+λ

− ε) − 1 > 0, where ε > 0 is

small enough.

Although hn(t(δn)) and hn(sn) eventually have different signs, it is so far not sufficient

to conclude the existence of a non-zero root of hn(t) = 0 between t(δn) and sn. The reason

is that 0 is always a root of hn(t) lying between they two. In order to pass this hurdle,

we study the behavior of hn(t) in the neighborhood of 0. Notice that h′n(0) = 0 and

h′′n(0) =
1

k

k∑
i=1

(Xn,n−i+1 −Xn,n−k)
2 − 2

(
1

k

k∑
i=1

(Xn,n−i+1 −Xn,n−k)

)2

.

The extra condition (2.6) ensures that on a probability 1 set, h′′n(0) 6= 0. Together with

h′n(0) = 0, it is confirmed that hn(t) has the same sign at the two sides of 0, in a close

neighborhood. Now, considering the fact that hn(t(δn)) and hn(sn) have different signs, it

is proved that, for sufficiently large n, with probability 1, there exists a non-zero root t∗n
of hn(t) = 0 on the interval (sn, t(δn)).

Since δn → 0 almost surely as n → ∞, from the upper bound of fn(t(δn)), it is

not difficult to verify that lim supn→∞ fn(t(δn)) ≤ 1 almost surely. On the other hand,

Lemma 2.A.5 ensures that lim infn→∞ fn(sn) ≥ 1 almost surely. Considering the fact

that fn is an increasing function and t∗n lies in between sn and t(δn), we conclude that

γ̂∗n = fn(t∗n)− 1
a.s.−→ 0, i.e. γ̂∗n is strongly consistent.
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2.B Appendix B

Proof of Proposition 2.4.1 for −1/2 < γ < 0

The proof of existence for γ negative showed that

t(δ) = − 1 + δ

U(∞)−Xn,n−k

is the upper bound of the root t∗n, where δ is a fixed negative number. To use a fixed δ < 0

instead of a negative sequence δn → 0 as shown in the positive case is a compromise to

have a unified proof for all −1 < γ < 0. Actually, in case −1/2 < γ < 0, it is still possible

to use a negative sequence δn → 0 to prove that hn(t(δn)) < 0. The proof is parallel to the

positive case. Thus we omit its detail but only sketch the main instruments.

Denote

ḡn :=
1

k

k∑
i=1

(
U(∞)− U(Zn,n−k)

U(∞)− U(Zn,n−i+1)

)2

.

Similar to Lemma 2.3.3, the following three relations hold, as n →∞,

fn(t(0))
a.s.−→ γ + 1,

gn(t(0))
a.s.−→ 1

γ + 1
,

ḡn
a.s.−→ 1

2γ + 1
.

Note that the last relation requires γ > −1/2.

The upper bounds of fn(t(δn)) and gn(t(δn)) are calculated as

fn(t(δn))− fn(t(0)) < δn(1− gn(t(0)))

gn(t(δn))− gn(t(0)) < −δn(gn(t(0))− ḡn) + δ2
n(gn(t(0))− ḡn)2.

Hence,

hn(t(δn)) < fn(t(0))gn(t(0))− 1 + δnCn.

where Cn → − γ3

(1+γ)2(2γ+1)
> 0 almost surely as n →∞. Therefore, by taking

δn :=
∣∣fn(t(0))gn(t(0))− 1

∣∣
(
− 1

Cn

)
,

for sufficiently large n, δn < 0 and hn(t(δn)) < 0.

In the proof of the existence for γ negative, we did not define t(δ) for δ > 0 because

1 + t(δ)Y1 > 0 is not always ensured for positive δ. In particular, when γ < −1/2, as

n → ∞, it can be proved that eventually 1 + t(δ)Y1 < 0 for δ > 0. Thus fn(t(δ)) is not

well defined. However, when −1/2 < γ < 0, with the second order condition, it is still
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possible to define t(−δn), where δn is the same as above. In this case we first verify that

1 + t(−δn)Y1 > 0 holds for sufficiently large n. This inequality is equivalent to

−δn <
U(∞)− U(Zn,n)

U(Zn,n)− U(Zn,n−k)
. (2.28)

Similar to the proof in Section 2.4, by multiplying
√

k, the left side is Op(1). The right

side can be bounded as

√
k

U(∞)− U(Zn,n)

U(Zn,n)− U(Zn,n−k)
>
√

k
U(∞)− U(Zn,n)

U(∞)− U(Zn,n−k)

≥
√

k(1− ε)

(
Zn,n

Zn,n−k

)γ−ε

,

where ε is a given positive number. Since Zn,n

k1−εZn,n−k
→ ∞ almost surely as n → ∞, we

have for any M > 0

√
k

U(∞)− U(Zn,n)

U(Zn,n)− U(Zn,n−k)
>
√

k(1− ε)
(
Mk1−ε

)γ−ε

= (1− ε)Mγ−εk(1−ε)(γ−ε)+1/2

Because γ > −1/2, for sufficiently small ε, (1− ε)(γ − ε) + 1/2 > 0. Thus, the right side

goes to infinity, which verifies the inequality (2.28).

Now we turn to the lower bounds of fn(t(−δn)) and gn(t(−δn)). First of all, from the

proof of the inequality (2.28), it is observed that the inequality can be improved as that

−δn < τ

(
U(∞)− U(Zn,n)

U(Zn,n)− U(Zn,n−k)

)

eventually holds for any τ > 0. It implies that, eventually, we have

−δn
U(Zn,n)− U(Zn,n−k)

U(∞)− U(Zn,n)
< τ.

From the inequality that log(1 − x) > −x
1−x

for all 0 < x < 1, the lower bound of

fn(t(−δn)) is given as

fn(t(−δn))− fn(t(0)) ≥ δn

1 + δn
U(Zn,n)−U(Zn,n−k)

U(∞)−U(Zn,n)

(gn(t(0))− 1)

>
δn

1− τ
(gn(t(0))− 1).

Meanwhile, we have that

gn(t(−δn))− gn(t(0)) ≥ −δn(ḡn − gn(t(0))).
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Hence, combining these two,

hn(t(−δn)) > fn(t(0))gn(t(0))− 1 + δnDn,

where Dn → − 1
1−τ

γ
(1+γ)2

+ γ
1+2γ

< 0 for sufficiently small τ . Meanwhile, since

1

1− τ

γ

(1 + γ)2
− γ

1 + 2γ
< − γ3

(1 + γ)2(2γ + 1)
,

it implies that, eventually, −Dn < Cn. Therefore, by modifying δn as

δ′n :=
∣∣fn(t(0))gn(t(0))− 1

∣∣
(

1

Dn

)
,

it still serves the purpose that hn(t(δ
′
n)) < 0 and

√
kδ′n = Op(1), while hn(t(−δ′n)) > 0 is

now ensured.

Finally, we conclude that fop −1/2 < γ < 0, with the second order condition, there

exists a root t∗n of hn(t) = 0 lying between t(δ
′
n) and t(−δ′n).

Similar to the positive case, we first study the asymptotic behavior of t(±δ′n)a(n/k).

Notice that in the negative case one may take a(t) = −γ(U(∞)− U(t)). It is clear that

t(δ
′
n)a(n/k) = γ(1− δ′n)

U(∞)− U(n/k)

U(∞)− U(Zn,n−k)
.

Under the second order condition, the property of location estimation ensures that

√
k

(
U(∞)− U(n/k)

U(∞)− U(Zn,n−k)
− 1

)
= Op(1).

Together with the fact that
√

kδ′n = Op(1), we get
√

kt(δ
′
n)a(n/k) = Op(1). Similar result

holds for t(−δ′n)a(n/k), hence, also t∗n. This completes the proof of (2.17) for −1/2 < γ < 0.

Proof of Proposition 2.4.1 for γ = 0

The proof of existence for γ = 0 showed that by defining t(δ) = δ
a(Zn,n−k)

and choosing a

suitable positive sequence δn → 0 as n →∞, we obtained the upper bound of the root t∗n
as t(δn). For the lower bound, with only the first order condition, we could not choose a

corresponding negative sequence because it is not ensured that 1 + t(δ)Y1 > 0 for negative

δ. As a compromise, we used sn defined in (2.19). Now, under the second order condition,

we can pass the hurdle and return to a similar setup as the upper bound. The reason is

the following lemma.

Lemma 2.B.1 Suppose the second order condition in (2.5) holds with γ = 0. Suppose

the sequence k satisfies the condition in Lemma 2.A.3. Then, for any p > 0, as n →∞

k−p U(Zn,n)− U(Zn,n−k)

a(Zn,n−k)

a.s.→ 0.
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Proof of Lemma 2.B.1

It is only necessary to prove that

lim sup
n→∞

k−p U(Zn,n)− U(Zn,n−k)

a(Zn,n−k)
= 0 a.s.

Under the second order condition with γ = 0, Theorem 2.3.6 in de Haan and Ferreira

(2006) provides the following inequality: for any ε > 0, there exists t0 such that for all

t ≥ t0 and x ≥ 1, ∣∣∣∣∣
U(tx)−U(t)

a0(t)
− log x

A0(t)
−Ψρ(x)

∣∣∣∣∣ ≤ εxρ+ε,

where ρ ≤ 0, a0 and A0 are specific choices of a and A in (2.5), and

Ψρ(x) =

{
xρ−1

ρ
, ρ < 0;

1
2
(log x)2, ρ = 0.

By applying this inequality with t = Zn,n−k and x = Zn,n/Zn,n−k, we get that

U(Zn,n)− U(Zn,n−k)

a0(Zn,n−k)
≤ log

Zn,n

Zn,n−k

+A0(Zn,n−k)

(
Ψρ

(
Zn,n

Zn,n−k

)
+ ε

(
Zn,n

Zn,n−k

)ρ+ε
)

:= I6+I7.

Firstly, Lemma 2.A.3 ensures that I6/k
p → 0 as n →∞. Secondly, by choosing ε < p, it

is not difficult to verify that as n →∞,

1

kp
ε

(
Zn,n

Zn,n−k

)ρ+ε

→ 0.

When ρ < 0, since limx→∞ Ψρ(x) = −1/ρ, we have that as n →∞,

1

kp
Ψρ

(
Zn,n

Zn,n−k

)
→ 0.

For ρ = 0, by applying Lemma 2.A.3, the above relation still holds. Together with the

fact that A0(Zn,n−k) → 0 as n →∞, we have that I7/k
p → 0 as n →∞. Thus we proved

the lemma by substituting a for a0. Notice that a0(t) ∼ a(t) as t →∞. The lemma holds

for any a function satisfying the second order condition. ¤
By taking p = 1/2 in Lemma 2.B.1 we get that for a negative sequence δ′n satisfying

that
√

kδ′n = Op(1) as n → ∞, t(δ
′
n)Y1 → 0 almost surely. Thus 1 + t(δ

′
n)Y1 > 0 holds for

sufficiently large n. We shall find such a sequence ensuring the inequality hn(t(δ
′
n)) > 0.

From the discussion above, we get that, when n is sufficiently large, 0 > t(δ
′
n)Y1 > −1/6.

Since log(1 + x) > x− x2/2 + x3/(3(1− 1/6)) for all −1/6 < x < 0, we get that

fn(t(δ
′
n)) ≥ M1δ

′
n −

M2

2
(δ′n)2 +

2M3

5
(δ′n)3,



40 Appendix B

where Ml is defined in Lemma 2.A.4 for l ∈ N. Together with the inequality that

gn(t(δ
′
n)) ≥ 1−M1δ

′
n + M2(δ

′
n)2 −M3(δ

′
n)3, for −1 < δ′n < 0, the lower bound of hn(t(δ

′
n))

is given as

hn(t(δ
′
n)) ≥ (δ′n)2

(
M2

2
−M2

1

)
+ (δ′n)3

(
−3M3

5
+

3M1M2

2

)

− (δ′n)4

(
7M3M1

5
+

M2
2

2

)
+ (δ′n)5 9M2M3

10
− (δ′n)6 2M2

3

5

≥ (δ′n)2

(
M2

2
−M2

1

)
+ (δ′n)3

(
−3M3

5
+

3M1M2

2

)

− (δ′n)4

(
7M3M1

5
+

M2
2

2

)
− (δ′n)4 9M2M3

10
− (δ′n)4 2M2

3

5

:= (δ′n)2P + (δ′n)3Q1 + (δ′n)4R1,

where P = M2

2
−M2

1 → 0, Q1 = −3M3

5
+3M1M2

2
→ −3/5, and R1 = −

(
7M3M1

5
+

M2
2

2
+ 9M2M3

10
+

2M2
3

5

)
→

−178
5

as n →∞.

Denote

δ′n :=
−Q1 −

√
Q2

1 − 3 |PR1|
2R1

< 0.

Then δ′n → 0 almost surely as n → ∞. Hence, for sufficiently large n, −1 < δ′n < 0.

Meanwhile, δ′n is always on the interval (
−Q1+

√
Q2

1−4PR1

2R1
,
−Q1−

√
Q2

1−4PR1

2R1
), which ensures

that P + Q1δ
′
n + R1(δ

′
n)2 > 0. Therefore, continuing with the lower bound of hn(t(δ

′
n)), we

have that, for sufficiently large n, hn(t(δ
′
n)) > 0.

Hence, similar to the proof of the existence for γ = 0, we conclude that for sufficiently

large n, there exists a non-zero root t∗n of hn(t) = 0 lying between t(δ
′
n) and t(δn).

Now we turn to consider the speed of convergence under the second order condition, i.e.

we change from almost sure convergence to convergence in probability. It is not difficult

to verify that with the second order condition, for Ml in Lemma 2.A.4, the speeds of

convergence are at the level 1/
√

k, which implies the same speeds of convergence for P ,

Q1 and R1, thus also δ′n, i.e.
√

kδ′n = Op(1). Because a is a regularly varying function

with index 0 and Zn,n−k/(n/k) → 1 almost surely as n → ∞, it is a direct consequence

that a(n/k)/a(Zn,n−k) → 1 almost surely. Since t(δ
′
n)a(n/k) = δn · a(n/k)

a(Zn,n−k)
, we get that

that
√

kt(δ
′
n)a(n/k) = Op(1), i.e. (2.17) holds for t(δ

′
n).

We recall the definition of δn as

δn :=
−Q−

√
Q2 − 3 |PS|
2S

> 0.

For the definitions of Q, P and S, see the proof of existence in case γ = 0. Similar to the

discussion above, we obtain the result for t(δn) similar to the one for t(δ
′
n). Thus (2.17)

holds for t∗n which lies in between t(δ
′
n) and t(δn). ¤







Chapter 3

Extending the Maximum Likelihood
Estimator for the Extreme Value
Index

3.1 Introduction

Let X1, X2, · · · be independent and identically distributed (i.i.d.) random variables from

a distribution function F . Suppose that F is in the domain of attraction of an extreme

value distribution, i.e. there exist constants an > 0 and bn, such that

F n(anx + bn) → Gγ(x), for all 1 + γx > 0

where Gγ(x) = exp(−(1 + γx)−1/γ) is the corresponding extreme value distribution func-

tion and γ ∈ R is the extreme value index (Gnedenko (1943)). This is commonly denoted

by F ∈ D(Gγ).

To estimate the extreme value index γ is a major issue in extreme value statistics.

For positive γ, Hill (1975) proposed the so-called the Hill estimator. For general γ, we

have the Pickands’ estimator suggested by Pickands III (1975), the moment estimator

suggested by Dekkers et al. (1989), and the UH estimator suggested by Beirlant et al.

(1996). In Falk (1995), an estimator for γ < −1/2 is proposed. Since the estimator

has a similar construction as the Hill estimator, it is usually called the negative Hill

estimator. The construction is as follows. Denote the order statistics of X1, X2, · · · , Xn

as Xn,1 ≤ · · · ≤ Xn,n. Then

γ̂F =
1

k

k∑
i=2

log(Xn,n −Xn,n−i+1)− log(Xn,n −Xn,n−k)

gives the negative Hill estimator, where k is a suitable sequence such that k(n) →∞ and

k(n)/n → 0 as n →∞.
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To study the asymptotic properties of those estimators, we need the necessary and

sufficient conditions of F ∈ D(Gγ). One of the commonly used criterion is as follows, see

e.g. de Haan (1984a).

Theorem 3.1.1 Let U :=
(

1
1−F

)←
be the generalized inverse function of 1/(1−F ). Then

F ∈ D(Gγ) if and only if there exists a function a(t) > 0 such that

lim
t→∞

U(tx)− U(t)

a(t)
=

xγ − 1

γ
, (3.1)

for all x > 0.

The condition (3.1) is called the extreme value condition. For all of the above estimators,

it is known that they are consistent under the extreme value condition.

In order to get the asymptotic normality, de Haan and Stadtmüller (1996) introduced

the second order condition as

lim
t→∞

U(tx)−U(t)
a(t)

− xγ−1
γ

A(t)
= H(x), (3.2)

for all x > 0, where H(x) is assumed not to be a multiple of xγ−1
γ

, and A(t) → 0 as t →∞.

With the second order condition, the asymptotic normality of all the above estimators

has been proved.1 Compared to this condition, we call the extreme value condition (3.1),

the first order condition.

An alternative characterization of the necessary and sufficient condition for a distri-

bution function F belonging to the domain of attraction is via the ”excess distribution

function” as in Balkema and de Haan (1974). Denote the excess distribution function

Ft(x) := P (X − t ≤ x|X > t) =
F (t + x)− F (t)

1− F (t)
.

Then F ∈ D(Gγ) is equivalent to

lim
t→x∗

Ft(xσ(t)) = Hγ(x) := 1− (1 + γx)−1/γ,

for all 1 + γx > 0, where σ(t) is a positive function and x∗ is the right endpoint of

F , i.e. x∗ = sup {x|F (x) < 1}. Hγ is the so-called generalized Pareto distribution (GPD)

function. Intuitively, the distribution function F is in the domain of attraction if and only

if the excesses above a high threshold are asymptotically generalized Pareto distributed.

Smith (1987) introduced a maximum likelihood estimator (MLE) of the extreme value

index by fitting the GPD with the empirical excesses. The MLE for the extreme value

1For the negative Hill estimator, it is proved for −1 < γ < −1/2.
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index and the scale, γ̂ML and σ̂ML, are obtained by solving the likelihood equations. The

likelihood equations are (c.f. Drees et al. (2004))

k∑
i=1

1

γ2
log

(
1 +

γ

σ
(Xn,n−i+1 −Xn,n−k)

)

−
(

1

γ
+ 1

)
(1/σ)(Xn,n−i+1 −Xn,n−k)

1 + (γ/σ)(Xn,n−i+1 −Xn,n−k)
= 0 (3.3)

k∑
i=1

(
1

γ
+ 1

)
(γ/σ)(Xn,n−i+1 −Xn,n−k)

1 + (γ/σ)(Xn,n−i+1 −Xn,n−k)
= k,

(the equations for γ = 0 are defined by continuity). Excluding γ = 0 as a solution, (3.3)

can be simplified as

1

k

k∑
i=1

log
(
1 +

γ

σ
(Xn,n−i+1 −Xn,n−k)

)
= γ (3.4)

1

k

k∑
i=1

1

1 + (γ/σ)(Xn,n−i+1 −Xn,n−k)
=

1

γ + 1
.

The equations are based on excesses Yi := Xn,n−i+1−Xn,n−k, where i = 1, · · · , k and k is

a suitable sequence of integers as in the Hill estimator.

For the MLE, because it is only given by solving the likelihood equations instead of an

explicit formula, its asymptotic properties have to be proved in a different way. In case

γ > −1/2, Smith (1987) sketched the proof of the consistency and asymptotic normality

assuming a few extra conditions. Alternatively, Zhou (2008b) proved that the first order

condition implies the consistency of the MLE for γ > −1. Drees et al. (2004) proved

that the second order condition implies the asymptotic normality for γ > −1/2. In the

proof, they assume that there exists a solution of the likelihood equation not too far off

the real value. The existence of such a solution has been proved in Zhou (2008b). The

combination of these two studies completes the proof of the asymptotic normality for the

MLE in the case γ > −1/2.

Since the consistency is proved for γ > −1, a natural question arises: what are the

asymptotic properties for −1 < γ ≤ −1/2? In this chapter, we prove the asymptotic

normality for −1 < γ ≤ −1/2 under the second order condition.

The chapter is organized as follows. Section 3.2 sketches the idea of the proof and

presents the main theorem. Section 3.3 provides the detail of the proof.

3.2 Main theorem

With the notation U :=
(

1
1−F

)←
, the i.i.d random variables can be rewritten as {Xn}∞n=1

d
=

{U(Zn)}∞n=1, where {Zn}∞n=1 are i.i.d. random variables with distribution function 1 −
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1/x, x ≥ 1. Correspondingly, let Zn,1 ≤ Zn,2 ≤ · · · ≤ Zn,n be the order statistics of

Z1, Z2, · · · , Zn. Then we can write Xn,n−i = U(Zn,n−i) for i = 0, 1, · · · , k.

To investigate the MLE, the starting point is how to solve the likelihood equations.

Grimshaw (1993) discussed a numerical way as follows. From the equations (3.4), with

the notation Yi := Xn,n−i+1 −Xn,n−k, it follows that,

(
1

k

k∑
i=1

log
(
1 +

γ

σ
Yi

)
+ 1

)
· 1

k

k∑
i=1

1

1 + (γ/σ)Yi

= 1. (3.5)

In order to write this in short hand, denote the two parts in (3.5) as functions:

fn(t) :=
1

k

k∑
i=1

log(1 + tYi) + 1,

gn(t) :=
1

k

k∑
i=1

1

1 + tYi

,

hn(t) := fn(t)gn(t)− 1.

Then, it is clear that any root (γ̂, σ̂) of (3.4) satisfies hn(γ̂/σ̂) = 0. Conversely, if t∗ is a

non-zero root of hn(t) = 0, we obtain (γ̂, σ̂) = (fn(t∗)− 1, (fn(t∗)− 1)/t∗) as the solution

of (3.4). With this idea, the MLE can be calculated by the following procedure:

1. find the root t∗n of hn(t) = 0;

2. γ̂ML = fn(t∗n)− 1;

3. σ̂ML = γ̂ML/t∗n.

The first step was solved in a numerical way in Grimshaw (1993). After that, the

MLE of (γ̂ML, σ̂ML) will be calculated based on the numerical root of hn(t) = 0.

Zhou (2008b) gives bounds for the root of hn(t) = 0 for sufficiently large n. When

−1 < γ < 0, we have that U(∞) < ∞ is the finite right endpoint of F . It is stated in Zhou

(2008b) that under only the first order condition, for any δ > 0, when n is sufficiently

large, the root t∗n of hn(t) = 0 lies between sn and t
(δ)
n where

sn := − 1− 1/k

Xn,n −Xn,n−k

and

t(δ)n = − 1− δ

U(∞)−Xn,n−k

.

Under the second order condition, a stronger result can be obtained. Firstly, we refer

to the inequality in Theorem 2.3.6, de Haan and Ferreira (2006) in case −1 < γ < −1/2

as the following proposition.
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Proposition 3.2.1 Suppose (3.2) holds for −1 < γ < −1/2 and ρ ≤ 0. Then there

are functions a0 and A0 satisfying the following property: for any ε, δ > 0, there exists

t0 = t0(ε, δ) such that for all t, tx ≥ t0,
∣∣∣∣∣

U(tx)−U(t)
a0(t)

− xγ−1
γ

A0(t)
−Ψγ,ρ(x)

∣∣∣∣∣ ≤ εxγ+ρ max(xδ, x−δ).

Here

Ψγ,ρ(x) =

{
xγ+ρ−1

γ+ρ
, ρ < 0

xγ

γ
log x, ρ = 0.

In the rest of this chapter, when we write A and a, we mean the specific choice A0 and

a0.

We first locate the root of hn(t) = 0. With r0 := U(∞)− U(Zn,n−k), we introduce

fn(−1/r0)− 1 =
1

k

k∑
i=1

log
U(∞)− U(Zn,n−i+1)

U(∞)− U(Zn,n−k)
(3.6)

as the pseudo negative Hill estimator, because we use the real endpoint U(∞) instead

of its estimation Xn,n as in γ̂F . Intuitively, since Xn,n converges to U(∞) very fast in

the case γ < −1/2, the pseudo negative Hill estimator should have the same asymptotic

behavior as the negative Hill estimator γ̂F , as we shall prove later. Similarly, we have

gn(−1/r0) =
1

k

k∑
i=1

U(∞)− U(Zn,n−k)

U(∞)− U(Zn,n−i+1)
. (3.7)

We shall prove that, the root of hn(t) = 0 is not far off −1/r0. In order to do that, we

introduce the following sequences.

δn :=
U(∞)− U(Zn,n)

U(∞)− U(Zn,n−k)
,

qn :=
U(Zn,n)− U(Zn,n−k)

1− 1/k
=

r0

1− 1/k
(1− δn),

pn :=
U(∞)− U(Zn,n−k)

1− kγ+ε
=

r0

1− kγ+ε
,

where ε is a fixed positive number.

The following proposition provides bounds for the location of the root of hn(t) = 0.

Proposition 3.2.2 For −1 < γ < −1/2, we choose a sufficiently small ε > 0 such

that γ + ε < −1/2. Suppose the sequence k = k(n) satisfies k → ∞, k/n → 0 and

k−γA(n/k) → 0 as n → ∞. Under the second order condition with −1 < γ < −1/2, we

have that for sufficiently large n,

hn

(
− 1

qn

)
> 0, (3.8)
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hn

(
− 1

pn

)
< 0, (3.9)

qn < pn. (3.10)

Proposition 3.2.2 implies that eventually there exists a root t∗n of hn(t) = 0 lying

between −1/qn and −1/pn.

For the next step, we study the asymptotic properties of pn and qn. Denote Ωγ as a

random variable with distribution function exp
(−(γx)−1/γ

)
, for γx > 0. Notice that Ω1

follows the standard Frechét distribution, while for negative γ, Ωγ has finite right endpoint

0. We study the asymptotic properties of δn, qn and pn in the following proposition.

Proposition 3.2.3 Under the condition of Proposition 3.2.2, we have that as n →∞,

k−γ δn

γ

d→ Ωγ, (3.11)

k−γ

(
qn

a(Zn,n−k)
+ 1/γ

)
= Op(1), (3.12)

k−γ−ε

(
pn

a(Zn,n−k)
+ 1/γ

)
= Op(1). (3.13)

Since −1/t∗n is in between pn and qn, from Proposition 3.2.3, we get that

k−γ−ε

(
γ/a(Zn,n−k)

t∗n
− 1

)
= Op(1), (3.14)

as n → ∞. Finally, since γ̂ = fn(t∗n) − 1, the asymptotic normality of γ̂ is proved by

studying the asymptotic behavior of fn(−1/qn) − 1 and fn(−1/pn) − 1. To obtain the

asymptotic normality of σ̂, the proof starts from

σ̂

a(n/k)
=

γ̂/t∗n
a(n/k)

=
γ̂

γ
· γ/a(Zn,n−k)

t∗n
· a(Zn,n−k)

a(n/k)
. (3.15)

Notice that as n →∞, the first and third factors go to 1 at speed k1/2, the second factor

goes to 1 at a faster speed k−γ−ε. Since γ + ε < −1/2, we get that σ̂/a(n/k) goes to 1

at speed k1/2 with a limit distribution dominated by limit distributions of the first and

third factors. The final result is given as follows.

Theorem 3.2.1 Suppose the second order condition holds for the extreme value index

−1 < γ ≤ −1/2. If the sequence k = k(n) satisfies k →∞, k/n → 0 and k−γA(n/k) → 0

as n → ∞, then for sufficiently large n, there exist a sequence of solution (γ̂n, σ̂n) of the

likelihood equations satisfying

√
k

(
γ̂n − γ,

σ̂n

a(n/k)
− 1

)
d→ (W1,W2)
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as n → ∞, where (W1,W2)
T follows a two-dimensional normal distribution with mean

(0, 0)T and covariance matrix (
γ2 γ
γ 1 + γ2

)
.

Theorem 3.2.1 contains the case γ = −1/2. The proof of this case is similar to −1 < γ <

−1/2 with some minor changes. It will be sketched in Subsection 3.3.3 without providing

details.

Remark 3.2.1 For γ > −1/2, Drees et al. (2004) provided the covariance matrix of the

limit law for the maximum likelihood estimator as
(

(1 + γ)2 −(1 + γ)
−(1 + γ) 1 + (1 + γ)2

)
.

Together with the covariance matrix for −1 < γ ≤ −1/2, we observe that the asymptotic

variances of the shape and scale components and the asymptotic covariance between them

are all continuous functions of γ. However, they are not differentiable at the point γ =

−1/2.

3.3 Proof

Proposition 3.2.2 locates the solution of the likelihood equation. Hence, if the speeds of

convergence and the limit laws of the left and right boundaries are the same, the MLE must

have the same asymptotic behavior. Since the boundaries have explicit representation, we

can directly study their asymptotic properties. They are presented and proved as lemmas

in Subsection 3.3.1. Section 3.3.2 gives the proof of the propositions and Theorem 3.2.1

for −1 < γ < −1/2. Section 3.3.3 sketches the proof of the case γ = −1/2.

3.3.1 Lemmas

First of all, we state Lemma 2.4.10 in de Haan and Ferreira (2006) here as follows.

Lemma 3.3.1 With the notation {Zn,i}n
i=1 as defined in the beginning of Section 3.2 and

a sequence k = k(n) such that k → ∞ and k/n → 0 as n → ∞, there exists a sequence

of Brownian motions {Wn(s)}s≥0 such that for each ε > 0,

sup
k−1≤s≤1

sγ+1/2+ε

∣∣∣∣∣
√

k

((
k
n
Zn,n−[ks]

)γ − 1

γ
− s−γ − 1

γ

)
− s−γ−1Wn(s)

∣∣∣∣∣ = op(1). (3.16)

Using the notation in Lemma 3.3.1, we define

W3 =

∫ 1

0

s−1Wn(s)−Wn(1)ds
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and W4 = Wn(1). One can see that both W3 and W4 follow a standard normal distribution

and they are independent. Notice that γW3 is the limit law of the negative Hill as

presented in the following lemma.

Lemma 3.3.2 Assume the conditions on the sequence k in Proposition 3.2.2 hold. Under

the second order condition with −1 < γ < −1/2, the negative Hill estimator γ̂F satisfies

√
k(γ̂F − γ)

d→ γW3,

as n →∞.

Proof of Lemma 3.3.2

Since −1 < γ < −1/2, k−γA(n/k) → 0 implies that k1/2A(n/k) → 0. Then from Theorem

3.6.4 in de Haan and Ferreira (2006), we get the result in the lemma. ¤
W4 plays a role as the limit law for the scale function as shown the following lemma.

Lemma 3.3.3 Suppose the sequence k satisfies the conditions in Proposition 3.2.2. Un-

der the second order condition, we have that

√
k

(
a(Zn,n−k)

a(n/k)
− 1

)
d→ γW4,

as n →∞.

Proof of Lemma 3.3.3

From the second order condition, according to Theorem 2.3.6 in de Haan and Ferreira

(2006), we get that for any ε, δ > 0, there exists t0 such that for all t, tx ≥ t0,

∣∣∣∣∣
a(tx)
a(t)

− xγ

A(t)
− xγ xρ − 1

ρ

∣∣∣∣∣ ≤ εxγ+ρ max(xδ, x−δ). (3.17)

We apply this with t = n/k and x =
Zn,n−k

n/k
. Notice that as n → ∞ Zn,n−k → ∞, and

x
P→ 1. Moreover,

lim
x→1

xγ xρ − 1

ρ
± εxγ+ρ max(xδ, x−δ) = ±ε.

We get that

√
k

(
a(Zn,n−k)

a(n/k)
− 1

)
=
√

k

((
Zn,n−k

n/k

)γ

− 1

)
+
√

kA(n/k)Op(1).

By taking s = 1 in (3.16), and considering that k1/2A(n/k) → 0, the lemma is proved. ¤
As discussed in Section 3.2, the asymptotic behavior of the pseudo negative Hill esti-

mator is the same as that of the negative Hill estimator. This is shown in the following

lemma.
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Lemma 3.3.4 Assume the conditions of the sequence k in Proposition 3.2.2 hold. Under

the second order condition with −1 < γ < −1/2, we have that

√
k (fn(−1/r0)− 1− γ)

d→ γW3

as n →∞.

Proof of Lemma 3.3.4

Recall (3.6) for the definition of fn(−1/r0). We start with the following relation from

Lemma 4.5.4 in de Haan and Ferreira (2006),

lim
t→∞

U(∞)−U(t)
a(t)

+ 1
γ

A(t)
=

1

γ(γ + ρ)
.

We rewrite it as

U(∞)− U(t) = a(t)

(
−1

γ
+ A(t)

1

γ(γ + ρ)
(1 + o(1))

)
.

Thus, we have that, for fixed x as t →∞

U(∞)− U(tx)

U(∞)− U(t)
=

a(tx)

a(t)

1− γA(tx) 1
γ(γ+ρ)

(1 + o(1))

1− γA(t) 1
γ(γ+ρ)

(1 + o(1))
.

The inequality (3.17) implies that

a(tx)

a(t)
= xγ + A(t)xγ xρ − 1

ρ
(1 + o(1)).

for any fixed x > 0. Thus, we get that

U(∞)− U(tx)

U(∞)− U(t)
= xγ

(
1 + A(t)

xρ − 1

ρ
(1 + o(1))

)
1− γA(tx) 1

γ(γ+ρ)
(1 + o(1))

1− γA(t) 1
γ(γ+ρ)

(1 + o(1))

= xγ

{
1 + A(t)

xρ − 1

ρ
(1 + o(1))− γA(tx)

1

γ(γ + ρ)
(1 + o(1))

+ γA(t)
1

γ(γ + ρ)
(1 + o(1))

}
(1 + o(1))

= xγ + xγA(t)

(
xρ − 1

ρ
− γ

A(tx)

A(t)

1

γ(γ + ρ)
+ γ

1

γ(γ + ρ)

)
(1 + o(1))

= xγ + xγA(t)

(
xρ − 1

ρ
− A(tx)

A(t)

1

γ + ρ
+

1

γ + ρ

)
(1 + o(1))

= xγ + xγA(t)
xρ − 1

ρ

(
1− ρ

γ + ρ

)
(1 + (1))

= xγ + xγA(t)
xρ − 1

ρ

γ

γ + ρ
(1 + o(1))
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Denote Ã(t) = A(t) γ
γ+ρ

. Now, we have that for any fixed x > 0,

lim
t→∞

U(∞)−U(tx)
U(∞)−U(t)

− xγ

Ã(t)
= xγ xρ − 1

ρ
.

Therefore, according to Theorem 2.3.9 in de Haan and Ferreira (2006)), for any ε, δ > 0,

there exists t1 > 0 such that for all t, tx > t1
∣∣∣∣∣

U(∞)−U(tx)
U(∞)−U(t)

− xγ

Ã(t)
− xγ xρ − 1

ρ

∣∣∣∣∣ ≤ εxγ+ρ max(xδ, x−δ). (3.18)

Since Zn,n−[ks] →∞ as n →∞ uniformly for all s ∈ [0, 1], we get that

(
Zn,n−[ks]

n/k

)γ

+ Ã(n/k)R1

(
Zn,n−[ks]

n/k

)
≤ U(∞)− U(Zn,n−[ks])

U(∞)− U(n/k)

≤
(

Zn,n−[ks]

n/k

)γ

+ Ã(n/k)R2

(
Zn,n−[ks]

n/k

)
,

(3.19)

where R1(x) := xγ xρ−1
ρ
− εxγ+ρ max(xδ, x−δ) and R2(x) := xγ xρ−1

ρ
+ εxγ+ρ max(xδ, x−δ).

Notice that both R1 and R2 are bounded on [1/2,∞). Since
Zn,n−[ks]

n/k
≥ Zn,n−k

n/k

P→ 1 as

n →∞ which implies that
Zn,n−[ks]

n/k
is eventually larger than 1/2. Combining (3.16), (3.19)

and the fact that k1/2Ã(n/k) → 0, we have that for any ε > 0,

√
k

(
U(∞)− U(Zn,n−[ks])

U(∞)− U(n/k)
− s−γ

)
= γs−γ−1Wn(s) + op(1)s−γ−1/2−ε (3.20)

holds uniformly for s ∈ [1/k, 1]. Thus

log

(
sγ U(∞)− U(Zn,n−[ks])

U(∞)− U(n/k)

)
= log

(
1 + k−1/2

(
γs−1Wn(s) + op(1)s−1/2−ε

))
.

Since

lim sup
s→0

∣∣∣∣
Wn(s)

s1/2−ε

∣∣∣∣ < ∞ a.s.

we have that k−1/2
(
γs−1Wn(s) + op(1)s−1/2−ε

)
= op(1) holds uniformly for s ∈ [k−1+3ε, 1].

Hence

log

(
sγ U(∞)− U(Zn,n−[ks])

U(∞)− U(n/k)

)
= k−1/2

(
γs−1Wn(s) + op(1)s−1/2−ε

)
(1 + op(1)).

holds uniformly for s ∈ [k−1+3ε, 1]. Therefore, we get the following relation,

√
k

∫ 1

k−1+3ε

log

(
sγ U(∞)− U(Zn,n−[ks])

U(∞)− U(n/k)

)
ds =

∫ 1

k−1+3ε

γs−1Wn(s)ds + op(1)

=

∫ 1

0

γs−1Wn(s)ds + op(1)
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Notice that

0 ≥
√

k

∫ k−1+3ε

0

log

(
U(∞)− U(Zn,n−[ks])

U(∞)− U(n/k)

)
ds ≥ k−1/2+3ε log

(
U(∞)− U(Zn,n)

U(∞)− U(n/k)

)
.

By taking s = 0 in (3.19) and considering that Zn,n/n = Op(1), we get
(

U(∞)−U(Zn,n)

U(∞)−U(n/k)

)
=

k−γOp(1) Hence the term
√

k
∫ k−1+3ε

0
log

(
U(∞)−U(Zn,n−[ks])

U(∞)−U(n/k)

)
ds is negligible.

By verifying that
√

k
∫ k−1+3ε

0
log sds → 0 as n →∞, we conclude that

√
k

(∫ 1

0

log

(
U(∞)− U(Zn,n−[ks])

U(∞)− U(n/k)

)
ds− γ

)
=

∫ 1

0

γs−1Wn(s)ds + op(1).

From (3.19), similar to Lemma 3.3.3, we get that

√
k log

(
U(∞)− U(Zn,n−k)

U(∞)− U(n/k)

)
= γWn(1) + op(1).

Hence √
k (fn(−1/r0)− 1− γ)

d→ γW3

is proved. ¤.

The last lemma studies the asymptotic behavior of gn(−1/r0).

Lemma 3.3.5 Assume the conditions of the sequence k in Proposition 3.2.2 hold. Under

the second order condition with −1 < γ < −1/2, we have that as n →∞

kγ+1

(
gn(−1/r0)− 1

1 + γ

)
d→ S1,

where S1 is a random variable with stable distribution.

Proof of Lemma 3.3.5

Recall (3.7) for the definition of gn(−1/r0). Similar to the proof of Lemma 3.3.4, consid-

ering (3.18) and k−γÃ(Zn,n−k) → 0, we get that for 1 ≤ i ≤ k

U(∞)− U(Zn,n−i+1)

U(∞)− U(Zn,n−k)
≤

(
Zn,n−i+1

Zn,n−k

)γ (
1 + Ã(Zn,n−k)Op(1)

)
=

(
Zn,n−i+1

Zn,n−k

)γ

(1 + kγop(1)) .

A similar inequality holds for the lower bound of
U(∞)−U(Zn,n−i+1)

U(∞)−U(Zn,n−k)
. Hence as n → ∞, we

have the following relation uniformly for all 1 ≤ i ≤ k:

U(∞)− U(Zn,n−i+1)

U(∞)− U(Zn,n−k)
=

(
Zn,n−i+1

Zn,n−k

)γ

(1 + op(1)kγ).

Hence

gn(−1/r0) =
1

k

k∑
i=1

U(∞)− U(Zn,n−k)

U(∞)− U(Zn,n−i+1)
=

1

k

k∑
i=1

(
Zn,n−i+1

Zn,n−k

)−γ

(1 + op(1)kγ).
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Denote Vi =
Zn,n−i+1

Zn,n−k
for 1 ≤ i ≤ k. Then Vi can be recognized as the order statistics of

a sample generated from the standard Pareto distribution F (x) = 1 − 1/x, x > 1, with

sample size k. From the central limit theory with stable limit law, we know that

kγ+1

(
1

k

k∑
i=1

V −γ
i − 1

γ + 1

)
d→ S1,

where S1 is a random variable with a stable distribution, index α = −1/γ.

Since γ < −1/2, we have that kγ+1(kγop(1)) = k2γ+1op(1) → 0 as n →∞. Therefore,

we complete the proof of the lemma. ¤

3.3.2 Proof of Theorem 3.2.1 with −1 < γ < −1/2

We first prove Proposition 3.2.3, and then Proposition 3.2.2. In the end, we shall prove

the main theorem.

Proof of Proposition 3.2.3

Notice that as n →∞, Zn,n

n

d→ Ω1 where Ω1 is the standard Fréchet distribution. Together

with the fact that
Zn,n−k

n/k

P→ 1, we get that as n →∞, Zn,n

kZn,n−k

d→ Ω1, which implies that

1

γ

(
Zn,n

kZn,n−k

)γ
d→ Ωγ.

From (3.18), since the functions Ri are bounded and k−γÃ(n/k) → 0, we get that

δn =
U(∞)− U(Zn,n)

U(∞)− U(Zn,n−k)
=

(
Zn,n

Zn,n−k

)γ

+ op(1)kγ.

Hence, the limit distribution of k−γ δn

γ
is the same as the limit distribution of 1

γ

(
Zn,n

kZn,n−k

)γ

.

Thus, (3.11) is proved.

Because of the negative γ, we can take a(t) = −γ(U(∞)− U(t)). Then we rewrite qn

and pn as
qn

a(Zn,n−k)
=

1

−γ

1

1− 1/k
(1− δn),

and
pn

a(Zn,n−k)
=

1

−γ

1

1− kγ+ε
.

Therefore, the asymptotic behavior of δn directly leads to the asymptotic relation (3.12),

while (3.13) is obvious. ¤

Proof of Proposition 3.2.2

From Proposition 3.2.3, we have that as n → ∞, δn → 0 and kδn → ∞ Furthermore,
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since ε < −γ−1/2 < −γ, we have that as n →∞, kγ+ε → 0 and k1+γ+ε →∞. Therefore,

eventually, (1− kγ+ε)(1− δn)− 1 ∼ −kγ+ε − δn < −1/k, which leads to

1

1− 1/k
(1− δn) <

1

1− kγ+ε
.

It implies that eventually, qn < pn as stated in (3.10).

To prove the positivity of hn(−1/qn), we start from the following inequality.

fn(−1/qn) = 1 +
1

k

k∑
i=1

log

(
1− Xn,n−i+1 −Xn,n−k

qn

)

= 1 +
− log k

k
+

1

k

k∑
i=2

log

(
1− Xn,n−i+1 −Xn,n−k

qn

)

≥ 1 +
− log k

k
+

1

k

k∑
i=2

log

(
1− Xn,n−i+1 −Xn,n−k

Xn,n −Xn,n−k

)

= 1 +
− log k

k
+

1

k

k∑
i=2

log
Xn,n −Xn,n−i+1

Xn,n −Xn,n−k

:= 1 + I1 + I2.

Notice that I2 is exactly the negative Hill estimator γ̂F and I1 → 0 at a speed higher than

k1/2. We get that

lim inf
n→∞

fn(−1/qn) ≥ 1 + γ. (3.21)

For gn(−1/qn), the calculation is similar. Suppose 1/k < ∆ for a fixed ∆ > 0, then

gn(−1/qn) =
1

k

k∑
i=1

1

1− Xn,n−i+1−Xn,n−k

qn

= 1 +
1

k

k∑
i=2

1

1− Xn,n−i+1−Xn,n−k

qn

≥ 1 +
1

k

k∑
i=2

1

1− (1−∆)
Xn,n−i+1−Xn,n−k

Xn,n−Xn,n−k

≥ 1 +
1

k

k∑
i=2

1
Xn,n−Xn,n−i+1

Xn,n−Xn,n−k
+ ∆

:= 1 + I3.

Notice that
Xn,n−Xn,n−i+1

Xn,n−Xn,n−k
is bounded as

U(∞)−Xn,n−i+1

U(∞)−Xn,n−k

− δn <
Xn,n −Xn,n−i+1

Xn,n −Xn,n−k

<
U(∞)−Xn,n−i+1

U(∞)−Xn,n−k

.
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From (3.20), we get that, as n →∞,

U(∞)−Xn,n−[ks]

U(∞)−Xn,n−k

→ s−γ

holds uniformly for s ∈ [1/k, 1]. Considering that δn → 0, we have

I3 =

∫ 1

1/k

ds
Xn,n−Xn,n−[ks]

Xn,n−Xn,n−k
+ ∆

≥
∫ 1

1/k

ds
U(∞)−Xn,n−[ks]

U(∞)−Xn,n−k
+ ∆

→
∫ 1

0

ds

s−γ + ∆

and

I3 =

∫ 1

1/k

ds
Xn,n−Xn,n−[ks]

Xn,n−Xn,n−k
+ ∆

≤
∫ 1

1/k

ds
U(∞)−Xn,n−[ks]

U(∞)−Xn,n−k
− δn + ∆

≤
∫ 1

1/k

ds
U(∞)−Xn,n−[ks]

U(∞)−Xn,n−k
+ ∆

+
δn

∆2

→
∫ 1

0

ds

s−γ + ∆
.

Thus it is proved that I3 → ∫ 1

0
dt

t−γ+∆
. For any ε > 0, by taking ∆ small enough,

lim infn→∞ I3 > 1
γ+1

− ε. Therefore,

lim inf
n→∞

gn(−1/qn) ≥ 1 +
1

γ + 1
− ε. (3.22)

Combining (3.21) and (3.22), we get that

lim inf
n→∞

hn(−1/qn) ≥ (1 + γ)

(
1 +

1

γ + 1
− ε

)
− 1 = (1 + γ)(1− ε) > 0,

which completes the proof of (3.8).

Now we turn to prove (3.9). Since −1/pn = −(1−kγ+ε) 1
r0

, fn(−1/pn) can be bounded

as

fn(−1/pn) = fn

(
− 1

r0

+
kγ+ε

r0

)

= fn

(
− 1

r0

)
+

1

k

k∑
i=1

log

(
1− 1

pn
(Xn,n−i+1 −Xn,n−k)

1− 1
r0

(Xn,n−i+1 −Xn,n−k)

)



57

= fn

(
− 1

r0

)
+

1

k

k∑
i=1

log

(
1 +

kγ+ε

r0
(Xn,n−i+1 −Xn,n−k)

1− 1
r0

(Xn,n−i+1 −Xn,n−k)

)

≤ fn

(
− 1

r0

)
+

1

k

k∑
i=1

kγ+ε

r0
(Xn,n−i+1 −Xn,n−k)

1− 1
r0

(Xn,n−i+1 −Xn,n−k)

= fn

(
− 1

r0

)
+ kγ+ε

(
gn

(
− 1

r0

)
− 1

)
. (3.23)

Next, for gn(−1/pn), we rewrite it as

gn(−1/pn) =
1

k

k∑
i=1

1

1− 1
pn

(Xn,n−i+1 −Xn,n−k)

=

∫ 1

0

1

1− 1
pn

(Xn,n−[sk]+1 −Xn,n−k)
ds

=

∫ 1

0

1

1− 1
r0

(Xn,n−[sk]+1 −Xn,n−k)
· 1

1 +
kγ+ε

r0
(Xn,n−[ks]+1−Xn,n−k)

1− 1
r0

(Xn,n−[ks]+1−Xn,n−k)

ds

:=

∫ 1

0

1

1− 1
r0

(Xn,n−[sk]+1 −Xn,n−k)
· 1

1 + θn(s)
ds,

where

θn(s) =
kγ+ε

r0
(Xn,n−[ks]+1 −Xn,n−k)

1− 1
r0

(Xn,n−[ks]+1 −Xn,n−k)
.

Denote sk = 2k−1−ε/γ > 1/k. From (3.18), we get that

lim
n→∞

k−γ−ε

(
1− Xn,n−[skk]+1 −Xn,n−k

r0

)
= lim

n→∞
k−γ−ε(sk)

−γ = 2−γ > 1,

which implies that

lim
n→∞

Xn,n−[skk]+1 −Xn,n−k

r0

= 1.

Thus, for sufficiently large n,

k−γ−ε

(
1− Xn,n−[sk]+1 −Xn,n−k

r0

)
≥ Xn,n−[sk]+1 −Xn,n−k

r0

⇒ θn(s) ≤ 1

holds for all sk ≤ s < 1.

Notice that 1/(1 + x) < 1 for all x > 0 and 1/(1 + x) < 1 − x/2 for 0 < x ≤ 1. We

have that

gn(−1/pn) ≤
∫ sk

0

1

1− 1
r0

(Xn,n−[sk]+1 −Xn,n−k)
ds

+

∫ 1

sk

1

1− 1
r0

(Xn,n−[sk]+1 −Xn,n−k)
·
(

1− θn(s)

2

)
ds
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= gn(−1/r0)− 1

2

∫ 1

sk

1

1− 1
r0

(Xn,n−[sk]+1 −Xn,n−k)
θn(s)ds

= gn(−1/r0)− kγ+ε

2

∫ 1

sk

1
r0

(Xn,n−[sk]+1 −Xn,n−k)(
1− 1

r0
(Xn,n−[sk]+1 −Xn,n−k)

)2ds

:= gn(−1/r0)− kγ+ε

2
I4

From (3.20), we have that as n →∞,

sγ

(
1− 1

r0

(Xn,n−[sk]+1 −Xn,n−k)

)
= sγ

(
U(∞)−Xn,n−[sk]+1

U(∞)−Xn,n−k

)
= 1 + op(1)

holds uniformly for all s ∈ [sk, 1]. Hence, we get that

I4 =

∫ 1

sk

1− s−γ

(s−2γ)
ds + op(1) = s2γ+1

k + op(1) = k(−1−ε/γ)(2γ+1)Op(1).

Now we turn to hn(−1/pn). By employing the boundaries of fn(−1/pn) and gn(−1/pn),

we have

hn(−1/pn) ≤
(

fn

(
− 1

r0

)
gn

(
− 1

r0

)
− 1

)

− kγ+ε I4

2
fn

(
− 1

r0

)
+ kγ+ε

(
gn

(
− 1

r0

)
− 1

)
gn

(
− 1

r0

)

:= I5 − I6 + I7.

First consider I5. From Lemma 3.3.4 and Lemma 3.3.5, since γ + 1 < 1/2, we get

kγ+1I5 = Op(1). Next consider I6. The asymptotic property of I4 ensures that

kγ+1I6 = kγ+1kγ+εk(−1−ε/γ)(2γ+1)Op(1) = k−ε(γ+1)/γOp(1) →∞.

Thirdly, consider I7. Since 2γ + 1 + ε < γ + 1/2 + ε < 0, I7 has the following asymptotic

property

kγ+1I7 = kγ+1kγ+εOp(1) = k2γ+1+εOp(1) = op(1).

Finally, combining all these three parts, it is proved that kγ+1hn(−1/pn) → −∞ as

n →∞, which implies (3.9). ¤
Proof of Theorem 3.2.1

From the proof of Proposition 3.2.2 and Lemma 3.3.2, we get that

fn

(
− 1

qn

)
− 1− γ ≥ I1 + (I2 − γ),

where I1 = op(k
−1/2) and

√
k(I2 − γ)

d→ γW3 as n → ∞. Meanwhile, combining (3.23)

and Lemma 3.3.4, we have that

fn

(
− 1

pn

)
− 1− γ ≤

(
fn

(
− 1

r0

)
− 1− γ

)
+ kγ+εOp(1),
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where kγ+εOp(1) = op(k
−1/2) and

√
k(fn(−1/r0)− 1− γ)

d→ γW3 as n →∞.

Since the root t∗n lies between −1/qn and −1/pn, and fn is an increasing function, we

get that
√

k(fn(t∗n)− 1− γ)
d→ γW3, i.e.

√
k(γ̂ − γ)

d→ γW3 := W1 as n →∞.

For the scale estimation, considering (3.15), the asymptotic normality of γ̂ and Lemma

3.3.3, the limit law of the scale estimation is given as

√
k

(
σ̂

a(n/k)
− 1

)
=
√

k

(
γ̂

γ
− 1

)
+
√

k

(
a(Zn,n−k)

a(n/k)
− 1

)
+ op(1)

d→ W3 + γW4

:= W2,

as n →∞. Thus, it is proved that

√
k

(
γ̂n − γ,

σ̂

a(n/k)
− 1

)
d→ (W1,W2)

as n → ∞. Here (W1,W2)
T follows the two-dimensional normal distribution with mean

(0, 0)T and covariance matrix (
γ2 γ
γ 1 + γ2

)
.¤

Remark 3.3.1 In Theorem 3.2.1, we requires that k−γA(n/k) → 0 as n → ∞ for sim-

plicity. In fact, when −1 < γ < −1/2, if the condition is relaxed as k−γA(n/k) → λ as

n → ∞ for some real number λ, we will get a bias part for S1 defined in Lemma 3.5,

and a bias part for the limit of k−γ δn

γ
as in (3.11). However, both of them are still Op(1).

Thus (3.12), (3.13) and (3.14) still holds, which implies that the result in Theorem 3.2.1

remains.

3.3.3 Proof for the case γ = −1/2

In this subsection we sketch the proof for the case γ = −1/2. Similar to Lemma 3.3.4 and

3.3.5, the following asymptotic properties on fn(−1/r0) and gn(−1/r0) hold for γ = −1/2.

Lemma 3.3.6 Suppose the second order condition holds with γ = −1/2 and the sequence

k satisfies the condition in Theorem 3.2.1. Write

ḡn :=
1

k

k∑
i=1

(
U(∞)− U(Zn,n−k)

U(∞)− U(Zn,n−i+1)

)2

.

Then we have that as n →∞,

√
k(fn(−1/r0)− 1/2)

d→ −1

2
W3, (3.24)
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√
k

log k
(gn(−1/r0)− 2)

d→ S2, (3.25)

1

log k
ḡn

P→ 1, (3.26)

where W3 is the same as in Lemma 3.3.2, and S2 has a normal distribution.

Then we locate the root of hn(t) = 0 by the following proposition.

Proposition 3.3.1 For any δ close to 0, write t
(δ)
n = −(1 + δ)/r0. For sufficiently large

n, there exists two random sequences πn and ωn such that

πn < 0 < ωn (3.27)
√

k log kπn = Op(1) and
√

k log kωn = Op(1) (3.28)

hn(t(πn)
n ) < 0 and hn(t(ωn)

n ) > 0 (3.29)

Proposition 3.3.1 implies that there exists a root t∗n of hn(t) = 0 lies between t
(ωn)
n and

t
(πn)
n . Hence, similar to (3.14), we get that

√
k(r0t

(ωn)
n + 1) = op(1).

By verifying that both fn(t
(πn)
n ) and fn(t

(ωn)
n ) converge to 1/2 with the same speed of

convergence 1/
√

k and share the same asymptotic limit as fn(−1/r0), Theorem 3.2.1 is

then proved for γ = 1/2.







Chapter 4

A 2-Step Estimator of the Extreme
Value Index

4.1 Introduction

Let X1, X2, · · · be independent and identically distributed (i.i.d.) random variables from

a distribution function F . Suppose F is in the domain of attraction of an extreme value

distribution, i.e. there exist constants an > 0 and bn, such that,

lim
n→∞

F n(anx + bn) = Gγ(x),

for all 1 + γx > 0, where Gγ(x) = exp(−(1 + γx)−1/γ) is the corresponding extreme

value distribution and γ ∈ R is called the extreme value index (see Gnedenko (1943)).

Commonly, it is denoted as F ∈ D(Gγ).

There are a few characterizations of the necessary and sufficient condition for a distri-

bution function F belonging to the domain of attraction. One of them is via the ”excess

distribution function” as in Balkema and de Haan (1974). Denote the excess distribution

function as

Ft(x) := P (X − t ≤ x|X > t) =
F (t + x)− F (t)

1− F (t)
.

Then F ∈ D(Gγ) is equivalent to

lim
t→x∗

Ft(xσ(t)) = Hγ(x) := 1− (1 + γx)−1/γ,

for all 1 + γx > 0, where σ(t) is a positive function and x∗ is the right endpoint of

F , i.e. x∗ = sup {x|F (x) < 1}. The distribution function Hγ is the so-called generalized

Pareto distribution (GPD) function. Intuitively, the distribution function F belongs to the

domain of attraction if and only if the excesses above a high threshold are asymptotically

generalized Pareto distributed.

This characterization creates several possible ways to deal with a major issue in Ex-

treme Value Theory: estimating the extreme value index γ.
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Denote Xn,1 ≤ · · · ≤ Xn,n as the order statistics of X1, X2, · · · , Xn. For a suitable

sequence such that kn →∞, kn/n → 0 as n →∞, the knth upper order statistic Xn,n−kn

may take the place of the ”high threshold”. Then Xn,n−Xn,n−kn , · · ·Xn,n−kn+1−Xn,n−kn

can be recognized as the order statistics of the empirical excesses above the high threshold.

Thus, together as a new sample, they are asymptotically generalized Pareto distributed.

In the rest of this chapter, without declaration, we briefly use k instead of kn.

Theoretically, the 1/2 and 3/4-quantiles of the GPD can be calculated as (2γ−1)/γ and

(4γ−1)/γ; empirically, they can be estimated as Xn,n−[k/2]−Xn,n−k and Xn,n−[k/4]−Xn,n−k

respectively. This creates the quantile estimator, suggested by Pickands III (1975), as

follows.

γ̂P =
1

log 2
log

Xn,n−[k/4] −Xn,n−[k/2]

Xn,n−[k/2] −Xn,n−k

.

When γ > 0, the function σ(t) can be chosen as σ(t) = γt and x∗ = +∞. Thus, the

condition on the excess distribution function can be rewritten as

lim
t→+∞

P (
X

t
≤ x|X > t) = 1− x−1/γ.

Therefore, similar to the above intuition, by taking Xn,n−k as the ”high threshold”, we

get that, as n →∞, the excess ratios Xn,n/Xn,n−k, · · ·Xn,n−k+1/Xn,n−k form a sample of

order statistics from a Pareto distribution. By fitting the Pareto distribution with the

maximum likelihood procedure, Hill (1975) suggested the so-called Hill estimator as

γ̂H =
1

k

k−1∑
i=0

log Xn,n−i − log Xn,n−k.

The Hill estimator is only applied for positive γ. In order to deal with a general γ ∈ R,

Dekkers et al. (1989) introduced the moment estimator,

γ̂M = γ̂H + 1− 1

2

(
1− γ̂2

H

M
(2)
n

)−1

,

where

M (2)
n =

1

k

k−1∑
i=0

(log Xn,n−i − log Xn,n−k)
2.

An alternative way to have a general estimator was suggested by Beirlant et al. (1996)

as the UH estimator. By denoting UHn,n−i = Xn,n−iγ̂H for i = 0, 1, · · · , k, the estimator

γ̂UH =
1

k

k−1∑
i=0

log UHn,n−i − log UHn,n−k

is valid for all γ ∈ R.
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Although γ̂H and γ̂M perform reasonably well for γ positive and γ ∈ R respectively,

they both have the disadvantage that they are not shift invariant. The estimator γ̂P is

a shift and scale invariant estimator, but according to de Haan and Peng (1998), it does

not perform as well as the other two in most cases.

A shift invariant estimator needs to be constructed from the excesses instead of the ex-

cess ratios. Hosking and Wallis (1987) proposed the probability-weighted moment (PWM)

estimator by assigning different weights to the excesses. It is defined as

γ̂PWM =
Pn − 4Rn

Pn − 2Rn

,

where

Pn =
1

k

k−1∑
i=0

Xn,n−i −Xn,n−k,

and

Rn =
1

k

k−1∑
i=0

i

k
(Xn,n−i −Xn,n−k).

In order to have consistency, the PWM estimator can only be applied for γ < 1. To

obtain the asymptotic normality, γ should be further restricted as γ < 1/2. Note that

the PWM estimator is shift and scale invariant.

Similar to the idea of the Hill estimator, Smith (1987) applied the maximum likelihood

procedure to fit the GPD with a general γ, which leads to the maximum likelihood

estimator of the extreme value index. The likelihood equations are as follows:

k∑
i=1

1

γ2
log

(
1 +

γ

σ
(Xn,n−i+1 −Xn,n−k)

)

−
(

1

γ
+ 1

)
(1/σ)(Xn,n−i+1 −Xn,n−k)

1 + (γ/σ)(Xn,n−i+1 −Xn,n−k)
= 0, (4.1)

k∑
i=1

(
1

γ
+ 1

)
(γ/σ)(Xn,n−i+1 −Xn,n−k)

1 + (γ/σ)(Xn,n−i+1 −Xn,n−k)
= k,

(the equations for γ = 0 should be interpreted as the limit when γ → 0). For γ 6= 0, they

can be simplified to

1

k

k∑
i=1

log
(
1 +

γ

σ
(Xn,n−i+1 −Xn,n−k)

)
= γ,

1

k

k∑
i=1

1

1 + (γ/σ)(Xn,n−i+1 −Xn,n−k)
=

1

γ + 1
.

When γ > −1/2, the maximum likelihood estimators for the extreme value index and the

scale, γ̂ML and σ̂ML, are obtained by solving these equations.
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In order to obtain the asymptotic normality for most of the estimators of the extreme

value index, further restrictive condition on F is required. de Haan and Stadtmüller

(1996) proposed the generalized second order condition as follows. Denote F← as the

generalized inverse of F . Assume that there exist measurable, locally bounded functions

a, Φ : (0, 1) → (0,∞) and Ψ : (0,∞) → R, such that for all x > 0

lim
t↓0

(F←(1− tx)− F←(1− t))/a(t)− (x−γ − 1)/γ

Φ(t)
= Ψ(x). (4.2)

According to de Haan and Stadtmüller (1996), |Φ| is −ρ-varying at 0 for some ρ ≤ 0, and

Ψ(x) =





(x−(γ+ρ) − 1)/(γ + ρ), ρ < 0
−x−γ log(x)/γ, γ 6= 0, ρ = 0
log2(x), γ = ρ = 0.

Under the generalized second order condition, for γ > −1/2, Drees et al. (2004) proved

asymptotic normality of the maximum likelihood estimator by assuming that the sequence

kn satisfies

Φ(kn/n) = O(k−1/2
n ), (4.3)

as n → ∞. The asymptotic normality is a direct consequence of the following theorem

(Theorem 2.1 in Drees et al. (2004)).

Theorem 4.1.1 Assume condition (4.2) holds for some γ > −1/2, and the sequence kn

satisfies (4.3). Then the system of likelihood equations (4.1) has a sequence of solutions

(γ̂n, σ̂n) that verifies

k1/2(γ̂n − γ)

−(γ + 1)2

γ
k1/2Φ

(
k

n

) ∫ 1

0

(tγ − (2γ + 1)t2γ)Ψ(t)dt (4.4)

d→ (γ + 1)2

γ

∫ 1

0

(tγ − (2γ + 1)t2γ)(W (1)− t−(γ+1)W (t))dt,

k1/2(
σ̂n

a(k/n)
− 1)

−(γ + 1)2

γ
k1/2Φ

(
k

n

) ∫ 1

0

((γ + 1)(2γ + 1)t2γ − tγ)Ψ(t)dt (4.5)

d→ (γ + 1)2

γ

∫ 1

0

((γ + 1)(2γ + 1)t2γ − tγ)(W (1)− t−(γ+1)W (t))dt,

as n → ∞, and the convergence holds jointly with the same standard Brownian motion

W . For γ = 0 these equations should be interpreted as their limits when γ → 0.
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From this theorem, (4.4) can be rewritten as

k1/2(γ̂ML − γ) =
(γ + 1)2

γ

∫ 1

0

(tγ − (2γ + 1)t2γ)Ln(t)dt + op(1), (4.6)

where

Ln(t) = Wn(1)− t−(γ+1)Wn(t) + k1/2Φ̃

(
k

n

)
Ψ(t), (4.7)

Wn(t) = k−1/2W (kt),

Φ̃(k/n) ∼ Φ(k/n) as n → ∞ and W is a standard Brownian motion which implies that

Wn is also a standard Brownian motion. Then the integral of the two parts Wn(1) −
t−(γ+1)Wn(t) and k1/2Φ̃

(
k
n

)
Ψ(t) lead to a mean-zero normal distribution and the asymp-

totic bias respectively, which completes the proof of the asymptotic normality. Notice

that the asymptotic bias depends on the second order parameter ρ and the asymptotic

variance can be calculated as shown in Remark 2.1 and Corollary 2.1 in Drees et al. (2004).

It is clear that the maximum likelihood estimator is shift and scale invariant. Mean-

while, it performs well for γ > −1/2. But it still has a disadvantage: there is no explicit

formula for this estimator. It is always given by solving the likelihood equations, but

there is even no guarantee for the existence of a solution. The existence was stated in

Drees et al. (2004) but there is no proof of that statement in the paper. The numerical

way to find a solution of these equations had been discussed in Grimshaw (1993).

An alternative way to deal with this problem is to find an approximate solution for

the likelihood equations, i.e. an explicit estimator such that the difference between the

maximum likelihood estimator and the alternative estimator is approximately 0. As an

example, Theorem 2.2 and Remark 2.4 in Drees et al. (2004) proved that, when γ = 0,

with the generalized second order condition and assumption on the sequence k as in (4.3),

we have that

k1/2(γ̂∗ − γ̂ML)
P→ 0,

where

γ̂∗ = 1− 1

2

(
1− (m

(1)
n )2

m
(2)
n

)−1

,

and

m(j)
n =

1

k

k∑
i=1

(Xn,n−i+1 −Xn,n−k)
j, j = 1, 2.

In this case, γ̂∗, a shift and scale invariant estimator with explicit formula, is close enough

to the maximum likelihood estimator. But this is only for a special case γ = 0. Can

we find such kind of estimator in general case? In this chapter, a 2-step estimator is
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established which gives a positive answer to this question. The idea is similar to the

PWM estimator which is based on the weighted sum of the excesses. However, in the

2-step estimator, the weights are determined in prior according to a pre-estimation of the

extreme value index. This is similar to the UH estimator where the extreme value index

is pre-estimated by the Hill estimator.

In Section 4.2, Theorem 4.2.2 shows that, the 2-step estimator is close enough to the

maximum likelihood estimator. By suitable choice in the first step, we may get a shift

and scale invariant estimator. Simulations are given in Section 4.3. Section 4.4 concludes

this chapter.

4.2 Result and proof

We start with stating the following theorem in Drees (1998).

Theorem 4.2.1 Given (4.2) with γ > −1/2 and (4.3), one can find a probability space

and define on that space a Brownian Motion W and a sequence of stochastic processes Qn

such that

(i) for each n, (Qn(t))t∈[0,1]
d
= (Xn,n−[kt])t∈[0,1];

(ii) there exist functions ã(k/n) = a(k/n)(1 + o(Φ(k/n))) and Φ̃(k/n) ∼ Φ(k/n) such

that, for all ε > 0,

sup
t∈[0,1]

tγ+1/2+ε

∣∣∣∣
Qn(t)− F←(1− k/n)

ã(k/n)

−
(

t−γ − 1

γ
− t−(γ+1)W (kt)

k
+ Φ̃

(
k

n

)
Ψ(t)

)∣∣∣∣ (4.8)

= op(k
−1/2) + op

(
Φ̃

(
k

n

))
,

as n →∞.

The following notation is introduced in order to shorten the proof in the rest of this

chapter.

Yn(t) = k1/2

(
Qn(t)−Qn(1)

ã(k/n)
− t−γ − 1

γ

)
. (4.9)

When γ = 0, t−γ−1
γ

should be read as − log t.

With the notations in (4.7) and (4.9), a direct consequence of Theorem 4.2.1 is the

following lemma.

Lemma 4.2.1 Suppose (4.2) and (4.3) hold. Then for all ε > 0,

Yn(t) = Ln(t) + op(1)t−(γ+1/2+ε), (4.10)

as n →∞, where the op−term is uniform for t ∈ [0, 1].
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Our purpose is to find an estimator which is close enough to the maximum likelihood

estimator. Hence, it should have the same asymptotic structure as the right side of (4.6).

In order to do so, we should connect Ln(t) with the observations. From Lemma 4.2.1,

intuitively, we can substitute Ln(t) by Yn(t), which is partially based on the observations.

There are still two remaining difficulties. First, the asymptotic structure in (4.6) is an

integral of the product of Ln(t) and tγ− (2γ +1)t2γ. To replace Ln(t) by Yn(t), we have to

study the functional approximation between them, i.e. whether the asymptotic structure

is close to the integral of the product of Yn(t) and such kind of function. Secondly, there

is still the parameter γ unknown. We solve this problem by using a first step estimator

of γ, and show that it is still close enough.

To deal with the first difficulty, we study the weighted integral of the process Yn(t)

on [0, 1]. For the weight function, we focus on (pseudo) power functions. Suppose a

continuous function f : (0, 1] → R satisfies

|f(t)| = O(tγ−δ) when t → 0+, (4.11)

for some 0 < δ < 1/2. Then, we can choose a positive ε such that ε + δ < 1/2. By

applying (4.10) for this ε, we get
∫ 1

0

f(t)(Yn(t)− Ln(t))dt = op(1).

By checking ∫ 1

0

f(t)Ψ(t)dt < ∞
for f(t) satisfying condition (4.11), it is insured that,

∫ 1

0

f(t)Ln(t)dt

is bounded in probability as n →∞. Hence we have the following corollary.

Corollary 4.2.1 With the same conditions as in Theorem 4.2.1, given a continuous func-

tion f : (0, 1] → R satisfying (4.11) for some 0 < δ < 1/2, we have that

k1/2

(∫ 1

0

f(t)
Qn(t)−Qn(1)

ã(k/n)
dt−

∫ 1

0

f(t)
t−γ − 1

γ
dt

)
=

∫ 1

0

f(t)Ln(t)dt + op(1).

Next let us consider (for γ > −1/2) a continuous function g : (0, 1] → R satisfying

|g(t)| = O(t2γ−δ) when t → 0+, (4.12)

for some 0 < δ < (γ ∧ 0) + 1/2. We can find positive numbers ε and δ such that

2ε + δ < (γ ∧ 0) + 1/2. We write

k1/2

(∫ 1

0

g(t)

(
Qn(t)−Qn(1)

ã(k/n)

)2

dt−
∫ 1

0

g(t)

(
t−γ − 1

γ

)2

dt

)
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=

(∫ k−1

0

+

∫ 1

k−1

)
g(t)

(
k−1/2Yn(t) + 2

t−γ − 1

γ

)
Yn(t)dt

= I1 + I2.

Because k−1/2Yn(t) = op(t
−(γ+ε)) uniformly for all t ∈ [k−1, 1], and

∫ 1

0
g(t)t−(2γ+1/2+2ε)dt

is finite, by applying (4.10) for this ε, we get

I2 =

∫ 1

k−1

g(t)

(
2
t−γ − 1

γ
+ op(t

−(γ+ε))

)
(Ln(t) + op(1)t−(γ+1/2+ε))dt

=

∫ 1

k−1

2g(t)
t−γ − 1

γ
Ln(t)dt + op(1)

=

∫ 1

0

2g(t)
t−γ − 1

γ
Ln(t)dt + op(1).

The last equality comes from that the final integration is bounded in probability as n →
∞.

For the rest part, I1, it is going to be proved that I1 = op(1). On the interval [0, k−1),

for any 0 < η < 1

(
Qn(t)−Qn(1)

ã(k/n)

)2

=

(
Qn(ηk−1)−Qn(1)

ã(k/n)

)2

= op(k
2(γ+ε)).

Note that

δ < 2γ + 1 ⇒
∫ k−1

0

g(t)dt = O(k−(2γ−δ+1)).

Finally, we have that

k1/2

∫ k−1

0

g(t)

(
Qn(t)−Qn(1)

ã(k/n)

)2

dt = op(k
2ε+δ−1/2) = op(1).

Meanwhile,

k1/2

∫ k−1

0

g(t)

(
t−γ − 1

γ

)2

dt = O(kδ−1/2) = op(1),

which completes the proof of I1 = op(1).

This conclusion is rewritten as the following corollary.

Corollary 4.2.2 With the same conditions as in Theorem 4.2.1, given a continuous func-

tion g : (0, 1] → R satisfying (4.12), for some 0 < δ < 1/2 + γ, we have that

k1/2

(∫ 1

0

g(t)

(
Qn(t)−Qn(1)

ã(k/n)

)2

dt−
∫ 1

0

g(t)

(
t−γ − 1

γ

)2

dt

)

=

∫ 1

0

2g(t)
t−γ − 1

γ
Ln(t)dt + op(1).
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In order to obtain the right side of (4.4), we introduce the following functions to apply

Corollary 4.2.1 and Corollary 4.2.2.

f1(γ, t) =
1√

2γ + 1
tγ,

f2(γ, t) =
∂f1(γ, t)

∂γ
,

f3(γ, t) = t2γ,

f4(γ, t) =
∂f3(γ, t)

∂γ
.

Denote weighted moments with true γ as

h(1)
n (γ) =

∫ 1

0

f1(γ, t)(Qn(t)−Qn(1))dt,

h(2)
n (γ) =

∫ 1

0

f3(γ, t)(Qn(t)−Qn(1))2dt.

The asymptotic behavior of h
(1)
n (γ) and h

(2)
n (γ) can be obtained by applying Corollary

4.2.1 and Corollary 4.2.2 for f1 and f3 as follows

k1/2

(
h

(1)
n (γ)

ã(k/n)
− 1√

2γ + 1(γ + 1)

)
=

∫ 1

0

f1(γ, t)Ln(t)dt + op(1), (4.13)

k1/2

(
h

(2)
n (γ)

(ã(k/n))2 −
2

(2γ + 1)(γ + 1)

)
=

∫ 1

0

2f3(γ, t)
t−γ − 1

γ
Ln(t)dt

+op(1). (4.14)

They lead to the asymptotic behavior of their combination as

k1/2

(
(h

(1)
n (γ))2

h
(2)
n (γ)

− 1

2(γ + 1)

)

= k1/2

(
h

(1)
n (γ)

ã(k/n)
− 1√

2γ + 1(γ + 1)

)
· 2
√

2γ + 1

2

+k1/2

(
h

(2)
n (γ)

(ã(k/n))2 −
2

(2γ + 1)(γ + 1)

)
· (−1)

2γ + 1

4
+ op(1)

=
√

2γ + 1

∫ 1

0

f1(γ, t)Ln(t)dt− 2γ + 1

2

∫ 1

0

f3(γ, t)
t−γ − 1

γ
Ln(t)dt + op(1)

= − 1

2γ

∫ 1

0

(tγ − (2γ + 1)t2γ)Ln(t)dt + op(1). (4.15)

Define an auxiliary random variable as

ϕ(γ) :=
1

2

h
(2)
n (γ)

(h
(1)
n (γ))2

− 1.
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From (4.15) and

1

2(ϕ(γ) + 1)
=

(h
(1)
n (γ))2

h
(2)
n (γ)

,

we get the asymptotic behavior of ϕ(γ) as

k1/2(ϕ(γ)− γ) =
(γ + 1)2

γ

∫ 1

0

(tγ − (2γ + 1)t2γ)Ln(t)dt + op(1).

Compared to (4.6), we proved that

k1/2(ϕ(γ)− γ̂ML) = op(1).

Now the only problem is that, the real parameter γ is still a part of the auxiliary

random variable ϕ(γ). We introduce a first step estimator to replace it and try to keep

the asymptotic property at the same time. By rewriting the final estimator in explicit

form, we define the 2-step estimator as follows.

Definition 4.2.1 Suppose a first step estimator of the extreme value index, γ̂(1), is given,

which uses the largest k order statistics. Assume the first step estimator approaches γ in

speed 1/
√

k, i.e.

k1/2
(
γ̂(1) − γ

) d→ N, (4.16)

where N is a random variable with a suitable distribution. For all of the suggested esti-

mators above, such a limit exists and follows a normal distribution.

If γ̂(1) > −1/2, define the weights w
(j)
i as

w
(j)
i =

∫ i
k

i−1
k

tjγ̂
(1)

dt =
1

jγ̂(1) + 1

((
i

k

)jγ̂(1)+1

−
(

i− 1

k

)jγ̂(1)+1
)

, (4.17)

for j = 1, 2 and i = 1, · · · , k. Then, define the weighted moments as

WM (j)
n =

k∑
i=1

w
(j)
i (Xn,n−i+1 −Xn,n−k)

j, j = 1, 2. (4.18)

Finally, define the estimator

γ̂STEP =
2γ̂(1) + 1

2

WM
(2)
n

(WM
(1)
n )2

− 1, (4.19)

as the 2-step estimator of the extreme value index.

The following theorem shows that this estimator is close enough to the maximum

likelihood estimator.
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Theorem 4.2.2 Assume (4.2) holds and the sequence k satisfies (4.3). If γ > −1/2,

then

k1/2(γ̂STEP − γ̂ML)
P→ 0.

Proof of Theorem 4.2.2

We have already proved that the auxiliary random variable ϕ(γ) is close enough to the

maximum likelihood estimator. Since the 2-step estimator is in fact ϕ(γ̂(1)), in order to

complete the proof of the theorem, we only need to show that the difference between the

2-step estimator and the auxiliary random variable is also negligible, i.e.

√
k(ϕ(γ)− γ̂STEP ) = op(1). (4.20)

From (4.18) and the definition of Qn(t) in Theorem 4.2.1, by changing γ into its estimator

γ̂(1) in h
(1)
n (γ) and h

(2)
n (γ), we can rewrite the weighted moments in the definition as

(WM (1)
n ,WM (2)

n )
d
= (h(1)

n (γ̂(1))
√

2γ̂(1) + 1, h(2)
n (γ̂(1))).

According to the definition of γ̂STEP in (4.19), it is clear that

1

2(γ̂STEP + 1)
=

1

2γ̂(1) + 1

(WM
(1)
n )2

WM
(2)
n

d
=

(h
(1)
n (γ̂(1)))2

h
(2)
n (γ̂(1))

. (4.21)

This is a slight change from ϕ(γ) change in sense of the following lemma.

Lemma 4.2.2 Under the conditions of Theorem 4.2.2, we have

k1/2

(
(h

(1)
n (γ̂(1)))2

h
(2)
n (γ̂(1))

− (h
(1)
n (γ))2

h
(2)
n (γ)

)
= op(1). (4.22)

Proof of Lemma 4.2.2

We start with the Taylor expansion of f1(γ̂
(1), t),

f1(γ̂
(1), t) = f1(γ, t) + (γ̂(1) − γ)f2(γ, t) +

(γ̂(1) − γ)2

2

∂f2(s, t)

∂s
|s=ηn(t),

where ηn(t) is a random variable depending on n and t, but always between γ and γ̂(1).

Since γ̂(1) P→ γ as n → ∞, we have ηn(t)
P→ γ uniformly for all t ∈ (0, 1]. Then, for any

δ > 0,
∂f2(s, t)

∂s
|s=ηn(t) = Op(t

ηn(t)(log t)2) = tγ−δOp(1),

when n → ∞, the Op−term is uniform for all t ∈ (0, 1]. So we can continue with the

Taylor expansion as follows,

f1(γ̂
(1), t) = f1(γ, t) + (γ̂(1) − γ)f2(γ, t) +

(γ̂(1) − γ)2

2
tγ−δOp(1)
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= f1(γ, t) + (γ̂(1) − γ)f2(γ, t) + (γ̂(1) − γ)tγ−δop(1),

as n → ∞. In this expansion, the op−term is also uniform for t ∈ (0, 1]. Then, by using

this expansion and applying Corollary 4.2.1 for f2 satisfying (4.12), we get that

k1/2

(
h

(1)
n (γ̂(1))− h

(1)
n (γ)

ã(k/n)
+ (γ̂(1) − γ)

2γ2 + 6γ + 3

(γ + 1)2(2γ + 1)3/2

)

=k1/2

(∫ 1

0

(f1(γ̂
(1), t)− f1(γ, t))

Qn(t)−Qn(1)

ã(k/n)
dt− (γ̂(1) − γ)

∫ 1

0

f2(γ, t)
t−γ − 1

γ
dt

)

=k1/2

{∫ 1

0

[
f2(γ, t)(γ̂(1) − γ) + (γ̂(1) − γ)tγ−δop(1)

] Qn(t)−Qn(1)

ã(k/n)
dt

−(γ̂(1) − γ)

∫ 1

0

f2(γ, t)
t−γ − 1

γ
dt

}

=(γ̂(1) − γ)

(∫ 1

0

f2(γ, t)Ln(t)dt

)
+ k1/2(γ̂(1) − γ)op(1) + op(1)

=op(1). (4.23)

A similar relationship between h
(2)
n (γ̂(1)) and h

(2)
n (γ) is given as

k1/2

(
h

(2)
n (γ̂(1))− h

(2)
n (γ)

(ã(k/n))2 + (γ̂(1) − γ)
8γ2 + 24γ + 12

(γ + 1)2(2γ + 1)2

)
= op(1). (4.24)

From (4.13) and (4.14), we have that as n →∞,

h
(1)
n (γ)

ã(k/n)

P→ 1√
2γ + 1(γ + 1)

,

and
h

(2)
n (γ)

(ã(k/n))2

P→ 2

(2γ + 1)(γ + 1)
.

Considering with (4.23) and (4.24), we also have that as n →∞,

h
(1)
n (γ̂(1))

ã(k/n)

P→ 1√
2γ + 1(γ + 1)

,

h
(2)
n (γ̂(1))

(ã(k/n))2

P→ 2

(2γ + 1)(γ + 1)
.

Finally, by using (4.23), (4.24) and the four equations above, we can calculate that

k1/2

(
(h

(1)
n (γ̂(1)))2

h
(2)
n (γ̂(1))

− (h
(1)
n (γ))2

h
(2)
n (γ)

)

= k1/2

(
h

(1)
n (γ̂(1))− h

(1)
n (γ)

ã(k/n)

)(
h

(1)
n (γ̂(1)) + h

(1)
n (γ)

ã(k/n)

)
1

h
(2)
n (γ̂(1))/(ã(k/n))2
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+k1/2

(
h

(2)
n (γ̂(1))− h

(2)
n (γ)

(ã(k/n))2

)
· (−1)

(
h

(1)
n (γ)/ã(k/n)

)2

(
h

(2)
n (γ)/(ã(k/n))2

)(
h

(2)
n (γ̂(1))/(ã(k/n))2

)

= k1/2(γ̂(1) − γ)

(
− 2γ2 + 6γ + 3

(γ + 1)2(2γ + 1)3/2
· 2
√

2γ + 1

2
+

8γ2 + 24γ + 12

(γ + 1)2(2γ + 1)2

2γ + 1

4

)
+ op(1)

= op(1).

The lemma has been proved. ¤
Lemma 4.2.2 shows that

√
k(

1

2(ϕ(γ) + 1)
− 1

2(γ̂STEP + 1)
) = op(1),

which implies (4.20) as a direct consequence. Hence we complete the proof of Theorem

4.2.2. ¤

Remark 4.2.1 From the definition of the 2-step estimator, it is clear that, if the first step

estimator is shift and scale invariant, the final estimator should be the same. So we can

choose the Pickands’ estimator γ̂P mentioned in Section 4.1 as the first step estimator.

Although the Pickands’ estimator itself does not perform very well in most of the cases,

after the 2-step procedure, it will be close enough to the maximum likelihood estimator.

Remark 4.2.2 Obviously, we can also use the final 2-step estimator as the first step

estimator, and iterate the same procedure once more. It results in a 3-step estimator. If

the first step estimator is shift and scale invariant, so is the final 3-step one. Simulations

in Section 4.3 will show that the 3-step estimator is even more accurate.

Remark 4.2.3 The weighted moments WM
(j)
n (j = 1, 2) can be represented in another

way as

WM (1)
n =

1

γ̂(1) + 1

k∑
i=1

(
i

k

)γ̂(1)+1

(Xn,n−i+1 −Xn,n−i),

WM (2)
n =

1

2γ̂(1) + 1

k∑
i=1

(
i

k

)2γ̂(1)+1

(Xn,n−i+1 −Xn,n−i)(Xn,n−i+1 + Xn,n−i − 2Xn,n−k).

4.3 Simulations

Simulations have been done for 3 cases: γ positive, negative and γ = 0. We also try to

simulate for both large and small sample size.

For large sample size simulation, a sample with sample size 10,000 from a certain

distribution is generated. In case γ > 0, we choose the Cauchy distribution which has a
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positive extreme value index γ = 1 and a second order index ρ = −2. In case γ = 0, we

choose the standard normal distribution. Both the extreme value index γ and the second

order index ρ are equal to 0. In case γ < 0, we choose the Reversed Burr distribution.

Such a distribution function is given as

F (x) = 1−
(

4

4 + x−2

)2

, x < 0

It belongs to the domain of attraction of the extreme value distribution with extreme

value index γ = −1/4 and ρ = −1/2.

We choose the Pickands estimator as the first step estimator, and calculate the 2-step

estimator and the maximum likelihood estimator. The 3-step estimators described in

Remark 4.2.2 are also demonstrated in the figures. In order to study the sensitivity of

the first step estimator, we also use the moment estimator as the first step estimator for

the same simulated samples. For γ positive, they are presented separately in Figure 4.1

and 4.2. For γ = 0 and γ negative, the results are shown in Figure 4.3-4.6.

From these figures we observe that, the 2-step estimator is close enough to the maxi-

mum likelihood estimator. Hence, it can be a good substitute of the maximum likelihood

estimator with explicit formula. Furthermore, the 3-step estimator is even closer, i.e. it

will be better to iterate the procedure for more steps. With the moment estimator as the

first step estimator, the performance of the 2-step is improved. Hence, it will be helpful

to choose an accurate first step estimator, even if it is not location invariant.

Secondly, we turn to small sample size. We generate 500 samples with sample size

1,000 each, calculate the maximum likelihood estimator and 2-step estimator in each

sample, and take the average of the estimators among the samples. We also calculate the

mean squared error (MSE) for both the maximum likelihood estimator and the 2-step

estimator. Denote the calculated estimator as γ̂i for sample i, where 1 ≤ i ≤ 500. Then

the mean squared error is defined as follows

MSE =
1

500

500∑
i=1

(γ̂i − γ)2,

where γ is the known extreme value index.

Because the Pickands estimator does not perform very well for small sample size, we

use the moment estimator as the first step estimator. In these simulations, the 3-step

estimator is ignored. For γ positive, we change to the Pareto distribution with γ = 1/2,

i.e. the distribution function is F (x) = 1 − 1/x2. In this case ρ = −∞. Together with

the large sample size simulation study, all these simulation studies cover the entire range

of all possible ρ, i.e. ρ ∈ [−∞, 0].
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The averaged estimations for γ positive are shown in Figure 4.7 with its corresponding

MSE pictures in Figure 4.8. Figure 4.9-4.12 present the results for γ = 0 and γ negative.

From the multi-sample simulations, we again observe that the 2-step estimator is close

enough to the maximum likelihood estimator, while the MSE is in a comparable level.

Furthermore, we also make simulations for even smaller sample size, for example, 100.

The results are no longer comparable with the maximum likelihood estimator. From the

simulation study, we recommend the 2-step estimator for relatively larger sample size, for

instance, at least 1,000.

4.4 Conclusion

In the literature of estimating the extreme value index, a variety of estimators are pro-

posed. A good estimator should have the following properties:

1) performing a smaller estimation error;

2) satisfying theoretical properties such as shift and scale invariance;

3) easy to calculate.

Most of the explicit estimators do not satisfy the shift invariance property or perform

a relatively worse estimation, while the maximum likelihood estimator is shift and scale

invariant and provides a reasonably nice performance. However, it is not explicitly given.

In this chapter, we propose an explicit 2-step estimator which is close enough to the

maximum likelihood estimator. Therefore it has the same asymptotic behavior. Further-

more, by a suitable choice of the first step estimator, it is shift and scale invariant. By

iteration, we can get 3-step or even more step estimators which performs better according

to an extensive simulation study.
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Figure 4.1: Large sample: Cauchy 1
First step: the Pickands’ estimator

(γ = 1, ρ = −2)
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Figure 4.2: Large sample: Cauchy 2
First step: the moment estimator

(γ = 1, ρ = −2)
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Figure 4.3: Large sample: normal 1
First step: the Pickands’ estimator

(γ = 0, ρ = 0)
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First step: the moment estimator
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Figure 4.5: Large sample: R-Burr 1
First step: the Pickands’ estimator

(γ = −1/4, ρ = −1/2)
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First step: the moment estimator
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Figure 4.10: Small sample MSE: normal
(γ = 0, ρ = 0)

20 40 60 80 100

−
0.

5
−

0.
4

−
0.

3
−

0.
2

−
0.

1
0.

0

sample size n= 1000 repeat time m= 500
k

γ

MLE
2STEP
Moment

Figure 4.11: Small sample: R-Burr
(γ = −1/4, ρ = −1/2)
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Figure 4.12: Small sample MSE: R-Burr
(γ = −1/4, ρ = −1/2)







Part II

Portfolio Optimization





Chapter 5

Portfolio Selection with Secondary
Risk Indicators of Heavy Tailed
Distributions

5.1 Introduction

In the financial industry, risk managers use portfolios to diversify away the risk of indi-

vidual securities. Risk indicators based on different criteria lead to different methods for

constructing the optimal portfolio. For example, initiated by Markowitz (1952), the classi-

cal mean-variance approach takes the variance as a risk indicator. Therefore, the principal

component analysis is the main instrument in the portfolio selection procedure. Usually,

the optimal portfolio under the mean-variance approach selects non-zero proportions for

most of the individual securities.

In contrast to the classical approach, Roy (1952) and Arzac and Bawa (1977) intro-

duced the safety-first criterion which uses the downside risk as risk indicator in portfolio

selection. Value at Risk (VaR) becomes the risk indicator under such kind of criterion.

With the assumption of Gaussian distributed returns, Gouriéroux et al. (2000) investi-

gated the sensitivity of VaR. However, it is well documented that to model the financial

returns by the Gaussian distribution is not a realistic assumption. In Fama and Miller

(1972, Chap 6, Sec V), the symmetric stable distribution is employed to model the re-

turns. The stable distribution is a rather narrow class and difficult to apply for empirical

analysis because it has no explicit distribution or density function. Recent development in

Extreme Value Theory (EVT) creates the possibility to model the non-Gaussian returns

by the heavy tailed distributions, see, e.g., Jansen and de Vries (1991).

In the stable or heavy tailed framework, VaR is always considered as the risk indic-

tor for the portfolio selection problem. In Fama and Miller (1972)’s symmetric stable

framework, the characteristic exponent α of a stable distribution is considered to be equal
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among all assets, while the scale parameter of a stable distribution is introduced as an

alternative to the variance in the Gaussian framework. Fama and Miller (1972) considered

the portfolio optimization problem by minimizing the scale parameter of the constructed

portfolio. Thus the scale parameter of a stable distribution which plays the role as the

risk indicator. The VaR concept had not yet been developed at that time. But, since the

VaR of a symmetric stable distribution is determined by the characteristic exponent α

and the scale parameter, the scale minimization method is in fact a VaR approach.

Alongside the portfolio optimization problem, the portfolio diversification effect is

always considered simultaneously. We still take the result in Fama and Miller (1972, Chap

6, Sec V) as an example. By modeling the returns as the symmetric stable distributions,

they concluded that the diversification effects can only be realized when α > 1. When

α = 1, in general, diversification has no effect. When α < 1, increased diversification

usually causes the risk indicator to increase which means a negative diversification effect.

The result in the symmetric stable framework can be extended to heavy tailed setup

without much difficulty due to the fact that the tail of a heavy tailed distribution is

asymptotically Pareto distributed. The tail index of a heavy tailed distribution plays

the same role as the characteristic exponent α of a symmetric stable distribution, while a

functional scale takes the place of the scale parameter in the symmetric stable framework.

Based on the heavy tailed setup, the VaR can be approximately calculated thanks to the

explicit Pareto distribution.

With heavy tailed assumption, Jansen et al. (2000) started the empirical exercises on

portfolio selection under VaR approach, followed by Jansen (2001) and Susmel (2001).

Since the datasets in these papers are the market indices of either markets across dif-

ferent countries or different asset markets such as equities and bonds, it is reasonable

to assume that the individual returns are independent. However, for a general portfo-

lio selection problem–in particular, constructing an optimal portfolio based on individual

stocks trading on a specific stock market–the independence assumption is not realistic.

In a series of papers by Hyung and de Vries (2002, 2005, 2007), the portfolio opti-

mization problem is studied by assuming specific dependence structure as well as the

diversification effects. In these papers, the well-known single factor model, Capital Asset

Pricing Model (CAPM), is used to model the dependence structure among the stock re-

turns. Based on such kind of dependence structure, Hyung and de Vries (2002) confirmed

Fama and Miller (1972)’s conclusion in the heavy tailed framework: the diversification

effects depend on whether the tail index is higher than 1. From their empirical study,

they also find that ”it is important to account for differences in scales when computing

the diversification effects of portfolio investment. Per contrast, differences in tail shape

were not large and did not seem to matter much for the diversification effect.”
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Since the CAPM model only creates a relatively simple dependence structure, mod-

eling the complex dependence among the stock returns, in particular, the dependence

within the downside tails, is still an open question. The development in multivariate

EVT helps to build more general models. Even a non-parametric approach is possible,

see, e.g. Huang (1992). For empirical applications, Hartmann et al. (2004) applied multi-

variate EVT to test the tail dependence among the stock markets of the G-5 countries as

well as the bond markets without any parametric assumption on the dependence struc-

ture. A portfolio selection application based on multivariate EVT is shown in Poon et al.

(2004). However, the dependence structure is not non-parametrically modeled. On the

contrary, several parametric models are employed.

In all of the portfolio selection exercises mentioned above, the optimal portfolio is

only based on 2 or 3 financial return series, because the proportion of each security

should be numerically calculated, i.e., the proportion of each security is controlled as a

varying parameter from 0 to 1, the optimal portfolio is selected by comparing VaR when

the parameters are varying. This method is difficult to extend, when there are a large

amount of securities to select.

In this chapter, we start by linking VaR to the scale parameter and the tail index of

a heavy tailed distribution. To consider the VaR, the scale parameter is recognized as

the secondary risk indicator alongside the primary risk indicator (PRI): the tail index.

As suggested in Hyung and de Vries (2002), for the stock returns in the same market,

their tail indices do not differ a lot from each other. Hence, minimizing the secondary

risk indicator, the scale parameter, is the way to construct optimal portfolio. Then, by

assuming that the stock returns belong to the domain of attraction of a multivariate

extreme value distribution, we calculate the scale parameter of any specified portfolio.

This result creates the possibility to solve the portfolio optimization problem without

assuming parametric dependence structure, and even in the case when numerous stocks

are involved. Since the dependence structure is non-parametrically estimated, this result

is more objective than the CAPM approach. Meanwhile, the portfolio diversification

effects are also discussed in this general dependence structure framework. Results similar

to Fama and Miller (1972, Chap 6, Sec V) are confirmed within our framework.

In contrast to the studies in literature, we also discuss the theoretical case when the

tail indices are all not higher than 1. In this case, diversification can not reduce the

risk. Hence, the individual stock that has the lowest secondary risk indicator will be

automatically the optimal choice. However, if the secondary risk indicators are also at

the same level, (for instance, the lowest scale is shared among several stocks) the individual

VaR must be the same as well. Then VaR is no longer a suitable criterion for choosing

the optimal stock. In this case, we introduce the probability of dominance as a third risk
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indicator to find the optimal choice. Intuitively, the one who has the lower probability of

dominance is less connected to the systemic risk, therefore, is a relatively less risky choice.

We apply our selection procedure to construct an optimal portfolio from 15 chosen

stocks listed on the S&P 100 index in March, 2001. We compare the optimal portfolio

selected by our procedure to those selected by the classical mean-variance approach. Our

portfolio is better in terms of lower downside risk in extremal situation.

This chapter is organized as follows. Section 5.2 introduces the scale parameter as the

secondary risk indicator. Section 5.3 provides the calculation of the scale parameter for

any specified portfolio. Section 5.4 discusses the diversification effects and the portfolio

selection in general. When the primary and secondary risk indicators are all equal across

securities and the PRI is not higher than 1, the probability of dominance is introduced as

the third risk indicator in choosing the optimal security as in Section 5.5. Section 5.6 is

an empirical exercise. The conclusion and further extension are discussed in Section 5.7.

5.2 The secondary risk indicator

We start our study by linking the VaR to the scale parameter in the one dimensional

case. Let X denote the downside return of a specific asset, i.e. if the return is R, we take

X = −R. Suppose X follows a heavy tailed distribution, i.e. X has a regularly varying

tail. Denote F as the distribution function of X, we have

lim
t→∞

1− F (tx)

1− F (t)
= x−α,

where α is the tail index. It implies that tα(1 − F (t)) is a slowly varying function.

Considering a narrow case that

lim
t→∞

tα(1− F (t)) = A,

where A > 0 is a finite number, we call A the scale of X, denoted as

σ(X) = A.

Notice that the distribution function of R has the following representation

P (R ≤ −x) = P (X ≥ x) = Ax−α[1 + o(1)],

as x →∞. This is the same setup as in Hyung and de Vries (2002, 2005).

Because of the asymptotic relation, the tail index and the scale are recognized as risk

criteria. Given the tail index α and the scale A, it is easy to see that V aR(δ) with tail

probability δ can be approximately calculated from

δ = P (X > V aR(δ)) ≈ AV aR(δ)−α.
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Hence,

V aR(δ) ≈ (A/δ)1/α.

By estimating the VaR, α and A with suitable estimators, the above relation turns to

be an exact equation. For example, consider the Hill-type estimators for the tail index,

the scale and the quantile in literature1 (the first two are in Hill (1975), for the quantile,

see Weissman (1978)),

α̂H =

{
1

k

k∑
i=1

log Xn,n−i+1 − log Xn,n−k

}−1

,

Â =
k

n
X α̂H

n,n−k,

ˆV aR(δ) = Xn,n−k

{
k

nδ

}1/α̂H

,

where k is the number of upper order statistics used in estimation, which is chosen in

advance, see, e.g. an extra criterion on choosing k in Danielsson et al. (2000). The

estimators satisfy

ˆV aR(δ) = (Â/δ)1/α̂H . (5.1)

Relation (5.1) shows that the approximate relation to calculate VaR turns to be an exact

equation when using estimators. Although (5.1) is only a mathematical reformulation of

the existing estimators, in practice, it is also useful. Noticing that the choice of k–the

number of order statistics used in estimation–is always a considerable issue in statistical

extremes, (5.1) actually has no k in the formula. It means that, although potentially we

need to choose k in estimating the tail index and the scale, the VaR estimation is a direct

calculation from the estimations. This argument is especially useful in multi-dimensional

case as we shall come back to this point later.

Relation (5.1) shows that, when considering the safety-first criterion–VaR, alongside

the PRI–tail index, the scale parameter plays a role as the secondary risk indicator (SRI).

As we discussed in Section 5.1, Hyung and de Vries (2002) found that the PRIs of stock

returns trading on the same market do not differ from each other. Therefore, to study the

scale of a heavy-tailed distributed random variable is useful. We start from some basic

properties of the scale σ(·).
The function σ(·) has the following properties:

1) σ(cX) = cασ(X), for all c > 0;

2) σ(X + Y ) = σ(X) + σ(Y ), if X and Y are independent and share the same tail index.

1Notice that the definition of VaR is exactly the same as the quantile of a certain distribution function.
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The second property follows from the Feller theorem, see Feller (1971, section VIII, 8).

This is the starting point of calculating the portfolio scale. However, it is based on the

assumption of independence. We are going to extend this to a general dependent case.

5.3 The scale of a portfolio

Let X = (X1, · · · , Xd)
T denote the downside returns of d individual stocks. We con-

sider the downside risk as in Section 5.2. To model the tail dependence, we suppose

X = (X1, · · · , Xd)
T belongs to the domain of attraction of a d-dimensional extreme value

distribution, i.e. for i.i.d. copies of X, X(1), · · · , X(n), · · · , there exist a distribution func-

tion G and two sequences of constants
{

a
(n)
i > 0

}∞
n=1

and
{

b
(n)
i

}∞
n=1

for 1 ≤ i ≤ d, such

that

lim
n→∞

P

(∨n
j=1 X

(j)
1 − b

(n)
1

a
(n)
1

≤ x1, · · · ,

∨n
j=1 X

(j)
d − b

(n)
d

a
(n)
d

≤ xd

)
= G(x1, · · · , xd) (5.2)

holds for any continuity points (x1, · · · , xd) of G. In this case, each marginal of the ran-

dom vector X follows the one-dimensional extreme value condition, while the dependence

structure within the marginals follows a wider scope. Suppose the marginal tail indices

are α1, α2, · · · , αd > 0, and the marginal scales are all finite. Without loss of generality,

we assume that α1 = min1≤i≤d αi. Firstly, we assume that α1 is the unique minimum tail

index. Then we get the following proposition. The proof is postponed to the appendix.

Proposition 5.3.1 For any positive numbers c1, · · · , cd,
∑d

i=1 ciXi has a regularly vary-

ing tail with tail index α1 and the scale is cα1
1 σ(X1).

From Proposition 5.3.1, we can see that, when constructing a portfolio based on d indi-

vidual stock returns satisfying our multivariate EVT assumption, the tail index of the

portfolio is dominated by the minimum marginal tail index. Moreover, the scale is also

dominated by the one who has the minimum marginal tail index. Therefore, to minimize

the risk, we should always pick up the stock with the maximum tail index.

Now the only difficulty remains is for the situation in which the maximum tail index

is not unique. In this situation, we need to consider these marginals which share the

same tail indices as the maximum. They still belong to the domain of attraction of a

finite-dimensional extreme value distribution, only the dimension might be reduced. To

simplify but without loss of generality, we assume α1 = · · · = αd = α in the rest of this

section. Actually, this is what Hyung and de Vries (2002) suggested for the stocks trading

on a specific market.

Since the discussion later is relatively complicated and long, we divide it into 3 sub-

sections. In Subsection 5.3.1, we review the multivariate EVT, and calculate the scale of
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the portfolio based on the simple max-stable distribution. In Subsection 5.3.2, we extend

the theory from the simple max-stable distribution to the general case: the domain of

attraction.

5.3.1 Special case: simple max-stable distribution

According to multivariate EVT, by a suitable choice of the sequences of constants in (5.2),

we can have a limit distribution function G which has marginal distribution functions:

F (x) = exp {−1/x} , x > 0. F is the standard Fréchet distribution function. This kind of

limit distribution function G is the so-called simple max-stable distribution function. The

simple max-stable distribution G belongs to the domain of attraction of itself. Hence,

we can take G as a special case to model the stock returns. Suppose U = (U1, · · · , Ud)
T

follows the simple max-stable distribution G. We first study the scale of a portfolio based

on U .

From the standard Fréchet distribution, we have that all the marginal tail indices are

1, and all the marginal scales are 1. There are several ways to exhibit the dependence

structure of U . Here we use one which serves our purpose. The dependence structure of

U depends on a probability measure H, see de Haan and Ferreira (2006, Chap 6). Let H

be any probability measure on

W = {w = (w1, · · · , wd) : w1 + · · ·+ wd = 1, wi ≥ 0, i = 1, 2, · · · , d} ,

such that ∫

W

wiH(dw) =
1

d
, for 1 ≤ i ≤ d.

Any qualified H leads to a simple max-stable distribution function G as follows,

G(x1, · · · , xd) = exp

(
−d

∫

W

(
w1

x1

∨ · · · ∨ wd

xd

)
H(dw)

)
.

Conversely, any simple max-stable distribution G has the above representation with a

suitable H. H is called the spectral measure on W .

The following proposition shows how to calculate the scale of a specific portfolio based

on U .

Proposition 5.3.2 Suppose U = (U1, · · · , Ud)
T follows a simple max-stable distribution,

for any positive constants c1, · · · , cd,
∑d

i=1 ciUi has tail index 1, and the scale is calculated

as

σ(
d∑

i=1

ciUi) =
d∑

i=1

ci. (5.3)
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Proof of Proposition 5.3 with discrete H

To prove this proposition we need to study the probability measure H which exhibits the

dependence structure. In order to simplify the discussion, we only prove the case when

H is a discrete measure. A proof for general H is given in Appendix 5.A. Suppose the

discrete probability measure H has the following representation

H =
∞∑

j=1

pjδaj
,

where
{
aj = (a1j, · · · , adj)

T
}∞

j=1
are points on W , i.e.

∑d
i=1 aij = 1 for j = 1, 2, · · · , and∑∞

j=1 pj = 1. According to the requirements for H we have, for any 1 ≤ i ≤ d,

∞∑
j=1

pjaij =

∫

W

wiH(dw) = 1/d.

Now, we turn to decompose the random vector U by constructing a d−dimensional

random vector of simple structure that has the same distribution function as U . Suppose

V1, V2, · · · are i.i.d. standard Fréchet distribution. Define, for 1 ≤ i ≤ d,

Ui = d

∞∨
j=1

pjaijVj.

It is not very difficult to verify that in this way U = (U1, · · · , Ud)
T has the distribution

function G. Hence, we have a different view on the dependence structure of U in terms

of the independent random variables V1, V2, · · · .
From the construction of U , we have that

d∑
i=1

ciUi =
d∑

i=1

cid

∞∨
j=1

pjaijVj

≤
d∑

i=1

cid

∞∑
j=1

pjaijVj

=
∞∑

j=1

(
d∑

i=1

cidpjaij)Vj

and

d∑
i=1

ciUi =
d∑

i=1

cid

∞∨
j=1

pjaijVj

≥
∞∨

j=1

(
d∑

i=1

cidpjaij)Vj.
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Since Vj are i.i.d standard Fréchet distributed, σ(Vj) = 1, from e.g. Embrechts et al.

(1997, pages 40 & 50), we get that, both
∑∞

j=1(
∑d

i=1 cipjaij)Vj and
∨∞

j=1(
∑d

i=1 cipjaij)Vj

have tail index 1 and share the same scale as

∞∑
j=1

(
d∑

i=1

cidpjaij) =
d∑

i=1

ci.

Hence,
∑d

i=1 ciUi must have tail index 1, and its scale must be the same as that of the

two bounds, i.e.

σ(
d∑

i=1

ciUi) =
d∑

i=1

ci.¤

Proposition 5.3.2 solves the scale problem for the simple max-stable distributions.

From the proposition, we have the following remark.

Remark 5.3.1 The scale of the portfolio based on a simple max-stable distribution does

not depend on the dependence structure, but only on the sum of the portfolio weights.

Up to now, we have shown that for the simple max-stable distribution, we can easily

calculate the scale of any specific portfolio by simply adding up the weights. We will try

to extend this from the simple max-stable case to the domain of attraction.

5.3.2 From the limit to the domain of attraction

In this subsection, we go back from U to X. Suppose X = (X1, · · · , Xd)
T belongs to

the domain of attraction of a d-dimensional extreme value distribution, the marginal tail

indices are all equal to α, and the marginal scales are denoted as σ(Xi) = σi for 1 ≤ i ≤ d.

Our purpose is to calculate the scale of a specified portfolio
∑d

i=1 ciXi for any positive

numbers c1, · · · , cd.

In this case, the tail index α also plays a role in the calculation of the portfolio scale.

The next result is the main theorem in this chapter. The proof is still in Appendix 5.A.

Theorem 5.3.1 Suppose X = (X1, · · · , Xd)
T belongs to the domain of attraction of a

d-dimensional extreme value distribution with all marginal tail indices equal to α and

all marginal scales finite. Let H be the corresponding spectral measure on W . Denote

σ(Xi) = σi, for 1 ≤ i ≤ d. Then, for any positive constants c1, · · · , cd, the linear

combination
∑d

i=1 ciXi must have tail index α, and the scale is calculated as

σ(
d∑

i=1

ciXi) = d

∫

W

(
d∑

i=1

ci(σiwi)
1/α

)α

H(dw).
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Remark 5.3.2 When α = 1, by considering the property of H, the result of the theorem

is simplified as

σ(
d∑

i=1

ciXi) =
d∑

i=1

ciσi.

Hence, similar to Remark 5.3.1, we remark that the scale of the portfolio based on a

random vector that belongs to the domain of attraction with marginal tail indices 1 does

not depend on the dependence structure. It equals the sum of the weighted marginal scales.

With a general dependence structure assumption, Theorem 5.3.1 shows how to calcu-

late the SRI–scale for a specified portfolio, when the PRI are all the same across the

stocks under consideration. This creates the possibility to perform a portfolio selection

procedure.

5.4 Diversification effects and portfolio selection

5.4.1 Diversification effects

We study the diversification effects by comparing the SRIs of the portfolios under different

diversified levels. As in Fama and Miller (1972), to study the diversification effects, it is

assumed that the individual stocks have the same characteristics, i.e. αi = α and σi = σ

for 1 ≤ i ≤ d. Meanwhile, the diversified portfolio is constructed by assigning equal

weights to the considered stocks. We study whether the SRI is increasing or decreasing

as the number of stocks considered in the portfolio d varies.

In case α = 1, from Remark 5.3.2, the scale of a portfolio does not depend on the

dependence structure. Hence, the result is straightforward,

σ(
d∑

i=1

1

d
Xi) = d

∫

W

(
d∑

i=1

1

d
σiwi

)
H(dw) = σ.

Therefore, one can never construct a portfolio which has smaller secondary risk indicator

than the minimum among the individuals. Meanwhile, as d changes, the diversified port-

folio will have the same SRI. It confirms Fama and Miller (1972)’s conclusion that the

diversification has no effect when α = 1.

The empirical studies in literature always observe α > 1 for financial returns. In this

case, considering that xα is a convex function, we have, from the Jensen inequality,

σ(
d∑

i=1

1

d
Xi) = dσ

∫

W

(
d∑

i=1

1

d
w

1/α
i

)α

H(dw)

≤ dσ

∫

W

d∑
i=1

wi

d
H(dw)
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= σ. (5.4)

Therefore, the diversified portfolio will have a smaller risk than individual stocks consid-

ered in this portfolio.

The diversification effects depend on the dependence structure. Consider the com-

pletely independent case, where H has positive measure on only d points:

(1, 0, · · · , 0)T , (0, 1, · · · , 0)T , · · · , (0, 0, · · · , 1)T

with probability 1/d assigned to each point. The scale of X̄ is then calculated as σ/(dα−1).

It is an decreasing function as d increases. This agrees Fama and Miller (1972)’s conclusion

that the more diversified, the less risky when α > 1.

However, the inequality (5.4) turns to be an equality when H concentrates all its

measure on a single point (1/d, · · · , 1/d)T . In multivariate EVT, that is the case in which

we have completely tail dependence. In this case, the diversification has no effects. This

extends Fama and Miller (1972)’s discussion.

The case α < 1 is rarely observed in reality, however it is still theoretically interesting.

In this case, considering that xα is a concave function, by the Jensen inequality, we have

for any
∑d

i=1 ci = 1,

σ(
d∑

i=1

ciXi) = d

(
d∑

i=1

ciσ
1/α

)α ∫

W

(
d∑

i=1

ci∑d
i=1 ci

w
1/α
i

)α

H(dw)

≥ dσ

∫

W

∑d
i=1 ciwi∑d

i=1 ci

H(dw)

= σ.

Hence, one can never construct a better portfolio than the individual securities. In par-

ticular, when ci = 1/d, that confirms Fama and Miller (1972)’s conclusion, but now we

have included the dependent case.

Summarizing the above discussion, we have the following three statements:

1) when α = 1, the diversification has no effect regardless the dependence structure;

2) when α < 1, the diversification has negative effects, i.e. leading to a higher risk;

3) when α > 1, the diversification is in general leading to a lower risk. However, in the

completely tail dependent case, the diversification has no effect. Hence, the diversification

effect depends on the dependence structure.

Therefore, only for the case α > 1, the portfolio optimization problem has a non-

marginal solution. Otherwise, when α ≤ 1, the optimal portfolio is the individual stock

which has the lowest SRI. An extra problem occurs when the lowest SRI is shared by

several stocks. That will be discussed in Section 5.5.
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5.4.2 Portfolio selection in case α > 1

In case α > 1, it is possible to achieve a smaller SRI, even smaller than the smallest SRI

among the marginals, by constructing a diversified portfolio. In order to do so, we are

going to minimize σ(
∑d

i=1 ciXi) with the constraint that
∑d

i=1 ci = 1.

In practice, the marginal scales σi can be individually estimated, while the dependence

structure H can be non-parametrically estimated, see de Haan and Ferreira (2006). Hence,

the scale of a specified portfolio can be calculated based on those estimates. In statistical

application, we again take the advantage of introducing the scale as the secondary risk

indicator in the following sense. The number of order statistics used in estimation, k, is

a considerable issue not only in the marginal estimation but also in the estimation of the

spectral measure H on W . However, our formula in Theorem 5.3.1 shows that the scale of

a portfolio only depends on the portfolio scheme (the weight on each stock), the marginal

scales and the probability measure H, but does not directly depend on the choice of k.

So we can actually use different k in estimating different marginal scales, even a different

k in estimating H. But it does not influence the calculation of the portfolio scale.

Finally, after the marginal scales and H are estimated, to find the optimal portfolio is

a well-known convex optimization problem. Theoretically, there exists a unique solution.

Empirically, this can be solved by the Newton method, see, e.g. Dennis and Schnabel

(1996) and Boyd and Vandenberghe (2004). We will give an empirical example in Section

5.6.

5.5 Case α ≤ 1: probability of dominance

In the case α ≤ 1, as we discussed in Section 5.4.1, to minimize the risk by considering

the SRI, the best choice is not to diversify but put all eggs in the same basket, i.e. to

choose the individual stock with the lowest marginal scale. Even though this situation

rarely happens in reality, it is better to complete the whole discussion because of the

theoretical interest. Now, we should still consider a special case when the lowest scale

is shared by several marginals. Without loss of generality, we assume that not only the

PRIs-tail indices, but also the SRIs-scales, are equal, i.e. αi = α ≤ 1 and σi = σ, for all

1 ≤ i ≤ d.

In this case, the marginal VaRs are all equal. Hence the individual stocks do not differ

if we take VaR as the risk measure. It means that each stock has the same probability to

fall into crisis, i.e. Xi is higher than a certain threshold. However, if the market is in a

crisis situation, the performance of each stock can still differ. Obviously, the probability

that the i−th stock performs the worst, more specifically, Xi =
∨d

j=1 Xj, can be different
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for different i. Since we are interested in the tail, we consider this probability given

that the market is in a crisis situation, more specifically,
∨d

j=1 Xj is higher than a high

threshold. Intuitively, each individual stock may have a different relation to the systemic

risk. Therefore, we introduce the following new measurement to compare the stocks.

Denote the limiting conditional probability

pi := lim
t→∞

P (Xi =
d∨

j=1

Xj|
d∨

j=1

Xj > t),

where 1 ≤ i ≤ d. pi is called the probability of dominance (POD) of the i−th stock.

Intuitively, the POD indicates the probability to be the ”worst” one when the system is

in a ”worse” case. The following theorem shows how to calculate the POD. For the proof,

see Appendix 5.A.

Theorem 5.5.1 Suppose X = (X1, · · · , Xd)
T belongs to the domain of attraction of a

d-dimensional extreme value distribution, the marginal tail indices are all equal and the

marginal scales are all finite and equal. Let H be the spectral measure on W . For a given

i, 1 ≤ i ≤ d, the POD of the i−th marginal is calculated as

pi =

∫
wi=max1≤j≤d wj

wiH(dw)∫
W

max1≤j≤d wjH(dw)
.

Remark 5.5.1 Similar results as in Theorem 5.5.1 can be found in de Haan (1984b) and

Resnick and Roy (1990). However, in these papers, the results are not expressed in terms

of the H measure.

Like the SRI, the POD of each marginal also can be statistically estimated from Theorem

5.5.1. Therefore, the one who has the minimum POD will be an optimal choice in the

sense that, it is less likely to be the ”worst” choice in a ”worse” situation. In other words,

the one who has the minimum POD has the minimum connection with the systemic risk.

If the minimum POD is shared within several stocks, it means that they even have the

same connection with the systemic risk. Hence, there is no difference within choosing any

one of them.

5.6 Empirical application

We apply our portfolio selection procedure to the dataset employed by Hyung and de Vries

(2002). The dataset consists of the daily returns (close-to-close data), including cash

dividends, for 15 companies listed on the S&P 100 index in March of 2001. The 15 stocks

are arbitrarily chosen. The daily price series for each stock run from January 2, 1980
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through March 6, 2001. Based on the daily prices, the daily (logarithmic) returns are

derived, which gives a sample size (n) of 5,525 for each stock. The dataset covers more

than 20 years of data including the 1987 Crash. Table 5.1 presents the selected stocks

and their descriptive statistics.

Table 5.1: Selected stocks and descriptive statistics

Series Name Mean Std Min
1 ALCOA 0.0554 1.94 -27.57
2 AT & T 0.0428 1.73 -23.89
3 BLACK & DECKER 0.0204 2.24 -21.73
4 CAMPBELL SOUP 0.0630 1.75 -14.11
5 DISNEY (WALT) 0.0663 1.95 -34.38
6 ENTERGY 0.0453 1.63 -19.97
7 GEN.DYNAMICS 0.0576 1.81 -15.42
8 HEINZ HJ 0.0658 1.59 -10.01
9 JOHNSON & JOHNSON 0.0692 1.63 -20.27
10 MERCK 0.0756 1.58 -13.98
11 PEPSICO 0.0739 1.77 -15.39
12 RALSTON PURINA 0.0702 1.63 -11.59
13 SEARS ROEBUCK 0.0488 1.96 -29.20
14 UNITED TECHNOLOGIES 0.0611 1.68 -17.06
15 XEROX 0.0102 2.19 -29.75

The numbers in this table are percentages.

We start with estimating the left tails of these stock returns. To estimate the marginal

tail indices and the marginal scales, we use the Hill-type estimators introduced in Section

5.2. Different from Hyung and de Vries (2002), we do not use the bootstrapping method

as in Danielsson et al. (2000) to choose the number of upper order statistics for the

estimation, k. Instead, we follow the method in de Haan and de Ronde (1998). For each

stock, we plot the estimators of the tail index and the scale against k, then choose a

particular k around which the two estimates exhibit constant levels simultaneously. The

estimated tail indices α̂ and their corresponding standard deviation are presented in Table

5.2 as well as the estimators of the scales Â. The results are slightly different from Hyung

and de Vries (2002) due to the different method of choosing k. However, it still agrees with

the observation that the tail indices are very similar while the scales are quite different.

To construct the optimal portfolio, we should first select the stocks with the maximum

tail indices. By ranking the estimated tail indices among the stocks, the series 10 provides

the maximum, 3.871. However, the second highest tail index is provided by series 14 as

3.759. Considering their standard deviation, 0.325 and 0.310 respectively, by a hypothesis

test, they do not significantly differ from each other. Following this idea, we make hy-
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Table 5.2: Estimation for individual
stocks

Series k α̂ std Â
1 161 3.559 0.281 2.320
2 214 2.846 0.195 0.656
3 131 3.133 0.274 2.581
4 89 3.509 0.372 1.954
5 379 2.670 0.137 0.677
6 263 2.473 0.153 0.329
7 163 3.189 0.250 1.358
8 110 3.373 0.322 1.065
9 261 3.363 0.208 1.023
10 142 3.871 0.325 2.045
11 158 3.195 0.254 1.234
12 161 3.148 0.248 0.790
13 135 3.335 0.287 1.961
14 147 3.759 0.310 2.211
15 291 2.379 0.140 0.620

The column k shows the number of
upper order statistics used in estima-
tion. The column std gives the esti-
mated standard deviation of the cor-
responding tail index.

pothesis tests for each pair of stocks to see whether they are significantly different. Under

a significant level 0.2, the hypothesis that the top 4 series, series 10, 14, 1 and 4, are in the

same level is not rejected. However, the tail index of the series 10 is significant different

from the 5th highest tail index provided by series 8, 3.373. Notice that we use a rather

high significant level, because the null hypothesis is that the two indices are equal while

we are afraid of involving potential smaller tail indices. Hence, our optimal portfolio will

be constructed from only 4 stocks: 10, 14, 1 and 4. We take their tail indices as the

average of their estimations, 3.674.

The next step is to estimate the dependence structure H within those 4 series. We

follow the estimation procedure in de Haan and Ferreira (2006, Section 7.3). Denote these

4 return series as Rt
i, where i = 1, 2, 3, 4, t = 1, 2, · · · , n. Here n is the sample size 5,525.

Since we focus on the downside risk, we define X t
i = −Rt

i. By ranking {X t
i}1≤t≤n, we get

4 rank sequences {Y t
i }1≤t≤n as Y t

i = rank(X t
i ), for i = 1, 2, 3, 4. By choosing a proper m,

we find those observation points s such that

s ∈ S :=

{
t :

4∨
i=1

Y t
i ≥ n + 1−m

}
.
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For any s ∈ S, we connect the point

((n + 1− Y s
1 , n + 1− Y s

2 , n + 1− Y s
3 , n + 1− Y s

4 )) ∈ R4
+

and the origin by a straight line, and find the intersection with the plane

W4 :=
{
(x1, x2, x3, x4) ∈ R4

+ : x1 + x2 + x3 + x4 = 1
}

.

We get the points

1

4n + 4−∑4
i=1 Y s

i

((n + 1− Y s
1 , n + 1− Y s

2 , n + 1− Y s
3 , n + 1− Y s

4 )) ,

for all s ∈ S. By assigning equal weights to those points on W4, we get the estimation

of the spectral measure H on W4. The parameter m plays a similar role as the number

of upper order statistics k used in the marginal estimation. To choose m, we use the tail

dependence measure

κ :=

(∫

W4

max
1≤i≤4

wiH(dw)

)−1

defined in de Haan and Ferreira (2006, Section 7.4). Notice that 1 ≤ κ ≤ 4. κ = 1

implies completely tail independence and κ = 4 implies completely tail dependence. An

intermediate κ shows how dependent they are. With each m, κ can be estimated from the

estimated H. Hence, we plot the estimation of the tail dependence measure κ against m.

Similar to the choice of k for the marginals, we choose a particular m around which the

estimated κ is at a constant level. Finally, with m = 91, we get the estimated spectral

measure H on W4 which consists of 456 points.

With the estimation of the marginal tail indices, scales and the spectral measure H on

W4, we can use the formula in Theorem 5.3.1 to calculate the scale of any portfolio with

specified weights. Therefore, it is possible to minimize the scale of the portfolio thanks

to the optimization toolbox in Matlab. The optimal weights are shown in Table 5.3 as

Portfolio 1.

To compare with our optimal portfolio, we also construct other portfolios using the

classical mean-variance approach. The weights are calculated by using the portfolio allo-

cation package in Matlab. One portfolio based on stocks 10, 14, 1 and 4 is constructed,

while the other one is based on all 15 stocks. Their weights are shown in Table 5.3 as

Portfolio 2 and 3.

From the different weights, we calculate the 5,525 daily returns of those 3 portfolios.

In order to compare the downside risk of those portfolios, we estimates their VaRs. We

present the estimations of the left quantiles with probabilities 5%, 1%, 0.1% and 0.01%.

Since we consider daily data, these probabilities more or less represent the extremal events
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Table 5.3: Weights of portfolios

Series Portfolio 1 Portfolio 2 Portfolio 3
1 0.1981 0.1163 0.0332
2 0.0046
3
4 0.3099 0.2186 0.0467
5 0.0657
6 0.0845
7 0.0836
8 0.1397
9 0.0514
10 0.2633 0.4396 0.1782
11 0.0930
12 0.1559
13
14 0.2287 0.2255 0.0636
15

Portfolio 1 is the optimal portfolio following
our portfolio selection procedure. Portfolio
2 is the optimal portfolio based on stocks
10, 14, 1 and 4 by mean-variance approach.
Portfolio 3 is the optimal portfolio based on
all 15 stocks by mean-variance approach.

happened once per month, half year, 4 years and 40 years. Notice that, since we have

5,525 observations, the non-parametric estimations of the left quantiles with probabilities

5%, 1% and 0.1% are simply the 276th, 55th and 5th lower order statistics of the portfolio

returns. Meanwhile, with one-dimensional EVT, the quantiles with small tail probabilities

are also possible to be estimated by the Hill-type estimator introduced in Section 5.2. In

particular, the left quantile with probability 0.01% can only be estimated in this way. We

present both the non-parametric estimation and the EVT estimation in Table 5.4 and

Table 5.5 respectively.

Table 5.4: Downside VaR: non-parametric estimation

5% 1% 0.1%
Portfolio 1 -1.74 -2.91 -6.24
Portfolio 2 -1.70 -2.93 -6.50
Portfolio 3 -1.46 -2.43 -6.10

The estimations for the left quantiles with probability
5%, 1% and 0.1% are simply the 276th 55th and 5th
lower order statistics.

From these tables, we observe that regardless the choice of tail probability and es-
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Table 5.5: Downside VaR: EVT estimation

5% 1% 0.1% 0.01%
Portfolio 1 -1.72 -2.88 -6.00 -12.53
Portfolio 2 -1.74 -2.93 -6.18 -13.05
Portfolio 3 -1.37 -2.72 -7.23 -19.24

The estimations are from the Hill-type quantile estimators.

timation method, the VaR of our optimal portfolio, Portfolio 1, always stays in a safer

level than Portfolio 2, which is the optimal portfolio based on the 4 chosen stocks by

the mean-variance approach. The difference is enhanced when considering a smaller tail

probability. Hence our portfolio is safer than Portfolio 2 in extremal situation.

Comparing to the optimal portfolio based on all 15 stocks by the mean-variance ap-

proach, Portfolio 3, our portfolio does not perform better in the non-parametric estima-

tion. However, from the EVT estimation, Portfolio 1 is better when the tail probability

is 0.1% and 0.01%. Hence, our portfolio is better protected in extremal situation.

An extra comparison shows that the differences between Portfolio 1 and 3 are larger

than the differences between Portfolio 1 and 2, when the tail probability is 0.1% and

0.01% in Table 5.5. This phenomenon agrees with the result in Proposition 5.3.1 in the

following sense. Portfolio 3 assign positive weights to most of the 15 stocks. It must have

a lower tail index than Portfolio 1 and 2 which are only based on the 4 stocks sharing the

maximum tail index. Hence, the risk in extremal situation is eventually higher than the

other two portfolios when the corresponding tail probability is small enough.

5.7 Conclusion and further extension

This chapter studies the portfolio selection in a multivariate EVT framework. By em-

ploying VaR as the risk criterion, we first link the VaR to the scale parameter of a heavy

tailed distribution. Therefore, in the VaR optimization problem, alongside the primary

risk indicator–tail index, the scale parameter can be recognized as the secondary risk

indicator.

To study the portfolio selection and diversification effect problems, we uses multivari-

ate EVT to model the tail dependence structure among the stocks non-parametrically.

Compared to the CAPM model or other parametric dependence structures, this approach

is much wider. Under the assumption that the joint stock returns belong to the domain

of attraction of a multivariate extreme value distribution, we propose the following pro-

cedure to select the optimal portfolio.

1) By estimating the marginal tail indices (PRI), the optimal portfolio should be con-

structed from those have the maximum PRI.
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2) Within these candidates, we estimate their marginal scale parameters (SRI) and depen-

dence structure given by the spectral measure H on W . Notice that although for marginal

estimations and the estimation of H, the number of upper order statistics in use, k, is

always a considerable issue, the calculation of the portfolio scale is straightforward from

the estimates.

3) If those equivalent tail indices are higher than 1, Theorem 5.3.1 shows how to calculate

the SRI of a specific portfolio. Therefore, the portfolio selection problem can be numeri-

cally solved by minimizing the portfolio SRI.

4a) If those equivalent tail indices are not higher than 1, the optimal choice is to stay in

the stock with the minimum SRI.

4b) If there are more than one stock sharing the same minimum SRI, Theorem 5.5.1

shows how to calculate the probability of dominance (POD) for each marginal. The opti-

mal choice is to pick up the one who has the minimum POD. If the PODs are even equal

among several stocks, there is no difference in choosing any of them, because they really

have no difference not only in terms of the marginal risk, but also in terms of how they

are connected with the systemic risk.

Our study leads to a similar discussion on the diversification effect as in Fama and Miller

(1972) under more general conditions. For α = 1, there is no diversification effect. For

α < 1, the diversification causes a negative effect that is the increase of the risk. For

α > 1, our conclusion depends on the dependence structure. Usually, the diversification

leads to a decrease of the risk. However, if the individual securities are completely tail

dependent, the diversification has no effect.

An empirical application shows that to construct an optimal portfolio with our proce-

dure will indeed result in a portfolio which is more safe than the classical mean-variance

approach in extremal situation.

In Section 5.2, we introduced the scale parameter as the SRI by restricting the tail dis-

tribution to a narrow case, i.e.

1− F (x) = Ax−α[1 + o(1)].

In the standard EVT setup, we face much wider situation: tα(1−F (t)) is a slowly varying

function. In this case the scale may not be well defined. However, we can still define a

relative scale for multivariate case. We present the definition and the result while the

proofs are omitted.

Assume now that X belongs to the domain of attraction of a d-dimensional extreme

value distribution, i.e. (5.2) holds. Similar to proposition 5.3.1, it is not difficult to prove
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that when the tail indices αi are not equal, without defining SRI, the optimal portfolio is

the individual stock who has the maximum tail index (PRI).

Suppose for all 1 ≤ i ≤ d, αi = α. In the narrow case where we can define the scale

parameter, we have (a
(n)
i )αi/n → σi as n →∞, where a

(n)
i are the normalization constants

series in (5.2). In the general case, this limit does not necessarily exist. Hence, the scale

can not be well-defined. Instead, there exist the scale functions ai(t), for 1 ≤ i ≤ d, such

that a
(n)
i = ai(n) for 1 ≤ i ≤ d and ai(t) is a regularly varying function with index 1/αi.

Suppose all ai(t) are comparable, i.e. for any 1 ≤ i, j ≤ d, ai(t)/aj(t) converges to a

finite positive number as t →∞. We can still define a relative scale as

σ̃i = lim
t→∞

ai(t)∑d
j=1 aj(t)

,

for each 1 ≤ i ≤ d. This relative scale can be recognized as a pseudo secondary risk

indicator (PSRI), because it can be proved that, when the marginal tail indices are all

equal, i.e. αi = α,

σ̃i = lim
δ→0

V aRXi
(δ)∑d

j=1 V aRXj
(δ)

.

Therefore, the PSRI is a relative scale to compare the VaRs of the individuals.

For the portfolio selection and diversification effect problems, we define a relative scale

for a portfolio similar to the PSRI above. For any portfolio, P =
∑d

i=1 ciXi, it can be

proved that,

σ̃P := lim
δ→0

V aRP (δ)∑d
j=1 V aRXi

(δ)

is always a finite positive number. With this definition, Proposition 5.3.1 and Theorem

5.3.1 still holds by changing all σi into σ̃i and the scale of portfolio into σ̃P . Therefore

this is still a relative scale to compare the VaRs of the portfolios. The portfolio selection

procedure in this chapter still applies by minimizing the PSRI. Notice that, the formula

of POD does not include the marginal scales. Hence, it is not difficult to verify that

Theorem 5.5.1 still holds under the case that all PRIs are equal and not higher than 1,

and all PSRIs are also equal.

To summarize, although our approach starts from the definition of scale which requires

some extra condition, it can be relaxed to a much wider case where the marginal scale

functions are comparable. In this case, a relative scale plays a role as a PSRI, which leads

to a similar procedure in portfolio selection.



105

5.A Appendix A

Proof of Proposition 5.3.1

Since X belongs to the domain of attraction of a d−dimensional extreme value distri-

bution with positive marginal tail indices αi, 1 ≤ i ≤ d, X is a regularly varying random

vector with tail index min1≤i≤d αi. For the definition of regularly variation for a random

vector, see, e.g. Basrak et al. (2002). From Theorem 1.1 in Basrak et al. (2002), the tail

index of a linear combination of a regularly varying random vector is dominated by the

minimum marginal tail index. Hence,
∑d

i=1 ciXi must have tail index α1. Now, we only

need to prove for the scale part.

From the domination of the minimum tail index theorem mentioned above,
∑d

i=2 ciXi

must have the tail index min2≤i≤d αi > α1. For any given 0 < δ < 1,

P (
d∑

i=1

ciXi > t) ≤ P (c1X1 > (1− δ)t) + P (
d∑

i=2

ciXi > δt).

Therefore,

lim sup
t→∞

tα1P (
d∑

i=1

ciXi > t) ≤ cα1
1 σ(X1)

(1− δ)α1
.

By taking δ → 0, we have

lim sup
t→∞

tα1P (
d∑

i=1

ciXi > t) ≤ cα1
1 σ(X1).

Meanwhile,

lim inf
t→∞

tα1P (
d∑

i=1

ciXi > t) ≥ lim inf
t→∞

tα1P (c1X1 > t) = cα1
1 σ(X1).

Combining the lower and upper boundaries, the proposition is proved. ¤

Proof of Proposition 5.3.2 with a general H

We start from approximating H by a series of finite discrete measures. Suppose{
H(m)

}∞
m=1

is a series of probability measures on W such that

1) H(m) is a finite(no more than m) points discrete probability measure on W .

2) H(m) v→ H as m →∞.

Here
v→ means the vague convergence. The existence of this kind of measure series

can be proved by a real construction. Subdividing W into m H−measurable sets, and

concentrating the measures in each set on its gravity center, we get a suitable series H(m).
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By a similar proof as Proposition 5.3.2 with a discrete H in Section 5.3.2, we can get

similar result for H(m), though the marginal expectations of H(m) are not necessarily 1/d.

Suppose

H(m) =
m∑

j=1

pjδaj
,

where
{
aj = (a1j, · · · , adj)

T
}m

j=1
are m points on W , i.e.

∑d
i=1 aij = 1, and

∑m
j=1 pj = 1.

Denote, for any 1 ≤ i ≤ d,

σ
(m)
i =

∫

W

wiH
(m)(dw) =

m∑
j=1

pjaij.

As m →∞, H(m) v→ H implies that σ
(m)
i → 1/d.

Similarly, we construct a d−dimensional random vector using the i.i.d. standard

Fréchet distributed random variable V1, V2, · · · . Define, for 1 ≤ i ≤ d,

U
(m)
i = d

m∨
j=1

pjaijVj.

Then, it is not difficult to verify that U (m) = (U
(m)
1 , · · · , U

(m)
d )T has the distribution

function

G(m)(x1, · · · , xd) = exp

(
−d

∫

W

(
w1

x1

∨ · · · ∨ wd

xd

)
H(m)(dw)

)
.

Because H(m) v→ H as m →∞, for the random vector, we have U (m) d→ U .

Similar to the proof for discrete H, we can prove that

σ(
d∑

i=1

ciU
(m)
i ) =

d∑
i=1

cidσ
(m)
i .

From the fact that σ
(m)
i → 1/d and U (m) d→ U as m → ∞, by taking m → ∞ we

proved the proposition for the general case of H. ¤

For the rest of the appendix we need to introduce an alternative way to study the depen-

dence structure of a simple max-stable distribution: the exponent measure. For detail,

see e.g. de Haan and Ferreira (2006).

Denote R+ = [0,∞). Suppose ν is a measure defined for all Borel sets A ⊂ Rd
+ with

inf
(x1,··· ,xd)∈A

max(x1, · · · , xd) > 0 (5.5)

such that

1) Homogeneity: for any Borel set A satisfying (5.5) and ν(∂A) = 0, and any a > 0,

ν(aA) = a−1ν(A).
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2) Marginal condition: for any 1 ≤ i ≤ d and any x > 0,

ν
{
(x1, · · · , xd) ∈ Rd

+ : xi > x
}

= 1/x.

By denoting

Ax1,··· ,xd
= {(s1, · · · , sd) : ∃1 ≤ i ≤ d s.t. si > xi} ,

we can get a simple max-stable distribution G as G(x1, · · · , xd) = exp (−ν(Ax1,··· ,xd
)).

Conversely, any simple max-stable distribution G has such a representation with a suitable

ν. ν is called the exponent measure.

These two measures H and ν can be transformed from one to the other in the following

way. A point x = (x1, · · · , xd) ∈ Rd
+/ {(0, · · · , 0)} can be mapped to (r, w) ∈ (0,∞)×W

by r =
∑

1≤i≤d xi and w = x/(
∑d

i=1 xi). It is a one-to-one mapping. Denote this mapping

as π. For any Borel set A satisfying (5.5), π(A) must be a Borel set in (0,∞) ×W . In

particular, for any (x1, · · · , xd)
T ∈ Rd

+/
{
(0, · · · , 0)T

}
,

π(Ax1,··· ,xd
) = {(r, w) : ∃1 ≤ i ≤ d s.t. rwi > xi}

=

{
(r, w) : r >

x1

w1

∧ · · · ∧ xd

wd

}
.

Hence, we have

ν(Ax1,··· ,xd
) = − log G(x1, · · · , xd)

= d

∫

W

w1

x1

∨ · · · ∨ wd

xd

H(dw)

= d

∫

W

(∫ ∞

x1
w1
∧···∧ xd

wd

1

r2
dr

)
H(dw)

= d

∫

(r,w)∈π(Ax1,··· ,xd
)

1

r2
drH(dw).

This relation holds for any set Ax1,··· ,xd
, therefore, it also holds for any other Borel set A

satisfying (5.5), i.e.

ν(A) = d

∫

(r,w)∈π(A)

1

r2
drH(dw). (5.6)

From Proposition 5.3.2, we can get the following corollary.

Corollary 5.A.1 For any x > 0 and Ãx :=
{

(x1, · · · , xd) ∈ Rd
+ :

∑d
i=1 cixi > x

}
,

ν(Ãx) =

∑d
i=1 ci

x
.

Hence the measure ν on the set Ãx does not depend on how the weights are distributed

but only on their sum.
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Proof of Corollary 5.A.1

Considering that G is in the domain of attraction of itself, i.e.

lim
n→∞

n

(
1− P

(
U1

n
≤ x1, · · · ,

Ud

n
≤ xd

))
= − log G(x1, · · · , xd) = ν(Ax1,··· ,xd

)

holds for any (x1, · · · , xd) ∈ Rd
+/(0, · · · , 0), a similar relation must hold for other Borel sets

A satisfying (5.5). In particular, for the set Ãx :=
{

(x1, · · · , xd) ∈ Rd
+ :

∑d
i=1 cixi > x

}

where x > 0, we have

lim
n→∞

nP

((
U1

n
, · · · ,

Ud

n

)
∈ Ãx

)
= ν(Ãx),

Notice that

lim
n→∞

nP

((
U1

n
, · · · ,

Ud

n

)
∈ Ãx

)
= lim

n→∞
nP

(∑d
i=1 ciUi

n
> x

)
=

σ(
∑d

i=1 ciUi)

x
.

Hence, from Proposition 5.3.2, the corollary is proved.

An alternative proof of corollary 5.A.1 is carried out by straightforward calculation

from (5.6) as follows.

ν(Ãx) = d

∫

π(Ãx)

1

r2
drH(dw)

= d

∫

r> x∑d
i=1

ciwi

1

r2
drH(dw)

= d

∫

W

∑d
i=1 ciwi

x
H(dw)

=

∑d
i=1 ci

x
.¤

Proof of Theorem 5.3.1

We prove Theorem 5.3.1 by using the exponent measure ν introduced above.

Suppose X satisfies (5.2) with all marginal tail indices α. Define Y = (Y1, · · · , Yd)
T

by Yi = Xα
i , then for each marginal Yi, the tail index is 1, and the scale is the same as

σi. Denote Zi = Yi/σi, we have that Z = (Z1, · · · , Zd)
T , Y and X share the same simple

max-stable distribution G, where Z has unit scales. Because the tail index of
∑d

i=1 ciXi

is alpha, the scale of
∑d

i=1 ciXi can be calculated as

σ(
d∑

i=1

ciXi) = lim
t→∞

tαP

(
d∑

i=1

ciXi > t

)

= lim
t→∞

tαP

(
d∑

i=1

ci(σiZi)
1/α > t

)
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= lim
n→∞

nP

(
d∑

i=1

ci(σiZi)
1/α > n1/α

)

= lim
n→∞

nP

(
d∑

i=1

ci

(
σi

Zi

n

)1/α

> 1

)

= lim
n→∞

nP

((
Z1

n
,
Z2

n
, · · · ,

Zd

n

)
∈ A∗

)
,

where A∗ =
{

(x1, · · · , xd) :
∑d

i=1 ci(σixi)
1/α > 1

}
.

Because Z is in the domain of attraction of G and Z has tail indices 1 and unit scales,

we have, similar to the proof of Corollary 5.A.1,

lim
n→∞

nP (
Z1

n
≤ x1, · · · ,

Zd

n
≤ xd) = − log G(x1, · · · , xd) = ν(Ax1,··· ,xd

)

holds for any (x1, · · · , xd) ∈ Rd
+/(0, · · · , 0). Hence it holds for any Borel set A satisfying

(5.5), in particular, A∗. Therefore, the calculation of the portfolio scale can be continued

as

σ(
d∑

i=1

ciXi) = ν(A∗)

= d

∫

(r,w)∈π(A∗)

1

r2
drH(dw)

= d

∫
∑d

i=1 ci(σirwi)1/α>1

1

r2
drH(dw)

= d

∫

r>(
∑d

i=1 ci(σiwi)1/α)
−α

1

r2
drH(dw)

= d

∫

W

(
d∑

i=1

ci(σiwi)
1/α

)α

H(dw).

The proof of Theorem 5.3.1 is complete. ¤.

Proof of Theorem 5.5.1

To calculate the POD, we start with the same notation Zi = Xα
i /σ as in the proof

of Theorem 5.3.1. Then Z = (Z1, · · · , Zd)
T and X share the same simple max-stable

distribution G, where Z has standardized tail indices and scales. Hence,

pi = lim
t→∞

P (Xi =
d∨

i=1

Xi|
d∨

i=1

Xi > t)

= lim
t→∞

P (Zi =
d∨

i=1

Zi|
d∨

i=1

Zi > t)



110 Appendix A

= lim
t→∞

P (Z ∈ Ai

⋂
Bt)

P (Z ∈ Bt)
,

where Ai =:
{

(x1, · · · , xd) ∈ Rd
+ : xi =

∨d
s=1 xs

}
and Bt :=

{
(x1, · · · , xd) ∈ Rd

+ :
∨d

s=1 xs > t
}

.

Suppose ν is the corresponding exponent measure. Since Z is in the domain of attraction

of G, from the proof of Theorem 5.3.1, we have that, for any Borel set A ⊂ Rd
+ satisfying

(5.5),

lim
t→∞

tP (Z ∈ tA) = ν(A).

Notice that Bt = tB1, both B1 and Ai

⋂
B1 satisfy (5.5). We conclude that

lim
t→∞

tP (Z ∈ Ai

⋂
Bt) = ν(Ai

⋂
B1),

and

lim
t→∞

tP (Z ∈ Bt) = ν(B1),

Finally, we get

pi = ν(Ai

⋂
B1)/ν(B1).

To continue with the calculation, we use (5.6) to transform the ν measure to the H

measure.

ν(Ai

⋂
B1) = d

∫

π(Ai
⋂

B1)

1

r2
drH(dw)

= d

∫

rwi>1,wi=max1≤i≤d wi

1

r2
drH(dw)

= d

∫

wi=max1≤i≤d wi

wiH(dw).

Similarly,

ν(B1) = d

∫

W

max
1≤i≤d

wiH(dw).

Combining these two, the proof is complete. ¤







Part III

Extremal Rainfall





Chapter 6

On Spatial Extremes: with
Application to a Rainfall Problem

6.1 Introduction

Extreme rainfall statistics are frequently used when a damaging flood has occurred to

answer questions about the rarity of the event. Engineers often need extreme rainfall

statistics for the design of structures for flood protection. A typical question is e.g. what

is the amount of rain in a given area on one day that is exceeded once in 100 years?

Or, more mathematically, what is the 100-year quantile of the total rainfall in the area

on one day? In this chapter this question is investigated for a low-lying flat area in the

northwest of the Netherlands. The area is shown in Figure 6.1. Because it roughly covers

the province of North Holland, it will shortly be indicated as North Holland.

There are 32 rainfall stations in the area for which daily data were available for the

30-year period 1971-2000. Only the fall season, i.e. the months September, October and

November, is considered. In this season the likelihood of flooding and its impact are

relatively large. Because of the restriction to the fall season it is reasonable to assume

stationarity in time. Stationarity in space, except for location and scale, is also assumed.

Since we have to extrapolate from a 30-year to a 100-year period, our problem is an

extreme value problem. There is also a clear spatial aspect.

Engineers often make use of areal reduction factors (ARFs) to convert quantiles for

point rainfall to the corresponding quantiles of areal rainfall. ARFs have been derived

empirically by estimating the areal rainfall as a function of point rainfall measurements

(e.g., NERC (1975); Bell (1976)) or by statistical modelling (e.g., Bacchi and Ranzi (1996);

Sivapalan and Blöschl (1998); Veneziano and Langousis (2005)). The latter requires

assumptions on distributions, spatial correlation and/or scaling behavior. The resulting

ARF for the 100-year quantile is generally very uncertain.

Some attempts have been made to estimate ARFs from weather radar data (Allen

115
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Figure 6.1: The study area: North Holland

and Allen and DeGaetano (2005); Stewart (1989)). One difficulty is that the raw rainfall

intensities from the radar reflectivities need to be adjusted for systematic deviations from

the values observed at the rainfall stations. Another difficulty is that archived radar data

cover a relatively short time period (in the Netherlands only 10 years).

Regional Climate Model (RCM) simulations driven by weather reanalysis data are a

potential source for areal aggregated rainfall. A reanalysis is an estimate of the state

of the atmosphere based on observations and a numerical weather forecast. The RCM

is necessary to increase the spatial resolution. Various 40-year simulations have been

performed recently with spatial resolutions of 50 km× 50 km and 25 km× 25 km, in

particular within the framework of the EU-funded project ENSEMBLES (www.ensembles-

eu.org). In addition to the limited length and rather coarse resolution for our application,

there are systematic differences between simulated and observed rainfall. For the KNMI

RCM driven by ERA40 reanalysis data, Leander and Buishand (2007) report differences

up to 20% in seasonal average rainfall for the river Meuse basin, situated south of the

Netherlands. For North Holland the differences can even be larger because it is much

smaller than the Meuse basin and it is surrounded by water.

Statisticians have used max-stable processes to obtain the quantiles of the distribution

of spatially aggregated rainfall. Coles and Tawn, in a series of papers (Coles (1993);

Coles and Tawn (1996)) have developed methods to deal with spatial extremes based

on the spectral representation (de Haan (1984b); see also Schlather (2002)). Here we

follow a different approach based on random fields. Apart from the parameters that



117

characterize the upper tail of the marginal distributions our model has a parameter that

determines spatial dependence. This parameter is estimated from the tails of the empirical

two-dimensional marginal distributions of daily rainfall in North Holland. The 100-year

quantile of the total rainfall over the area is found by simulating synthetic daily rainfall

fields using the estimated model.

In order to motivate our solution we first explain some relevant aspects of extreme

value theory, in R1, Rd (d > 1) and C[0, 1] (Section 6.2). In Section 6.3, we specify the

stochastic process used in the simulation. This process is used only to simulate ”extreme”

rainfall. For non-extreme rainfall we sample from the available data. In Section 6.4 we

explain how we combine the two to get a simulated day of rainfall. The estimation of

the dependence parameter is dealt with in Section 6.5. Section 6.6 discusses the outcome

of the simulation and the answer to our problem. Section 6.7 summarizes our main

conclusions.

6.2 Extreme value background

We now explain the background of our approach by reviewing some aspects of extreme

value theory and the related theory of excursions over a high threshold. This will be done

first in the one-dimensional case (Section 6.2.1), then the finite-dimensional case (Section

6.2.2) and finally the case of continuous stochastic processes (Section 6.2.3). The results

in the various cases are similar but of increasing complexity. That is why we start with

the one-dimensional case which is well-known (Gnedenko (1943) and Pickands III (1975)

respectively).

6.2.1 One-dimensional space

Suppose that the distribution function F is in the domain of attraction of an extreme

value distribution, i.e., if X1, X2, · · · are i.i.d. with distribution function F , there are a

positive function a and a function b, such that

lim
n→∞

P

(
max
1≤i≤n

Xi − b(n)

a(n)
≤ x

)
= G(x)

a non-degenerate distribution function. We denote this by F ∈ D. Then a and b can be

chosen such that

G(x) = Gγ(x) = exp
{−(1 + γx)−1/γ

}

for all x with 1 + γx > 0. Then we also say F ∈ D(Gγ).

Let X be a random variable with distribution function F . Then there exists a positive

function a0 and real shape parameter γ (the extreme value index), such that for all x with
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1 + γx > 0,

lim
t↑x∗

P

(
X − t

a0(t)
> x|X > t

)
= (1 + γx)−1/γ =: 1−Qγ(x).

Here x∗ := sup {x : F (x) < 1}. This means that the larger observations in a sample follow

approximately the probability distribution Qγ - the generalized Pareto distribution (GPD,

c.f. Bajari and Hortaçsu (2003); Pickands III (1975)). Note that 1−Qγ(x) = − log Gγ(x).

Let R be a random variable with distribution function Qγ. Then,

P

(
R− t

1 + γt
> x|R > t

)
= P (R > x)

for x and t such that 1+ γt > 0 and 1+ γx > 0. We call this property excursion stability.

Suppose that we have observed a sample X1, X2, · · · , Xn from F . Since the approx-

imate distribution of the large values is completely specified, it is possible to use it as a

basis to simulate more ”large observations”, even larger than those in the sample. Thus,

by resampling the non-extreme part of the sample and simulating extreme observations

from the GPD distribution one can produce more and more ”observations”, even extreme

ones. Using partly simulation and partly resampling is the main idea behind what we

intend to do. Hence we sample from

F̄ (x) =





F (x) if x < t,

1− (1− F (t))Qγ

(
x− t
a0(t)

)
if x ≥ t.

(6.1)

We can implement this by letting t be one of the upper order statistics and using estimators

for F , γ and a0.

The extra ”extreme” observations are sampled from the tail model and they are inde-

pendent of the ”non-extreme” observations. This is justified by the so-called ”découpage

de Lévy” stating roughly that cutting up a sequence of i.i.d. random variables in two

subsequences according to whether their values are in a set B or in its complement Bc,

results in two independent i.i.d. sequences. The result has been formulated and proved

carefully in Resnick (1987), pages 212 and 215. A similar argument applies in higher

dimensional space (Section 6.2.2 and 6.2.3).

6.2.2 Finite-dimensional space

Let us now consider the finite-dimensional case, or rather the two-dimensional case for

simplicity. Let (X, Y ) be a random vector with distribution function F . Suppose F ∈ D,

i.e. if (X1, Y1), (X2, Y2), · · · are i.i.d. with distribution function F , there are positive

functions a and c and functions b and d, such that

lim
n→∞

P

(
max
1≤i≤n

Xi − b(n)

a(n)
≤ x, max

1≤i≤n

Yi − d(n)

c(n)
≤ y

)
= G(x, y),
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a distribution function with non-degenerate marginals. If this is the case, we say F ∈ D(G)

and G is a (multivariate) extreme value distribution. Then, as in the one-dimensional

case, there exists a related 2-dimensional GPD distribution QH , obtained for example as

follows:

lim
t→∞

P

(
X − b(t)

a(t)
>

xγ1 − 1

γ1

or
Y − d(t)

c(t)
>

yγ2 − 1

γ2

|X > b(t) or Y > d(t)

)

=2

∫ 1

0

max

(
s

x
,
1− s

y

)
H(ds) =: 1−QH(x, y),

for (x, y) ∈ DH =
{

(x, y) : 2
∫ 1

0
max

(
s
x
, 1−s

y

)
H(ds) ≤ 1

}
⊃ {(x, y) : x, y ≥ 2}, where

γ1 and γ2 are the marginal extreme value indices, and H is a probability distribution

function on [0, 1] with mean 1/2. Any distribution H with mean 1/2 may occur (see e.g.,

de Haan and Ferreira (2006, Chapter 6)). H characterizes the dependence in the tail. It is

different from the traditional dependence measure: correlation coefficient which measures

the dependence at moderate levels. If H concentrates all its measure on point 1/2, (X,Y )

is completely tail dependent. If H is a discrete measure on only two points: 0 and 1 with

weight 1/2 each, (X,Y ) is completely tail independent. Similar to the one-dimensional

case we have

− log G

(
xγ1 − 1

γ1

,
yγ2 − 1

γ2

)
= 1−QH(x, y).

QH is a probability distribution function on DH with the properties:

1. Standard one-dimensional GPD marginals: QH(x,∞) = QH(∞, x) = 1 − 1/x, for

x ≥ 1.

2. Homogeneity: 1 − QH(tx, ty) = t−1(1 − QH(x, y)) for t > 1 and (x, y) ∈ DH , in

particular QH ∈ D:

Qn
H(nx, ny) = (1−(1−QH(x, y))/n)n → exp {−(1−QH(x, y))} = G

(
xγ1 − 1

γ1

,
yγ2 − 1

γ2

)
.

Sometimes the function 1−QH(1/x, 1/y) is called the asymptotic dependence function of

F . It determines the tail dependence between the two components without specifying the

marginal distributions.

3. Excursion stability: If (R, S) is a random vector with distribution function QH , then

with c := 1−QH(1, 1), we have for x, y ∈ DH , t > c

P

(
R >

tx

c
or S >

ty

c
|R > t or S > t

)
= P (R > x or S > y).

We remark that a random vector with an arbitrary extreme value distribution can be

constructed as follows. Let E1, E2, · · · be i.i.d. standard exponential random variables.

Let V be a random variable with distribution function H and consider i.i.d. copies
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V1, V2, · · · of V . Let the sequences {Ei} and {Vi} be independent. Then the random

vector (
max
i≥1

2Vi/(E1 + E2 + · · ·+ Ei), max
i≥1

2(1− Vi)/(E1 + E2 + · · ·+ Ei)

)

has an extreme value distribution with marginal distribution functions exp(−1/x), x > 0.

We want to follow the line of reasoning from the one-dimensional situation and pro-

pose to use QH to simulate more ”large observations”, to be combined with resampling

from the available sample. However, simulation from a multivariate distribution is more

complicated than in the one-dimensional case. It is more convenient if we can find a

random vector that is easy to simulate and that has the same distribution. Consider the

random vector (2Y V, 2Y (1−V )) with Y and V independent, Y has distribution function

1−1/x, x ≥ 1 and V has distribution function H. It is easy to check that the distribution

function Q0
H(x, y) of (2Y V, 2Y (1−V )) coincides with QH(x, y) for x, y ≥ 2. The fact that

the distribution function is not exactly the same is not a problem: we are dealing with an

asymptotic property and the important thing is that Q0
H has the asymptotic dependence

function 1−QH(1/x, 1/y), i.e.

lim
t→∞

P (2Y V > tx or 2Y (1− V ) > ty|2Y V > t or 2Y (1− V ) > t) = 1−QH(x, y) (6.2)

for x, y > 1. In fact any distribution function in the domain of attraction of G would do

since the asymptotic dependence structure is the same as for the limiting extreme value

distribution.

Now the random vector (2Y V, 2Y (1 − V )) is useful but not flexible enough: the set

of conditions V ∈ [0, 1] and EV = 1/2 is rather restrictive. Hence let us consider the

random vector (Y A1, Y A2) with Y and the vector (A1, A2) independent, Y as before and

A1 and A2 positive with EA1 = EA2 = 1. The distribution function Q∗ of (Y A1, Y A2)

satisfies the following properties.

1∗. 1 − Q∗(x,∞) = E min
(
1, A1

x

)
for x > 0, hence limt→∞ t(1 − Q∗(tx,∞)) = 1/x,

similarly for Q∗(∞, x);

2∗. limt→∞ t(1−Q∗(tx, ty)) = E max
(

A1

x
, A2

y

)
for x, y > 0, i.e. Q∗ ∈ D;

3∗.

lim
t→∞

P (Y A1 > tx/c or Y A2 > ty/c|Y A1 > t or Y A2 > t) = E max

(
A1

x
,
A2

y

)

for x, y > 0 with c := E max(A1, A2).

We can easily simulate from Q∗, but this distribution satisfies only approximately

(not exactly) the three properties 1, 2 and 3. Because of property 2∗ (meaning that the

distribution function of (Y A1, Y A2) has the same asymptotic dependence function as the

distribution function of max
(
0, 1− E max

(
A1

x
, A2

y

))
, c.f. (6.2)), we can still use Q∗ for

simulation albeit with caution.
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6.2.3 Extremes of continuous stochastic processes

What do we mean by extremes in C[0, 1], the space of continuous functions defined on

the unit interval? The setup is as follows. Let {X(s)}s∈[0,1] be a stochastic process in

C[0, 1]. Consider independent copies X1, X2, · · · of the process X. Compose for each n a

continuous stochastic process {
max
1≤i≤n

Xi(s)

}

s∈[0,1]

.

Suppose that for some positive functions as(n) and real functions bs(n), the sequence of

processes {
max
1≤i≤n

Xi(s)− bs(n)

as(n)

}

s∈[0,1]

converges in C[0, 1]. If this is the case, we say X ∈ D. Let us call the limiting process

{U(s)}s∈[0,1]. Then we say X ∈ D(U). The following proposition is useful for our purposes

(de Haan and Lin (2001)).

Proposition 6.2.1 X ∈ D if and only if the following two statements hold:

1. (uniform convergence of the marginal distributions) There exists a continuous function

γ(s) such that, for x > 0

lim
n→∞

P

(
max
1≤i≤n

Xi(s)− bs(n)

as(n)
≤ xγ(s) − 1

γ(s)

)
= exp

(
−1

x

)
,

uniformly for s ∈ [0, 1].

2. (convergence of the standardized process) With Fs(x) := P (X(s) ≤ x) for s ∈ [0, 1],

{
max
1≤i≤n

1

n(1− Fs(Xi(s)))

}
d→ {η(s)} (say)

in C[0, 1]. Note that all one-dimensional marginal distributions of the process 1/(1 −
Fs(Xi(s))) are equal to 1− 1/x, x ≥ 1.

The process η satisfies: if η1, η2, · · · are i.i.d. copies of η, then

1

n
max
1≤i≤n

ηi
d
= η,

i.e. the process is simple max-stable. (The word ”simple” indicates that all marginal

distributions are standard Fréchet distributions, exp(−1/x), x > 0.) Moreover, we have

that

{U(s)} d
=

{
(η(s))γ(s) − 1

γ(s)

}
.

As a consequence of this proposition, we can study the ”simple” process η first and

go back to U later, in a straightforward way.
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Two characterizations of simple max-stable processes are known. One of them can

serve our purposes. It is given in the following proposition. The other characterization is

discussed at the end of this subsection.

Proposition 6.2.2 (Schlather (2002), de Haan and Ferreira (2006) Corollary 9.4.5) Ev-

ery simple max-stable process η in C[0, 1] can be generated in the following way. Let

E1, E2, · · · be i.i.d. standard exponential random variables. Further consider i.i.d. pos-

itive stochastic processes V, V1, V2, · · · in C[0, 1] with EV (s) = 1 for all s ∈ [0, 1] and

E sup0≤s≤1 V (s) < ∞. Let the sequences {Ei} and {Vi} be independent. Then

η
d
= max

i≥1
Vi/(E1 + E2 + · · ·+ Ei).

Conversely, each process with this representation is simple max-stable. One can take the

stochastic process V such that

sup
0≤s≤1

V (s) = c a.s.

with c some positive non-random constant.

Now recall the ”generalized Pareto” results in one- and finite-dimensional extremes,

that allowed us to simulate from the tail of the distribution. What is the situation in this

spatial setup?

One way to proceed is as in the finite-dimensional case. Let Y be a random variable

with distribution function 1−1/x, x ≥ 1 (i.e. one-dimensional GPD). Let V be a positive

stochastic process in C[0, 1] that satisfies the conditions of Proposition 6.2.2: EV (s) = 1

for s ∈ [0, 1] and sup0≤s≤1 V (s) = c, a non-random constant. Let Y and V be independent.

Consider the GPD process

{ξ(s)}s∈[0,1] := {Y V (s)}s∈[0,1] .

The process ξ is in C[0, 1] and satisfies

1. Standard GPD tail: P (Y V (s) > x) = 1/x for x > c;

2. Homogeneity;

3. Excursion stability: The distribution of {cY V (s)/t} given sup0≤s≤1 Y V (s) > t is the

same as that of {Y V (s)} for t > c.

The validity of the three properties requires the condition that sup0≤s≤1 V (s) = c, a

non-random constant. If we only know E sup0≤s≤1 V (s) < ∞, the properties do not hold

as they stand, but we still have an asymptotic version of them as in the finite-dimensional

case. In particular, ξ ∈ D(η).

We remark that the stochastic process {Y V (s)} is in the domain of attraction of

the process {η(s)}, hence the asymptotic dependence structure of the two processes is
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the same (c.f. Section 6.2.2) and either of the processes can be used for simulating

extreme events. This is also true for the process {Y V (s)} with the weaker side condition

E sup0≤s≤1 V (s) < ∞. Hence there are three candidate processes for simulating extremal

rainfall.

We finish this section with two remarks.

In all of the above we can replace [0, 1] by any compact subset of an Euclidean space,

i.e. we can deal with spatial extremes.

An alternative approach to areal rainfall is presented in Coles (1993) and Coles and

Tawn (1996), as mentioned before. Rather than the representation of Proposition 6.2.2,

their approach is based on an alternative, more analytical, representation involving spec-

tral functions originating from Drees and Huang (1998) and an unpublished manuscript by

Smith (1990). They sketch how to calculate (rather than simulate) a quantile of the areal

rainfall. The model developed by Coles (1993) consists of a multivariate extreme-value

distribution that describes the extremes at a subset of the rainfall stations and deter-

ministic ”storm profile functions” to obtain the amount of rain in the remaining points

of the area. A consequence of this approach is that the model depends on the positions

of the rainfall stations. Coles and Tawn (1996) applied this model to calculate quantiles

of extreme daily areal rainfall in the winter season for a region in south-west England.

It is assumed that heavy rainfall always takes place throughout the region. Schlather

(2002) advocated the use of the representation of Proposition 6.2.2 to simulate extreme

widespread rainfall, like winter rainfall in south-west England.

6.3 Stochastic process for simulating ”extreme” rain-

fall

The starting point for the simulation of the rainfall process is Proposition 6.2.2, the

representation of simple max-stable processes and its counterpart, the excursion stable

process {Y V (s)}. Conceptually, as explained in Section 6.2, the excursion stable process

is the right one to use.

However, non-parametric estimation of the characteristics of the process V is presently

beyond our reach. Hence we choose to work with a tractable parametric model for V . Un-

fortunately, the condition sup0≤s≤1 V (s) = c, that makes the process {Y V (s)} excursion

stable, is very stringent and we could not find a reasonable parametric model for such a

process. Hence, it seems better to stay with the model {Y V (s)} but replace the condition

sup0≤s≤1 V (s) = c by E sup0≤s≤1 V (s) < ∞ as allowed by Proposition 6.2.2. Then the

excursion stability is still approximately true, i.e. the process has the same asymptotic

dependence structure. But we meet another problem. In order to tie the simulated pro-
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cess to the observed non-extreme rainfall, it is imperative that the marginal distributions

of the simulated process has a GPD tail (c.f. relation (6.6) below). As explained in Sec-

tion 6.2, this is not correct for {Y V (s)} with E sup0≤s≤1 V (s) < ∞, worse, the marginal

distribution is quite untractable, hence a transformation to repair this problem seems

difficult to find.

Only the third possibility remains: to choose the simple max-stable process from

Proposition 6.2.2 for the simulation. Then the asymptotic dependence structure of the

process is the same as that of the corresponding GPD-type process {Y V (s)} (they are in

the same domain of attraction) and the marginal distributions are all the same hence they

can easily be transformed to the distribution function 1−1/x, x ≥ 1. The transformation

on marginal distributions will not change the asymptotic dependence structure.

This is what we do in the simulation. For V we choose the so-called exponential martingale

(c.f. Øksendal (1992), exercise 4.10). Also we have to extend the process to a process

with a two-dimensional index set. We choose the model

η(s1, s2) := max
i≥1

exp {W1i(βs1) + W2i(βs2)− β(|s1|+ |s2|)/2}
E1 + E2 + · · ·+ Ei

(6.3)

for (s1, s2) ∈ R2 (or rather the area under study, North Holland). Here {Ei} is an

i.i.d. sequence of standard exponential distributed random variables. The processes

W11,W21,W12,W22,W13,W23, · · · are independent copies of double-sided Brownian mo-

tions W defined as follows. Take two independent Brownian motions B1 and B2. Then

W (s) :=

{
B1(s), s ≥ 0;
B2(−s), s < 0.

(6.4)

The positive constant β reflects the amount of spatial dependence at high levels of rainfall:

”β small” means strong dependence and ”β large” means weak dependence. The model

assumes that the dependence between extreme rainfall at two locations depends only on

the distance between the locations as we shall see later on.

The process η satisfies the requirements of Proposition 6.2.2:

E exp {W1(βs1) + W2(βs2)− β(|s1|+ |s2|)/2} = 1 for (s1, s2) ∈ R2,

and

E sup
a1≤s1≤b1
a2≤s2≤b2

exp {W1(βs1) + W2(βs2)− β(|s1|+ |s2|)/2} < ∞ for all a1 < b1, a2 < b2 real.

By Proposition 6.2.2, the one-dimensional marginal distributions of (6.3) are all e−1/x, x >

0. The two-dimensional marginal distributions are calculated in de Haan and Zhou (2008).
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They are invariant under a shift. The same holds for the higher-dimensional marginal dis-

tributions (the proof is in de Haan and Zhou (2008)). Hence the process is shift stationary

as it should be for our application.

The choice of this particular process is mainly one of convenience: the process is not

too crude and it allows easy simulation and estimation of the dependence parameter.

For the simulation of our process we need to simulate (6.3), the maximum of infinitely

many terms. However, since the denominators form an increasing sequence, one can

approximate the process η by taking the maximum of only finitely many terms. In fact

it turns out that even 4 terms are sufficient to get a reasonable result.

We have now a simple max-stable process that can be simulated rather well. But - taking

into account our discussion of the finite-dimensional case - in fact we need a process that

has generalized Pareto marginals, not the standard Fréchet extreme value distribution as

marginals. Hence we use the process η from (6.3) but transform the marginal distributions

to the generalized Pareto distribution 1− 1/x, x ≥ 1:

ξ(s1, s2) :=
1

1− exp
{
− 1

η(s1,s2)

} (6.5)

for (s1, s2) in the area.

The last step is a further transformation of the marginal distribution that adapts

the process to the local shape (γ), scale (a) and shift (b) parameters. These parameters

can be estimated from each station separately, using the local sample. However, the

resulting estimates may not be accurate enough, due to the small sample size (there is

a large number of days with no rain). To increase precision, it is often assumed in the

hydrological and climatological literature that the shape parameter γ is constant over the

region of interest (e.g., NERC (1975); AlilaAlila (1999); Gellens (2002); Fowler and Kilsby

(2003)). A reliable estimate of γ is then obtained using all extreme values (usually in the

literature this concerns the seasonal or annual maxima) in the region. This can be done

by combining the extremes into a single record (the so-called station-year method), by

averaging a local estimate of γ or a skewness statistic over the region of interest, or by

maximizing a log likelihood with a common γ and local scale and location parameters.

For annual maximum daily rainfall in the Netherlands, Buishand (1991) compared the

maximum likelihood approach with the averaging of a local estimate of γ. Almost the

same results were obtained.

Here we use the average of the local estimates of γ. We found the value γ̂ = 0.1082.

This value is comparable with the estimates of the shape parameter found for daily max-
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imum rainfall in the winter half-year (October-March) in the Netherlands (Buishand

(1983)) and Belgium (Gellens (2002)). Of course our model allows γ to vary over the

area.

The final transformation results into the process

X(s1, s2) := â(s1,s2)(n/k)

(
ξ(s1, s2)

γ̂n,k − 1

γ̂n,k

)
+ b̂(s1,s2)(n/k). (6.6)

Note that

P

(
X(s1, s2)− b(s1,s2)(n/k)

a(s1,s2)(n/k)
> x

)

=P

(
ξ(s1, s2)

γ − 1

γ
> x

)

=P

(
η(s1, s2) >

1

− log(1− (1 + γx)−1/γ)

)

=(1 + γx)−1/γ,

hence, all marginal distributions are GPD.

The estimation for γ, a and b (c.f. Proposition 6.2.1)at any location is based on the

”extreme” part of the local sample, i.e. the upper k order statistics of that sample. In

the asymptotic theory, when the sample size n is going to infinity, k will go to infinity:

k = k(n) →∞; but of lower order than n: k(n)/n → 0, n →∞.

The estimation of the shift b(s1,s2)(n/k) is particularly simple: b̂(s1,s2)(n/k) is the k-

th largest order statistics of the local sample. There are various estimators of γ and

a(s1,s2)(n/k) that converge at speed k−1/2. In the present application we use the so-called

moment estimator for γ (see e.g. de Haan and Ferreira (2006, Section 3.9)) and the

accompanying estimator for a(s1,s2)(n/k) (see e.g. de Haan and Ferreira (2006, Section

4.2)).

As explained before, to obtain a global shape parameter, we take the average of the

local estimates of γ among all the stations. However, we keep the local estimates of the

scale and shift at each station.

To choose the number of upper order statistics k used for the estimation of the shape

parameter, we plot the average estimate of this parameter across monitoring stations

against k. This average is constant when k is around 125. Similar plots for each individual

station confirmed that to choose k = 125 is also reasonable for most stations. Therefore,

we keep it also for estimating the scale a and the shift b throughout the area. The sample

size n is 2730.

With these estimations, the process (6.6) provides the simulated (extreme) rainfall in

the area.
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6.4 Simulating a day of rainfall

On an arbitrary day, there will be ”extreme” rainfall in part of the area and ”non-extreme”

rainfall (or no rainfall at all) in the rest of the area.

We achieve this in the simulation as follows: on the one hand, we simulate the process

(6.6) for the whole area; on the other hand, we choose at random a day out of the

30*(30+31+30)=2730 days of observed rainfall and we connect the two as follows:

For each station we check whether the observed rainfall on the chosen day is larger than

the shift parameter b̂(s1,s2)(n/k) for that station. If so, we use (6.6) (i.e., the simulated

process) to get the rainfall at that station. If not, we just use the observed rainfall for

the chosen day at that station.

How do we extend this to obtain the rainfall in the entire area?

First we connect the monitoring stations with each other, so as to cover the area with

Triangles. The division is presented in Figure 6.2 as the solid lines. The numbers refer

to the local 100-year quantile for each station, see Section 6.6. We write Triangles since

later on we shall also deal with smaller triangles, also we write Vertex and Edge for a

vertex and edge of a Triangle. Any Triangle can be extreme or non-extreme.
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Figure 6.2: The Triangles connecting the observation stations
(The numbers give the local 100-year quantile in mm)

1. Non-extreme: this is the case if all Vertices of the Triangle are non-extreme. The

rainfall in such a Triangle is just a linear function whose value at the Vertices are the

observed values.
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2. Extreme: all other cases. In that case the rainfall is mainly determined by the

process (6.6) where the functions a(s1,s2)(n, k) and b(s1,s2)(n, k) on the Triangle are chosen

as linear functions whose values at the Vertices are the values obtained by local estimation.

Note that this mix of extreme and non-extreme simulation is similar to (6.1).

More specifically we proceed as follows:

2.a) Subdivide each Edge into d intervals of equal length. Connect the separating points

on the Edges with each other using lines parallel to the Edges as indicated by the dashed

lines in Figure 6.2. This results into d2 triangles inside a Triangle. We used d = 5 in the

simulation.

2.b) Next we determine the rainfall process in each vertex (i.e. vertex of a triangle). For

Vertices we already determined the process. For the vertices, there are two cases.

2.b.1 On an Edge connecting two non-extreme Vertices in an extreme Triangle, the rainfall

is chosen to be the linear function whose values at the Vertices are the observed values.

This determines the rainfall for all vertices on such an Edge. The process (6.6) plays no

role.

2.b.2 The rainfall for every other vertex in an extreme Triangle is determined by the

process (6.6).

2.c) In order to carry out the numerical integration we simplify the rainfall process on

each triangle in an extreme Triangle. The rainfall in each triangle is given as a linear

function whose value at the vertices is the one obtained in part 2.b.

This is the way we obtained a day of rainfall. An example of a simulation for Oct 11,

1997, is given in Figure 6.3. Rainfall for this day is extreme over large parts of the north

and the middle of the study area. The left figure is based on the real data for Oct 11,

1997 and the right one presents a simulation. The latter produces very extreme rainfall

over a small region in the middle of the study area with a steep gradient to the south.

Note that the process is continuous and that it is easy to integrate numerically.

We remark that on 2299 out of the 2730 days of observation, none of the Vertices

(stations) is extreme, so that no simulation is necessary. On the other hand, there are 44

days on which all Triangles are extreme, so that the whole area is simulated.

The choice for Triangles with monitoring stations as Vertices is one of convenience:

triangles fit together easily to produce a continuous process and are relatively simple to

handle.

6.5 Estimation of the dependence parameter

One problem remains: we do not know β, the global dependence parameter in (6.3). It

has to be estimated. This can be done along the lines indicated in de Haan and Pereira
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Figure 6.3: Observed (left) and simulated (right) rainfall for Oct 11, 1997

(2006).

We need to calculate the two-dimensional marginal distributions of the process η

(defined in (6.3)) at locations (u1, u2) and (v1, v2), say. This is done in de Haan and Zhou

(2008). The result is as follows: for x, y real with h := |u1 − v1|+ |u2 − v2|,

P (η(u1, u2) ≤ ex, η(v1, v2) ≤ ey)

= exp

{
−

(
e−xΦ

(√
βh

2
+

y − x√
βh

)
+ e−yΦ

(√
βh

2
+

x− y√
βh

))}
, (6.7)

where Φ is the standard normal distribution function. Taking x = y = 0, we find

P (η(u1, u2) ≤ 1, η(v1, v2) ≤ 1) = exp

{
−2Φ

(√
βh

2

)}
,

and consequently

β =
4

h

(
Φ←

(
−1

2
log P (η(u1, u2) ≤ 1, η(v1, v2) ≤ 1)

))2

.

Hence we can estimate β if we know how to estimate

L(u1,u2),(v1,v2)(1, 1) := − log P (η(u1, u2) ≤ 1, η(v1, v2) ≤ 1).

This is a problem of two-dimensional extreme value theory that has been solved by

Huang and Mason (see Huang (1992) and Drees and Huang (1998)).

Let the continuous process X be in D (c.f. beginning of Section 6.2.3). Let X1, X2, · · ·
be i.i.d. copies of X. Write {Xi,n(s1, s2)}n

i=1 for the order statistics at location (s1, s2).

Then the estimator

L̂
(k)
(u1,u2),(v1,v2)(1, 1) :=

1

k

n∑
j=1

1{Xj(u1,u2)≥Xn−k+1,n(u1,u2) or Xj(v1,v2)≥Xn−k+1,n(v1,v2)}
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is consistent provided k = k(n) → ∞, k(n)/n → 0, n → ∞. It is asymptotically normal

under certain mild extra conditions.

Now label the monitoring stations with the numbers 1, 2, · · · , N(N = 32) and define

for p < q ≤ N ,

β̂p,q =
4

h

(
Φ←

(
1

2
L̂

(k(p,q))
(u1,u2),(v1,v2)(1, 1)

))2

,

where (u1, u2) and (v1, v2) are the coordinates of station p and q respectively, k(p, q) is

the number of higher order statistics used in the estimation. Our estimator for β is

β̂ :=
2

N(N − 1)

N∑
q=2

q−1∑
p=1

β̂p,q

(consistent and asymptotically normal).

We found that β̂ = 0.04277.

Note that the estimators γ̂, â and b̂ come from one-dimensional extreme value theory,

the estimator β̂ comes from finite-dimensional extreme value theory and the process η

comes from extreme value theory in C[0, 1].

6.6 Application

Our purpose is to study extremes of the total rainfall in North Holland. In particular

we want to determine how severe the areal rainfall is that occurs once in 100 years. To

be precise, it is once in 100*(30+31+30)=9100 days. In other words, we are studying

the 1-1/9100 quantile of the daily total rainfall in the area. This quantile will be briefly

indicated as the 100-year quantile.

Before presenting the simulation result, we would like to introduce some statistics and

results for separate stations. Take Station West Beemster as an example (it is located in

the middle of the area, and considered as the origin point when simulating the dependence

process). The largest observed rainfall in the 30 years is 68.2 mm. By fitting the GPD

with shape parameter γ̂ = 0.1082 to the observed extreme daily rainfall amounts at West

Beemster, we can estimate the 1-1/9100 quantile for this station. The point estimator is

63.0 mm.

The 1-1/9100 quantiles for the other monitoring stations were obtained in the same

way. Figure 6.2 gives the result for each station. We get that the average 1-1/9100

quantile among all the stations is 67.0 mm.

The simulation procedure in Section 6.4 has been repeated 91,000 times. This results

in a sample of 91,000 days of rainfall in North Holland. For each day we calculate the total

rainfall as the numerical integral of the rainfall process on the area. We take the 10th
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largest order statistic of this sample, i.e. we determine the 1-1/9100 sample quantile of

the integrated rainfall. Dividing by the total area, 2010 km2, we get the average rainfall in

the area. We replicate this procedure 60 times. A histogram of the 60 simulated quantiles

is given in Figure 6.4.

Histogram of simulated 100−year quantiles
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Figure 6.4: Histogram of simulated 100-year quantiles

Table 6.1: Statistics of simulated 100-Year quantiles of area-average rainfall

Mean (mm) 58.8 Sample Std (mm) 3.16
Min 54.4 Max 66.7

Some statistics of the 60 simulated quantiles are given in Table 6.6. From the table,

the sample mean of the simulated quantiles is 58.8 mm, and the sample standard deviation

is 3.16 mm. Hence the standard deviation of the sample mean is 0.41 mm.

When estimating the dependence parameter β in Section 6.5, we take the average of

496 estimates from all pairs of the monitoring stations, 0.04277. This is what we used

in the above simulation. In order to study the sensitivity of the dependence parameter

β, we take the 25% and 75% quantiles of the 496 estimates, 0.0339 and 0.0496, as β in

the simulated model to repeat the above analysis. From 10 simulated 100-year quantiles

for each new β, we get sample means of 58.4 mm and 60.0 mm respectively. Hence, the

result does not change much.

A setback of the exponential martingale model is the dependence on the coordinate

axes. In order to see how important the choice of the axes is, we have repeated the
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analysis after a 45 degree rotation of the axes and the result does not change a lot (from

10 simulated 100-year quantiles, we get sample mean 58.2 mm, and sample standard

deviation 3.1 mm). After rotation one of the axes is more or less the prevailing wind

direction.

It is interesting to compare the estimated 100-year quantile with the value obtained

by fitting the GPD with γ̂ = 0.1082 to the extremes of the average daily rainfall of the

32 stations in the area. The use of the same shape parameter as that for the extremes

at the individual stations can be justified from multivariate extreme value theory (Coles

and Tawn (1994)). The resulting value of 57.8 mm for the 100-year quantile is slightly

smaller than the average of our simulations.

The quantile for the area-average rainfall is smaller than the average of the correspond-

ing quantile for the individual measurement stations. The areal reduction factor ARF is

the ratio of these two quantities, ARF = 58.8/66.9 = 0.88. It is remarkable that from

the graph in the UK Flood Studies Report (see NERC (1975)), a similar value of ARF is

found for an area of 2010 km2. The latter refers to annual maximum rainfall rather than

seasonal maximum rainfall. The ARF from the GPD fit to the extreme average daily

rainfall equals 57.8/66.9 = 0.86.

6.7 Conclusion

The theory of extremes of continuous processes was used to estimate the 100-year quantile

of the daily area-average rainfall over North Holland. The estimation of this quantile was

done by simulating the daily process.

Regions with large rainfall were generated using a specific max-stable spatial process.

It was argued that direct simulation from the excursion process is not feasible.

The estimated 100-year quantile for the areal average rainfall turns out to be 12%

lower than the average 100-year quantile of the 32 measurement stations.

The model used in this chapter is convenient: it is really infinite-dimensional (does not

depend on a finite number of random variables only); the two-dimensional distributions

can be calculated and it can be simulated easily. A disadvantage is that the process is not

invariant with respect to rotation of the coordinate axes (see end of Section 6.6). This

will be the subject of future research.







Chapter 7

On extreme value analysis of a
spatial process

7.1 Introduction

Problems of spatial statistics connected with high values of the spatial process need to be

dealt with using extreme value theory (EVT), since the dependence between locations at

high levels may differ from the dependence at moderate levels.

A case in point is the estimation of high quantiles of the total rainfall in a certain

area. Engineers often need extreme rainfall statistics for the design of structures for flood

protection. A typical question is e.g. what is the amount of rain in a given area on one

day that is exceeded once in 100 years? Or, more mathematically, what is the 100-year

quantile of the total rainfall in the area on one day? Buishand et al. (2008) investigated

this question for a low-lying flat area in the northwest of the Netherlands. The observed

rainfall data is only available on a few fixed monitoring stations. In order to study the

high quantiles of the total rainfall, it is necessary to model the extreme rainfall process

with dependence.

Considering the dependence structure, Cooley and Naveau (2007) used a Bayesian

hierarchical model: locally the extreme rainfall is modeled by a one-dimensional EVT

distribution and the parameters of this distribution follow some spatial dependence model.

A different way of introducing dependence is via a max-stable process. The mathe-

matical setting of a max-stable process is as follows. Consider independent replications

of a stochastic process with continuous sample paths

{Xn(t)}t∈R ,

n = 1, 2, · · · . Suppose that the process is in the domain of attraction of a max-stable

process, that is, there are sequences of continuous functions an > 0 and bn such that as

135
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n →∞
{

max1≤i≤n Xi(t)− bn(t)

an(t)

}

t∈R

w−→ {η̃(t)}t∈R (7.1)

in C−space. Necessary and sufficient conditions have been given by de Haan and Lin

(2001). The limit process {η̃(t)} is a max-stable process. Without loss of generality we

can assume that the marginal distribution of η̃ can be written as

exp
{−(1 + γ(t)x)−1/γ(t)

}

for all x with 1 + γ(t)x > 0 where the function γ is continuous.

Buishand et al. (2008) simulated extreme rainfall from a max-stable process. Combin-

ing simulations of extreme rainfall with resampling from the non-extreme observations,

an overview on the total rainfall can be generated. This is a novel solution for problems

connected to both spatial statistics and extreme value analysis.

A major difficulty in the above methodology is to find a reasonable model for the max-

stable process. With a suitable standardization, we can restrict ourselves to discussing

the standardized process, called simple max-stable,

{η(t)} :=
{

(1 + γ(t)η̃(t))
1/γ(t)
+

}
,

whose marginal distribution functions are all standard Fréchet: exp(−1/x), x > 0.

For application, it would be nice to have a stationary simple max-stable process. There

are two different representations of stationary simple max-stable processes in literature.

One is from Theorem 9.6.10 in de Haan and Ferreira (2006), as follows.

A mapping Φ from L+
1 (the non-negative integrable functions on R) to L+

1 is called a

piston if for h ∈ L+
1

Φ(h(t)) = r(t)h(H(t))

with H a one-to-one measurable mapping from R to R and r a positive measurable

function, such that for every h ∈ L+
1

∫

R
Φ(h(t))dt =

∫

R
h(t)dt.

Let {(Zi, Ti)}∞i=1 be a realization of a Poisson point process on (0, +∞]×R with mean

measure (dr/r2) × dλ (λ is the Lebesgue measure). If the stochastic process {η(s)}s∈R
is simple max-stable, strictly stationary and continuous a.s., then there exist a function

h ∈ L+
1 with

∫
R h(t)dt = 1 and a continuous group of pistons {Φs}s∈R (continuous, i.e.

Φsn(h(t)) → Φs(h(t)) as sn → s for almost all t ∈ R) with
∫

R
sup
s∈I

Φs(h(t))dt < ∞
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for each compact interval I, such that

{η(s)}s∈R
d
=

{
max
i≥1

ZiΦs(h(Ti))

}

s∈R
. (7.2)

Conversely every stochastic process of the form exhibited at the right-hand side of (7.2)

with the stated conditions, is simple max-stable, strictly stationary and a.s. continuous.

A special case is obtained by setting Φs(h(t)) := h(t + s), where h is a continuous

probability density. It leads to a few strictly stationary, continuous, simple max-stable

process as discussed in de Haan and Pereira (2006). For example, one of them is the

normal density h as

h(t) :=
β√
2π

exp

{
−β2t2

2

}

with β a positive constant. The parameter β indicates the amount of dependence in the

process: small values of β indicates high dependence. By estimating β using the rainfall

observation at the available locations, we get the dependence structure. It is shown in

de Haan and Pereira (2006) that for estimating β, it is sufficient to calculate explicitly

the two-dimensional marginal distributions of the max-stable process.

An alternative representation of max-stable process is as follows, see Corollary 9.4.5

in de Haan and Ferreira (2006).

All simple max-stable process in C+(R)(the positive continuous functions on R) can

be generated in the following way. Consider a Poisson point process on (0, +∞] with

mean measure dr/r2. Let {Zi}∞i=1 be a realization of this point process. Further consider

i.i.d. stochastic processes V, V1, V2, · · · in C+(R) with EV (s) = 1 for all s ∈ R and

E sups∈I V (s) < ∞ for all compact interval I. Let the point process and the sequence

V, V1, V2, · · · be independent. Then

{η(s)}s∈R
d
=

{
max
i≥1

ZiVi(s)

}

s∈R
(7.3)

is a simple max-stable process. Conversely each simple max-stable process has such a

representation.

We use this result in a two-dimensional context and propose the following model

η(s1, s2) := max
i≥1

Zi exp {W1i(βs1) + W2i(βs2)− β(|s1|+ |s2|)/2} (7.4)

for (s1, s2) ∈ R2. The processes W11,W21,W12,W22,W13,W23, · · · are independent copies

of double-sided Brownian motions W defined as follows. Take two independent Brownian

motions B1 and B2. Then

W (s) :=

{
B1(s), s ≥ 0;
B2(−s), s < 0.

(7.5)
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The positive constant β reflects the amount of spatial dependence at high levels of rainfall:

”β small” means strong dependence and ”β large” means weak dependence. From this

model, we shall prove that the dependence between extreme rainfall at two locations

depends only on the distance between the locations.

The process η satisfies the requirements as follows:

E exp {W1(βs1) + W2(βs2)− β(|s1|+ |s2|)/2} = 1 for (s1, s2) ∈ R2,

and

E sup
a1≤s1≤b1
a2≤s2≤b2

exp {W1(βs1) + W2(βs2)− β(|s1|+ |s2|)/2} < ∞ for all a1 < b1, a2 < b2 real.

Meanwhile, the one-dimensional marginal distribution functions of (7.4) are all the same

as the standard Fréchet distribution function, e−1/x, x > 0.

Similar to de Haan and Pereira (2006), in order to use this model in studying the areal

rainfall, we have to prove that the process η is shift stationary and we have to calculate

the two-dimensional marginal distributions.

Since the two-dimensional process η is a combination of two one-dimensional processes,

for the stationarity it is sufficient to prove the same for the one-dimensional version, i.e.

that the process

η′(s1) := max
i≥1

Zi exp {W1i(βs1)− β|s1|/2} (7.6)

is stationary. This follows from the fact that the process η′ can be obtained as the limit

of the pointwise maximum of i.i.d. Ornstein-Uhlenbeck processes (see e.g. Example 9.8.2

in de Haan and Ferreira (2006)). The stationarity follows from the stationarity of the

Ornstein-Uhlenbeck process.

It remains to calculate the two-dimensional marginal distributions. This is done in

Section 7.2.

7.2 The two-dimensional marginal distribution of η

The two-dimensional marginal distribution of η′ in (7.6) is calculated in de Haan and

Ferreira (2006, Section 9.8). We state it as the following proposition.

Proposition 7.2.1 Suppose {η′(s)}s∈R is defined as in (7.6). Then for x, y ∈ R and

s1, s2 ∈ R,

− log P (η′(s1) ≤ ex, η′(s2) ≤ ey)

=e−xΦ

(√
|s1 − s2|

2
+

−x + y√
|s1 − s2|

)
+ e−yΦ

(√
|s1 − s2|

2
+

x− y√
|s1 − s2|

)
.
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This is useful in similar calculation for the two-dimensional process η. Besides Proposition

7.2.1, we need the following Lemma.

Lemma 7.2.1 Suppose N is normally distributed with mean 0, variance u, then with

non-random constants a > 0 and b,

EeN−u/2Φ(aN + b) = Φ

(
au + b√
a2u + 1

)
. (7.7)

Proof

Suppose N1 is standard normally distributed, and independent of N , then we have

EeN−u/21N1≤aN+b = ENE(eN−u/21N1≤aN+b|N) = EeN−u/2Φ(aN + b),

which is the left side of (7.7). By Fubini’s Theorem, it can be recalculated in the following

way

EeN−u/21N1≤aN+b

=EN1E(eN−u/21N1≤aN+b|N1)

=EN1

∫ ∞

N1−b
a

et−u/2 1√
2πu

e−
t2

2u dt

=EN1

∫ ∞

N1−b
a

1√
2πu

e−
(t−u)2

2u dt

=EN1

(
1− Φ

(
N1 − b

a
√

u
−√u

))
.

By a similar trick - introducing a standard normal variable N2 independent of N1, the

calculation can be finished to prove the lemma.

EN1

(
1− Φ

(
N1 − b

a
√

u
−√u

))

=EN1E(1
N2≥N1−b

a
√

u
−√u

|N1)

=EN1,N21N2≥N1−b

a
√

u
−√u

=P (N2 ≥ N1 − b

a
√

u
−√u)

=Φ

(
au + b√
a2u + 1

)
.

We remark that the last calculation is similar to that of Lemma 2.1 in Gupta et al. (2004).

¤
The lemma can be used to derive the two-dimensional marginal distributions as follows.

As in the proof of Proposition 7.2.1 (see de Haan and Ferreira (2006, Section 9.8)), we

have

− log P (η(u1, u2) ≤ ex, η(v1, v2) ≤ ey)
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=E max
(
eW1(βu1)+W2(βu2)−(|βu1|+|βu2|)/2−x, eW1(βv1)+W2(βv2)−(|βv1|+|βv2|)/2−y

)

=EW1E
(
max

(
eW1(βu1)+W2(βu2)−(β|u1|+β|u2|)/2−x, eW1(βv1)+W2(βv2)−(β|v1|+β|v2|)/2−y

) |W1

)

=Ee−x+W1(βu1)−β|u1|/2Φ

(√
β|u2 − v2|

2
+

y − x + W1(βu1)−W1(βv1)− β|u1|/2 + β|v1|/2√
β|u2 − v2|

)

+Ee−y+W1(βv1)−β|v1|/2Φ

(√
β|u2 − v2|

2
+

x− y + W1(βv1)−W1(βu1)− β|v1|/2 + β|u1|/2√
β|u2 − v2|

)
.

(7.8)

Now we can calculate the two parts in (7.8) separately. Without loosing generality, we

only focus on the first part.

Case 1: 0 ≤ u1 ≤ v1

In this case e−x+W1(βu1)−β|u1|/2 is independent of the other part. Hence,

Ee−x+W1(βu1)−β|u1|/2Φ

(√
β|u2 − v2|

2
+

y − x + W1(βu1)−W1(βv1)− β|u1|/2 + β|v1|/2√
β|u2 − v2|

)

=e−xEΦ

(√
β|u2 − v2|

2
+

y − x− (W1(βv1)−W1(βu1)− β(v1 − u1)/2)√
β|u2 − v2|

)

=e−xP

(
N ≤

√
β|u2 − v2|

2
+

y − x− (W1(βv1)−W1(βu1)− β(v1 − u1)/2)√
β|u2 − v2|

)

=e−xΦ

(√
β|u2 − v2|+ β(v1 − u1)

2
+

y − x√
β|u2 − v2|+ β(v1 − u1)

)
.

Case 2: 0 ≤ v1 < u1

Note that EeW1(βv1)−βv1/2 = 1 and W1(βv1) is independent of W1(βu1)−W1(βv1), we have

Ee−x+W1(βu1)−β|u1|/2Φ

(√
β|u2 − v2|

2
+

y − x + W1(βu1)−W1(βv1)− β|u1|/2 + β|v1|/2√
β|u2 − v2|

)

=e−xEeW1(βu1)−W1(βv1)−β(u1−v1)/2

· Φ
(√

β|u2 − v2|
2

+
y − x + W1(βu1)−W1(βv1)− β|u1|/2 + β|v1|/2√

β|u2 − v2|

)
.

Since W1(βu1) −W1(βv1) is normally distributed with mean 0, variance β(u1 − v1), we

can apply Lemma 7.2.1 with the constants a = 1/
√

β|u2 − v2|, u = β(u1 − v1) and

b =

√
β|u2 − v2|

2
+

y − x− βu1/2 + βv1/2√
β|u2 − v2|

.

The final result is

Ee−x+W1(βu1)−β|u1|/2Φ

(√
β|u2 − v2|

2
+

y − x + W1(βu1)−W1(βv1)− β|u1|/2 + β|v1|/2√
β|u2 − v2|

)
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=e−xΦ

(√
β|u2 − v2|+ β(u1 − v1)

2
+

y − x√
β|u2 − v2|+ β(u1 − v1)

)
.

Case 3: v1 < u1 < 0 and u1 ≤ v1 < 0

These two cases are similar to Case 1 and 2 respectively. The final results are all the same

as follows.

Ee−x+W1(βu1)−β|u1|/2Φ

(√
β|u2 − v2|

2
+

y − x + W1(βu1)−W1(βv1)− β|u1|/2 + β|v1|/2√
β|u2 − v2|

)

=e−xΦ

(√
β|u2 − v2|+ β|u1 − v1|

2
+

y − x√
β|u2 − v2|+ β|u1 − v1|

)
.

Case 4: u1 and v1 have different signs.

In this case W1(βu1) and W1(βv1) are independent, we can calculate the expectation with

respect to W1(βv1) first, then with respect to W1(βu1).

Ee−x+W1(βu1)−β|u1|/2Φ

(√
β|u2 − v2|

2
+

y − x + W1(βu1)−W1(βv1)− β|u1|/2 + β|v1|/2√
β|u2 − v2|

)

=e−xEeW1(βu1)−β|u1|/2Φ

(√
β|u2 − v2|+ β|v1|

2
+

y − x + W1(βu1)− β|u1|/2√
β|u2 − v2|+ β|v1|

)
.

Now we can again apply Lemma 7.2.1 with the constants a = 1/
√

β|u2 − v2|+ β|v1|,
u = β|u1| and

b =

√
β|u2 − v2|+ β|v1|

2
+

y − x− β|u1|/2√
β|u2 − v2|+ β|v1|

to get that

Ee−x+W1(βu1)−β|u1|/2Φ

(√
β|u2 − v2|

2
+

y − x + W1(βu1)−W1(βv1)− β|u1|/2 + β|v1|/2√
β|u2 − v2|

)

=e−xΦ

(√
β|u2 − v2|+ β(|u1|+ |v1|)

2
+

y − x√
β|u2 − v2|+ β(|u1|+ |v1|)

)
.

Notice that due to the different signs of u1 and v1, |u1 − v1| = |u1|+ |v1|.
By defining h = |u1 − v1|+ |u2 − v2|, all these cases can be combined together as

Ee−x+W1(βu1)−β|u1|/2Φ

(√
β|u2 − v2|

2
+

y − x + W1(βu1)−W1(βv1)− β|u1|/2 + β|v1|/2√
β|u2 − v2|

)

=e−xΦ

(√
βh

2
+

y − x√
βh

)
.

Symmetrically, the second part of (7.8) can be simplified as

e−yΦ

(√
βh

2
+

x− y√
βh

)
.
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Combining these two parts, we get the following theorem about the two-dimensional

marginal distribution of η.

Theorem 7.2.1 Suppose the simple max-stable process η is defined in (7.4). Given any

two coordinates (u1, u2) and (v1, v2) on R2, denote the distance between them as h :=

|u1−v1|+ |u2−v2|. Then the two-dimensional distribution function of (η(u1, u2), η(v1, v2))

is

P (η(u1, u2) ≤ ex, η(v1, v2) ≤ ey)

= exp

{
−

(
e−xΦ

(√
βh

2
+

y − x√
βh

)
+ e−yΦ

(√
βh

2
+

x− y√
βh

))}
, (7.9)

where Φ is the standard normal distribution function and x, y ∈ R.

Note that the two-dimensional marginal distribution depends on only h. It agrees

with the shift stationarity discussed in Section 7.1.

Similar to de Haan and Pereira (2006), Theorem 7.2.1 is useful in estimating β. By

taking x = y = 0, we get that

P (η(u1, u2) ≤ 1, η(v1, v2) ≤ 1) = exp

{
−2Φ

(√
βh

2

)}
.

Consequently, we have that

β =
4

h

(
Φ←

(
−1

2
log P (η(u1, u2) ≤ 1, η(v1, v2) ≤ 1)

))2

.

Hence we can estimate β if we know how to estimate

L(u1,u2),(v1,v2)(1, 1) := − log P (η(u1, u2) ≤ 1, η(v1, v2) ≤ 1).

In fact, this problem has been solved by Huang and Mason (see Huang (1992) and

Drees and Huang (1998)). Suppose we have i.i.d. observations of η as η1, η2, · · · . Write

{ηi,n(s1, s2)}n
i=1 for the order statistics at location (s1, s2). Then the estimator

L̂
(k)
(u1,u2),(v1,v2)(1, 1) :=

1

k

n∑
j=1

1{ηj(u1,u2)≥ηn−k+1,n(u1,u2) or ηj(v1,v2)≥ηn−k+1,n(v1,v2)}

is consistent provided by k = k(n) → ∞, k(n)/n → 0 as n → ∞. It is asymptotically

normal under certain mild extra conditions.

Hence, from the two-dimensional marginal distribution, we can estimate β when we

have observations at two specific locations. An application of this method is in Buishand

et al. (2008), Section 5.
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Internet Auction





Chapter 8

The Extent of Internet Auction
Markets

8.1 Introduction

Internet auctions (IA) have rapidly become a highly popular mechanism of exchange.

The popularity of IA sites is partly due to the enlargement of the market for rare items.

Since there are only a few buyers and sellers for such goods, creating an easily accessible

nation-wide or global market potentially improves the match between supply and demand.

Nevertheless, also many standard commodities, such as notebooks, are sold through online

auction sites. It seems intuitive that a seller is better off the larger is the extent of the

market. Indeed, Bulow and Klemperer (1996) showed that under the hypothesis of the

Independent Private Values Paradigm (IPVP), the seller is better off by enlarging the

market.1 Similarly, from the buyer’s perspective a larger choice of items and sellers is

often the better.

One of the perhaps surprising facts of IA markets is the low number of active bidders,

notwithstanding the popularity of the mechanism. Consider the well known Ockenfels

and Roth (2006) study of laptop and antiques auctions on eBay and Amazon. This study

covers 120 eBay laptop auctions with 740 active bidders in total and 120 Amazon laptop

auctions with a total of 595 active bidders. This implies an average number of 6.17 active

bidders per auction on ebay and 4.96 active bidders per auction on Amazon. The Bajari

and Hortaçsu (2003) study of eBay coin auctions finds 3.08 active bidders on average,

with a standard deviation of 2.51 and a maximum of 14 bidders. As another example, the

study of the online English auction with fixed ending time in Korea by Park and Bradlow

(2005) reports an average number of 5.80 bidders and 8.4 bids per auction.

Most IA sites have two ways of bidding. First, there is the possibility to bid manu-

1But in multi-unit second price auctions entry can lead to lower revenues, see Ausubel and Milgrom
(2002).
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ally, which is the standard English auction mechanism. Second, the possibility of proxy

bidding, in which a machine bids on behalf of the buyer, adds the Vickrey feature to the

auction. In multiple day English auctions not every manual bidder is continuously active.

Some intervening bids might therefore not materialize, whereas these would be placed

under proxy bidding. Nevertheless, whatever the exact number of the active bidders is,

it is a rather low number. The potential bidders are those bidders who check the auction

website with or without placing a bid. Potential bidders are in principle interested in

buying the item, but may not be willing to pay the going price. Thus the number of po-

tential bidders is much larger than the number of actual bidders. We will try to explain

the low average number of active bidders relative to the potential extent of the market.

Consider the number of potential bidders n as the extent of the market. Under the

independent private value paradigm (IPVP) we show that, under a mild additional as-

sumption, the valuations of the active bidders forms a sequence of records and second

records. By using the probability theory of records, we then prove that if the number

n of potential bidders is large, the number of active bidders is approximately equal to

2 log n. This explains the relative inactivity, since (2 log n)/n → 0 as n → ∞. With this

relationship in hand one can address questions such as by how much the extent of the

market has increased through the creation of IA.

The large amount of data generated by IA is conducive to empirical auction research.

A key difficulty in the analysis of IA data, though, is the fact that the number of potential

bidders is unknown. Many standard auction models require the number of bidders as a

known parameter for identification, see Krishna (2002). Paarsch (1992) is a good example

of an empirical study in which the number of bidders is known. Several empirical studies

combine the data from multiple auctions to study the IA without knowing the number

of potential bidders for a specific auction. However, this requires an extra assumption

regarding the distribution of the number of bidders. Laffont et al. (1995) use the multiple-

auctions approach by assuming that the numbers of bidders is the same across all auctions

under consideration. Bajari and Hortaçsu (2003) and McAfee and McMillan (1987) both

analyze structural econometric models for multiple auctions under the assumption that

the number of bidders follows a specific stochastic distribution.

Consider the identification problem in auction theory as in Athey and Haile (2002).

Song (2004) discusses this issue for IA and shows that under the IPVP, it is impossible to

identify the distribution of the bidder’s valuations from the empirical distribution of bids,

without knowing the number of potential bidders, if only the second largest order statistic

is observed. The parent distribution, though, is identified without knowing the number

of potential bidders, when at least two order statistics are observed, i.e. the second and

third largest order statistics. The structural analysis of auctions requires that one can
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identify the distribution of valuations from the data under the conjectured equilibrium

bid strategy. The Vickrey mechanism weakly dominant strategies are proxy bids which

permit such identification. But since most IA are a combination of proxy bids and manual

bids, an extra assumption is required for identification. If it can be assumed that manual

bidders respond immediately once they are overbid, this guarantees that their final bid

is either the winning bid, or that it equals their valuation of the item, see Song (2004).

Then both the second and the third largest order statistics can be observed.

While most empirical papers in fact proceed by pooling data across different auctions,

tacitly assuming homogeneity in the distribution of valuations and numbers of potential

bidders, we follow Caserta and de Vries (2005) and study IA on a per auction basis. But

to be able to do this, we need that the number of potential bidders is relatively large.

The 2 log n rule would lend itself easily to empirical scrutiny if the numbers of active and

potential bidders were known. Suppose that the number of page views can be used as

an indicator of potential interest. Fortunately, some smaller sites do report this number.

We will use this information to measure n and to test for the 2 log n rule via regression

analysis.

The large IA sites such as eBay and Yahoo! do not record the number of page views and

hence provide no direct information on the number of potential bidders. But information

on the bid arrival time is often publicly recorded. We show that this information can

be used to test the 2 log n rule indirectly, still using the per auction approach, under one

extra maintained assumption. If potential bidders arrive according to a Poisson process,

with a preference for auctions with short remainder time, then the asymptotic property

of the inter arrival times implies the 2 log n rule. We also provide indirect evidence for

the 2 log n rule using these bid arrival times.

Both the regression evidence and the indirect evidence via the bidding time for the

2 log n rule can be interpreted as a weak test of the IPVP. Alternative settings like common

values and interdependent signals paradigms do not necessarily imply the specific record

sequence which results under the IPVP. Thus insofar the 2 log n rule is not rejected,

the evidence weakly supports the IPVP hypothesis. Notice that most tests of the IPVP

contain several other maintained hypotheses, such as homogeneity across different auctions

and the distribution of the valuations. Here we do not need to maintain these other

hypotheses, except for the assumption regarding the response of the manual bidders in

case they are overbid. But the test is still weak as it only looks at one implication of

the auctions under IPVP and the alternative paradigms do not necessarily destroy the

2 log n rule, so that the alternative hypothesis is not well specified. In Bajari and Hortaçsu

(2003) the IPVP is tested versus the common value pardigm by means of the winner’s

curse, which is more severe the larger the number of bidders. For rare coin auctions the
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common value paradigm is the natural null hypothesis as is pointed out by Bajari and

Hortaçsu. In this chapter we focus on laptops which a priory better fits the IPVP.

This chapter is organized as follows. In Section 8.2, we review certain aspects of IA.

Identification strategies are discussed in Section 8.3. Section 8.4 discusses bids as a record

sequence. Our main theorem in Section 8.5 gives the asymptotic distribution of the index

of the record sequence. Section 8.6 discusses the empirical evidence of the 2 log n rule via

the number of pageviews. Simulations and empirical evidence for the 2 log n rule via the

timing of the bids are provided in Section 8.7. Section 8.8 concludes. Proofs are relegated

to the Appendix 8.A. An example clarifying some notation in this chapter is given in

Appendix 8.B.

8.2 The online auction

In comparison to offline auctions, the IA exhibit three main differences: the bidding

system, the termination rule and the reminder system. We discuss these features in the

following three subsections.

8.2.1 The bidding system

IA sites usually permit a choice between alternative bid procedures. Most common is the

choice between manual and proxy bidding. For a manual bid, the bidder just enters an

amount higher than the currently prevailing price. Manual bidding is like the first price

open ascending bid in an English auction. The system immediately places the bid at the

amount which is entered. A proxy bidder (secretely) communicates the maximum amount

he is willing to bid to the server of the auction site, after which the machine takes over the

bidding for this bidder. The proxy bidding procedure captures the second price sealed bid

mechanism studied by Vickrey (1962). Thus, if the newly entered manual bid is below the

maximum willingness to pay of one previous proxy bidders, the system will raise the price

to the minimum increment above the newly entered manual bid. Otherwise the manual

bid becomes the currently prevailing price. Similarly, a new proxy bidder may find that

he is immediately outbid by another proxy bidder. When two proxy bids are placed, the

current price will automatically jump to the lower of the two maximum willingness to bid

submissions plus the smallest possible increment.

8.2.2 The termination rules

There exist broadly two alternative termination rules. Either the auction ends after a

pre-announced fixed lapse of time, or there is variable termination time. On eBay, the
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auctions have a fixed ending time. The winner is the highest bidder at the time of the

close. Per contrast, Amazon type auctions use an auto-extension termination rule. Before

the auction starts an initial ending time is announced. If no bidding takes place during

the last ten minutes, the auction stops at the initial pre-announced time. But if there are

some bids in the last ten minutes, the ending time is automatically extended by another

ten minutes. This rule is also applied to the new extension period. Thus the auction

will only end once no bidding activity has occurred within the last ten minutes before

the previous ending time, otherwise, the ending time is extended automatically. On the

Yahoo! auction site the sellers can choose which of the two termination rules they adopt.

The influence of the different termination systems on the bidding strategy is consider-

able. The fixed ending time on eBay invites strategic last minute bidding, called sniping.

This avoids competition, since other bidders may be unable to respond due to a lack of

time, see Ockenfels and Roth (2006). In the Amazon-style auction sniping is not observed.

8.2.3 The reminder system

Most IA sites have an email based reminder system to inform active bidders about the

fact that they are outbid. This is particularly relevant for those active bidders who use

the manual system. Since many of these auctions run for several days or even longer,

those agents may rely on such automated signalling before becoming active again. With

the reminder system, the IA for the manual bidder in effect becomes a continuous open

English auction. But note that the English auction under the IPVP is strategically

equivalent to a second price auction. Most IA sites go through great pains in trying to

explain this equivalence, so that bidders are stimulated to use the proxy bidding. But

given the strategic incentives for sniping with the fixed ending time, manual bidding is

nevertheless often observed. Moreover, for items like collectibles for which the IPVP may

not be appropriate, manual bidding may again be preferable for strategic reasons.

8.3 Maintained hypothesis

Before we can come to the main theme of the chapter, we first have to ascertain that the

bid sequence is revealing with respect to the valuations. To analyze this issue for IA, first

consider a hypothetical IA on which only the proxy bidding mechanism is available and

to which the Amazon termination rule applies. Under the IPVP the weakly dominant

strategy is to bid one’s valuation. If bidders act in this way, each active bidder’s valuation

will be observed as his last bid, except for the winner.

Next, consider the hybrid IA with the possibility of manual bidding added to the proxy

bidding mechanism. To ensure that the third largest and lower valuations are observed
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as actual bids in the case with manual bidding, we use an assumption introduced by

Song (2004) for identification of the third largest valuation. Suppose that when the third

highest valuation bidder is overbid, he is immediately notified by the reminder system

if he is bidding manually. This enables the manual bidder to respond directly. We will

assume that the manual bidder indeed immediately counters with a higher bid as soon

as he is overbid and as long as his valuation is above the current price. This assumption

ensures that his valuation is observed as the second highest bid once the auction has

terminated.

In this chapter the analysis is in principle concluded on a per auction basis, i.e. we

do not necessarily pool across different auctions by making homogeneity assumptions. To

enable this analysis, we therefore like to use the bids from bidders other than the top

three, to increase the information content. For this reason, we will assume that all the

(active) manual bidders immediately respond to a counter bid:

Assumption 8.3.1 Each active (manual) bidder immediately returns to the IA and in-

creases his bid as soon as he is overbid and his valuation is above the prevailing price.

We already noted that Assumption 8.3.1 is automatically satisfied when there are only

proxy bidders present. For the manual bidders, as we discussed in Subsection 8.2.2, they

may have an incentive to bid later when there is a fixed ending time. However, with the

Amazon style auction termination rule, the active bidders (both proxy bidder and manual

bidder) have no incentive to wait. In this case, the assumption provides a lower bound to

the number of active bidders. Without an immediate response, some other manual bids

might intervene, whereas these would not be placed in the case Assumption 8.3.1 applies.

Given the Assumption 8.3.1, the currently prevailing price must be equal to the second

highest valuation among all the potential bidders up to that moment. Therefore the

current price faced by a new potential bidder must be the second highest valuation among

all the potential bidders who were actively bidding earlier on. Hence, in order to motivate

a new potential bidder to bid, his valuation must be higher than the current second highest

valuation. This conclusion is summarized in the first proposition.

Proposition 8.3.1 Consider an IA with a hybrid system of manual and proxy bids. Sup-

pose that Assumption 8.3.1 within the IPVP setting applies, then each active bidder’s

valuation is the highest or second-highest among all the valuations of the potential bidders

who were active before.
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8.4 Bids as a specific record sequence

Proposition 8.3.1 implies that the bids can be viewed as records of the valuations of the po-

tential bidders. The sequence of bids constitutes a quite particular record sequence, which

we can characterize. There exists a well developed theory of records in probability theory,

see the book by Resnick (1987). This theory will be used to derive the novel 2 log n rule.

We first introduce the concept record and 2-record sequence. Let i = 1, 2, · · · , n denote

the order in which the n potential bidders check the auction site. Suppose the valuation of

all potential bidders are i.i.d. random variables X1, X2, · · · , Xn with distribution function

F (x). Define the rank sequence {Ri}n
i=1 as

Ri :=
i∑

k=1

1{Xk≥Xi}, (8.1)

where Ri is the rank of the valuation of the i−th potential bidder among the valuations

of all the potential bidders who checked the auction before agent i. The valuation Xi is

called a record if Ri = 1. Similarly, it is a 2-record if Ri = 2. Denote the indices of the

records and 2-records as {J(j)}m
j=1. This index sequence is given by

J(1) = 1, J(2) = 2 (8.2)

J(j + 1) = min {i > J(j) : Ri ≤ 2} , j = 2, 3, · · · ,m− 1, (8.3)

where m is the number such that Ri > 2 for all i > J(m), i.e. m is the number of active

bidders. Then, the active bidders’ valuations constitute the record and 2-record sequence{
XJ(j)

}m

j=1
. An example to clarify the notation is presented in Appendix 8.B.

Under Assumption 8.3.1, from Proposition 8.3.1 we get the following corollary.

Corollary 8.4.1 Under Assumption 8.3.1, the active bidders’ valuations are
{
XJ(j)

}m

j=1
.

If an active bidder is not the winner, his valuation is observed as his last bid.

8.5 Main theorem

Corollary 8.4.1 implies that the record and 2-record sequence is
{
XJ(j)

}m

j=1
. Our main

theorem studies the property of the index sequence {J(j)}. The proof is relegated to

Appendix 8.A.

Theorem 8.5.1 As the number of potential bidders n →∞, the number of active bidders

m →∞ as well. Given that k →∞, the sequence {log J(k + j)− log J(k + j − 1)}∞j=1 is

asymptotically an i.i.d sequence with exponential distribution and mean 1/2.
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Remark 8.5.1 In fact, based on the record and 2-record sequence, one can prove–in a

way analogous to the proof of Corollary 4.5 of Resnick (1987) for the record sequence–that

the point process with points
{

1

2
log J(j)− 1

2
log n

}∞

j=1

converges to a homogeneous Poisson point process. However, our proof of Theorem 8.5.1

is not based on point processes, and follows a simpler and novel approach.

Intuitively, Theorem 8.5.1 states that the differences of the sequence log J(j) are asymp-

totically i.i.d. and have an exponential distribution with mean 1/2. This indicates that

log J(m) is approximately m/2 for sufficiently large m. Note that m active bidders will

be observed until there are J(m) potential bidders; conversely, one could say that if there

are n potential bidders, the number of active bidders will be approximately 2 log n.

We make this result precise by studying the asymptotic behavior of J(m). To this end

we first need to introduce two more sequences of random variables:

ξi = 1{Ri≤2}, and N(i) =
i∑

k=1

ξk. (8.4)

The number {ξi} indicates whether the i−th potential bidder is an active bidder or not.

The sequence {N(i)} gives the number of active bidders among the first i potential bidders.

An example of these two other sequences is also shown in Appendix 8.B.

The following two lemmas study the asymptotic normality of both the N(n) and J(m)

sequences. The proofs are given in Appendix 8.A.

Lemma 8.5.1 With the notation N(n) defined in (8.4), the sequence

N(n)− 2 log n√
2 log n

is asymptotically standard normal, as n →∞.

Lemma 8.5.2 The sequence

2 log J(m)−m√
m

is also asymptotically standard normal, as m →∞.

These lemmas imply the following convergence (in probability) results. As n →∞ and/or

m →∞, we have that

N(n)

2 log n

P−→ 1 and
2 log J(m)

m

P−→ 1. (8.5)
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Notice that N(n) is the number of active bidders, while n is the number of potential

bidders. Conversely, J(m) is the number of potential bidders when we do observe m

active bidders. Thus (8.5) gives the asymptotic relationship between the two sequences.

This yields the 2 log n rule.

Rule 8.5.1 (2 log n) If the number of potential bidders n is large, the number of active

bidders is approximately equal to 2 log n.

The 2 log n rule relates the extent of the IA as measured by n to the market activity as

measured by the number of active bidders N(n). In the empirical sections we will test for

this rule.

The 2 log n-rule has implications for the time sequence of the bids in Amazon type

auctions. Define the time at which a record or second record occurs as the entering time.

Obviously, the entering time is related to the index sequence {J(j)}m
j=1. Note that most

auction sites do report the timing of the bids, but do not report the number of page views

as an indicator of the number of potential bidders. Therefore a direct test of the 2 log n

rule is not possible with publicly available data on such kind of auction sites. An indirect

test may be feasible, however, by using the entering time sequence of the records. To see

this, we model the arrival process of the potential bidders. The simplest model is the

homogenous Poisson arrival process. Under Poisson arrivals, the appearance of potential

bidders is random from the viewpoint of the seller and is independent from the time the

auction has been running. Since we consider Amazon type auctions, there is no strategic

reason for late bidding, but bidders may nevertheless display a preference for auctions

which are close to the end of their run times. Most auction sites offer the possibility to

easily rank order the relevant auctions on the remaining time to the announced deadline.

Suppose agents actively use this feature for selecting auctions which are soon to close.

Everything else equal, this preference arises from the cost of having to wait until the end

of the auction. Therefore, we assume that the Poisson arrival rate λ increases as time

progresses according to the following function

λ(t) = λ0e
θt, (8.6)

where θ is the time preference factor, and where the beginning of the auction is at t = 0.

Reversing time, θ can also be seen as the discount factor under continuous discounting.

Since the Amazon type auction can be extended, we do not specify the end time. The time

preference turns the homogenous Poisson arrival process into a non-homogeneous Poisson

process with the instantaneous arrival rate λ(t), see e.g., Klein and Roberts (1984).

For this non-homogeneous Poisson arrival process, we derive the asymptotic form of

the entering time process of the record and 2-record sequence. The result is presented in

the following theorem. The proof of the theorem is again relegated to Appendix 8.A.
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Theorem 8.5.2 Suppose the potential bidders 1, 2, · · · , n arrive at times T (1), T (2), · · · , T (n).

Let {T (i)}∞i=1 be the arrival times of a non-homogeneous Poisson process where the rate

of occurrence function is given as in (8.6). Then the arrival times of the active bidders is

{T (J(j))}m
j=1. For l → ∞, the sequence {T (J(l + j))− T (J(l + j − 1))}∞j=1 is asymptot-

ically an i.i.d sequence with exponentially distributed innovations that have mean 1/(2θ).

The result of this theorem permits an indirect test of the 2 log n Rule 8.5.1. Instead of

directly using the number of potential bidders, Theorem 8.5.2 implies that one might as

wel use the entering time sequence of the records. This is possible if one is willing to buy

the extra maintained assumption of the specific non-homogeneous Poisson process due to

the time preference function in (8.6).

8.6 Initial empirical evidence from pageviews

We provide some evidence for the 2 log n rule on the basis of some aggregate statistics

from other studies and a Dutch auction site that reports the number of page views.

8.6.1 Aggregate evidence on the 2 log n rule

From the relationship between the number of active bidders and the number of potential

bidders, (8.5), given a certain number of potential bidders, we can estimate the cor-

responding number of active bidders by the 2 log n rule. But how large is the set of

potential bidders? Clearly, the number of potential bidders is bounded, at least, by the

size of the world population. Actually, a realistic number of potential bidders is likely to

be much smaller, even though the internet has expanded the extent of the market. In

Table 8.1 we provide some simple calculations for the number of potential bidders. The

table shows that our rule implies that the number of active bidders should hardly ever

exceed 50. Actually, a realistic upper bound is perhaps around 14, which is corresponds to

around 1,000 potential bidders. By comparing these numbers, we can see that, although

the number of active bidders is relatively small, it does not mean that the extent of the

IA market is small. In other words, the 2 log n-rule illustrates that the extent of market

is considerable, and has possibly greatly benefited from the fact that these items can now

be sold through the internet, facilitating national and even international reach.

Number of potential bidders (n) 6 billion 1 million 10,000 5,000 1,000 500 100
Estimates of active bidders (2 log n) 49.64 27.63 18.42 17.03 13.81 12.43 9.21

Standard deviation (
√

2 log n) 7.05 5.26 4.29 4.13 3.72 3.53 3.03

Table 8.1: Estimates of the number of active bidders
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This argument is supported by data from Yahoo! auctions. We collected the number of

active bidders from the closed laptop auctions on Yahoo! with the Amazon auction style.

We only consider the auctions which have more than 30 bids, including multiple bids from

the same active bidders. The purpose of this requirement is to select the auctions which

have the highest number of active bidders. There were 64 laptop auctions which matched

for our selection in the period July 2006 - Dec. 2006. The histogram of the number of

active bidders is shown in Figure 8.1. The sample mean is 5.80, with standard deviation

2.66. Actually, the maximum is 13, which is below the guesstimate upper bound of 14.

These data show that modeling the bidding process as a record and 2-record sequence,
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Figure 8.1: Histogram of the number of active bidders

is a possible explanation for why there are mostly few active bidders participating in a

specific IA.

8.6.2 Regression evidence on the 2 log n rule

On the large IA websites of eBay, Amazon and Yahoo!, the number of potential bidders

is not reported. This hampers a direct evaluation of the 2 log n rule. Fortunately, on

some websites a system is in place that reports the number of people who checked a

specific webpage. Potential bidders are identified uniquely by their IP addresses. In this

way we are able to record the number of potential bidders. For example, the eBay owned

Dutch advertising website www.marktplaats.nl (denoted as Marktplaats in the rest of this

chapter) reports such kind of data. This creates a possibility to verify the model by (8.5).

Marktplaats is an advertising site with the option to bid or to negotiate. The auction

is of the Amazon variety without a termination rule. Moreover, bids are non-binding

as the bidder and seller have to finalize their agreement through an email contact. The
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website has the additional Buy It Now (BIN) feature that gives the bidders the possibility

to contact the seller directly via email to bargain over the price. In contrast to several

other sites with the BIN feature, it does not come with a posted price. Instead, the BIN

feature is of the bargaining variety in which the buyer can make an email offer that can

be accepted or countered by the seller. One of the attractions of an auction is that it

reduces the transactions cost in the sense that it cuts out direct negotiations between the

seller and the potential buyers. Thus a percentage of buyers can be expected to prefer

not to enter into the costly process of bargaining, while some others, including the seller,

may be tempted into bargaining.

Assume that there is a fixed percentage p of pageviewer who want to proceed by

placing a bid. It means that, if there are n potential bidders, there will be only np who

consider to place a bid on website, while the others choose the outside option to directly

approach the seller. The number of active bidders therefore reads N(np). From Lemma

8.5.1, we have that

N(np)√
log n

=
2 log np +

√
2 log np · εn√

log n
= β1

√
log n +

β0√
log n

+ ε′n, (8.7)

where β1 = 2, β0 = 2 log p and is a negative number, εn is asymptotically standard normal,

while ε′n is just asymptotically normal distributed with variance 2. The website provides

data for N(np) and n. So we can use linear regression to verify whether (8.7) holds or not.

Moreover, the coefficient β0 provides information on percentage of agents who choose the

outside option. Note that we have divided both sides of (8.7) with
√

log n. This ensures

the homoscedasticity of the error terms, which would not follow from a direct specification

of the BIN modified 2 log n rule.

We choose the specific category of laptops, since for these items the IPVP is a priori

the natural setting. We used the advertisements in the period Jan.2006 - Mar.2006. We

only look at auctions with at least 5 active bidders. This requirement was imposed to

ensure that there are enough potential bidders, since (8.7) is an approximate relationship

that applies only if the number of potential bidders is sufficiently large. In particular,

considering that only a small proportion of potential bidders prefer to bid online due to

the BIN feature, the requirement is useful to ensure a sufficiently large number of potential

bidders. In total, 32 auctions qualified. The statistics of the number of potential bidders

and the number of active bidders are shown in Table 8.2.

Variable Mean Std Dev Min Max Median
The number of potential bidders 603.7 326.4 164 1331 552

The number of active bidders 6.9 2.3 5 15 6

Table 8.2: Statistics of the data
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Linear regression analysis is employed to evaluate (8.7). The result is shown in Table

8.3. According to (8.7), we know that the theoretical value of the coefficients should be

β0 = 2 log p ≤ 0 and β1 = 2. We test two hypotheses on the two coefficients:

H0,0 : β0 > 0 versus H0,1 : β0 ≤ 0,

and

H1,0 : β1 = 2 versus H1,1 : β1 6= 2.

The p-values of these two tests are shown in the last column in Table 8.3. So one can

reject H0,0 at the 10% significant level 0.1. But one can not reject the hypothesis H1,0

at any conventional level of significance. We conclude that the empirical data seem to fit

the theoretical model quite well.

Parameter Estimate Std. Error t Stat. p-value for Hi,0

β0 -5.43 3.80 -1.43 0.082
β1 1.98 0.61 3.24** 0.970

R-Squared: 0.153 Adjusted R-squared: 0.125

**: Significant level 5%.

Table 8.3: Empirical test on (8.7)

An additional result is that we can estimate p as eβ̂0/2 = 0.066. It means that 6.6%

potential bidders choose not to directly negotiate via email, but instead prefer to bid

first. Thus, only a small percentage of the bidders in the end prefer the auction over the

bargaining. Since the auction part of Marktplaats does not offer the proxy bid feature,

active bidding can be very time consuming and moreover it reveals information to com-

petitors. Nevertheless, the estimated p is not zero since there are also costs associated

with bargaining, i.e. bargaining with the seller can also be time intensive. Apparently

the tradeoff between BIN and the auction is in favor of the bargaining process. But we do

not want to pursue this issue further given the 2 log n rule being the topic of this chapter

and the fact that this is one of the advertising sites.

8.7 Empirical evidence from the timing of the bids

Under the assumption of Poisson arrivals, we can also test Theorem 8.5.1 indirectly via the

timing of the bids. In Subsection 8.7.1 we run a small simulation study to illustrate the

methodology. An empirical study on real data from a large IA site is given in Subsection

8.7.2.
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8.7.1 Simulation

The simulation exercise starts by simulating the valuation of the potential bidders. We

record the index sequence of the active bidders to illustrate Theorem 8.5.1. To this end

we generate 10,000 i.i.d. random variables. We simulate from the uniform distribution,

though we notice that choice of the distribution does not affect the record sequence. Then,

by the definition of record and 2-record sequence, we find the corresponding index sequence

{J(j)}. By taking the difference between logarithm of {J(j)} sequence, we may verify

whether the innovations are asymptotically i.i.d. exponentially distributed with mean 1/2.

Because this result holds only as l → ∞, see Theorem 8.5.1, we only use the upper 2/3

of the differences. To verify the exponential distribution feature, we employ the QQ-plot

device. The plot is drawn for the empirical quantile of {log J(l + j)− log J(l + j − 1)}
against the exponential distribution with mean 1/2, see Figure 8.2.
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Figure 8.2: QQ-plot on indicies
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Figure 8.3: QQ-plot on entering times

Figure 8.2 shows that the exponential distribution fits well. This is also confirmed

by the Kolmogorov-Smirnov (KS) test: the test statistics is 0.1333 with a corresponding

p-value 0.9998. The simulation illustrates that the QQ-plot method can be used to verify

whether an index sequence is really the index of a record and 2-record sequence.

To be able to apply this methodology on real data, we can not use the index sequence

as it is not observable, but instead we can use the entering time sequence of potential

bidders, as we discussed in Theorem 8.5.2. Hence, besides the valuation sequence, we also

simulate the arrival process of the potential bidders. Following the discussion in connec-

tion with Theorem 8.5.2, we simulate the non-homogeneous Poisson arrival process. In

this simulation we combine the {J(j)} sequence simulated above with the independently

simulated non-homogeneous Poisson arrival process {T (i)} with θ = 1.2 Then we can use

2For simulating non-homogeneous Poisson process with a log linear rate function, see Lewis and Shedler
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the simulated entering time sequence {T (J(j))} to replace the index sequence {J(j)}. By

taking only the upper 2/3 of the differences, we can again make a QQ-plot, see Figure

8.3. The KS test statistics is 0.2667 with a p-value 0.6781. The KS test again indicates a

good fit, but of course due to the extra noise, the quality of the fit is somewhat lower. The

extra noise due to the introduction of the non-homogeneous Poisson arrivals can also be

seen by comparing Figure 8.3 with Figure 8.2. A cross plot of these two simulations is also

made to check whether the distributions of these two simulated samples are about equal,

see Figure 8.4. The KS test for equality yields a p-value of 0.3885. Since the difference

is not significant, it seems that the methodology of using QQ-plot to verify the specific

record model is reasonable, even under the assumption of stochastic arrival times.
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Figure 8.4: QQ-plot between two simulated samples

8.7.2 Empirical application

The methodology of Subsection 8.7.1 is now applied to real data in order to verify whether

the bidding process follows a record and 2-record sequence, in other words, whether

Theorem 8.5.2 has a bite.

We choose auctions from the Yahoo! IA site. As discussed in Subsection 8.2.2, on

Yahoo! there are two kinds of auctions. The Amazon type auction has no fixed termina-

tion time. In this kind of auction people have no incentive to delay their bid for strategic

reasons (as in the eBay type auction with a hard close). This fact corresponds with the

Assumption 8.3.1. So, we choose an Amazon type auction for our investigation.

First, a single auction on a Dell Inspiron 1500 laptop is studied. The auction started

March 26, 2007 and lasted for ten days. There were 9 active bidders in this auction.

Ranking the 9 active bidders’ entering time, we take only the upper 2/3 as the relevant

(1976).



162 Empirical evidence from the timing of the bids

sample since our result only holds asymptotically. Hence, there are only 6 entering times

under consideration. By taking the differences between these 6 entering times, with the as-

sumption that the potential bidders come to the auction according to a non-homogeneous

Poisson process, the 5 differences should be asymptotically i.i.d. exponentially distributed.

The estimated time preference parameter turned out to be θ̂ = 0.007, which implies a

half-life of 99 minutes.3 By normalizing the mean to 1, we drew a QQ-plot with respect

to the exponential distribution with unit mean, see Figure 8.5.
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Figure 8.5: QQ-plot for a single Yahoo! Auction

Due to the low number of observations, Figure 8.5 does not clearly show whether the

fit is good or bad. The KS test, however, still gives a p-value 0.918. Hence we can not

reject the null hypothesis that the differences follow the exponential distribution. Thus

the entering times in this auction seem to be in accordance with Theorem 8.5.2.

Since our model is based on IPVP and Assumption 8.3.1, the above test can be viewed

as a weak test of IPVP. Notice that the IPVP tests in the literature mostly employ data

from multiple auctions. Therefore, assumptions such as homogeneity across auctions are

always required. In comparison with the literature, the advantage of our single-auction

test is that it is only based on Assumption 8.3.1 and the maintained hypothesis of Poisson

arrivals; this does not require homogeneity across auctions. But we can nevertheless try

to pool the data from different auctions to increase efficiency. If we do so, we will preserve

the per auction approach philosophy by allowing θ to differ across auctions.

We collected a number of other Amazon type laptop auctions on Yahoo!. All the

auctions between October 2006 and April 2007 with at least 4 active bidders and at least

25 bids were collected. The restrictions are again mainly to ensure there are enough

3By solving the equation e−θ̂t = 0.5, we get t = 99. In other words, each time 99 minutes have passed,
the incentive for people to check this auction doubled.
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potential bidders since our theorems only reveal the asymptotic properties. Ten auctions

qualified.4 For each auction, we use the same procedure as for the single auction discussed

above. The 10 estimated time preference parameters have a mean 0.0079 (implied half-

life is one hour and a half), with standard deviation 0.008. The maximum and minimum

estimated time preference parameters are 0.0256 and 0.0003, with half-lives of half an

hour and one and half day, respectively. These estimates imply that agents have a quite

variable and sometimes high preference for auctions that are near closing time. After the

standardization with θ, we combine all the normalized differences together and construct

a QQ-plot with respect to exponential distribution with mean 1. The QQ-plot is given

in Figure 8.6. The KS test has p-value 0.378. Thus the null hypothesis of exponential
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Figure 8.6: QQ-plot for combined auction data

distribution is again not rejected. Therefore, also in lager samples, the 2 log n rule can

not be rejected either.

8.8 Conclusion

Internet auctions attract numerous agents, but only a few become active bidders. The

number of potential bidders is the extent of the market. This number, however, is un-

known to the internet auctioneer. In this chapter, we study the connection between the

number of potential bidders and the number of active bidders, in order to explain the low

number of active bidders.

Our study started from the bidding process of the Amazon type IA. These IAs are a

hybrid of the English auction and the second price auction, but without the strategic last

4There were 3 auctions with 4 active bidders, 2 auctions with 5 active bidders and the other 5 auctions
had 6,7,8,9 and 11 active bidders respectively. An eleventh auction qualified, but this auction posted
multiple identical items and was therefore not taken into account.
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minute bidding. Under the assumption that all active bidders are notified immediately

when overbid and respond directly, the active bidders’ valuations can be modeled as the

record and 2-record sequence of the potential bidders’ valuation sequence.

We proved that the logarithmic difference of the index of the record and 2-record

sequence is asymptotically i.i.d. exponentially distributed with mean 1/2. The number of

potential bidders are thus connected with the number of active bidders through the 2 log n

rule. Data from a small Dutch site were used to test for this relationship empirically.

On large IA websites such as eBay, Amazon and Yahoo!, the number of potential

bidders is not reported. If, however, the potential bidders come to the auction according

to a non-homogeneous Poisson process, then we can test for the 2 log n rule. Under the

Poisson arrival process the publicly available entering time sequence of the active bidders

can substitute for the logarithm of the index of the record and 2-record sequence. The

empirical study using Yahoo! data supports the theoretical model, but showed quite some

variation in the discount factor. Future research whereby this variation is explained by

product characteristics seems of interest.

The 2 log n rule explains why there are always few active bidders in an IA. Since the

number of active bidders is logarithmically related to the number of bidders potentially

showing interest for a particular IA, the extent of the market can be much larger than is

revealed by direct observation of the active bidders. Table 8.1 shows that, with 10,000

potential bidders, 10 active bidders are within the 95% confidence band, but 25 active

bidders are also compatible. Thus the extent of the market may at times be quite different

given the activity levels in terms of the number of active bidders. In our sample, we never

observed more than 11 active bidders. If 11 active bidders are considered as the upper

bound of the confidence band, such a real activity is still compatible with as few as 21

potential bidders but also as many as 21,249 potential bidders. Thus the 2 log n rule

explains the low observed bidding activity, but does not necessarily imply a very large

number of potential bidders in a particular auction.

To see the economic relevance of the 2 log n rule, consider a case of a laptop IA where

there are 500 potentially interested agents. Suppose the distribution of valuations is

uniform on [0, 500].5 By Table 8.1, this implies that the expected number of active

bidders is 12. If the seller were to calculate the potential gain from the auction by only

considering the number of active bidders, he would arrive at 11/13 · 500 = 423.08$. This

would be a considerable underestimate of the true gains. From the 500 potential bidders,

the expected revenue is in fact 499/501 · 500 = 498.00$. This is 75$ higher than the back

of an envelope calculated guesstimate on basis of the directly observed market extent.

5In one of the ten laptop auctions studied in the previous section, the BIN price was posted at 500$,
while the first bid was at 1$. The uniform distribution is commonly used in auction theory
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8.A Appendix A

Proof of Lemma 8.5.1

From the independence of the {Xi}n
i=1, we get that {Ri}n

i=1 is a sequence of independent

random variables, see Resnick (1987), Proposition 4.3(i). Thus, the {ξi}n
i=1 are also in-

dependent. Since N(n) is the partial sum sequence of {ξi}n
i=1, by using the central limit

theorem for independent bounded random variables, we get the asymptotic normality

immediately.

The asymptotic mean and variance are calculated from the distribution of the {ξi}n
i=1.

From Proposition 4.3(i) in Resnick (1987), we have

P (Ri = s) = 1/i, s = 1, 2, · · · , i,

so that

P (ξi = 1) =
2

i
and P (ξi = 0) = 1− 2

i
. (8.8)

This implies

EN(n) = 1 +
n∑

i=2

2

i
= 2 log n + o(

√
log n),

and

V ar(N(n)) =
n∑

i=2

2

i
−

n∑
i=2

4

i2
∼ 2 log n.

This proves the lemma. ¤
Proof of Lemma 8.5.2

For fixed positive number x, denote

n0(m, x) = [exp (
xm1/2 + m

2
)].

Then,

m− 2 log n0√
2 log n0

→ −x as m →∞

Since J(m) is an integer, we have

P (
2 log J(m)−m√

m
≤ x) = P (J(m) ≤ n0(m,x)).

Notice that the two events {J(m) ≤ n0} and {N(n0) ≥ m} are actually the same. There-

fore,

P (
2 log J(m)−m√

m
≤ x) = P (J(m) ≤ n0)
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= P (N(n0) ≥ m)

= P (
N(n0)− 2 log n0√

2 log n0

≥ m− 2 log n0√
2 log n0

)

→ 1− Φ(−x) = Φ(x) as m →∞.

Here we use Lemma 8.5.1 in the last step. This proves Lemma 8.5.2. ¤
Proof of Theorem 8.5.1

As a consequence of Lemma 8.5.1, when n → ∞, m = N(n) → ∞. Similarly, from

Lemma 8.5.2, J(m)
P−→∞ when m →∞.

As we discussed in the proof of Lemma 8.5.1, the random variables {ξi}n
i=1 are inde-

pendent, and the distribution is given in (8.8). So we have

P (J(j + 1) > s|J(j) = sn, J(j − 1) = sn−1, · · · , J(1) = s1)

= P (ξsn+1 = 0, · · · , ξs−1 = 0, ξs = 0)

=

(
1− 2

sn + 1

)(
1− 2

sn + 2

)
· · ·

(
1− 2

s− 1

)(
1− 2

s

)

=
sn − 1

sn + 1
· sn

sn + 2
· sn + 1

sn + 3
· · · s− 3

s− 1
· s− 2

s

=
sn(sn − 1)

s(s− 1)
(8.9)

which implies that {J(j)}n
j=1 is a Markov process. From (8.9), subsequently,

P (log J(j + 1)− log J(j) > x|J(j) = sn, · · · , J(1) = s1)

= P (J(j + 1) > exsn|J(j) = sn, J(j − 1) = sn−1, · · · , J(1) = s1)

=
sn(sn − 1)

[exsn]([exsn]− 1)

→ e−2x, when sn →∞. (8.10)

When l →∞, combining J(l)
P−→∞ with (8.10), the theorem is proved. ¤

Proof of Theorem 8.5.2

Let M(t) be the number of potential bidders arriving at the auction site before time t.

According to the property of a non-homogeneous Poisson process, M(t) follows a Poisson

distribution with mean

µ(t) =

∫ t

0

λ(s) ds =

∫ t

0

λ0e
θs ds = λ0

eθt − 1

θ
.

Hence, when t →∞, µ(t) →∞ and

µ(t)

eθt
→ λ0

θ
=: c.
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Consider the family of random variables {M(t)/µ(t)}. Notice that as t →∞,

V ar(M(t)/µ(t)) = V ar(M(t))/(µ(t))2 = 1/µ(t) → 0.

So we get that M(t)/µ(t) → 1 in probability. Therefore, as t →∞
M(t)

eθt

P−→ c,

which implies that log M(t)− θt → log c in probability.

Replace t with T (J(l+j)) and let l →∞. Considering the fact that M(T (J(l+j))) =

J(l + j), we get that

log J(l + j)− θT (J(l + j))
P−→ log c.

Replacing j with j − 1 in this relation, we also have that

log J(l + j − 1)− θT (J(l + j − 1))
P−→ log c.

Combining these two results implies,

(log J(l + j)− log J(l + j − 1))− θ(T (J(l + j))− T (J(l + j − 1)))
P−→ 0.

By the conclusion of Theorem 8.5.1, the Theorem 8.5.2 follows. ¤
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8.B Appendix B

Here we present an example to understand the notation in this chapter. Suppose we have

the index sequence i = 1, 2, · · · 6 with the valuation sequence X1 = 30, X2 = 10, X3 =

60, X4 = 20, X5 = 50, X6 = 40. In Table 8.4, we present the rank sequence Ri, the

indicator sequence ξi, and the number of active bidder sequence N(i). In this example,

the corresponding index sequence of the record and 2-record J(j) is given as J(1) =

1, J(2) = 2, J(3) = 3, J(4) = 5. In this case, m = 4. Moreover, suppose all bids are proxy

bids and that 1 is the minimum bid increment.

i 1 2 3 4 5 6
Xi 30 10 60 20 50 40
Ri 1 2 1 3 2 3
ξi 1 1 1 0 1 0
N(i) 1 2 3 3 4 4
j 1 2 3 − 4 −
J(j) 1 2 3 − 5 −
Price 1 11 31 − 51 −

Table 8.4: Example for notations







Chapter 9

The Expected Payoff to Internet
Auctions

9.1 Introduction

Internet auctions (IA) provide an easily accessible platform for trade. This has increased

the extent of the market for many items to nationwide or even global markets. IA improve

the matching between the supply and demand side. Bulow and Klemperer (1996) showed

that under the hypothesis of the Independent Private Values Paradigm (IPVP), the seller

is better off if the market is larger. By the same fact, buyers are also better off, since it

becomes more likely that the agent with highest consumer surplus is matched with the

seller.

Auction theory derives the optimal bid functions for specific auction mechanisms, such

as the Dutch (descending price) or the English (ascending price) auctions, and given a

specific demand function. The demand function is modeled as a distribution of valuations

of the object to be auctioned. Both the seller and the buyer have an interest in knowing

the final price that might materialize to answer such questions as: Is it worthwhile to put

the item up for sale? and, is it worth my time to bid? Sellers may want extrapolate from

a single auction to predict total revenues from repeat sales. Competition authorities have

an interest in the price that is to be expected in order to determine whether the bidding

process was fair (e.g. was not hampered by a bidding ring). The analysis may also lead to

a prediction of the final price, given that the bids observed half way through the auction

(IA typically run for multiple days). Fortunately, auction theory under IPVP makes quite

a robust prediction about the expected price given the number of buyers and the specific

distribution of valuations.

This prediction is as follows. For any standard auction, the Revenue Equivalence

Principle (REP) holds, which means that under IPVP, the expected revenue of the seller
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does not depend on the auction mechanism, see e.g. Krishna (2002).1 The expected

revenue for a standard mechanism is equal to the expectation of the second highest order

statistic of the valuations. For the second-price sealed bid auction, this is easily shown to

be the case. In a second-price sealed bid auction, the winner pays the second highest bid.

Since for this auction agents have an incentive to exactly bid their valuations, the claim

follows. Auction theory shows that this revenue result holds for all standard auctions.

Most IAs have two mechanisms for placing a bid, i.e. the manual bid and the proxy

bid. This induces a hybrid of an English auction and a Vickrey auction. In an English

auction, bidders publicly compete with each other by placing ascending bids. The Vickrey

mechanism uses sealed bids, i.e. bidders do not see the bids of competitors. In a Vickrey

auction, the winner pays the amount bid by the second highest bidder. Since both of these

two mechanisms are standard, the IA is also standard in the sense of revenue equivalence.

Compared to studies of classical auction mechanisms, the empirical analysis of an IA is

severely hampered due to the unobserved number of potential bidders. In an IA, besides

the active bidders who indeed place a bid on the websites, there are also a large number of

potential bidders who only check the website with or without placing a bid. The number

of potential bidders plays a role similar to the number of bidders in classical auction

mechanisms, i.e. the number of bidders sitting in the auction hall. However, for IA, it is

hard to observe this number. Firstly, most of the large IA sites do not provide the number

of page views. Secondly, even the number of page views would not be a clean estimate of

the number of potential bidders, since a potential bidder may check the website multiple

times.

Lacking the knowledge of the number of potential bidders severely restricts the sta-

tistical analysis on the expected revenue for the seller. Therefore, a few papers recently

focus on analyzing data under some additional assumptions regarding the number of po-

tential bidders. Bajari and Hortaçsu (2003) and Paarsch (1992) do not require knowledge

of the number of potential bidders, but they assume that the observed bidders are the

only potential bidders willing to pay the reserve price. This assumption appears implau-

sible for IA. For instance, de Haan et al. (2008b) argued that the actual extent of the IA

market, i.e. the number of potential bidders, is far beyond the observed number of active

bidders. Alternative approaches are based on modeling the number of potential bidders.

For example, McAfee and McMillan (1987) analyzed the case when the number of bidders

is stochastic. Another example is Laffont et al. (1995), who assumed that the unknown

number of potential bidders is the same across all auctions under consideration.

Still different is Song (2004) who considered the nonparametric estimation of the dis-

1In classical auction theory, an auction is called standard if the rule dictates that the person who bids
the highest amount is awarded the object.
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tribution of bidder’s valuation without having any information on the number of potential

bidders. Song (2004) argued that without knowing the number of potential bidders, the

distribution of the bidder’s valuation is not identified if only the payoff, i.e. the second

highest order statistic, is observed. But if one can observe the bid history, then using the

two top order statistics identifies the parent distribution, even if the number of potential

bidders is unknown.

Under the IPVP, the potential bidder’s valuations are assumed to be identically and

independently distributed random variables. Because the payoff of an IA is the second

largest valuation among all the potential bidders2, when the number of potential bid-

ders is sufficiently large, the payoff only depends on the tail of the distribution of the

bidders’ valuations. Thus there is only a need to model the tail of the distribution. Semi-

parametric Extreme Value Theory (EVT) provides an approximation to the tail of the

distribution. Caserta and de Vries (2005) applied the EVT approach to investigate the

expected payoff. However, the number of potential bidders is a major difficulty for their

analysis as they assume that the number of actual bids equals the number of potential

bidders.

Existing econometric analysis of auctions, c.f. Paarsch (1992), often proceeds on the

basis that the number of bidders is known and that the different auctions are homogeneous,

possibly controlled for covariates. This allows for the pooling of the data from different

auctions in order to estimate the demand curve (distribution of valuations) and to test

for the IPVP. In the current analysis, we do not necessarily want to make this maintained

homogeneity assumption, as we want to investigate the expected price of a particular,

possibly unique, auction. For this purpose the EVT approach appears appropriate.

Similar to Caserta and de Vries (2005), we also model the tail of the distribution of

the bidder’s valuation as in the EVT setup. Unfortunately, the message of the paper is

somewhat bleak. We show that while for distributions of valuations in the max-domain of

attraction with positive extreme value index, the logarithm of the expected payoff can be

estimated after application of a correction factor, the expected payoff cannot be estimated

consistently. A somewhat similar result is obtained for the negative case. Only for a

subset of distributions in the max-domain of attraction with zero extreme value index

does a consistent estimator exist with a certain speed of convergence under a suitable

second order condition.

This chapter is organized as follows. In Section 9.2, the record and 2-record model is

revisited. Section 9.3 demonstrates the EVT approach with positive, negative and zero

2In fact, the final payoff should be the second largest valuation plus a minimum increment because the
winner has to overbid the second largest valuation. We assume that the minimum increment is negligible
compared to the value.
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extreme value index. For the zero case, a subclass model of the domain is introduced.

Section 9.4 concludes this chapter.

9.2 The bidding activities in Internet auction

IAs have some features that differentiate these from the standard auction mechanisms,

but are otherwise just the internet version of known auctions. The differences pertain to

the bidding systems and the termination rules. The Internet facilitates the use of two

bidding systems simultaneously. Most of the IA sites allow for manual and proxy bidding.

Manual bidding is similar to the first price open ascending bid in an English auction,

while the proxy bidding procedure captures the second price sealed bid mechanism studied

by Vickrey (1962). Proxy bidding proceeds by providing the server of the IA with the

maximum value a person would be willing to pay. The machine then takes over and

keeps on overbidding on behalf of the proxy bidder as long as the other bids are below

this maximum. Regarding the termination rules, there are also two alternatives. One

type of IA ends after a pre-announced fixed lapse of time, while the other type has a

variable auto-extended termination time. Typical examples are the eBay auctions and

the Amazon auctions. The eBay auctions have a fixed ending time. The Amazon type

auctions use the auto-extension termination rule.3 At the beginning of the Amazon type

auction, an initial ending time is announced. If no bidding takes place during the last ten

minutes, the auction stops at the announced ending time. But if there are some bids in

the last ten minutes, the ending time is automatically extended by another ten minutes.

This rule is also applied to the new extension period. On the Yahoo! auction site the

sellers can choose between these two termination rules.

The analysis of auctions can be divided into two classes. Either it is assumed that the

bidders’ valuations are independent from each other, or they are dependent. The former

case is usually referred to as the independent private values paradigm (IPVP). Valuations

are considered to be draws from some given distribution. This is the paradigm that we

consider in this chapter as well. Standard commodities are well modeled on the IPVP

assumption. Rare items, collectibles and works of art are usually considered to be in

the other class. At the extreme end of the other class is the common value case. Under

the IPVP and the Amazon type termination rule, de Haan et al. (2008b) argued that

the active bidders come to the IA as a record and 2-record arrival process, while their

valuations form the record and 2-record sequence of the valuations among all potential

3Although www.amazon.com has terminated their auction platform, since they used the feature of
auto-extension termination rule, we still call auctions with such kind of setup the Amazon type auction.
On the Yahoo! platform, this feature is still in use.
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bidders.

To explain this model, let i = 1, 2, · · · , n denote the order in which the n potential

bidders arrive at the auction site. IPVP assumes that the valuation of all potential bidders

are i.i.d. random variables X1, X2, · · · , Xn with distribution function F (x). Define the

rank sequence {Ri}n
i=1 as

Ri :=
i∑

k=1

1{Xk≥Xi}. (9.1)

Intuitively, Ri is the rank of the valuation of the i−th potential bidder among the valua-

tions of all the potential bidders who checked the auction earlier (before i). The valuation

Xi is called a record if Ri = 1. Similarly, for k = 2, 3, · · · , it is a k-record if Ri = k, see

Resnick (1987). Denote the indices of the records and 2-records as {J(j)}m
j=1. This index

sequence is given by

J(1) = 1, J(2) = 2 (9.2)

J(j + 1) = min {i > J(j) : Ri ≤ 2} , j = 2, 3, · · · ,m− 1, (9.3)

where m is the number such that Ri > 2 for all i > J(m).

With the maintained hypothesis that ”each active (manual) bidder immediately returns

to the IA and increases his bid as soon as he is overbid and his valuation is above the

prevailing price.”,4 the active bidders must have the indices {J(j)}m
j=1 in the potential

bidders sequence. So m is the number of active bidders. Then, the active bidders’

valuations are obviously the record and 2-record sequence
{
XJ(j)

}m

j=1
. Actually, the first

m−1 active bidders’ valuations can be observed as their last bids. The winner’s valuation

XJ(m) is obviously unobservable, just as in the English auction. For the Amazon type

auction, since there is no motivation for bidders to postpone their bids for strategic

reasons, it can be assumed that the bids reflect the first m − 1 records and 2-records.

de Haan et al. (2008b) tested this model by employing Yahoo! IA data.

9.3 EVT approaches

Our purpose is to compare the observed payoff and its expectation for a specific IA. With

n potential bidders, and m active bidders, there are two ways to represent the payoff

following the record and 2-record model. One way is to consider Mn−1:n as the second

largest order statistics of X1, X2, · · · , Xn. The other way is to view the payoff as the

XJ(m−1), where {J(j)}m
j=1 is the record and 2-record index sequence as defined in the

previous section.

4Note that this assumption is automatically satisfied when there are only proxy bidders present.
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Since the payoff is determined by the largest order statistics, it is reasonable to make

assumptions only on the right tail of the valuation distribution F (x). Caserta and de Vries

(2005) suggested to use the EVT approach, and assume that the distribution of the bid-

der’s valuation belongs to the max-domain of attraction of an extreme value distribution.

This setup is as follows.

Suppose the bidder’s valuations are i.i.d random variables X1, X2, · · · , Xn, · · · with

common distribution function F . Denote Mn = max {X1, · · · , Xn}. We say that F

belongs to the max-domain of attraction, if there exist a non-degenerate distribution

function G, a positive sequence {an}∞n=1 and a real sequence {bn}∞n=1, such that

lim
n→∞

P

{
Mn − bn

an

≤ x

}
= G(x)

for all continuity points of G. Denote this domain of attraction feature as F ∈ D(G).

The necessary and sufficient condition for a distribution function to belong to the

max-domain of attraction is the extreme value condition , see e.g. de Haan (1984a).

Proposition 9.3.1 Let U :=
(

1
1−F

)←
be the generalized inverse function of 1/(1 − F ).

Then F ∈ D(G) if and only if there exists a function a(t) > 0 such that

lim
t→∞

U(tx)− U(t)

a(t)
=

xγ − 1

γ
, (9.4)

for some γ ∈ R and all x > 0.

Here γ is called the extreme value index. Under the extreme value condition, the following

proposition is proved in Caserta and de Vries (2005).

Proposition 9.3.2 Let X1, · · · , Xn, · · · be i.i.d. sequence with common distribution func-

tion F belonging to domain of attraction, i.e. (9.4) holds for some γ < 0. Then, we have

that

lim
n→∞

EMn−1:n − U(n)

a(n)
= −Γ(2− γ) (9.5)

From Proposition 9.3.2, a possible estimator of EMn−1:n is Û(n)− â(n)Γ(2− γ̂), where

Û(n), â(n),and γ̂ are proper estimators for the location, scale and shape parameter in the

EVT model. The literature offers several alternative estimations for these parameters.

We note here that (9.5) holds for 0 ≤ γ < 2 as well.

Since in our model, only the record and 2-record sequence is observed, it is necessary

to have proper estimators based on only those observations. When γ is positive, Berred

(1992) derived an estimator for γ based on the record sequence, which can be generalized

to our case of the record and 2-record sequence.
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The main difficulty in this approach is that the number of potential bidders n is in fact

unknown. This lack of information inhibits the estimation of U(n) and a(n). In Caserta

and de Vries (2005) n is assumed to be equal to the number of bids. Thus multiple bids

from the same bidder are considered as coming from different potential bidders. Although

this estimate of n is larger than the observed m, it is a rather inaccurate estimation. In

de Haan et al. (2008b), it is shown that m ∼ 2 log n as n → ∞. All in all, to consider

the expected payoff as the expectation of the second largest valuation seems to be an

approach of limited value due to the unknown number of potential bidders.

That leaves us with the the second representation to model the payoff based on the

record theory. We first study the record and 2-record sequence via its point process

representation. Let {Lk(n)}∞n=1 be the indices of the k−record sequence, that is

Lk(1) = 1, Lk(n + 1) = min {j > L(n) : Rj = k} , n = 1, 2, · · · .

Define the k−record point process Nk by

Nk :=
∞∑

n=1

εXLk(n)
,

for k = 1, 2, · · · . Then according to Proposition 4.30 in Resnick (1987), the point processes

{Nk}∞k=1 are i.i.d. random elements.

It is clear that the combination of L1 and L2 sequences constitutes the record and

2-record sequence J . According to Proposition 4.1(ii) in Resnick (1987), N1 and N2 are

homogeneous Poisson processes on (0, +∞). Then, the point process of the records and

2-records must be

N = N1 + N2

which is the sum of two independent homogeneous Poisson process on (0, +∞). So N is a

Poisson process with intensity measure 2µ, where µ is the Lebesgue measure on (0, +∞).

In other words, we have the following Lemma.

Lemma 9.3.1 Suppose E1, E2, · · · are i.i.d standard exponentially distributed random

variables and {JE(m)} is the index sequence of the records and 2-records of {En}. Then

{
EJE(m)

}∞
m=2

d
= {Γn}∞m=2

where Γm =
∑m

i=1 E ′
i is the partial sum of the sequence {E ′

i}∞i=1 which is an i.i.d sequence

with exponential distribution and mean 1/2.

By defining Q := (− log(1−F ))←, the i.i.d sequence {Xn} can be represented as {Q(En)},
where E1, E2, · · · are i.i.d standard exponentially distributed random variables. Hence, a

direct implication of Lemma 9.3.1 is as follows.
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Corollary 9.3.1 The record and 2-record sequence can be represented as

{
XJ(m)

}∞
m=2

d
= {Q(Γm)}∞m=2

where Γm =
∑m

i=1 E ′
i is the partial sum of the sequence {E ′

i}∞i=1 which is an i.i.d sequence

with exponential distribution and mean 1/2.

By definition, the Q and U functions are connected by Q(t) = U(et). Therefore, the

extreme value condition in (9.4) can be rewritten in terms of the Q function as

lim
t→∞

Q(t + x)−Q(t)

a(et)
=

eγx − 1

γ
, (9.6)

where γ is the extreme value index. We discuss in the three separate subsections the cases

γ > 0, γ < 0 and γ = 0.

9.3.1 Positive case: γ > 0

When (9.4) holds with γ > 0, we have that limt→∞ U(t) = ∞ and U is a regularly varying

function at infinity, i.e.

lim
t→∞

U(tx)

U(t)
= xγ.

According to Proposition B.1.9 in de Haan and Ferreira (2006), log U(t)/ log t → γ. Hence

for any δ > 0, there exists t(δ) > 0 such that for any t > t(δ),

tγ−δ < U(t) < tγ+δ.

Correspondingly, for all t > t1(δ) := log t(δ), we have that

e(γ−δ)t < Q(t) < e(γ+δ)t. (9.7)

Therefore, for δ < γ, we have that

Q(Γm) > e(γ−δ)Γm1Γm>t1(δ) + Q(Γm)1Γm≤t1(δ)

> e(γ−δ)Γm(1− 1Γm≤t1(δ))

> e(γ−δ)Γm − e(γ−δ)t1(δ). (9.8)

and

Q(Γm) < e(γ+δ)Γm1Γm>t1(δ) + Q(Γm)1Γm≤t1(δ)

< e(γ+δ)Γm + Q(t1(δ)). (9.9)

The expectation of eλΓm for λ ∈ R is calculated in the following lemma.
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Lemma 9.3.2 For λ ≥ 2 and any fixed integer m, EeλΓm = +∞. For λ < 2 and any

fixed integer m

EeλΓm =

(
2

2− λ

)m

.

When γ > 2, there exists a δ > 0 such that γ − δ > 2. By taking expectations at the

two sides of (9.8), we get that

EQ(Γm) ≥ Ee(γ−δ)Γm − e(γ−δ)t1(δ) = +∞.

Therefore, we conclude that if γ > 2, for any finite level m, EQ(Γm) does not exist. In

other words, the current observed price necessarily underestimates the expected payoff.

However, γ > 2 is not very realistic for most items offered on the IA platforms. For most,

if not all, items the payoff does have an expectation. In case of a finite expected payoff,

i.e. γ < 2, we have following theorem.

Theorem 9.3.1 Suppose (9.6) holds for 0 < γ < 2. Then EQ(Γm) is finite for any fixed

m. We have the following two limit relations

lim
m→∞

EQ(Γm)

Q(Γm)
= +∞, (9.10)

and

lim
m→∞

log EQ(Γm)

log Q(Γm)
= c, (9.11)

where c :=
log( 2

2−γ )
γ/2

is a constant larger than 1.

Proof of Theorem 9.3.1

Since Q is a monotone function, we only need to prove that EQ(Γm) is finite for large m.

Choose δ < min(γ, 2− γ). By taking expectations at the two sides of (9.9), we get that

EQ(Γm) ≤ Ee(γ+δ)Γm + Q(t1(δ)) < +∞.

Hence EQ(Γm) is finite. Similarly, we have the lower bound of EQ(Γm) as

EQ(Γm) ≥ Ee(γ−δ)Γm − e(γ−δ)t1(δ) =

(
2

2− γ + δ

)m

− e(γ−δ)t1(δ).

Together with (9.9), we find that

EQ(Γm)

Q(Γm)
≥

(
2

2−γ+δ

)m

− e(γ−δ)t1(δ)

e(γ+δ)Γm + Q(t1(δ))
=

1−
(

2
2−γ+δ

)−m

e(γ−δ)t1(δ)

e(γ+δ)Γm−m log( 2
2−γ+δ ) +

(
2

2−γ+δ

)−m

Q(t1(δ))
. (9.12)
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Denote c(δ) := 2
log( 2

2−(γ−δ))
γ+δ

. Since 2
2−(γ−δ)

> 1, (9.12) is continued as

EQ(Γm)

Q(Γm)
≥ 1− o(1)

e(γ+δ)(Γm−mc(δ)/2) + o(1)
. (9.13)

Note that as δ → 0, c(δ) → c. From the inequality that log 1
1−x

> x for all x < 1, we get

that c > 1. Hence, we can choose δ small enough such that c(δ) > 1. From central limit

theorem, we have that Γm−m/2√
m/2

is asymptotically standard normally distributed. Thus, for

any c(δ) > 1, Γm −mc(δ)/2
P→ −∞ as m →∞. Therefore, as m →∞, the right side of

(9.13) goes to +∞ which completes the proof of (9.10).

From the boundaries of EQ(Γm), we have that

(
2

2− γ + δ

)m

− e(γ−δ)t1(δ) ≤ EQ(Γm) ≤
(

2

2− γ − δ

)m

+ Q(t1(δ)).

Hence, by taking logarithms and asking m →∞, we get

log

(
2

2− γ + δ

)
≤ lim inf

m→∞
log EQ(Γm)

m
≤ lim sup

m→∞

log EQ(Γm)

m
≤ log

(
2

2− γ − δ

)
.

By taking δ → 0, it follows that

lim
m→∞

log EQ(Γm)

m
= log

(
2

2− γ

)
. (9.14)

Since limt→∞ log Q(t)/t → γ and Γm
P→∞ as m →∞, we get that

lim
m→∞

log Q(Γm)/Γm = γ.

From the Law of Large Numbers, we have that Γm/(m/2)
P→ 1 as m →∞. Thus

lim
m→∞

log Q(Γm)/m = γ/2.

Together with (9.14), this complete the proof of (9.11). ¤
Theorem 9.3.1 implies that, for 0 < γ < 2, although the expected payoff is bounded,

the observed payoff always underestimates its expectation if there are numerous active

bidders. The following remark gives the essential reason for the underestimation.

Remark 9.3.1 Under the EVT model with 0 < γ < 2, the comparison between EQ(Γm)

and Q(Γm) is essentially a comparison between EeγΓm and eγΓm. From Jensen’s inequality,

we have that

EeγΓm ≥ eγEΓm .

From the Law of Large Numbers, Γm ∼ EΓm as m → ∞. Thus, we intuitively see why

Q(Γm) underestimates EQ(Γm).
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A question whether it is possible to correct the underestimation. Theorem 9.3.1 shows

that the logarithm of the expected payoff can be approximated by the logarithm of the

observed payoff multiplied with an adjustment factor c that is always higher than 1. Notice

that c is a function of the extreme value index γ which can be consistently estimated

as a function of the observed record sequence, see Berred (1992). By estimating c, a

consistent estimator for the logarithm of the expected payoff can be constructed. However,

a consistent estimate at the log-level does not provide a consistent estimator for the

expected payoff itself because both of the expected payoff and the observed payoff go

to infinity as the number of active bidders m go to infinity. The situation is similar to

the 2 log n rule in de Haan et al. (2008b). Given the number of potential bidders n,

the number of active bidder m is consistently estimated as 2 log n. However, the 2 log n

rule does not provide a consistent estimator for the number of potential bidders given

the number of active bidders. Therefore, within the framework of Theorem 9.3.1, it is

not possible to have a consistent estimator of the expected payoff based on the observed

record and 2-record sequence.

9.3.2 Negative case: γ < 0

In case γ < 0, the distribution function of the bidders’ valuations F has a right endpoint,

i.e. Q(∞) := limx→+∞ Q(x) < ∞. Hence, the bidders’ valuations are never above Q(∞).5

In such a case, the expected payoff is always finite. Caserta and de Vries (2005) argued

that this is a realistic model for most items sold through IA. For example, the new price

is often a realistic upper bound of a second-hand consumer item sold through IA.

Since Γm
P→ +∞ as m → ∞, we get that Q(Γm) → Q(∞). The following theorem

studies the asymptotic difference between Q(Γm) and EQ(Γm).

Theorem 9.3.2 Suppose (9.6) holds for γ < 0. Then EQ(Γm) → Q(∞) as m → ∞.

Thus

lim
m→∞

EQ(Γm)

Q(Γm)
= 1.

Furthermore, we have the following two limit relations,

lim
m→∞

Q(∞)− EQ(Γm)

Q(∞)−Q(Γm)
= +∞, (9.15)

and

lim
m→∞

log(Q(∞)− EQ(Γm))

log(Q(∞)−Q(Γm))
= c, (9.16)

where c is defined as in Theorem 9.3.1. Notice that for negative γ we have c < 1.

5We remark that the uniform distribution, which is a commonly used distribution in auction theory,
belongs to this case with γ = −1.
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We start by proving the following useful lemma.

Lemma 9.3.3 For any fixed constants T > 0, ε > 0,

lim
m→∞

eεmP (Γm ≤ T ) = 0

Proof of Lemma 9.3.3

Notice that 2Γm follows a Gamma distribution with shape parameter m, i.e. the density

function of 2Γm is f(x) := xm−1e−x

Γ(m)
1x>0. We have that

0 < eεmP (Γm ≤ T ) = eεm

∫ 2T

0

xm−1e−x

Γ(m)
dx

=

∫ 2T

0

(eεx)m−1e−x

Γ(m)
d(eεx)

=

∫ 2T

0

e(eε−1)x (eεx)m−1e−(eεx)

Γ(m)
d(eεx)

≤ e(eε−1)2T

∫ 2Teε

0

xm−1e−x

Γ(m)
dx

= e(eε−1)2T P (Γ′m ≤ 2Teε)

where Γ′m is a Gamma distributed random variable with the same density function f .

Because Γ′m → +∞ as m →∞, the lemma is proved. ¤
Proof of Theorem 9.3.2

When γ < 0, 1/(Q(∞) − Q(t)) is a regularly varying function at +∞ with index −γ.

Similar to the inequality (9.7) in the positive case, the following inequality holds. For any

δ > 0, there exists t2(δ) such that for any t > t2(δ)

e(γ−δ)t < Q(∞)−Q(t) < e(γ+δ)t. (9.17)

Therefore, we have that

Q(∞)−Q(Γm) > e(γ−δ)Γm1Γm>t2(δ) + (Q(∞)−Q(Γm))1Γm≤t1(δ)

> e(γ−δ)Γm(1− 1Γm≤t2(δ))

> e(γ−δ)Γm − 1Γm≤t2(δ). (9.18)

and

Q(∞)−Q(Γm) < e(γ+δ)Γm1Γm>t2(δ) + (Q(∞)−Q(Γm))1Γm≤t2(δ)

< e(γ+δ)Γm + Q(∞)1Γm≤t2(δ). (9.19)

By taking expectations at the two sides of (9.19), we get that

0 < Q(∞)− EQ(Γm) ≤
(

2

2− γ − δ

)m

+ Q(∞)P (Γm ≤ t2(δ)).
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By taking δ < −γ, we get that 2
2−γ−δ

< 1. Since P (Γm ≤ t2(δ)) → 0 as m → ∞, we get

that limm→∞ EQ(Γm) = Q(∞).

We turn to compare Q(∞) − EQ(Γm) with Q(∞) − Q(Γm). By taking expectations

on the two sides of (9.18), we get that

Q(∞)− EQ(Γm) ≥
(

2

2− γ + δ

)m

− P (Γm ≤ t2(δ)).

Notice that Γm
P→ +∞ as m →∞. The inequality (9.19) implies that eventually

Q(∞)−Q(Γm) < e(γ+δ)Γm .

Hence

Q(∞)− EQ(Γm)

Q(∞)−Q(Γm)
≥

(
2

2−γ+δ

)m

− P (Γm ≤ t2(δ))

e(γ+δ)Γm
. (9.20)

Lemma 9.3.3 shows that P (Γm ≤ t2(δ)) goes to 0 at a higher speed than any expo-

nential speed. Thus, (9.20) is continued as

Q(∞)− EQ(Γm)

Q(∞)−Q(Γm)
≥ 1− o(1)

e(γ+δ)(Γm−d(δ)m/2)
, (9.21)

where d = 2
log( 2

2−γ+δ )
γ+δ

. Notice that as δ → 0, d(δ) → c and c < 1 holds for γ < 0. Hence,

we can choose δ small enough such that d(δ) < 1. Then, Γm−d(δ)m/2
P→ +∞ as m →∞.

Therefore, as m → ∞, the right side of (9.21) goes to +∞ which completes the proof of

the theorem. The proof of (9.16) is similar to that of (9.11). ¤
Theorem 9.3.2 studies the case γ < 0 and tells a story just opposite to the positive

case. For γ < 0, the observed payoff might be considered as a consistent estimator of its

expectation because both the observed and expected payoff converge to the right endpoint

of the bidder’s valuation. Nevertheless, the distance between the observed payoff and the

right endpoint is eventually smaller than the distance between the expected payoff and

the right endpoint. Hence, if there are sufficiently many active bidders, the observed

payoff always overestimates its expectation. A consistent estimator on the log-level of

the difference is given by multiplication with an adjustment factor c that is always lower

than 1. However, similar to the positive case, a consistent estimate at the log-level would

not provide a consistent estimator of the difference itself. Therefore, it is not possible to

correct the overestimation.

To sum up, Theorem 9.3.1 and Theorem 9.3.2 show that if the extreme value index

of bidder’s valuation distribution is not 0, the observed payoff is never a satisfactory

estimator for the expected payoff.
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9.3.3 Zero case: γ = 0

In the previous two Subsections, we found that the observed payoff underestimates or

overestimates its expectation when γ is positive or negative respectively. The remaining

case is γ = 0, i.e. when F belongs to the Gumbel domain. In this section, we show that at

least for a subclass of the Gumbel domain, the observed payoff is a reasonable estimator

for its expectation.

Model specification

As we discussed before, in order to avoid the problem of the unknown number of potential

bidders, the model should be based on the Q function and the payoff should be taken as

the last observation in the record and 2-record sequence.

We introduce a refinement and assume that the Q function itself is regularly varying or

generalized regularly varying. Furthermore, in order to study the asymptotic properties,

we assume that a second-order condition holds.

We start from the regularly varying model. Suppose Q function itself is regularly

varying with index λ > 0. We also assume that it is second-order regularly varying with

second-order index ρ ≤ 0, i.e.

Q(tx)
Q(t)

− xλ

A(t)
→ H(x) := xλ xρ − 1

ρ
(9.22)

as t → ∞, for some suitable function A(t) ∈ RVρ and all x > 0. We call this Regularly

Varying Q-function (RVQ) model.

Remark 9.3.2 The RVQ model with ρ < −1 is a subclass of the Gumbel domain.

Proof of Remark 9.3.2

From (9.22), we have the following inequality (See de Haan and Ferreira (2006, Appendix

B)). Given any ε > 0, there is a t0(ε) such that for all tx > t0(ε),

∣∣∣∣∣
Q(tx)
Q(t)

− xλ

A(t)
−H(x)

∣∣∣∣∣ ≤ εxλ+ρ+ε. (9.23)

Therefore, ∣∣∣∣∣
Q(t+x)

Q(t)
− ( t+x

t
)λ

A(t)
−H(

t + x

t
)

∣∣∣∣∣ ≤ ε(
t + x

t
)λ+ρ+ε,

for all t > t0(ε) and positive x. When ρ < −1 and A(t) ∈ RVρ, we get tA(t) → 0 as

t →∞. It leads to the fact that

t

{
Q(t + x)−Q(t)

Q(t)
− ((1 + x/t)λ − 1)

}
→ 0.
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Since

t((1 + x/t)λ − 1) → λx,

we finally get that
Q(t + x)−Q(t)

λQ(t)/
√

t
→ x,

i.e. the corresponding U function satisfies condition (9.4) with γ = 0. ¤
Thus, the RVQ model is only a special case in the Gumbel domain (γ = 0), and

therefore is more narrow. Fortunately, quite some well-known parametric distributions

belong to this model. For example, both the normal distribution and the exponential

distribution satisfy this model. (For the normal distribution, λ = 1/2, ρ = −∞. For the

exponential distribution, λ = 1, ρ = −∞.)

In the RVQ model, the original distribution function can not have a finite right end-

point. In order to include distributions with finite right endpoint, we extend the model

as follows. Suppose the Q function is second-order generalized regularly varying with

first-order index λ ∈ R and second-order index ρ ≤ 0, i.e.

Q(tx)−Q(t)
a(t)

− xλ−1
λ

A(t)
→ H(x) (9.24)

as t → ∞, for all x > 0 and some suitable function a(t) ∈ RVλ, A(t) ∈ RVρ and H(x).

We call this Generalized Regularly Varying Q-function (GRVQ) model.

In the GRVQ model, if λ > 0, it can be simplified to the RVQ model. When λ is

negative, Q(∞) < ∞. Hence, in this case, the original distribution function F must have

a finite right endpoint.6 We note though that a random variable K with distribution

function

1− e−((a−x)/b)1/λ

for all x ≤ a, where b > 0, λ < 0 satisfies the requirements of the GRVQ model (λ is

the regularly varying index in (9.24) and ρ = −∞). Notice that −K follows the inverse

Weibull distribution.

Statistical inference

We turn to study the expected payoff. The following lemma gives the asymptotic prop-

erties of the observed and expected payoff.

6The commonly used distribution functions for the valuations in auction theory are the uniform
distributions and other distributions with a finite right endpoint. Notice that the uniform distribution
belongs to the case γ = −1 which has been discussed in the previous section.
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Lemma 9.3.4 Suppose the RVQ model holds with ρ < −1/2, then

√
m

(
XJ(m)

Q(m/2)
− 1

)
d→ λW ; (9.25)

√
m

(
EXJ(m)

Q(m/2)
− Γ(λ + m)

nλΓ(m)

)
→ 0. (9.26)

where W is a standard normal distributed random variable and Γ is the Gamma function.

Proof of Lemma 9.3.4

Applying (9.23), we get that, eventually,
∣∣∣∣∣

Q(Γm)
Q(m/2)

− ( Γm

m/2
)λ

A(m/2)
−H(

Γm

m/2
)

∣∣∣∣∣ ≤ ε(
Γm

m/2
)λ+ρ±ε. (9.27)

The symbol ± means taking the suitable sign according to whether Γm

m/2
is higher or lower

than 1. Since
√

mA(m/2) → 0, Γm

m/2

P→ 1 and limx→1 H(x)± εxλ+ρ±ε exists, we find that

√
m

(
Q(Γm)

Q(m/2)
− (

Γm

m/2
)λ

)
P→ 0

From Central Limit Theory, we have that

√
m

(
Γm

m/2
− 1

)
d→ W,

where W is a standard normal distributed random variable. According to Cramèr’s delta

method,
√

m

(
(

Γm

m/2
)λ − 1

)
d→ λW.

Thus, (9.25) is a direct consequence.

Taking expectation of the two sides of inequality (9.27) on the set {Γm > t0(ε)}, be-

cause the absolute value function is a convex function, we get that
∣∣∣∣∣∣

EQ(Γm)1{Γm>t0(ε)}
Q(m/2)

− E( Γm

m/2
)λ1{Γm>t0(ε)}

A(m/2)
− EH(

Γm

m/2
)1{Γm>t0(ε)}

∣∣∣∣∣∣

≤εE(
Γm

m/2
)λ+ρ±ε1{Γm>t0(ε)}.

Similar to above discussion, we can conclude that

√
m

(
EQ(Γm)1{Γm>t0(ε)}

Q(m/2)
− E(

Γm

m/2
)λ1{Γm>t0(ε)}

)
→ 0. (9.28)

Since
√

mP (Γm ≤ x) → 0 as m →∞ for all x > 0, we have that

√
m

(
EQ(Γm)1{Γm≤t0(ε)}

Q(m/2)

)
≤ √

m

(
Q(t0(ε))P ({Γm ≤ t0(ε)})

Q(m/2)

)
→ 0,
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and √
mE(

Γm

m/2
)λ1{Γm≤t0(ε)} ≤

√
mE(

t0(ε)

m/2
)λP ({Γm ≤ t0(ε))} → 0.

It follows that (9.28) can be rewritten as

√
m

(
EQ(Γm)

Q(m/2)
− E(

Γm

m/2
)λ

)
→ 0 (9.29)

Since 2Γm follows the Gamma distribution with shape parameter m, the expectation of

(2Γm)λ is Γ(λ+m)
Γ(λ)

(see e.g., Papoulis (1984), pp. 103-104). Then

E(
Γm

m/2
)λ =

Γ(λ + m)

nλΓ(m)
.

Thus, (9.26) is proved. ¤
Now, we prove that

lim
m→∞

√
m

(
Γ(λ + m)

nλΓ(m)
− 1

)
= 0. (9.30)

Since Γ(x) = e−xxx−1/2
√

2π(1 + 1/12xo(1))) as x →∞, we have that

Γ(λ + m)

nλΓ(m)
= e−λ(1 + λ/m)m−1/2(1 + λ/m)λ 1 + λ+m

12
o(1)

1 + m
12

o(1)

= e(m−1/2) log(1+λ/m)−λ(1 + λ2/m + o(1/m))(1 + o(1/m))

= e−
λ−λ2

2m
+o(1/m)(1 + λ2/m + o(1/m))(1 + o(1/m))

= 1 + O(1/m).

Thus (9.30) is proved.

We can estimate the expected payoff as follows. Suppose we have m active bidders in

an IA. We observe the bidders’ valuations XJ(1), · · · , XJ(m−1) as their final bids, except

for the winner. The payoff will be XJ(m−1). We estimate the expected payoff EXJ(m−1)

by this observation. The asymptotic property of this estimator is given by the following

theorem.

Theorem 9.3.3 Suppose the RVQ model holds for ρ < −1
2
. Then

√
m− 1

(
XJ(m−1)

EXJ(m−1)

− 1

)
d→ λW (9.31)

as m →∞, where W is a standard normally distributed random variable.

Proof of Theorem 9.3.3

The theorem is proved by combining (9.25), (9.26) and (9.30). ¤
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Theorem 9.3.3 shows that for the RVQ model the observed payoff is an accurate

estimator for the expected payoff and the corresponding asymptotic normality holds under

a second order condition.

Starting from the GRVQ model, similar results can be obtained as in the previous

subsection. Here we only present the conclusion, the proof is omitted. The proof for the

GRVQ model is essentially the same as the proof for the RVQ model.

Theorem 9.3.4 Suppose the GRVQ model holds with ρ < −1
2
. Then as m →∞,

√
m− 1

XJ(m−1) − EXJ(m−1)

a((m− 1)/2)

d→ W,

where W is a standard normally distributed random variable. In particular, when λ > 0,

we have that (9.31) holds. When λ < 0, we have that Q(∞) < ∞, and as m →∞,

√
m− 1

(
Q(∞)−XJ(m−1)

Q(∞)− EXJ(m−1)

− 1

)
d→ λW.

9.4 Conclusion

Internet auctions are a hybrid of the standard second-price Vickrey auction and the first-

price English auction, for which the expected payoff is equal to the expectation of the

second highest valuation among all the potential bidders. The expected payoff acts as a

benchmark of the reasonableness of the price that is paid for the purchased item. Since the

number of potential bidders is not observable, the expected value is difficult to estimate

accurately. We approached this problem by considering the bids as a record and 2-record

sequence of the potential bidder’s valuation. The observed payoff is thus one of the records

and 2-records.

In this chapter, we use the EVT models to model the tail distribution of the bidder’s

valuation and study the expected payoff. We first argue that assuming that the extreme

value index γ is higher than 2 is not a realistic model because in that case the expected

payoff is unbounded. For 0 < γ < 2, we show that the observed payoff underestimates

the expected payoff. At the log-level, an adjusted estimator exists for the expected payoff

based on the logarithm of the observed payoff. We show that this is not possible at the

level of the expected payoff. Hence, the consistency is an issue. One may argue that

γ > 0 is not a realistic setup for the distribution of the bidder’s valuation, because such a

distribution function has no finite right endpoint which does not reflect the reality of IA.

For γ < 0 the distribution function of the bidder’s valuation has a finite endpoint,

which is a more realistic setup for IA. Both the expected and observed payoff converge

to the right endpoint as the number of active bidders m goes to infinity. However, the
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distances to the endpoint converge to 0 at different speeds. The distance between the

observed payoff and the right endpoint goes to 0 faster. Therefore, the observed pay-

off always overestimates the expected payoff. In this case, though the observed final

price consistently estimates the expected payoff, the overestimation cannot be redressed

consistently.

For γ = 0, i.e. the distribution function of the bidder’s valuation belongs to the Gum-

bel domain, the observed payoff can be a consistent estimator for the expected revenue.

We introduced a subclass of the Gumbel domain as the model of bidder’s valuation dis-

tribution. Within this subclass and under a second order condition, the observed payoff

consistently converges to the expected payoff and the corresponding asymptotic normality

holds.

All in all, in an IA the observed payoff is the final price of the deal, while the expected

payoff is what the seller should get from holding such an IA. Our study shows that by

assuming that the tail of the bidder’s valuation distribution belongs to the domain of

attraction of an extreme value distribution, the final price does not always reflect what

the seller deserves.

Even though our message is not so positive, there remain some interesting issues.

For example, our analysis focused on general EVT setup on the distribution of bidder’s

valuation. In case one is willing to make an explicit parametric assumption regarding the

distribution of valuations, consistent estimation of the expected payoff may be possible

outside the limited class that we could handle. Further research on estimating the extreme

value index from the observed record and 2-record sequence is also of interest and may

help to identify the situation for a specific IA.





Summary

Rare events such as natural disasters or financial crises often have a large impact on

our lives. To model and analyze such events is important, particularly for risk control.

However, it is not an easy job due to the scarce observations on such kind of events. In

this thesis, we study Extreme Value Statistics and show that it is a proper instrument for

modeling rare events.

A major issue in one-dimensional EVT is to estimate the extreme value index. In

the setup of EVT, the tail of a distribution function is approximated by an explicit

parametric model. This creates the possibility to apply the maximum likelihood procedure

to estimate the parameters. However, since the model is an approximation rather than

a real parametric approach, the regular theory on maximum likelihood does not apply.

Therefore, it is necessary to develop the theory of the maximum likelihood estimator for

the extreme value index from the original setup: the extreme value condition. Part I deals

with this problem in a thorough way and helps to complete the literature on this aspect.

In finance, one may consider to construct a diversified portfolio in order to diversify

away the individual risks. However, this is not always the case when considering large

losses as risks. In particular, the dependence among the large losses across different

securities might be complicated. Part II applies multivariate EVT to study this problem

and provide an applicable portfolio selection procedure.

Besides evaluating risks in financial investment, it is also important to control risks of

extremal weather situation. As an example, Part III evaluates the level of ”once-in-100-

year” total rainfall in the province North Holland (The Netherlands). The major difficulty

of this problem is that one should consider the dependence of the rainfall amount across

the concerning area while observations are only on a few fixed monitoring stations. Notice

that the dependence of extremal rainfall could be quite different from the moderate level.

This has to be done via a infinite-dimensional EVT approach.

After demonstrating different applications of EVT in different fields, an interesting

question arises: does the EVT instrument always work in modeling tails? Part IV provides

a somewhat different example. We study an extreme-value-type problem in Internet

auctions. In an Internet auction, only few bidders on auction websites are observed,
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but there may be a multitude of potentially interested bidders. We first explain the

discrepancy by using record theory. Secondly, when studying the expected revenue of an

Internet auction, since the final payoff is one of those high bids, it seems to be again a

”tail problem” which might be dealt with EVT. However, it turns out that the EVT setup

does not lead to a reasonable estimator for the expected payoff in most of the cases.

All in all, besides contributing to the theoretical literature of Extreme Value Statistics,

the thesis is devoted to show different applications of Extreme Value Statistics in different

fields. Those applications exhibit the strong potential of Extreme Value Statistics in

modeling and analyzing rare events.







Nederlandse samenvatting
(Summary in Dutch)

Zeldzame gebeurtenissen zoals natuurrampen hebben gewoonlijk grote gevolgen voor ons

leven. Het is belangrijk om zulke gebeurtenissen te modelleren en te analyseren, in het

bijzonder met het oog op risicobeheersing. Dit is echter geen eenvoudig werk vanwege

het geringe aantal waarnemingen van zulke gebeurtenissen in het verleden. In dit proef-

schrift bestuderen we extreme waarden statistiek en we tonen aan dat dit het geigende

gereedschap is om zeldzame gebeurtenissen te modelleren.

Een belangrijk probleem in eendimensionale EVT (Extreme Value Theory) is hoe de

extreme waarden index te schatten. De EVT theorie zegt ons dat de start van kansverdel-

ing (het deel dat gelieerd is aan extreme waarden) goed benaderd kan worden door een

expliciet parametrisch model. Dit opent de mogelijkheid om de methode van grootste

aannemelijkheid (maximum likelihood) te gebruiken om de parameter te schatten, dat

wil zeggen, de extreme waarden index. Jammer genoeg kunnen de bekende resultaten

over de grootste aannemelijkheidschatter niet direct gebruikt worden omdat het model

een benadering is, niet de werkelijkheid. Daarom is het belangrijk een theorie van groot-

ste aannemelijkheid te ontwikkelen voor deze specifieke situatie uitgaande van extreme

waarden voorwaarde waaraan de oorspronkelijke verdeling voldoet. Deel 1 van dit proef-

schrift behandelt dit probleem op een grondige manier; bekende resultaten vinden hier

een noodzakelijke aanvulling.

In de financiering gebruikt men een gediversifieerde portfolio om de individuele risico’s

te neutraliseren. Dit heeft echter niet altijd het beoogde effect als men grote verliezen bij

risico’s beschouwt. In deel 2 van dit proefschrift wordt meerdimensionale EVT theorie

toegepast om dit probleem te bestuderen en om een toepasbare procedure voor portfo-

lioselectie te ontwikkelen.

We bestuderen niet alleen risico’s bij financiële investeringen. Het is ook belangrijk

risico’s bij extreme weersomstandigheden in de hand te houden. In deel 3 van dit proef-

schrift wordt als voorbeeld berekend welke niveau van regenval in Noord-Holland (dat

wil zeggen het niveau van de totale regenval in die provincie) eens per eeuw voorkomt.
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Dus we berekenen hoe zwam de meest ernstige regenval is die we eens per eeuw kunnen

verwachten. Het grootste probleem hierbij is dat we rekening moeten houden met de

afhankelijkheid in hoeveelheid regenval tussen alle plaatsen in het gebied, terwijl er alleen

maar waarnemingen gedaan zijn op een beperkt aantal in het gebied. Merk hierbij op dat

de afhankelijkheid bij extreme regenval nogal verschillend kan zijn van de afhankelijkheid

die heerst bij matige regenval. De aanpak gebruikt oneindig-dimensionale EVT.

Na op deze manier verschillende toepassingen bestudeerd te hebben, komt een interes-

sante vraag op: werkt het EVT gereedschap altijd voor het modelleren van de staart van

de verdeling? Deel 4 van dit proefschrift geeft een enigszins verschillend voorbeeld. We

nemen een EVT-achtig probleem onder de loep bij veilingen op internet. In een dergelijke

veiling zijn er meestal maar erg weinig bieders. We hebben aangetoond dat het aantal

potentiële bieders die belangstelling hebben en de website bezoeken zeer veel hoger moet

zijn dan het aantal werkelijke bieders. Vervolgens is gekeken naar de verwachte prijs in

een internet veiling. Omdat deze in feite een van de hoge biedingen is, lijkt het dat we

hier weer een EVT probleem hebben. Toch blijkt het dat een rechtstreekse toepassing

van EVT geen redelijke schatter geeft. Een enigszins andere aanpak is dus noodzakelijk.

Dit proefschrift geeft dus zowel een bijdrage aan de theoretische literatuur over EVT

als een selectie van toepassingen in verschillende gebieden. Deze toepassingen laten zien

dat EVT methoden van grote waarde zijn voor het modelleren en analyseren van zeldzame

gebeurtenissen.
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