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1. Introduction 

Current classification systems of human germ cell tumors (GCTs) are 

based on histological composition [1-3]. In the group of nonseminomas, different 

variants of teratoma (somatic differentiation), yolk sac tumor and choriocarcinoma 

(extra-embryonic differentiation), are recognized, as well as their stem cell 

component embryonal carcinoma. In addition, the seminomatous tumors are 

distinguished, subdivided into classic - and spermatocytic variants. The 

morphologically similar classic seminomas of the ovary are called dysgerminomas, 

and those of the brain germinomas. Tumors containing both a (classic) seminoma 

and a nonseminoma component are referred to as combined tumor according to 

the British classification [4], and as nonseminoma in the World Health Organisation 

(WHO) Classification [5]. This traditional histological description obscures the 

biological diversity of this type of cancer [6, 7], which hampers identification of 

pathogenetic mechanisms and proper comparison of the neoplastic cells to their 

normal counterparts. Therefore, an alternative classification was proposed, 

recognizing five categories (I-V) of GCTs (see Table 1), based on site of 

presentation, age of the patient at diagnosis, histological composition, as well as 

pattern of genomic imprinting, and chromosomal constitution [6]. This thesis will 

deal only with the type II GCTs, predominantly of the testis, and therefore the other 

types will not be discussed here. The testicular type II GCTs will be referred as 

TGCTs. 

 

2. Epidemiology 

In the male Caucasian population, TGCTs account for approximately 1% of 

all cancers [8, 9]. However, TGCTs represent 60% of all malignancies diagnosed in 

men between 20 to 40 years of age in the northern European countries [10]. 

Interestingly, most European countries show a significant rise in the incidence of 

TGCTs, as also found in the USA (Figure 1) (UK Testicular Cancer incidence 

statistics, info.cancerresearchuk.org) [8, 11, 12]. This rising incidence has been 

linked to exposure to environmental compounds, specifically those with estrogen 

and/or anti-androgen action, while also a genetic predisposition seems to be 
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involved [13-16]. Other ethnic populations, including Asian and Blacks, show a 

significant lower incidence, which is not influenced by migration [17, 18]. 

 

Table 1: Summary of GCT classification according to Oosterhuis and Looijenga [6], which is based on 

biology of these tumors. YST: yolk sac tumor. 

 

Type Anatomical site Phenotype Age Originating 
cell 

I Testis/ovary/sacral 
region/retroperito-
neum/mediastinum/neck/ 
midline brain/ 
other rare sites 

(Immature) 
teratoma/  
YST 

Neonates and 
children 

Early PGC/ 
Gonocytes 

II Testis 
 
 
 
 
 
 
Ovary 
 
 
Dysgenetic gonad 
 
 
Anterior mediastinum 
(thymus) 
 
Midline brain (pineal 
gland/hypothalamus) 

Seminoma/ non-
seminoma 
 
 
 
 
 
Dysgerminoma/ 
non-seminoma 
 
Dysgerminoma/ 
non-seminoma 
 
Seminoma/ non-
seminoma 
 
Germinoma/ 
non-seminoma 

15 years 
(median age 35 
and 25 years) 
 
 
 
 
4 years 
 
 
Congenital 
 
 
Adolescents 
 
 
Children (median 
age 13 years) 
 

PGC/ 
gonocyte 
 
 
 
 
 
PGC/ 
gonocyte 
 
PGC/ 
gonocyte 
 
PGC/ 
gonocyte 
 
PGC/ 
gonocyte 

III Testis Spermatocytic 
seminoma 

> 50 years Spermatogo-
nium/ 
spermatocyte 
 

IV Ovary Dermoid cyst Children/ adults Oogonia/ 
oocyte 

V Placenta/uterus Hydatiform mole Fertile period Empty ovum/ 
spermatozoa 

 

In contrast, a role of migration has been reported for immigrants from Finland to 

Sweden, who have a lower initial risk for TGCTs, but they obtain the risk of the 

Swedish population at the second generation [19]. These observations 

demonstrate a significant effect of environmental factors on the incidence of 

TGCTs within specific ethnic subgroups. Epidemiological observations indicate 

also that the affected population of cells leading eventually to the invasive cancer 

are present only during a limited time window during fetal development [20]. Of 
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interest is that this window seems to be similar to experimental data due to the 

effect of xeno-estrogens [21], related to gonadal anomalies, as also found in DSD 

patients at risk for this cancer (see below). 
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Figure 1: Age-standardized (World) incidence rates for TGCTs, world regions, 2002 estimates. 

 

3.    Normal development and differentiation of germ cells  

To understand the nature of risk factors for the development of TGCTs, it is 

highly relevant to understand the process involved in normal gonadal development. 

Therefore, various aspects of mainly fetal germ cell development will be discussed 

in the following paragraphs.  

 

3.1 Specification and migration of primordial germ cells in mice 

Germ cells in mammals, which function to transmit genetic information to 

the next generation, are set aside at an early stage during embryogenesis, and are 

known as primordial germ cells (PGCs)[22-25]. The discrimination of the germ cell 

lineage from the somatic cells during early development is referred to as 

specification. In mice, specific transcriptional programs regulate specification of 

PGCs, prevent them from a continuing drift toward a somatic fate and induce their 

lineage-specific characteristics. Recent advances are beginning to piece together 

the key steps that lead to PGC specification [26].  
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PGCs arise in mice from the proximal epiblast around E6.5 [27] (in humans 

at week 5-6). These early mouse germ cells can be detected as a cluster of 

approximately 45 cells based on their high level of alkaline phosphatase activity at 

E7.25, located at the base of the developing allantois [24]. The postulated key 

event during germ cell specification is the repression of the somatic cell fate by the 

transcription factor Blimp1. Targeted deletion of Blimp1 leads to loss of PGCs 

shortly after specification due to differentiation [26, 28]. In contrast to Blimp1- 

PGCs, Blimp1+ germ cells repress expression of mesodermal genes, including 

Fgf8, and Snail, whereas pluripotency-associated genes such as Sox2 and Nanog, 

in addition to other unique genes for PGCs, such as Stella and Nanos3, are 

upregulated. Recent studies have shown that Blimp1 acts by binding to Prmt5, 

since Blimp1/Prmt5 complex was detected in PGCs. Prmt5 is an arginine-specific 

histone methyltransferase, which mediates symmetrical dimethylation of arginine-3 

on histone H2A and/or H4 tails (H2Ame2s/H4R3me2s) [29]. Proposed function of 

Blimp5/Prmt5 complex is the suppression of premature differentiation and 

maintenance of pluripotency in PGCs. Schematic representation of a Blimp1/Prmt5 

actions in mice is given in Figure 2 below. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Schematic representation of a selection of factors involved in germ cell specification in mice 
(E7-E8). In the epiblast, pluripotent PGCs undergo specification by upregulation of Blimp1. 
Blimp1/Prmt5 complex suppresses premature differentiation by H2Ame2s/H4R3me2s. 
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After specification, PGCs move along the hindgut to the genital ridges, which will 

later develop into either ovary or testes [30, 31]. For this migratory process, the 

stem cell factor (SCF)–c-KIT pathway is crucial [32]. PGCs express the receptor, 

while the SCF is expressed in somatic cells and functions as a chemo-attractant as 

well as survival factor [33-35] (see below for further information).  

 

3.2   Epigenetic changes of PGCs 

PGCs undergo major changes in nuclear architecture, accompanied by 

extensive erasure of several histone modifications and exchange of histone 

variants. The histone chaperones Hira and Nap-1 (Nap111) accumulate in the 

nuclei of PGCs undergoing this reprogramming [36]. Histone replacement is critical 

for chromatin rearrangements and histone modifications, such as erasure of 

histone H3 at lysine 9 dimethylation (H3K9me2) and establishment of histone H3 at 

lysine 27 tri-methylation (H3K27me3), leading to an overall decrease level of DNA 

methylation [37]. This general process of reprogramming is followed by a specific 

demethylation of differentially methylated regions (DMRs) of imprinted genes [38-

40]. The methylation pattern of imprinted genes are parental specific, and 

responsible for the functional difference between a maternally and paternally 

derived haploid set of chromosomes [41, 42]. The erasure of these imprints is a 

prerequisite for regeneration of a definitive parental-specific gametic methylation 

pattern during further germ cell development, i.e., spermatogenesis in the male and 

oogenesis in the female.  

 

3.3 Postmigratory germ cells  

Once the PGCs have reached the gonadal ridges they are called 

gonocytes. The fate of the gonocytes is dependent on the specific 

microenvironment of the developing genital ridge, referred to as gonadal sex, i.e., 

development of either testis or ovary. Based on formation of either Sertoli cells or 

granulosa cells, the gonocytes will mature to either pre-spermatogonia or oogonia. 

In 1990, the SRY gene was identified as the testis-determining factor [43, 44]. 

Inactivation of SRY results, both in mice and in men, in complete sex reversal, i.e., 

male to female [45]. The crucial gene in the SRY pathway is Sox9 [46]. This 
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transcription factor is a downstream target of SRY and functions in the formation 

and maintenance of pre- Sertoli cells, a critical step in testis formation, and 

subsequent generation of the male phenotype [46, 47]. In females, Wnt4 and the 

forkhead transcripton factor Foxl2 genes are activated and stimulate the formation 

of granulose cells, the female counterparts of Sertoli cells [48] (see Figure 3 for 

review).  

Interestingly, most recent data demonstrate that induced absence of Foxl2 in a 

female mouse results in complete gonadal sex reversal, leading to testicular tissue, 

without germ cells [49], suggesting that maintenance of the ovarian phenotype 

throughout life is a active process sustained by Foxl2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Schematic representation of the earliest changes in gonadal development. In male gonad, 
SRY upregulates Sox9, which induces differention of Sertoli cells and formation of tubuli seminiferi. 
WNT4 and Foxl2 are required to suppress Sox9 expression. Ìn the absence of Sox9, granulosa cell 
differentiation occurs and primordial follicles develop. 
  

During the formation of ovary/testis, both the human male and female gonocytes 

ondergo the process of differentiation and loose the expression of the embryonic 

markers, including OCT3/4 [50, 51]. This is in contrast to the mouse gonads, where 

a subpopulation of gonocytes, a supposed stem cell population, continues to 

express c-KIT and Oct3/4 [52, 53]. This implies that the knowledge about the 
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regulation processes in mouse germ cell differentiation can not be simply 

transferred to the human. Only few data are available so far about differentiation 

processes in normal human testis (see chapter 2 and discussion).  

 

4.     Predisposing factors and precursors of malignant germ cell 

tumors 

 

4.1.  Predisposing factors 

While the etiology of ovarian type II GCTs is less known (except for 

disorders of sex development (DSD) in dysgenetic ovary, see below), risk factors 

for TGCTs includes history of a previous TGCT, cryptorchidism, sub- or infertility, 

various forms DSD and familial predisposition [54-58, 59, Chia, 2009 #12865]. 

Based on epidemiological observations, it has been hypothesized that TGCTs, 

cryptorchidism, and some cases of hypospadias and low sperm counts, comprise a 

testicular dysgenesis syndrome (TDS) with a common origin in fetal life [16, 60, 

61].  

DSD, previously referred to as intersex, is defined as a congenital condition 

in which development of chromosomal, gonadal, or anatomical sex is atypical [62]. 

This heterogeneous entity of diseases can be sub-classified further into 3 main 

groups:  

1) Gonadal dysgenesis. This is defined as an incomplete or defective formation of 

the gonads, as a result of a disturbed process of migration of the germ cells and/or 

their correct organisation in the fetal gonadal ridge. Structural or numerical 

anomalies of the sex chromosomes or presumably mutations in sex determining 

genes underlie these disorders. 

2) Hypovirilization syndromes. These may be caused by errors in testosterone 

biosynthesis, by testicular unresponsiveness to stimulation from the pituitary or by 

defects in androgen - dependent target tissues and result in an ambiguous or 

emale phenotype of a 46, XY individual. However, often no specific cause is found.  

3) Hypervirilization syndromes. These are 46, XX individuals who are exposed to 

androgens (e.g due to genetic defects in enzymes involved in adrenal hormone 
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production) during fetal life. As a result, they show male characteristics in spite of 

their female karyotype.  

Many different causes may lead to DSD, including mutations in genes that 

play a role in the different developmental programmes and cascades (SRY, 

Androgen receptor), chromosomal imbalances (of sex chromosomes in Turner 

syndrome (45,X0), and various forms of mosaicisms) and environmental 

influences. The risk of type II GCTs in DSD patients is only found in those 

belonging to category 1 and 2 [63]. Within these groups, it is specifically related to 

the presence of part of the Y chromosome in the karyotype, likely related to the 

presence of the TSPY gene [64, 65]. . 

Besides DSD, various other less strong predisposing factors have been 

suggested, which wait confirmation, although birth weight (both low and high) 

seems to be relevant [66]. So far, it has not been possible to identify genes 

involved in familial TGCTs [67, 68]. This is likely due to the polygenetic 

predisposition, as well as the limited power of the families because of their small 

size. Recently, two genome-wide association studies revealed association of c-KIT 

ligand variants and TGCT susceptibility [69, 70]. This is of specific interest based 

on the knowledge of the involvement of c-KIT and its ligand for normal migrations, 

proliferation and survival of PGCs, as well as the maintenance of expression of c-

KIT in the seminomatous tumors as well as the precursor lesion CIS (see chapter 

2, chapter 5). 

 

4.2 Precursors  

The precursor of all TGCTs is the so-called carcinoma in situ of the testis 

(CIS) [71], also referred to as intratubular germ cell neoplasia unclassified (IGCNU) 

[5], or testicular intratubular neoplasia (TIN) (Figure 4A).  

The hypothesis for the development of CIS is that undifferentiated germ 

cells with fetal characteristics, the gonocytes, persist till adulthood and transform to 

neoplastic germ cells. Besides morphology, CIS also show other similarities to 

PGCs/gonocytes, including erased pattern of genomic imprinting [72, 73], 

telomerase activity [74], and a hypomethylated epigenetic constitution [75], as well 

as their pattern of gene expression [76, 77].  
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CIS cells are located at the inner side of the seminiferous tubules, most 

frequently in a single row along the basement membrane in close connection with 

Sertoli cells in adult testis. CIS is often detected in the adjacent parenchyma of 

invasive TGCTs, especially in nonseminomas [78, 79].  

The incidence of CIS in the male Caucasian population is similar to the 

lifetime risk of developing a TGCT, and it is therefore expected that all patients with 

this lesion will eventually develop an invasive TGCT [80]. In other words, no 

spontaneous regression occurs, and, to prevent development of an invasive 

cancer, clinical intervention is required in patients with CIS.  

The CIS counterpart in dysgenetic gonads with a low level of virilization, i.e., no 

or limited testicular differentiation, is known as gonadoblastoma [81]. The 

neoplastic germ cells of gonadoblastoma show the same characteristics as CIS 

cells [63, 82-86]. Gonadoblastoma occurs almost exclusively in children or young 

individuals with DSD, predominantly with gonadal dysgenesis and hypovirilization 

(see above). The stromal cells in gonadoblastoma are similar to granulosa cells, 

based on expression of FOXL2, while the Sertoli cells associated with CIS indeed 

express SOX9 [87].  

In contrast to the testis and DSD patients, the precursor lesion for the ovarian, 

mediastinal and intracranial type malignant GCTs have not been identified so far, 

although they are expected to be similar [88, and unpublished observations].  
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Figure 4: A, carcinoma in situ (CIS, x600), typical morphology of CIS cells, which are atypical germ 
cells located inside seminiferous tubules (arrow); next to Sertoli cells (arrowhead). B (x200), seminoma 
cells are large cells with distinct borders (arrow), separated by delicate septa and lymphoid infiltrate 
(arrowhead). C (x200), embryonal carcinoma sheets containing large cells with hyperchromatic nuclei 
(arrow), necrosis (center of the figure, arrowhead) are typical in embryonal carcinoma. H&E staining is 
used. 

A 

B C 
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5. Pathogenesis – Biology of malignant germ cell tumors 
 
5.1 Histology and Classification 

As indicated previously, GCTs can be classified based on various systems. 

The most frequently used are the nomenclature systems according to the British 

Classification and the WHO Classification [5]. The newer proposal (see Table 1 

above) based on biology and natural history of GCTs is gaining popularity [6], and 

is referred to by the World Health Organization [5], and has been used by  

American pathologists [7].  

Most testicular malignant GCTs in adults are type II tumors, above referred 

to as TGCTs, and only a small percentage are type III GCT, i.e. spermatocytic 

seminoma. Overall, about 40% of TGCTs are seminomas and 60% nonseminomas 

(all other histology than seminomas, with or without seminoma component) (WHO 

classification). Seminomas are homogenous tumors with typical morphology 

(Figure 4B), while nonseminomas are a heterogeneous group of tumors including 

embryonal carcinoma (undifferentiated nonseminoma, stem cell component, Figure 

4C), teratoma (somatic differentiation, Figure 5A), yolk sac tumor (Figure 5B) and 

choriocarcinoma (extra-embryonic differentiation, Figure 5C), as well as the germ 

cell lineage [89].   

Spermatocytic seminomas (type III GCTs) are, as indicated above, 

significantly less frequent than the classical testicular seminomas in the male 

Caucasian population, i.e. being about 0.2 vs. 4 per 100 000 respectively [5]. 

Spermatocytic seminoma shows distinctive clinicopathologic features and occurs in 

older men, in contrast to TGCT never arises in extratesticular sites and, with 

extremely rare exceptions, exhibits a benign course. Unlike other testicular tumors, 

it does not appear to be linked to cryptorchidism and does not share epidemiologic 

features with the usual forms of TGCTs [90]. Microscopically, the most distinctive 

feature is its cellular polymorphism, represented by three cell types (small, 

intermediate-sized and large) (Figure 5D). Recently, genome-wide expression 

profiling showed that spermatocytic seminomas are derived from spermatocytes, 

have a clearly specific gene expression compared to seminoma/dysgerminoma 

and a different pathogenesis with a DMRT1 (a male specific transcriptional 
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regulator) as a candidate gene [91]. A summary of the histological types of germ 

cell tumors and their relation to precursor lesions is given in Figure 6. 

 

 

Figure 5: A, teratoma example, consisting of cartilage (arrow), immature stroma, glands, and 
immature neuronal tissue (arrowhead) (x100). B, example of a Yolk sac tumor consisting of glands with 
cuboidal cells (x200). C, choriocarcinoma. Network of cytotrophoblastic cells (arrow) and 
syncytiothrophoblastic cells (arrowhead) (x400). D, spermatocytic seminoma. Mixture of numerous 
medium sized cells and scattered giant cells with prominent nucleoli (x400).  
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Figure 6: Summary of histological types of GCTs in the testis and their relation to precursor lesions. 
Both, seminomas and nonseminomas arise from CIS (carcinoma in situ). It is proposed that CIS 
develop from fetal germ cell, the gonocytes, which escape normal differentiation process and undergo 
malignant transformation. In contrast, spermatocytic seminoma develops from adult germ cells. YST: 
yolk sac tumor, ChC: choriocarcinoma. 
 

 

5.2 Chromosomal constitution 

TGCTs are highly aneuploid with specific and characteristic changes. The 

seminomas and CIS are hypertriploid and the nonseminomas hypotriploid [92-94]. 

The only recurrent structural imbalance is the gain of the short arm of chromosome 

12, mostly as isochromosomes [95, 96]. Most studies indicate that gain of 12p is 

progression related; it occurs when the CIS cells become independent of their 

interaction with Sertoli cells [95, 96]. It is interesting that human embryonic stem 

cell cultured for an extensive period of time also show this anomaly [97-99]. In spite 

of many attempts, there is no single 12p-target gene identified. A number of other 

genes have been suggested to be relevant, including KRAS2, NANOG, STELLAR, 

CCND2, EKI1, BCAT1, although the actual proof is lacking so far [100-108].  

The X chromosome is gained in the majority of tumors, for which a link with 

familial predisposition has been suggested. The presence of additional X 

chromosomes is relevant in the context of understanding the biology of TGCTs, 

including the Klinefelter syndrome patients, as well as patients with various forms 
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of DSD (see above). Interestingly, the supernumerical X chromosomes are 

inactivated in nonseminomas by methylation [109]. This is, like during normal 

embryogenesis, the result of the function of the non-(protein)-coding XIST gene. 

This unique phenomenon in males is correlated with hypomethylation of the 

promoter region, which can be used as molecular target for TGCTs in males [110, 

111].  

 

5.3 Epigenetic modifications 

In spite of a wealth of information about the genomic make up of TGCTs, 

increasing knowledge on the epigenetic constitution is evolving [112-121]. Targeted 

– as well as genome wide studies demonstrate that overall, the CIS and 

seminomas show a hypomethylated DNA status, in contrast to the various 

histological types of nonseminomas [75].  

Histone modification has also been identified as a significant regulatory 

element in specification of genes which will be hypermethylated upon differentiation 

from an undifferentiated stem cell. This is related to the histone H3 methylated at 

lysine 27 (H3K27) by polycomb proteins, which is a repressive mark, as well as the 

active mark methylated histone 3 at lysine 4 (H3K4) [122]. Interestingly, this was 

indeed found to be the case in cell lines derived from TGCTs, i.e., embryonal 

carcinoma, in which two additional repressive marks are identified. These are 

dimethylated histone 3 at lysine 9 (H3K9) and trimethylated H3K9, both associated 

with DNA hypermethylation in adult cancers. This is nicely fitting with the observed 

pattern of expression of the histone de-acetylase (HDAC) in these tumors [123].  

 

5.4  Expression of embryonal stem cell markers 

Transcription factor OCT3/4, encoding the POU5F1 protein, regulates whether 

embryonic stem cells will remain undifferentiated or start to differentiate [124-128]. 

Two specific variants of the protein encoding OCT3/4 are recognized, of which the 

A (or I) type is a nuclear protein and is related to pluripotency. The B (or II) variant 

is localized in the cytoplasm and is not related to regulation of pluripotency. 

Detection of OCT3/4 mRNA is not only hampered by the existence of two variants 

but also by the presence of a number of pseudogenes. This may result in false 
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positive RT-PCR observations [129-132]. OCT3/4, as detected by verified 

antibodies regarding specificity and sensitivity, is the most informative diagnostic 

marker for seminoma and embryonal carcinoma, as well as CIS and 

gonadoblastoma [133-135]. It remains to be clarified whether OCT3/4 can be 

considered as an oncogenic driver, as suggested in mice [136]. No chromosomal 

anomalies have been identified supporting this model so far. The specificity of 

OCT3/4 for type II GCTs is in accordance to the observation that absence of this 

gene is not influencing the adult stem cell properties in mouse [137]. Expression 

pattern of NANOG is similar to OCT3/4 [108, 138-141]. It has been suggested that 

the chromosomal localization of NANOG is of specific interest, being on the short 

arm of chromosome 12, which is always gained in these tumors (see above). 

However, it needs to be experimentally verified whether such a relationship exist.  

The third pluripotency-associated gene, SOX2, is expressed in embryonal 

carcinoma but not in seminoma and CIS. In contrast to OCT3/4 and NANOG, 

SOX2 is not specific for embryonic stem cells and their malignant counterpart, i.e., 

embryonal carcinoma. It is found in many different lineages of differentiation, 

however, always in the absence of OCT3/4 and NANOG [142, 143]. SOX2 is 

associated with OCT3/4 as a complex in the regulation of gene expression in 

embryonic stem cells, both mouse and human [144-148]. In fact, OCT3/4 levels are 

regulated by SOX2 [148]. Interestingly, while Sox2 is found in mouse PGCs, it is 

absent in the human counterparts, which illustrates species specificities in 

pluripotency regulation [149, 150].  

High throughput screening showed that SOX17 (and SOX15 to a lesser extent) 

is specifically expressed in seminoma and CIS, associated with OCT3/4, but not as 

such in the various types of nonseminoma [151]. Linking the genetic information to 

the expression data indicates that seminoma indeed shows specific gain of a 

region on chromosome 17, in which SOX17 is mapped to [152]. Interestingly, 

SOX17 is identified as a regulatory element to distinguish embryonic from adult 

hematopoietic stem cells [153, 154]. This observation opens a new field of 

experiments linking regulation of gene expression related to pluripotency in 

TGCTs, especially based on the use of the various cell lines representative for this 

cancer (see below).   
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5.5 Receptor tyrosine kinase c-KIT 

During normal germ cell development, the receptor tyrosine kinase c-KIT is 

expressed by PGCs and gonocytes [33, 155]. However, c-KIT is not restricted to 

germ cells, but is physiologically expressed in cells of the haematopoietic system 

and by mast cells, as well as by melanocytes and interstitial cells of Cajal [156]. c-

KIT is normally activated by its ligand stem cell factor (SCF) which upon binding 

induces dimerization of receptors, activation of the receptors intrinsic tyrosine 

kinase activity and phosphorylation of signal transduction molecules leading to 

downstream signaling [157]. The phosphorylated tyrosine residues provide docking 

sites for signaling proteins, which leads to activation of downstream pathways such 

as the MAPK pathway, the PI3-kinase pathway and the Jak-Stat pathways [157]. 

Multiple previous immunohistochemical studies showed that c-KIT is highly up-

regulated in CIS and is retained in seminomas but not expressed in non-

seminomas [158, 159]. In previous studies not discriminating between unilateral 

and bilateral TGCT, most mutations have so far been detected in exon 17 in 

seminomas, with varying frequencies of up to 40% [160-162]. Furthermore, it was 

shown by one study that bilateral as opposed to unilateral TGCTs are highly 

associated with activating c-KIT mutations [163]. The role of c-KIT in the 

development and progression of TGCTs is not clarified so far. 

 

5.6 Transcriptional factor AP-2gamma 

Transcription factor AP-2gamma belongs to a family of five closely related 

genes found to be expressed mostly during embryogenesis. Members of this family 

display a high sequence homology and share three characteristic domains, an N-

terminal transactivation domain, a central basic domain and a C-terminal 

dimerization domain. Basic and dimerization domain mediate DNA-binding as 

those transcription factors bind to various G/C-rich elements on the promoter 

regions of the different target genes [164, 165]. AP-2 proteins are expressed in 

many tissues during development and null mutants of the different factors show 

severe phenotypes and die during embryogenesis or shortly after birth as shown 

for AP-2alpha [166], AP-2beta [167] and AP-2gamma [168, 169]. Disrupting AP-

2gamma results in growth retardation of the embryo at E7.5 and death around E9.5 
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due to a failure of the trophectoderm cells to proliferate and form a proper labyrinth 

layer. As a consequence, gastrulation is severely impaired and the embryo dies of 

malnutrition [168, 169]. In the embryo, AP-2gamma expression has been described 

in a variety of tissues, including post migratory germ cells [170]. 

AP-2gamma was detected in mouse PGCs/gonocytes throughout 

embryogenesis and its functions were recently studied in the mouse model [171]. 

In a conditional mouse model, PGCs were specified but were lost around E8.0, 

causing a complete loss of germ cells in sterile animals, both males and females.  

 

5.7 Mutational status  

Various studies with the goal to identity pathogenetic mutations have been 

performed on TGCTs. These included a large number of targets, amongst others, 

NRAS, KRAS-2 and HRAS [172-177], and BCL10 [178, 179]. Although mutations 

have been identified, these seem to be limited in frequency, with the possible 

exceptions of c-KIT (see above), and more recently BRAF [180]. This latter proto-

oncogene has been shown to be mutated in a variety of cancers, including 

malignant melanoma.  

An overall low mutation frequency of mutations which is seen in TGCTs is 

rather exceptional in solid cancers [181, 182]. This is indeed not due to the pre-

selection of genes under investigation, but an overall phenomenon, as supported 

by the results of a high throughput investigation on the mutation status of the 

kinome [181, 182]. This specific biology of malignant germ cells might be related to 

the embryonic origin of TGCTs. In fact, embryonic stem cells have a unique 

mechanism by which one of the two DNA strands is kept protected against any 

form of mutations [183]. This protects the DNA from anomalies to be transmitted to 

the next generation. Therefore, the power of the mutation status analysis in TGCTs 

is limited in elucidating the involvement of various pathogenetic mechanisms and 

pathways. 
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5.8. Available cell lines  

Till recently, only cell lines representative for nonseminomas, i.p. embryonal 

carcinomas were available. These have been proven to be of value for many 

different studies. The most frequently used cell lines are NT2, Tera-1, 833KE, 

NCCIT, and 2102Ep. NCCIT originates from a primary extragonadal type II GCT, 

and lacks functional P53 [184, 185]. The TCam-2 en JKT-1 cell line had been 

proposed to be representative for seminoma [186-188]. The seminoma cell line 

would be of high interest for investigation of pathogenetic mechanisms related to 

the development of TGCTs, i.p. the transition from a seminomatous to a 

nonseminomatous phenotype. 

 

6. Therapy of malignant germ cell tumors 

Nonseminomas differ from seminomas in terms of their clinical and biologic 

behavior, and these differences are therapeutically relevant. Seminomas are 

exquisitely sensitive to radiation therapy (RT) while nonseminomas are more 

radiation-resistant. Unlike nonseminomas, seminomas have relatively indolent 

growth biology and a longer natural history. As a result, the median time to relapse 

is longer than with nonseminomas and late relapses are more common [189]. 

Cisplatin-based combination chemotherapy can cure patients with disseminated 

type II (T)GCTs, even in the context of widespread visceral metastases, highly 

elevated serum tumor markers, and other adverse prognostic features. According 

to the International Germ Cell Consensus Classification Group (IGCCCG), several 

prognostic factors for seminoma and nonseminomas have been identified. In fact, 

three prognostic groups are identified, being good -, intermediate and poor risk 

[190]. The latter only includes nonseminomas. For nonseminomas the factors are 

mediastinal primary side, high levels of AFP, LDH and beta-HCG and presence of 

nonpulmonary visceral metastasis (liver, bone, brain). The latter finding is also a 

predominant adverse factor for a seminoma. Integration of these factors produce 

the three mentioned groups with different 5-year survival rate: good prognosis with 

a survival rate of 91%, intermediate prognosis with 79% 5-year survival rate, and 

only for the nonseminoimas poor prognosis with a 48% survival rate [190]. 
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Staging of TGCTs define stage groupings from I to III and integrate the 

assessments of primary tumor, vascular invasion, invasive growth in epididymis, 

tunica albuginea and vaginalis, as well as rete testis, lymph node and distant 

metastasis, combined with serum tumor marker values for beta-HCG, AFP, and 

LDH [190, 191]. 

In patients with clinical stage I seminoma, an extremely high cure rate can be 

achieved with radical orchiectomy, whether followed by active surveillance, 

radiotherapy to para-aortic lymph nodes, or single agent carboplatin chemotherapy. 

In stage I nonseminoma, active surveillance, retroperitoneal lymph node dissection 

(RPLND), or an abbreviated course of adjuvant chemotherapy are all feasible 

options for appropriately selected patients. All three approaches are associated 

with a cure rate over 95% because of the ability to salvage patients who relapse 

[192].  

For patients with stage II nonseminoma and higher, men typically undergo 

RPLND, which may be followed by adjuvant chemotherapy if a substantial cancer 

burden is confirmed pathologically. In men with seminomas and retroperitoneal 

lymph nodes >5 cm in diameter at initial diagnosis are usually treated with 

cisplatin-based chemotherapy [193].  

Sensitivity to DNA-damaging agents of type II (T)GCTs is supposed to be a 

multifactorial mechanism and is related to the embryonic characteristics of these 

tumors. One of the mechanisms of chemotherapy sensitivity in ES cells is the lack 

the G1 arrest checkpoint due to cytoplasmatic CHK2 [183]. The apoptosis upon 

generation of DNA damage prevents transmission of defects to the ES progeny. In 

addition, ES cells have a different spectrum of mutations compared to somatic 

cells. In parallel to ES cells, TGCTs show an exceptionally low level of mutations of 

the receptor kinases [181, 194, 195]. These findings suggest a different pattern of 

DNA damage repair in embryonic versus adult cells. Loss of these embryonic 

characteristics upon the progression of nonseminomatous type II (T)GCTs is 

inducing resistance against chemotherapy and radiation, as found in the majority of 

solid cancers. 
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 7. Aims and outline of this thesis 

 

7.1 Aims 

Overall germ cell tumors comprise a heterogeneous group of benign and 

malignant tumors. Based on a specific set of biological parameters, five types of 

GCTs can be distinghuished. Among these, the seminomatous and non-

seminomatous GCTs in males and females are designated as type II GCTs, and 

specifically as TGCTs of the testis. This is in fact the most frequent type of solid 

cancer in Caucasian males between 20 and 45 years of age, with a rising 

incidence. In spite of various studies performed, there is a significant lack in the 

understanding of the pathogenesis of TGCTs. Similarities between normal 

embryogenesis and TGCTs are obvious. This is likely due to the model that the 

precursor of TGCTs, being CIS, is an embryonic germ, cell, either a PGC or 

gonocyte, which escapes the physiological process of maturation and 

differentiation, and consequently is at risk for transformation. Human fetal 

development and germ cell differentiation differs from the mouse, but studies in 

humans are rare. Thus, characterization and further understanding of human fetal 

germ cell development, specifically on the role of proteins involved in germ cell 

specification and maturation will further elucidate the mechanisms involved in the 

formation of CIS. Therefore, a number of studies were undertaken to shed light on 

the involvement of a selection of oncofetal genes/proteins in normal and malignant 

germ cells, of which no or limited information was available, c-KIT, AP-2gamma, 

BLIMP1, PRMT5, histone H2A and H4 dimethylation. Both immunohistochemical 

studies as well as mutation analyses (c-KIT) were performed on a defined series of 

embryonic male gonads of various developmental ages and representative cases 

of the various histological type of type II GCTs, predominantly TGCTs, including 

the precursor lesion CIS. Furthermore, one of the aims of this work was to 

establish a seminoma model to perform function studies examining the role of the 

genes mentioned above. 
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7.2 Outline 

 Chapter 1 gives a general introduction on TGCTs. 

 In Chapter 2 the special expression pattern of a number of oncofetal 

genes were investigated in a series of male fetal gonads from the week 12 to the 

newborn period. The results indicate that two subtypes of fetal germ cells can be 

identified. The first category are germ cells that morphologically resemble 

gonocytes, and are positive for OCT3/4, c-KIT, M2A and AP2gamma. The number 

of this specific variant of germ cells increased till week 18/19, and subsequently 

decreased. After week 25, the major population was pre-spermatogonia, positive 

for MAGE-A4 and negative for the others. 

 In Chapter 3 it is demonstrated that AP-2gamma is expressed in 

gonocytes between week 12 and 37, while it was downregulated upon further 

maturation of the germ cells. In addition, AP2gamma was found to be expressed in 

all CIS, and seminomatous tumors, independent of stage and anatomical 

localization. The nonseminomatous histologies embryonal carcinomas and 

choriocarcinomas showed a heterogeneous pattern, while the others as well as 

normal testes were negative.   

  In Chapter 4 the expression pattern of BLIMP1 and PRMT5 as well as the 

modification of histone H2A and H4 arginine dimethylation was investigated. Both, 

male gonocytes as well as CIS and most seminomas showed a positive staining, 

which was less in the embryonal carcinomas and differentiated derivatives.   

 In Chapter 5 the occurrence of activating mutations of c-KIT tyrosine 

kinase receptor was studied in a series of bilateral and unilateral TGCTs. It 

demonstrated the higher incidence of this mutation in the bilateral tumors. In 

addition, downregulation of protein expression in seminomas compared to their 

precursor CIS was observed.  

 In Chapter 6 two supposed TGCT-derived cell lines were investigated. The 

expression profiling analysis showed that TCam-2 has indeed characteristics of 

seminomas, being therefore the first seminoma cell line. However, the TGCT-origin 

of the JKT1 cell line was questioned.  
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 In Chapter 7 the observations made in the different chapters are 

summarized and discussed in detail, and integrated into the current knowledge on 

the pathobiology of TGCTs.  
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Abstract: 

 

The aim of the present study was to examine fetal male germ cells for expression 

of proteins associated with differentiation and maturation and to compare them with 

morphologically defined subpopulations. Testes of 61 fetuses from week 12 of 

gestation to the newborn period were selected. Immunohistochemistry was 

performed using antibodies to proteins associated with differentiation of germ cells 

(c-KIT, AP-2) or pluripotency (OCT3/4), oncofetal protein M2A and spermatogonial 

marker MAGE-A4. Two subtypes of fetal germ cells were detected by quantification 

and immunohistochemistry. Nearly all germ cells with morphological criteria of 

gonocytes and intermediate cells co-expressed OCT3/4, c-KIT, M2A and AP-2. 

Starting from week 12, their number increased up to week 18/19 and then declined 

continuously during further development. After week 25, pre-spermatogonia were 

predominant and expressed MAGE-A4 selectively. Fetal male germ cells are 

comprised of two major groups with distinct immunohistochemical phenotypes. 

Germ cells that are predominantly found before week 25 of gestation co-express 

oncofetal proteins OCT3/4, c-KIT, M2A and AP-2gamma. After week 25, most 

germ cells have lost their pluripotent potential and acquire a spermatogonial 

phenotype defined by expression of MAGE-A4. 
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Introduction: 

 

Primordial germ cells (PGC) are pluripotent cells that migrate to the genital ridge 

where they are called gonocytes in male and oogonia in female gonads. In female 

and male murine embryos, germ cells then first undergo several rounds of mitosis 

before they enter a pre-meiotic stage by 12.5 days post-conception by up-

regulation of meiotic genes such as Scp3 (Di Carlo et al., 2000). In male mice, 

block of meiosis is accompanied by Sertoli cell differentiation and the occurrence of 

pre-spermatogonia (McLaren, 2003). Unfortunately, the maturation process of fetal 

germ cells in humans is not fully understood although previous studies indicate 

that, in contrast to rodents, human fetal germ cells are non-homogeneous in terms 

of morphology and marker expression (Fukuda et al., 1975; Wartenberg, 1976; 

Franke et al., 2004; Gaskell et al., 2004). For example, from an examination of 25 

embryonic and fetal testes, Gaskell et al. (2004) detected three different germ cell 

populations with different combinations of immunohistochemical markers.  

 

Detailed knowledge of the regular differentiation process is the prerequisite for 

identifying pathological changes in germ cell differentiation. For example, 

developmentally arrested fetal germ cells are supposed to be a source of 

carcinoma in situ or intratubular germ cell neoplasia unclassified (IGCNU) 

(Skakkebaek et al., 1987). The hypothesis of the embryonic/fetal origin of 

neoplastic germ cells has been substantiated mainly by phenotypic similarities 

between neoplastic and fetal germ cells (Honecker et al., 2004a) as well as by 

genomic studies (Almstrup et al., 2004; Hoei-Hansen et al., 2004) and 

epidemiological data (Moller and Skakkebaek, 1999; Jacobsen et al., 2000). In fact, 

previously published studies indicate that fetal germ cells express a number of 

markers also found in neoplastic germ cells including placental alkaline 

phosphatase (PLAP), glycosylated monomeric sialoglycoprotein M2A and other 

proteins that are believed to be involved in the maturation process of fetal germ 

cells including transcription factors OCT3/4 and AP-2 and the receptor tyrosine 

kinase c-KIT (Franke et al., 2004; Hoei-Hansen et al., 2004b; Honecker et al., 

2004b; Rajpert-De Meyts et al., 2004). Detailed studies of the expression of these 
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markers during fetal development have not been done until now; thus the aim of 

the present work was to examine the physiological maturation process of fetal 

germ cells during the second and third gestational trimesters by detection of c-KIT, 

OCT3/4, MAGE-A4, AP-2 and the oncofetal marker M2A. Therefore, we prepared 

tissue arrays from 61 testes of normally developed fetuses from gestational week 

12 to the full-term neonate. Sertoli cells were detected by antibodies to inhibin  and 

cytokeratin 18 (CK18). Other proteins were selected based on their involvement in 

regulation of the cell cycle (Ki-67) or their association with Sertoli–germ cell 

interaction and differentiation including neural cell adhesion molecule (NCAM) 

(Orth et al., 2000), E-cadherin (Di Carlo and De Felici, 2000; Honecker et al., 

2004b), connexin43 (Perez-Armendariz et al., 2001) and androgen receptor (Zhou 

et al., 1996; Sharpe et al., 2003).  

 

Because the expression of MAGE-A4 in IGCNU has been controversial in previous 

reports (Aubry et al., 2001) and in order to demonstrate whether melanoma-

associated antigen (MAGE-A4) and other oncofetal proteins are co-localized in 

neoplastic germ cells of IGCNU, we also analysed 6 IGCNU samples from patients 

with invasive germ cell tumours.  
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Material and Methods: 

 

Tissue samples 

Fetal tissue stored at room temperature was selected from the archives of the 

Section of Pediatric Pathology, Department of Pathology, University of Bonn 

Medical Center. Use of the tissue for scientific purposes was approved by an 

institutional ethics committee. The tissue samples included fetuses from weeks 12 

(n = 2), 13 (n = 3), 14 (n = 3), 15 (n = 3), 16 (n = 4), 17 (n = 3), 18 (n = 3), 19 (n = 

3), 20 (n = 3), 21 (n = 4), 22 (n = 2), 23 (n = 3), 24 (n = 2), 25 (n = 3), 26 (n = 2), 27 

(n = 2), 32 (n = 2), 33 (n = 3), 34 (n = 3), 35 (n = 2), 36 (n = 2), 37 (n = 3) of 

pregnancy and one from a neonate that had died within 24 h after birth (n = 61). 

None of the fetuses had signs of maceration or autolysis at autopsy and sufficient 

tissue preservation was confirmed by haematoxylin–eosin staining. Causes of 

death were spontaneous abortion (mainly amnion infection or placental 

insufficiency), neonatal death or induced legal terminations. All terminations were 

performed in the Gynecology and Obstetric Clinics, University of Bonn. The 

developmental age of the fetuses was determined by the date of the last menstrual 

bleeding. Weight and length measurements evaluated at the autopsy were used to 

assure proper gestational development.  

 

In addition, six cases of IGCNU from patients with different germ cell tumours (one 

seminoma, three embryonal carcinomas, one yolk sac tumour and one 

choriocarcinoma) were retrieved from the tissue archives of the Department of 

Pathology, University of Bonn Medical Center. The ages of the patients were 33, 

22, 20, 18, 17 and 19 years respectively.  

 

Immunohistochemical staining 

Testes were dissected, fixed in 4% phosphate-buffered formalin for 2 days at room 

temperature and processed in paraffin wax. Dewaxed, paraffin-embedded 4 µm 

thick tissue sections were microwave-pretreated in Tris–EDTA buffer (10 mmol/l 

tris base, 1 mmol/l EDTA solution, 0.05% Tween 20, pH 8.0). Primary antibodies to 

the following proteins were used: MAGE-A4, M2A-antigen, c-KIT, OCT3/4, AP-
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2gamma, inhibin, androgen receptor, connexin43, E-cadherin, NCAM, cytokeratin 

18 and Ki-67. Details of antibodies and the dilutions for immunohistochemistry are 

given in Table I. Single immunohistochemistry was performed using the Dako 

EnVision-AEC Kit and manufacturer’s protocol (Dako, Hamburg, Germany). Briefly, 

endogenous peroxidase was blocked for 5 min in 0.03% H2O2 (diluted in distilled 

water). Sections washed in Tris-buffered saline (TBS; 0.05 mol/l Tris and 0.85% 

NaCl, pH 7.6) were incubated with primary antibodies overnight at 4°C. Thereafter, 

a horseradish peroxidase (HRP)-labelled polymer conjugated with a secondary 

antibody was applied (Dako EnVision-AEC Kit). The staining was visualized with 3-

amino-9-ethyl-carbazole and counterstained with haematoxylin. Negative controls 

were performed using buffer instead of the primary antibody and resulted in 

complete absence of signal. Additional negative controls were performed by 

incubation with pre-immune serum from each animal species (rabbit, mouse, goat) 

instead of a primary antibody and also resulted in complete absence of an 

immunohistochemical signal.  

 

Tissue array preparation, assessment of immunohistochemical staining and 

image capture 

From each case, three 1.0 mm cores of testicular tissue were randomly taken to 

form a 20x30x10 mm recipient paraffin block. A total of 183 cores were taken and 

placed in two array blocks in ascending order of gestational age. Semiquantitative 

assessment of the immunohistochemical staining with antibodies to M2A-antigen, 

c-KIT, OCT3/4, AP-2gamma, and Ki-67 was performed by counting the positively 

stained germ cells in 5 high power fields (HPF) in each case (area of a single HPF 

0.125 mm2, objective for HPF x40). The total number of germ cells was obtained 

from counting in slides stained with inhibin alpha, which marked Sertoli cells and 

omitted germ cells. Whole tissues from one testis from each of gestational weeks 

14, 19, 22, 27, 33 and 37 and from the neonate were, in addition, selected for 

immunohistochemical detection of MAGE-A4, OCT3/4, M2A, AP-2�, c-KIT and Ki-

67. This was done to ensure that results obtained from tissue microarrays are 

representative of the whole testis. For this purpose, 15 randomly selected high 

power fields were counted in stained whole tissue sections. The counting was done 
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independently by two different observers (K.P. and H.Z.). Non-immunofluorescence 

images were recorded using a Leica DMR photomicroscope (Leica, Bensheim, 

Germany). Fluorescence images were photographed using a Zeiss LSM Axiovert 

2.05 microscope (Zeiss, Oberkochen, Germany).  

  

Table 1: Antibodies used in the present study 

Antigen Origin Code 

 

Dilution Source 

c-KIT Rabbit A4502 1:100 DAKO, Hamburg, Germany 

OCT3/4 Goat sc-8629 1:1000 Santa Cruz Biotechnology, CA, USA 

AP-2 Rabbit sc-8977 1:200 Santa Cruz Biotechnology 

MAGE-A4 Mouse
MAGE-

A4 
1:100 Spagnoli, Basel, Switzerland 

M2A Mouse D2-40 1:200 Abcam, Cambrigde, UK 

Cytokeratin 18 Mouse DC-10 1:100 DAKO 

Inhibin  Mouse R1 1:100 DAKO 

NCAM (CD56) Mouse 1B6 1:50 
Novocastra Laboratories, Newcastle, 

UK 

Androgen 

Receptor 
Mouse AR441 1:50 DAKO 

E-Cadherin Mouse Sc-8426 1:100 Santa Cruz Biotechnology 

Connexin43 Mouse Cx43 1:100 Biotrend, Cologne, Germany 

Ki-67 Mouse Mib-1 1:100 Dianova, Hamburg, Germany 
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Results 

The immunohistochemical profile of germ cells was studied in normal testes of 60 

fetuses and one neonate. The summary of semiquantitative assessment for each 

staining using antibodies to M2A, c-KIT, AP-2, OCT3/4, MAGE-A4 and Ki-67, the 

absolute numbers of germ cells and the calculated ratio of germ cells to Sertoli 

cells are shown in Table 2. Illustrations of representative staining obtained from 

single and double staining are depicted in Figure 1, Figure 2 and Figure 4, and 

those from double staining in Figure 3. Figure 5 shows the relative distribution of 

fetal germ cells expressing M2A, c-KIT, AP-2, OCT3/4 and MAGE-A4 during the 

second and third trimester. 

 

Counting of germ cells and proliferation index 

In the testes from the term neonate, germ cells were clearly distinguishable from 

Sertoli cells using H&E staining, since germ cells at this stage have large-sized and 

round nuclei compared to the cylindrical shape of Sertoli cells. In contrast, during 

the second and the early third trimester, germ cells varied significantly with respect 

to size and nuclear morphology. Therefore, immunohistochemistry with an antibody 

to inhibin  was employed to distinguish germ cells from Sertoli cells reliably. 

Similar gestational weeks were grouped for calculations (Table 2). The number of 

germ cells from each case was counted in 5 independent high power fields. In 

parallel, the number of Sertoli cells was determined and the ratio of germ to Sertoli 

cells was calculated (Table 2). These investigations were done mainly to estimate 

the distribution of germ cells positive for selected markers MAGE-A4, M2A, c-KIT, 

AP-2, Ki-67 and OCT3/4 in relation to all germ cells at the respective 

developmental week.  

As shown in Table 2, at the 12th/13th week, an average of 46 germ cells per HPF 

was counted. The ratio of germ to Sertoli cells was 1:6.5 and the proliferation 

marker Ki-67 was expressed in 17% of germ cells. At the 18th/19th gestational 

week, an increase of germ cells up to 70 per HPF was accompanied by high 

expression of the proliferation marker Ki-67 (21%) and a higher ratio of germ cells 

to Sertoli cells (1:5). Thereafter, the number of germ cells per HPF decreased 

again and  around the 36th gestational week, 43 germ cells per HPF were counted. 
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At the same time, the ratio of germ to Sertoli cells decreased to 1:12 (week 

37/neonate) and again 21% of germ cells were positive for Ki-67.  

 

Table 2: Numbers of germ cells positive for M2A, c-KIT, AP-2, OCT3/4, 

MAGE-A4 and Ki-67 in fetal and newborn testes in relation to the total 

number of germ cells per high power field.   

 

 Gestational age (weeks) 

 
12/13 14/15 16/17 18/19 20/21 22/23 24/25 26/27 32/33 34/35 

36-

nb 

N. of cases 
5 6 7 6 7 5 5 4 5 5 6 

Total No 
germ cells 
(per HPF) 

465 513 606 705 607 553 534 522 533 484 435 

GC/SC 
ratio 

1:6.5 1:6 1:6 1:5 1:6 1:7 1:7 1:7 1:8 
1:11.

5 
1:12 

Ki-67 82 
17% 

102 
18% 

93 
15% 

151 
21% 

71 
12% 

62 
11% 

71 
13% 

101 
19% 

93 
17% 

112 
23% 

92 
21% 

M2A 423 
91% 

462 
90% 

483 
80% 

675 
96% 

413 
68% 

337 
60% 

275 
51% 

124 
23% 

51 
9% 

61 
12% 

31 
7% 

c-KIT 408 
87% 

425 
82% 

466 
77% 

655 
88% 

364 
60% 

348 
58% 

224 
41% 

101 
19% 

31 
6% 

32 
6% 

21 
5% 

AP-2 352 
76% 

384 
74% 

392 
65% 

585 
82% 

338 
55% 

306 
54% 

244 
45% 

95 
17% 

11 
2% 

10 
2% 

0 
0% 

OCT3/4 342 
74% 

367 
71% 

415 
68% 

555 
78% 

326 
53% 

284 
51% 

205 
38% 

81 
15% 

0 
0% 

12 
2% 

0 
0% 

MAGE-A4 23 
4% 

62 
11% 

81 
13% 

91 
13% 

163 
27% 

201 
36% 

264 
50% 

355 
67% 

402 
75% 

385 
79% 

404 
93% 

Average numbers and standard deviation were calculated from counting of positive cells in 5 
independent high power magnification fields (x40, field of 0.125mm2) Total number of germ cells was 
defined as inhibin  negative cells per HPF, calculated as an average number from 5 HPF. Percentages 
result from relation of average number of the respective marker) and total number for each gestational 
week GC/SC ratio results from relation of total germ cells (GC) to Sertoli cells (SC) per HPF  
nb newborn 



Spatial expression of germ cell markers during maturation of human fetal male germ cells 
 

 

 

 

56

Immunohistochemical detection of c-KIT, M2A, AP-2, OCT3/4 and MAGE-A4 

in single staining 

Immunohistochemistry with c-KIT and M2A antibodies showed the expected 

membranous staining of germ cells. MAGE-A4 was expressed in the cytoplasm of 

germ cells. Antibodies to OCT3/4 and AP-2 produced distinct and strong nuclear 

staining in germ cells. The number of germ cells expressing each of the proteins 

was estimated from single-stained immunohistochemical slides. The average value 

in 5 high power fields was calculated and divided by the absolute number of germ 

cells from the same gestational period (Table 2, Figure 5).  

As seen in Table 2 and Figure 5, roughly equal numbers of fetal germ cells 

expressed M2A, c-KIT, OCT3/4 and AP-2. Around the 12th/13th week, most germ 

cells detected were positive for M2A (91%), c-KIT (87%), AP-2 (76%) and OCT3/4 

(74%). The number of positive germ cells increased further up to the 18th/19th 

weeks of gestation (M2A 96%; c-KIT 88%; AP-2 82%; OCT3/4 78%) and began to 

decrease gradually after the 19th week. For example, around the 24th week, the 

number of germ cells expressing c-KIT declined to 22/53 (41%) and decreased 

further at the 35th gestational week (2/43, 5%). During the last weeks of the third 

trimester, expression of M2A, c-KIT, OCT3/4, AP-2 was found only in loose 

apoptotic germ cells in the lumen of the tubules. In contrast to the decreasing 

number of germ cells positive for M2A, c-KIT, OCT3/4, and AP-2, a continuously 

increasing number of MAGE-A4-positive cells was observed. For example, at the 

12th/13th week, only a few germ cells expressed MAGE-A4 (2/46, 4%). MAGE-A4 

expression increased continuously during further development, reached 50% at 

week 24 and 93% in the testis of the neonate.  

To confirm the results obtained from immunohistochemical staining of tissue 

arrays, whole testes from the 14th, 19th, 22nd, 27th, 33rd and 37th week and from a 

neonate were stained with antibodies to OCT3/4, M2A, c-KIT, MAGE-A4, Ap-2 

and Ki-67. The numbers of positive germ cells assessed in whole testes were 

identical with the results obtained from tissue arrays. 
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Figure 1: Immunohistochemical analyses of germ cells at the 20th week of 

gestation 

 

(A): Inhibin  positive Sertoli cells strongly contrast to negative germ cells (arrow) (weakly stained cells 
between tubules are Leydig cells). (B-D) Germ cells morphologically typical of gonocytes stained by 
antibodies to c-KIT (B), OCT4 (C, arrow) and M2A (D). (E) Intermediate germ cells also stained by M2A 
antibody. (F+G) The spermatogonial marker MAGE-A4 was expressed only in basally located pre-
spermatogonia but not in intermediate cells (arrow in G). (H) In co-localization studies, MAGE-A4 
(brown) and M2A (red) were never co-expressed in germ cells. (A-E) and (G-H) 20th gestational week, 
(F) 25th gestational week. Scale bars: (A) = 50µm, (B-E, H) = 10µm, (F,G) = 20µm. 
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Histological and immunohistochemical correlation analyses and co-

expression studies of c-KIT, M2A, AP-2, OCT3/4, Ki-67 and MAGE-A4 

Expression of the markers described above was correlated with conventionally 

defined types of germ cells as established by Fukuda and Hedinger (Fukuda et al., 

1975). We found that expression of M2A, AP-2gamma, c-KIT and OCT3/4 was 

mainly associated with gonocytes, which were identified by their round central 

nuclei, high nuclear to cytoplasmic ratio and often prominent nucleoli (Fig. 1A-D). 

All intermediate cells histologically defined by oval shape, enlarged cytoplasm and 

a round but slightly excentric nucleus were also positive for these markers (Fig. 

1E). Gonocytes and intermediate cells were frequently located in the outer or 

middle layer of the tubule. In contrast, germ cells corresponding to pre-

spermatogonia (Fukuda et al., 1975) expressed MAGE-A only (Fig. 1F-H, Figure 2-

3).  

Co-localization studies showed that most gonocytes and intermediate cells co-

expressed M2A, c-KIT, AP-2gamma and OCT3/4 but not MAGE-A4 at every stage 

of testicular development. In particular, this co-expression was confirmed by 

immunohistochemistry using antibody pairs c-KIT and OCT3/4; M2A and c-KIT; c-

KIT and AP-2, M2A and MAGE-A4, c-KIT and MAGE-A4, AP-2 and MAGE-A4, 

OCT3/4 and MAGE-A4 and confirmed by immunofluorescence using antibody pairs 

c-KIT and M2A (Fig. 2A, Fig. 3A/B). However, very few intermediate cells 

coexpressed also MAGE-A4 (Fig. 2B, inset). We also observed few germ cells that 

were positive for c-KIT or M2A but negative for AP-2gamma and OCT3/4. Some of 

these cells had the appearance of typical gonocytes, but others had the form of 

intermediate cells. Furthermore, through examination of the antibodies used in our 

study, we found that M2A staining was extremely robust to different staining 

conditions and tissue preservation. Therefore, the highest yield of positively stained 

gonocytes and intermediate cells was obtained from staining with M2A antibody 

(compare Table 2, Figure 5). 

In contrast, all MAGE-A4-positive pre-spermatogonia did not express markers 

found in gonocytes/intermediate cells (c-KIT, M2A, AP-2 and OCT3/4) (Fig. 2B, 

Fig. 3C/D). In the fetal testes from the second trimester, MAGE-A4 positive germ 

cells were mostly located at the basement membrane and less frequently in the 
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inner tubular layer. At the end of the third trimester and in the neonate, MAGE-A4-

positive germ cells were found within the tubules in basal location.  
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Figure 2: Co-expression analysis of germ cells 

 
(A) Almost all of the germ cells at the 17th week of pregnancy co-expressed c-KIT (red, membranous), 
AP-2gamma (brown, nuclear) and OCT3/4 (brown, nuclear, inset). (B) At the 22nd gestational week, 
germ cells phenotypically corresponded to pre-spermatogonia (MAGE-A4-positive, brown) and 
gonocytes (c-KIT-positive, red). Very few intermediate cells co-expressed MAGE-A4 and c-KIT (arrow in 
inset). Scale bars (A-B) = 50µm. 
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Co-localization studies with antibodies to Ki-67 and c-KIT revealed that most cells 

positive for Ki-67 expressed c-KIT on their surface. However, some MAGE-A4 

positive germ cells were also positive for Ki-67 in their nucleus (not shown).  

 

Figure 3: Co-expression analysis of germ cells by immunofluorescence 
 
 

 

 
(A-B). Immunofluorescence visualized co-expression of M2A (A) and c-KIT (B) within the same 
population of germ cells (arrow). (C-D) MAGE-A4 (green staining) was expressed in germ cells in the 
tubule periphery and did not cross-react with gonocytes positive for M2A (red staining, C) and c-KIT (red 
staining, D). 25th gestational week. Scale bars (A-C) = 50µm, (D) = 20µm.  
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In addition, double staining of 6 adult testes with normal spermatogenesis and 

IGCNU was performed using antibodies to c-KIT and MAGE-A4, M2A and MAGE-

A4. This was done to address the issue of whether neoplastic germ cells express 

markers of pre-spermatogonia. In each case, normal spermatogonia were 

consistently positive for MAGE-A4. In contrast, no staining could be demostrated in 

neoplastic germ cells, which were marked by c-KIT and M2A (Fig. 4).  

 

Immunohistochemical detection of Ki-67, E-cadherin, NCAM (CD56), 

cytokeratin 18, connexin 43 and androgen receptor in fetal testes 

No expression of E-cadherin or androgen receptor was found in fetal testicular 

cords. Diffuse cytoplasmic staining for connexin 43 was observed in Leydig cells at 

all gestational weeks examined but not in fetal testicular cords. NCAM and 

cytokeratin 18 expression was present in Sertoli cells in the testis in weeks 12 to 19 

but not in later stages of testicular development (data not shown). 

 

Figure 4 

 
 
Co-localization study of an adult testis with normal tubules (double arrowhead) and intratubular germ 
cell neoplasia (IGCNU, arrow) using antibodies against MAGE-A4 (red) and M2A (brown). Scale bar 
50µm. 
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Figure 5 

 

 
 
Distribution of germ cells per high power field (HPF): germ cells expressing M2A, c-KIT, AP-2, OCT3/4, 
and MAGE-A4 in comparison with total number of germ cells during the second and third trimester of 
pregnancy. The Y-axis gives the average numbers of germ cells calculated from counting positive cells 
in 5 independent high power magnification fields (HPF), the X-axis the gestational week (nb newborn). 
Standard deviations were given in table 2. 

0

10

20

30

40

50

60

70

80

12/13 14/15 16/17 18/19 20/21 22/23 24/25 2/27 32/33 34/35 36/n.b. 

 

 M2A 

c-KIT AP-2gamma 
OCT3/4 MAGE-A4 

Week of pregnancy 

Number per HPF 



Spatial expression of germ cell markers during maturation of human fetal male germ cells 
 

 

 

 

64

Discussion 

The aim of the present study was to examine the expression of proteins associated 

with differentiation and maturation of germ cells in human fetal testes. We detected 

oncofetal markers including transcription factors OCT3/4 and AP-2, stem cell 

factor receptor c-KIT and antigen M2A in fetal male germ cells predominantly 

between the 12th and 26th gestational weeks. These results are in accordance with 

previous studies, which examined expression of respective markers during fetal 

development in normal male gonads (Aubry et al., 2001; Franke et al., 2004; Hoei-

Hansen et al., 2004; Honecker et al., 2004; Jorgensen et al., 1995; Rajpert-De 

Meyts et al., 2004; Robinson et al., 2001). Furthermore, we found that two 

populations of fetal germ cells exist during the second and third trimester. One of 

these populations is comprised of germ cells consisting of gonocytes and 

intermediate cells, according to morphological characteristics established by 

Fukuda, and co-express c-KIT, M2A, OCT3/4 and AP-2 (Fukuda et al., 1975). The 

second population of germ cells matches the morphological criteria of pre-

spermatogonia (Fukuda et al., 1975) and expresses melanoma associated antigen 

MAGE-A4, which is a specific marker for normal premeiotic germ cells (Aubry et 

al., 2001). 

 

Our findings partially confirm the recent qualitative study published by Gaskell, who 

detected distinct expression of OCT3/4 together with c-KIT in a gonocytic 

population and MAGE-A4 in the population of pre-spermatogonia (Gaskell et al., 

2004). Gaskell also proposed the existence of a third germ cell population with the 

morphology of intermediate cells, which is devoid of c-KIT and MAGE-A4 

expression. A similar third group was not found in our series. Differences between 

our study and previous reports might be the result of different tissue fixation (Bouin 

fluid versus formalin), different antigen retrieval techniques and application of 

highly sensitive immunohistochemical detection method in the present study.  

According to our results, all intermediate germ cells belong to the 

immunohistochemical group with the expression of c-KIT, AP-2, OCT3/4, and 

M2A. However, very few intermediate cells showed also expression of MAGE-A4. 

We believe that they represent a transition stage from gonocytes to pre-
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spermatogonia. Furthermore, compared to other markers used (c-KIT, AP-2, 

OCT3/4), D2-40 antibody always resulted in sensitive and distinct staining 

independent of fixation artefacts or autolysis. We believe that the robustness of D2-

40 was also the reason why slightly more germ cells were positive for M2A 

compared to c-KIT, AP-2 and OCT3/4 in our study (Figure 5, Table 2).  

 

Furthermore, we found that the number of germ cells co-expressing oncofetal 

markers c-KIT, M2A, AP-2gamma and OCT3/4 varied significantly depending on 

the developmental stage. In particular, their expression was strongly increased in 

the 18th/19th week (Figure 5). We believe that this peak reflects a burst of 

proliferation activity of gonocytes as we found an increase in both Ki-67 expression 

and the overall germ cell number, while there was a transient decrease in the ratio 

of Sertoli cells to germ cells at this point of development. In general, the number of 

gonocytes and intermediate cells decreased continuously during the second and 

third trimester, while the number of MAGE-A4 positive germ cells increased to the 

same degree. The differentiation process obviously progressed after the 25th week, 

when over 50% of germ cells expressed MAGE-A4 (Figure 5).  

 

Understanding the process of pre-spermatogenesis and the role of proteins 

involved in germ cell differentiation may help to elucidate the pathogenesis of 

IGCNU and germ cell tumors as it is believed that malignant transformation of germ 

cells occurs in early fetal life (Rajpert-De Meyts et al., 2004; Skakkebaek et al., 

1987). Expression of transcription factor Ap-2 has recently been detected in 

IGCNU and various germ cell tumors (Hoei-Hansen et al., 2004; Pauls et al., 

2005). Its cellular functions, particularly in germ cells, are not known in detail yet. 

Mice overexpressing AP-2 in the mammary gland exhibited hyperproliferation and 

impaired differentiation of lactiferous ductules, suggesting a role of Ap-2 in the 

proliferation and maintenance of an undifferentiated state (Jager et al., 2003). 

Receptor tyrosine kinase c-KIT is crucial for germ cell migration, survival and 

proliferation in rodents and it is likely to be of the same importance in humans 

(Robinson et al., 2001; Yamamoto et al., 1993; Yasuda et al., 1993). KIT has been 

described as a target gene of AP-2 transcription factors (Yamamoto et al., 1993; 
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Yasuda et al., 1993). Thus, prolonged AP-2gamma expression and permanent 

activation of c-KIT might have effects upon malignant transformation by an 

increase in the survival of immature germ cells and arrest of germ cell 

differentiation. Another potential transforming mechanism involves OCT3/4, which 

is a POU-domain class 5 transcription factor and one of the candidate regulators in 

pluripotent and germline cells (Niwa et al., 2000). Disturbed regulation of OCT3/4 

may also cause arrest of gonocytes at the pluripotent stage, consequently 

providing the basis for malignant germ cell transformation. We do not know the real 

biological pathway of the malignant transformation of germ cells, but we show here 

that putative factors involved in this process including OCT3/4, AP-2 and c-KIT 

are strictly regulated in fetal germ cells. All of them are co-expressed during fetal 

development in the same germ cell population with morphological characteristics of 

gonocytes or intermediate cells. Before germ cells transit to pre-spermatogonia, as 

marked by expression of MAGE-A4, downregulation of OCT3/4, AP-2 and c-KIT 

occurs. We further show that fetal pre-spermatogonia are phenotypically close to 

mature spermatogonia because they share the expression of MAGE-A4, which has 

been found in pre-meiotic spermatogonia of adults in the present and in previous 

studies (Yakirevich et al., 2003). In contrast, neoplastic germ cells of IGCNU were 

devoid of MAGE-A4 in our series. In conclusion, our findings further strengthen the 

hypothesis of the embryonic/fetal origin of germ cell neoplasia, although the latter 

have some phenotypic overlap with adult germ cells as has been documented by 

previous studies using VASA gene product and Y-encoded testis-specific protein 

(TSPY) (Arnemann et al., 1991; Castrillon et al., 2000; Honecker et al., 2004; 

Zeeman et al., 2002).  

 

At least in the rodent testes, gonocytal maturation is associated with adherence to 

Sertoli cells and relocation to the basement membrane via intermediate filaments 

and connexin 43 (Nagano et al., 2000; Orth et al., 2000; Perez-Armendariz et al., 

2001). In our series, we found no expression of connexin 43 and E-cadherin in fetal 

tubules. Neural cell adhesion molecule NCAM was expressed on the cell 

membrane of Sertoli cells in parallel to CK18 and both proteins were 

downregulated after the 19th gestational week, reflecting the progress of Sertoli cell 
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differentiation (Sharpe et al., 2003). Similar to the results obtained from mouse 

testes (Nagano et al., 2000), almost all of the pre-spermatogonia in our series were 

attached to the basement membrane of the tubules. In contrast, germ cells 

expressing OCT3/4, c-KIT or AP-2 at the late stages of pregnancy were 

degenerated and located in the lumen of the tubules. This finding supports the idea 

that relocation of gonocytes is essential for their survival (Nagano et al., 2000). 

However, the factors and pathways involved in human germ cell differentiation 

remain largely unknown and further exploration of this process is necessary.  

 

In summary, we show that two immunohistochemically distinct populations of fetal 

germ cells exist during the second and third trimesters. Proteins which are 

associated with pluripotency, survival and proliferation including OCT3/4, c-KIT and 

AP-2 as well as oncofetal marker M2A antigen are present in fetal germ cells with 

the morphology of gonocytes and intermediate cells. Their number gradually 

decreases after week 20, paralleled by an increasing number of MAGE-A4-positive 

pre-spermatogonia. Results presented in our study provide evidence of functional 

and temporal regulation of the differentiation process in fetal testes. They may also 

serve as a reference for further analyses investigating abnormal fetal germ cell 

maturation in chromosomal aberrations (Pauls et al., unpublished data). In addition, 

we found here that the monoclonal antibody D2-40 to glycosylated monomeric 

sialoglycoprotein M2A, which is expressed in fetal gonocytes and intermediate 

cells, is extremely robust to fixation artefacts and autolysis. The use of M2A might 

in future be also extended to detection of IGCNU and metastatic seminoma in 

diagnostically challenging cases (Pauls et al., unpublished data).  
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Abstract 

Most germ cell tumors (GCTs) arise from intratubular germ cell neoplasias 

(IGCNUs, also referred to as carcinoma in situ), which are thought to originate from 

a transformed fetal germ cell, the gonocyte. However, the nature of the molecular 

pathways involved in IGCNU formation remains elusive. Therefore, identification of 

novel oncofetal markers is an important prerequisite to further our understanding of 

the etiology of this tumor entity. In the present study, we show that in humans AP-

2gamma is expressed in gonocytes at weeks 12-37 of gestation, indicating a role of 

this transcription factor in fetal germ cell development. AP-2gamma and c-KIT, a 

known target of AP-2 transcription factors, were coexpressed in gonocytes, making 

a direct regulation possible. With increasing differentiation of fetal testis, gradual 

downregulation of AP-2gamma from the 12th to 37th week of gestation was 

observed. Furthermore, AP-2gamma was expressed abundantly in 25/25 IGCNUs, 

52/53 testicular seminomas, 10/10 metastatic seminomas, 9/9 extragonadal 

seminomas and 5/5 dysgerminomas. In embryonal carcinomas and 

choriocarcinomas, focal staining only was observed. Spermatocytic seminomas, 

teratomas and yolk sac tumors as well as normal adult testis and various control 

tissues were negative for AP-2gamma. The expression pattern of AP-2gamma, like 

that of other oncofetal markers, supports the model of a gonocytal origin of 

IGCNUs and germ cell tumors. Finally, our results provide the basis for applying 

AP-2gamma. 
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Introduction 

The most abundant malignancies among men aged 17-45 are GCTs (1). They 

comprise a heterogeneous group of neoplasms in terms of their histology, marker 

expression and age at manifestation. First described by Skakkebaek in 1972, the 

common precursor lesion of all GCTs, IGCNU (CIS, TIN, IGCN), arises from 

transformation of a gonocyte (2,,3). Markers commonly used for immunohistology, 

such as OCT3/4, PLAP and c-KIT, are expressed in gonocytes as well as IGCNUs 

and some stages of GCT, further supporting this model. 

 

TFAP2C belongs to a family of 5 closely related genes that are involved in the 

morphogenesis of craniofacial, urogenital, neural crest and placental tissues (4). 

AP-2 transcription factors are believed to regulate the expression of several genes 

involved in cell growth and differentiation during development (5). AP-2 is essential 

for mammalian embryonic development because embryonic trophectodermal cells 

fail to proliferate in AP-2 knockout mice (6, 7). In transgenic studies, 

overexpression of AP-2 impaired differentiation of epithelial cells of the mammary 

gland and the seminal vesicle (8). Besides trophoblastic and neuroectodermal 

lineage, AP-2 can be detected in lung, testis and ovary (9,10). In human tumors, 

AP-2 is upregulated in certain stages of melanoma (11) and breast cancer.(12, 13). 

 

In the present study, we investigated the expression of AP-2 during human fetal 

germ cell differentiation and development as well as in GCT. Analyzing human fetal 

tissues, we found AP-2 expressed in gonocytes at weeks 12-37 of pregnancy, 

indicating a role for this transcription factor during human germ cell development. 

Using a representative collective of GCTs, we found that AP-2 is highly expressed 

in classical seminomas and downregulated in nonseminomatous GCTs. Thus, AP-

2 appears to be a distinctive immunohistochemical marker for GCT diagnostics. 

 

Materials and Methods 

Tissue samples 

Thirty-one normal tissue samples of fetuses from gestational week 12 to 37 (2 × 

12th, 3 × 13th, 15th, 16th, 17th, 18th, 3 × 19th, 20th, 4 × 21st, 2 × 22nd, 3 × 23rd, 3 
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× 25th, 27th, 30th, 31st, 33rd, 36th, 37th weeks of pregnancy) without maceration 

signs or autolysis were selected from tissue archives of the Section of 

Paidopathology, Department of Pathology, University of Bonn. Causes of death 

were spontaneous abortion (mainly amnion infection or placental problems), 

perinatal death or legitimate induced interruptions. All interruptions were performed 

in the Section of Neonatology, Department of Gynecology, University of Bonn. The 

developmental age of fetuses was assessed by the date of the last menstrual 

bleeding and correlated with the weight and size parameters of the fetus. 

 

Tumor samples were collected from the files of the Department of Pathology and 

the Department of Neuropathology, University of Bonn Medical Center, and 

included 116 GCTs of different histology and localization and 25 IGCNUs (20 

adjacent to a primary tumor and 5 sole neoplasms). There were 87 testicular, 13 

metastatic and 11 primary extragonadal GCTs and 5 ovarian dysgerminomas 

(Table I). Tumors were diagnosed according to the WHO classification (14), and 

routine immunohistochemistry was performed using antibodies to PLAP, alpha-

fetoprotein, human chorionic gonadotropin and receptor tyrosine kinase c-KIT.  

 

Ten normal testes from patients with advanced prostate cancer and 5 testicular 

non-Hodgkin's lymphomas were added to the control group. To expand the series 

of control tissues and to study the expression of AP-2 in different tissues, 112 

individual tissues were selected from the files of the Department of Pathology and 

4 tissue arrays were prepared (Table II). Tissue microarrays were constructed from 

paraffin-embedded, formalin-fixed tissue using a Tissue Arrayer (Beecher 

Instruments, Silver Springs, MD). Single 1 mm cores were obtained from each 

paraffin block and placed in a predrilled slot of the recipient block. 

 

Immunohistochemistry 

Immunohistochemistry was performed on consecutive paraffin-embedded 4 m thick 

tissue sections using the ABC Kit (Vector, Burlingame, CA), as described (15). 

Briefly, dewaxed tissue sections were microwave-pretreated prior to incubation with 
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primary antibody. Sections were incubated overnight at 4°C with a polyclonal rabbit 

anti-AP-2 antibody (1:500, H77; Santa Cruz Biotechnology, Heidelberg, Germany). 

 

The following well-defined antibodies were used to record possible differences of 

expression during fetal germ cell differentiation and in GCTs: polyclonal antibody to 

c-KIT (Dako, Hamburg, Germany; dilution 1:100) and MAb 8A9 to PLAP (Dako, 

dilution 1:50). The MAb to MAGE-A4 was kindly provided by Dr. G. C. Spagnoli 

(Department of Surgery and Research, University of Basel, Basel, Switzerland; 

dilution 1:50). For controls, we used buffer instead of the primary antibody. 

 

Statistical analysis 

Sections of fetal testicular tissues stained with AP-2, c-KIT or MAGE-A4 antibodies 

were prepared. Positive germ cells were counted in a minimum of 5 HPFs using 

×400 magnification, with means and SDs calculated. 

 

RNA preparation and analysis 

Total RNA was prepared from homogenized tissue samples essentially as 

described (8). Total RNA (10 g) was loaded onto a 1.2% agarose gel 

supplemented with 3.3% (w/v) formaldehyde and run in MOPS buffer (20 mM 

morpholinopropylsulfonate, 5 mM sodium acetate, 0.5 mM EDTA, pH 7.0). RNA 

was transferred to a nylon membrane (Hybond N+; Amersham, Aylesbury, UK) and 

sequentially hybridized to a 32P-labeled probe covering nucleotides 1-1116 of the 

human AP-2 cDNA (kindly provided by Dr. D. Taverna, Institute for Cancer 

Research and Treatment, Candiolo, Italy) and a 32P-labeled probe specific for the 

human Oct-4 gene that had been generated by RT-PCR amplification of RNA 

derived from human embryonic stem cells using the primers (forward) 5-

gagaacaatgagaaccttcaggaga-3 and (reverse) 5-ttctggcgccggttacagaacca-3 (kindly 

provided by Drs. C. Benzing and O. Brüstle, Institute for Reconstructive 

Neurobiology, Bonn Medical School). Filters were washed twice in 2 × SSC, 0.1% 

(w/v) SDS; then in 1 × SSC, 0.1% (w/v) SDS; and finally twice at high stringency in 

0.1 × SSC, 0.1% (w/v) SDS at 65°C for 10 min each. 
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Results 

      AP-2 expressed in gonocytes during fetal testis development 

To establish the ontogenesis of AP-2, we studied its distribution in fetal testis and 

found AP-2-positive gonocytes at different stages of fetal development. High 

numbers of AP-2-expressing germ cells were seen at weeks 12-20 of fetal 

development, with an apparent peak around week 19 (Figs. 1a, 2a). Thereafter, 

expression was lower and decreased constantly after week 30 (Figs. 1d, 2a).  

Figure 1 
 

 
 
Immunohistochemical analysis of human fetal testis using antibodies directed against AP-2 (a,d), c-KIT 
(b,e) and MAGE-A4 (f) at the 13th (a-c) and 37th (d-f) weeks of gestation. Cells expressing AP-2 show 
brown nuclear staining; cells expressing c-KIT or MAGE-A4 show brown cytoplasmic staining. (c) 
Double-immunofluorescence analysis detected AP-2 (green) and c-KIT (red); cells expressing AP-2 
display green nuclear staining, cells expressing c-KIT display red cytoplasmic staining; line in (c) 
indicates margin of the tubule. Scale bars (a-f) = 20 m. 
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To further specify the population of AP-2-positive germ cells, we performed double-

immunofluorescence and immunohistochemistry with c-KIT and MAGE-A4 

antibodies on the same tissue. Similar to AP-2, the highest number of c-KIT-

positive gonocytes was found at 12-20 weeks of pregnancy (Figs. 1b, 2b). 

Afterward, expression continuously decreased to week 37 (Fig. 2b). In analogy to 

AP-2, few c-KIT-positive germ cells in the center of tubules were seen toward the 

end of the third trimester (Fig. 1d,e). Double-immunofluorescence revealed that 

most AP-2-immunopositive cells expressed c-KIT on their surface (Fig. 1c). In 

contrast to c-KIT and AP-2, the number of MAGE-A4-immunopositive cells was low 

until week 17. From there on, the number of MAGE-A4-positive gem cells 

increased rapidly; and in comparison to c-KIT and AP-2, perceptually more MAGE-

A4-positive germ cells were present at week 37 (Figs. 1f, 2c).  

 

 
Table I. Expression of AP-2  in 25 IGCNUs, 116 Invasive GCTs and 21 Controls 

 

Tissue/histology 
Histopathologic stage (UICC, 

TNM)/localization/remarks 
Positive staining (approx. % 

positive cells) 

 
IGCNU of testis  25/25 (100) 
   Seminomatous GCT   
      Testicular classical 
seminoma 

29 × stage pT1, 21 × stage pT2, 2 × 
stage pT3 

52/52 (80-100) 

      Testicular anaplastic 
seminoma 

pT2 0/1 

      Metastatic seminoma Retroperitoneal lymph nodes 8/8 (60-100) 
 Mediastinum 2/2 (60-100) 

      Extragonadal 
seminoma 

Retroperitoneum 3/3 (70-100) 

 Pinealis (germinoma) 6/6 (90-100) 
      Dysgerminoma 3 × stage pT1, 2 × stage pT2 5/5 (50-90) 
      Testicular 
spermatocytic seminoma 

pT1 0/2 

   Nonseminomatous GCT   
      Testicular embryonal 
carcinoma 

10 × stage pT1, 7 × stage pT2 11/17 (5-10) 

      Metastatic embryonal 
carcinoma 

Retroperitoneal lymph nodes 1/3 (5-10) 

      Testicular 
teratocarcinoma1 

pT1 2/2 (<5) 

      Extragonadal 
teratocarcinoma1 

ZNS 2/2 (<5) 

      Testicular 
choriocarcinoma 

1 × stage pT1, 4 × stage pT2 5/5 (40-60) 

      Testicular yolk sack pT1 0/3 
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tumor 
      Testicular mature 
teratoma 

 0/5 

   Testicular controls   
      Normal testis Orchiectomy for prostate cancer 0/12 
      Testicular non-
Hodgkin's lymphoma 

B-cell lineage 0/5 

      Leydig cell tumor Benign 0/4  
 

  1 Expression in embryonal carcinoma element only. 
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Figure 2 
 
 

 
 
Frequencies of AP-2- (a), c-KIT- (b) and MAGE-A4- (c) positive fetal germ cells during testicular 
development. Mean value of positive cells per HPF (y axis) at the corresponding gestational week (x 
axis) is given. Error bars show SD. 
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Distribution of AP-2 immunostaining in GCTs 

AP-2 expressed in IGCNU and GCTs with seminomatous differentiation 

Since gonocytes are believed to give rise to germ cell neoplasia, we next analyzed 

a broad collection of testicular, metastatic and extragonadal GCTs (Table I). Strong 

nuclear immunoreactivity for AP-2 was found in all neoplastic germ cells of 25 

IGCNUs studied (Fig. 3a, Table I).  

There was uniform nuclear staining in most tumor cells in 71 classical 

seminomatous GCTs, including 52 testicular, 10 metastatic and 9 primary 

extragonadal seminomas as well as 5 dysgerminomas (Fig. 3b,c, Table I). In 

contrast, 15 of these tumors were negative for PLAP (4 metastatic seminomas, 2 

primary retroperitoneal seminomas, 2 germinomas and 7 testicular seminomas), 

and in 8 tumors c-KIT expression was weak or focal (7 classical testicular 

seminomas and 1 retroperitoneal seminomas metastasis). Seminomas that were 

PLAP-negative (Fig. 3d2) and c-KIT-positive (Fig. 3d3) were positive for AP-2 too 

(Fig. 3d1). Taken together, AP-2 expression could be detected in all GCTs with 

classical seminomatous differentiation. Our results indicate that AP-2 

immunohistochemistry might be superior to PLAP and c-KIT in detecting various 

stages of seminomas. 

 

In contrast to seminomas with classical histology, the one anaplastic testicular 

seminoma of our series was negative for AP-2 but focally immunopositive for c-KIT 

and PLAP. Also, both spermatocytic seminomas were negative for AP-2, c-KIT and 

PLAP but positive for MAGE-A4, a known marker for spermatocytic seminomas 

(16), further supporting a different phenotypic and developmental status of these 

seminomas. 

 

Focal expression of AP-2 in nonseminomatous GCTs 

In embryonal carcinomas and teratocarcinomas, AP-2 staining was focal in 

distribution and concentrated in the basal layer of carcinoma glands (Fig. 3e, 

arrow; Table I). In teratomatous elements of teratocarcinomas, scattered focal 

nuclear staining was seen in a few undifferentiated stromal cells, whereas 

differentiated teratoma elements lacked AP-2 expression (Fig. 3e, arrowhead). 
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PLAP was focally positive in 15 embryonal carcinomas, but staining was more 

adjacent to the lumenal surface of the embryonal carcinoma glands (not shown). In 

choriocarcinomas, trophoblastic giant cells were positive for AP-2 (Fig. 3f) and 

negative for PLAP (not shown). Yolk sac tumors were devoid of AP-2 and PLAP 

expression. These results suggest that AP-2 immunoreactivity is indicative of 

undifferentiated neoplastic germ cells within the nonseminomatous GCT. 

 

Distribution of AP-2 immunostaining in testicular controls and somatic tissues 

Ten control sections of normal adult testis, obtained from patients with prostate 

cancer, and seminiferous tubules adjacent to GCTs with normal and impaired 

spermatogenesis were completely negative for AP-2. Here, unspecific, weak, 

granular cytoplasmic staining was observed in Leydig cells. To investigate whether 

AP-2 protein is expressed in other tumors besides GCT, we screened 108 

individual samples of different normal and tumor tissues using tissue microarrays 

(Table II). Except for the breast, none of these control tissues showed positive 

staining for AP-2. As described (15), outer myoepithelial cells of normal ductuli 

lactiferi were immunopositive as were ductal invasive adenocarcinomas of the 

breast. Hence, AP-2 is not exclusively expressed in GCTs but can also be found in 

some tumors derived from somatic tissues. 

 

RNA analysis of controls and GCTs 

To verify the data obtained by immunohistochemistry, we prepared RNA from 

regular testis of 2 patients as well as IGCNU and its invasive seminoma from 2 

patients and performed Northern blot analysis. As shown in Figure 4, strong 

expression of AP-2 was observed in invasive seminoma (Fig. 4, lanes 3b, 4b) and 

IGCNU (Fig. 4, lanes 3a, 4b) but was not detectable in regular testes (Fig. 4, lanes 

1, 2). Next, the blot was probed with Oct-4, a known marker for IGCNU and GCT, 

and confirmed the results obtained with AP-2 (Fig. 4, OCT-4). This result 

demonstrates that the signal detected by immunohistochemical methods is indeed 

specific and results from elevated levels of AP-2 mRNA. The difference in signal 

intensity for AP-2 in IGCNU relative to seminomas is due to a larger portion of AP-

2-negative, non-neoplastic tissue in these preparations.  
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Figure 3 

 
 
Immunohistochemical analysis using antibodies directed against AP-2 (a-c,d1,e,f), PLAP (d2) and c-KIT 
(inset in a,d3). Cells expressing AP-2 show brown nuclear staining; cells expressing c-KIT or PLAP 
show brown cytoplasmic staining. (a) IGCNU, positive for AP-2; notice Sertoli cells (arrowhead) and 
non-neoplastic seminiferous epithelium (NT) negative for AP-2. (inset) IGCNU positive for c-KIT in a 
serial section as control. (b) Testicular seminoma positive for AP-2; notice adjacent negative 
lymphocytes (LC). (c) Metastatic seminomas within the gastric wall, positive for AP-2; notice negative 
gastric glands (GG). (d) Testicular seminoma positive for AP-2 (1), negative for PLAP (2) and positive 
for c-KIT (3).(e) Teratocarcinoma. Focal expression of AP-2 in embryonal carcinoma element (arrow) 
but not in adjacent teratoma element (arrowhead). (f) Choriocarcinoma. Strong nuclear staining for AP-2 
in giant cells. Scale bars: (a-c) = 100 m, (d,f) = 50 m, (e) = 200 m. 
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Table II. Description and Results of Tissue Array Immunohistochemistry for AP-2  

 

Organ/tissue Histology 
n = 
112

AP-2  
expression 

Soft tissue Dermatofibrosarcoma 
protuberans 

3 0 

 Fibrosarcoma 3 0 
 Malignant fibrous 

histocytoma 
8 0 

 Myxofibrosarcoma 3 0 
 Chondrosarcoma 2 0 
 Chondroma 2 0 
 Ewing sarcoma 2 0 
 Osteosarcoma 2 0 
 Chondrosarcoma 2 0 
 Leiomyosarcoma 4 0 
 Rhabdomyosarcoma 3 0 
 Synovial sarcoma 2 0 
 Malignant 

hemangiopericytoma 
1 0 

Skin Dermatofibrosarcoma 1 0 
 Melanoma 1 0 
 Syringoma 1 0 
 Pilomatrixoma 1 0 

Uterus Normal 2 0 
 Adenofibroma 1 0 
 Endometrial 

carcinoma 
2 0 

 Carcinosarcoma 1 0 
Ovary Normal 3 0 

 Cystadenoma 1 0 
 Adenocarcinoma 1 0 

Breast Normal 1 Basal cells of 
ductuli 
positive 

 Adenocarcinoma 1 Positive 
Prostate Normal 3 0 

 Adenocarcinoma 4 0 
 Transitional cell 

carcinoma 
1 0 

Bladder Normal 2 0 
 Squamous carcinoma 1 0 
 Transitional cell 

carcinoma 
1 0 

Kidney Normal 2 0 
 Clear cell carcinoma 2 0 

Stomach Adenocarcinoma 3 0 
 Carcinoid 1 0 

Oesophagus Squamous carcinoma 1 0 
 Adenocarcinoma 2 0 
 Neuroendocrinal 

carcinoma 
1 0 
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Small 
bowel/colon 

Normal 2 0 

 Adenocarcinoma 2 0 
 GIST 10 0 

Pancreas Adenocarcinoma 2 0 
Liver Cholangiocarcinoma 1 0 

 Hepatocellular 
carcinoma 

1 0 

Lung Squamous carcinoma 1 0 
 Small cell carcinoma 1 0 
 Adenocarcinoma 1 0 

Thyroid gland Medullary carcinoma 1 0 
 Papillary carcinoma 1 0 

Parotid Normal 1 0 
 Basal cell adenoma 1 0 
 Acinus cell carcinoma 2 0 
 Adenoid-cystic 

carcinoma 
1 0 

Salivary 
gland 

Adenoid-cystic 
carcinoma 

1 0 

 Acinus cell carcinoma 2 0 
 Basal cell adenoma 2 0 
 Salivary duct 

carcinoma 
1 0 
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Figure 4 

 
 
 

 
 
 Northern analysis of AP-2 expression in normal testis (lanes 1,2), IGCNU (lanes 3a,4a) and seminoma 
(lanes 3b,4b). Total RNA (10 g) derived from tissues of 2 different patients were gel-electrophoretically 
separated, transferred to a nylon membrane and hybridized to an AP-2 (upper) or Oct-4 (middle) cDNA 
probe. The gel photo (lower) is shown as a loading control. 
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Discussion 

GCTs originate from cells of the germ cell lineage. They comprise a heterogeneous 

group of neoplasms occurring mainly in the gonad but are also found within specific 

extragonadal sites. Here, we demonstrate that transcription factor AP-2 is 

expressed during male fetal development in gonocytes, IGCNUs and all GCTs with 

classical seminomatous differentiation. 

 

We show that AP-2 can be detected in fetal germ cells at weeks 12-37 of 

pregnancy. Its expression generally declined with advancing age during the 

intrauterine period but persisted at lower levels throughout the third trimester. 

Previously, 3 distinct subpopulations of fetal germ cells were identified - gonocytes, 

intermediate germ cells and prespermatogonia - using immuno histochemical 

profiling with c-KIT and MAGE-A4. c-KIT is proposed to be a marker of early 

undifferentiated germ cells, the gonocytes, whereas MAGE-A4 marks the 

population of more differentiated fetal germ cells, the prespermatogonia (17). Here, 

expression of c-KIT and AP-2 overlaps during fetal germ cell development and, 

moreover, expression of both c-KIT and AP-2 can be detected in the same germ 

cells, whereas MAGE-A4 did not overlap with AP-2. This result together with 

morphologic criteria argues that AP-2 is expressed in the population of gonocytes. 

According to the morphologic criteria outlined by Wartenberg (18) and Robinson et 

al. (19) these cells would be regarded as M-prospermatogonia, which are an 

actively dividing germ cell population in fetal testis. Our findings are in line with a 

decreasing number of gonocytes, which subsequently differentiate to fetal 

prespermatogonia during late fetal development. 

 

AP-2 and c-KIT are coexpressed in gonocytes, making direct transcriptional 

activation of c-KIT possible. Indeed, c-KIT has been described as a target gene of 

AP-2 transcription factors based on promoter studies (20, 21) as well as results 

obtained with melanoma cells (22). Furthermore, c-KIT represents a survival signal 

for germ cells in rats (23). Thus, in gonocytes, AP-2 might act as transcriptional 

activator of c-KIT, to keep the cells in a proliferative state. 
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It is believed that transformed gonocytes which persist into adulthood give rise to 

IGCNU, representing the common precursor lesion of all GCTs except 

spermatocytic seminomas (24) Indeed, we detected AP-2 expression not only in 

gonocytes but also in IGCNUs and in all classical seminomatous GCTs analyzed. 

Thus, expression of AP-2, like other oncofetal markers (c-KIT, PLAP, sACE, OCT 

3/4) (25, 26, 27, 28) supports a gonocytal origin of IGCNU and GCT. 

 

These markers are also important for the diagnosis of IGCNU and GCT. However, 

in contrast to PLAP expression, which is lost in a portion of seminomas during 

progession (29) (and present study) AP-2 expression was consistently high in 

seminomas independent of localization and pathologic stage. Also, using c-KIT 

immunohistochemistry on PLAP-negative tumors might not be sufficient to 

diagnose a metastatic seminoma as c-KIT is expressed in several somatic cell 

types and various somatic malignancies like GIST and lung, renal and ovarian 

carcinomas, raising the possibility of a misdiagnosis (30). Since AP-2 expression 

was consistently high in seminomas independent of their localization and 

pathologic stage, we suggest AP-2 as a potent marker for IGCNU and for the 

diagnosis of metastatic seminoma. 

 

In contrast to its abundant expression in all classical seminomatous GCTs, 

spermatocytic seminomas were negative for AP-2, further supporting the model of 

a different origin of this seminoma type (14, 31). Also, compared to classical 

seminomas, AP-2 was downregulated in embryonal carcinomas and its expression 

was lost in yolk sac tumors and teratomas. This result is in agreement with the 

current model of progression of pluripotent embryonal carcinoma to more 

differentiated nonseminomatous GCTs (32). 

 

However, trophoblastic giant cells in choriocarcinomas were positive for AP-2, 

though this tumor type also belongs to the group of differentiated 

nonseminomatous GCTs. In mice, AP-2 expression was found in cells of the 

trophoblast lineage (7) suggesting that reexpression of AP-2 in choriocarcinomas 

reflects regular developmental processes during placental differentiation. 
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The molecular role of transcription factor AP-2 is not fully understood. According to 

previous studies from us and others, AP-2 is essential in trophoblast cells during 

development (6, 7). AP-2-deficient embryos die due to a lack of proliferation of 

trophectoderm-derived extraembryonic tissues (7). Furthermore, studies on mice 

transgenic for AP-2 reveal a role in mammary gland tumorigenesis (8). There, 

forced overexpression leads to a block of differentiation (8) as well as enhanced 

tumor progression in a double transgenic model (33). Taken together, we propose 

that AP-2 serves as a molecule which keeps fetal germ cells at the undifferentiated, 

pluripotent stage by suppressing differentiation and supporting proliferation. 

Expression of AP-2 in gonocytes and all undifferentiated GCTs such as IGCNUs 

and seminomas further supports this hypothesis. 

 

In conclusion, our study shows that transcription factor AP-2 is expressed in fetal 

germ cells during development and might be useful as a highly specific marker for 

diagnosis of IGCNU/seminoma/germinoma/dysgerminoma. This and other studies 

will help in broadening the knowledge of the molecular pathways affected in this 

type of tumor and in developing improved diagnostic and therapeutic reagents. 
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Abstract 

 

Most testicular germ cell tumors arise from intratubular germ cell neoplasia 

unclassified (IGCNU, also referred to as carcinoma in situ), which is thought to 

originate from a transformed primordial germ cell (PGC)/gonocyte, the fetal germ 

cell. Analyses of the molecular profile of IGCNU and seminoma show similarities to 

the expression profile of fetal germ cells/gonocytes. In murine PGCs, expression 

and interaction of Blimp1 and Prmt5 results in arginine 3 dimethylation of histone 

H2A and H4. This imposes epigenetic modifications leading to transcriptional 

repression in mouse PGCs enabling them to escape the somatic differentiation 

program during migration, while expressing markers of pluripotency. 

In the present study, we show that BLIMP1 and PRMT5 were expressed and 

arginine dimethylation of histones H2A and H4 was detected in human male 

gonocytes at weeks 12–19 of gestation, indicating a role of this mechanism in 

human fetal germ cell development as well. Moreover, BLIMP1/PRMT5 and 

histone H2A and H4 arginine 3 dimethylation was present in IGCNU and most 

seminomas, while downregulated in embryonal carcinoma (EC) and other 

nonseminomatous tumors. 

These data reveal similarities in marker expression and histone modification 

between murine and human PGCs. Moreover, we speculate that the histone H2A 

and H4 arginine 3 dimethylation might be the mechanism by which IGCNU and 

seminoma maintain the undifferentiated state while loss of these histone 

modifications leads to somatic differentiation observed in nonseminomatous 

tumors. 
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Introduction 

In males aged 15 – 34 years, type II testicular germ cell tumors (TGCT), i.e. 

seminomas and nonseminomas, are the most common malignancies with fatal 

outcome (1) accounting for up to 60% of all malignancies in young man. The 

incidence of this type of cancer has been steadily increasing throughout the last 

decades (2). The tumors arise from a neoplastic precursor, the carcinoma in situ 

(CIS)/intratubular germ cell neoplasia unclassified (IGCNU) and develop into 

seminoma and/or nonseminoma (including embryonal carcinoma, teratomas, yolk 

sac tumors and choriocarcinomas) (3). The IGCNU lesions are believed to arise by 

delayed or blocked maturation of primordial germ cells (PGC)/gonocytes during 

early fetal development (4). The recently identified markers for IGCNU and 

seminoma, namely the markers of pluripotency OCT3/4 and NANOG further 

support this model (5-10). 

Expression of pluripotency genes is detected in embryonic stem cells (ES) and the 

inner cell mass of the early embryo. Additionally murine and human ES cells need 

to be cultured in the presence of factors inhibiting differentiation, although there are 

species specific differences (11,12). In PGCs, early gonocytes and IGCNU as well 

as seminoma lesions some of these markers of pluripotency are expressed, 

although differences have been reported (13,14). According to the current model, 

PGCs actively suppress somatic differentiation programs by epigenetic 

modifications, a mechanism which might also account for IGCNU and seminoma 

(15). Recent data in mice demonstrate that suppression of somatic differentiation 

programs in PGCs is mediated by a complex of two proteins, Blimp1 (B-

Lymphocyte induced maturation protein-1; PRDM1) and Prmt5 (protein arginine 

methyltransferase-5). Upon arrival in the genital ridge the PGCs differentiate to 

become gonocytes and the Blimp1/Prmt5 complex is translocated in the cytoplasm 

and subsequently, Blimp1 is downregulated. Targeted deletion of Blimp1 leads to 

loss of PGCs short after specification due to differentiation. The Blimp1-deficient 

PGCs display an insufficient repression of markers indicative for somatic 

differentiation such as HoxB1 (16). Blimp1 is a transcriptional repressor harboring 

an N-terminal PR-SET domain, 5 zinc-finger domains and an acidic domain at the 

C-terminus. In murine PGCs the Blimp1/Prmt5 complex mediates symmetrical 
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methylation of histones H2A and H4 at arginine 3 (H2AR3me2s, H4R3me2s), 

resulting in widespread epigenetic modification leading to transcriptional repression 

(17). 

In the present study, we investigated the expression of BLIMP1/PRMT5 during 

human fetal germ cell development and in testicular germ cell tumors. Analyzing 

human fetal tissues, we found BLIMP1/PRMT5 colocalized in gonocytes at weeks 

12 – 19 of pregnancy, supporting a role in human germ cell development. 

Furthermore BLIMP1/PRMT5 is expressed in IGCNU and seminoma, but 

downregulated in nonseminomatous GCTs. Since the nuclear localization of 

BLIMP1 correlated with the presence of the histone modifications H2AR3me2s and 

H4R3me2, our data help in explaining the undifferentiated/fetal state of IGCNU and 

seminoma.  
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Material and Methods 

 

Sample Handling and Characterization 

Formalin fixed, paraffin embedded testicular tissues from 46 patients with GCTs 

(20 seminomas, 15 embryonic carcinomas, 5 Teratomas, 3 yolk sac tumors and 3 

choriocarcinomas were collected for this study from archives of Departments of 

Pathology of University Medical Centers Bonn. Adjacent testicular parenchyma 

containing IGCNU were studied in 15 cases (32). All tumors were classified 

according to the WHO classification of tumors based on their histology by two 

independent pathologists. Fresh frozen samples of each of normal testicular 

tissues (n = 3), seminoma (n = 3), mixed germ cell tumors (n = 3), IGCNU (n = 5) 

and embryonal carcinomas (EC) (n = 3), as well as RNA extracts of TCam2 (33) 

and JKT-1 (34) cell lines, of which TCam2 resembles a seminoma-like cell-line (21-

23), were additionally available for this study. Use of the tissue for scientific 

purposes was approved by the Institutional Regional Committee for Ethics. 

 

RT-PCR and quantitative image analysis 

Total RNA from at least three samples per tumor entity was extracted with TRIzol 

(Invitrogen, Karlsruhe, Germany) according to manufacturer's instruction. cDNA-

syntesis was performed using SuperScript III reverse transcriptase (Invitrogen, 

Karlsruhe, Germany) and Oligo d(T)12–18(Invitrogen, Karlsruhe, Germany) and 

100 ng of total RNA according to manufacturers instructions. PCRs were carried 

out in triplicates with following Primers: BLIMP1 F: 5'-

GGGTGCAGCCTTTATGAGTC-3'; BLIMP1 R: 5'-CCTTGTTCA TGCCCTGAGAT-

3'; PRMT5 F: 5'TTGCCGGC TACTTTGAGACT-3'; PRMT5 R: 5'-AAGGCAGGA 

AAGCAGATTGA-3'; GAPDH-F: 5'-TGGTATCGTGGAA GGACTCATG AC-3; 

GAPDH R: 5'-ATGCC AGTGAGCTTCCCGTTCAGC-3'. (β-Act: 25 cycles BLIMP1 

and PRMT5: 30 cycles). After agarose gel electrophoresis of the PCR-products 

band intensity was measured after RT-PCR with the image analysis software 

ImageJ 1.37 v (National Institutes of Health, USA, http://rsb.info.nih.gov/ij/) in 

triplicates and normalized to the according GAPDH band.Co-Immunoprecipitation 
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Co-IP was performed with DYNABEADS® (Invitrogen, Carlsbad, USA) following 

manufacturers instructions. Immunopreciptation was performed with 1,5 μg anti-

PRMT5 antibody (Chemicon, Temecula, USA) or anti-PRMT7 (Abcam, Cambrigde 

UK, 1:250). Western Blot with anti-BLIMP1 antibody followed (provided by H. M. 

Jäck). 

 

Western Blot 

For protein analysis Mini-PROTEAN Electrophoresis Cell and Mini Trans-Blot 

system was used (BioRad, Munich, Germany). Proteins were isolated using RIPA-

buffer and prepared using standard protocol and finaly electrophoresed at 30 mA 

for 90 min. The gel was blotted onto a PVDF membrane in a BioRad blotting 

chamber overnight at 30 V at 4°C according to published protocols. After blocking 

in PBSTM (PBS, 0.1% v/v Tween 20, 5% low fat milk powder) primary antibodies 

(anti-BLIMP1 1:400 (kind gift from H. Jäck), anti-PRMT5 1:200, Chemicon 

International, USA) were incubated in PBSTM for 3 h at RT. The secondary 

antibodies (anti-rabbit-HRP, anti-mouse-HRP: DAKO, Hamburg, Germany) were 

diluted 1:2000. Finally the membrane was incubated in 2 ml PierceSuper Signal 

West Pico chemiluminescent substrate (Perbio, Bonn, Germany) and the signal 

was detected using Kodak X-Ray film (Kodak, Stuttgart, Germany).Array Analysis 

DNA Array Dataset used to analyze BLIMP1/PRMT5 expression in Seminoma, 

embryonal carcinoma, TCam2 and JKT1 were generated as described [32]. 

 

Immunohistochemistry 

For immunohistochemistry on paraffin-embedded tissue, dewaxed, 4-μm thick 

tissue sections were microwave-pretreated in citrate-buffer. Primary antibodies to 

PRMT5 (Upstate, Charlottesville, VA, 1:500), PRMT7 (Abcam, Cambrigde UK, 

1:250) BLIMP1 (provided by H-M. Jäck, University of Erlangen, Germany 1:500) 

and H2AR3me2s/H4R3me2s (Abcam, Cambridge, UK, 1:2000) were used for 

detection. Immunohistochemistry was performed using the DAKO EnVision-AEC 

Kit and manufacturers protocol (DAKO, Hamburg, Germany) as previously 

described (7). Briefly, endogenous peroxidase was blocked for 5 min in 0.03% 

H2O2 (diluted in distilled water). Sections were washed in Tris-buffered saline 
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(TBS; 0.05 M Tris and 0.85% NaCl, pH 7.6) and incubated with primary antibodies 

overnight at 4°C. Thereafter, a HRP-labeled polymer conjugated with a secondary 

antibody was applied (DAKO EnVision-AEC KIT). Pictures were taken using a 

Leica microscope fitted with a JVC digital camera (Leica, Bensheim, Germany). 

Figures were assembled using Adobe CS3 software package. Merge of pictures 

was performed using ImageJ (NIH, US). 
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Results 

Normal germ cell development 
 
Data from murine embryos indicate, that the murine homologs of BLIMP1 and 

PRMT5, are expressed in PGCs from specification on up to their arrival in the 

genital ridge (16,17). Short thereafter, these cells differentiate to become 

gonocytes and the Blimp1/Prmt5 complex is translocated in the cytoplasm and 

subsequently, Blimp1 is downregulated. In order to test whether human BLIMP1 

and PRMT5 are detected in human fetal PGCs/gonocytes, immunohistochemical 

analyses were performed on human fetal material. On the 12th week of pregnancy 

migrating gonocytes coexpressing PRMT5 and BLIMP1 were detected, (Fig.1, 

compare A to B, merged in C, arrows).  

Figure 1: Human fetal gonocytes at 12th week of pregnancy 

 

 
Sections of human fetal gonocytes at 12th week of pregnancy subjected to antibody staining towards 
BLIMP1 (A), PRMT5 (B) and overlay (C). D and E no primary antibody controls. Arrows indicate 
exemplary germ cells. Bar = 50 μm. 
 
 

Next, testes from the 19th week of pregnancy were analyzed. By this time 

gonocytes gradually differentiate into prespermatogonia and migrate towards the 

periphery of the emerging seminiferous tubules to settle down in their niche (18). 

Both BLIMP1 (Fig. 2A) and PRMT5 (Fig. 2B) were detected at this stage in 
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gonocytes. PRMT5, in contrast to BLIMP1, was detected both in the nucleus and in 

the cytoplasm. Since the murine Blimp1/Prmt5 complex has been described to 

mediate symmetrical dimethylation of arginine 3 on histone H2A and/or H4 tails 

(H2AR3me2s/H4R3me2s) (17) immunohistochemical analysis to detect this 

modification was performed (Fig. 2D). Co-staining of PRMT5 revealed that the cells 

displaying high nuclear levels of PRMT5 are in fact positive for the 

H2AR3me2s/H4R3me2s histone mark (Fig. 2E and 2F, merged). To further 

analyze the population of cells expressing BLIMP1 we performed double labeling 

experiments using BLIMP1 (Figure 2G) and the gonocytal markers M2A (19) 

(Figure 2H). BLIMP1/M2A double positive signals were detected in most gonocy 

tes (Figure (Figure2I arrows). Double labeling for H2AR3me2s/H4R3me2s (Fig 2K) 

combined with M2A (Fig. 2L) showed, that the M2A positive gonocytes displayed 

H2AR3me2s/H4R3me2s modifications (Fig 2M). Again, these findings were in 

accordance with the situation in mice, where the Blimp1 protein is downregulated 

and the H2AR3me2s/H4R3me2s methylation is gradually lost when germ cells 

proceed to prespermatogonia (17).  
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Figure 2 : Human fetal gonocytes at 19th week of pregnancy 

 

 
 
Sections of human fetal gonocytes at 19th week of pregnancy subjected to antibody staining towards 
(A) BLIMP1, (B) PRMT5, (C) Merge of BLIMP1 and PRMT5, (D) PRMT5, (E) methylated H2A/H4, (F) 
merge of PRMT5 and methylated H2A/H4 (G) BLIMP1 (H) M2A antigen, (I) merge of BLIMP1 and M2A, 
(K) methylated H2A/H4, (L) M2A, (M) merge of methylated H2A/H4 and M2A. 
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Figure 3: Human adult testis 

 

 

 
Sections of normal human adult testis stained for BLIMP1 (A), PRMT5 (B) methylated and dimethylated 
histones H2A/H4 (C). (A) A seminiferous tubule is shown with normal spermatogenesis. Spermatogonia, 
spermatocytes, and Sertoli cells are devoid of the staining, while nuclear and cytoplasmatic staining 
occurs in round spermatids (large arrow). (B) Staining with PRMT5 antibody shows low expression of 
PRMT5 in the nuclei of spermatocytes (arrowhead), and strong nuclear staining in round spermatids 
(large arrow). (C) Positive staining with Me H2A/H4 occurs in spermatogonia (red arrowheads) and 
round spermatids (arrow), but not in spermatocytes. lu lumen of the seminiferous tubule; Le Leydig 
Cells 
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Type II TGCTs 
We next examined various TGCTs for the presence of BLIMP1/PRMT5 and 

H2AR3me2s/H4R3me2s. As shown in Figure 4, IGCNU show nuclear BLIMP1 

staining (Fig. 4A), cytoplasmatic PRMT5 staining (Fig. 4B) and dimethylation of 

H2A/H4 (Fig. 4C). Seminomas show predominant nuclear BLIMP1 signal (Fig. 4D) 

sparse nuclear PRMT5 signal (Fig.4E) as well as a strong and homogenous signal 

for H2AR3me2s/H4R3me2s (Fig 4F). In embryonal carcinoma, expression of 

BLIMP1 (Fig. 4G) and PRMT5 (Fig. 4H) was weak and cytoplasmatic. As expected, 

histone H2AR3me2s/H4R3me2s methylation (Fig. 4I) was barely detectable and 

heterogeneous. Yolk sac tumors teratomas and choriocarcinomas stained focally 

and cytoplasmatic for BLIMP1 and PRMT5 (not shown). Focal cytoplasmatic 

expression of BLIMP1 and PRMT5 was also observed in differentiated parts of 

teratoma, while chorioncarcinomas were negative for both proteins. A summary of 

the results of the immunohistochemical studies is given in Table 1. 

 
In order to quantify the expression of BLIMP1 and PRMT5 we performed RT-PCR 

analyses on normal testicular tissue as well as on various TGCTs. The RNA levels 

measured were first normalized to βActin and then calculated as relative 

expression with normal testicular tissue (N) set at 1. Expression of BLIMP1 was 

significantly higher in IGCNU (p = 0.029) containing testicular parenchyma and 

seminoma (Fig. 4K), but not in embryonal carcinoma (EC) (p = 0.16), which was 

comparable to normal testicular tissue. In contrast, PRMT5 was moderately higher 

in IGCNU (p = 0.033), while embryonal carcinoma (p = 0,091) and seminoma (p = 

0,091) express a similar level of PRMT5 compared to normal testicular tissue (Fig. 

4L). These data could be confirmed, using a whole genome expression DNA-Array 

as reported before (20). Here, the same pattern was observed (see Fig. M and and 

4N). 

 
 
 
 
 
 
 
 



Chapter 4 

 103

Table 1: Expression of BLIMP1, PRMT5 and dimethylated histone H4/H2A in 
normal and neoplastic testicular tissues 
 

 BLIMP1 PRMT5 H4R3me2s/H2Ame2s 

Normal fetal testis    

Gonocytes +++ (n) +++ (n,c) +++ (n) 

Pre-spermatogonia - -  

Normal adult testis (N = 18)    

Spermatogonia - - ++ (n) 

Pachytene spermatocytes - + (n) - 

Round spermatids + (n,c) ++ (n) ++ (n) 

Elongated spermatids - - - 

Testicular germ cell tumors    

IGCNU (N = 15) 
+++ (n)

85–100% 
+++ (c)
75–95%

+++ (n) 
90–100% 

Seminoma (N = 20) 
++ (n) 

10–75%
++ (n+c)
30–85%

++ (n) 
20–80% 

Embryonal carcinoma (N = 15)
+/-(c)* 

15–80%
++ (c) 

15–80%
(+)* 

Teratoma (N = 5) + (n, c) + (n, c) + (n) 

Chorioncarcinoma (N = 3) + (c) - - 
 

N, number of cases; n, nuclear staining; c, cytoplasmatic staining 

+ weak; ++ moderate; +++, strong expression; -, no expression detectable 

*, only single tumor cells were detected as positive. 

 

Finally, we asked whether BLIMP1/PRMT5 and modification of histone H2A and 

H4 could be detected in TCam-2, a cell line derived from a seminoma patient 

(21,22). Here, we were able to detect BLIMP1 in the nucleus, PRMT5 in the 

nucleus and the cytoplasm (Fig. 5A–C). RT-PCR analyses showed that BLIMP1 

and PRMT5 are expressed in TCam-2 cells (Fig. 5E) and absent JKT1 cells, in 

agreement with Affymetrix data (Fig. 4M and 4N). Of note, the findings on the JKT-

1 cell line are in concordance with the conclusion that it is not a seminoma cell line 

(22,23). Western blot analysis confirmed these results, showing that BLIMP1 and 

PRMT5, as well as the modified Histones H2A and H4 (Fig. 5F) can be detected. 
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Next, we performed a CoIP on extracts from TCam-2 cells and were able to detect 

a signal for Blimp1 in material immunoprecipitated with PRMT5 antibody (Fig. 5G). 

This result demonstrates for the first time that PRMT-5 and BLIMP-1 interact 

biochemically. 
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Figure 4 : Human germ cell tumors.  

 
Sections of neoplastic germ cells of IGCNU (A-C), seminoma (D-F), embryonal carcinoma (G-I) stained 
for BLIMP1 (A, D, G), PRMT5 (B, E, and H) and methylated histones H2A/H4 (C, F, I). In Figure A-C 
tubules with IGCNU are shown with consistent nuclear expression of BLIMP1 and Me H2A/H4 in 
neoplastic germ cells (A, BLIMP1; C, Me H2A/H4). PRMT5 is expressed in the cytoplasm of neoplastic 
germ cells (B). Notice that no expression is present in Sertoli cells. In Figures D-F expression in 
seminomas is presented. Notice the variation of the expression of BLIMP1, being low or moderate in the 
majority of the cells (D). PRMT5 is expressed in the cytoplasm of most seminoma cells, but some 
neoplastic cells also show nuclear staining (E). Figure F shows a strong nuclear staining of MeH2A/H4 
in most seminoma cells. Size bar is 50 μm. Quantification of the relative expression of BLIMP1 (K) and 
PRMT5 (L) normalized to β-Actin and compared to normal testicular tissue. Bars above the graph 
indicate p-values. (M, N) Expression values for BLIMP1 (M) and PRMT5 (N) from independent 
Affymetrix expression analyses (as referred in 23). Data are plotted as Log2 (y-axis) after normalization. 
Abbreviations: Normal testicular tissue (N), IGCNU, seminoma (SE), embryonal carcinoma (EC). 
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Figure 5 : Analysis of TCam-2 seminoma cell line. (A-B)  
 

 

 
Immunohistochemistry using the antibodies indicated. (C) Merge of (A) and (B). (D) Counterstaining 
with DAPI to detect nuclei. (E) RT-PCR cell lines TCam2 and JKT1 as well as Testis detecting 
expression of the indicated genes. (F) Western Blot of protein lysate from TCam2 cells detecting the 
proteins indicated. (G) Co-IP experiment using antibody to PRMT5 for IP and antibody to BLIMP-1 to 
detect potential interaction. – no Antibodyl; + IP using PRMT5 Antibody; Input Control. (H) Co-IP 
experiment using antibody to PRMT7 for IP and antibody to BLIMP-1 to detect potential interaction. – no 
Antibodyl; + IP using PRMT5 Antibody; Input Control. (I-M) Immunohistochemistry using the PRMT7 
antibody (I), (K) Merge of (I) and (M), (L) Counterstaining with DAPI to detect nuclei, (M) brightfield 
image. Scale Bar indicates 25 μm. 
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We had shown, that nuclear BLIMP1 and methylated H2A and H4 are expressed in 

IGCNU and seminoma, yet these cells express either little or cytoplasmic PRMT5 

(Fig. 4A–F). We speculated that another methytransferase cooperating with 

BLIMP1 might be able to compensate PRMT5 function and help in establishing this 

methylation pattern. PRMT7 which is like PRMT5 a type II methyltransferase 

seemed a potential candidate since both PRMT5 and PRMT7 have been 

demonstrated to mediate symmetric arginine dimethylation of sm Proteins required 

for the spliceosome (24). The CoIP experiment (Fig. 4H), demonstrates that 

BLIMP1 and PRMT7 interact biochemically. In addition PRMT7 shows a strong 

nuclear signal in TCam-2 cells (Fig. 4I–M). These results indicate that in germ cell 

tumors, both PRMT5 and PRMT7 might cooperate with BLIMP1 to establish 

dimethylation of H2A and H4. 
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Discussion 
 
In this study, we analyzed the expression of the putative inhibitor complex of germ 

cell differentiation BLIMP1 and PRMT5 on mRNA and protein level and the 

presence of the resulting repressive histone modifications H2A/H4R3me2s in 

human fetal and adult germ cells as well as TGCTs. We found BLIMP1 and 

PRMT5 localized in the nuclei of gonocytes, and the latter also in the cytoplasm, 

and could show the presence of the resulting dimethylation of H2A/H4 at arginine 

3. In IGCNU a strong nuclear signal of BLIMP1 and of H2K3me2s/H4K3me2s was 

detected, whereas PRMT5 signal was cytoplasmatic in IGCNU and heterogeneous 

in seminomas. 

The expression in fetal gonocytes in humans described here is in concordance to 

the observations made in mouse (17) indicating a conserved role of the nuclear 

localized BLIMP1/PRMT5 complex between mouse and man. Recently the 

transcriptional repressor BLIMP1 has been shown to be a crucial determinant of 

the germ cell lineage in mice (16). This Krüppel-type zinc-finger containing protein 

interacts with the arginine methyl-transferase PRMT5 resulting in a symmetrical 

methylation at arginine 3 of histone H4 and H2A (H4R3me2s/H2Ame2s). The 

methylation in turn represses transcription (17) and therefore might be important for 

suppressing the somatic cell fate and keeping germ cells in a pluripotent state. In 

fact, in mice Blimp1-deficent germ cells show inconsistent repression of HoxB1, a 

hallmark of germ cell specification and fail to express Stella a marker of 

undifferentiated germ cells (16). Also, recent studies showed, that abrogation of the 

Drosophila melanogaster homolog of PRMT5, Capsuleen/dart5, is essential for 

germ cell specification and maintenance (25,26). Interestingly, Blimp1 expression 

is lost in PGCs which are cultured in the presence of basic FGF and LIF (15) and 

gradually become embryonic germ cells (27-29). Hence the BLIMP1/PRMT5 

interaction resulting in H2A/H4 modification might lead to repression of premature 

differentiation during human fetal germ cell development. As a consequence 

prolonged expression of BLIMP1/PRMT5 could result in persistence of 

undifferentiated gonocytes into adulthood. 

It is believed that those persisting gonocytes give rise to IGCNU the common 

precursor lesion of all type II TGCTs (4). Indeed, we detected BLIMP1 protein and 
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the characteristic modification of histones H2A and H4 not only in gonocytes but 

also in IGCNU and in seminoma supporting a PGC/gonocyte origin of IGCNU and 

therefore GCT (5,8,30,31). PRMT5 however, is not detectable in nuclei of IGCNU, 

and displays only a sparse nuclear localization in seminoma cells. We found that 

another type II protein arginine methyltransferase, PRMT7 is expressed in TCAM2 

seminoma cells and that PRMT7 interacts with BLIMP1 as well. So we speculate 

that in IGCNU and seminoma, BLIMP1 recruits PRMT7 to compensate for the lack 

of nuclear PRMT5 to mediate H2A and H4 dimethylation. 

Upon progression of IGCNU to nonseminomas signal intensity of BLIMP1 

decreased and subcellular localization changed. As a consequence, H2A/H4 

modification decreased and became heterogeneous in nonseminomas. Hence, the 

loss of the repressive histone modifications allows further uncontrolled 

differentiation observed in nonseminomas. 

 

Conclusion 

Taken together we propose the following model for development of germ cell 

neoplasia. First, coexpression and nuclear localization of the BLIMP1/PRMT5 

complex leads to histone H2A/H4 dimethylation which results in transcriptional 

silencing of genes responsible for somatic differentiation in PGCs. Upon 

differentiation to prespermatogonia, this complex is downregulated and the H2A/H4 

marks are lost. Aberrant constitutive histone H2A/H4 arginine 3 dimethylation 

allows the cells to escape the regular differentiation program resulting in their 

persistence into adulthood. These cells eventually progress into IGCNU, displaying 

the H2A/H4R3me2s modification as well. Since the subcellular localization of 

PRMT5 excludes PRMT5-dependent histone H2A/H4 modification in IGCNU we 

propose that BLIMP1 might act in cooperation with PRMT7. This mechanism 

persists in seminoma where the H2A/H4R3me2s modifications can be observed 

which explains the undifferentiated nature of the tumor cells. Translocation of 

BLIMP1 into the cytoplasm leads to breakdown of histone H2A/H4 dimethylation 

and subsequently to the activation of the differentiation programs and therefore the 

conversion from IGCNU into a nonseminomatous germ cell tumors. 
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Abstract 

Testicular germ cell tumours (TGCTs) are the most frequent cancer type in young 

men; 5% of these patients develop a second TGCT in the contralateral testis. The 

pathogenesis of TGCT is closely linked to primordial germ cells (PGCs) or 

gonocytes. The receptor tyrosine kinase (c-KIT) is necessary for migration and 

survival of PGCs and is expressed in intratubular neoplastic germ cells (IGCNUs) 

and seminomas. We studied the frequency of c-KIT exon 11 and 17 mutations in 

155 unilateral (108 seminomas and 47 non-seminomas) and 22 bilateral (18 

seminomas, two embryonal carcinomas, two IGCNU) cases. While no mutations 

were detected in exon 11, the mutation frequency in exon 17 was significantly 

higher in bilateral (14/22, 63.6%) compared to unilateral TGCT (10/155, 6.4%) (p < 

0.001). Different activating mutations (Y823D, D816V, D816H and N822K) were 

detected in bilateral TGCT. Y823D mutation was identical in both testes in three 

cases and quantitative pyrosequencing showed that up to 76% of the cells 

analysed in tumour samples carried this mutation. One bilateral synchronous 

seminoma revealed a S821F mutation in one testis and a Y823D mutation 

contralaterally. To study the role of c-KIT in TGCT progression, we compared its 

expression in 41 seminomas and adjacent IGCNUs. Immunohistochemical analysis 

revealed that c-KIT expression was significantly reduced in seminomas compared 

to IGCNUs (p < 0.006) and that there were no significant changes in c-KIT mRNA 

copy numbers in progressed compared to low-stage seminomas. In summary, our 

study shows that patients with c-KIT mutations are more prone to develop a 

bilateral TGCT and suggests that in a portion of bilateral TGCTs, c-KIT mutations 

occur early during embryonal development, prior to the arrival of PGCs at the 

genital ridge. Furthermore, our findings show that c-KIT down-regulation occurs 

during the progression of IGCNU to seminoma. 
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Introduction 

Testicular germ cell tumours (TGCTs) are the most common cancer type in young 

men (1). All TGCTs except spermatocytic seminomas originate from intra- tubular 

germ cell neoplasia (IGCNU). Once IGCNU is established, it always leads to 

invasive TGCT (2). Several risk factors for IGCNU have been described, such as 

atrophy of the testis, mumps orchitis, familial predisposition, cryptorchism, gonadal 

dysgenesis and a history of TGCT in the contralateral testis (3); 5% of patients with 

TGCT will develop bilateral disease and epidemiological studies of bilateral TGCT 

revealed that 25% of TGCT patients show a latency period of up to 20 years, again 

stressing the fact that these patients should undergo close follow-up over a longer 

period of time (4). Surgical biopsies, still remaining the only reliable predictor for 

TGCT, should only be offered to high-risk patients with unilateral disease due to a 

high complication rate and a lack of relevance for other cases concerning the 

outcome (5). Nevertheless, it is of high interest to further define causal factors 

triggering development of bilateral TGCT. 

The receptor tyrosine kinase (c-KIT) was first detected in TGCT by Strohmeyer et 

al in 1991 (6) and in IGCNU by Rajpert-De Meyts and Skakkebaek in 1994 (7). In 

human fetal testis, c-KIT is found in gonocytes (8-11), proposed cells of origin of 

IGCNU, is down-regulated after the 25th gestational week (12) and is not 

detectable or expressed at a very low level in fetal and adult spermatogonia (13). 

Detailed immunohistochemical studies showed that c-KIT is highly up-regulated in 

IGCNU (7, 14) and is retained in seminomas (7) but not expressed in non-

seminomas (7, 15). Because the role of c-KIT in IGCNU and seminomas is as yet 

not clear, we studied its expression during the progression of IGCNUs and 

seminomas by immunohistochemistry and quantitative RT-PCR. Furthermore, our 

study aimed to clarify whether bilateral as opposed to unilateral TGCTs are highly 

associated with activating c-KIT mutations, as previously postulated, and whether 

other mutations beside those in codon 816 are involved (16). In contrast to the 

study of Looijenga (16), which identified activating codon 816 c-KIT mutations in 

93% of 61 bilateral TGCTs, lower mutation rates of 17-28.5% were found in two 

previous studies: here, however, only a limited number of bilateral TGCTs were 

examined (17, 18). Therefore, we analysed 22 samples of bilateral (18 seminomas, 
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two embryonal carcinomas, two IGCNUs) and 155 samples (108 seminomas and 

47 non-seminomas) of unilateral TGCT to detect genetic alterations in exons 17 

and 11. In fact, the mutation frequency was significantly higher in bilateral 

compared to unilateral TGCTs (p < 0.001) and all identified mutations were 

localized within exon 17. Interestingly, Y823D activating mutation was frequently 

detected in bilateral TGCT and was identical in both sites in three patients. Results 

from our experiments also show that c-KIT is down-regulated in seminomas 

compared to their IGCNUs and indicate that it is not further up-regulated in 

progressive seminomas. 

 

Materials and methods 

Tissue samples 

Formalin-fixed, paraffin-embedded testicular tissues from 155 patients with 

unilateral TGCT (107 seminomas, 37 embryonal carcinomas, six mixed malignant 

non-seminoma, three yolk sac tumours, one choriocarcinoma and one 

spermatocytic seminoma) and from 12 patients with either bilateral TGCT (18 

seminomas and two embryonal carcinomas) or IGCNU (n = 2) in the contralateral 

testis were collected from the archives of the Departments of Pathology of 

University Medical Centers Bonn, Essen and Giessen. All tumours were classified 

according to the WHO classification, based on their histology, by two independent 

pathologists. Fresh frozen samples of 32 seminomas were additionally available for 

this study. Use of the tissue for scientific purposes was approved by the 

institutional Regional Committee for Ethics. 

 

DNA preparation, PCR and sequencing 

DNA extraction, polymerase chain reaction (PCR) and sequencing were performed 

as previously described (19). Briefly, genomic DNA was extracted after pre-

treatment with proteinase K. The PCR reaction was carried out using Platinum Taq 

polymerase (Invitrogen) in a volume of 50 µl, containing 10 mm Tris-HCl, pH 8.3, 

40 mm KCl, 1.0-2.5 mm MgCl2, 200 mm each dNTP, 20 pM each primer, and 0.25 

U platinum Taq polymerase (Invitrogen). The following conditions were used: for 

exon 11 PCR, 3 min at 94 °C; 37 cycles of 40 s at 94 °C, 40 s at 52 °C, 40 s at 72 
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°C, 5 min at 72 °C; and for exon 17 PCR, 3 min at 94 °C; 37 cycles of 40 s at 94 

°C, 40 s at 48 °C, 40 s at 72 °C, 5 min at 72 °C. The following PCR primers were 

used for direct sequencing: exon 11F, 5-CTATTTTTCCCTTTCTCCCC-3, 11R 5-

TACCCAAAAAGGTGACATGG-3; exon 17F, 5-GGTTTTCTTTTCTCCTCCAAC-3; 

exon 17R, 5-AAACTAAAAATCCTTTGTAGGAC-3. Cycle se- quencing was 

performed using ABI PRISM Dye Terminator Sequencing Kit (Applied Biosystems, 

Weiterstadt, Germany) on a TC 9600 thermocycler (Perkin-Elmer, Germany) with 

20 ng PCR products. All mutations were confirmed by a second independent round 

of DNA extraction, PCR and cycle sequencing. 

 

Restriction endonuclease-mediated selective PCR (REMS-PCR) was performed as 

described previously [16], by generation of an AatII recognition site encompassing 

codon 816, using a modified 3 primer. PCR amplifications were carried out in a 

volume of 50 µl, as mentioned above, under the following conditions: 3 min at 94 

°C; and 37 cycles of 45 s at 94 °C, 30 s at 45 °C, 45 s at 72 °C, 10 s at 72 °C. 20 µl 

each amplification product was digested with 5 U AatII (Fermentas, St. Leon-Rot, 

Germany) at 37 °C overnight. No cleaved PCR product of 106 bp was detected in 

the presence of mutations in codon 816, while wild-type PCR products were 

digested into 85 and 21 bp fragments, respectively. 

 

PCR amplification primers for detection of Y823D mutation by pyrosequencing 

were developed as follows: 823F, forward biotinylated primer, 5-CAGCC- 

AGAAATATCCTCCTTACTC-3; and 823R reverse primer, 5-

ACTGTCAAGCAGAGAATGGGTACT-3. Each PCR mix contained the forward and 

reverse primers (20 pmol each) and the PCR was performed under the following 

conditions: 3 min at 94 °C; 37 cycles of 40 s at 94 °C, 40 s at 65 °C, 40 s at 72 °C, 

5 min at 72 °C. The PCR products (20 µl each) were sequenced using the 

Pyrosequencing PSQ96 HS System (Biotage AB), following the manufacturer's 

instructions, using the primer 5-TACTCACGTTTCCTTTAAC-3. 

 

Exon 17 PCR products of selected samples of bilateral TGCT were cloned into a 

pCR 2.1-vector by TA cloning Kit (Invitrogen) and competent Escherichia coli 
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TOP10 were transformed with ligation products. Positive clones were identified by 

blue/white screening and three individual positive clones were grown in Luria-

Bertani medium overnight. Plasmid DNA was isolated by the alkaline lysis 

(Birnboim-Doly) method. Plasmids were screened for correct inserts by restriction 

digestion with KpnI and XhoI enzymes. Inserts were sequenced using M13 reverse 

and forward primer sets. 

 

RNA preparation and real-time PCR 

Total RNA was extracted with Trizol (Invitrogen, Karlsruhe, Germany) from 

seminomas of different stages; 16 seminomas of pT1, 12 of pT2 and six of pT3 

stages were collected. All samples had RNA integrity number (RIN) values > 8 

(Agilent Bioanalyser 2000, Agilent Technologies). Quantitative PCR (QPCR) was 

performed on cDNA synthesized from 100 ng RNA using nonamer primers, and 

Omniscript Synthesis Kit (Qiagen, Hilden, Germany) using 5 µl PCR supermix from 

Abgene (Abgene, Hamburg, Germany) on the ABI 7900 detection system. The 

intron-spanning primer pairs were designed by Applied Biosystems (Assay ID 

Hs00174029-m1 for c-KIT). Primers were added to the reaction mixture at a final 

concentration of 200 nM. Thermal cycle parameters were: 50 °C for 2 min, 95 °C 

for 10 min, 40 cycles of 95 °C for 15 s and 60 °C for 1 min. All reactions were 

performed in triplicate with ß-actin as an internal control. 

 

Immunohistochemistry 

For immunohistochemistry, dewaxed, 4 µm-thick tissue sections were made from 

paraffin-embedded tissue and microwave-pretreated in citrate-buffer for antigen 

retrieval. Immunohistochemistry was performed using the Dako (Hamburg, 

Germany) EnVision-AEC Kit according to the manufacturer's protocol, using a 

monoclonal antibody to KIT (Dako) as previously described [12]. Briefly, 

endogenous peroxidase was blocked for 5 min in 0.03% H2O2 (diluted in distilled 

water). Sections were washed in Tris-buffered saline (TBS; 0.05 M Tris and 0.85% 

NaCl, pH 7.6) and incubated with primary antibodies overnight at 4 °C and 

thereafter with HRP-labelled polymer conjugated with a secondary antibody. 
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Evaluation and statistics 

Immunohistochemical results from c-KIT staining were assessed independently by 

two pathologists in a semiquantitative manner. The quantity of immunoreactive 

tumour cells was estimated according to the following scheme: < 10%, 10-75%, > 

75% of the tumour cells and None. The level of immunoreactivity was assessed by 

scoring of its predominant intensity: weak (+), moderate (++) and strong (++ +). 

The final immunoreactive score (IRS) was calculated as strong (3) when at least 

75% of the tumour exhibited at least moderate immunoreactivity. In cases of weak 

immunoreactivity in < 10% of all tumour cells, the final IRS was considered as 

negative (0). The score of 2 was assigned if weak immunoreactivity was present in 

> 75% of tumour cells or if in 10-75% tumour cells strong or moderate staining was 

observed. All other cases received a score of 1. Statistical analyses were 

performed by SPSS software (SPSS Inc., Chicago, IL, USA) and included 2, 

Fischer's exact and Wilcoxon tests. 

 

Results 

Frequency of c-KIT exon 17 mutations in bilateral germ cell neoplasia 

Up to three samples of each bilateral testicular germ cell neoplasia were screened 

for codon 816 mutations using the REMS-AatII PCR approach, as previously 

described [16]. In five samples (3a, 3b, 6a, 10a, 12b), REMS-AatII PCR yielded an 

undigested 106 bp product, indicating the presence of a codon 816 mutation 

(Figure 1A). In all other samples, complete digestion of the PCR products was 

achieved (85 and 21 bp products). Sequencing the PCR product revealed that 

three patients carried D816V (Figure 1B) and one patient a D816H mutation. In one 

IGCNU (case 3b), REMS-AatII PCR yielded an undigested 106 bp product, but no 

mutations were detected by direct DNA sequencing. Altogether, c-KIT exon 17 

mutations were detected in 14/22 (63.6%) of bilateral samples by direct 

sequencing. A unique N822K mutation was detected in patient 8. In patients 2, 4 

and 11, Y823D mutations were found in both testes; patient 7 with synchronous 

seminomas had an Y823D mutation in one side and S821F mutation in the other.  
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Figure 1: c-KIT exon 17 mutations 

 

 

 

(A) Representative gel electrophoresis of REMS-PCR of wild-type and codon 816 mutant prior to (lanes 
1 and 3) and after (lanes 2 and 4) AatII digestion. Notice complete digestion of the 106 bp PCR product 
in wild-type and incomplete digestion of the mutant sample. N, negative control where DNA was omitted 
from the PCR reaction (lane 5) and in the digestion (lane 6). M, DNA marker. (B, C) Automated 
sequencing data from amplicons with heterozygous D816V (B, forward), Y823D (C, forward and 
reverse) mutations. The wild-type sequence is shown above and the mutant sequence below. F, 
forward reaction; R, reverse reaction. (D) Representative results from pyrosequencing of the seminoma 
sample from patient 4a detecting the Y823D mutation in 76% of analysed cells 
 



Chapter 5 

 121

Y823D mutation was also detected in normal testicular parenchyma in patient 2, 

and in adjacent IGCNU in patient 7 (Figure 1C). To assure that no codon 816 

mutations were overlooked by analysis of DNA extracts, all cases of germ cell 

neoplasia lacking codon 816 mutations (patients 1, 2, 4, 5, 6b, 7, 8, 9a) were re-

examined by cloning of their exon 17 PCR amplification products. Again, no codon 

816 mutations were detected, either by REMS-PCR of cloned PCR products or by 

direct sequencing.  

We next verified Y823D mutation and quantified the number of mutant alleles 

carrying Y823D by pyrosequencing. To demonstrate assay reproducibility, we 

performed three runs per sample and compared the results in mutated and non-

mutated samples (n = 50). While in non-mutated samples the amount of mutated 

DNA was < 5%, up to 76% of mutated alleles were detected in samples with 

Y823D mutation detected by direct DNA sequencing (Table 1, Figure 1D). All 

results, including REMS-AatIIPCR, direct DNA sequencing and pyrosequencing, 

are summarized in Table 1. The frequency of activating mutations in patients with 

bilateral disease was significantly higher compared to unilateral TGCT (p < 0.001, 

Fischer's exact test). Polymorphism I798l was detected in one case (8b).  
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Table 1. Summary of c-KIT exon 17 mutations in 12 patients with bilateral germ 
cell neoplasia 

 
Invasive TGCT  IGCNU  N  

 

Case Age Diagnosis
REMS-

AatII PCR DS 
REMS-

AatII PCR DS 
REMS-

AatII PCR DS 

 
1a 35 S - None  
1b 34 S - None - None  
2a 35 S - Y823D 

(19%) 
 - Y823D 

(18%) 
2b 35 S - Y823D 

(19%) 
 

3a 41 S + D816V  
3b 41 IGCNU  + None  
4a 38 S - Y823D 

(76%) 
 

4b 40 EC - Y823D 
(27%) 

 

5a 30 S - None - None  
5b 30 S - None - None  
6a 35 S + D816V  
6b 35 S - None  
7a 40 S - S821F - None  
7b 40 S - Y823D 

(23%) 
- Y823D 

(19%) 
 

8a 28 S - N822K  
8b 28 IGCNU  - None 

(I798I) 
 

9a 34 EC - None  - None 
9b 35 S + D816V - None - None 
10a 35 S + D816V - None - None 
10b 35 IGCNU  na na  
11a 36 S - Y823D 

(18%) 
- None  

11b 36 S - Y823D 
(19%) 

 

12a 33 EC na na  
12b 44 S + D816H   

 
DS, direct DNA sequencing; IGCNU, intratubular germ cell neoplasia; S, seminoma; EC, embryonal 
carcinoma; N, normal testicular parenchyma; na, not available; +, undigested PCR product in REMS-
AatII PCR (codon 816 mutation); -, total digestion of PCR product in REMS-AatII PCR (wild-type codon 
816). 
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Frequency of c-KIT exon 17 mutations in unilateral germ cell neoplasia 

Whereas mutations in exon 11 of c-KIT were found in neither unilateral nor bilateral 

TGCT, exon 17 mutations were detected in 10/155 unilateral TGCTs (6.45%), 

including nine seminomas and one embryonal carcinoma (Table 2).  

 

 

Table 2. Summary of c-KIT exon 17 activating mutations in unilateral germ cell 
neoplasia 

 

TGCT  
Contralateral 

testis  
 

Case 
Disease-free 

(years) Age Histology Mutation IGCNU N Histology Mutation 

 
1 3 58 S D816V  SCO  
2 2 44 S N822K  Normal None 
3 4 40 S N822K None Y823D Normal  
4 12 29 EC + S D816V (S)*  Normal  
5 3 26 S Y823D  Normal  
6 4 34 S D816V None  Normal  
7 8 48 S D816V  SCO  
8 3 49 S D816H  Normal  
9 3 26 S C809S None  Normal  

10 4 28 EC + S Y823D 
(EC)* 

Y823D None Normal None 

 
 

 

   S, seminoma; EC, embryonal carcinoma; N, normal testicular parenchyma; SCO, Sertoli cell only. 
  * In case 4, mutation was detected only in the seminomatous component and in case 10 only in the 
embryonal carcinoma component of each TGCT. 
 

Histological examinations of contralateral biopsies from patients with unilateral 

TGCTs carrying c-KIT mutations showed normal testicular parenchyma with 

regular spermatogenesis in eight patients (2, 3, 4, 5, 6, 8, 9 and 10). In contrast, 

contralateral biopsies from patients 1 and 7 revealed a complete atrophy of the 

seminiferious tubules. All 10 patients were free of testicular masses in the 

contralateral testis up to 12 years after the diagnosis. Testicular contralateral 

biopsies of patients 2 and 10 were available for DNA extraction and direct 

sequencing. No exon 17 c-KIT mutations were detected in these samples. 

Interestingly, in patient 3, seminoma and normal parenchyma carried different 
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mutations: N822K mutation was detected in seminoma and Y823D in normal testis. 

In patient 10, Y823D mutation was detected in invasive TGCT consisting of an 

embryonal carcinoma and seminoma as well as in adjacent IGCNU but not in 

normal testicular parenchyma. Polymorphism I798I was detected in 52 unilateral 

TGCTs (33.5%).  

 

Expression of c-KIT during progression of IGCNUs and seminomas 

Expression of c-KIT in precursor lesions was compared to the expression in the 

adjacent seminomas by analysis of immunohistochemical results for KIT staining in 

41 unilateral tumours. Altogether, IRS of 2 was detected in 12 and IRS of 3 in 29 

IGCNU. In invasive seminomas, IRS of 1 was detected in five seminomas, IRS of 2 

in eight, IRS of 3 in 21 and no expression of c-KIT was seen in 7 cases. By 

statistical analysis, KIT-expression was significantly reduced in seminomas 

compared to IGCNU (p = 0.006; Wilcoxon test), as shown by a representative 

example in Figure 2A. Detailed results of c-KIT expression in all individual cases 

are given in Table 3 and representative staining of c-KIT in IGCNUs and 

seminomas are shown in Figure 2.  

 

 

Figure 2 

 

 

 

Examples of c-KIT staining. (A) c-KIT is strongly expressed in IGCNU (IRS of 3) but down-regulated and 
not detectable in adjacent invasive tumour (inset). (B, C) Examples of strongly (B) and moderately (C) c-
KIT-positive seminomas (IRS of 3 and 2, respectively) 
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Furthermore, to check whether the progression of seminomas is associated with an 

increased expression of c-KIT, real-time PCR was performed from mRNA extracted 

from 34 fresh unilateral seminomas at different stages of the disease (pT1, n = 16; 

pT2, n = 12; pT3, n = 6). The average mRNA copy number compared to normal 

testicular parenchyma was 7.08 in pT1 seminomas, 6.8 in pT2 seminomas and 6.0 

in pT3 seminomas (Figure 3). This finding shows that mRNA copy number does 

not increase during the progression of seminomas.  

 

In addition, expression of c-KIT in mutated and wild-type seminomas was 

compared by immunohistochemical analysis. Among mutated seminomas (n = 22, 

13 bilateral and nine unilateral), three had an IRS of 2, and 18 had an IRS of 3. 

Among wild-type seminomas (n = 70, unilateral), IRS of 0 was detected in nine 

cases, IRS of 1 in one case, IRS of 2 in 25 cases and IRS of 3 in 35 cases (Table 

4). By statistical analysis, expression of c-KIT was significantly higher in mutated 

versus wild type seminomas (p = 0.007; Wilcoxon test).  



c-KIT is frequently mutated in bilateral germ cell tumours and down-regulated during progression from 

intratubular germ cell neoplasia to seminoma 

 

 

 

126

 

Figure 3 

 

 

 

Comparison of c-KIT mRNA levels between seminomas of stages pT1, pT2 and pT3 by real-time PCR 
normalized with ß-actin and compared to the expression in normal testis. Bars indicate ± S 

 

 

 

 

 

 

 

 

 

 

 

Table 4. Results of c-KIT immunohistochemistry in 
seminomas with c-KIT exon 17 mutation and in wild-type 
seminomas, as calculated by immunoreactive score (IRS) 

IRS Mutated Wild-type

0 0 9 
1 0 1 
2 3 25 
3 18 35  

 

Table 3. Results of c-KIT immunohistochemistry in IGCNU and 
adjacent seminomas, as calculated by immunoreactive score 

(IRS) 

 
IGCNU-IRS 

Seminoma-IRS 2 3 

0 4 3 
1 0 5 
2 2 6 
3 6 15  
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Discussion 

Receptor tyrosine kinase c-KIT and its ligand Steel factor are not only important for 

proliferation, survival and differentiation of PGCs but also regulate their migration in 

vivo (20). Binding of Steel factor to c-KIT triggers survival of PGCs, while down-

regulation of Steel factor activates apoptosis of PGCs in the midline (21). In adult 

mice mutant for c-KIT, decrease of spermatogonial proliferation and different 

spermatogenic alterations are detected (20), but in infertile human patients no 

alterations of the c-KIT gene have so far been detected (22). In contrast, c-KIT 

mutations occurred in TGCT and their frequency was investigated in previous 

studies by different techniques, including direct sequencing, SSCP and high-

resolution melting amplicon analysis (16, 23, 24). 

 

In previous studies not discriminating between unilateral and bilateral TGCT, most 

mutations have so far been detected in exon 17 in seminomatous germ cell 

tumours, with varying frequencies of up to 40.9% (23-26). A recent study focusing 

on codon 816 of c-KIT has shown that different mutations in this codon (D816V, 

D816H, D816Y) are highly associated with bilateral compared to unilateral TGCT 

(16), but following studies could not reproduce these results (14, 16, 17). Also in 

codon 816, gain-of-function mutations in various other loci of exon 17 were found 

previously in bilateral TGCT and included D820G and N822K mutations; however, 

only very limited numbers of bilateral TGCT were analysed (17, 18). Thus, to study 

the role of c-KIT in bilateral and unilateral germ cell neoplasia, we analysed 22 

bilateral and 155 unilateral TGCTs. Here we demonstrate that the mutation 

frequency in exon 17 of c-KIT is in fact significantly higher in bilateral compared to 

unilateral TGCT (6.5% in unilateral versus 63.6% in bilateral TGCT; p < 0.001, 

Fischer's exact test). Interestingly, the frequency of codon 816 mutations in 

bilateral TGCT was lower in our study and in previous studies compared to the 

study of Looijenga et al(93%), although the additional sensitive technique of 

REMS-PCR was used in our study to detect any alterations within codon 816 (16). 

Surprisingly, Y823D mutation was most frequently found among bilateral TGCTs 

(31.8%) and occurred in three patients on both sites, as well as in normal testis and 

IGCNU. In contrast, D816V and N822K mutations were detected in only one of the 
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two tumours. All these findings indicate that in a subset of bilateral TGCTs, c-KIT 

mutations occur early in germ cells, most likely in migrating PGCs, and therefore 

are identical in both testes, while in others, gene alterations of c-KIT are generated 

in postmigratory or even in neoplastic germ cells. The clinical management 

procedure for patients with TGCT does not necessarily include histological 

examination of the contralateral testis. Because our study shows that c-KIT exon 

17 mutations occur 10 times more frequently in bilateral compared to unilateral 

TGCT, the presence of c-KIT mutation would help to identify patients with higher 

risk for bilateralism, and a contralateral biopsy could reveal IGCNU or TGCT at 

early stages in these patients. 

 

In accordance with most previous studies (18, 24, 25, 27), c-KIT mutations 

preferably occurred in seminomas, because 22/24 (91.6%) detected mutations 

were found in seminomas and only 2/24 (8.4%) in embryonal carcinomas. Except 

for the new mutations, S821F in one bilateral and a C809S in one unilateral 

seminoma, all detected mutations were auto-activating and led to a constitutive 

phosphorylation of c-KIT receptor in absence of SCF (24). Such gain-of-function 

mutations of c-KIT are mutually exclusive oncogenic events in mastocytosis and in 

gastrointestinal stromal tumours (GISTs) (28, 29, 30). This also seems to be the 

case for TGCT, as no other receptor tyrosine kinase except for c-KIT are altered in 

this malignancy (31). The consequence of c-KIT activation in germ cells awaits 

analysis, but detected mutations can potentially lead to malignant transformation, 

as it has been shown in haematopoietic cells (32). 

 

Based on the finding of frequent amplification of the c-KIT gene (in up to 21% of 

seminomas), it was hypothesized that the KIT receptor plays an important role in 

the progression of IGCNU towards seminoma (18). Because gene amplification 

might lead to the overexpression of the corresponding protein, higher expression of 

c-KIT should be expected in invasive seminomas than in IGCNU. Surprisingly, 

analysis of the c-KIT expression in 41 seminomas and their precursor lesions 

revealed significant down-regulation of c-KIT expression in seminomas compared 

to IGCNU (p = 0.006). Furthermore, we did not observe an increase of KIT mRNA 
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levels in pT2/pT3 compared to pT1 seminoma by real-time RT-PCR. These 

findings are in line with previous studies that have detected a loss of c-KIT 

expression during tumour progression, suggesting a role in initiation but not 

progression of seminoma (3, 26, 33). In addition, the immunohistochemical 

analysis revealed that wild-type seminomas show a significantly lower c-KIT 

expression compared to seminomas with c-KIT mutation (Table 4), due to 

seminomas with low or missing c-KIT expression. This result also demonstrates 

that c-KIT expression is lost in a portion of seminomas. Our preliminary data 

indicate that the heterogeneous pattern of c-KIT expression in seminomas 

correlates with the availability of SCF and that SCF, in parallel with c-KIT, is down-

regulated in seminomas compared to IGCNU. Thus, it is likely that activation of c-

KIT by ligand binding plays a role in the initiation of IGCNU and that c-KIT 

activation is lost in progressed seminomas. Further studies are required to confirm 

this hypothesis. 

 

In summary, our study shows that, in contrast to unilateral TGCT, bilateral TGCTs 

frequently carry activating c-KIT mutations at different positions of exon 17. Thus, 

detection of c-KIT exon 17 mutations could help to identify patients at high risk for 

development of TGCT in the contralateral testis. Furthermore, our results suggest 

that Y823D mutations occur in migrating PGCs and that persistent c-KIT activation 

may lead to malignant transformation of immature germ cells to IGCNU. Further 

investigations, including functional studies, are necessary to study the precise 

mechanism of action of c-KIT during the development and differentiation of germ 

cells. 
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Abstract  

Of all malignancies diagnosed in men between 17 and 45 years of age, 60% are 

germ cell tumors (GCT). GCT arises from carcinoma in situ cells, which are thought 

to originate from a transformed fetal germ cell, the gonocyte. Seminoma together 

with embryonal carcinoma represents the most frequent subtypes of GCT. 

However, the nature of the molecular pathways involved in seminoma formation 

remains elusive. Therefore, analysis of appropriate cell culture systems is an 

important prerequisite for further understanding of the etiology of this tumor entity. 

Although several cell lines for embryonal carcinoma have been established and 

analyzed, so far only two cell lines from seminoma patients have been reported. In 

the present study, we have analyzed these seminoma cell lines (TCam-2 and JKT-

1) and compared the gene-expression profiles with those of normal tissue and of 

seminoma and embryonal carcinoma by using DNA Array technology. We have 

found that TCam-2 clusters with the group of classical seminoma, whereas JKT-1 

clusters with the group of embryonal carcinoma. Using reverse 

transcription/polymerase chain reaction, Western blot, and immunohistochemistry, 

we have confirmed the seminoma-like nature of TCam-2, whereas JKT-1 lacks 

expression for most of the genes detectable in GCTs, thus making doubtful the 

germ cell nature of this cell line. The data represent the first genome-wide 

expression analysis of the two cell lines and comparison/clustering with subgroups 

of germ cell tumors. Only TCam-2 seems to represent a suitable in vitro model for 

seminoma.  
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Introduction 

The most abundant malignancies among male population between the ages of 17 

and 45 years are germ cell tumors (GCTs; Adami et al. 1994). They comprise a 

heterogeneous group of neoplasms in terms of their histology, marker expression, 

and age of manifestation. First described by Skakkebaek in 1972, the common 

precursor lesion of all type II testicular GCTs (TGCT; Looijenga and Oosterhuis 

2002), viz., the carcinoma in situ (CIS, TIN, IGCNU), arises from the transformation 

of a gonocyte (Skakkebaek 1972, 1978). In recent decades, the incidence of TGCT 

has increased annually by 3%–6% in the Caucasian population (Oosterhuis and 

Looijenga 2005). Of the Type II TGCTs, 50% manifest as pure seminomas, with 

uniform cells having morphology similar to that of cells in CIS. Seminoma formation 

is believed to be the default pathway of type II TGCT, and the development of a 

non-seminoma requires the re-activation of pluripotency (Oosterhuis and Looijenga 

2005). Interestingly, some seminomas eventually develop into non-seminomas, 

such as embryonal carcinoma, teratoma, yolk sac tumor, or choriocarcinoma. 

Marker genes developed for the diagnosis of seminomas include the marker of 

pluripotency OCT3/4, placental alkaline phosphatase (PLAP), the receptor tyrosine 

kinase KIT, and transcription factor AP-2γ. Moreover, genome profiling studies by 

using various types of TGCTs have shed light on the molecular programs activated 

in these tumors (Skotheim et al. 2002, 2005; Okada et al. 2003; Sugimura et al. 

2004; Almstrup et al. 2005a, b).  

 

In order to improve our understanding of the biology of seminomas, the 

establishment and analysis of cell lines and animal models is mandatory. Although 

no animal models for seminoma are available to date, two groups have been 

successful in generating cell lines, namely JKT-1 and TCam-2 (Mizuno et al. 1993; 

Kinugawa et al. 1998), from seminoma patients. Whereas JKT-1 has been used 

frequently to study seminomas (Jo et al. 1999; Hatakeyama et al. 2004; Kobayashi 

et al. 2004; Roger et al. 2004, 2005; Shiraishi et al. 2005), TCam-2 has been 

utilized in a few cases only (Koshida et al. 2000; Kitazawa et al. 2006; Goddard et 

al. 2007). Since the original reports date from 1993 and 1998 respectively, the cell 

lines were analyzed with the marker sets known at that time. Further studies of 
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these lines would therefore benefit from a thorough side-by-side analysis of the two 

cell lines with DNA Array techniques and up-to-date markers used for classification 

of GCT.  

 

Here we have subjected both cell lines to gene-expression profiling and compared 

the obtained data with that obtained from normal testicular tissue, seminoma, and 

embryonal carcinoma. Using 41 probes indicative for GCT, we demonstrate that 

TCam-2 clusters to pure seminoma, whereas JKT-1 clusters to embryonal 

carcinoma. Further analysis with reverse transcription/polymerase chain reaction 

(RT-PCR), Western blot, and immunohistochemistry shows that TCam-2 expresses 

markers specifically found in seminoma, whereas JKT-1 lacks the expression of 

genes commonly detected in GCT.  

 

 

Materials and methods 

Cell culture 

TCam-2 (obtained from Dr. Janet Shipley, Institute of Cancer Research, Sutton, 

England) was grown in RPMI plus 10% fetal calf serum (FCS), 1% 

penicillin/streptomycin, 200 mM glutamine. JKT1 cells (obtained from Dr. Michiko 

Fukuda, The Burnham Institute, La Jolla, Calif.) were grown in minimal essential 

medium (MEM) plus 10% FCS, 1% penicillin/streptomycin, 200 mM glutamine. The 

EC cell line 2102EP (obtained from Dr. F. Honecker, Hamburg University Medical 

Center, Department of Oncology/Hematology, Hamburg, Germany) was grown in 

Dulbecco’s modified Eagle’s medium:F12 medium (1:1) plus 10% FCS, 1% 

penicillin/streptomycin, 200 mM glutamine. Knut1 ES cells derived in our laboratory 

were grown as published (Peitz et al. 2007). The cells were grown at 37°C and 

under 5% CO2.  

 

Testicular tissues 

All fresh testicular tissue samples used for microarray analysis were obtained 

immediately after orchidectomy. Use of the tissue for scientific purposes was 

approved by an institutional regional committee for ethics. From patients with overt 
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GCTs, three to five tumor samples and, if possible, macroscopically normal 

testicular tissue were excised, snap-frozen, and stored at −80° for RNA extraction. 

The orchidectomy samples were fixed in 4% phosphate-buffered formalin overnight 

at room temperature and embedded in paraffin. All frozen and paraffin-embedded 

tissues were stained by hematoxylin and eosin (H&E) and by 

immunohistochemistry with PLAP antibody. All tumors were classified according to 

the World Health Organization classification of tumors based on their histology and 

assessment of tumor or IGCNU amount.  

 

RNA preparation 

To ensure sample purity, serial sections were taken, and the amount of target 

tissue estimated in the first and last section. Total RNA was extracted from normal 

testis (n=3), seminomas (n=5), and embryonal carcinomas (n=3). RNA was 

extracted either with TRIzol (Invitrogen, Karlsruhe, Germany) or with RNAeasy 

(Qiagen, Hilden, Germany). RNA quality was assessed with a Agilent Bioanalyzer 

2000 (Agilent Technologies, Palo Alto, Calif.), and only samples with an RIN value 

of >8 were used for further analysis.  

 

 

Whole-genome gene-expression array analysis 

Probe preparation, hybridization, image generation, and analysis were carried out 

according to the manufacturer’s guidelines for the AB1700 Microarray system. 

Briefly, 2 μg total RNA were translated in vitro and labeled with digoxigenin-11-

uridine-5′-triphosphate (Roche Diagnostics, catalog no. 03 359 247 910) and 

purified with the rt-IVT-Kit (Applied Biosystems). Digoxigenin-labeled cDNA probes 

were hybridized at 70°C for 16 h to the Whole Human Genome Survey Microarray 

V2.0 (Applied Biosystems) with 32,878 transcripts containing 60-mer DNA probes 

representing 29,098 genes. Visualization was achieved by incubating the 

microarray with an anti-digoxigenin alkaline phosphatase conjugate (Roche 

Diagnostics, catalog no. 11 093 274 910). The Applied Biosystems 1700 

Chemiluminescent Microarray Analyzer was employed to create and analyze 

images and to perform basic quality control and feature extraction.  
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Bioinformatic data processing and analysis 

Using Bioconductor (http://www.bioconductor.org/docs/faq/) R software and the 

AB1700 Data Analysis script (Yongming Andrew Sun, Applied Biosystems), all 

probe sets with FLAG >5000 were removed, and samples with more than 50% 

missing values were excluded from the analysis. Missing values were replaced with 

average signals from replicate arrays within the same subgroup. The data was 

normalized by quantile normalization and transformed to log2 scale.  

 

Western blot 

For protein analysis, we used the Mini-PROTEAN Electrophoresis Cell and Mini 

Trans-Blot system (BioRad, Munich, Germany). Protein was prepared by standard 

protocols and electrophoresed at 30 mA for 90 min. Gels were blotted onto a 

polyvinylidene fluoride membrane in a BioRad blotting chamber overnight at 30 V 

at 4°C according to published protocols. After the membrane had been blocked in 

PBSTM (phosphate-buffered saline, 0.1% v/v Tween 20, 5% low fat milk powder), it 

was incubated in primary antibodies (antibodies raised against: alpha fetoprotein 

[AFP], A008, 1:1,000; PLAP, 8A9, 1:50; Kit, A4502, 1:400; D2-40, M3619, 1:150; 

all from DAKO, Hamburg, Germany; AP-2γ, 6E4/4, 1:200; from Upstate, USA, New 

York; Nanog, N-17, sc-30331, 1:200; OCT3/4, c-10, sc-5279, 1:200, all from Santa 

Cruz, Heidelberg, Germany) in PBSTM for 3 h at room temperature, followed by 

secondary antibodies (anti-rabbit-horseradish peroxidase [HRP], anti-goat-HRP, 

anti-mouse-HRP; all from DAKO, Hamburg, Germany) diluted 1:500 (except for 

Nanog, 1:2,000). Finally, the membrane was incubated in 2 ml PierceSuper Signal 

West Pico chemiluminescent substrate (Perbio, Bonn, Germany, product no. 

34080), and the signal was detected by using Kodak X-Ray film (Kodak, Germany).  

 

RT-PCR protocol 

RNA was isolated from cells and tissues by using TRIzol as described (Jager et al. 

2003). For RT-PCR, 1 μg DNAseI (NEB, Frankfurt, Germany)-digested RNA 

template was used. First-strand cDNA synthesis and PCR were performed 

according to manufacturer’s manual (Invitrogen, Karlsruhe, Germany). PCR was 

carried out at 95°C for 4 min, followed by 30 cycles of 94°C for 30 s, 61°C for 30 s, 
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and 72°C for 30 s, and finally at 72°C for 10 min. The forward (F)and reverse (R) 

primers used were: AFP-F: 5′-AGCTTGGTGGTGGATGAAAC-3′, AFP-R: 5′-

CCCTCTTCAGCAAAGCAGAC-3′; AP-2γ-F: 5′-CCCACTGAGGTCTTCTGCTC-3′, 

AP-2γ-R: 5′-AGAGTCAC ATGAGCGGCTTT-3′; D-glyceraldehyde-3-phosphate 

dehydrogenase [GAPDH]-F: 5′-TGGTATCGTGGAAGGACTCATG AC-3′, GAPDH-

R: 5′-ATGCCAGTGAGCTTCCCGTTCAGC-3′; MAGE-F: 5′-GAGCAG 

ACAGGCCAACCG-3′, MAGE-R: 5′-CGGACTGCGTCTCAGGAA-3′; PLAP-F: 5′-

GGTGAACCGCAACTGGTACT-3′, PLAP-R: 5′-CCCACCTTGGCTGTAGT CAT-3′; 

OCT4-F: 5′-CGAAAGAGAAAGCGAACCAG-3′, OCT4-R: 5′-GCCGGT 

TACAGAACCACACT-3′; DAZL-F: 5′-ATGTTAGGATGG ATGAAACTGAGATTA-3′, 

DAZL-R: 5′-CCATGGAAATTTATCTGTGATTCTACT-3′; VASA-F: 5′-AGAAA 

GTAGTGATACTCAAGGACCAA-3′, VASA-R: 5′-TGA CAGAGATTAGCTTCTTC 

AAAAGT-3′; BOULE-F: 5′-TATAAGGATAAGAAGCTGAACATTGGT-3′, BOULE-R: 

5′-CGAAGTTACCTCTGGAGTATGAAAATA-3′; bone morphogenetic protein-2 

[BMP-2]-F: 5′-TCTGACTGACCGC GTTACTC-3′, BMP-2-R: 5′-

TCTCTGTTTCAGGCCGAACA-3′.  

 

Immunohistochemistry 

The following primary antibodies were used for immunofluorescence: anti-AFP, 

diluted 1:200, A0008; anti-PLAP, diluted 1:50, 8A9; anti-ck18, diluted 1:50; anti-

KIT, diluted 1:200, A4502; anti-D2-40, diluted 1:150, M3619 (all from DAKO); anti-

AP-2γ, diluted 1:200, H77; anti-NANOG, diluted 1:200, N-17; anti-Oct3/4, diluted 

1:100, C-10 (all from Santa Cruz). Detection of primary antibodies was performed 

by using Alexa-488 goat anti-mouse, diluted 1:500; Alexa-488 donkey anti-goat, 

diluted 1:500; and Alexa-594 goat anti-rabbit, diluted 1:500 (all Invitrogen, 

Karlsruhe, Germany).  
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Results 

Morphology and growth parameters 

When comparing the morphology and growth characteristics of TCam-2 and JKT-1 

with each other, several differences and a few similarities could be observed. After 

attachment to the culture flask surface, TCam-2 cells appeared polygonal and flat 

in shape, whereas JKT-1 cells are round (Fig. 1a,b). After a few days in culture, 

JKT-1 cells became polygonal in shape and looked similar to TCam-2, but still a 

few round cells remained (Fig. 1d). TCam-2 cells seemed to need either cell-cell-

contact or a certain cell density for optimal growth, because when the culture was 

initiated at low cell density, the cells required two to three times longer to reach 

exponential growth phase compared with a culture starting with high cell density. 

This property could not be detected when culturing JKT-1. After 5 days in culture, 

TCam-2 formed areas of high cell density in which cells were compressed and 

tightly clustered (Fig. 1c). JKT-1 cells grew in a looser formation (Fig. 1d). TCam-2 

cells displayed higher adherence to the tissue culture surface compared with JKT-1 

cells, suggesting a increased amount of desmosomes in TCam-2 cells. TCam-2 

cells had larger nuclei and enlarged cytoplasm when compared with JKT-1 cells 

(see Supplemental Data S1, online). Both cell lines grew as a monolayer and 

displayed contact inhibition. To determine the doubling time, 1-2×104 cells were 

seeded onto 35-mm cell culture dishes, and the cell number was determined every 

day (Fig. 1e). The calculated doubling times were 27 h for JKT-1 cells and 58 h for 

TCam-2 (see Supplemental Data S2). Hence, TCam-2 and JKT-1 displayed highly 

diverging basic growth characteristics in vitro.  
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Figure 1  

 
 
a–d Comparison of TCam-2 (a, c) and JKT-1 (b, d) cells after 3 days (a, b) and 5 days (c, d) of culture. 
Bar 50 μm. e Growth curve of the cell lines. f Unsupervised hierarchical clustering of normal cells (N; 
n=4), seminomas (S; n=4), embryonal carcinomas (E; n=3), and JKT-1 and TCam-2 cell lines with 41 
probes selected to differentiate between seminomas and embryonal carcinomas was performed to show 
similarity of Z-scores between the different tumour entities and cell lines entities. An unweighted 
averaged (UPGMA) method and Euclidian distance were used to generate the heat map in Spotfire; 
GeneID, Genesymbol, Probe ID, and number (#) are given right (see also Table 1) DNA array analysis 
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In order to determine global gene-expression patterns, RNA was extracted from 

TCam-2 and JKT-1 cells, and DNA array analysis was performed comparing the 

two cell lines with normal germ cell tissue and material derived from GCT. Initially, 

unsupervised hierarchical clustering of seminomas, embryonal carcinomas, and 

normal tissues (UPGMA unweighted average, Euclidean distance) was performed 

by using Spotfire Decision Site for Functional Genomics (Spotfire, Europe, 

Göteborg, Sweden). This showed a convincing clustering of the samples into 

groups of the different entities. The two cell lines JKT-1 and TCam-2 clustered with 

the tumor samples, but no separation between seminoma and embryonal 

carcinoma was possible (not shown). The failure of the unsupervised cluster 

method with 32,878 transcripts to determine whether the cell lines were more 

closely related to seminoma or embryonal carcinoma might have been attributable 

to genes contributed by the tumor samples derived from the stroma and by an 

inflammatory infiltrate that were not present in cell culture samples. To overcome 

this, we used Panther (Celera Discovery systems) and the Gene ontology (GO) 

consortium database to identify and remove genes related to the immune response 

and unclassified genes. A significance analysis of microarrays (SAM 2.21; Tusher 

et al. 2001) was used to extract genes differentially expressed between seminoma 

and embryonal carcinomas.  

 

Finally, a list of 41 probes (corresponding to 39 gene products, see Table 1) that 

were published and validated by ourselves and others (see Table 1 online) was 

used to perform a hierarchical cluster analysis and showed that TCam-2 clustered 

to the group of seminoma, whereas JKT-1 displayed an expression pattern related 

to embryonal carcinoma (Fig. 1f). Relative expression values of the 41 probes are 

shown in Supplemental Data S3 (online).  
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Figure 2 

 
 
a RT-PCR analysis of cDNA of TCam-2 (T) and JKT-1 (J) for expression of the genes indicated (J(40) 
extended PCR protocol with 40 cycles). The gel to check for RNA quality is depicted right (T RNA, J 
RNA). b Western blot analysis of 20 μg TCam-2 and JKT-1 proteins probed with the antibodies 
indicated left (T TCam-2, J JKT-1, S seminoma tissue, EC embryonal carcinoma, ES murine embryonic 
stem cells, N normal testes tissue, P placenta, GIST gastro-intestinal stroma tumour). β-actin 
expression was analysed as a loading control for each experiment (data not shown)  
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RT-PCR, Western blot, and immunohistochemistry 

In order to confirm the data generated by the DNA array analysis, we extracted 

RNA from TCam-2 and JKT-1 cells and tested for the expression of the marker of 

pluripotency OCT3/4, the marker of seminomas AP-2γ, AFP, PLAP, and MAGE-

A4, the marker of spermatocytic seminoma (Fig. 2a). Bands for OCT3/4, AP-2γ, 

and AFP could be detected in TCam-2 cells (Fig. 2a), whereas JKT-1 was positive 

for AFP and displayed only a weak signal for OCT3/4 and AP-2γ after application 

of an extended RT protocol (Fig. 2a, J(40)).  

 

However, the detection of RNA does not necessarily indicate that the respective 

protein is being made. For example, miRNA might inhibit translation, or a short 

half-life of the message might result in reduced protein levels.  

Hence, we performed Western blot analyses in order to determine the protein 

levels of several marker genes upregulated in GCT. The markers of pluripotency 

NANOG and OCT 3/4 and the transcription factor AP-2γ, the receptor tyrosine 

kinase KIT, AFP, D2-40, and cytokeratin 18 (CK18) were expressed (Fig. 2b) In 

TCam-2 cells. On the other hand, only AFP and CK18 protein could be detected in 

JKT-1 cells (Fig. 2b).  

 

The results obtained by Western analysis were further corroborated by 

immunohistochemistry. Again, TCam-2 cells were positive for NANOG, OCT3/4, 

AP-2γ, D2-40, AFP, and CK 18 (Fig. 3), whereas only AFP and CK18 could be 

detected in JKT-1 cells (Fig. 3). Interestingly, both cell lines were positive for 

βHCG, a marker usually found in choriocarcinoma (Fig. 3p,q).  
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Figure 3 

 

 
 
Immunohistochemistry of TCam-2 (a, c, g, i, n, p) and JKT-1 (b, d, f, h, k, m, o, q) cells for NANOG (a, 
b), OCT3/4 (c, d), AP-2γ (e, f), KIT (g, h), D2-40 (i, k), AFP (l, m), CK-18 (n, o), βHCG (p, q). Upper 
right insets: DAPI (4,6-diamidino-5-phenylindole) staining of the nuclei (blue). Bars 10 μm Taken 
together, the data indicated that TCam-2 cells represented a seminoma-like phenotype, whereas the 
classification of JKT-1 required further analysis.  
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Expression of AFP and CK-18 in JKT-1 suggested a yolk-sac-like character of the 

cells. Korkola et al. (2006) reported that yolk-sac tumors displayed high levels of 

BMP-2 compared with other GCTs, thus serving as a classifier for this tumor entity. 

However, BMP-2 could not be detected in JKT-1 cells by using RT-PCR (Fig. 4, 

compare with TCam-2).  

 

Since JKT-1 was negative for most of the GCT markers tested, we analyzed the 

levels of general germ cell markers VASA, DAZL, and BOULE via RT-PCR (Ezeh 

et al. 2005). Again, JKT-1 was negative, whereas TCam-2 was positive for these 

markers (Fig. 4).  

 

Figure 4 

 
 

 
 
 
RT-PCR analysis of cDNA of TCam-2 (T) and JKT-1 (J) cells and human testis (hTestis) for expression 
of genes indicated left  
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Discussion 
 
In vivo studies of material derived from tumors can provide insights regarding the 

complex genetic and cellular interactions of tumors. To address mechanistic issues 

of tumor behavior further, a simplified in vitro system is mandatory.  

 

For seminoma (a subgroup of GCTs), many research groups including our own 

have failed to establish an appropriate cell line. Hence, to date, only two lines 

TCam-2 and JKT-1 have been derived from seminoma (Mizuno et al. 1993; 

Kinugawa et al. 1998). Where several laboratories have utilized mainly the JKT-1 

cell line (Jo et al. 1999; Hatakeyama et al. 2004; Kobayashi et al. 2004; Roger et 

al. 2004, 2005; Shiraishi et al. 2005) as a surrogate for seminoma, TCam-2 

(Koshida et al. 2000; Kitazawa et al. 2006) had been used rarely. Since the cell 

lines were originally published, various novel marker genes have been described 

making the identification and classification of TGCTs more precise and powerful. In 

this study, we have performed a side-by-side comparison of the two cell lines and 

analyzed basic parameters, such as morphology and growth characteristics. 

Fundamental differences in cell adhesion and doubling time have become 

apparent, with TCam-2 growing more slowly (doubling time: 58 h) compared with 

JKT-1 (doubling time: 27 h), data that are in accordance with previous publications 

(Mizuno et al. 1993; Kinugawa et al. 1998).  

 

In this study, we have used a whole-genome approach to compare the gene-

expression profiles of TCam-2 and JKT-1 with those of samples from normal and 

testicular tumor tissue. The analysis has revealed that TCam-2 clusters with the 

group of seminomas, whereas JKT-1 clusters with embryonal carcinomas. Of note, 

the dendrogram algorithm clusters the seminomas and the embryonal carcinomas 

together in two distinct groups, and the cell lines lie in their immediate 

neighborhood. This indicates that the cell lines are closely related to the respective 

tumor entity but not completely identical. This difference might also be attributed to 

the likelihood that the samples generated from tumors represent a mixture of tumor 

and normal tissue displaying a heterogeneity that cannot be modeled in cell culture 

systems. On the other hand, any cell that is taken out of its physiological context 
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and placed into an in vitro culture system might adapt to its new environment and 

consequently change its expression profile, conserving only a part of its original 

expression pattern.  

 

Further analysis with RT-PCR, Western blot, and immunohistochemistry has 

confirmed these findings. The original publication of the TCam-2 cell line did report 

its immunoreactivity with respect to 5G9 (an anti-testicular-cancer monoclonal 

antibody) or 4B3 (PTHrP); here, we have extended the study to demonstrate the 

expression of OCT3/4, NANOG, AP-2γ, KIT, CK18, VASA, DAZL, and D2-40 by 

using RT-PCR, Western blot, and/or immunohistochemistry, thereby adding further 

evidence to the seminomatous nature of TCam-2. However, in our hands, TCam-2 

expresses AFP but not PLAP, whereas the original publication found the cells to be 

AFP-negative and PLAP-positive (Mizuno et al. 1993). This might be an indicative 

of a certain drift of the cell culture over the years in vitro from 1993 to present. 

Since some cells within a seminoma are known to be positive for AFP, a known 

marker for yolk-sac tumors, and since not every seminoma is positive for PLAP 

(Franke et al. 2000), these result do not impact on the overall suitability of TCam-2 

as a cell culture model for seminoma. In addition, TCam-2 displays the 

characteristic gain of chromosomes 9p and 12p, as shown by comparative 

genomic hybridization (Goddard et al. 2007). Goddard et al. (2007) have also 

shown the expression of OCT3/4 and KIT in TCam-2 cells, further confirming our 

data. However, of note, TCam-2 cells express BOULE, which is usually detected in 

adult meiotic germ cells (Ezeh et al. 2005), and βHCG, a marker for 

choriocarcinoma, indicating a distinct difference in the gene-expression pattern of 

this cell line compared with that of seminoma cells in situ.  

 

JKT-1, on the other hand, does not cluster to seminomas but rather seems to 

group with embryonal carcinomas. Like TCam-2, JKT-1 was originally reported to 

be AFP-negative and PLAP-positive but has been found here to be AFP-positive 

and PLAP-negative. Furthermore, JKT-1 lacks expression of KIT and displays low 

levels of AP-2γ. Since these markers discriminate between seminoma (AP-2γ+ and 
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KIT+) and non-seminoma (AP-2γ low, KIT-; Hoei-Hansen et al. 2004; Almstrup et 

al. 2005b; Pauls et al. 2005), JKT-1 cannot represent a seminoma-like cell type.  

 

Moreover, our Western blot and immunohistochemical data have revealed a lack of 

expression of NANOG, OCT3/4, and D2-40 in JKT-1 cells. Lack of pluripotency 

markers and the absence of PLAP and KIT expression has been reported for a rare 

GCT predominantly found in older patients, viz., the spermatocytic seminoma 

(Rajpert-De Meyts et al. 2003). However, JKT-1 lacks expression of MAGE-A4, a 

marker characteristic for this type of seminoma (Rajpert-De Meyts et al. 2003). We 

have been able to obtain a weak band for OCT3/4 indicative of low expression by 

using an extended RT protocol (40 cycles instead of 35 cycles), and one can argue 

that the expression of the OCT3/4 gene might have fallen below the detection 

threshold of Western blot and immunohistochemistry. Since low levels of OCT3/4 

and NANOG have been reported in yolk sac tumors and choriocarcinoma (Korkola 

et al. 2005), we have investigated whether JKT-1 displays increased levels of 

BMP-2, a genetic classifier for yolk-sac tumors (Korkola et al. 2005). However, 

JKT-1 shows no signal for BMP-2 either, also excluding this possibility. We further 

demonstrate that JKT-1 lacks expression of the germ cell markers DAZL (Lifschitz-

Mercer et al. 2002) BOULE, and VASA (Ezeh et al. 2005), raising the question as 

to whether JKT-1 can be regarded as a GCT line at all. Hence, the data presented 

here suggest that JKT-1, although initially clustering to embryonal carcinomas, 

does not express a convincing set of markers indicative for GCTs and germ cells. 

Recent data published by Jong et al. (2007) further strengthen this notion. 

Experiments with JKT-1 as a model system for seminomas must therefore be 

undertaken with an awareness of these apparent discrepancies.  

 

In summary, these analyses clearly show that the TCam-2 should be preferred 

over JKT-1 whenever a cell line with a seminoma-like nature is required.  
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General discussion  

To highlight the pathogenesis of CIS and TGCTs, it is crucial to specify the 

normal differentiation process of human embryonic and fetal germ cells as well as 

to identify factors involved in disturbed embryonic/fetal germ cell differentiation. 

Significant differences were previously observed between murine and human germ 

cell development, and only few studies had been performed in human tissues. 

However, functional studies in mouse indicate a leading role of specific genes in 

specification, migration and differentiation of PGCs. Transcription factor Blimp1 and 

arginine-specific histone methyltransferase Prmt5 are supposed to be crucial in 

specification and maintenance of pluripotency in mouse PGCs [1, 2]. Loss of the 

transcription factor AP-gamma has been shown to induce a complete loss of PGCs 

after their specification [3]. The SCF-c-KIT pathway regulates survival, proliferation 

and migration of mouse and human PGCs [4]. Thus, it is of great importance to 

characterize these genes in human tissues, because all these genes might have a 

major role in the maintenance of gonocytes to adulthood and therefore in formation 

and maintenance of CIS.  

The findings presented in chapter 2 indicate that fetal germ cell 

differentiation in human males is a tightly regulated process, in which the 

gonocytes are prone to differentiate to pre-spermatogonia in a specific period of 

time. We detected proteins which are associated with pluripotency, survival and 

proliferation, including OCT3/4, c-KIT and AP-2gamma, as well as the oncofetal 

marker M2A antigen in gonocytes predominantly between the 12th and 26th 

gestational weeks, but not in the postnatal testis (Figure 1-3, Figure 5). These 

genes were consistently co-expressed in gonocytes, but not in pre-spermatogonia 

(Figure 1-3). The number of gonocytes decreases after week 20, paralleled by an 

increasing number of pre-spermatogonia. The latest population matched the 

morphological criteria proposed by Fukuda [5] and expressed the melanoma 

associated antigen MAGE-A4, which is a specific marker for normal premeiotic 

germ cells [6]. These results are in accordance with previous studies, which 

examined expression of respective markers during fetal development in normal 

male gonads [6-11]. We found that only two different populations of fetal germ cells 

exist during the second and third trimester by morphology and 
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immunohistochemistry: gonocytes and pre-spermatogonia. However, other studies 

proposed the existence of several additional subgroups of fetal germ cells by 

morphology and immunohistochemistry [12, 13], for which we did not find support 

in this study. Differences between our study and the previous reports might be the 

result of different tissue fixation (Bouin fixative versus formalin), different antigen 

retrieval techniques and application of a highly sensitive immunohistochemical 

detection method in the present study.  

Furthermore, we found that the number of gonocytes and pre-

spermatogonia varied significantly depending on the developmental stage. In 

particular, their expression was strongly increased in the 18th/19th week (Figure 5). 

We believe that this peak reflects a burst of proliferation activity of gonocytes as we 

found an increase in both Ki-67 expression and the overall germ cell number, while 

there was a transient decrease in the ratio of Sertoli cells to germ cells at this point 

of development. In general, the number of gonocytes decreased continuously 

during the second and third trimester, while the number of MAGE-A4 positive germ 

cells increased to the same degree. The differentiation process obviously 

progressed after the 25th week, when over 50% of germ cells expressed the 

spermatogonial marker MAGE-A4.  

The study presented in chapter 2 suggests that persistence of immature 

gonocytes beyond the postnatal period indicates a significant disturbance of the 

differentiation process and that the second/third gestational trimester is critical for 

germ cell differentiation. This observation supports experimental data and 

epidemiological studies also indicating that the affected population of cells leading 

eventually to the invasive cancer is only present during a limited time window [14, 

15]. Furthermore, the results presented can serve as a reference for normal fetal 

germ cell development compared to abnormal germ cell differentiation seen in 

cryptorchidism and DSD. Our study strengthen the link between CIS/TGCTs and 

gonocytes, as it was found in a recent study by others by gene expression profiles 

of microdissected cell populations and CIS [16]. 

Recent work of group of Prof. Schorle (Institute of Pathology, Bonn, 

Germany) showed that the transcription factor AP-2gamma is specifically 

expressed in murine PGCs and gonocytes from E7.25 to E12.5. Using a 
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conditional deletion approach for AP-2gamma they found that PGCs are lost 

shortly after specification, which resulted in sterile animals, independently of sex 

[3]. These findings suggested a significant role of AP-2gamma in germ cell biology. 

Because nothing was known so far about the expression of this gene in human 

(T)GCTs, we studied its expression of which the results are presented in chapter 

3, and in addition to fetal tissues (Figure 1 and 2) performed an extensive study in 

GCTs, predominantly TGCTs (Table 1, Figure 3). A study from another group 

investigating AP-gamma expression in (T)GCTs which was published just before 

our study, came to similar results [17]. AP-2gamma expression was consistently 

high in CIS and in seminomas independent of their localization and pathologic 

stage (Figure 3), suggesting AP-2gamma as a potent marker for CIS and for 

(metastatic) seminoma. AP-2gamma was downregulated in embryonal carcinomas 

and its expression was lost in yolk sac tumors and teratomas. This result is in 

agreement with the current model of nonseminoma development, in which genes 

associated with ES cells are downregulated during progression of embryonal 

carcinoma to yolk sac tumor, choriocarcinoma and teratoma [18]. However, 

trophoblastic giant cells in choriocarcinomas were positive for AP-2gamma. Indeed, 

in mice, AP-2gamma expression was found in cells of the trophoblast lineage [19] 

and therefore this expression may reflect regular developmental processes during 

placental differentiation.  

The expression pattern described for AP-2gamma in mice and human 

embryonic germ cells is similar, suggesting that this protein has conserved 

functions in both species. The molecular role of the transcription factor AP-2 is not 

fully understood, and its function in mouse germ cells and TGCTs has been studied 

in the recent paper and in ongoing experiments by the group of Prof. Schorle. The 

paper of Weber et al. showed that PGCs generated in vitro from ES cells lacking 

AP-2gamma upregulate somatic genes (Hoxa1, Hoxb1) and lack of expression of 

germ cell genes (Nanos3 and Dazl) demonstrating that the somatic gene program 

is induced in AP-2gamma deficient PGCs. Consistently, AP-2gamma 

downregulation in TCam-2 resulted in specific upregulation of HOXA1, HOXB1, 

MYOD1, and HAND1, indicative of mesodermal differentiation [3]. These results 

implicate that AP-2gamma is required for PGC and seminoma maintenance by 
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suppression of (mesodermal) differentiation, and suggest that loss of AP-2gamma 

expression may enable the activation of somatic developmental programs, leading 

to differentiation towards nonseminoma. Moreover, results presented in the 

manuscript of Weber et al. suggest that AP-2gamma is a downstream target of 

BLIMP1 (B-lymphocyte induced maturation protein-1; PRDM1), a putative 

regulation of specification in PGCs. This Krüppel-type zinc-finger containing protein 

interacts with the arginine methyl-transferase PRMT5 resulting in a symmetrical 

methylation at arginine 3 of histone H4 and H2A (H4R3me2s/H2Ame2s). The 

methylation in turn represses transcription and therefore suppresses the somatic 

cell fate and keeps PGCs in a pluripotent state. 

In chapter 4 we report on the detection of nuclear expression of the 

transcription factor BLIMP1 and protein arginine methyltransferase-5 PRMT5 in 

gonocytes and showed the presence of the resulting dimethylation of H2A/H4 at 

arginine 3 (Figure 1 and 2) (in absence of BLIMP1, PRMT5 in normal adult testis, 

Figure 3). These findings are in concordance to the observations made in mouse. 

In CIS, a strong nuclear signal of BLIMP1 and of H2K3me2s/H4K3me2s was 

detected, whereas PRMT5 signal was low in CIS and heterogeneous in 

seminomas (Figure 4 and 5, Table 1). Instead, we found expression of another 

type II protein arginine methyltransferase, PRMT7, which also interacts with 

BLIMP1, as demonstrated in TCam2 (Figure 5). This indicates that in CIS and 

seminoma, BLIMP1 recruits PRMT7 to compensate for the lack of nuclear PRMT5 

to mediate H2A and H4 dimethylation. Upon progression of CIS to nonseminomas, 

signal intensity of BLIMP1 decreased and subcellular localization changed. As a 

consequence, H2A/H4 modification decreased and became heterogeneous in 

nonseminomas (Figure 4). Hence, we suggest that the histone H2A and H4 

arginine 3 dimethylation might suppress differentiation of CIS and seminoma, while 

loss of these histone modifications might lead to reprogramming and differentiation 

to embryonal carcinomas and the various subtypes of differentiated 

nonseminomas. Our results strongly suggest that functions of BLIMP1 and AP-

2gamma are conserved in PGCs and seminomas, and that AP-2gamma is a 

downstream target of BLIMP1 [3]. Interestingly, recent work of West and 

colleagues using a unique in vitro ES cell differentiation strategy showed that 
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BLIMP1 is induced by LIN28 by inhibition of let-7 maturation [20]. Functions of 

LIN28 are currently studied in TCam2 in the group of Prof. Looijenga.  

While functions of BLIMP1, PRMT5 and AP-2gamma are their specification 

of PGCs from the epiblast and prevention from somatic differentiation, c-KIT 

regulates their migration and survival. Expression of receptor tyrosine kinase c-KIT 

in CIS and seminomas was described already more than 10 years ago [21, 22], but 

its role in malignant germ cells is still not clear. Recently it has been proposed that 

c-KIT gain of function mutations occur in TGCTs and are predominant in bilateral 

tumors [23] , although initially it was not confirmed by others [24, 25]. In chapter 5, 

we studied functions of c-KIT in TGCTs by sequencing of exon 17 and 11 of c-KIT 

in 155 unilateral and 22 bilateral tumors and analyzing c-KIT expression during 

progression of TGCTs. Our study showed that, in contrast to unilateral TGCT, 

bilateral TGCTs frequently carry activating c-KIT mutations at different positions of 

exon 17 (64% in bilateral versus 7% in unilateral TGCTs, p < 0.001, Fischer's exact 

test) (Figure 1, Table 1 and 2; Figure 1 below). In accordance with most previous 

studies [25-27], 22/24 (91.6%) of detected mutations were found in seminomas and 

only 2/24 (8.4%) in embryonal carcinomas. Surprisingly, the Y823D mutation was 

most frequently found among bilateral TGCTs (31.8%) and occurred in three 

patients on both sites, as well as in normal testis and CIS. 

All these findings indicate that in a subset of bilateral TGCTs, c-KIT 

mutations occur early in germ cells, most likely in migrating PGCs, and therefore 

are identical in both testes, while in others, gene alterations of c-KIT are generated 

in post-migratory gonocytes or CIS. The consequence of c-KIT activation in 

PGCs/gonocytes awaits analysis, but detected mutations can potentially lead to 

malignant transformation, as it has been shown in haematopoietic cells [28]. Till 

now, the clinical management procedure for patients with TGCTs does not 

necessarily include histological examination of the contralateral testis. Because of 

the results in our study, identification of exon 17 mutation would help to identify 

patients with higher risk for bilateralism, and a contralateral biopsy could reveal CIS 

or TGCT at early stages in these patients. 
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Figure 1 represents meta-analysis of data as demonstrated in chapter 5.  

 

Based on the finding of frequent amplification of the c-KIT gene (in up to 21% 

of seminomas), it was hypothesized that the c-KIT receptor plays an important role 

in the progression of CIS towards seminoma [25]. Because gene amplification 

might lead to the overexpression of the corresponding protein, higher expression of 

c-KIT should be expected in invasive seminomas than in CIS. Surprisingly, analysis 

of the c-KIT expression in 41 seminomas and their precursor lesions revealed 

significant down-regulation of c-KIT expression in seminomas compared to CIS (p 

= 0.006) Furthermore, we did not observe an increase of c-KIT mRNA levels in 

pT2/pT3 compared to pT1 seminoma by real-time RT-PCR (Figure 2 and 3, Table 

3). In summary, these findings are in line with previous studies that have detected 

a loss of c-KIT expression during tumour progression, suggesting a role in CIS 

initiation (constitutative activation of c-KIT could provide PGCs and gonocytes with 

survival advantage and thus initiate CIS) rather than in TGCTs progression [29, 

30]. Further investigations, including functional studies, are necessary to study the 

precise mechanism of action of c-KIT during the development and differentiation of 

germ cells. 

The results discussed till here were based mainly on functional experiments in 

mouse models and on expression analysis of human tissues (BLIMP1, PRMT5, 

AP-2gamma and others). To address mechanistic issues of tumor behavior further, 

a simplified in vitro system is mandatory. Seminomas are very difficult to culture 
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(observations in groups of Prof. Schorle and Prof. Looijenga), and only two cell 

lines derived from seminomas, TCam-2 and JKT-1, were described so far [31, 32]. 

Thus, functional studies in seminomas could only be performed after extensive 

characterization of these two known seminoma cell lines, which is presented in 

chapter 6. Previously, several laboratories have utilized mainly the JKT-1 cell line 

[33-38] as a surrogate for seminoma, while TCam-2 [39, 40] was used rarely. Since 

the cell lines were originally published, various novel marker genes have been 

described making the identification and classification of TGCTs more precise and 

powerful. We used this knowledge and performed a side-by-side comparison of the 

two cell lines and analyzed basic parameters, such as morphology and growth 

characteristics. Fundamental differences in cell adhesion and doubling time have 

become apparent, with TCam-2 growing more slowly (doubling time: 58 h) 

compared with JKT-1 (doubling time: 27 h) (Figure 1), data that are in accordance 

with previous publications [31, 32]. Using a whole-genome approach we compared 

the gene-expression profiles of TCam-2 and JKT-1 with those of samples from 

normal testis and TGCTs. The analysis revealed that TCam-2 clusters with the 

group of seminomas, whereas JKT-1 clusters with embryonal carcinomas (Figure 

1).  

Further analysis by RT-PCR, Western blot, and immunohistochemistry 

demonstrated the expression of seminoma genes OCT3/4, NANOG, AP-2gamma, 

c-KIT, VASA, DAZL, and M2A, in TCam2 (Figures 2, 3, 4), thereby adding further 

evidence to the seminomatous nature of TCam-2. In addition, Goddard et al. 

(2007) have also shown the expression of OCT3/4 and c-KIT in TCam-2 cells, 

further confirming our data [41]. Data presented in our study and by others [42] 

suggest that JKT-1 does not exhibit characteristics of seminoma and does not 

express a convincing set of markers indicative for TGCTs and germ cells.  
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Concluding remarks and future prospects 

Analyzing the results of the studies in chapter 2, 3 and 4, and ongoing 

studies, we come to the conclusion that specific programs are active in 

CIS/TGCTs, and functions of specific genes we studied are conserved in PGCs 

and TGCTs. Based on our results we propose the following model for normal germ 

development and CIS formation: during normal embryogenesis, co-expression and 

nuclear localization of the BLIMP1/PRMT5 complex leads to histone H2A/H4 

dimethylation which results in transcriptional silencing of genes responsible for 

somatic differentiation in PGCs. AP-2gamma is a target gene of BLIMP1, and its 

expression adds to suppression of differentiation in PGCs/gonocytes. Upon normal 

differentiation to pre-spermatogonia in fetal testis, the BLIMP1/PRMT5 complex is 

downregulated and the H2A/H4 marks are lost. In contrast, aberrant expression of 

BLIMP1 leads 1) via activation of PRMT5 to persistent histone H2A/H4 arginine 3 

dimethylation and 2) AP-2gamma expression. This process leads to survival of 

gonocytes and to progression into CIS. Downregulation of BLIMP1 and AP-

2gamma in seminoma and CIS might be a prerequisite of differentiation of 

embryonal carcinoma to teratoma, choriocarcinoma and yolk sac tumor. Figure 2 

gives a schematic summary of the proposed actions of BLIMP1, PRMT5 and AP-

2gamma, integrated in a current model of TGCT development.  

Also, our studies showed that transcription factor AP-2gamma can be used 

as a highly specific marker for CIS/seminoma/germinoma/dysgerminoma. Next, 

detection of exon 17 c-KIT mutation could be used in future to reveal patients at 

risk for developing bilateral TGCTs. Here, one of the next points of interest is the 

role of c-KIT in PGCs and relevance of abnormal germ cell migration for the 

development of extragonadal GCTs. 

The group of Prof. Schorle in collaboration with Prof. Looijenga is in the 

process of generating an in vivo model with constitutional activation of the c-KIT 

pathway by constructing a transgene mouse carrying D816V mutation in exon 17 of 

the c-Kit gene. We propose that in contrast to the wild type, in this model PGCs 

migrating in the midline will survive due to suppression of apoptosis by activating c-

Kit and give rise to extragonadal GCTs in mouse. 
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Figure 2. Schematic summary of functions of BLIMP1, PRMT5 and AP-2gamma. BLIMP1/PRMT5 
complex (via histone H2A/H4 dimethylation) and activation of AP-2gamma lead to suppression of 
differentiation in PGCs/gonocytes. Upon normal differentiation to pre-spermatogonia in fetal testis, AP-
2gamma and BLIMP1/PRMT5 complex are downregulated. Aberrant expression of BLIMP1/PRMT5 and 
AP-2-gamma leads to persistence of gonocytes and to CIS formation. In CIS and seminoma, BLIMP1 
interacts with PRMT7 instead of PRMT5. Similar to PGCs/gonocytes, BLIMP1/PRMT7 complex as well 
as AP-gamma expression repress their reprograming to nonseminoma.YST: yolk sac tumor, ChC: 
choriocarcinoma. 

 

For this we acquired financial support of “Deutsche Krebshilfe”. Characterization of 

a seminoma cell model was a prerequisite for future functional studies including 

studies on differentiation of seminoma to a nonseminoma. Last, our findings further 

strengthen the hypothesis of the embryonic/fetal origin of CIS.  
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Summary 

Chapter 1  

Five groups of human GCTs have been classified, including male and 

female, benign and malignant, as well as gonadal and extragonadal tumors. Within 

this classification, malignant seminomatous and nonseminomatous GCTs in males 

and females are designated as type II GCTs (table 1, general introduction). The 

incidence of type II testicular GCTs, i.e., TGCTs, is continuously rising, probably 

due to effects of environmental compounds. All the different histological subtypes 

of TGCTs are derived from a precursor lesion CIS, which represents malignant 

intratubular germ cells with uniform morphology. The pathogenesis of TGCTs is not 

completely understood, but is closely linked to embryonic germ cells. CIS is 

proposed to develop from transformed immature germ cells, the gonocytes. As 

reported in general introduction, many characteristics of type II (T)GCT can be 

linked to ES cells (sensitivity to chemotherapy, gain of the short arm of 

chromosome 12 upon in vitro culturing, expression of stemness genes, including 

OCT3/4, NANOG and SOX2, overall low mutation rate). Recent data show that 

specific genes, including BLIMP1, PRMT5, AP-2gamma and c-KIT are crucial for 

normal PGC development. Studies reported below were done because knowledge 

about normal germ cell development is essential to understand the pathogenesis of 

GCTs and the expression of the genes mentioned above might be crucial in 

CIS/TGCTs formation. 

 

Chapter 2 

In this chapter we present our results obtained from investigation of 61 

normal fetal gonadal tissues from the second and third trimester, by histology and 

immunohistochemistry with antibodies detecting the oncofetal proteins c-KIT, AP-

2gamma, M2A and the spermatogonial marker MAGE-A4, We in fact found a 

consistent co-expression of the transcription factors OCT3/4 and AP-2gamma, c-

KIT and M2A in fetal male germ cells, predominantly between the 12th and 26th 

gestational weeks, and we addressed this expression exclusively to the gonocytes. 

After the 25th week of gestation, a second population of germ cells, matching the 

morphological criteria of pre-spermatogonia expressed MAGE-A4, which is a 
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marker of adult spermatogonia. These more mature germ cells lost their pluripotent 

potential as demonstrated by the downregulation of the pluripotency related 

proteins and acquired a spermatogonial phenotype.  

 

Chapter 3 

AP-2gamma belongs to the family of AP-2 transcription factors which are 

involved in the embryonic development of different organs and regulate cell type 

proliferation and differentiation. The AP-2gamma knock-out mouse is infertile, and 

shows a complete loss of spermatogenesis in the adult testis. We showed that AP-

2gamma is expressed in human gonocytes at weeks 12-37 of gestation, indicating 

a role of this protein in human fetal germ cell development. With increasing 

differentiation of fetal testis, gradual down-regulation of AP-2gamma from the 12th 

to 37th week of gestation was observed. Furthermore, AP-2gamma was expressed 

abundantly in CIS as well as in testicular, metastatic en extragonadal seminomas 

and dysgerminomas of the ovary. In contrast, in embryonal carcinomas and 

choriocarcinomas, only a focal staining was observed. Spermatocytic seminomas, 

teratomas and yolk sac tumors as well as normal adult testis and various control 

tissues were negative for AP-2gamma. We did not detect any expression of AP-

2gamma protein in malignancies other than GCTs. Because of a high sensitivity 

and specificity of AP-2gamma, this marker could be used a diagnostic marker of 

CIS and seminomas in surgical pathology.  

 

Chapter 4 

The germ cell lineage is discriminated from the somatic cells during early 

development by repression of the somatic cell fate in which transcription factor 

BLIMP1 plays a major role. BLIMP1 interacts with protein arginine 

methyltransferase PRMT5, and this complex mediates the symmetrical methylation 

of histones H2A and H4 at arginine 3 (H2AR3me2s, H4R3me2s). This process 

results in the widespread epigenetic modification and transcriptional repression. 

We showed that BLIMP1 and PRMT5 were expressed and arginine dimethylation 

of histones H2A and H4 was detected in human male gonocytes at weeks 12-19 of 

gestation. Moreover, BLIMP1/PRMT5 and histone H2A and H4 arginine 3 
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dimethylation was present in CIS and most seminomas, while downregulated in 

embryonal carcinoma and other nonseminomatous tumors.  

 

 

Chapter 5 

We found that bilateral TGCTs had 10 times higher rate of activating 

mutations within the c-KIT than the unilateral TGCTs. Only 6.4 % of unilateral 

TGCTs, but 63.6 % of bilateral TGCTs had an activating c-KIT mutation. All 

mutations were detected in exon 17 of c-KIT and were identified as activating point 

mutation leading to constitutional phosphorylation of tyrosine-kinase. Importantly, in 

the subset of bilateral TGCTs, we detected the same activating mutations (D816V 

und Y823D) in both independently developed synchronic or metachronic tumors. 

This indicates that mutations in c-KIT gene can occur in the early stages of germ 

cell development, before or during the migration of the PGCs into the gonads. 

Immature germ cells which had acquired with constitutively activated SCF-c-KIT 

pathway could gain survival advantage, which could lead to persistance of 

gonocytes beyond the normal maturation process. Our findings might have a 

practical importance, because detection of c-KIT exon 17 mutations could help to 

identify patients at high risk for development of TGCT in the contralateral testis. In 

addition, we described the analysis of the c-KIT expression in primary seminomas 

and their precursor lesions and compared this expression in metastatic 

seminomas. We found a significant down-regulation of c-KIT in seminomas 

compared to CIS by immunohistochemistry. Furthermore, we did not observe an 

increase of c-KIT mRNA levels in pT2/pT3 compared to pT1 seminoma by real-

time RT-PCR. These findings indicate that c-KIT might not play a significant role in 

the progression of TGCTs. 

 

 

Chapter 6 

Till recently, only cell lines representative for nonseminomas, i.p. 

embryonal carcinomas were available (NT2, Tera-1, 833KE, NCCIT, and 2102Ep). 

Because seminomas are very difficult to culture and dedifferentiation towards 
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nonseminoma might occur during culturing, we compared both known seminoma 

cell lines TCam-2 and JKT-1 with seminoma and embryonal carcinoma by whole 

genome-RNA expression profiles and analysis of specific proteins. We found that 

the cell line TCam-2 clusters with the group of seminoma, whereas JKT-1 clusters 

with the group of embryonal carcinoma. Using reverse transcription/polymerase 

chain reaction, Western blot, and immunohistochemistry, we confirmed the 

seminoma-like nature of TCam-2 cells, whereas JKT-1 cells lacked the expression 

of the genes detectable in seminoma specifically and TGCTs in general, thus 

making doubtful the germ cell origin of this cell line. Thus, only TCam-2 seems to 

represent a suitable in vitro model for seminoma.   

 

Chapter 7 

In the general discussion, we discuss our findings in relation to the current 

literature. We end this chapter with general remarks and integration of our findings 

in the current pathogenetic model. 
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Samenvatting  

 

Hoofdstuk 1 

Bij de mens worden vijf verschillende typen kiemceltumoren (KCT) 

onderscheiden, waaronder die van de man en de vrouw, die goedaardig en 

kwaadaardig zijn, alsook die gonadaal als extragonadaal gelokaliseerd zijn. In deze 

classificatie worden de kwaadaardige seminomateuze en niet-seminomateuze 

kiemceltumoren in mannen en vrouwen type II kiemceltumoren genoemd. De 

incidentie van type II testiculaire kiemceltumoren, i.e., TKCT, vertoont een continue 

toename, waarschijnlijk als gevolg van omgevingsfactoren. Alle verschillende 

histologische varianten van TKCTs ontstaan uit de voorloper CIS, dat 

kwaadaardige intratubulair kiemcellen met een uniforme morfologie aanduidt. De 

pathogenese van TKCTs is niet volledig begrepen, maar vertoont overéénkomsten 

met embryonale kiemcellen. CIS wordt verondersteld te ontstaan uit 

getransformeerde onrijpe kiemcellen, de primordiale kiemcellen/gonocyten. Zoals 

in de algemene introductie besproken, kunnen veel karakteristieken van type II 

(T)KCT gekoppeld worden aan ES cellen (gevoeligheid voor chemotherapie, extra 

copiën van de korte arm van chromosoom 12 na in vitro kweek, expressie van 

stamcel genen, zoals OCT3/4, NANOG en SOX2, en een lage mutatie frequentie). 

Recente gegevens tonen aan dat specifieke genen, waaronder BLIMP1, PRMT5, 

AP-2gamma en c-KIT cruciaal zijn voor normale primordiale kiemcel (PKC) 

ontwikkeling. De te presenteren studies zijn uitgevoerd omdat kennis omtrent 

normale kiemcel ontwikkeling essentieel is voor het begrijpen van de pathogenese 

van KCT, en de expressie van de hierboven genoemde genen zouden cruciaal 

kunnen zijn in CIS/TKCT ontwikkeling.  

 

Hoofdstuk 2  

In dit hoofdstuk presenteren wij de resultaten verkregen door het 

bestuderen van 61 normale foetale gonadale weefsels van de tweede en derde 

trimester, met behulp van immunohistochemie met antilichamen gericht tegen de 

oncofoetale eiwitten c-KIT, AP-2gamma, M2A en de spermatogoniale merker 

MAGE-A4. Wij vonden een consistente co-expressie van de transcriptie factoren 
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OCT3/4 en AP-2gamma, c-KIT en M2A in foetale mannelijke kiemcellen, 

voornamelijk tussen de 12de en 26ste ontwikkelingsweek, en wij toonden aan dat dit 

geheel terug te voeren is op gonocyten. Na de 25ste week van ontwikkeling, een 

tweede populatie van kiemcellen, welke morfologische gelijkenissen vertoont met 

pre-spermatogonia welke MAGE-A4 tot expressie brengen, een merker voor 

spermatogonia. Deze meer uitgerijpte kiemcellen hadden hun pluripotentie 

vermogen verloren zoals aangetoond door de verminderde expressie van de 

pluripotentie gerelateerde eiwitten en het verkregen spermatogoniale karakter. 

 

Hoofdstuk 3 

 AP-2gamma behoort tot de familie van AP-2 transcriptie factoren welke 

betrokken zijn in embryonale ontwikkeling van verschillende organen door middel 

van het reguleren van cel proliferatie en differentiatie. AP-2gamma knock-out 

muizen zijn steriel, en vertonen compleet verlies van spermatogenese in de 

volwassen testis. Wij toonden aan dat AP-2gamma tot expressie komt in humane 

gonocytes in de periode van de 12de tot de 37ste week van ontwikkeling, dat een rol 

van dit eiwit in de ontwikkeling van foetale kiemcellen suggereert. Tijdens het 

proces van kiemcel uitrijping in de foetale testis was er een graduele afname in AP-

2gamma in de 12de tot de 27ste week waar te nemen. AP-2gamma was tevens 

aanwezig in CIS als ook testiculaire, metastatische, en extragonadal seminomen 

en dysgerminomen van het ovarium. Daaréntegen was enkel een focale aanwezig 

te zien in embryonaal carcinoom and choriocarcinomas. Spermatocytaire 

seminomen, teratomen en dooierzaktumoren alsook normale volwassen testis en 

verschillende controle weefsel waren negatief voor AP-2gamma. Wij vonden geen 

expressie van AP-2gamma eiwit in maligniteiten anders dan KCT. Op grond van de 

hoge sensitiviteit en specificiteit van AP-2gamma, kan deze merker gebruikt 

worden in de diagnostiek van CIS en seminomen in de chirurgische pathologie.  

 

 

Hoofdstuk 4 

De kiemcellijn wordt tijdens vroege ontwikkeling afgesplitst van de 

somatische cellen door onderdrukking van somatische differentiatie waarin onder 
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andere de transcriptie factor BLIMP1 een belangrijke rol speelt. BLIMP1 vormt een 

interactie met het arginine methyltransferase eiwit PRMT5, en dit complex medieert 

de symmetrische methylatie van de histon eiwitten H2A and H4 op positie arginine 

3 (H2AR3me2s, H4R3me2s). Dit proces resulteert in een uitgebreide 

epigenetische modificatie en transcriptionele onderdrukking. Wij toonden aan dat 

BLIMP1 en PRMT5 aanwezig zijn in mannelijke gonocyten in de 

ontwikkelingsperiode van 12de tot 19de week, geassocieerd met arginine 

dimethylatie van de histonen H2A en H4. Tevens werd BLIMP1/PRMT5 en histon 

H2A en H4 argininine 3 dimethylatie gevonden in CIS en de meeste seminomen, 

terwijl deze minder aanwezig tot afwezig waren in embryonaal carcinoma and 

andere gedifferentieerde nonseminomateuze componenten. 

 

Hoofdstuk 5 

Wij toonden aan dat tweezijdige TKCT een 10 maal zo hoge frequentie van 

activerende c-KIT mutaies te zien geven dan éénzijdige tumoren. Maar 6.4% van 

de éénzijdige TKCT, maar 63.6% van de tweezijdige TKCT bevatten een 

activerende c-KIT mutatie. Alle mutaties werden aangetroffen in exon 17 van c-KIT 

en werden geïdentificeerd als activerende puntmutaties, leidend to constitutionele 

fosforylatie van tyrosine-kinase. Van belang was de bevinding dat in een subgroep 

van de tweezijdige TKCT dezelfde activerende mutaties (D816V en Y823D) 

aangetoond werden, in zowel de synchrone als metachrone tumoren. Dit impliceert 

dat mutaties in c-KIT ontstaan in vroege stadia van kiemcel ontwikkeling, voor of 

tijdens het proces van migratie van de PKC in de gonaden. De onrijpe kiemcellen 

met een constitutionele geactivieerde SCF-c-KIT signaalroute kunnen 

overlevingsvoordeel vertonen, dat kan leiden tot behoud van gonocyten zelfs nadat 

onder fysiologische condities deze cellen uitgerijpt zouden zijn. Deze observatie 

kan van belang zijn in de praktijk, omdat het aantonen van c-KIT exon 17 mutaties 

informatief kan zijn voor het identificeren van patiënten met een hoog risico op het 

ontwikkelen van een TKCT in de contralaterale testis. Tevens bestudeerden wij de 

expressie van c-KIT in primaire seminomen en de bijgehorende voorlopers, en 

vergeleken dit met gemetastaseerde seminomen. Wij toonden een significante 

afname in c-KIT aan in seminomen ten opzichte van CIS door middel van 
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immunohistochemie. Er werd geen toename van c-KIT mRNA aangetoond in 

pT2/pT3 ten opzichte ban pT1 seminomen door middel van quantitatieve RT-PCR. 

Deze bevindingen suggereren dat c-KIT geen rol hoeft te spelen in de progressie 

van TKCT.     

 

Hoofdstuk 6 

Tot voor kort waren enkel cellijnen beschikbaar afkomstig van 

nonseminomen, voornamelijk embryonaal carcinoom (NT2, Tera-1, 833KE, NCCIT, 

and 2102Ep). Omdat seminomen erg moeilijk zijn om te kweken en mogelijk 

dedifferentiatie naar nonseminoom kan vertonen tijdens deze bewerking, 

vergeleken wij beide seminoom cellijnen TCam-2 en JKT-1 met seminoom en 

embryonaalcarcinoom door middel van totaal genoom-RNA expressie profielen en 

analyse van specifieke eiwitten. Wij vonden dat de cellijn TCam-2 clusterde met de 

groep van seminomen, terwijl JKT-1 clusterde met de groep van 

embryonaalcarcinomen. Met gebruikt van reverse transcriptie/polymerase ketting 

reactie, Western blotting, en immunohistochemie, bevestigden wij de seminoom-

achtige karakteristieken van TCam-2 cellen, terwijl JKT-1 cellen geen expressie 

van de meeste genen te zien gaven aantoonbaar specifiek in seminoom, en TKCT 

in het algemeen, op grond waarvan de kiemcel oorsprong van deze cellijn ter 

discussie staat. Met andere woorden, enkel TCam-2 lijkt representatief als in vitro 

model voor seminoom.  

 

Hoofdstuk 7 

In de algemene discussie worden onze bevindingen besproken in relatie tot de 

huidige literatuur. We besluiten dit hoofdstuk met algemene overwegingen en 

suggesties voor toekomstig onderzoek.   
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Abbreviations 

 

AMH   anti-Mϋllerian hormone 

AFP   alphafetoptotein 

BLIMP1 (PRDM1) B-lymfocyte induced maturation protein-1 

CIS   carcinoma in situ 

DSD   disorders of sex development 

ES   embryonic stem cells  

GCTs    germ cell tumors  

HCG   human chorionic gonadotropin  

HDAC   histone de-acetylase 

HPF   high power field 

IGCNU   intratubular germ cell neoplasia unclassified 

LDH   lactate dehydrogenase 

MIS   Mϋllerian inhibiting substance 

PGCs   primordial germ cells 

PLAP    placental alkaline phosphatise 

PRMT5   arginine-specific histone methyltransferase 5 

PRLND   retroperitoneal lymph node dissection 

RT-PCR  reverse transcriptase polymerase chain reaction 

RT   radiotherapy 

TGCTs    testicular germ cell tumors  

TDS   testicular dysgenesis syndrome 

TIN   testicular intratubular neoplasia 
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