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INTRODUCTION 

1.1 Hematopoiesis and malignant transformation 

In adult humans, the production of blood cells or hematopoiesis is mainly restricted to the 

bone marrow. A small number of pluripotent stem cells, which are capable of self­

renewal, can generate committed progenitor cells. The latter are ineversibly committed to 

the granulocytic, monocytic, erythroid, megakaryocytic or the lymphoid cell lineage. 

After proliferation and differentiation, the mature blood cells entcr the circulation (Figure 

I) (1-6,8). The granulocytic and monocytic cells may be designated as myeloid cells; the 

erythroid cells are sometimes also included in this group. The blood cell formation is 

regulated by hematopoietic growth factors and cellular interactions e.g. with bone 

marrow stromal cells (3,6-11). 

Malignant transformation of hematopoietic cells results in ineffective hematopoiesis. 

Progenitor and/or precursor cells may accumulate due to a maturation arrest. Depending 

on the cell lineage involved, these disorders are refelTed to as myeIodysplastic syndrome, 

acute myeloid or lymphoblastic leukemia, myeloproliferative or lymphoproIiferative 

disease. The myelodyspIastic syndrome and acute myeloid leukemia are the subjects of 

investigation of this thesis. 

1.2 Myelodysplastic syndrome 

The myelodysplastic syndrome (MDS) comprises a group of clonal stem cell disorders 

characterized by ineffective hematopoiesis. In most patients this results in anemia, 

leukopenia and/or thrombocytopenia, often in association with an increased bone malTOW 

cellularity. Morphological abnormalities such as hypogranulation of granulocytes, 

nuclear deformation of erythroblasts and micro-megakaryocytes, are frequently seen (12-

17). The classification of the different types of MDS according to the French-American­

British (FAB) cooperative group has been based on the presence of refractory anemia, or, 

less frequently, a refractory neutropenia or thrombocytopenia. According to the F AB­

system, the myelodysplastic syndrome can be classified into refractory anemia (RA), 

refractory anemia with ringed sideroblasts (RARS), refractory anemia with excess of 

blasts (RAEB), refractory anemia with excess of blasts in transformation (RAEB-t) and 

chronic myelomonocytic leukemia (CMML) depending on the percentages of blasts in 

blood and bone maITOW, percentages of ringed sideroblasts in the bone marrow, numbers 

of monocytes in the blood and the presence of Auer rods (Table I) (12). 
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Schematic representation of the blood cell production. 

In CMML, leucocytosis, splenomegaly and tissue infiltration by monocytes may be 

present. Consequently, this type ofMDS is sometimes considered as a myeloproliferative 

disease (MPD)(l5,16). The FAB classification is relatively easy in use and widely 

applied for diagnostic distinction of MDS in adults and childhood. In children, CMML is 

usually referred to as juvenile myelomonocytic leukemia (JMML) (14,17-19). In 

approximately 30% of patients with MDS, disease progression will occur leading to an 

increase of the percentages of bone marrow blasts, and development into full AML (or 

leukemia transformed (LT)-MDS) (17,18,20-23). 
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Table 1. FAB classification of the myelodyspJastic syndromes 
FAB type Criteria: 

Refractory anemia, neutropenia or thrombocytopenia 

Refractory anemia 
(RA) 

Refractory anemia with ringed 

sideroblasts 
(RARS) 

RA with excess of blasts 

(RAEB) 

RAEB in transformation 
(RAEB-I) 

Chronic myelomonocytic leukemia 
(CMML) 

PB: peripheral blood; BM: bone marrow 

PB: Blasts:s 1 % 
Monocytes:s I x 109/1 
and 
EM; Blasts < 5% 
Ringed sideroblasts:s 15% of erythroblasts 

PB; Blasts:S 1% 

Monocytes SIx 10Y/l 
and 

BM:Blasts < 5% 
Ringed sideroblasts > 15% of erythroblasts 

PB: Blasts> 1 % or 8M: Blasts 2': 5% 
bUI 

PB: Blasts < 5% and BM: Blasts S 20% 

PB Monocytes:s 1 x 109/1 

PB: Blasts.2: 5% 

m 

BM: Blasts> 20% but < 30% 

or 
Aller rods 

PB: Blasts < 5% 
Monocytes> 1 x 109/l 
BM: Blasts < 20% 

Recently, a new classification of myeloid hematological malignancies has been proposed 

by the World Health Organization (WHO) based on morphologic, immunophenotypic 

and cytogenetic abnormalities, as well as on clinical features (Table 2) (24). Here, the 5q­

syndrome is acknowledged as a specific type of MDS as is therapy related MDS. CMML 

and J-CMML are not classified as MDS but as myelodysplastic/myeloproliferative 

diseases. FurthelTIlOre, the WHO classification does not recognize the FAB subtype 

RAEB-t; since AML is defined by the presence of more 20% blasts in the bone marrow, 

hence including the oliginal FAB subtype RAEB-t. 
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Table 2. WHO classification of myeloid malignancies 
Myelodysplastic syndromes 

Refractory anemia with ringed sideroblasts 
Refractory anemia without ringed sideroblasts 
Refractory cytopenia with Tnultilineagc dysplasia 
Refractory anemia with excess of blasts 
5q- syndrome 
MOS, unclassifiable 

Myclodysplastidmyeloprolifcrative diseases 

Chronic myelomonocytic leukemia 
Atypical chronic myelogenous leukemia 
Juvenile myelomonocytic leukemia 

Acute myeloid leukemia (AML) 

AML wi,h '(8;21)(q22;q22)(AMLlIETO) 
Acute promyelocytic leukemia with t(15;17)(q22;qIl_12)(PMURARa) and variants 
AML with abnormal cosinophib and inv(l6)(p13q22) or t(16; 16)(p13;qql1)(CBF{yMYHll) 
AML with llq23 (MLL) abnormalities 
AML with multilineage dysplasia 
-with prior myelodysplastic syndrome 
-without myclodysplastic syndrome 
AML and MDS, thcrapy relatcd 
-Alky lati ng agents 
-Epipodophyllotoxin-relaLcd 
-othcr types 
AML not otherwise categorized 

Acute biphenotypic leukemias 

1.2.2 Pathogenesis and biological features 

MDS is mainly a disorder of the elderly (25.26). Environmental factors, e.g. exposure to 

benzene, insecticides or certain organic solvents, may cause MDS (25,27-29). In 

addition, patients treated for cancer with radiation or chemotherapy e.g. alkylating agents, 

are predisposed to the development of secondary MDS (25,30·33,154,156·158). 

Radiation as well as chemicals may cause gene mutations or chromosome aberrations in 

hematopoietic progenitors which eventually may result in malignant transformation. 

Several gene mutations have been implicated in the pathogenesis of MDS. A few selected 

examples will be mentioned here. Proto-oncogenes like ras can be mutated, especially in 

CMML (34-40). The family of ras genes encode for p21'" proteins with guanosine· 

16 



INTRODUCTION 

triphosphatase (GTPase) activity, which are involved in mitogenic and differentiation­

related signal transduction. Mutations in the.fllls gene have also been reported for CMML 

(39,41). The fins gene at chromosome 5q33 encodes i"r the celI surface macrophage­

colony stimulating factor (eSP-I) receptor (42). Mutations in ras and fins genes may 

contribute to deregulated cell growth. In addition deletions in the early growth response 

gene-l (egr-l) and the interferon regulatory factor-I gene (ilf-i) at chromosome 5q31, 

both putative tumor suppressor genes, have been implicated in the pathogenesis of MDS 

(43,44). Although at low ti'equencies, mutations of the tumor suppressor gene p53 at 

chromosome 17p 13 have also been reported (39,45,46). This gene codes for an apoptosis 

protein which has a role in the cell cycle arrest of cells with DNA damage. As a result of 

mutations of p53, inappropriate expansion of abnormal cells may occur (47-50). 

Abnormal cellular features in the hematopoietic progenitor cells have been demonstrated 

in MDS. Clonogenic assays show reduced growth of hematopoietic progenitors (51-58). 

The inhibited colony forming abilities cannot be overcome by adding supersaturating 

concentrations of growth factors, indicating that the cellular responsiveness of the 

progenitors to growth factor stimulation is impaired. Responsiveness to erythropoietin 

(EPG) is generally defective despite a normal average density of EPG receptors on the 

cell surface and normal ligand binding capacities of the EPG receptor. Stimulation with 

EPG has revealed impaired downstream receptor activation that may involve the signal 

transducer and activation of transcription, STAT5 (58). 

The high bone marrow cellularity in the presence of cytopenia in the peripheral blood of 

patients with MDS can be explained by an increased rate of intramedullary cell death. 

Increased apoptosis has been demonstrated using the in situ end labeling (ISEL) 

technique and with expetiments using fluorescein labeled annexin-V, which binds to 

phosphatidyl serine on apoptotic celIs (59-64). Patients with MDS can also show abenant 

expression of the FAS/APO-I protein (CD95) in their CD34+, CD33+, glycophOlin+ 

bone marrow cells (65,66). Fas/APG-l is a cell sUltace protein which can transduce an 

apoptotic signal when crosslinked with an anti-Fas/APG-I antibody and is known to play 

an important role in normal hematopoiesis (67-70). All these findings provide evidence 

for the important role of apoptosis in the hematological phenotype of MDS (7 I). 

1.3 Acute myeloid leukemia 

Acute myeloid leukemia (AML) is a clonal proliferation of myeloid progenitor cells in 

the bone marrow and often also in the peripheral blood. These cells are still capable of 
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Table 3 .• 'AB classification of the acute myeloid leukemias 

FAB 
type 

MO 

Ml 

M2 

M2eo 

M3 
M3V 

M4 

M4eo 

M4 
baso 

18 

Description 

Acute myeloid leukemia with 
minimal evidence of myeloid 
differentiation 

Acute myeloid leukemia without 
maturation 

Acute myeloid leukemia with 
maturation 

Promyelocytic leukemia 

Acute myelomonocytic leukemia 

Criteria 

Blasts 2: 30% of nucleated BM cells 
Blasts 2: 30% of nonclythroid BM cells* 
< 3% of blasts positive for Sudan black B or 
myeloperoxidase staining 
Blasts positive for myeloid lineage by e.[{. immunological 
markers 

Blasts 2: 30% of nucleated 8M cells 
Blasts 2: 90% of non erythroid 8M cclls* 
2:3% of blasts positive for Sudan Black B or 
myeloperoxidasc staining 
Monocytic component:S 10% of non erythroid 8M cells* 
Maturing granulocytic component :s 10% of nonelythroid 
BM cells* 

Blasts 2:30% of nucleated 8M cells 
Blasts 30-89% of noneryhtroid BM cclls* 
Maturing granulocytic cells> 10% of nonerythroid BM 
cells*. Monocytic component < 20% of nonerythroid BM 
cells* 

As in M2, eosinophils arc increased 

Presence of hypergranular promyelocytes 
M3-variant: hypo granular promylocytes 

Blasts 2: 30% of nucleated BM cells 
Blasts 2: 30% of non erythroid 8M cells* 
Granulocytic component 2: 20% of non erythroid 8M 

cells* 

+ 
BM monocytic component 2: 20% of non erythroid BM 
cc11s*. PB monocytic cells 2: 5 x 109/1 
or 
8M monocytic component 2: 20% of non erythroid 8M 
cells* confirmed by cytochemistry, or increased serum or 
urine lysozyme concentration 
or 
BM resembling M2 but PB monocytic cells 2: 5 x 10911 
confirmed by cytochemistry, or increased serum or urine 
lysozyme concentration 

as in M4, eosinophils arc increased 

as in M4, basophils are increased 



M5 

M6 

M7 

Acute motloblasticl 
monocytic leukemia 

Acute erythroid leukemia 

Acute megakaryoblastic leukemia 

Blasts 2: 30% or nucleated BM cells 
Blasts 2: 30% of non erythroid cells * 

INTRODUCTION 

Monocytic component 2: 80% of non erythroid BM cells* 
M5a: Monoblasts 2: 80% of BM monocytic component 
M5b: Monoblasts < 80% of BM monocytic component 

Erythroblasts 2: 50% of nucleated BM cells 
Blasts 2: 30% of non erythroid BM cells * 

Blasts 2: 30% of nucleated BM cells 
Blasts demonstrated to be megakaryobhlsts by e.g. 
immunological markers 

* Excludes also lymphocytes, plasmacells, macrophages and mast cells 
EM: bone marrow; PE: peripheral blood 

selfrenewal but have generally lost the ability to undergo terminal differentiation. In such 

cases, normal hematopoiesis in the bone marrow is diminished due to the excessive 

proliferation of the leukemic cells. This may result in anemia, granulocytopenia and 

thrombocytopenia. According to the classification of the FAB cooperative group, AML 

can be subdivided into various subtypes depending on the percentages and cytological 

features of the bone marrow blasts, erythroblasts and the presence of leukemic 

promyelocytes (Table 3) (72-75). In AML type Ml and M2, myeloblasts dominate, in 

AML type M3 leukemic promyelocytes are present. In AML M4 and M5 the leading 

cytological phenotype is that of monoblasts, in AML type M6 not only myeloblasts but 

also erytllIoblasts are increased III numbers. Additional immunological analysis is 

required for the classification of AML type MO, undifferentiated AML, and 

megakaryoblastic leukemia, AML type M7 (74,75). The FAB classification is relatively 

easy in use and therefore highly reproducible. 

In the recent WHO classification of AML, in addition to the morphologic and 

immunophenotypic results, the cytogenetic and clinical features are considered (24). 

Thus, four subtypes of AML are recognized: AML with recunent cytogenetic 

translocations, AML with multilineage dysplasia, therapy related AML, and the 

remaining, not otherwise categorized, types of AML (Table 2). The WHO classification 

will be more difficult to apply then the FAB classification. Cytogenetic data have to be 

available. If metaphase analysis is not possible, molecular analysis or FISH on routinely 

made blood or bone marrow smears could be a useful alternative. But then, molecular 

techniques should be standardized. Moreover, international guidelines how to establish 

"dysplasia" and how to define therapy-related, still have to be made. However, it seems 

an improvement that now a distinction is made between de novo AML, with or without 
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CHAPTER 1 

spccific chromosome abelTations, therapy related AML and LT-MDS. The WHO 

classification will prove even more useful when therapies become available for the 

different types of diseases. 

1.3,2 Pathogenesis and biological features 

Several risk factors for developing AML have been reported. Patients with genetic 

syndromes such as Down's syndrome and Fanconi' s anemia are predisposed to AML 

(76-80). Exposure to radiation or chemicals increases the risk of developing AML 

(30,31,33,148,152-158). As in MDS, the malignant transformation of hematopoietic 

progenitor cells is probably a multistep process and may involve alterations in a variety 

of genes involved in cellular growth, differentiation and apoptosis, e.g. genes encoding 

signaling molecules and transcription factors (see paragraph 1.2.2) (41,43,44,46,60,81-

87). 

1,4 De 1l0VO and secondary MDS and AML 

When patients present wilh MDS or AML and neither have a history of prior treatment 

with chemo- or radiotherapy, nor an antecedent myelodysplastic phase, the hematological 

conditions are operationally termed as de novo. In contrast to de novu AML, the bone 

marrow of therapy related MDS or AML (or secondary MDS/AML), often shows 

dysplastic features of the erythroid, myeloid as well as the megakaryocytic cells. In 

addition to the ttilineage dysplasia, an increased reticulin fibrosis can be seen in bone 

marrow tissue sections (14,30,32). Therapy with alkylating agents can induce secondary 

MDS or AML (29-33, J 54, J 56- J 58). These types of thcrapy related MDS and AML are 

frequently associated with abnormalities of chromosomes 5 and or 7 (29,33,154,156-

158). Secondary AML following exposure to topoisomerase-II-inhibitors, usually 

develops without an apparent preceding MDS phase and with a short latent period. 

Rearrangements of chromosome llq23 are often found (J 48, J 52- J 54, 158). 

1.5 Chromosome analysis: cytogenetic and molecular methods 

Cytogenetic and molecular techniques, applied to detect genetic abnormalities in 

hematopoietic cells, conttibute in a major way to the diagnosis MDS or AML. These 

techniques, which can reveal chromosome aberrations, are briefly summarized below. 

20 



INTRODUCTION 

Con.ventional chromosome analysis 

Conventional chromosome analysis requires metaphase preparations which are stained 

with various banding techniques. Chromosomal aberrations found on karyotypic analysis 

may include numerical abnormalities (e.g., loss or gain of a chromosome) and structural 

aberrations (e.g., translocations, amplifications or deletions). The findings are described 

according to the international system for human cytogenetic nomenclature (TSCN) 

(Figure 2) (88). The presence of a clonal abnormality is defined as two metaphases with 

the same additional chromosome or the same structural abnormality, or as three 

metaphases missing the same chromosome. In such instances, an abnormal progenitor has 

given rise to a clone of abnormal cells, which populate the hematopoietic tissues. 

Metaphase analysis allows the evaluation of all chromosomes, and is suitable for 

revealing the presence of multiple and complex changes, as well as clonal progression. 

However, it will only demonstrate these abnormalities in dividing (immature) cells. In 

addition, only a limited number of mitotic cells are usually analyzed and a 

cytogenetically abnormal clone may be missed. The level of resolution of the analysis is 

also limited by the quality of the metaphase spreads and the banding techniques used. In 

order to circumvent these limitations, additional techniques have been introduced in 

recent years, which may be used along side conventional chromosome analysis. 

In situ hybridization 

In situ hybridization (ISH) allows analyzing metaphase and interphase cells for the 

presence of specific chromosomal abnormalities (89-92). This technique is based on base 

pairing of labeled DNA or RNA probes to complementary sequences (Figure 3,4), Probe 

DNA and cellular DNA are denatured by heating, after which the probe is allowed to 

hybridize with the cellular DNA. 

A large variety of probes cloned in cosmids or PI bacteriophage vectors, yeast artificial 

chromosomes (YACs), bacterial artificial chromosomes (BACs), and Pl-detived artificial 

chromosomes (PACs), are available for demonstrating specific chromosomal aberrations. 

Oligonucleotide probes can be chemically synthesized (92,93). Peptide nucleic acid 

(PNA) probes and padlock probes are used for quantitative and high specificity ISH, 

respectively (94,95). Currently, enzymatic incorporation with modified nucleotides 

(nicktranslation) is commonly used to label the probes with repOiter molecules like biotin 

or digoxigenin, fluorochromes like tluorescein isothiocyanate (FITC) (green), 

tetramcthylrhodamine (TMR) (red), amino-methylcoumarin-acetic acid (AMCA) (blue) 
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or Cyanin 5 (Cy5) (far red), or enzymes like alkaline phosphatase or horseradish 

peroxidase (96). When fluorochromes are used for the detection of the hybridized probe, 

the ISH technique is usually refelTed to as FISH. The high sensitivity and high signa1 

resolution, the possibility to analyze multiple different sequences on the cellular DNA 

and to quantify signa1 intensity, makes FISH a powelfu1 technique. DNA sequences of 1 

kb or more, but also whole chromosomes can be visualized with FISH. Fluorescence 

microscopy with dual or triple bandpass filter sets, confocal laser scanning microscopy, 

digital cameras and imaging systems contribute to the visualization of chromosome 

abnormalities at the single cell level. Enzyme labeled probes are visualized by 

precipitation reactions and are mainly used when ISH is applied to tissue sections. 

Figure 2. 
A normal human karyotype with 22 pairs of chromosomes and two sex chromosomes. 
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denaturation 

hybridization 

Figure 3. 
Schematic representation of the fluorescence in situ hybridization technique. 
The probe is labeled with a reporter molecule t:::::::::::J 
After hyblidization the probe is detected with a fluorochrome ~ 

INTRODUCTION 

DNA probe 

detection 

Various variants of the ISH technique have been developed. In ptimed ISH (PRINS), an 

oligonucleotide probe is applied which is hybridized to the cells and serves as a primer 

for DNA polymerase. The incorporated-labeled nucleotides can then be detected (97-99). 

This method is much faster than traditional ISH. 

Multicolor, even 24-color FISH (M-FISH) or spectral karyotyping (SKY) is based on the 

individual painting of each pair of chromosomes in metaphase cells. Probes calTying two 

or more tluorochromes at different ratios are applied. With image analysis systems, all 

chromosomes in a single metaphase can be studied. These techniques have led to the 

detection of cryptic chromosome abnormalities and to the identification of complex 
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chromosome realTangements (100,101). An interesting approach to multi-color FISH has 

been introduced: the combined binary ratio labeling (COBRA) technique which is based 

on labeling of the probes using combinations of three fluorochromes, each combination 

in either the presence or absence of a fourth label (102). 

In the absence of metaphases, comparative genomic hybridization (CGH) can give 

information on genetic gains and losses in tumor cells. In CGH, normal DNA and tumor 

DNA are labeled with two different fluorochromcs. Then, equal amounts of DNA are 

mixed. Following competitive hybridization onto metaphase preparations of 

cytogenetically normal cells, the intensity of the two fluorochromes on each chromosome 

is measured by digital image analysis. If there are no changes in tumor DNA, the ratio 

between the two fluorochromes will be one. In case of amplification or deletion, the ratio 

will shift. Gains, losses and high level amplifications can be detected when clonal 

abelTations are present in at least 50% of the cells (103-107). 

In fiber FISH, naked DNA fibers immobilized to microscope slides are used. The 

technique is especially useful for assessing gene rearrangements (108-110). 

Southern blotting 

When gene rearrangements are present in at least 5-1O% of the cells, the specific DNA 

sequences can be detected by Southern blotting (III). After digesting with restriction 

enzymes and electrophoresis, the DNA fragments are transfelTed to a membrane and 

hybridized with a probe representing the DNA sequence of interest. The labeled, 

hybridized probe can then be used to detect rearrangements with autoradiography. 

Reverse transcriptase-polymerase chain reaction 

The reverse transcliptase-polymerase chain reaction (RT-PCR) is particularly useful for 

demonstrating specific structural gene rearrangements in RNA transcripts (112-114). 

After reverse transcliption and repeated cycles of cDNA denaturation, primer attachment 

and chain amplification, the concentration of the altered cDNA is exponentially 

augmented and can then be analyzed following electrophoresis, blotting and 

hybridization. The RT-PCR technique is sensitive: one cytogenetically aberrant cell can 

be detected among 104 
- 106 normal cells. The technique thus provides a powerful 

approach for analyzing rare cells, sorted subpopulations, colony cells. Southern blotting 

and RT-PCR may be useful for detecting the presence of specific genetic abnormalities in 

conditions where banding techniques reveal no aberrations. 
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Figure 4. 
FISH applied to a metaphase cell and intcrphuse cells using a probe specific for the centromeric region on 
chromosome 7. In the metaphase two chromosomes 7 show the nuorescent centromere. In interphase cells two 
FISH spots represent the chromosome 7. 

Tn the context of clonali ty studies , the analys is of chromosome aberrations does have a 

limitation si nce it may only reveal secondary hits and the primary genetic change may 

rcmaine undetected (179). Cells wi thout a detec table chromosomal aberration may still 

be c10nally derived but may not be part of the cytogenetically abnormal clone. 

1.6 Chromosome a bnormali ties and FAR subtypes 

Specific cytogenetic abnormalities are found in d ist inct AML and MDS FAB types and 

have been reported in the cytological, immunologic, and cytogenetic worki ng 

classification (1 15- 1 17). In ill ustration, certain selected examp les will be mentioned here 

(Table 4). 

In the 1(8;2 1), the AMLJ gene (also known as core binding fac tor-a, CBF-a or CBFA2 

gene) al 21 '122 is fused to the Eight Twenty-One (ETO) gene at 8'122 (1 18.1 19). Thc 

t(8;2 1) is predomjnantly associatcd with AML type M2. although it may bc seen in olher 

FAB Iypes (e.g. M I) as well ( 120. 121). Dysplastic granulocytic precu rsors and an 

increase of eosinophils are often seen in thi s type o r AML. 
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The t(IS;17)(q22;q21), involves the promyc1ocytic (PML) gene atlSq22 and the retinoie 

acid receptor IX (RARa) gene at 17q2 [ (122-128). The latter translocation is mainly seen 

in AML type M3 (122,[25-[30). In about 18% of cases with t(IS;17) an additional 

chromosome 8 (trisomy 8) is present (129,130). In rare cases of acute promyelocytic 

leukemia a translocation t(1l; 17)(q23;q21) is found which results in a fusion of the 

promye[ocytic leukemia zinc finger (PLZF) to the RARa gene (131,132). 

The inv( 16)(p 13q22) and t( 16; 16)(pI3 ;q22) result in the fusion of core binding factor B 

(CBFjJ) gene at 16q22 to the smooth muscle myosin heavy chain (MYHII) gene at 16p13 

(133,134). Thc [alter abelTations correlate with AML type M4 with atypical eosinophils, 

as do deletions of chromosome band 16q22 (135,136). A trisomy 4 is also associated 

with AML type M4 (137,138). 

Table 4. Some examples of chromosomal aberrations associated with distinct acute myeloid leukemia 
FAB types 
FAll Chromosomal Genes involved Reference 

aberration 

AML-M2 

AML-M3 
AML-M3 

AML-M4eo 

AML-M4 

AML-M21M4 baso 

AML-M4/M5 

t(H;2 I )(q22;q22) 

1(15; 17)(422;421) 
t(II;17)(q23;q21) 

inv(16)(p13;q22) or 
I( 16; 16)(p13;422) 
del(16)(q22) 

+4 

1(6;9)(p23;434) 

1(4;11)(q21;q23) 
t(9;11)(p22;q23) 
l( 10; I I) 
(pll-p";q23) 
1(11 ;19)(423;p 13) 

ETO;AMLl 

PML;RARu 
PLZF;RARo. 

MYHll;CBFfl 

DEK;CiIN 

AF4;MLL 
AF9;MLL 

AF10;MLL 
MIL;ENL 

118-121 

122-128 
131,132 

[33-135 

136 

137,138 

139-141 

144,146,148 
146,148,151 

147 
146.148 

The t(6;9)(p23;q34) involves fusion of the CAN gene at chromosome 9q34 to the DEK 

gene at chromosome 6p23. It is mainly seen in AML type M2 or M4 with basophilia but 

Ihe translocation may also be f(JUnd in MDS (139-141). 

Translocations of chromosome 11 at the breakpoint 11q23 involve the mixed lineage 

leukemia or myeloid/lymphoid leukemia (MLL) gene (142,143). This gene is also known 
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as the acute lymphoblastic leukemia (ALL) gene or the human trithorax (HRX or HTRX) 

gene. Common partner genes are AF4 (for ALL-J fused gene from chromosome 4) In 

t(4;II)(q21;q23), AF6 in t(6;11)(q27;'123), AF9 in t(9;11)(p22;q23), AFlD In 

t(lO;II)(pll~pI5;'123) and ENL in t(lI;19)(q23;pI3) but numerous other partner genes 

have been identified in hematological malignancies involving MLL (142-148). Recently, 

self fusion rearrangements of the MLL gene have been documented in patients with AML 

(subtype MI or M2) and a normal karyotype, or trisomy 11 as a sole abnormality 

(149,150). Translocations involving IIq23 are associated with AML types M4 or M5 and 

especially the poorly differentiated form of mono blastic leukemia, AML subtype M5a 

(147,148,151-153). Secondary AML with rcarrangement of the MLL gene are li'cquently 

seen in patients previously treated with topoisomerase-II-inhibitors (148,152-154,158). 

Translocation (8;21 )('122;'122) and inv(16)(p 13'122) have also been observed in patients 

previously treated with topoisomerase-II-inhibitors and/or alkylating agents, but the 

numbers of cases are small (155,158). Translocations involving the MLL gene have also 

been reported in acute lymphoblastic leukemia (ALL) (148,152). 

Trisomy 8 does not correlate with a specific AML or MDS subtype (116, I 17). Deletions 

of parts of the chromosomes 5 and 7, or monosomy 5 and 7, are more frequently seen in 

patients previously exposed to toxic agents (29,33,154,156-158). Loss of chromosome 7 

or dcl(7q) as a sole abnormality is quite common in juvenile MDS and in leukemic 

progression of congenital disorders e.g. severe congenital neutropenia (17-19). 

Dcl(5)(qI2~13, '131~33), as a sole abnormality, is associated with the MDS type RA in 

older women (159-161). Macrocytic anemia, thrombocytosis and typical mononuclear 

megakaryocytes are characteristic of the 5q- syndrome. The multiple chromosome 

abnormalities that are so frequently seen in patients with MDS and AML, are indicative 

of complex molecular changes and suggest successive stages of clonal evolution 

(21,22,29,33,156-158). 

1.7 Clonalily assays 

In AML and MDS, the clonal expansion of a transformed progenitor cell will generate a 

population of malignant cells sharing identical genetic aberrations or, in females, the 

same inactivated X chromosome. To study cell lineage involvement in MDS and AML, 

assays have been based on disease specific, genetic markers or on X chromosome 

polymorphisms in females. These techniques may be applied to sUbpopulations of cells or 

cultured cell populations to establish the clonal involvement of distinct cell lineages. 
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In females, X chromosome inactivation occurs by methylation of either the paternal or 

the maternal X chromosome (162,163). According to Lyon's hypothesis, this is a random 

process that takes place during embryogenesis and results in a balanced distribution of 

cells containing the active paternal and cells containing the active maternal X 

chromosome. Theoretically this should give a ratio 1: 1. A clonal population on the other 

hand, derived from a single cell, Le. with the same X chromosome inactive, will show a 

theoretical 1:0 ratio. In reality, in normal tissues, skewing towards one or the other allele 

is often seen. In practice, this may hamper the interpretation of the analysis with regard to 

c1onality. Different levels of skewing may be seen in specific tissues, and the levels may 

also increase with age (164-166). In addition, the differential methylation patterns, which 

distinguish active from inactive X chromosomes, can complicate the interpretation of 

these assays (167). Therefore, the value of X chromosome analysis depends on the choice 

of the cut-off level for clonality (taking skewing into account) and the use of proper 

control cells. 

Polymorphic X-linked loci like the hypoxanthine phospho-ribosyl transferase (iJprt), the 

phospho-glycerate kinase (pgk), the non-expressed 11127}3 gene or the human androgen 

receptor gene (humara) can be used for clonality studies (81,168-176). Assays may also 

be based on RT-PCR of the X-linked glucose-6-phosphate dehydrogenase (G6PD) 

mRNA, palmltotylated erythrocyte membrane protein (p55) mRNA and iduronate-2 

sulphatase (IDS) mRNA (177,178). Cells without a nucleus, e.g. reticulocytes and 

platelets, can then also be studied. In early clonality studies, iso-enzymes of G6PD have 

been used (179,180). However, heterozygosity of G6PD is less frequent in the Caucasian 

population and therefore not generally applicable. This test has mainly been used in 

African-American female patients (175). 

Mutations of the ras gene family are found in 10-40% of cases with MDS. By applying 

allele specific restriction analysis (ASRA) and single strand conformation polymorphism 

(SSCP) these mutations can be used as clonal markers (40,168). 

Another approach uses polymorphic, short repeated DNA sequences, known as micro­

satellites, which exist throughout the genome. Deletion of the DNA repeals on one allele 

results in loss of heterozygosity (LOH). peR amplification of the repeats allows 

assessment for LOH and can be used in clonality assay (181). 

Cytogenetic abnormalities, when present, can also be used as markers in clonality studies 

(182,183). The varioLls methods available for analysis have been introduced above 

(Paragraph 1.5). To establish the involvement of individual cell lineages in hematological 
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malignancies, FISH on interphase cells is a useful assay especially when used in 

combination with cytology, cytochemistry or immunology and cell sorting (184-188). 

1,8 Introduction to the experimental work and aims of this study 

Clonality studies have shown that in MDS and AML, blasts, granulocytic cells, 

erythroblasts and platelets are c10nalIy derived. The involvement of lymphocytes is less 

consistent in myeloid malignancies. In most studies, techniques based on X chromosome 

inactivation have been used. This implies that whole celI populations collected after cell 

culture or cell separation were analyzed. In these studies individual cells could not be 

evaluated. 

In this thesis a series of investigations arc presented in which clonality was systematically 

analyzed at the single cell level in patients with MDS, LT-MDS and de 110VO AML. A 

standardized definition of de novo AML was applied. FISH was used to detect the 

presence of a specific chromosomal marker in cells stained using cytological or 

immunocytological techniques. This allowed us to determine in which of the maturing 

cells and celI lineages the chromosome abnormality was present (chapter 2,3,4 and 5). 

Furthermore, the presence of clonal and non-clonal celIs within one cell lineage was 

investigated. 

Chapter 3 presents a detailed analysis of the marrow and blood cells from three patients 

with MDS and monosomy 7 with regard to cell lineage involvement, using a combined 

immunocytochemistry and FISH technique. 

In chapter 4, we evaluated and compared cell lineage involvement of a chromosomal 

aberration in MDS, LT-MDS and de novo AML as representative evolutionary stages of 

leukemia progression. 

In chapter 5, lineage involvement was studied in bone marrow cells from a limited cohort 

of patients with AML and t(8;21). 

In chapter 6, experiments were conducted to establish the involvement of 

megakaryocytes in the malignant clone in MDS and LT-MDS using an adapted FISH 

technique and digital image analysis. 

Finally, in chapter 7, the experimental findings of this thesis are summarized and 

discussed. 
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FISH ON MGG SMEARS IN HEMATOLOGIC DiSORDERS 

Abstract 

Bone maITOW and blood from patients with acute myeloid leukemia (Al\1L) and 

myelodysplastic syndrome (MDS) were studied by simultaneous analysis of cell morphology 

and karyotype. A combined technique of May-GrUnwald Giemsa (MGG) for cell 

morphology and fluorescence in situ hybridization (FISH) with du:omosome specific DNA 

probes [or detection of cytogenetic aberrations allowed us to investigate cell-lineage-specific 

chromosomal abnormalities. We introduced video recordings to examine large numbers of 

cells. Bliefly, evaluation was first pelformed on MOO slides, during which cell position and 

morphology were recorded on an S-VHS recorder. Subsequently, the same slides were used 

for FISH. This resulted in the identification of MOO-stained cens on the video screen, and at 

the same, time the interpretation of FISH signals in the fluorescence microscope. Specimens 

of bone malTOW or blood samples from four patients with different hematologic malignancies 

were studied. One of these patients was studied before and after cytotoxic treatment. Oain or 

loss of chromosomes could be detected easily and morphologically assigned to the blasts in 

all patients, and to a variable proportion of the myelomonocytic lineage in two patients, but 

not to the lymphocytes. Thus, this method provides new possibilities for investigating the 

clonality of hematologic malignancies. 

Introduction 

Diagnosis and classification of the mye10dysplastic syndromes (MDS) and acute myeloid 

leukemia (AML) according to the French-American-British (FAB) cliteria are based on 

cytomorphologic examination of peripheral blood (PE) and bone marrow (EM) smears (1-4). 

These may show an increased percentage of blasts and/or typical abnonnalities of cell 

morphology (dysplasia). Cytogenetic abnonnalities, such as translocations and numerical 

changes, are shown by banding techniques of BM and PB cells in metaphase and may 

provide important prognostic and diagnostic infonnation (5,6). These teclmiqucs are 

routinely used as independent methods and provide complementory infonnation. A 

combined technique of cytogenetic analysis and cytologic (or immunologic) identification of 

cells would be useful for relating the chromosomal abelTations directly to the abnormal cells 

and assessing cell-lineage involvement of AML and MDS. Furthermore, an integrated 

cytogenetic/hematologic technique may allow for the specific characterization of 

morphologically atypical cells suspected of belonging to the neoplastic clone. It may also be 

useful for the detection of minimal residual numbers of malignant cells after cytotoxic 

therapy. Approaches based on cytochemistry, immunology, and/or progenitor assays 
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combined with metaphase cytogenetics have been examined previously (7-9) and were 

shown to be applicable to BM from patients with various hematologic disorders. Previously, 

the use of these combined techniques was restricted because the number of analyzable cells 

is relatively small. Furthermore, cells of interest have to be able to divide in vitro so that 

cytogenetic analysis can be applied to the cells during metaphases. The development of 

interphase cytogenetics using repeat DNA probes that are chromosome specific offers new 

possibilities for examining cells exhibiting numerical chromosomal changes. Monosomy 7 

and trisomy 8, as well as the loss of a sex chromosome, are among the most frequent 

nonrandom cytogenetic abelTations seen in hematologic disorders. Studies of patients using 

combined interphase cytogenetics and immunologic or morphologic analysis have recently 

been published (10, ll). 

We report here a fluorescence in situ hyblidization (FISH) technique applied to May­

GrUnwald Giemsa (MGO)-stained slides that permits screening of large numbers of cells 

relatively easily. The use of FISH using chromosome-specific DNA probes in adjunct to the 

recording of the MGG-stained cells on an S-VHS videotaperecorder allows us to relate 

karyotype to morphologically identifiable cells. PB and BM hom four patients with AML or 

MDS and from cytogenetically normal controls are described. 

Materials and methods 

Patients) material 

BM and PB smears were made during standard diagnostic procedures in patients with TvIDS 

and AML. Four patients with numerical cytogenetic abnormalities were selected. 

Hematologic and cytogenetic charactelistics are summatized in Table 1. In addition, BM 

smears from cytogenetically normal subjects were prepared. All smears were made without 

the use of anticoagulants and routinely stained with MGO. Extra MOO slides were kept for 

later FISH study; they were wrapped in foil and stored at -20 C until the time of 

hybridization. The smears were stored for up to 6 months in this study. 

Mmphologic study and video recording 

The smears were thawed slowly, ie, at 4 C for 30 minutes and subsequently at room 

temperature for another 30 minutes. The foil was then removed. Slides were mounted in 

immersion oil (Merck, Dannstadt, Germany). Three or four markings were made at the back 

of the slides with a diamond glass pen to indicate the start of the recorded tracks and thus 

allow relocation of the cells after hybddization. Separate light and fluorescent microscopes 
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were used. Cells were examined with a Standard Universal microscope equipped for light 

microscopy (Zeiss, Oberkochen, Germany) and coupled to a camera (Panasonic WV-CD 

130; Panasonic, Tokyo, Japan) plus an S-VHS video recorder (Jve HR-S4700E; JVe, 

Tokyo, Japan) and a colour video monitor (Panasonic BT-D2000 PSN). The MOO-stained 

cells were recorded on an S-VHS video tape (Fuji Magnetics SE-IXO; Fuji, Tokyo, Japan), 

after which the coverslip was removed from the slide. The slides were then linsed for 10 

seconds in a mixture of ethanol 100% (Neda1co, Bergen op Zoom, Netherlands) and 

methanol 100% (Merck) in a propOltion of95:5. The slides were air-dried. 

Table 1. Patient diagnosis and cytogenetic and morphologic data 

Patient Diagnosis Kllryotype No. of Material Differential 
No. (FAB) Mctaphases Count(%) 

(%) 

l. M3 46,XY 21 (27) BM LPM 90.0 
47,XY,+8, der(9), 57 (73) NEU 2.0 
t(9; 11) (q34;q 13 or q 14), ERY 7.4 
l(15;17) (q22;421) LYM 0.6 

2.'" M2 45,X-Y, l(8;21) 20 (100) BM Blast 65.4 
(q22;q22) NEU 18.6 

ERY 6.4 
LYM 1.6 
Other 8.0 

2.t CR NT BM Blast 0.6 
NEU 78.4 
ERY 17.8 
LYM 3.2 

3. RAEB 46,XX 2 (8) PB Blast 4.8 
48,XX,+8,+9 23 (92) NEU 55.8 

BASO 7.6 
MONO 3.2 
LYM 24.0 
Other 4.6 

4. M7 45,XY,-7 27 (100) PB Blast 40.8 

N" 17.6 
ERY 33.4 
LYM 6.6 
Othcr 1.6 

>I< at diagnosis; t after treatment. NT, not tested; LPM, leukemic promyelocytes; NEU, neutrophils, including 
promyelocytes, myelocytes, mctamyelocytcs, stab cells, and segmcnted neutrophils; ERY, crythroblasts; LYM, 
lymphocytes; BASO, basophilic granulocytes; MONO, monocytes. 
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Probe labeling and hybridization 

The DNA probes that were used, were specific for the alpha-satellite sequences on the 

centromeric region of chromosome 7 (p7tl) (12) and chromosome 8 (D8Z2) (13) (both 

kindly provided by Dr. P. Devilee, University of Leiden, The Netherlands), as well as a 

satellite DNA probe specific for the hetero-chromatic regions of chromosomes 9 (pHUR98) 

(14) (kindly provided by Dr. A. K. Raap, University of Leiden) and Y (pY3.4) (IS) (D. C. 

Page, Whitehead Institute, Camblidge, USA). The probes were labeled by standard nick 

translation using biotin-16-dUTP according to the manufacturer's instructions (Bethesda 

Research Laboratories, Gaithersburg, U.S.A.). The labeled probes were suspended in a 

hybridization mixture at a concentration of 2-5 ng/lll The hybridization mixture contained 

60% formamicJe (Merck) in 2 x standard saline citrate and sodium phosphate buffer pH 7.0 

(2 x SSCP; 300 mM NaCI, 30 mM sodium citrate, 30 mM sodiumphosphate). The probes 

were denaturated at 70-72°C for 4 minutes and then cooled on ice. The MGG stained slides 

were denaturated in 70% formamide 2 x standard saline citrate buffer, pH 7.0 (J x SSC; ISO 

mM NaCI, 15 mM sodium citrate) at 70-72Q C for 2.5 minutes. Slides were then dehydrated 

sequentially in 70%, 80%, 95% and 100% ethanol and air-dried. The 70% ethanol was ice­

chilled. Thereafter, the hybddization mixture containing the probe was applied to the slides 

and a coverslip was added. Hybridization was allowed to occur overnight in a moist chamber 

at 37°C. Subsequently, the slides were washed three times with formamide 50% in 2 x SSC 

at 39-40°C for 10 minutes and then three times [or 5 minutes in 2 x sse at room 

temperature. Finally, the slides were incubated in 4 x sse + 0.05% Tween (Pierce, 

Rockford, U.S.A.) for 10 minutes. The hybridized probe was detected by using fluorescein 

isothiocyanate (FITC)-labe1cd avidin (Vector laboratories, Burlingame, U.S.A.). Cells were 

counterstained with propidium iodide (Sigma, StLouis, U.S.A.). The slides were analyzed 

using a standard 14 IV FL fluorescence microscope (Zeiss) equipped with a (FlTC) filter 

combination 09 (BP 450-490, FT 510, LP 520; Zeiss). The previously recorded MGG­

stained cells were distinguished on the video screen and in parallel in the fluorescence 

microscope, permitting a direct compatison of morphologic and cytogenetic characteristics 

of the cells. 

In each expeliment nonnal cells were run in parallel to check the efficiency of the 

MGGIFISH procedure. 

As a control for the hybridization procedure in the case of chromosome loss, double 

hybridization was performed with a biotin-labeled diagnostic probe and a digoxigenin­

labeled control probe resulting in green (FITC) and red (tetra methylrhodarnine 
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isothiocyanate [TRITe]) fluorescent spots. In other expetiments the control probe was also 

biotin labeled and hyblidyzcd on a separate pUtt of the slide and analyzed independently. 

Results 

The combined MGG/FISH study with video recording was pCltonned to simultaneously 

identify cell morphology and hybridization spots. To establish the FISH technique and 

evaluate its specificity, the distribution of normal values was assessed for all probes in EM 

smears of cytogenetically normal controls. For each control, 500 cells were scored. Table 2 

gives the n01TI1al values expressed as percentage of cells with 0, 1,2, 3 or 4 spots ± standard 

deviations (SD). To assess the disttibution variation of the number of FISH spots in different 

cell types, MGG/FISH with video recording was applied to BM smears hom four 

cytogenetically n01111al controls using a probe specific for chromosome 8 (Table 3). FlSH 

spots in elythroblast were easy to detect and, therefore, the percentage of erylhroblasts with 

one spot is low. The compact nucleus structure of lymphocytes explains the relatively high 

percentage of cells with one spot. MGG-stained smears do respect, to some extent, the 

tridimensional shape of the cell. Therefore, it required careful exploration of the nucleus with 

different depths of focus to detect the spots. 

Table 2. FISH spots on MGG-stained cells from cytogenetically normal subjects 

FISH spots per cell ( mean percentage ± SD) 

Probe No. of 
(chromosome) experimcnts* 0 2 3 4 

p7t1 8 2.4 ± 1.7 97.3 ± 1.7 
(chromosome 7) 

D8Z2 9 3.2 ± 1.1 96.2 ± 1.6 0.4 ± O.S 
(chromosome 8) 

pHUR 98 5 4.7 ± 2.1 95.0 ± 2.3 0.3 ± 0.3 
(chromosome 9) 

pY3.2 9 1.5 ± 1.2 98.2 ± !.l 
(chromosome Y) 

:1: Pi ve hundred cells were scored in each experiment. 
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Table 3. FISH spots per cell type scored on MGG-stained BM slides. Four cytogenetically normal 
subjects analyzed using probe DSZ2 specific for chromosollle S 

FISH spots per ccll type (%) 
Cytogenetic(jlly 
110ll1lal Cell No. of ceJls 
individual type analyzed 0 2 3 4 

1. Blast 6 16.7 H3.3 
NEU 83 2.4 96.4 1.2 
ERY 142 2.8 95.8 1.4 
LYM 58 1.7 6.9 91.4 

2. Blast 4 100 
NEU 171 2.3 97.1 0.6 
ERY 177 1.7 98.3 
LYM 99 6.1 93.9 

3. Blast 3 100 
NEU 97 3.1 96.9 
ERY 49 2.0 98.0 
LYM 27 3.7 n.6 3.7 

4. Blast 4 100 
NEU 249 0.4 1.2 98.4 
ERY 187 3.2 96.8 
LYM 81 6.2 93.8 

NEU: ncutrophils, including promyelocytes, mye1ocytes, Oletamydocytes, stab celis, and segmented 

ncutrophils; ERY, erythroblasts; L YM, lymphoL),tes. 

Table 4 shows the compiled results of the analysis of AML and MDS cells with the 

combined MGGIFISH technique. Hybridization with the chromosome-8-specific probe in 

patient no. I with AML-M3 showed that most of the promyelocytes carried the trisomy X, 

but neutrophils, erythroblasts and lymphocytes did not show the +8 cytogenetic marker 

(Figure 1). The same chromosome probe was applied to the cells of patient no. 3 (refractory 

anemia with excess of blasts [RAEBJ). Here, myeloblasts and significant prop01tions of 

basophils, neutrophils ami monocytes showed the trisomy 8. Thus, these cells were members 

of the malignant clone, but the analysis of +8 positive celIs also shows the coexistence of 

nonnal myeloid cells in addition. Lymphocytes showed the nOlTI1al background distribution 

and apparently did not belong to the leukemic cell population. Since patient no. 3 also 

exhibited a trisomy 9, an analysis with the probe specific for chromosome 9 was conducted 

as an additional experiment. The results of the latter analysis were in agreement with the 

chromosome 8 data (Table 4). Cells from patients no. 2 and 4 were used to vetify the 

usefulness of the technique when chromosomes afe missing. A loss of the Y chromosome in 
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patient no. 2 was apparent in myeloblasts as well as the more mature hypogranulated 

neutrophils but not in erythroblasts and lymphocytes. After the attainment of complete 

remission (CR) in this individual, FISH analysis of myeloblasts still showed the presence of 

a cell population missing the Y chromosome. Because metaphase cytogenetics, at diagnosis, 

showed the association of loss of Y with t(8~21), we interpreted the results as an indicator for 

residual leukemic mye1oblasts: further confinnation of the t(8;21) will have to be peItcmned 

by polymerase chain reaction (peR) analysis. 

Table 4. FISH spots scored on MGG-stained cells from patients with hematologic disorders 

Patient no. FISH spots per cell type (%) 
and No. of 
cytogenetic CelJ ce1!.~ 

marker type analyzed 0 2 3 4 

1. +8 LPM 269 1.5 4.1 94.4 
NEU !3 100 
ERY 87 5.7 94.3 
LYM 26 7.5 92.5 

2. -Y al BiasI 717 100 
diagnosis NEU 41S 100 

ERY 38 5.3 94.7 
LYM 121 2.5 97.5 

2. -Y after Blast 71 I 1.3 88.7 
treaLnlent NEU lS3 3.3 94.8 1.9 

ERY 33 6.1 93.9 
LYM 32 3.1 96.9 

3.+8 Blast 14 100 
NEU 189 0.5 43.4 54.5 1.6 
BASO 24 66.7 33.3 
MONO 48 29.2 70.8 
LYM 66 3.0 94.0 3.0 

3.+tJ Blast 82 1.2 6.1 11.0 81.7 
NEU 649 3.0 75.8 21.0 0.2 
BASO 54 3.7 66.7 29.6 
MONO 91 l.l 60.4 38.5 
LYM 236 11.9 88.1 

4.-7 Blast 410 5.8 87.6 4.9 1.7 
NEU 148 9.4 89.9 OJ 
MONO 9 67.0 33.0 
ERY 206 ILl 87.9 0.5 0.5 
LYM 33 3.0 97.0 

LPM, leukemic prol11yelocyles; NEU, neutrophils, including prol11yelocytcs, myelocytes, metal11yelocytcs, stab 
cells, and segmented nculrophil.~; ERY, erythroblasts; LYM, IYl11phocy!es; BASO, basophilic granulocytes; 
MONO, monocytes. 
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Figure I . 
(A) MOG-stained BM cells from rntient no. I (AML-M3). 
(B) FISH on the same cells with a pmbe s)JCcific for cru'Olllosome 8. TIle so lid arrows indic<ltc the e[ylhrobla..~ IS with 
two signals and the open arrows indicate the leukemic promyc1ocytes with three signals representing the triso1llY R 
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In patient no. 4, the single chromosome 7 could be traced in myeloblasts and 

megakaryoblasts most clearly and according to the quantitative distribution as compared with 

the normal distribution in subpopulations of neutrophils, monocytes and erythroblasts as 

well. Cytogenetically nOlmal and abnormal myeloid monocytic and erythroid cells 

apparently coexist. We attributed the relatively high percentage of lymphocytes with one 

FISH spot in patients no. 1 and 3 to a compact chromatine structure of the nucleus. 

Discussion 

In this study we show the feasibility of a combined MGGIFlSH technique with the use of 

video tapes. This technique allows a direct comparison of morphologically identified cells 

and their cytogenetic status without intervention of cultming or innnunophenotyping. 

Furthermore, morphologic abnormalities like hypogranulation in neutrophils can now be 

coupled to a chromosomal aberration. All our patients showed cytogenetic changes in the 

blasts. Some patients showed cytogenetic abnonnalities in mature myeloid cells, 

elythroblasts and monocytes, but in lymphocytes the amoLlnt of cells with trisomy, 

monosomy or loss of a sex chromosome was not significantly different from normal controls. 

Interestingly, the loss of the Y chromosome in patient no. 2 was detected in all 

hypogranulated neutrophils, indicating that the abnormal myeloid progenitor cell was able to 

mature, which resulted in abnormal granulated cells. When this patient attained a CR, no 

hypogranulated cells were detected, although the combined MGGIFlSH technique still 

showed some blasts without a Y chromosome. Megakaryocytes were difficult to interprete 

because of their variable ploidy, as were eosinophils because of the autofluorescence of 

granules, We found that the use of a mounting medium after staining with MGG containing 

xylol reduced the intensity of the hybridization spot. Immersion oil as mounting medium 

overcomes this technical problem. The combined MGG/PISH technique is a sensitive test for 

identification of cell-lineage involvement of cytogenetic abnonnalities. Selective interphase 

cytogenetic screening of specific cell types, ie, blasts or mature cells, as in patient no. 2 

suggests that the technique can be applied for the detection of residual disease as well as for 

the study of more than one hematologic malignancy in a single individual. In the future, 

experiments with cosmid and Y AC probes may allow for the identification of translocations 

and/or partial deletion in MGG stained interphase cells. 
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CLONALITY ANALYSIS IN MDS WITH MONOSOMY 7 

Abstract 

Bone marrow and blood from three patients with myelodysplastic syndrome (MDS) and 

monosomy 7 were studied for cell lineage involvement of the chromosomal abnmmality. 

Cytogenetic involvement of the myeloid and erythroid cell lineages in 1'vIDS with monosomy 

7 has been shown before. Lymphoid subpopulations have also been investigated but 

generally with negative results. A combined technique of May-Oriinwald-Oiemsa (MOO) 

for cell cytology and intelphase fluorescence in situ hybridization (FISH) using a 

chromosome 7 specific DNA probe was applied. Further, immunophenotypc and genotype 

of the cells were simultaneously examined with alkaline phosphatase anti-alkaline 

phosphatase (APAAP) immunostaining and FISH. The monosomy 7 was found in the blasts 

and in all or in subpopulations of myeloid and elythroid cells. T-cells (CD3+, CDS+) did not 

appear to be involved. B-cells (CD19+, CD22+) showed a normal distribution of FISH spots 

in two patients. In one patient however the loss of a chromosome 7 was found in 

approximately 70% of the cells positive for B-cell markers including CD79a. The results of 

this study show that in some cases MDS is a disease 3lising in a progenitor cell with 

repopulative abilities restricted to myelopoiesis and erythropoiesis. In other cases, the 

pluripotent progenitor cells in MDS may show the capacities to differentiate into B-lineage 

lymphoid cells, as well suggesting that in those instances MDS represents a condition of 

more primitive transformed hematopoietic ancestor cells. 

Introduction 

Myelodysplastic syndrome (MDS) is a group of hematologic disorders characterized by 

ineffective hematopoiesis resulting in a vatiable degree of anemia, leukopenia or 

thrombopenia. Eventually approximately 30% of the patients will show progression to acute 

myeloid leukemia (AML) (1-3). In MDS a hematopoietic progenitor cell is thought to be 

maHgnantly transformed. Blood and malTOW cells derived from the abnormal progenitor 

may replace the nonnal hematopoietic tissue to a v31iable extent. 

Several techniques have been used to study clonality of hematopoiesis in MDS: glucose-6-

phosphate dehydrogenase (G6PD) iso-enzyme analysis and studies using restriction 

fragment length polymorphism (RFLP) of X-linked genes (4-7). Both strategies are based on 

X chromosome inactivation and therefore only applicable on cells of female patients. 

Non-random cytogenetic abnormalities such as del (Sq), monosomy 7 and tlisomy 8 are 

common findings in patients with MDS (2). In case of deletions, the absence of an allele can 

be used as a marker for clonality studies (7,8). When numerical cytogenetic abnormalities 
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are present, the fluorescence in situ hybridization (FISH) technique using chromosome 

specific probes has proved useful. FISH combined with cytology or immunophenotyping 

may provide direct information on the relationship between karyotype and phenotype as well 

as cell lineage (9-13). 

In MDS, studies on cell lineage involvement have demonstrated that cells of myeloid origin 

arc clonally derived. However conflicting results have been published on lymphoid 

involvement (4-17). We have used FISH in combination with cytology and 

immunophenotyping to assess the presence of monosomy 7 especially in B- and T- cell 

lineages in three male patients with MDS and monosorny 7. 

Materials and methods 

Bone marrow and blood cells 

The cells from three patients (two children, onc adult) with MDS and a monosomy 7 

according to conventional cytogenetic analysis (handing techniques), were examined (18-

20). 

Patient no. 1 (age 1 year) had refractOlY anemia with excess of blasts in transformation 

(RAEB-t) 6 months after a documented phase of juvenile chronic myelomonocytic leukemia 

(J-CMML). The monosomy 7 was found in all metaphases (n=3l). Patient no. 2 (age 1 year) 

had refractory anemia (RA). Cells were obtained at time of diagnosis, the loss of 

chromosome 7 was found in 30 of 33 metaphases. Palient no. 3 (age 67 years) developed RA 

21 monlhs afler trealment for AML-M2. Allhe lime of Ihe RA the monosomy 7 was found 

in 38 of 44 metaphases. During the AML phase no cytogenetic aben-ations were detected. 

Bone marrow (BM) smears were made following standard diagnostic procedures and 

routinely stained with May-OrUnwald-Giemsa (MOO). Extra slides were kept [or later 

FISH study; they were wrapped in foil and stored at -20oC until the time of hybridization. 

In addition, BM or peripheral blood (PB) was collected in heparinized tubes and 

centrifuged over Lymphoprep (Nyeomed, Oslo, Norway; density 1.077 g/ml) to obtain a 

mononuclear cell fi-action (MNC). MNC was stored in liquid nitrogen. MOO stained BM 

smears of cytogenetically normal subjects were used as controls of the MGGIFISH 

procedure. MNC of 5 healthy volunteers were centrifuged onto glass slides and used as 

control slides for the combined immunophenotypic analysis and FISH. 

Combined cytomo}ph%gy OJ" immul1ophenotyping andfluorescence in situ hybridization 

Cytology of MOO stained cells and karyotype were examined simultaneously as described 
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previously (13). In short; BM smears were thawed slowly and the MGG stained cells were 

recorded on a S-VHS video tape using a Standard Universal light microscope (Zeiss, 

Oberkochen, Germany) coupled to a camera, a S-VHS video recorder and a color monitor. 

The same slides were used for FISH using a biotinylated probe specific for the a-satellite 

sequences on the centromeric region of chromosomc 7 (p7tl) (21). Following denaturation 

and hyblidization procedures the hybridized probe was detected using fluorescein 

isothiocyanale (FITC) labeled avidin (Vector LaboratOlies, Burlingame, CA, USA). The 

previously recorded MOO stained cells were analyzed on the video screen and in parallel 

employing the fluorescence microscope (standard 14 IV FL, Zeiss) equipped with a filter 

combination 09 (BP 450-490, Fr 510, LP, 520; Zeiss). The latter parallel analysis permitted 

a direct comparison of the cytomorphology and cytogenetic charaetelistics of the cells. In 

each experiment n01TI1al cells were run in parallel to assess the quality of the MGG/FISH 

procedure. 

For alkaline phosphatase anti-alkaline phosphatase (APAAP) inm1llnostaining the 

cryopreserved MNC were resuspended in phosphate-buffered saline (PBS), cytocentrifuged 

mHo glass slides and air dried. A panel of mmine monoclonal antibodies (MoAb) were 

applicd: CD3 (Leu-4; Becton Dickinson, Sunny Vale, CA, USA) and CDS (LeLl-I; Becton 

Dickinson) for identifying T cells; CD19 (B4; Couller Clone, Hialeah, FL, USA), CD22 

(LeLi 14; Becton Dickinson) and CD79a (mb-l HM57; Dr. Mason DY, Oxi(lrd, UK") f(lr B­

cells; CD34 (HPCA2; Becton Dickinson) to characterize hematopoietic progenitors, CDI4 

(My-4; Coulter Clone) for monocytoid cells. Nonnal mouse serum (1: 1000) was used as a 

control for non-specific binding. A three-stage unlabeled bridge method was used for 

detecting the MoAb (23). In short, cytospin slides were fixed in acetone, after which a 

murine MoAb was added. Unlabeled rabbit anti-mouse immunoglobulins (DAKO, High 

Wycombe, UK) and after that an APAAP complex (mouse) (DAKO) were applied. A 

substrate of naphlol AS-MX phosphat (Sigma, St Louis, USA) plus Fast red TR (Sigma) was 

used to obtain a bright red colored and fluorescent complex which is visible in the light and 

in the fluorescence microscope. Positive cells were scored using a light microscope (Zeiss). 

Following the APAAP staining the slides were subjected to the FISH protocol (13). To 

obtain a blue nucleus, cells were counterstained with '4,6-diamidino-2-phcnylindolc (DAPI) 

(Sigma). A fluorescent microscope (Zeiss) equipped with a filter combination 09 (Zeiss) 

permitted simultaneous analysis of the ilmmmophenotypc (APAAP: red fluorescence) and 

the genotype (FISH: green fluorescent spots). For photography cells were exposed twice to a 

400 ASA Kodak film firsl Llsing an excitation filter for FITC (Zeiss) and again using an 
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excitation lilter [or DAPI (Zeiss). 

Fresh MNC from 5 healthy volunteers were also examined according to the APAAP/FISH 

procedure to assess the false-negative background (one or no spot per cell) for the 

chromosome 7 probe per MoAb. 

Table 1. FISH spots scored on MGG~stained bone marrow cells from patients with MDS and monosomy 
7 using prube p7tl 

FISH spots per cell Lype (%) 

No.of cells 
Patient Cell- Differential analyzed 
no. type Count (%) with FISH 0 2 3 4 
l. Blast 14 37 100 

NEU 34 53 100 

MONO 13 27 100 

ERY 14 55 91 9 

LYM 25 12 42 58 

3. Blast 7 86 14 

NEU 39 74 57 43 

ERY 45 77 47 53 

LYM 4 43 6 94 

NEU, neulrophils, including promyeiocyles, myelocytes, metamyelocytes, stab cells, segmented neutrophils; 
MONO, monocytes; ERY, erythroblasts; LYM, lymphoid cells. 

Results and discussion 

The disttibution of normal values for chromosome 7 FISH was assessed in eight MGG 

stained BM smears of cytogenetically normal controls and in each case 500 cells were 

scored. The mean percentages (± standard deviation) of cells with one tluorescent spot were 

2.4 ± 1.7% and for cells with two SPOIS 97.3 ± 1.7%. 

The results of simultaneous analysis of morphology and hybridization spots in EM cells of 

patients no. 1 and 3 wilh MDS arc shown in Table 1. EM slides of patient no. 2 were not 

available. In patient no. 1 the monosomy 7 is found in almost all the blast cells, neutrophils 

(promyelocyte to segment), erythroblasts and monocytes. A subpopulation of the lymphoid 

cells (42%) showed the monosomy 7 as well. 

Tn patient no. 3 the monosomy 7 was apparent in large proportions of blast cells, neutrophils 

and erythroblasts, suggesting that both myelopoiesis and erythropoiesis were partly nonnal, 

partly abnormal. The one fluorescent-two fluorescent spot distribution among lymphoid cells 
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was within the nonnal range. 

APAAPIFISH was applied to peripheral blood MNC of 5 healthy volunteers. For each 

MoAb 80-1000 cells were scored. The normal background of false-positive monosomy 7 

cells by APAAPIFISH was between 5.5% and 2.0%. 

Results of the combined chromosome 7 FISH and immunophenotyping in patients no. 1, 2 

and 3 are given in Table 2. Increased values indicative of monosomy 7 were seen in high 

percentages of CD34 and CD 14 positive cells of all patients: precursor cells and 

monocytes were part of the malignant clone. 

Table 2. Percentages of monosomy 7 cells among immunophenotypically distinct subpopulations in 
controle samples and in three patients with .MDS 

CD3 CDS CDI9 CD22 CD79a CD34, 

Patient I PH 
6 4 68 69 74 99 

Patien{ 2 PB 
3 6 9 2 NT 90 

Patient 3 EM 
5 3 2 3 NT 90 

CDI4 

IOO 

93 

97 

controle 5.5 ± 3.3 2.7 ± 3.8 4.9 ± 2.X 3.9 ± 2.8 4.4 ± 1.2 2.0±3.0 2.7 ± 1.0 
samples 

PB, peripheral blood; BM, bone marrow; NT, not teSled. Patient material: 40AOO APAAP positive cells were 
analyzed per phenotype. Control samples: 80-1000 cells were scored for each MoAb on peripheral blood 
mononuclear cells from five cytogenetically normal subjects. 

The high percentage of CD34 positive cells with monosomy 7 in patient no. 3 and the 

high percentage of cytogenetically normal erythroid and neutrophils in the MGGIFISH 

staining suggests that the normal clone had a maturation advantage at that time. In this 

patient the loss of chromosome 7 is found in a high percentage of CD14 positive cells; 

apparently there is a preference of the malignant clone to mature into monocytcs. CD19 

and CD22 positive cells (B cells) showed normal two-spot distributions in patients no. 2 

and 3. In contrast, in patient no. 1 the loss of chromosome 7 was also apparent in B cells 

as high percentages (68-74%) of CDl9, CD22 and CD79a positive cells showed one 

fluorescent spot. The percentages of FISH spots among T-cells (CD3+, CD5+) were not 

significantly different from normal (Figure l). 
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Figure I. 
(A) Patient I : two cells positive fo r CDS (red fluorescence) showing IwO FIS H spots (green nuorescence) indicating 
two chromosomes 7. (B) Patient I : IwO cells positive for CD 19 (red fluorescence) showing unc FIS H spot (grl..-'Cn 

fluorescence) representing monosomy 7. 
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The results in patients no. 2 and 3 are consistent with previous repOlts on cytogenetic cell­

lineage involvement in .MDS. Several authors found chromosomal abenations in the 

myeloid lineage, but lymphoid cells did not differ from nOIDlal controls. Knuutila et a1.9 used 

the morphology-antibody-chromosome (MAC) technique, Kibbelaar et a1. 11 combined 

immunophenotyping and FISH. Gerritsen et a1.10 separated peripheral blood cells according 

to sUlt'ace markers specific for the lymphoid and myeloid cell lineage with a cell sorter and 

analyzed for the loss of cluomosome 7 by FISH (10). Kroef et al. 6 analyzed patients with 

MDS and del 5q (8). Cells were separated into ti"actions of different cell types by cell sorting 

after which they were analyzed for loss of heterozygosity using highly polymorphic mini­

repeat sequences from the 5q3 I to 5q33 region. Anastasi et a1. 12 studied MDS patients before 

and after growth hlctor therapy using MGGIFISH (12). Our data and those of others indicate 

that in MDS the chromosomal abnonnality arise in a precursor cell of both myeloid and 

erythroid lineage which is capable of maturing. 

In patient no. I the MGGIFISH on bone marrow cells revealed a high percentage (42%) of 

lymphocytes showing one chromosome 7 however the number of lymphocytes investigated 

this way was very low (12). MGG/FISH on the peJipheral blood MNC of the patient gave 

similar results: 300 lymphocytes were analyzed, in 29% of the lymphocytes the monosomy 7 

was apparent. FISH was also applied to the PB MNC of patient no. 1 using a probe specific 

for chromosome 8 (DSZ2). Of all the lymphoid cells, 95% showed two spots indicating that 

two chromosomes 8 were present and that the stmcture of the lymphoid nucleus allowed the 

analysis of more than one FISH spot (data not shown) (13). A high percentage (±70%) of the 

B cells identified according to CDI9, CD22 or CD79a surface marker positivity exhibited a 

loss of chromosome 7. In the APAAP irnmunostaining these cells resemhled small to 

medium sized mononuclear cells with round nuclei. 

Until now two studies have presented evidence for chromosomal involvement of the 

lymphoid lineage in MDS (16,17). In one study, cytogenetic analysis in Epstein-Ban virus 

(EBV) transformed B Iymphoblastoid cell lines contained del (13q) in two patients with 

RARS. Only normal metaphases were found in phytohemagglutinin (PHA) stimulated 

lymphocytes. White et a1.17 used metaphase analysis and microsatellite PCR to detect a del 

(20q) in pmified populations of granulocytes and monocytes of a MDS patient (17). EBV 

transformed B cell lines carried the deletion but there was no evidence of the del 20g in PHA 

stimulated T cells. These results were found using stimulated or transfonned lymphoid cells, 

not in cells directly derived from the patients. In our study, the monosomy 7 was 
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demonstrated in considerable proportions of untreated B-Iymphocytes. This would suggest 

that in some cases of MDS or in some valiants of MDS (juvenile-CMML) with monosomy 7 

a pluripotent hematopoietic progenitor cell is transformed that gives rise to a clone of 

abnormal myeloid, erythroid as well as B lymphoid progenitors. We and others were not 

able to detect the monosomy 7 in T cells. This would indicate that hematopoietic progenitor 

cells that are also potential to T cells are generally not involved in .MDS. 

FISH applied to immunophenotypically distinct cells can establish clonal involvement of 

specific cell subsets. These studies have not yet been done in significant numbers of patients 

and therefore the frequency of involvement of the B cell lineage as shown here remains 

unclear at the present time. 
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CLONALfTY ANALYSIS IN MDS AND AML 

Summary 

The cell morphology and kmyolype of bone malTOW smnples from 24 patients with 

myelodysplastic syndrome (MDS) and acule myeloid leukaemia (AML) were studied 

simultaneously with a combined technique of May-Griinwald-Giemsa (MGG) staining and 

fluorescence in situ hybddisation (FlSH) with chromosome-specific DNA probes. This 

enabled us to investigate cell lineage involvement in three malignant conditions: MDS 

(11=12), leukaemia-transfoffiled MDS (LT-MDS) (n=5) and de 110VO AML (11=7). In MDS 

we found blasts and often also significant propOltions of mature granulocytic and erythroid 

cells to be cytogenetically abnormal. Percentages of granulocytic and erythroid cells willi 

cytogenetic aberrations were generally less than those of blasts. 

These data support the involvement of a transfonned pluripotent stem cell that has retained 

maturation abilities. In two patients with chronic myelomonocytic leukaemia (CMML), the 

clonal involvement of monocytes was predominant. Results in the five patients with LT­

MDS were similar to those in MDS. In the bone man-ow of 5 of the 7 de novo AML patients 

the cytogenetic abnormalities were restricted to the blasts and did not include the more 

mature granulocytic or erythroid populations. In the other two patients with AML, both with 

a t(8;21) and a loss of the Y chromosome, high percentages of mature neutrophils were 

cytogenetically abnOllllal. These patterns of clonal lineage involvement in .MUS, LT -MDS, 

t(8;21) AML and AML appear typical and may be of clinical use, for example, for 

distinguishing LT -MDS hom de novo AML in newly presenting patients. 

Introduction 

The myelodysplastic syndromes (MDS) comprise haemalological disorders characterised by 

ineffective haematopoiesis resulting in variable degrees of anaemia, leucopenia or 

thrombocytopenia, and cytological signs of abnOlmal maturation (dyshaematopoiesis) in one 

or more cel11ineages. Generally, these disorders are thought to result from the malignant 

transformation of a primitive haematopoietic progenitor cell that has lost the ability of 

normal proliferation and differentiation. The abnormal haematopoietic cells in MDS have 

been shown to be clonally derived. Eventually, approximately 30% of the patients will show 

progression to acute myeloid leukaemia (AML), designated sometimes as leukaemia­

transt()rmed MDS (LT-MDS) (1,2). LT-MDS shows a different response to treatment than 

de 1101'0 AML presenting without an antecedent histOlY of MDS. 
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Table 1. Patient diagnosis and cytogenetic Data 

Patient No. Diagnosis % blasts in Karyotype % (No.) of 
agc(yr)!sex (FAB) llM metapbases 
(Ref.)* 

1. 67/M RA 0.2 4S,XY,-7 86 (38) 
(25) 46.XY 14 (6) 

2. 701M RARS 1.2 47,XY,+19 12 (4) 
48,XY, +8, + 19 64 (21) 
46,XY 24 (8) 

3. 64/F RAEll 13.4 48,XX,+8,+11 100 (67) 

4. 671M RAEB 13.8 47,XY,+8 62 (22) 
46,XY 38 (18) 

5. 70/M RAEB 7.0 complex abnoiTImlities, including-7 100 (41) 

6. 811M RAEll 6.6 47,XY,+8 100 (32) 

7. 56/F RAEB-t 26.2 47,XX,+8 84 (27) 
46,XX 16 (5) 

8. 53/M RAEB-t 15.8 complex ilbnonnalities, including-Y 100 (32) 
14,0 in PB 

9. 43/M RAEB-t 22.0 4S,XY,-7 94 (30) 
EO 6.6 46'xY,-7,+der(1) t(1;7) 

(qIO;plO) 6 (2) 

10. 171M CMML 17.6 47,XY,+8 100 (24) 

I 1. 851M CMML 3.8 47,XY,+R 9 ( 4) 
46,XY 91 (42) 

12.401F CMML \9.0 45,XX,-7 lOll (32) 

13. 63/M M2 post 31.2 complex abnOlll)alities, including +9 75 (24) 
RAEB-t 

14. 271M M2 post 32.6 complex abnonnalities, induding +i(l2p) 100 ( 8) 
(27) RAEB 

IS.621M M2 post 37.6 complex abnormalities, including -7, 83 (19) 
RAEB-t 

16.S61M M2 post 40.5 45,XY,t(2;3) (p22 or 23;q27 or 28), -7 94 (29) 
RAEB 46.XY. t(2;3) 6 (2) 

17. 69/F M2 post 35.2 47,XX. add (3) (412), +8 88 (35) 
RA 46,XX 12 (5) 

18.641M M1 96.2 45,XY,-7 49 (19) 
46,XY 51 (2ll) 

19. 311M M3 9ll.0** 47,XY,+8,dcr (9), 1(9;11) (q34;q 13 or q14), 
(7) t(15; I 7)(q22;42 I ) 73 (57) 

46XY 27 (21) 
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20. 391M M2 65.4 45,X,-Y,t(8;21 )(q22;q22) 100 (20) 
(7) 

21. 62/M M5a R6.0 91,XXYY,rnar (2q+),4q-, 
-5,7q+,+mar (5?) 7() (!!) 
46,XY 21 (14) 

22. 271M M2 75.0 45,X,-Y,t(8:21 )(q22;q22) 94 (30) 
46,XY 6 (2) 

23. 62/F M2 65.4 48,XX,+4,+!4,+Ill<lr 50 (12) 
46,XX 50 (12) 

24. 63/M M2 62.0 4R,XYY,+8 52 (17) 
46,XY 48 (16) 

RA, rell'actory anaemia; RARS, refractory anaemia with ringed siderobbsts; RAEB, refractory anaemia with excess 
of blasts; RAEB-t, refractory anaemia with excess of blasts in transfonnation; CMML, chronic myelomonocytic 
leukaemia; BM, hone marrow; PH, pelipheral blood; EO, eosinophils. The time interval hetween diagnosis of MDS 
and that of AML in patients no. 13 to no. 17 was 2 and 27 months. *Patients also rep011ed in other study. 
",,1: Leukaemic promyelocytes instead of blasts. 

Cytogenetic abnol1nalities, e.g. numerical chromosome changes, are found both in MDS and 

AML (1,3,4) and can be used as karyotypic markers to establish blood cell lineage 

involvement. In MDS, myeloid cells (neutrophils, monocytes) and erythroblasts are 

frequently involved in the malignant clone (5-8). Less is known of the lineage involvement 

pattem and maturation in LT-MDS and in de novo AML (8-1O). 

We have performed fluorescence in situ hybridisation (FISH) with chromosome-specific 

probes and directly combined FISH with cytology in order to relate the cytogenetically 

abnol1nal clone with cell lineage in MDS, LT-MDS and de novo AML. 

Materials and methods 

Patients 

MDS and AML were diagnosed according to the criteria of the French-Amcrican-British 

(FAB) classification (11-13). Cases of AML following a documented history of MDS of at 

least 2 months duration were defined as LT-MDS. The diagnosis of (de novo) AML was 

made when there were no clinical suspicion of MDS nor features of trilineage 

myelodysplasia (TMDS) in the bone maITow smears (14-16). 

Patients with numelical chromosome abnol1nalities as shown by cytogenetic examination of 

bone marrow cells in metaphase were included in this study. The haematological and 

cytogenetical characteristics are surmnarised in Table 1. For cornpmison, BM smears ti'om 

cytogenetically nOl1nal subjects were prepared. 
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Combined cytolJ101phology Qndf/uorescence in situ hybridisatiol1 

Cytological examination of MOO stained cells was followed by FISH as described 

previously (7). All smears were made without the use of anticoagulants and routinely stained 

with MGG. Extra MGG slides were kept for later FISH study; they were wrapped in foil and 

stored at -20°C until the time of hybridisation. Briefly, cryopreserved BM smears were 

thawed slowly and the morphology of the MOO stained cells recorded on a S-VHS 

videotape using a standard Universal Light .Microscope (Zeiss, Oberkochen, Germany) 

coupled to a camera, a S-VHS video recorder and a colour monitor. The same slides were 

then llsed for FISH using a biotinylated probe specific for the a-satellite sequences of 

chromosome 4 (pYAMl1.39) (17), chromosome 7 (p7tl) (18), chromosome 8 (D8ZI) (19) 

and chromosome 12 (paI2H8) (20). For chromosome 1,9 and Y we used probes specific for 

the heterocluomatic regions: PUCl.77 (21), pHuR98 (22) and pY3.4 (23) respectively. 

FoiIowing denaturation and hybridisatlon procedures, the hybridised probe was detected 

using fluorescence isothiocyanate (FITe) labelled avidin (Vector laboratories, Burlingame, 

CA, USA). The previously recorded MGG-stained cells were analysed in parallel on the 

video screen and in the fluorescence microscope (standard 14 IV FL, Zeiss) equipped with a 

tllter combination 09 (BP 450-490, FT 510, LP 520; Zeiss). The parallel analysis permitted a 

direct comparison of the cytological and cytogenetical characteristics of the cells. In the 

MOG-stained smears, only well-preserved cells were evaluated. Bare nuclei or partly 

damaged cells were excluded. The FISH spots had to be clear and distinct. 

Results 

To assess normal values ofFISH for chromosomes 1,4,7,8,9,12 and Y, MGG-stained BM 

smears were prepared from at least four cytogenetically normal subjects and in each case 500 

cells were scored. The mean percentages (± standard deviations) are given in Table 2. 

The detailed results obtained in the 12 patients with MDS, five patients with LT-MDS and 

eight patients with AML are summarised in Table 3. 

With regard to the quantitative involvement of the distinct cell lineages, celtain points are 

notable. Blasts and, to some extent, mature neutrophils including promyelocytes, 

myc1ocytes, metamyelocytes, stab cells and segmented neutrophlls, were cytogenetically 

abnormal in most MDS and LT-MDS patients (Figure I). 

Erythroblasts were katyotypically abnormal in 9112 MDS and 3/5 LT-MDS patients (no. 13, 

14 and 17). In one patient (no. 8) blasts were the only cytogenetically aberrant cells. 
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Table 2. FISH spots on MGG .. stained hone marrow cells from cytogenetically normal subjects 

FISH spots per cell (mean percentage ± SD) 

Probe No. of 
(chromosome samples 

0 
number) ", 2 3 4 

PUC!.77 8 2.5 ± 1.7 96.8 ± J.7 0.3 ±0.2 
(1) 

pYAMl1.39 4 !'9±0.1 97.2±0.2 0.9 ± 0.3 
(4) 

p7t1 8 2.4 ± 1.7 97.3 ± 1.7 
( 7) 

D8Z2 9 3.2 ± l.l 96.2 ± 1.6 0.4 ± 0.5 
( 8) 

pHuR98 5 4.7 ± 2.1 95.0 ±2.3 0.3 ± OJ 
( 9) 

pul2H8 8 0.2 ± 0.2 3.1±2,4 96,4 ± 2.7 0.3 ± 0.3 
(12) 

pY3,4 9 1.5 ± 1.2 98.2±1.1 
( Y) 

*Five hundred cells were scored ill each experiment. SO, standard deviation. 

Therefore the results in MDS and LT .. MDS are indicative of the multilineage involvement of 

the cytogenetically abnormal clone. However, it is of interest that the percentages of 

erythroid involvement were significantly less than the percentages of abnormal granulocytic 

cells (e,g, patients no, 2, 3, 7, 9, 13, 15 and 16), This was most striking in patient no, 3 in 

whom none of the erythroid cells showed the tIisomy 8, fn two CMML-MDS patients (no, 

10 and II) the percentages of cytogenetically abnol1nal monocytes were significantly greater 

than those of neutrophils, indicating that the cytogenetically abnormal clone had 

preferentially matured along the monocytic lineage. In patient no. 9 with RAEB .. t, an 

increased percentage of eosinophils (6.6%) was found in the bone marrow differential count. 

Almost all eosinophils showed a loss of a chromosome 7 indicating that the cytogenetically 

abnomlal clone had mainly developed towards neutrophils as well as eosinophils. Allhough 

the results in MDS and LT-MDS showed multilineage involvement of the clonal 

abnoTInaIity, the results of AML were often consistent with selective blastic involvement. In 

517 cases of AML both granulocytic and erythroid involvement were minimal or absent, 
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except 1 n M2 cases no. 20 and 22 where a signit1cant fraction of neutrophils cells canied the 

abnol1nal kmyotypic marker. Finally, the lymphoid cells in none of the cases showed 

cytogenetic abnOlmalities. 

Table 3. Percentage of bone marrow cells with abnormal number of FISH s~ots 

% (number of cells anal~sed) 
Patient Cytogem:L1c 
diagnosis marker Blast NEU MONO ERY LYM 
1. 
RA -7 100 (16) 66 (129) NT 54 (206) 4 (54) 

2. 
RARS +8 NT' 73 (131) NT 54 (50) " (58) 

3. 
RAEB +8 100 (II) 51 (41) NT 0(12) 0(7) 

4. 
RAEB +8 65 (57) 33 (82) NT 22 (92) 0(42) 

5. 
RARE -7 97 (38) 28 (149) NT 32 (87) " (46) 

6. 
RAEB +8 85 (107) 45 (98) NT 47 (128) 0(24) 

7. 
RAEB-t +8 92 (76) 36 (46) NT 17 (ll7) 0(37) 

8. 
RAEB-t _y2 88 (58) 6 (34) NT 3 (33) 2 (43) 

9. 
RAEB-l -7 9X (124) 89 (X5) NT 7 (57) 3 (58) 

EO, 
95 (41) 

10. 
CMML +8 <')1 (55) 37 (51) 78 (23) 66 (76) 0(38) 

II. 
CMML +8 NT' 21 (91) 87 (31) 13 (30) 0(28) 

12. 
CMML -7 lOll (16) 74(11") NTl 24 (58) 2 (49) 

13. 
M2 post 
RAEB-l +9 5<') (74) 50 (66) 0(9) 12 (17) 0(19) 

14. 
M2 post 
RAEB +12 97 (38) 38 (8) NT 56 (43) 0(8) 
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15. 
M2 post 
RAEB-t -7 80 (/29) 34 (53) NT 3 (87) 6 (47) 

16. 
M2 post 
RAEB -7 97 (119) 38 (37) NT 2 (42) 4 (47) 

17. 
M2 post 
RA +8 93 (114) 35 (79) NT 44 (97) (] (37) 

IX. 
Ml -7 100(114) 8 (12) NT NT 2 (49) 

19. 
M3 +8 94 (269)4 0(13) NT 0(87) 0(26) 

20. 
M2 -y 100 (717) 100 (415) NT 5 (38) 3 (121) 

21. 
MSa +1 100 (ll3) NT NT (] (91) 0(29) 

22. 
M2 -y 99 (97) 40 (10) NT 2 (42) 0(13) 

23. 
M2 +4 72 (65) 3 (121) NT 0(58) 0(20) 

24. 
M2 +8 90 (83) (] (56) NT (] (81) 0(56) 

NEU, neutrophils, including promyelocytes, myelocytes, metamyclocytes, slab cells, and segmented 
neutrophils; ERY, erythroblast~; MONO, monocytes; LYM, lymphocytes; NT, n01 1ested; EO, eosinophils. 
I Blast cell count too low for adequate MGG/FISI-' analysis. 
1 Loss of chromosome Y in hone marrow cells, not in PHA stimulated lymphocytes . 
.l Balle marrow cells were of lesser quulity and did not allow cytological differentiation between neutrophils and 
monocytes. 
-1 In case no. 19 with AML M3 promyelocY1cs were analysed inslead of hlusts; no promyelocytes were analysed 
under NEU. 

Discussion 

We found a difference as to the lineage involvement between de n.ovo AML on one hand and 

MDS and AML following progression from MDS (LT-MDS) on the other. Generally, in de 

novo AML, only minor populations of mature neutrophils or erythroblasts were identified as 

cytogenetically abnormal. The fact that blast cell counts are generally high in de novo AML­

(14) may complicate the investigations of the other celilincages for dysplastic features and 

cytogenetic abnol111alities and the interpretation of the data. Nevertheless, the results of the 

FISH analysis indicate that in prilllalY AML leukaemic blasts are selective representatives of 
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the cytogenetically abnormal clone. This also indicates that these blasts do not exhibit 

ahilities for maturation. 

In this study a stlict definition of de novo AML was used. Only patients without a prior 

history of MDS and without plior chemotherapy or radiotherapy were selected to represent 

de novo AML. Cases with morphological features of trilineage dysplasia (TMDS) were also 

excluded, because the presence of TMDS may indicate a clinically silent MDS phase and 

may predict the reappearance of myelodyspla<;ia after chemotherapy (15). 

In two of the selected de novo AML patients, metaphase cytogenetics revealed a t(8;21). 

Together with the t(8;21) there was a loss of a sex chromosome which we used as a 

cytogenetic marker in interphase analysis. The deletion of the Y chromosome was apparent 

in high percentages of blasts and mature neutrophils. Apparently t(8;21) AIVIL as a specific 

entity frequently retains the ability of granulocytic maturation and the leukaemia contributes 

significantly to repopulate the matming granulocytic compartment. 

The involvement of different cell lineages in the leukaemic clone in AML has been studied 

before using simultaneous analysis of karyotype and phenotype. (8-10). In some AML cases 

the cytogenetic abnormality was restricted to the granulocytic lineage, but in other cases 

erythroblasts and megakaryocytic cells were also involved. However, it was not always clear 

whether these cases represented de novo AML (without trilineage dysplasia) or LT-MDS. 

In MDS and LT-MDS we found blasts and variable proportions of mature granUlocytic cells 

and erythroblasts to be cytogenetically abnonnal, suggesting the transfonnation of a more 

primitive multipotent progenitor cell still able to express some capacities of maturation. Thus 

the cytogenetically abnormal clone in MDS and LT-MDS often involves more than one cell 

lineage, which is in contrast to the observations in pJimary AML. Further, it is to be noted 

that the percentages of karyotypically abnormal mature granulocytic cells were usually less 

than the cOlTesponding values of blasts, suggesting that a proportion of matllling myeloid 

cells had descended from cytogenetically nOIDlal hacmatopoietic progenitors. One 

explanation is that not all cytogenetically abnormal blasts are capable of maturing, leading to 

a maturation advantage of the cytogenetically normal clone. 

These results confirm earlier repOlts that in MDS multiple haematopoietic cell lines are 

involved (5, 6, 8, 24, 25). LT-MDS showed similar pallenlS as compared to MDS. The mean 

percentages of cell line involvement in cases of MDS and LT-MDS were not significantly 

different, i.e. 46.6% versus 39% for granulocytic cells, and 28.2% versus 23.4% for erythroid 

cells, respectively. Patient no. 17 developed LT-MDS after a 29- months period of slable 

refractory anaemia. Patient no 15 with RAEB-t progressed to LT-MDS in 3 months. In the 
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• 

Figure l. 
(A) MOG-stained BM ~dls from patient 6 (RAEB). 
(8) FIS H 0 11 the same cells with IT probe for chromosome R. Three spots representing the tri.~omy 8 in three 
lllyc1ocytes. 
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latter two patients, blasts, neutrophils and erythroblasts were all karyotypically abnomml as 

well. 

In several patients the percentages of cytogenetically abnormal metaphases were less than 

the values of abnonnal blasts in the MGG/FISH. For instance in patient no. 18 a monosomy 

7 was found in only 49% of metaphases but all blasts (n~114) showed the loss of 

chromosome 7. In patient no. 19, 94% of the promyelocytes showed the +8, whereas the 

trisomy 8 was found in 73% of the metaphases. Likewise in patient no. 24 a trisomy 8 was 

found in 52% of the metaphases but 90% of the blasts (n::::83) revealed the trisomy 8. These 

differences arc most likely explained by the fact that in bone man-ow cultures for cytogenetic 

analysis, nonmalignant cells may be brought into mitosis, resulling in an underestimate of the 

percentages of karyotypieally abnormal cells (26). 

In AML, MDS and LT-MDS we were unable to detect cytogenetic abnormalities in the 

lymphoid cells. The lymphoid population has been investigated before, but generally with 

negative resulls (5-7). However, in a recent study we found high percentages of B cells with 

monosomy 7 in one MDS patient (25). TIns suggests that only in exceptional cases of MDS 

or in certain variants of .MDS the haematopoietic cell is able to mature along the lymphoid 

pathway. 

LT-MDS and de 110VO AIvlL are sometimes difficult to recoglnse in newly presenting 

patients. The typical differences of eell lineage involvement and maturation in (LT -) MDS 

and de novo AML as evidenced by combined cytomorphological and FISH analysis, appear 

quite specific, and may be of diagnostic usc for distinguishing the two conditions. 
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CLONAL!TY ANALYSIS IN AML AND t(8;21) 

Abstract 

Bone marrow from six patients with acute myeloid leukemia (AML) and t(8;21) (q22;q22) 

or a variant t(8;13;2l) was studied by simultaneous analysis of cell morphology and 

karyotype. Combination of May-GrUnwald-Giemsa (MGG) and fluorescence in situ 

hybridization (FISH) using probes specific for the breakpoint regions of chromosome 8 and 

21 allowed LIS to establish the extent of ceil-lineage involvement of the translocation. The 

translocation was found in all myeloid blasts and in high percentages of the more mature 

neutrophilic cells. In one patient we could demonstrate the translocation in the eosinophils as 

welL Erythroblasts and lymphocytes did not show the t(8;21) abnormality. These results 

indicate that the t(8;21) in Alv1L is restricted to the myeloid (granulocytic) lineage. 

Introduction 

The t(8;21) (q22;q22) is a balanced reciprocal translocation found in approximately 6% of all 

adult cases with acute myeloid leukemia (AML) (1). Most of these cases are classified as 

French-Ametican-British (FAB) subtype M2 (2,3). The cytology of the bone marrow cells is 

very characteristic: blasts often contain Aller rods. The more mature granulocytic elements 

often show salmon to orange coloration of the cytoplasm and lack of granulation. Bone 

marrow eosinophilia can be found and the number of erythroblasts is low as is the number of 

megakaryocytes (2,4). 

The breakpoint on chromosome 21 has been shown between exons 5 and 6 of the AMLl 

gene and on chromosome 8 the ETO gene is involved (5,6). As a result of the translocation 

an identical AMLlIETO fusion transcript can be detected ilTespective of the exact breakpoint 

location within the AMLl intron (7). This chimeric gene is thought to generate a novel 

protein that probably contributes to the development of the leukemia (8). 

Blasts and the more mature myeloid cells very likely belong to the malignant clone in AML 

with t(S;21). Few studies have addressed the question of the extent of lineage involvement 

(4,9). Metaphase cytogenetics was used which limits these studies to cells able to divide. It 

was suggested that the translocation was found in myelobIasts only and not in erythroblasts 

or T-Iymphocytes. To investigate cell-lineage involvement of the leukemia the combination 

of cytology and interphase cytogenetics using centromeric specific DNA probes has proved 

to be a powerful technique. May-GrUnwald-Giemsa combined with fluorescence in situ 

hybridization (MGGIFISH) has been used to detect numerical cytogenetic changes in 

different cell types (10). We have adapted the MGGIFISH technique using a plasmid and a 

cosrnid probe specific for the breakpoint regions of chromosome 8 and 21, ie a PI.164 probe 
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containing thc entiTe ETG coding sequence of ctrromosome 8 and a cosmid CO.664 probe 

containing the first five exons of AMLl (II). 

Material and methods 

Patients 

The cells hom six patients with de novo AML-M2 and t(8;21) were examined. The diagnosis 

de novo AML was made while there was no clinical suspicion of a previous MDS phase nor 

features of tti-lineage dysplasia. The morphological diagnosis was made according to the 

French-American-British (FAB) critelia (3). Cytogenetic analysis was perlormcd using 

standard banding techniques. Reverse transcriptase-polymerase chain reaction (RT-peR) 

was periormed as described previously using an antisense primer based on the sequence of 

the ETO gene and a sense primer based on the sequence of the AMLI gene (7). 

Hematological and cytogenetical characteristics of all patients are sununatized in Table 1. 

We considered patient no. 5 as having ANlL-M2 although at the time of the bone marrow 

sampling the percentages of blasts were less then 30% (12,13). However after one week a 

second marrow aspirate showed that the percentage of blasts had increased to 35.8%. In one 

patient (no. 6) chromosome 13 was also involved in the translocation. The AMLlIETG 

fusion gene however was still located on the derivative 8 chromosome. 

Bone marrow slides were made according to standard diagnostic procedures and stained 

with MOO. Slides were wrapped in foil and stored at -20oe until time of hybridization. In 

addition, bonc marrow slides of control patients without cytogenetic abnormalities were 

treated in a similar way. Video recordings of the bone marrow cells were madc as 

described previously (10). 

Fluorescent in situ hybridiz.atiof1 and probes 

One hundred and seventy-five nanograms of a biotin-labeled plasmid Pl.164 specific for the 

q22 region of chromosome 8 and 175 ng of a digoxigenin-Iabeled cosmid CO.664 specitic 

for the q22 region of chromosome 21 were mixed with 10 ng of Cot-I DNA (Gibco BRL, 

Gaithersburg, MD, USA) (II). This mixture was then denaturated at 70°C for 4 min and 

allowed to premmeal at 37°e for 15 min to suppress repetitive DNA sequences. The MGO­

stained bone malTOW slides were thawed slowly and denatmated in 70% formamide 2 x sse 

I,lt' 2.5 min after which a mixture of the probes was applied. After ovemight incubation in a 

moist chamber at 37°C, a post hybridization wash was perfonned. The biotin-labeled probe 

was detected by fluorescein isothiocyanate (FITC)-labeled avidine (Vector Laboratories, 

90 



CLONALITY ANALYSIS IN AML AND t(8;21) 

Burlingame, CA, USA) and amplified with anti-avidine (Vector Laboratories) followed by 

avidine-FITC. The digoxigenin-labeled probe was detected by sheep-anti-digoxigenin­

Rhodamine (Boehlinger Mannheim) after which a second layer of Texas Red-labeled 

donkey anti-sheep antibody (Jackson Immunoresearch Laboratories) was applied. Cells were 

counterstained with DAP! (Serva) which was solved in the antifade solution Vectashield 

(Vector Laboratories). The slides were covered with glass coverslips. 

Table 1. Patients with AML-M2: hematological and cytogenetical data 

Patient HO. 

age/sex 

1. 35/F 

2. 48/M 

3. 17/M 

4. 391M 

5.29/F 

6.40/M 

PB % 
blasts 

85.0 

78.5 

63.5 

88.0 

5.5 

47.0 

Differential count 

BM% 
blasts 

88.8 

80.0 

52.6 

65.4 

26.4 

74.8 

BM% 
NEU 

2.6 

18.0 

8.0 

18.6 

59.9 

20.4 

BM% 
EO 

o 

0.5 

30.2 

8.0 

1.2 

0.4 

BM% 
ERY 

2.0 

1.0 

0.4 

6.4 

1.8 

0.4 

Kmyotype 

[no. of metaphase::;] 

45,X,-X, 
[(8;21)(q22;q22) 129JI 
46,XXIIJ 

46,XY, 
[(8;21)(q22;q22) [31JI 
46,XY [2J 

46,XY,[(8;21) 
(q22;q22), dd(9) 
(qI3q33) 117JI 
45.X,-Y,[(8;21) 120JI 
46,X,- Y,[(8;21),+8 [61 

4S,X,- Y, 
[(8;21)(q22;q22) [201 

4S,X,-X, 
[(8;21 )(q22;q22) [3411 
46.XX [1] 

45.X,-Y.I(8; 13;21) 
(q22;q21;q22) [201 

AMLl/ETO 
RT-PCR 

+ 

+ 

+ 

+ 

+ 

+ 

NEV, neutrophils including proll1yelocyles, myelocyte::;, metamyelocytes, stab cells, segmented neutrophils; 
EO, eosinuphjJjc granulocytes; ERY, erythroblasts; F, female; M, male; PB, peripheral hlood; BM, bone 
marrow; NT, not tested; RT-PCR, reverse transcriptase- polymerase chain reaction. 

Evaluation. of the FISH spots and photography 

Using simultaneous analysis of the cytology of cells on the video screen and the FISH spots 

in the fluorescence microscope, we were able to relate the cytogenetic abnOlmality to 

specific cell types. Only cells with two red and two green fluorescent spots were evaluated. 

Cells were considered positive for the translocation when a yellow fusion spot was visible or 
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when the distance between a green and red spot was less than 1 spot wide. Images of the 

fluorescent spots were captured on the Probemaster Unit PSI (Chester). 

Results 

RT-PCR was performed to detect the presence of the fusion transcript: the 298 bp was 

generated by amplification in all six cases. 

MGG-stained bone man-ow cells of four patients without cytogenetic aberrations and without 

major cytological abnonnalities revealed two green and two red spots in 97.2% ± 1.5 of the 

cells (mean ± standard deviation). The fluorescent spots were small but bright and clearly 

visible against a very low fluorescent background. Per control patient 500 eells were studied, 

thus including erythroblasts, myeloid cells and lymphoid cells. In 3.0 % of the cells (SD ± 

1.1) a green spot was distinguished next to a red spot. In one control patient cytology was 

combined with FISH (Table 2). In low percentages of erythroblasts, neutrophils and 

lymphocytes, pairing of a green and red spot was observed. The number of blasts 

investigated was low (six), no fusion spots were seen in eosinophiis. 

Table 2. Percentages (number) of pairing of a green and red FISH spot ill dill'erent cell types 

Patient Blasts NEU ERY LYM EO 
No. 

1. 100(116) 97 (38) 3 (53) 0 (49) NT 

2. 100 (200) 100 (70) 4 (45) (74) NT 

3. 100 (22) 97 (31 ) 4 (23) 0 (21) NT 

4. 100 (98) 98 (98) 0 (31) 0 (25) 100 (28) 

5. 100 (65) 100 (05) 0 (20) 0 (12) NT 

6. 100 (00) 97 (30) 0 (19) 0 (27) NT 

Control 

patic11l 0 (0) 2 (12.5) 4 (88) 3 (33) 0 (20) 

NEV, neutrophils including promyeloeytes, mye1ocytes, metamyc1ocytes, stab cells and segmented neutrophils; 
ERY, erythroblast:;; LYM. lymphocytes; EO, eosinophilic granulocytes; NT, not tested. 

Table 2 also contains the results of parallel analysis of cytology and cytogenetics of the 

patients' bone malTOw. The percentages of cells positive for the t(8;21) are expressed per cell 

type. In all blasts and in high percentages of more mature and often dysplastic myeloid cells 

ineluding promyelocytes, myelocytes, metamyelocytes, stab cells and segmented neutrophils 
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either a fusion spot or a close pairing of a green and a red spot were seen (Figure I). In one 

patient (no. 4) the eosinophilic lineage was also studied. All analyzable eosinophils showed 

the t(8;21). Normal values of pairs of red and green spots were observed in erythroblasts and 

lymphocytes. Megakaryocytes were not studied. 

Discussion 

AML with t(8:21) represents a subtype of the acute leukemias with characteristic cytology, 

immunological phenotype and distinct prognosis. Few studies have dealt with the 

investigation of cell lineage involvement in AML with t(8;21). Knuutila et al used the 

morphology- antibody- chromosomes (MAC) technique in one patient and found t(8:21) 

only in CD13-positive metaphase cells (granulocytic lineage) (9). The glycophorin-A 

positive (erythroid) and CD3 (T-lymphoeytes)-positive metaphase cells did not show the 

translocation. Berger et al studied 10 patients with AML and t(8;21) by comparing the 

number of blasts and erythroblasts to the number of normal and abnormal metaphases and 

suggested that only myeloblasts were cytogenetically abnormal (4). 

The strength of the investigations reported here is the use of breakpoint specific-probes for 

the analysis of the primary cytogenetic event. The combination of MGG and FISH permits a 

direct comparison of cytology and karyotype. The often dysplastic granulocytic line appears 

to be an integral part of the abnormal clone. In one patient (no. 4) the percentages of 

eosinophils was slightly elevated. We found these cells to belong to the malignant clone as 

welL One of the characteristics of this type of AML is the ability of eosinophilic maturation 

when blasts are stimulated ill vitro with JL-5 (14). The percentages of erythroblasts and 

lymphocytes with pailing of a green and red spot was within the normal range. Lack of 

sensitivity of the technique used (3% false positive ± 1.1, cut-off 5.2%) is inherent to the 

technique and best explained by the fact that the volume of the cell is projected and analyzed 

as a flat slilface. Therefor, we cannot exclude the possibility that single cells in the elythroid 

and lymphoid lineage belong to the cytogenetically abnol111al clone. 

In addition to the experiments described in this paper, we also performed cytology combined 

with FISH using the loss of a sex chromosome as a marker (15). The loss of a sex 

chromosome is often associated with t(8;21), suggesting that this is secondary to the 

structural realTangement (4). Only blasts and more mature myeloid cells we found to be 

cytogenetically abnormal. 
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A 

Figure I. 
(A) MGG stained blast (patient no. 5). 
(8) FISH on the same cell with probes specific for the breakpoint regions of chromosome g (q22) (green spots) and 
chromosome 2 1 (q22) (red spots), 
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Many patients in long telm remission still express the AMLIIETO transcript. TIns suggests 

the presence of a preleukcmic population. Recent evidence suggests that this population 

represents progenitor cells with hi-lineage potential (16). The fact that we did not find 

involvement of the t(8;21) in erythroblasts and lymphocytes, would therefore suggest that 

during leukemia the cells with the cytogenetic abnormality are programmed to proliferate 

mainly into the granulocytic lineage. 

In three of six paticnts the karyogram showed normal metaphases next to metaphases with 

t(8;21). However, in MGGIFlSH almost all blasts express t(8;21). These differences are most 

likely explained by the fact that bone marrow cultures for cytogenetic analysis include 

nonmalignant cells that are stimulated in vitro. 

In conclusion, erythroid and lymphoid cells are not part of the neoplastically transfonned 

hematopoietic cell clone in AML and t(8;21). The entity AML t(8;21) represents a single cell 

lineage malignancy of the myeloid counterpart which has retained abilities to mature towards 

terminally differentiated cells. 
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CLONALlTY ANALYSIS OF MEGAKARYOCYTES IN MDS 

Abstract 

In the myelodysplastic syndrome (MDS), cytogenetic abnonnalities are often present and 

can be used as markers in studies for cell lineage involvement. Little is known of the 

involvement of the megakaryocytic lineage due to the variable ploidy of these cells. We 

applied dual-color fluorescence in situ hybridization (FISH) to routinely prepared bone 

malTOW (EM) smears of cytogenetically nonnal patients and 7 patients with MDS and 

monosomy 7 or trisomy 8. Probes specific for the centromeric regions of chromosomes 7 

and 8 were detected with fluorescein isothiocyanate (FITC) and Texas Red, respectively. 

This enabeled us to assess the ratio between the numbers of chromosomes 7 and 8 in the 

polyploid cells. We utilized confocal laser scanning microscopy to count the FITe and 

Texas Red FISH signals in the different focal layers of the megakaryocytes. Fifty-six 

megakaryocytes in six nOlIDal EM smears were analyzed giving a mean ratio of 1.0, a 

standard deviation (SD) of 0.12, and a range of 0.8-1.33. This ralio was applied to evaluation 

of clonal involvement of individual megakaryocytes in the patients with MDS. In two 

patients with monosomy 7, the majority of the megakatyocytes were monosomic. In the five 

patients with trisomy 8, all or a majority of the analyzed megakaryocytes were bisonllc. 

These results add direct evidence that in MDS megakalyocytes are involved in the malignant 

clone. 

Introduction 

The myelodysplastic syndrome (MDS) comprises a group of clonal stem cell disorders 

characterized by anemia, leukopenia, and/or thrombopenia. Approximately 30% of the 

patients may eventually show progression to acute myeloid leukemia (AML), sometimes 

designated as leukcmia-transfonned MDS (LT-MDS) (1-3). Clonality assays have been used 

to establish the involvement of the different cell lineages in hematologic malignancies. 

Methods based on the random inactivation of one of the X chromosomes have been used 

infrequently to assess the clonality of the thrombopoietic lineage in MDS, AML, and 

myeloproliferative diseases (MPD) (4-7). X chromosome inactivation techniques however, 

are limited to female patients and can be difficult to interpret, e.g., due to skewing of the X 

chromosome pattern, which can be tissue-specific and which can increase with age (8-10). 

Cytogenetic abnonnalities including numerical chromosome changes are often found in 

bone man·ow cells in patients with MDS (3, II). These abnormalities can be identified with 

tluorescence in situ hybridization (FISH) and used as karyotypic markers to establish blood 

cell lineage involvement (12-16). With this technique, all or part of the blasts, granulocytic 
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cells, monocytes, or erythroblasts have been often found to be cytogenetically abnormal. 

Megakaryocytes have not been easily accessible to cytogenetic analysis because of their cell 

size and the difficulties of inducing mitotic cells in culture. In one study in which 

immunology was combined with metaphase and interphase cytogenetics, two patients with 

refractory anemia (RA) and trisomy 8 were examined (15). In several cells positive for the 

platelet/megakaryocyte surface marker CD6! (anti-Gpllla), tlisomy 8 could be identified. 

However, in one patient with RA and t( 1 ;7), the cytogenetic abnormality was not found in 

the CD61-positive cells. The large number of chromosomes in the multinuclear 

megakaryocytes has hampered a broader use of the FISH technique to investigate numerical 

chromosome abnormalities. 

In most cells, the numbers of nuclei are unknown and vary per cell. Therefore, they cannot 

be related to the numher of FISH signals. Moreover, the FISH signals appear at different 

focal levels and do not pemnt reliable counting with a conventional fluorescence 

microscope. Here we report on the use of dual-color FISH with probes specific for the 

centromelic regions of chromosomes 7 and 8 to estabI1sh the ratios between the numbers of 

chromosomes. The megakaryocytes of cytogenetically normal patients and patients with 

.MDS with monosomy 7 or trisomy 8 were studied. Ratios different from those in 

cytogenetically normal megakaryocytes were indicative of the loss or gain of a chromosome. 

We used confocal laser scanning microscopy to image consccutive optical planes of the 

cells, which allowed more accurate counting of the FISH signals. 

Materials and methods 

Bone marrow 

MDS was diagnosed according to the critetia of the French-American-British (FAB) 

classification (1). Seven patients with MDS with monosomy 7 or trisomy 8, according to 

routine cytogenetic analysis, were included in this study. The hematologic and cytogenetic 

charactelistics are summarized in Table 1. One patient (no. 7) was diagnosed as having LT­

MDS (AIVfL) after a documented history of .MDS. BM smears were made dming standard 

diagnostic procedures. In addition, BM smears from cytogenetically normal subjects were 

prepar·ed. All smears were routinely stained with May-GrUnwald Giemsa (MGG). They 

were wrapped in foil and stored at -20°C until the time of hybridization. 

Fluorescence in situ hybridization 

Blietly, cryopreserved BM smears were thawed slowly to room temperature (17). FISH was 
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applied using a biotinylated probe specific for the a-satellite sequences of chromosome 7 

(p7t1) (18) and a digoxigenin- labeled probe specific for the a-satellite sequences of 

chromosome 8 (D8Z I) (19). After denaturation and hybddization procedures, the hiotin­

labeled probe was detected by fluorescein isothiocyanate (FITC)-Iabeled avidin (Vector 

Laboratories, Burlingame, CA, USA) and amplified with anti-avidin (Vector Laboratories) 

followcd by avidin FITC. The digoxigenin-labeled probe was detected by sheep anti­

digoxigenin-rhodamine (Bochlinger, Mannheim, Gennany), after which a second layer of 

Texas-Red-Iabeled donkey anti-sheep antibody (Jackson ImmunoRcsearch LaboratOlies, 

Wcstgrove, PA, USA) was applied. An antifade solution (Vcctashield, Vector Laboratories) 

was then applied, and the slides were covered with glass covers lips. 

Table l.Patient diagnosis and cylugenetic data 

Patient no 
Age(yrs)/sex 

L* 
67/M 

2. 
44/r 

3.'" 
67/M 

4. 
76/r 

5. 

811M 

6." 
77/M 

7'" 
691P 

Diagnosis 

RA 

RARS 

RAEB 

RAEB 

RAEB-t 

CMML 

LT-MDS 

Karyotype lno. of mct<lphasesJ 

45,XY,-7IJ8J 
46,XYl6] 

45,XX,-7 [121 
47,XX,+i,der(1;7)(gJO;qlO) 12J 

46,XX 117J 

47,xy,+g [221 

46.XY IISJ 

47,XX,+8 r32] 

47,XY,+8132] 

47,XY,+8 [241 

47,XX,"dd(3)(qI2),+SI35J 
4i>,XXI51 

RA, refractory anemia; RARS, rdi'actory anemia with linged sideroblasts; RAEB, rcli-w::tol1' anemia with excess of 

blasts; RAEB-t, rdi"actory anemia with excess of blasts ill transformation; CMML, chronic lllyelomonocytic 
leukcmia; LT-MDS, leukemia-transformed lllyelodysplastic syndromc. 
'i'Patients also reported in anoUlcr stlidy (van LOlll ct al., 1996) 

CO/~focalloser sconning microscopy 

Three-dimensional image reconstructions of FISH-labeled megakaryocytes were obtained 

with the aid of a Zeiss LSM 410 confocal laser scanning microscope (Zeiss, Oberkochen, 
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Germany) equipped with a computer-controlled, motorized scan stage and objective. Two 

lasers were used for dual-color imaging, an argon laser for FITC excitation at 488 nm and a 

helium/neon laser for Texas Red excitation at 543 nm. A beam splitter (560 nm) separated 

the FITC and Texas Red emission signals. A 5 J 0-525 nm band-pass filter for the FITC 

emission signal and a long-pass (>570) nm filter for the Texas Red emission signal were 

placed in front of the detectors (photomultipliers). For each megakaryocyte, 25 optical 

planes were scanned, each consisting of 512 x 512 voxels (volume pixels). In each plane, the 

voxe1s were spaced at 0.325 ~m. Consecutive planes were spaced at I ~m. To reduce the 

time spent on image acquisition, the coordinates of the megakaryocytes were indicated and 

stored on disk. The consecutive planes of each megakaryocyte were recorded automatically. 

Additionally, a two-dimensional image reconstruction was made by projecting all optical 

planes in one maximum image. 

FISH signal cOlll/ting 

Using the maximum image, the megakaryocyte was outlined on an overlay. The FISH 

signals present in the first optical plane of the three-dimcnsional image stack were marked 

on the overlay. The signals prcsent in the second optical plane were then marked on the 

same overlay. All subsequent optical planes of a megakaryocyte were analyzcd in this way. 

Finally, all chromosome 7 and chromosome 8 signals were counted, and the ratio was 

calculated. 

To validate the FISH procedure, the numbers of }iTC and Texas Red spots were counted in 

100-500 nucleated cells in each of the six cytogenetically nonmll BM smears. In addition, 

FITC (chromosome 7) signals were counted in 100-500 nucleated cells in the BM smears 

from the patients with MDS with trisomy 8. Texas Red signals (chromosome 8) were scored 

in the cases of MDS with monosomy 7. For chromosome 7, the mean percentage of cells 

with no FITC signals was 0.5%; that with only one signal, 4.6%; with two signals, 94.9(}h; 

and with three signals, 0.2%. For chromosome 8 Texas Red signals, the mean percentages of 

negative cells, cells with one signal, cells with two signals, and cells with three signals were 

0.1 %,2.6%,96.2%, and 1.0%, respectively. These results confirm earlier observations (16). 

Statistical methods 

For cach megakaryocyte analyzed, the ratio of the numbers of chromosomes 7 and 8 was 

calculated. The non parametric Mann-Whitney test was applied to test for a difference in the 

distlibution of the ratios for each individual patient, compared to the distribution of the ratios 
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of the 56 megakaryocytes of {) cytogenetically nonnal individuals. 

Results 

In cytogenetically Bonnal cells with two copies of chromosomes 7 and 8, the theoretical 

ratio hetween the numbers of chromosomes is I. In the case of loss of a chromosome 7 

(monosomy 7), the expected ratio would be 0.5, and in the case of gain of one chromosome 

8 (tlisomy 8), the expected ratio would be 1.5. 

In the experimcnts, we examined the number of cumulative FISH signals per cell for 

chromosomes 7 or g among 56 cytogenetically normal megakaryocytes from six 

individuals. The signals per megakaryocyte varied from 4 to 38. The mean ratio betwecn 

the numbers of FlTC and Texas Red signals was 1.0 [standard deviation (SD), 0.12; 

range, 0.8·1.33]. 
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Ratio of the numbers of chromosome 7 and chromosome S per megakaryocyte. A nunna] range (mean ± 2 x SD: 
0.76-1.24) was established by analyzing 56 cytogcnetically norma] IllcgalGuyocytes. The ratios of the individual 
megakaryocytes (e) in two patients with MDS and monosomy 7 (patient I and 2) and five patients with MDS and 
trisumy 8 (palient 3-7) clern"ly indicate the involvement of a majority ofthcse cells in the malignant clone. 
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Figure 2. Images of consecutive optical planes of megakaryocytes. The FITC signals represent chromosome 7 (#7), 
and the Texas Red signals represent chromosome 8 (#8), Per megakaryocyte, 8 of the 25 optical images are shown. 

All 25 optical planes werc projec ted in one maximum image (M). 
A:.A megakaryocyte in a cytogenetically nonnal 8M. Si xteen FITC (117) and [6 Texas Red (#8) .~ ignals were 
counted providing a ratio of 1.0. 

lO4 



CLONALITY ANALYS IS OF MEGAKA RYOCYTES IN MDS 

B 

Figure 2. 
It: In the BM of patient 3 with MDS and trisomy 8. a megakaryocyte showed 17 ATe signals (#7) and 27 Texas 
Red signals (#8), The mtio of J ,6 indicmes involvement in the cylOgenelically abnormal done. The megakaryocyte in 

the maximum image is outlined. 
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We then set out to estimate the cumulative number of FISH signals for both 

chromosomes in the cases of MDS to asscss their ratios. In patients no. 1 and 2 with 

monosomy 7, the cumulative numbers for chromosome 7 signals per megakaryocyte 

varied from 2 to 24 and for chromosome 8, from 4 to 30. In patients no. 3 to 7 with 

trisomy 8, we countcd 4 to 93 FISH signals for chromosome 7 per megakaryocyte and 7 

to 117 for chromosome 8. We then evalUaled thc chromosome 7/chromosomc 8 index per 

megakaryocytc . .Por each patient and the controls, the ratio of chromosome 7 and 8 

signals per individual megakaryocyte analyzed is plotted in Figure 1. In the patients, the 

disuibutions of the ratios of the individual megakaryocytes were significantly different from 

the distJibutions of the ratios of the 56 cytogenetically n01111al megakaryocytes (all P valucs 

< 0.001). In the two patients with MDS with monosomy 7, more than 50% of the 

megakatyocytcs showed a ratio of less than 0.76. This indicate.,> the 10.,>", of a chromosome 7 

in the majority of the megakaryocytes. In one patient with :MDS and trisomy 8, all 

l1legakaryocytes analyzcd showed a ratio of> 1.24. In the other t()lJr patients with trisomy 8, 

the majority of the megakaryocytes showed a ratio above 1.24. Hence, these findings appear 

to be consistent with the presence of an extra chromosome 8 in the majority of 

megakaryocytes in each of these cases of MDS. 

Discussion 

For the study of cell lineage involvement in hematopoietic malignancies, various techniques 

have been used. NumeIical or structural chromosome abnonnalities, when present, can 

conveniently be uscd as markers in clonality studies. FISH using chromosome or 

breakpoint-specific probes has been combined with cytology or immunology to establish 

cell lineage involvemcnt (20). In this way, megakatyocytes have been found to carry the 

Philadelphia chromosome in chronic myeloid leukemia (21). In cells positive for the platelet 

and megakaryocyte antigen CD61, cytogenetic abnormalities have been demonstrated in 

patients with MDS, MPD, and AML (15,22). However, these techniques have not been 

readily applicable to the analysis of the megak31yocyte cell population. Technical obstacles 

have prevented an adequate analysis of the multinucleated intelphasc megakaryocytes for 

numelical chromosome changes. In order to overcome the problems of counting the signals 

of the probes in the FISH technique at difierent depths of the nucleus, we used confocal laser 

scanning microscopy. With the latter technique, FISH signals were recorded in consecutive 

optical planes and subsequently stored on disk. This allowed an accurate cumulative 

estimate of FISH signals per megakaryocyte (Figure 2). We also tlied to overcome the 
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difficulties intrinsic in the polyploidy of rnegakaryocytes and to relate the numbers of FISH 

signals to the variable numbers of nuclei. For this purpose, the numbers of signals of the 

abnormal chromosome were related to that of a reference chromosome. Therefore, we used 

dual-color fISH to calculate the ratios of the numhers of chromosomes 7 and 8. The 

expected ratio in diploid cells is I; of course, in cells with monosomy 7 or trisomy 8, the 

respective ratios would theoretically be 0.5 and 1.5. Indeed, we found the estimates to 

approximate these theoretical values in validation experiments, although limited deviations 

from the expected ratios were found. Random counting errors, e.g., due to poor visibility of 

some spots, may account for the latter deviations. The fact that the FISH- stained 

centromeric region was sometimes present in two or more sequential optical planes may abm 

have contributed to errors. For these reasons the ploidy of the megakaryocytes was not 

calculated. Because the ratios of signals of chromosomes 7 and 8 found in cytogenetically 

normal and abnol111al megakaryocytes show some overlap, it may not always be possible to 

velify clonality on a per-cell basis with certainty. This overlap that is apparent in a fraction 

of the megakaryocytes in patients no. I, 2, 3, 4, 6 and 7 either may result from the 

quantitative variations that are intrinsic in the variability of nuclei per cell, or it might be 

indicative of the coexistence of cytogenetically normal megakaryocytes in the marrow of 

these patients. Nevertheless, because the majolity of the ratios found in MDS 

megakaryocytes were different, it is possible to determine the involvement of 

megakaryocytes on a population basis, provided a significant proportion of these cells are 

indeed abnormal. 

Thus, most megakaryocytes in the cases of l\1DS that we investigated here appear 

cytogenetically abnormal and represent the cytogenetically abnormal MDS clone. In most 

BM smears of the MDS patients, small mono- or hi-nuclear megakaryocytes were seen. 

These cells, which can be indicative of MDS, were not analyzed; they were difficult to 

locate in the FISH stained smear. Large megakaryocytes, as in patient no. 6, are less 

common in MDS. These cells showed ratios in and beyond the normal range (Figure 2c). 

The method that we report here may be particularly useful in clinical conditions where one 

would wish to verify the presence of a clonally abnon11al megakaryocyte population, if there 

is an appropiate cytogenetic abnormality for this type of analysis present. 
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c 

Figure 2. 
C: In patient 6, 93 FITC signals (#7) and 117 Tcxa<; Red signals (#8) were counted in a megakaryocyte providing a 
ratio of 1.26. 
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GENERAL DISCUSSION AND SUMMARY 

7.1 Introduction 

Myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) represent clonal 

proliferations of hematopoietic cells. Clonal involvement of the different hematopoietic 

cell lineages in MDS and AML has not been fully established. In the studies presented in 

this thesis, we have addressed the following questions in selected patients with MDS or 

AML. 1). What is the extent of clonal involvement in both diseases? 2). Are the clonal 

progenitor cells able to mature in blood cells in MDS as well as in de novo AML? 3). Do 

morphologically dysplastic cells always belong to the malignant clone? 

7.2 Clonality assays 

To address the above mentioned questions, the choice of c10nality assay is of ctitical 

importance. In earlier c10nality studies, assays based on the random X chromosome 

inactivation in female cells have been widely used. Active and inactive X chromosome 

alleles are distinguished by their methylation patterns and the X-linked polymorphisms at 

the paternal or the maternal X chromosome can then be analyzed at the DNA, RNA or 

protein level. Apart from the fact that these assays are restlicted to female patients, a 

second draw back is that they cannot be applied to individual cells. The technique is also 

limited because studies on healthy women have revealed unbalanced or skewed 

distributions in the inactivation rate of paternal and maternal X chromosomes. 

Consequently, the results of these assays should be interpreted with caution. Clonality can 

also be determined using cytogenetic and molecular markers but these may represent 

'second hits', whereas X-linked polymorphism can provide independent insights into 

clonality in broader cen populations. RT-PCR on genetic abnormalities offers the 

potential advantage of the analysis of rare or even single cells, sorted immature 

progenitors or colony cells. 

Tn this thesis, the fluorescence in situ hybridization (FISH) technique has been used to 

study the clonal origin of the different cell lineages and individual cells in MDS and 

AML. Chromosomal abnormalities, as found by conventional cytogenetic analysis, were 

used as genetic markers. The FTSH technique was applied to interphase cells and 

combined with cytology or immunocytochemistry techniques. Cell type and cell lineage 

were thus related directly to the presence of the chromosomal abenation without the 

intervention of cell culturing or cell ~eparation. Routinely made blood and bone marrow 

smears werc used for the studies. Probes specific for centromeric regions were applied to 

detect numerical chromosome abnormalities, and breakpoint specific probes were used to 
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detect chromosome translocations. In chapter 2, the applicability of a combined cytology 

and FISH technique has been evaluated, and in chapter 3 a combined immuno­

cytochemistry and FISH technique is introduced. 

7.3 Cytogenetic c10nality analysis in MDS and LT-MDS 

Using the combined cytology and FISH technique and, in certain cases, the combined 

immunocytochemistry and FISH technique, the cells from several patients with MDS and 

leukemia transformed MDS (LT-MDS) have been examined (chapters 3 and 4). In these 

patients, we demonstrated the presence of karyotypic abnormalities in a high percentages 

of blasts. The chromosome abnonnalities were also present in granulocytic cells 

(including promyelocytes, myelocytes, metamyelocytes, stab cells and segmented 

neutrophils), monocytes and in erythroblasts. Apparently the cytogenetically abnormal 

clone is able to mature in MDS, but this results in ineffective hematopoiesis. Anemia, 

leucopenia or thrombopenia can occur as well as morphologic dysplasia. Also, deficiency 

of intracellular enzymes like pyruvate kinase or peroxidase can be found. 

Mature blood cells without the karyotypic aberration were also seen. These cells may 

have descended fium cytogenetically normal progenitors, coexisting with the 

cytogenetically abnormal progenitors. However, as an alternative explanation one cannot 

exclude the possibility that the cells negative for the chromosomal marker may still be 

part of the malignant clone, since the karyotypic abnormalities may represent a later step 

in the development of the disease. Clonality studies of bone man-ow stromal cells have 

yet to be performed. 

7.4 Cytogenetic clonality analysis in de /laVa AML 

In many cases of secondary AML. an MDS phase precedes AML and the dysplastic 

features of the more mature cells often remain visible. Patients presenting with de novo 

AML, showing similar cytological dysplastic changes, may have gone through a 

clinically silent phase of MDS. In our study, a more restrictive definition of de 110VO 

AML was used, i.e., it included only those patients without prior chemotherapy or 

radiotherapy, without tri-lineage dysplasia in marrow and blood smears and without 

clinical evidence for a preceding phase of MDS. The results of the clonality assays in the 

individuals presented in chapter 4. differ greatly fi·om those in the patients with LT-MDS: 

in de 1101'0 AML the cytogenetic aberration was restricted to the blasts and could not be 

found in the neutrophils or erythroblasts. Thus, cytogenetic in situ analysis produced 
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results that allowed a distinction between de nuvu AML and LT-MDS as clinical­

biological entities. 

In early reports, a distinction betwcen de novu AML, LT -MDS or therapy related AML 

was generally not made. This confounds previous analysis of the prognostic differences 

between de novu AML and secondary AML, and complicates the direct comparisons 

between our studies and those of others. In a study by Fialkow et aI, clonality waS shown 

to involve blasts, erythroid cells and platelets in six elderly patients (age> 60 years) (I). 

Two of them had previously received radiotherapy andlor chemotherapy before the 

diagnosis of AML was made, and one was known to have LT-MDS. In the same study, 

16 adults and children of age < 30 years, were found to have polyclonal erythroid cells, 

platelets or both. Since the leukemia of the younger patients are most likely to be of de 

novo origin, these data seem to be consistent with our findings. 

Until now, no clinical distinction is being made betwecn LT-MDS and de novo AML. 

However, the clonality patterns as described above, clearly emphasize differences in 

pathogenesis. These results may SUppOlt the importance of developing different therapies 

for both diseases. 

In chapters 4 and 5 c10nality studies on seven patients with de novo AML and t(8;21) 

(q22;q22) are described. In some metaphases, loss of a sex chromosome accompanied the 

translocation. The corresponding AMLllETO gene fusion was confirmed by RT-PCR. 

Dysplastic neutrophlls and dysplastic eosinophils are characteristic of this type of AML, 

and may suggest involvement of the neutrophils and eosinophils in the malignant process. 

Indeed we found that high percentages of the neutrophilic lineage were cytogenetically 

abnormal. In contrast, erythroblasts did not show the fusion gene or the loss of a sex 

chromosome. These data are consistent with the results of a study by Berger et al., who 

compared the numbers of blasts and erythroblasts to the numbers of normal metaphases 

and metaphases with t(8;21), and suggested that only myeloblasts were cytogenetically 

abnormal (2). In one patient, we found eosinophils to be positive for the (8;21) 

tmnslocation. Similarly in AML M4eo and inv(l6) (pI3q22) eosinophils have been 

shown to harbor the chromosomal aberration (3). Although the monocytic component is 

more abundant in AML M4eo, bone marrow and blood cytology reveal dysplastic 

morphological abnormalities similar to those seen in AML M2 and t(8;21). In AML with 

t(8;21) and inv(16), genes encoding subunits of the same transcription factor complex, 

core binding factors (CBF), are involved: the CBFa or AMLl gene at 21q22 in case of 

translocation t(8;21 )(q22;q22) and the CBFfJ gene in case of inv(l6)(p I 3q22). The CBF 
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complex activates transcliption of several myeloid genes, e.g. the CM-CSF and M-CSF­

receptor. The similarities of morphological features and corresponding clonality patterns 

likely reflect the involvement of common pathogenic pathways in these cytogenetic 

subtypes of AML. 

Thus, de novo leukemia and 1(8;21) is able to mature towards the granulocytic lineage. 

Perhaps this could provide support for new f:ltralegies in AML therapy. Maturation of the 

malignant clone may be stimulated relatively early with onc or a combination of growth 

factors. Induction of maturation has proved to be an effective therapy strategy in patients 

with promyc1ocytic leukemia and t( 15; 17) where the administration of all-trans-retiooic 

acid has been added to chemotherapy (4). Recently, further differentiation of blasts in 

AML and t(8;21) has been achieved after in vivo administration of G-CSF: thc numbers 

of blasts expressing differentiating antigens like CDllb, CD13 or CDI5 increased (c. 

Chomienne and L. Degos, Hopital Sl. Louis, Paris; personal communication). 

7.5 Cytogenetic c10nality analysis of lymphocytes 

The question of a clonal derivation of lymphocytes in myeloid malignancies has been 

addressed in several studies, generally using X chromosome inactivation assays or 

chromosome analysis. In most studies, Epstein-Barr virus transformed B-cells or 

phytohemagglutinin stimulated T-cells were analyzed. Only in rare instances, clonal 

involvement of Band/or T lymphocytes have been demonstrated in MDS and AML. In 

this thesis, lymphocytes were not found to carry the karyotypic abnormalities of the 

leukemia (chapter 2-5). Apparently, the malignant clone does not frequently extend to the 

lymphoid lineages in MDS and AML. The "malignant hit" may have taken place after the 

lymphoid and non-lymphoid lineage diverge in the hematopoietic scheme. Alternatively, 

the chromosome aberration may have been present early in the lymphoid differentiation 

lineage, but these progenitor cells may have had a survival disadvantage (Figure 1). 

However, in a child with MDS and monosomy 7 (chapter 3), the loss of chromosome 7 

was apparent in the B-Iymphocytes, whilst the T-cells were disomic for chromosome 7. 

In this patient, the MDS type RAEB·t had been preceded by MDS type J-CMML. This 

type of MDS bears some similarities of a myeloproliferative disease while white blood 

cell counts may be elevated and tissue infiltration of monocytes may be present. Clonality 

studies, mostly using X chromosome inactivation assays, on a myeloproliferative disease, 

the chronic myeloid leukemia (CML), have shown clonal B-cells and in some cases 

clonal T -cells on infrequent occasions. Recently, a cytogenetic c10nality study has shown 
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that the Philadelphia chromosome, t(9;22)(q34;qll), associated with CML, was present 

in unmanipulated or unsorted B-cells and T-cells (5). This supports the hypothesis that in 

CML the "malignant hit" takes place early in hematopoiesis. Our findings of B­

lymphocyte involvement in a young patient with (J-)CMML underline the resemblance of 

this type of MDS with a myeloproliferative disease. The absence of monosomy 7 in T­

cells is probably due to the fact that T-cells are long living cells; the analyzed T-cells 

might have been produced before the loss of one of the chromosomes 7 had occurred. 

Hematopoietic 
progcnitor 

Cytogenetic aberration .. 
Lymphoid cells 

Growth advantage 

Figure I. 

Hematopoielic 
progenitor 

Cytogenetic aberration ~ 

Lymphoid cells 

{. 
Growth advantage Cell death 

Two models explaining the lack of cytogenclically abl1ormallymphoid cells in MDS and AML. 

7.6 Clonality of megakaryocytes 

Using X chromosome inactivation techniques, platelets have been found to be clonal in 

MDS, which indicates that megakaryocytes are also cIon ally derived. Megakaryocytes 

have been rarely studied directly for clonal involvement due to two major problems 

Firstly, the numbers of nuclei per cell are unknown and it IS therefore difficult to 

determine the numbers of FISH spots per nucleus. Secondly, when a conventional 

fluorescence microscope is used, the FISH spots are present at different focal levels and 

therefore difficult to count. To resolve the first problem, two probes were applied, one 

probe for the chromosome ofinterest, and a second probe for a reference chromosome. In 

cytogenetically normal megakaryocytes the ratio between the numbers of the two 
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chromosomes is expected to be 1 : 1. In case of monosomy the theoretical ratio will be 1 : 

0.5 and in case of tIisomy 1.5 : L By applying confocal laser scanning microscopy it was 

possible to count the FISH spots at different focal levels. This approach is described in 

chapter 6. We were able to show that in the patients with MDS, a mixture of clonal and 

non-clonal megakaryocytes was present, indicating that cytogenetically normal 

progenitors persist in measurable numbers. 

7.7 Conclusions and prospectives 

It has been demonstrated in this thesis that in MDS and LT-MDS, blasts, neutrophils, 

eosinophils, rnonocytes, erythroblasts and megakaryocytcs can be clonally derived. 

Lymphocytes are c10nally derived only in rare cases and, if so, these conditions may 

represent specific subtypes of MDS (Figure 2). 

MDS/LT-MDS denovoAML de novo AML t(8;21) 

L-.-___ b_la_st_· ____ ~1 ~I ______ b_Ia_s_t ____ ~11 L-. ____ b_Ia_st_· ____ ~ 
I granulocytes granulocytes 

monocytes 

erythroblasts 

megakaryocytes 

lymphocytes 

Figure 2. 
Maturation abilities of the malignant clone in MOS and LT-MDS, de /10110 AML and de 1101'0 AML with 
1(8;21). 

In de novo AML, no or minor maturation of the malignant clone is observed. The 

granulocytic lineage, cry throb lasts and lymphocytes are generally cytogenetically normal. 

Megakmyocytc involvement has yet to be studied. 

In de novo AML with t(8;21) blast" neutrophils and eosinophils are c10naJly derived. In 

contrast, erythroblasts and lymphocytes do not show the ern'omosome abnormality. 

Several topics still have to be studied. For instance, little is still known of the lineage 

involvement of the malignant clone in therapy related AML (t-AML). Some balanced 

chromosome tran,locations like t(8;21), inv(16) and t(l5;17) are usually found in de 110VO 

AML but can be seen occasionally in t-AML and arc then associated with the use of 

118 



GENERAL DISCUSSION AND SUMMARY 

epipodophyl1otoxins. Compari~on of the c10nality results of t-AML and de novo AML is 

especially of interest when the balanced translocations are accompanied by loss or 

deletion of chromosome 5 and/or 7. The latter chromosome aberrations are associated 

with therapy related MDS and the use of alkylating agent', Furthermore, the behaviour of 

the MDS clone in time has not yet been established. For instance, is the percentage of 

cytogenetically abnormal erythroblasts stable during a certain period? What happens 

when MDS progresses to LT-MDS? Flilther technical developments, even automation of 

the FISH assays will contribute to the study of clonality in hematological malignancies. 
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Sam en vatting 

Het myelodysplastisch syndroom (MDS) en acute myeloide leukemie (AML) zijn 

kwaadaardige ziekten van het bloedvormend (hematopoletisch) systeem. Bij beide 

ziekten is de normale bloedcelvorming in het beenmerg grotendee1s verdrongen door een 

maligne kioon van cellen. Met een "kloon" wordt een groep cellen bedoeld die allen 

afstammen van een en dezelfde, in dit geval kwaadaardig veranderde voorlopereel. Bij 

AML is er in het bcenmerg een toename van onrijpe cellen (blasten) te zien; blj MDS 

kllnnen de rijpere cellen diverse uiterlijke afwijkingen vertonen. Ook de chromosomen 

van beenmerg- of bloedcellen van patienten met MDS of AML kunnen afwijkingen 

vertonen. Deze afwijkingen kunnen betrekking hebben op een verandering van hel aantal 

chromosomen (nllmerieke afwijkingen) of op st11lclurele afwijkingen (deleties, 

translocaties). In de inleiding van dit proefschrift wordt een beknopt ovcrzicht gegeven 

van de normale bloedcelvonning en enkele aspecten van de pathogenese van MDS en 

AML. Bovendien worden technieken besproken waarmee chromosoomafwijkingen 

kunnen worden aangetoond. 

Het thema van hel onderzoek in dit proefschrift betreft de vraag of, en zo ja, in hoeverre, 

bij patienten met MDS of AML, de maligne kloon uitrijpt langs de verschi11ende paden 

tot rijpe bloedcellen. Bovendien wordt geprobeerd een verband te leggen tussen de 

mOliologische afwijkingen van de beenmerg- en bloedcellen enerzijds, en de 

chromosoomafwijkingen andcrzijds. 

In de hoofdstukken 2 en 3 worden kleuringmethodes (cytologiel1mmunocytochemie) 

behandeld. Experimenten worden beschreven om cellen te karakteriseren en om 

tegelijkertijd, met behulp van interphase cytogenetic a, de chromosomale afwijkingen te 

herkennen. Met behulp van fluorescentie in situ hybridisatie (FISH) en chromosoom 

specifieke probes is zo onderzocht of per individuele, gei"dentificeerde eel de 

chromosoomafwijking aanwezig was. 

In hoofdstuk 3 en 4 worden klonaliteitsanalyses beschreven bij patienlen met MDS en bij 

patienten bij wie de MDS is overgegaan in een AML (leukemisch getransfonneerde 

MDS, LT-MDS). Per bloedceltype is nagegaan welke cell en tot de klnon van de 

kwaadaardige bcenmergcellen behoren. Uit de resultaten blijkt dat bij aIle patientcn de 

blasten cytogenetisch afwijkend zijn en dus deel uit maken van de maligne kloon. 

Daarnaast blijkt dat de maligne kloon in vcrschillcnde richtingen uitrijpt tot 

erythroblasten en bloedcellen zoals granulocyten en monoeyten. Overigens worden ook 
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cytogenetisch nonnalc cellcn gezien. Er lijken dus ook bloedvonnende cellen aanwezig 

zonder chromosoomafwijkingen. 

Zoals hierboven bcschrcvcn, is bij sommige paticnten b~j wic de diagnose AML wordt 

gesteld, de ziekte ontstaan vanuit een voorafgaande myelodysplasie. Zo'n leukemic wordt 

leukemisch getransfonnecrde MDS CLT-MDS) gcnoemd ter onderscheiding van de 

zogenaamde de novo AML In hoofdstuk 4 worden de resultaten van de 

klonaliteitsanalyscs bij LT-MDS en de 170VO AML vergeleken, waarbij een strikte 

definitie is gehanteerd voor patienten met de novo AML: zij zijn tevoren Dimmer 

behandeld mct chemothcrapic of radiolherapie, er ontbreken dysplastische kenmerken 

van de beenmergcellen (die passen bij MDS) en er zijn geen klinische aanwijzingen voor 

ecn voorafgaande MDS fase. De resultaten van de uitgevoerde klonaliteitsanalyses bij de 

novo AML en LT-MDS tonen opmerkelijlce verschillen. Bij AML zijn uitsluitend de 

blasten cytogenetisch afwijkend. Blijkbaar is de rijpingsblokkade bij de novo AML zo 

absoluut, dat er geen rijpere bloed cellen worden aangetroffen die de chromosomale 

afwijkingen hebben. 

De chromosoomtranslocatie t(8;2l), waarbij gedeelten van chromosoom 8 en 21 zijn 

verwisseld, is de meest voorkomende cytogenetisehe afwijking bij AML. In de 

hoofdstl1kken 4 en 5 worden klonaliteitsanalyses beschreven bij patienten met zowel de 

110VO AML als deze chromosoomtransloeatie. Dit type leukemie is morfologisch 

herkenbaar aan de sterk afwijkende granulopo'lcse. Uit onze bevindingen blijkt dat bij aIle 

geanalyseerde patientcn zowel de blasten als de uitJijpende granulocyten in meerderheid 

de chromosoomtranslocatie dragen. 

Lymfocyten worden beschouwd als behorend tot een ontwikkelingslijn binnen dc 

hematopo'lese die vrocg aftakt en apart staat van de myelolde cellen. Wij hebben in de 

lymfocyten de chJ:omosoomafw~iking niet gevonden. AML of MDS ontstaan 

waarschijnlijk in een stadium voorbij de aftakking van de lymfocytenlijn in de 

hemalopolesc. Behler, in hoofdstuk 3 wordt een kind beschreven met MDS en verlies van 

een van de twee chromosomen 7 (monosomic 7). Ben hoog percentage blasten, 

granulocyten, monocyten, erythroblasten maar ook B lymfoeyten lieten de monosomie 7 

zien. Blijkbaar kunnen bij uitzondering de lymfocyten betrokken zijn bij de maligne 

kloon. In dat geval zijn zij net als de granulocytcn, monocyten en erythrol'de cellcn, 

afkomstig van cen gemeenscbappeJijke kwaadaardige vroege voorlopercel. 

In hoofdstuk 6 tenslotte, wordt het onderzoek naar chromosoomafwjjkingcn in 

rnegakaryocyten beschreven. Deze voorlopercel van de thrombocyten (bloedplaatjcs) is 
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meestal meerkemig. Vanwege het grote aantal kernen en het grote aantal FISH spots zijn 

deze cellen moeilijk met een normale microseoop le analyseren. Uit de analyse van 

driedimensionalc beelden vcrkregen met confocale laser scanning microscopie bleek dat 

bij patienten met een MDS en monosomie 7 of trisomie 8 het merendeel van de 

megakaryocyten deel is van de maligne kloon. 
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