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1 General introduction 

1.1. Hormones acting on the testis 

The testis consists of 2 different tissues i.e. the 

interstitial tissue, which is the site of steroidogenesis, 

and seminiferous tubules where spermatogenesis occurs. 

Testosterone production takes place in the Leydig cells 

of the interstitial tissue and is under the influence of 

the tropic hormone LH (1,2). The action of LH is initiated 

by interaction with specific receptors located on the cell 

membrane of the interstitial cells {3). Binding to the 

receptor leads to a stimulation of cAMP production (4,5) 

and this in turn leads to an activation of cAMP dependent 

protein kinases (6). The obligatory function of cAMP in the 

stimulation of testosterone production can be questioned 

since cAMP production is undetectable with doses of LH which 

result in maximum steroidogenesis (7). The role of protein 

kinase seems more clear since a correlation exists between 

protein kinase activation and stimulation of testosterone 

production {6). The involvement of protein synthesis in the 

mechanism of action of LH was confirmed by the discovery of 

the synthesis of a specific protein after LH stimulation 

(8) and the inhibition of testosterone production by protein 

synthesis inhibitors (9). 

Whereas LH acts on the Leydig cell, FSH evokes responses 

in the seminiferous tubules. It has been shown, that FSH 

specifically stimulates protein kinase activity in semini­

ferous tubules of immature rats or hypophysectomized adult 

rats (10) and this stimulation is accompanied by a corres­

ponding increase in cAMP production. Also testicular protein 

synthesis is stimulated by FSH. A specific androgen binding 

protein is induced in the Sertoli cells of the tubuli of 

immature hypophysectomized rats after FSH administration 

(11). This androgen binding protein (ABP) is secreted in the 

testicular fluid and it has been suggested that the function 

of ABP is the accumulation of androgen within the seminifer­

ous tubules (ll) .In addition to this androgen binding protein 
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a specific androgen receptor can be demonstrated in 

the cytosol and nuclear fraction of seminiferous tubules 

from hypophysectomized immature and adult rats (11,12,13). 

This receptor can be distinguished from ABP by differences 

in dissociation constants, steroid specificity and tempera­

ture sensitivity (11,13). The androgen receptor is predomi­

nantly present in Sertoli cells.The demonstration of androgen­

receptor complexes in cytoplasmic and nuclear fractions of 

seminiferous tubules might support the concept that sperma­

togenesis is an androgen dependent process. 

1.2 Scope of this thesis 

A specific oestradiol binding protein is present in the 

cytosol fraction of rat testicular tissue. This binding 

protein has a sedimentation coefficient of 8S and fulfils 

the criteria of a true steroid receptor, i.e. a saturable 

amount of receptor is present and the receptor has a high 

affinity for oestradiol (15). The hormone-receptor complex 

can be translocated to the nuclei when nuclei isolated from 

testis are incubated with cytosol and oestradiol (16). The 

oestradiol receptor is localized in the Leydig cells of the 

interstitial compartment of the testis (14). In the semini­

ferous tubules no oestradiol receptor can be detected. 

In addition to the oestradiol receptor, oestradiol (17) 

is also present in rat testicular tissue but not much is 

known about the possible effect of oestrogens in the testis. 

In intact and hypophysectomized mice oestrogens can have an 

inhibiting effect on some steroidogenic enzymes (19). 

Administration of oestrogens to intact male rats results in 

a decrease of testosterone levels in testis and plasma (19-

24). Some authors did not observe a decrease in LH plasma 

levels concomitant with the decrease in testosterone levels 

(20-22). Therefore it has been suggested that the oestrogen 

effect is a direct effect on the testis. Other authors, 

however, have reported a negative feedback action of 
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oestrogens on LH secretion (23,24). 

we have investigated several aspects of the steroid and 

tissue specificity of the oestradiol receptor in the rat. 

Since it seems likely that steroid hormones exert their effects 

via RNA synthesis, we have investigated whether oestradiol 

has an effect on RNA synthesis in rat testicular tissue 

(chapter 3). 

In order to detect a possible final effect of oestrogen 
in the male rat 1 which could be mediated via the oestrogen 

receptor, we have studied the effect of oestrogen ad·~ 

rr.inistration on testosterone production. To exclude the 

poss.ti.Jbility that the effect was caused by a negative feed­

back action on LH secretion we have also studied LH levels. 

The results of this study are presented in chapter 4. 

The testicular oestradiol receptor is present not only 

in adult but also in immature rats (25). In the immature rat 

part of the oestradiol receptor molecules are present in the 

nucleus. Since it is conceivable that the possible response 

of testicular tissue to oestradiol is restricted to a certain 

period of life we have investigated for the pubertal rat the 

effect of oestradiol on LH stimulated testicular testosterone 

production in isolated Leydig cells (chapter 5). 
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2 Summary of the litterature on the mechanism of action of 

steroid hormones 

2.1 Steroid receptors 

Studies concerning the mechanism of action of steroid 

hormones have revealed that target cells for steroid hormones 

contain specific hormone binding proteins, called receptors. 

The long retention of oestrogens by target tissues for 

oestrogens was the first indication for the existence of 

steroid receptors (26). After incubation of a high speed 

supernatant (cytosol) of uterine tissue the oestradiol 

receptor could be identified as a protein oestradiol complex 

sedimenting with a sedimentation coefficient of 9.55 on a 

sucrose gradient during ultracentrifugation (27). Under 

hypotonic conditions the receptor is present as an 85 

molecule (28,29,30) which can be reversible transformed to 

a 4S complex after addition of salt at a concentration of 

0.4M (29,31,32). An intermediate 6S form may occur in the 

presence of ionic conditions in the presumed physiological 

range (33,34,35,36). Whether this 6S form is the physiolo­

gical form of the receptor in the cellular milieu can still 

be questioned, because the sedimentation behaviour can vary 

depending on the experimental conditions used (37,38). 

Several properties distinguish the specific oestradiol 

receptor from nonspecific binding proteins i.e.: 1. the 

receptor has a high affinity for oestrogens with dissocia­

tion constants in the range of 10- 9-1o-10M- 1 (39,40,41,42). 

2. only a limited number of receptor molecules per cell is 

present (43,44). 3.the receptor is steroid specific; it 

only binds compounds chemically similar to oestradiol (33,43 

44). 4. receptors are tissue specific; only target tissues 

contain receptors whereas they are absent· in non-target 

tissues like lung, spleen etc. (33). 

The general occurrence of oestrogen receptors in target 

tissues for oestrogens has been amply demonstrated, for 

example in uterus, vagina (33), mammary gland (45), 
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hypothalamus and pituitary (46,47,48). 

Since the discovery of the oestrogen receptor the 

presence of receptors for other steroids in their respective 

target tissues has also been demonstrated: e.g. receptors 

for androgens (49,50}, progesterone (51,52,53), glucocorti­

coids (54,55,56) and mineralocorticoids (57,58) have been 

reported. 

2.2 Transfer of the hormone-receptor complex to the nucleus 

In the absence of endogenous oestradiol the larger part 

of the uterine oestradiol receptors can be demonstrated in 

the cytoplasm of the uterus. In vivo injection of female 

rats or in vitro incubation of uterine tissue with oestradiol 

leads to accumulation of steroid-receptor complex in the 

nuclei of uterine tissue (59,60,61). Concomitant with this 

nuclear accumulation a disappearance of cytosol receptor can 

be observed (32,59,62). These observations have lead to the 

hypothesis that nuclear retention of steroid and receptor 

is dependent on the prior formation of steroid-receptor 

complexes in the cytoplasm (43,59). Indeed no receptor­

steroid complex can be found in nuclei when uterine nuclei 

are directly incubated with 3H-oestradiol, whereas after 

incubation with cytosol the steroid-receptor complex 

can be detected in the nuclei. It seems that a temperature­

dependent step is involved in the transfer of the hormone­

receptor complex to the nucleus. Whereas binding to nuclei 

is observed after incubation of nuclei with cytosol at 
0 0 

22 -37 C (63,64), no nuclear binding can be detected after 

incubation of nuclei with cytosol or whole uterine tissue 

slices at 0°C {63,64). In contrast, when oestrogen receptors 

were first incubated at 25°C in the absence of nuclei and 

subsequently incubated at 0°C with nuclei, steroid-receptor 

complex did accumulate in the nuclei. This so-called 

'activation• of the receptor has also been reported for the 

dihydrotestosterone receptor in prostate (65,66), gluco­

corticoid receptor in thymus (67), aldosterone receptor in 

kidney {68) and progesterone receptor in oviduct (69). 
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The temperature-dependent activation of the oestrogen 

receptor probably results in a conformational change which 

is detectable as a shift in sedimentation coefficient from 

4 to SS after centrifugation on high salt sucrose gradients 

(38,70,71) .Alternatively from studies with calf uterine cyto­

sol,evidence has been presented that an enzymatic process which 

requires a ca 2+sensitive factor with proteolytic activity is 

involved in the activation of the hormone-receptor cornplex(72) 

2.3 Hormone-receptor binding to nuclear components 

Part of the specifically bound oestradiol of the 

oestradiol-receptor complex from uterine nuclei can be 

extracted by 0.4M KCl, while part remains in the residual 

non-KCl extractable fraction (60,61). Similar observations 

have been described for the nuclear binding of oestrogens 

in other tissues (73,74) and for other hormones (75,76). 

The observed correlation between hormone binding in the 

residual fraction and the final hormone response, as has 

been found in uterus (61), has lead to the conclusion that 

the residual binding may be one of the most important 

factors in specifying the hormonal response. Those nuclear 

sites which specifically bind steroid-receptor complexes 

are called 'acceptors'. The presence of nuclear acceptor 

sites appears to be tissue specific, since nuclei from 

target tissues bind cytoplasmic receptors to a greater 

extent than do nuclei from non-target tissues (77,78,79) 

The question, whether the acceptor sites are present in 

saturable amounts or not remains to be solved. In several 

studies saturation of binding of receptor-steroid complex 

to nuclear acceptor sites has been observed (80,81), 

although in other studies saturation could not be achieved 

(82,83,84). 

Oestrogen receptors associate with nuclear chromatin. The 

precise chemical composition of the nuclear acceptor is not 

known. It has been reported that steroid receptors can inter­

act directly with DNA (80,85,86) while in other studies bind-
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ing to non-histone nuclear proteins was observed (87,88). 

The progesterone receptor in chick oviduct consists of two 

components one of which binds to DNA while the other binds 

to acidic nuclear proteins (89). Finally ribonucleoprotein 

particles have been indicated as possible nuclear acceptor 

sites (90,91). 

2.4 Effect of steroid hormones on RNA synthesis 

a. Effect of hormone administration on in vivo RNA synthesis 

In vivo or in vitro administration of steroid hormones 

leads to the synthesis of specific proteins in the hormone 

target tissues, like the production of vitellogenin in the 

rooster liver (92) and ovalbumin in chick oviduct (93} 

after oestrogen administration. Not only the synthesis of 

specific proteins but also total protein synthesis can be 

enhanced as has been observed in uterus (94) and prostate 

(95) after steroid hormone administration. 

Although there is some evidence available that the induc­

tion of proteins by steroid hormones is mediated by post­

transcriptional processes (96) it is now generally accepted 

that the increase of protein synthesis is the result of de 

novo synthesis of new RNA species. 

Target tissues show a great variation of responses that 

can occur after administration of steroid hormones, but each 

response that has been investigated in biochemical terms 

appears to be dependent on the synthesis of nuclear RNA. 

Administration of aldosterone (97), glucocorticosteroids 

(98,99), oestrogens (100,101,102), progesterone (103) and 

dihydrotestosterone (104,105) results in increased RNA 

synthesis in their respective target tissues. Prevention of 

the effect of steroid hormones by inhibitors of RNA synthesis 

and the increase of RNA synthesis after hormone administra­

tion have shown the importance of RNA production in the early 

stages of hormone action. Much information about the effect 

of steroid hormones on RNA synthesis has been obtained from 

studies on the effect of oestrogen on RNA synthesis in rat 
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uterine tissue. Oestrogen injection results within 2 minutes 

in an increase of the synthesis of nuclear RNA (102). This 

stimulation reaches a peak after 20-30 minutes and decreases 

until 2 hours after oestradiol administration after which 

time RNA synthesis increases again and remains high for at 

least 24 hours (106,107). The time course of the response is 

different for the different species of RNA. Whereas the 

synthesis of 45S and 32S RNA - the precursors for ribosomal 

RNA - is stimulated 2-4 hours after oestradiol injection, 

the labelling of tRNA is already increased after 1 hour 

(108). Preceding these changes in RNA synthesis an increase 

of high molecular weight RNA has been demonstrated (109), 

probably of heterogeneous RNA (HnRNA), a RNA species which 

is believed to be the precursor of mRNA (110). 

The stimulation of rRNA and tRNA appears to be dependent 

on protein synthesis, since their stimulation can be inhibit­

ed by protein synthesis inhibitors, in contrast to the 

stimulation of HnRNA synthesis (108). These findings have led 

to the conclusion, that the synthesis of RNA species of very 

high molecular weight in rat uteri under the influence of 

oestradiol could reflect synthesis of new rnRNA species and 

also that the translation of these RNA species leads to the 

formation of proteins which have an influence on rRNA 

synthesis. In fact a specific acidic protein which can be 

identified electrophoretically is formed in response to 

oestrogen (111). The acidic protein called 'induced protein' 

(IF) can be detected 30 minutes after oestradiol has entered 

the cell.The synthesis of IP is inhibited by actinomycin D, 

cordycepin and a-arnanitin suggesting a de novo synthesis of 

rnRNA for IP (112,113,114) which is confirmed by the finding 

that discrete RNA species appear already 15 minutes after 

exposure of the uterus to oestrad~ol (115). From these observa­

tions it has been postulated that oestradiol induced synthesis 

of mRNA followed by the synthesis of IP causes the subsequent 

stimulation of rRNA synthesis, which itself results in 

increased protein synthesis and uterine growth. 
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b. The effect of hormone administration on in vitro nuclear 

polymerase activity 

The increase in RNA synthesis after in vivo hormone 

administration can be the result of several phenomena which 

possibly act simultaneously. A change in the availability 

of the chromatin as well as a change in the number or in 

the activity of already existing RNA polymerase molecules 

would result in an increased nucleotide incorporation. 

Several studies have been performed by which the stimulation 

of RNA synthesis caused by in vivo administration of the 

hormone was studied in vitro in isolated nuclei. 

RNA synthesis in mammalian nuclei can be divided in: 

nucleolar RNA synthesis, which generally represents rRNA 

synthesis; and nucleoplasmic RNA synthesis, which represents 

rnRNA production. Polymerase I and II are assumed to be 

responsible for the synthesis of rRNA and rnRNA respectively. 

Since polymerase I is more active under low salt conditions 

and the presence of Mg 2
+ and polymerase II is more active 

2+ under high salt conditions and the precence of Mn and 

because this enzyme can be specifically inhibited by a­

amanitin it is possible to distingUish between the activity 

of polymerase I and II. RNA polymerase activity is always 

measured as incorporation of UTP in RNA by isolated nuclei. 

After oestradiol administration an early rise in UTP 

incorporation by RNA polymerase II from uterus could be 

demonstrated, which reached a peak 30 minutes after hormone 

administration and then decreased to control values before 

displaying a second increase over control activity from 

2 to 12 hours. The first rise in polymerase II activity is 

followed by an increase in UTP incorporation by polymerase I 

(116,117,118). Also in other tissues a rise in polymerase II 

and I activity has been observed (119,120) after hormone 

administration. 

The enhanced UTP incorporation by polyrnerases. I and II 

could be the result of a change in template activity or in 

the activity of the RNA polymerase molecules itself. 
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Some authors did not find an increase in template activity 

of chromatin after oestradiol treatment in rat {121) and 

mouse uterus (122), but it was observed by others, that 

oestradiol enhanced template activity 10-30 minutes after 

hormone administration {116,123,124,125). Similar results 

have been found for other hormones in other tissues. Testos­

terone increased template activity of kidney chromatin (119) 

and according to some reports also that of prostate chromatin 

(126,127). However, in other studies no change in prostate 

chromatin template activity could be demonstrated (128) 

The reason for these contradictory results could be the 

occurrence of hydrolytic factors or the use of high salt 

concentrations. These conditions may affect template activity 

(122,129). 

RNA polymerase I and II activity in uterine nuclei can be 

separated in 2 fractions: enzyme firmly associated with 

chromatin and soluble enzyme. When soluble and chromatin 

associated polymerase II were extracted from uterine nuclei 

after oestradiol treatment and were incubated with exogenous 

template, an increase could be found in the amount of 

polymerase II molecules 12-24 hours after hormone injection. 

The soluble polymerase I activity remained constant during 

the first 6 hours after injection whereas the activity of 

the more firmly bound enzyme increased already 1-2 hours 

after injection (130). Also, in rat prostate the increase 

in isolated polymerase I activity precedes the increase in 

polymerase II activity after testosterone administration 

( 126) . 

From these results may be concluded, that administration 

of oestrogen may cause an increase in template activity of 

uterine chromatin. This could lead to the synthesis of 

specific mRNA molecules and specific proteins. These proteins 

in turn induce the synthesis or activation of polymerase I 

and II molecules, which results in an increase of total RNA 

production followed by an increased protein synthesis and 

uterine growth. 
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c. The effect of hormone-receptor complex on RNA synthesis 

in isolated nuclei 

Whether the presence of a receptor is obligatory for a 

hormone to exert its effect on RNA synthesis is still ques­

tionable. More information about the role of the receptor in 

the effect of hormones on RNA synthesis has been obtained 

from studies in which hormone-receptor complexes were added 

to isolated nuclei. The ability of uterine nuclei to incor­

porate radioactive nucleotides into RNA is enhanced when 

they are first incubated with a mixture of oestradiol and 

uterine cytosol under low salt conditions (131,132). Since 

oestradiol alone or receptor alone was not effective, inter­

action of both the steroid and the receptor protein was 

considered to be responsible for the s.timulatory activity. 

However, the stimulation was only observed when the 

oestradiol-receptor complex is transformed from the 4S form 

to the activated SS form {131). The effect of oestradiol on 

RNA polymerase activity could also be demonstrated with RNA 

polymerase solubilized from treated nuclei and assayed with 

purified DNA; therefore, the effect of the steroid-receptor 

complex was thought to be at least in part on the RNA 

polymerase I enzyme itself (131). Under high salt conditions 

the stimulatory effect of the oestradiol-receptor complex 

was not always clear (132). Similar results have been found 

in a study on the effect of addition of receptor-DHT complex 

to prostate nuclei (133,134,135). A high stimulation of 

polymerase I activity could be seen when nuclei were incu­

bated with DHT-receptor complex under low salt conditions. 

Also, incubation of chromatin with receptor-hormone complex 

resulted in an increased RNA synthesis (134). No stimula­

tion of nucleotide incorporation into RNA.could be observed 

when high salt conditions were used (135). Later experiments 

have revealed that high salt conditions abolished the bind­

ing of the receptor-hormone complex to the prostatic 

chromatin (136). When salt concentrations were chosen at 

which both polymerase I and II activities could be measured, 

addition of receptor-hormone complex resulted in an enhance-
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ment of nucleotide incorporation by both polymerase I and 

II (136). The specificity of this effect seemed to be pre­

sent in the chromatin fraction since no stimulation was ob­

served when chromatin from other tissues were used (134, 

135) . 

d. The effect of steroid hormones on RNA synthesis in chick 

oviduct 

Some of the most detailed studies on the effect of steroid 

hormone receptors on gene transcription have been conducted 

on chick oviduct. In vivo oestrogen or progesterone adminis­

tration to immature chicks leads to growth and differentia­

tion of the oviduct and to an enormous increase in ovalbumin 

synthesis (137,138,139,140,141). Hybridization studies, 

using radioactive copies of the gene responsible for ovalbu­

min synthesis to detect new ovalbumin mRNA molecules, revea­

led that ovalbumin synthesis after oestrogen or progesterone 

administration is directly correlated with de novo synthesis 

of mRNA (137,142,143). Prior to the increase in ovalbumin 

mRNA (144,145), there is an overall increase in template ac­

tivity. 

It has been reported that rifampicin binds to those E.coli 

RNA polymerase molecules which are not involved in chain 

elongation. Thus it is possible to distinguish between 

increases in RNA synthesis due to chain elongation and to 

chain initiation. From such studies, it appears that the 

oestrogen induced increase in RNA synthesis 

is the result of an increase in RNA chain initiation sites 

while the rate of chain elongation remains unchanged (146, 

147). The temporal relationship between the appearance of 

nuclear bound oestrogen receptor molecules and of RNA chain 

initiation sites is an indication for the role of the recep­

tor in the hormonal stimulation of gene transcription (148). 

The effect of the progesterone receptor on template acti­

vity in vitro can be studied by incubation of chromatin from 

non hormone treated oviduct nuclei with purified progeste­

rone-receptor complex and E.coli RNA polymerase. The pro-
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2.6. The oestradiol receptor in the testis 

An oestradiol receptor is present in the interstitial 

tissue of the testis. Until now no final response after 

oestradiol administration is known. No defect exists between 

interaction of oestradiol with the receptor and binding of 

the steroid-receptor complex in the nucleus. After binding 

of oestradiol the receptor-hormone complex is translocated 

to the nucleus (152) and can be extracted from the nucleus 

as a 5S receptor (25,153). 

Thus, till this stage every condition has been fulfilled 

for the expression of a hormone response. Whether the bind­

ing of oestradiol-receptor complexes in the nuclei of testis 

interstitial tissue will result in a final hormone response, 

mediated via RNA synthesis, has been the subject of several 

investigations reported in this thesis. 

24 



3 Properties of the oestradiol. receptor in rat testis and the_ 

effect of oestradiol on RNA synthesis in testicular tissues 

3.1. Properties of the specific oestradiol binding protein in rat testicular tissue. 

In the cytosol fraction of rat testicular tissue an 

oestradiol binding protein is present. This binding protein 

is localized in the interstitial compartment of the testis 

and cannot be demonstrated in the seminiferous tubules. This 

binding protein fulfils the first two criteria for a true 

receptor protein (see chapter 1). It is present in a limited 

amount in a concentration of 140 fmole/rng of cytosol protein 

of interstitial tissue. The affinity constant is l0
10

H-
1

(154) 

which is high compared to the affinity constants of a non­

specific binding protein like serum albumin or of the more 

specific 

affinity 

sex steroid binding globulin in plasma which have 
5 9 -l 

constants of 10 and 10 M respectively (155). 

In order to investigate whether the testicular oestrogen 

binding protein also possesseS the last two properties 

characteristic for a receptor protein, the steroid speci­

ficity and the tissue specificity of the oestradiol binding 

protein v;ere studied .Also several methods for quantitative 

determination of specific oestradiol binding were compared 

and the protein character of the oestradiol binding was 

established. The results of this study are presented in 

appendix paper I and can be summarized as follows: 

The oestradiol binding protein of testicular cytosol had 

a high affinity for oestradiol-17S and for diethyl­

stilboestrol; a moderate affinity for oestrone, oestriol and 

oestradiol-17a and a low affinity for dihydrotestosterone and 

testosterone. Thus the binding protein is steroid specific. 

In order to establish whether the oestradiol binding 

protein is tissue specific it was necessary first to establish 

which method could be used for the quantitative determination 

of specific oestradiol binding in cytosol fractions. For the 

quantitative determination of specific binding of steroids 

in cytosol several methods have been described which 
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are all based on the following principle: cytosol is incuba­

ted with 3H-steroid (incubation A). In a parallel incubation 

cytosol is incubated with the same amount of 3H-steroid plus 

a 100-fold cold steroid (incubation B). After incubation of 

the cytosols free steroid and bound steroid are separated. 

The difference between bound steroid A and bound steroid B 

is called 'specific binding'. For the separation of bound 

from free steroid several methods can be used. For exam-

ple: charcoal adsorption 1 agar electrophoresis,sucrose density 

gradient centrifugation and Sephadex chromatography. No dif­

ference in the amount of specific oestradiol binding was 

found with these techniques. For practical reasons Sephadex 

chromatography and agar electrophoresis were chosen as tech­

niques for quantitative determination of specific binding of 

oestradiol in the cytosol fractions of several tissues. 

Specific binding of oestradiol could be demonstrated in 

the cytosol fractions of the following tissues: liver, adre­
nal and pituitary glands 1 prostate, seminal vesicle~ epididymis 

and testis interstitial tissue. No specific binding could be 

found in: plasma, hypothalamus and seminiferous tubules. 

It is difficult to conclude whether the occurrence of the 

specific high affinity oestradiol binding in so many diffe­

rent tissues does support the hypothesis that receptors are 

only present in target tissues and not in nontarget tissues, 

particularly because in the male rat the function of oestra­

diol is not known. Therefore until now it has been impossible 

to conclude whether these tissues, including interstitial 

tissue, are real oestrogen target tissues. 

Even if the tissue specificity of the oestradiol binding 

proteins in the male rat remains to be questioned, the oes­

tradiol binding protein in rat testicular cytosol can be re­

garded as a true receptor protein for the following reasons: 

the binding protein has a high affinity for oestradiol and 

not for other steroids; it is present in limited amounts; it 

has a sedimentation coefficient of 8S; it is heat labile and 

sensitive for pronase and not for RNAse and DNAse. All these 

characteristics are the same as the characteristics of the 
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oestradiol receptor which is present in uterine tissue, a 

well-known oestrogen target tissue. 

3.2 The effect of oestradiol on RNA synthesis in testis interstitial tissue and 

seminiferous tubules. 

3.2.1 Introduction 

The oestradiol-17~ receptor in rat testis interstitial 

tissue moves into the nucleus after binding of oestradiol 

{152). The binding of steroid hormones to a cytoplasmic 

receptor protein has been indicated as a prerequisite for 

their biological activity (chapter 2). The formation of 

hormone-receptor complex has been shown to precede the 

transport of the hormone to the nucleus and the subsequent 

stimulation of RNA synthesis {see chapter 2). In uterine 

tissue oestradiol-17~ stimulates the incorporation of radio­

active precursors into RNA, due to both an increase in the 

rate of RNA synthesis and to an increase in specific activity 

of the precursor pool of ribonucleotides (156,157,158,159, 

160). In this respect we have considered the possibility 

that an effect of oestradiol in the testis should be pre­

ceded by stimulation of RNA synthesis. 

In the present study we have examined changes occurring 

in the uptake of 3H-uridine into the acid soluble nucleotide 

pool and into RNA from testis interstitial tissue and semi­

niferous tubules following in vivo administration of 

oestradiol to rats. 

3.2.2 Materials and methods 

Materials 

(5,6 3H) Uridine (40Ci/mrnol) was purchased from Radiochemical 

Centre Amersham, e. K. HCG was obtained from N. v. Organon,. Oss, 

The Netherlands.Oestradiol was obtained from Steraloids, 

Pawling, New York, U.S.A .• 
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Animals and incubation procedures 

Three month old male rats of the R-Amsterdam strain were 

used. The animals received a subcutaneous injection of 100 ~g 

oestradiol-178 in 0.1 ml propylene glycol.In some experiments 

hypophysectomized rats were used, which received a daily in­

jection of 0.5 IU HCG for 8 days. At various times after ad­

ministration of oestradiol the animals were killed by cer­

vical dislocation. One testis was removed, decapsulated and 

immediately incubated with 4 ml Krebs Ringer glucose buffer, 

containing 50 ~C (5,6, 3H) uridine, for 60 min at 32°C in an 

atmosphere of 95% 0 2-s% co2 . After incubation interstitial 

tissue and tubules were obtained by wet dissection at 0°C 

(161). 

Determination of radioactivity in acid soluble and acid in­

soluble fractions 

Testis interstitial tissue was homogenized at 0°C with an 

all glass potter homogenizer in 6 ml distilled water per gram 

of tissue. Cold 1M perchloric acid (PCA) (2 ml) was added 

to the homogenate. After standing in ice for 10 min the mix­

ture was centrifuged 10 min at 3,000xg. The resulting preci­

pitate was washed 3 times with 3 ml 1N PCA to give the 'acid 

insoluble fraction'. The supernatant fluid plus washings 

were combined to give the 'acid soluble fraction'. The pre­

cipitate was washed with 3 ml ethanol and RNA was extracted 

by hydrolysis for 60 min at 37°C in NaOH. After alkaline hy­

drolysis the samples were cooled and acidified by addition 

of 0.5 ml 3M PCA and allowed to stand for 15 min. The samples 

were centrifuged at 3,000xg for 10 min. The amounts of radio­

activity and RNA in the supernatant were determined by liquid 

scintillation counting and by the orcinol procedure (162) 

respectively. 

Ion exchange chromatography of the acid soluble fractions 

The acid soluble fraction was neutralized with KOH and the 

precipitate of KCl0 4 was removed by filtration. The acid so-
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luble fraction was applied to a column (5 em x 0.6 em) of 

Dowex X 8 (Cl-) ion exchange resin, 200-400 mesh. The co­

lumn was washed with water (20 ml) to remove the nucleosi­

des. The total free nucleotides were then eluted with 1M 

NaCl as a single fraction. The radioactivity and E260 nm of 

the NaCl eluate were measured. 

Calculations for determination of the specific activities 

of the nucleotide pools and RNA fraction 

The specific activity (SA}of the nucleotide pool was ex­

pressed as dpm/E
260

, 1:'he SA of RNA as dpm/"gRNA. The SA of 

the RNA fraction was corrected for changes in the SA of the 

nucleotide pool by the following calculation: 

SA dpm RNA 
RNA= "gRNA 

3.2.3 Results 

dpm nucleotide pool 
E260 nucleotide pool 

Experiments with intact rats 

In order to investigate the effect of E2 on 3H-uridine 

incorporation in the nucleotide pool and in RNA of rat tes­

ticular tissues rats were injected with 100 ~g oestradiol. 

Control rats received vehicle only. After 6 and 24 hours the 
3H-uridine incorporation into RNA and nucleotide pool of in­

terstitial tissue and seminiferous tubules was determined. 

The results in table !A show that 6 and 24 hours after 

oestradiol administration the incorporation of 3H-uridine 

in RNA of testis interstitial tissue was increased. The up­

take of 3H-uridine in the nucleotide pool remained constant 

6 hours after E2 injection, after 24 hours the specific 

activity of the nucleotide pool seemed to be enhanced. After 

correction of the incorporation of uridine into RNA for 

changes in the specific activity of the nucleotide pool 

there seemed to be no difference between RNA synthesis 

of control rats and rats 24 hours after E2 administration. 

In the seminiferous tubules no stimulation of &~A synthesis 
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C>' 
0 Table l The effect of oestradiol on RNA synthesis in rat testicular tissues. Rats were 

injected with 100 ~g oestradiol, control rats received vehicle only. Six and 

treatment 

24 hours after injection testes were incubated with 3H-uridine and the incorpora­

tion of 
3
H-uridine into RNA and nucleotide pool was measured 

Specific activities (SA)X 

INTERSTITIAL TISSUE SEMINIFEROUS TUBULES 

A INTACT RATS RNA a) pool b) RNA carr. c) RNA pool RNA carr. 

control 590 + 66 110 I 
6 hours E2 930 + 45 110 I 
24 hours E2 1253,867 

8 HYPOX RATS 

control 239 + 55 141 
6 hours E2 190 + 36 141 
24 hours E 2 

190,230 

c HYPOX RATS + HCG 

control 2017 .:!:_ 209 14 I 
6 hours E

2 
2400 :!:_ 200 14 I 

24 hours E2 
2183,1877 

a) SA RNA: dpm/wg RNA 
6 

b) SA pool: dpm x 10 /E260 

6.0 + 0.5 {lOI 

5.9 + 0.4 110 I 

11.9,11.3 

7.2 ± 2.5 (4) 

5.5 .:!:. 1.9 (4) 

8. 3, 4. 0 

6.9 ± 1.7 (4) 

7.2 :!:_ 2.3 (4) 

5.2,11.2 

100 + 10 110 I 
157 + 8 110 I 

106,75 

100 ± 23 (4) 

92:!:_18(4) 

113,65 

100 ± 9 (4) 

113 :!:_ 12 (4) 

67,127 

290 + 50 171 4.6 2:. 1.4 171 100 + 23 171 

380 2:. 53 171 7. 6 ::: 0. 9 171 78 + 22 171 
225,335 6.8, 5.6 96,44 

166.:!:. 12 (4) 5.0 ± 2.1 (4) 100 ± 30 (4) 

159 + l (4) 4.8 + 1.6 (4) 103 + 24 (4) 

219,159 10.1,5.1 91,69 

;::Results as X 2:. S.E.M. (n) or individual 

observations 

c) RNA corr.: SA corrected for changes in nucleotide­

pool. SARNA carr. of control rats is 100% 



could be found after E2 injection. 

Experiments with hypophysectomized rats 

Injection of oestradiol could result in a feedback on 

the secretion of the gonadotropins (23,24). This in turn 

could induce changes in RNA synthesis. In order to investi­

gate whether the changes in RNA synthesis after oestradiol 

administration were due to a change in gonadotropin secre­

tion or to a direct effect of oestradiol on the testis, hy­

pophysectomized rats were used. One day after hypophysectomy 

rats were injected with 100 ~g oestradiol. After 6 and 

24 hours the incorporation of uridine into the nucleotide 

pool and RNA fraction was determined. No effect of oestra­

diol on uridine incorporation into acid precipitable mate­

rial could be observed in interstitial tissue and seminife­

rous tubules. Also the specific activity of the nucleotide 

pool did not change significantly after oestradiol adminis­

tration (table 1B) . 

Experiments with hypophysectomized rats treated with HCG 

In contrast to experiments with intact rats no effect of 

oestradiol on the incorporation of uridine could be observed 

in hypophysectomized rats. This could reflect either, that 

the effect of oestradiol on RNA synthesis in intact rats is 

caused by an indirect effect via pituitary hormones or that 

in hypophysectomized rats one of the gonadotropic hormones, 

which is essential for a direct effect of oestradiol on RNA 

synthesis is absent. The hormone responsible for the absence 

of the effect on RNA synthesis could very well be LH, because 

this is the gonadotropin which acts on Leydig cells. There­

fore we have repeated the experiments with hypophysectomized 

rats treated with 0.5 IU HCG per day for 8 days. This dose 

of HCG is known to restore testosterone levels in plasma and 

testicular fluid to levels close to those seen in intact 

rats (163). Administration of 100 ~g oestradiol to HCG trea­

ted hypophysectomized rats did not result in an increase of 
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uridine incorporation into RNA 6 and 24 hours after oestra­

diol injection. Also no change in the specific activity of 

the nucleotide pool could be observed after oestradiol in­

jection (table 1C), 

3.2.4 Discussion 

Administration of oestradiol to female rats leads to an 

increased incorporation of radioactive nucleosides into RNA 

from uterine tissue (156,157,158,159,160). According to se­

veral authors this increase during the first 4-6 hours re­

flects primarily the increased incorporation of administered 

nucleosides into nucleotide pools rather than an increased 

RNA synthesis (156,157,158,160). Only after 6-8 hours the 

increase in the specific activity of the RNA fraction could 

be explained by an increased RNA synthesis (156,157,160). 

In mice an effect of oestrogen treatment on testicular RNA 

synthesis has been reported (164). 

In the present experiments oestradiol injection to intact 

male rats resulted after 6 and 24 hours in increased incor­

poration of 
3
H-uridine into RNA of testis interstitial tis­

sue. Whereas the increase in specific activity of the RNA 

fraction 6 hours after injection is probably due to increas­

ed RNA synthesis, the increase after 24 hours could probably· 

be explained by an increas6 in the specific activity of 

the nucleotide pool. Oestradiol had no effect on uridine in­

corporation into RNA or into the nucleotide pool of semini­

ferous tubules. 

Besides the possibility that oestradiol has a direct ef­

fect via the E2 receptor in interstitial tissue, the possi­

bility exists that oestradiol has an influence on gonadotro­

pin secretion (23,24)and that the changes in RNA synthesis 

are merely caused by changes in gonadotropin levels. When 

the effect of oestradiol was studied in rats 1 day after hy­

pophysectomy no effect on RNA synthesis could be observed. 

In order to exclude the possibility that oestradiol might 

exhibit its effect only when LH is present, the same experi-
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ments were performed with HCG treated hypophysectomized rats. 

Also in these animals no effect of oestradiol on uridine in­

corporation into nucleotide pool and RNA could be found. 

From the present experiments it is difficult to derive 

final conclusions about the effect of oestradiol on RNA syn­

thesis. In testis, however, the effects of hypophysectomy 

and HCG treatment on uridine incorporation are clear. Compa­

rison of the uridine incorporation into RNA of control 

intact, hypophysectomized and HCG treated hypophysectomized 

rats reveals that hypophysectomy results in a decreased 

uridine incorporation into RNA of both tubules and inter­

stitial tissue. Daily treatment with HCG of hypoph~rsecto­

mized rats enhanced uridine incorporation into RNA.of inter­

stitial tissue. No significant differences were observed 

between the specific activities of the nucleotide pools 

of intact, hypophysectomized and HCG treated rats. There­

fore it can be concluded that hypophysectomy results in 

a decrease of RNA synthesis in interstitial tissue and 

seminiferous tubules and that HCG stimulates RNA synthesis 

in interstitial tissue of hypophysectomized rats. Our results 

are in agreement with other studies, which have shown that 

LH or HCG stimulates RNA synthesis_in the testis(l65,166) 

Also FSH has an influence on testicular RNA synthesis(l67) 

The increase in uridine incorporation after oestradiol 

administration in testis interstitial tissue and the absence 

of this increase in seminiferous tubules may support the 

hypothesis that the oestradiol receptor from testis inter­

stitial tissue is involved in the effect of oestradiol on 

RNA synthesis. Still the results do not conclusively prove 

a direct effect of oestradiol on the testis since no effect 

of oestradiol on RNA synthesis could be observed in hypophy­

sectomized rats. This might indicate that the change in RNA 

synthesis after oestradiol administration to intact rats is 

the result of an effect of oestradiol on pituitary hormones. 

Whether a single injection of oestradiol indeed has a nega­

tive effect on gonadotropin secretion will be the subject 

of the following chapter. 
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4 The effect of oestrogen on testosterone production m rat 

testis and on LH plasma levels 

From the results presented in chapter 3 it appears that 

an oestradiol receptor is present in rat testis interstitial 

tissue. However it is still not clear whether this testicu­

lar tissue can be considered as an oestrogen target tissue, 

since no function of oestradiol is known in the testis. 

After daily administration of oestrogens to male rats for 

several days, testicular and plasma testosterone levels are 

decreased. According to some authors this is the result of a 

direct action of oestrogens on the testosterone synthesis in 

the testis and not of a negative feedback action of oestro­

gens on LH secretion, because it has been reported that 

plasma LH levels were not decreased after oestrogen adminis­

tration (19-22). Other authors (23,24), however, did find 

lowered plasma LH levels after daily in vivo injection of 

oestrogen. More recently, Tcholakian et al. (168) reported 

that already 3 hours after a single oestrogen injection 

plasma and testicular testosterone levels were decreased 

without a concomitant decrease in plasma LH levels. In 

chapter 3.2 we have described an effect on uridine incorpora­

tion in testicular RNA 6 hours after a single oestrogen in­

jection. Whether the observed effects, i.e. a lowered tes­

tosterone level and an increased RNA synthesis 1 are the 

result of a direct effect of oestrogen on the testis in which 

the receptor is involved, or whether the effects are the 

result of changes in gonadotropic hormone secretion, remains 

to be solved. 

Therefore we have reexamined the effects of a single 

oestrogen injection on plasma LH levels and on testicular 

testosterone levels and production. The effect of oestrogen 

on testosterone production was also studied in hypophysecto­

mized rats. The results of this study are described in appen­

dix paper II. The results can be summarized as follows: 

Six hours after injection of 50 ~g E2B or 100 ~g oestra-
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diol in intact rats testicular testosterone production and 

level were decreased. Together with the decrease in testos­

terone also plasma LH levels were lowered significantly 

6 hours after injection of 100 ~g oestradiol. The apparent 

decrease in LH levels after injection of 50 ~g E2B was not 

statistically significant. Twenty four hours after injection 

of 50 ~g E2B both testicular testosterone production and LH 

levels were decreased, whereas at the same time after injec­

tion of 100 ~g oestradiol no inhibitory effect of oestradiol 

on testosterone production and LH plasma levels could be ob­

served. 

Since injection of 500 ng oestradiol causes a movement 

of the receptor from the cytoplasm to the nuclei of the 

interstitial tissue within 1 hour, this amount should be 

sufficient to evoke a response in the testis.Injection of 

500 ng oestradiol to intact rats also caused a decrease in 

testicular testosterone production within l and 3 hours. This 

decrease in testosterone production was accompagnied by a 

significant decrease in plasma LH levels 3 hours after injection. 

Also 1 hour after injection LH levels appeared to be lower 

but this effect was not statistically significant. So in nearly 

all experiments the decrease in testosterone levels and pro­

duction was accompanied by a decrease in LH levels. 

Although a direct effect of oestradiol on the testis can­

not be excluded, it is very likely that the observed effects 

are at least partly the result of a negative feedback action 

of oestrogens on LH secretion. In order to test this hypo­

thesis we have studied the effect of oestrogens on testoste­

rone production in hypophysectomized rats. Since after hypo­

physectomy testosterone production in testicular tissue de­

creases due to lack of LH, the rats were injected with suf­

ficient amounts of LH to maintain testosterone production at 

the level of that in intact rats. In these LH treated hypo­

physectomized rats injection with 50 ~g E2B did not result 

in a reduction of testosterone production. 

These results could reflect either that all the effects 

of oestrogens in intact rats are due to a feedback effect on 

35 



gonadotropin secretion or that a possible direct effect of 

oestradiol on testicular testosterone production is dependent 

on the presence of tropic hormones and therefore is not ob­

served in hypophysectomized rats. This latter conclusion is 

not very likely since injection of 500 ng oestradiol immedia­

tely after hypophysectomy also has no effect on testosterone 

production after 1 and 3 hours, at which time the effect of 

oestradiol in intact rats was clear. It is not very likely 

that at this time after hypophysectomy all tropic hormones 

have disappeared. 

Therefore on basis of the results in appendix paper II 

we prefer to conclude that the effects of oestrogens in in­

tact rats are the result of a negative feedback action on LH 

secretion, rather than the result (wholly or in part) of a 

direct effect on the testis. 
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5 The effect of oestrogen administration on LH stimulated 

testosterone production of isolated Leydig cells from 

immature rats 

5.1. Hormonal regulation of LH stimulation of testosterone production in isolated 

Leydig cells from immature rats: the effect of hypophysectomy, FSH and 

oestrogen 

If oestrogens have an effect on testis interstitial tissue 

this effect may under physiological conditions in vivo very 

well be restricted to a certain life period during the deve­

lopment of the testis. This assumption is supported by ob­

servations on other phenomena in the Leydig cell, which are 

related to a certain developmental stage such as the high 

activity of Sa-reductase and 38-hydroxysteroid dehydrogenase 

before pub~rty (169,170,171,172,173). 

According to D5hler et al. (174) the plasma levels of 

oestrogens are high before puberty. It has been demonstrated 

by de Boer et al. (25) that part of the oestrogen receptors 

in the testis of the prepubertal rat is localized in the 

nucleus, due to endogenously present oestradiol. Therefore 

the possibility was considered that oestradiol could have an 

effect in the Leydig cell of the prepubertal rats, but not 

in the adult rat. 

To test this possibility the effect of oestrogen on LH 

responsiveness of the Leydig cells from 21-25 day old rats 

has been studied. The results of this study are described in 

appendix paper III. An attempt was made to isolate Leydig 

cells from immature rats in the same way as has been des­

cribed by Janszen et al. (2) for the isolation of Leydig 

cells from adult rats. The Leydig cells isolated from immature 

rats showed an increase in testosterone production in the 

presence of LH similarly to the results obtained 

with cells from adult rats. The amount of testosterone pro­

duced per 10
6 

cells, however, was in cells from immature rats 

nearly 10 times lower than in cells from adult rats. This 
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might be due to a difference in testosterone metabolism, 

because the conversion of testosterone to Sa-reduced meta­

bolites was higher in cells from immature rats when compar­

ed to the conversion in cells from adult rats. A lower 

capacity of cells from immature rats to respond to LH could 

however not be excluded. 

The effect of in vivo oestradiol administration on the 

LH stimulation of testosterone production in isolated Leydig 

cells was studied in experiments with hypophysectomized 

rats, in order to exclude a negative feedback action on go­

nadotropin secretion. Hypophysectomy, however, resulted 

within 5 days in a complete loss of the ability of Leydig 

cells to respond to LH. This was in contrast to cells from 

adult rats, which after hypophysectomy showed a response to 

LH similar to the response of cells from intact adult rats. 

Administration of oestrogen to hypophysectomized immature 

rats had no influence on the response of the Leydig cells 

to LH. Since it was impossible to observe a possible inhi­

bitory effect of oestrogen on LH responsiveness in cells 

in which LH responsiveness is already lost due to hypophy­

sectomy, we tried to find a possibility to maintain LH res­

ponsiveness after hypophysectomy. Odell et al. (175,176) 

described that administration of FSH to hypophysectomized 

immature rats can restore LH responsiveness. Indeed, 

administration of FSH daily during 5 days to hypophysecto­

mized immature rats did at least partly maintain LH res­

ponsiveness, when treatment with FSH was started both 

immediately and 5 days after hypophysectomy. This effect of 

FSH could be ascribed to FSH and not to contiminating LH. 

Daily oestrogen injection in hypophysectomized immature 

rats which were treated daily with FSH resulted in an 

inhibitory effect on LH stimulated testosterone production 

in isolated Leydig cells. Daily administration of either 500 

ng or 5 ~g E2B did abolish the FSH induced LH respopsiveness 

in isolated Leydig cells. 
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5.2. Further characterization of the effects of hypophysectomy, FSH and oestrogen 

on LH stimulation of testosterone production in Leydig cells isolated from 

immature rats 

5.2.1 Introduction 

The changes in LH responsiveness of isolated Leydig cell 

preparations after hypophysectomy and either FSH or FSH 

plus oestrogen administration might be due to several causes. 

Testosterone production measured in isolated Leydig cells 

after LH administration is the result of testosterone syn­

thesis and testosterone degradation. A change in the 

capacity either to synthesize or to convert testosterone 

would be reflected in apparent changes of LH stimulated 

testosterone production. Also different compositions in cell 

population after different in vivo hormonal treatments could 

result in a changed LH responsiveness, when expressed as the 
6 amount of testosterone produced per 10 nucleated cells. 

In the experiments described in this chapter we have 

studied testosterone conversion in isolated Leydig cells 

from either intact, FSH treated, hypophysectomized rats, or 

FSH plus oestrogen treated hypophysectomized rats. We have 

also determined the amount of Leydig cells in the cell pre­

parations after different hormonal treatments of the rats 

using 3B-ol-dehydrogenase as a Leydig cell marker· enzyme. 

Binding of LH to the LH receptor of Leydig cells will 

initiate the activation of several steps which finally cause 

the increased testosterone production (chapterl). A change 

in any of these steps would result in a changed testesterone 

production. In order to investigate whether the activation 

of cAMP production might be influenced by the treatments, we 

have also studied LH stimulated cAMP production. 

Finally, we studied the time courses of the effects of FSH 

and oestrogen on LH responsiveness in Leydig cells from hy­

pophysectomized rats. Since an oestradiol receptor is present 

in Leydig cells (14), the effect of oestrogen treatment 
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on FSH induced LH responsiveness might be the result of bin­

ding of oestrogen to the oestradiol receptor in Leydig cells 

and translocation of the oestrogen-receptor complex to the 

nucleus. Therefore we have tried to correlate nuclear recep­

tor binding and the effect of oestrogen on LH stimulated 

testosterone production. 

5.2.2 Materials and methods 

Materials and methods not mentioned here were the same as 

described by van Beurden et al. (appendix paper III). 

DNA determination 

In some experiments 

not been expressed per 

testosterone and cAMP 
6 10 cells, but per 10 

production have 

11g DNA. DNA was 

determined using the fluorimetric method of Hinegardner 

et al. (177). 

cAMP determination 

Isolated Leydig cells were preincubated for 1 hour at 33°C 

in an atmosphere of o 2;co2 (95:5, v/v). LH was added and 

after 2 hours incubation the reaction was stopped by addition 

of 2 ml acetone. cAMP was extracted and determined as pre­

viously described by Cooke et al. ( 4 ) . When indicated 

0.25 M 3-isobutyl- 1-methyl-xanthine was present in the in­

cubation medium. 

Assay of nuclear oestrogen receptor 

After injection of oestrogen in rats the KCl extractable 

nuclear receptor in the testis has been determined using a 

nuclear exchange method described by de Boer et al. (25) 
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5.2.3 Results 

1) Effect of hypophysectomy, FSH and oestradiol benzoate 

treatment on testosterone conversion in isolated Leydig 

cells from immature rats 

The effect of hypophysectomy, FSH treatment and oestrogen 

treatment on testosterone conversion was investigated in 

rats hypophysectomized at day 23. One group of rats was 

injected daily with 60 ~g FSH, another group was injected 

daily with FSH plus 500 ng oestradiol benzoate (E
2

B) and a 

third group was injected with vehicle only. After 5 days 

Leydig cells were isolated and incubated with 3H-testosterone 

and unlabelled testosterone. Also Leydig cells from intact 

rats were isolated and incubated. Testosterone metabolism was 

measured and expressed as pmoles testosterone converted per 

minute per 10 6 cells (Table 1). The main metabolites were 

dihydrotestosterone, androstanediol and androsterone. 

Table 1 Testosterone conversion in isolated Leydig cells 

from intact rats, 5 days hypophysectomized rats 

(hypox), and hypox rats treated with FSH (hypox + 
FSH), or FSH plus E

2
B treated rats (hypox + FSH + 

E
2

B) 

pmole/10 6 cells/min 

Exp. l Exp. 2 

intact 133 76 

hypox 0 0 

hypox + FSH 0 25 

hypox + FSH + E2B 25 25 

After hypophysectomy a distinct drop in Sa-reductase acti­

vity has been observed. Administration of FSH or FSH plus 

E
2

B appears to increase testosterone conversion in hypophy­

sectomized rats. 
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2) The amount of Leydig cells in the Leydig cell prepara­

tions isolated from intact, hypophysectomized, FSH and 

FSH plus ~ 2 B treated rats 

The number of Leydig cells in the cell preparations from 

intact and hypophysectomized rats treated as described above 

(see l) was determined using 3S-ol-dehydrogenase as a Leydig 

cell marker. Results are presented in Table 2. 

Table 2 The amount of 3s-ol-dehydrogenase containing cells 

in Leydig cell preparations of intact rats, hypo­

physectomized rats and hypophysectomized rats 

treated with FSH or FSH plus E
2

B 

intact 

hypox 

hypox + FSH 

hypox + FSH + E
2

B 

% 3S-ol-dehydrogenase containing 

cells (x 2: s.E.M. In)) 

46.1 + 3.9 (14) 

33.2 + 2. 0 (6)" 

31.3 + 1.5 I 7)" 

33.1 + 3. 2 (9)" 

*significantly different from intact rats p :-s 0. 01 

significance was tested with the two tailed Student's t-test. 

Hypophysectomy results in a 25% drop of the amount of 36-

ol-dehydrogenase containing cells, but this decrease cannot 

explain the absence of an LH response in Leydig cell prepa­

rations of hypophysectomized rats. Administration of FSH 

or FSH plus E2B to hypophysectomized rats had no influence 

on 3s-ol-dehydrogenase containing cells in the cell prepa­

rations. 
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3) The effect of hypophysectomy 1 FSH or FSH plus E2B treat­

ment on LH stimulation of cAMP production in isolated 

Leydig cells 

The effect of hypophysectomy 1 FSH and oestrogen treat­

ment on LH stimulated testosterone production could be at 

the level of the stimulation of cAMP production. Therefore 

cAMP production was measured in isolated cells from intact 

and hypophysectomized rats treated as described above. Cells 

were incubated with or without 3-isobutyl-1-methylxanthine 

(MIX) ,a phosphodiesterase inhibitor. 

Table 3 cAMP production in Leydig cells from intact rats, hypophysectomized 

rats and hypophysectomized rats treated with FSH or FSH plus E
2

B 

ng cfu'1P/10 ,'..r.g DNA/2 hours 

-MIX +MIX 

ng LH/ml 0 100 0 !00 

intact 0. 19 :' 0.04 {4) 62.3 :' 6.8 14 I 2.08 19 0. 9 

hypox 0. 2 3 :' 0. 0 5 14 I 8. 2 :' 5. 3 {4) :11 l. 18 3 2. 1 

hypox + FSH 0. 16 :' 0.02 I 4 I 10.5 :' 3. 6 (4) !I! 0.67 28.0 

hypox + FSH + E
2

B 0. 1 0 :' 0.03 14 I 8.8 :' 2.4 {4)~ 0.95 30.2 

• significantly different from intact 0.01 p<; 

Values ao x :' s.E.H. (nl or ao means of duplicate experiments. 

Hypophysectomy resulted in a decrease of LH stimulated 

cAMP production, either in the presence or absence of MIX 

in the incubation medium. Administration of FSH or FSH plus 

oestrogen to hypophysectomized rats did not alter the res­

ponse of Leydig cells to LH in terms of cAMP as compared to 

untreated hypophysectomized rats. 
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4) Time course of the effect of FSH on LH stimulated tes­

tosterone production in isolated Leydig cells from hypo­

physectomized rats 

Rats were hypophysectomized at day 23. One group of rats 

was injected daily with 60 ~g FSH. Another group was injec­

ted with vehicle only. After 1,2,3 and 5 days the rats were 

killed and Leydig cells were prepared and incubated with LH. 

Leydig cells from intact rats were used as control. The LH 

stimulated testosterone production of intact rats was taken 

as the 100% value. Results are given in Figure 1. 

% 
100 

50 

0 2 

r( 4_) ____ ----l (6) 

3 4 5 -+- days after 
hypophysectomy 

Figure I Hypophysectomized rats were injected daily with 

60 ~g FSH or with vehicle only. After 1,2,3 and 5 days Leydig 

cells were isolated and incubated with 0 or 100 ng LH/ml for 

2 hours. LH stimulated testosterone production was expressed 

as percentage of the LH stimulated testosterone production 

of cells from intact rats of the same age as the hypophysec­

tomized rats. Means and individual values of duplicate expe­

riments are given or means ~ S.E.M. (n) 
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Both in untreated and FSH treated rats the LH stimulated 

testosterone production decreased till 3 days after hypophy­

sectomy. In untreated rats the LH responsiveness diminished 

further to a plateau level of 10% of the value of intact 

rats on day 5 after hypophysectomy, but in FSH treated rats 

from day 3 after hypophysectomy LH stimulated testosterone 

production remained at a constant level of 50% of the value 

of intact rats. 

No significant difference could be observed between the 

LH stimulated testosterone production of Leydig cells from 

intact rats of 23 or 28 days old. 

5) Time course of the effect of oestradiol on LH stimulated 

testosterone production of hypophysectomized rats 

I. Experiments with hypophysectomized rats. 
----·------------------------------------
Rats were hypophysectomized at day 23. One group of rats 

was injected with E2B (500 ng) daily. A second group was 

injected with vehicle only. After 1,2 and 5 days Leydig 

cells were isolated and LH stimulated testosterone produc­

tion was measured. Testosterone production was expressed as 

percentage of the testosterone production of cells from 

intact rats (Fig. 2). 

No difference could be observed between untreated hypo­

physectomized rats and E
2

B treated hypophysectomized rats. 

LH stimulated testosterone production was clearly decreased 

after hypophysectomy. 
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b) Effect of E2B on testosterone production of Leydig cells 

from hypophysectomized rats treated with E2B starting at 

day 3 or 5 after hypophysectomy. 

Hypophysectomized rats were injected daily with 60 ~g FSH. 

One group was treated with E 2B (5 ~g or SOD ng) starting from 

day 3 after hypophysectomy. Another group was injected with 

E2B at day 5 after hypophysectomy. On day 6 after hypophysec­

tomy the rats were killed and testosterone production in iso­

lated Leydig cells was measured. Results are expressed as 

percentage of testosterone production of cells from intact 

rats (Fig. 4). 

Treatment with E2B started either at day 3 or at day 5 

after hypophysectomy resulted in an inhibition of the FSH 

induced LH responsiveness of isolated Leydig cells. 

% 

25 

% 
100 

50 

(2) 

D 5 days hypox + FSH 

~ 5 days hypox + FSH + 500 ng E
2

B 

IJ] 5 days hypox + FSH + 5 pg E
2

B 

3 days Ei 

Figure 4 Hypophysectomized rats were injected for 5 days with 

60 ~g FSH. The last 3 or I days E
2

B was given together with 

FSH. Isolated Leydig cells were incubated with 0 or 100 ng LH/ 

ml. Testosterone production was expressed as percentage of the 

production of Leydig cells from intact rats. Values are given 

as means of duplicate experiments or means+ S.E.M. (n). 
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6) Correlation between the nuclear binding of the oestrogen­

receptor complex and the effect of E2B on LH stimulated 

testosterone production 

To investigate whether the oestrogen receptor is involved 

in the effect of E2B on testosterone production, 5 days hy­

pophysectomized rats treated daily with FSH received a 

single dose of 5 ~g E2B. The E2B injection was given together 

with the last FSH injection. Control rats received FSH only. 

Different times after injection the nuclear KCl extractable 

oestrogen receptor in the testis was measured with a nuclear 

exchange method. For the estimation of nuclear KCl extract­

able receptor 48 hours after injection of E2B, the E2B was 

given together with FSH at the fourth day after hypophysec­

tomy and at the fifth day the rats received an injection of 

FSH only. LH stimulation of testosterone production was 

determined by incubation of isolated Leydig cells with 

100 ng LH/ml at different times after injection of E2B 

Results are given in Table 4. 

In control rats 1 hour after injection of 500 ng oestra­

diol all the cytoplasmic oestradiol receptor molecules have 

been translocated to the nucleus and the maximal amount of 

KCl extractable nuclear receptor can be determined (25) 

with a nuclear exchange method. The maximal amount of 

oestradiol bound to KCl extractable nuclear receptor in 

5 days hypophysectomized rats treated with FSH was 33 fmole/ 

rng of protein of the KCl extract { mean of 2 determinations). 

It can be concluded from Table 4 that the binding of 

oestradiol to the nuclear KCl extractable receptor parallels 

the inhibiting effect of oestrogen on LH stimulated testos­

terone production. 

49 



Table 4 Nuclear binding of oestrogen-receptor complex in the 

testis and the effect of E2E on LH stimulated 

testosterone production. 

Hypor1hysectomi:Zed rats were treated daily with FSH 

(60 ~g } during 5 days. At day 4 or 5 FSH was given 

together with E2B. Control rats received FSH only. 

Inhibition of LH stimulated testosterone production 

by E2B in isolated Leydig cells was determined and 

compared to the number of occupied nuclear KCl extract­

able oestradiol binding sites in the testis. 

time after 

injection 

occupied nuclear 

oestradiol binding 

sites a) 

% inhibition of 

LH stimulated 

testosterone 

production a) hours 

1 

3 

18 

24 

48 

control rats 

fmole/mg protein 

7 

19,24,27 

n.d. 

12,11 

4 

0 

33,34 

32,56 

44.1 + 8.8 (4) 

42,0 

0' 0 

0 

a) individual experiments or means ± S.E.M. (n) 

n.d. not determined 

2.4 Discussion 

From previous observations (see appendix paper III), it 

was known that hypophysectomy of immature rats results in a 

loss of the ability of isolated Leydig cells to respond to 

LH. Administration of FSH to hypophysectomized rats restores 

this LH responsiveness, whereas simultanous injection of 

oestradiol benzoate (E 2B) with FSH inhibits the FSH induced 

LH responsiveness of isolated Leydig cells. 

The results in Table 1 reflect that the loss in LH re-
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pensiveness after hypophysectomy in terms of the amount of 

testosterone produced per cell is not due to an increased 

testosterone conversion. No Sa-reductase activity could be 

observed in isolated Leydig cells from 5 days hypophysecto­

mized rats. This is in agreement with the results of Nayfeh 

et al. (178), who observed that the Sa-reductase activity in 

testis interstitial tissue decreased after hypophysectomy. 

FSH treatment of hypophysectomized rats caused a small 

increase in 3H-testosterone conversion in one of two expe­

riments. According to Nayfeh et al. (178) FSH can cause an 

increase in Sa-reductase activity in the interstitial tissue 

of the testis. In both experiments FSH plus E2B treatment 

resulted in an increase of testosterone conversion, which 

could implicate that oestrogens may influence testosterone 

metabolism in the Leydig cells. The effect of oestrogens on 

testosterone metabolism in the testis is unknown. In prosta­

tic tissue both an increase (179)and an inhibition (180) of 

Sa-reductase activity have been observed after oestrogen 

administration. 

Another possible explanation for the observed effects of 

hypophysectomy, FSH and oestrogen treatment on LH stimulated 

testosterone production could be a change in the composition 

of the Leydig cell preparation. Using 3S-ol-dehydrogenase 

as a Leydig cell marker, a small decrease in the number of 

Leydig cells was observed after hypophysectomy. This decrease 

however was too small to explain the complete disappearance 

of LH responsiveness 5 days after hypophysectomy. Samuels and 

Helmrich (181) also found no great change in the concentra­

tion of this enzyme in testis following hypophysectomy. 

If the effects on LH responsiveness cannot be explained 

by a higher conversion of testosterone or by a change in 

Leydig cell content of the cell preparation, a change in 

one or more of the steps stimulated by LH which finally 

lead to increased testosterone production might have been 

affected by hypophysectomy, FSH and E
2

B treatment. Hypophy­

sectomy results in a loss of LH receptors (182,183,184,185) 

in testes from adult and immature rats. Chen et al. (185) 
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have demonstrated that FSH treatment of hypophysectomized 

immature rats increases the amount of LH receptors in testis 

tissue. Binding of LH to its receptor appears to parallel 

the increase in cAMP production ( 7). A loss of LH receptors 

could therefore be accompanied by a decreased effect of LH 

on cAMP production. From the results in Table 3 it can be 

concluded that the stimulation of cAMP after hypophysectomy 

is indeed lower than the stimulation of cAMP in cells from 

intact rats. No stimulatory effect on cAMP production of 

FSH or FSH plus E2B treatment could be observed in hypophy­

sectomized rats, which would be expected if FSH increased 

LH receptors in hypophysectomized rats. 

To gain further insight in the effect of FSH on LH sti­

mulated testosterone production, LH stimulation of testos­

terone production was studied at different times after hypo­

physectomy in isolated Leydig cells from untreated or FSH 

treated hypophysectomized rats. A steep decrease in testos­

terone production was observed during the first 2 days after 

hypophysectomy irrespective of FSH treatment. From day 2 to 

5 after hypophysectomy, however, there was a further drop 

in LH responsiveness of the Leydig cells from untreated 

rats, whereas in the FSH treated rats LH stimulated testos­

terone production remained at the level of 40-50% of the LH 

stimulated testosterone production of intact rats. Odell 

et al. (175) have also observed a change in LH responsive­

ness after administration of FSH to hypophysectomized rats 

for 5 days. The effect was not observed after 3 days FSH 

treatment. 

The time course of the oestrogen effect on LH stimulated 

testosterone production in the present experiments was 

studied in untreated hypophysectomized rats and in rats 

treated with FSH after hypophysectomy. In untreated rats 

1 1 2 or 5 days treatment with E2B did not influence the tes­

tosterone production in isolated Leydig cells when compared 

with the testosterone production in cells from untreated 

rats. 

Two different approaches have been used to investigate 
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the time course of the inhibiting effect of oestrogen in 

hypophysectomized rats treated with FSH. In the first 

approach hypophysectomized rats were injected with FSH with 

or without E2B starting immediately after hypophysectomy. 

After 3 or 5 days treatment with FSH plus E2B the LH stimu­

lated testosterone production in isolated Leydig cells was 

significantly lower than after treatment with FSH alone. 

Administration of FSH plus E2B to hypophysectomized rats 

for 2 days did not result in an inhibition of the FSH effect 

on LH stimulated testosterone production. 

In the second series of experiments the effect of E2B was 

studied in 5 days hypophysectomized rats treated daily with 

FSH and injected for the last 1 or 3 days with E2B. In these 

rats an inhibiting effect of E2B on LH stimulated testoste­

rone production was already observed 1 day after injection 

with E2B. 

In summary it appears from the present results that an 

inhibiting effect of E2B on LH stimulation of testosterone 

production in Leydig cells can only be observed in FSH 

treated hypophysectomized rats. In FSH treated rats the 

effect of E2B could be observed only when the stimulating 

effect of FSH on LH responsiveness was clear. Therefore it 

can be concluded that the effect of E2B must be due to an 

inhibition of the FSH induced LH responsiveness and not to 

an inhibition of the LH response itself. 

The effect of E2B might reflect either nonspecific 

effects, such as competitive inhibition of one of the 

steroidogenic enzymes, or the effect involves binding of 

oestradiol to the receptor followed by transocation to the 

nucleus. In order to establish the possible involvement of 

the oestrogen receptor in the effect of E2B, 5 days hypophy­

sectomized rats treated daily with FSH were injected with 

E2B and the amount of nuclear receptors in the testis as well 

as the effect of E2B on LH stimulated testosterone production 

in isolated Leydig cells were determined at different times 

after injection (Table 4). There appears to be a correlation 

between the inhibiting effect of E2B and the binding 
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of oestradiol to the KCl extractable nuclear receptor. Clark 

and Peck (61) have suggested that longterm nuclear retention 

(at least 4-6 hours) of the hormone-receptor complex is a 

requirement for a hormone response in the uterus. In the 

testis part of the receptor molecules are still present in 

the nucleus 24 hours after injection, which implies that 

also in our experiments this condition for a hormone response 

has been fulfilled. However, according to Clark and Peck (61) 

binding of the receptor-hormone complex to non-KCl extract­

able acceptor sites may be essential for the hormone response. 

Until now there is no method for the accurate determina­

tion of non-KCl extractable hormone-receptor complex in the 

nucleus of the testis after injection of oestrogens. Whether 

there is a relationship between KCl extractable and KCl non­

extractable receptor sites remains to be investigated. 
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6 General discussion 

6.1. Oestradiol receptors in the male rat 

The oestradiol binding protein present in the intersti­

tial tissue of the testis can be regarded as a true steroid 

receptor since many of its properties are comparable with 

those of the oestradiol receptor in rat uterus. Rat uterus 

is a recognized oestrogen target tissue and the involvement 

of the oestrogen receptor in the response evoked by the 

steroid hormone has been shown. However,a possible role of 

oestradiol in the male rat is still not clear. Oestradiol 

is produced in the male rat. Oestradiol could play a role 

not only in rat testis interstitial tissue but also in se­

veral other tissues of the male rat since an oestradiol re­

ceptor, obligatory for a hormone response is present in 

these tissues. 

An 8S specific oestradiol binding protein could be demon­

strated in cytosol preparations from rat prostate, epididy­

mis, seminal vesicle, liver, pituitary and adrenal glands 

(chapter 3). These tissues have not been considered as im­

portant target tissues for oestradiol, but recently some in­

dications have been obtained for a possible funct"ion of 

oestradiol and its receptor in these tissues. In mouse epi­

didymis oestradiol can enhance sperm maturation (186). An 

effect on RNA synthesis has been observed in prostate (187) 

and also in liver (123) of the female rat. Oestradiol can 

also promote the proliferation of endothelial cells in the 

liver of the female rat (188). An effect on fat accumulation 

in the adrenal gland of the Mopgolian gerbil has been obser­

ved after oestrogen administration (189). Finally the feed­

back action of oestradiol on LH secretion in the rat (23,24) 

is an example of a possible effect of oestrogens in the hy­

pophysis, although the feedback action could also be at the 

level of the hypothalamus. In this thesis we tried to elu-
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cidate the function of oestradiol and its receptor in the 

testis. 

6.2 The effect of oestradiol on RNA synthesis in the testis 

If rat testis interstitial tissue is an oestradiol tar­

get tissue then it might be expected that the final response 

evoked by oestradiol is preceded by an increase in RNA syn­

thesis (see chapter 2). In chapter 3 is described that in­

jection of 100 ~g oestradiol in intact rats enhanced uridi­

ne incorporation in RNA of testis interstitial tissue after 

6 hours. This increase is probably due to an increased RNA 

synthesis and not to an increased uptake of uridine in the 

nucleotide pool, since the specific activity of the nucleo­

tide pool was not changed. 

Oestradiol can also influence the secretion of LH (23, 

24), a hormone, which also acts specifically on interstitial 

tissue (1,2) and has an effect on RNA synthesis (165). 

Therefore the observed increase in RNA synthesis after oes­

tradiol administration might have been a reflection of chan­

ges in plasma LH levels. This assumption is supported by the 

observation that the effect of oestradiol on RNA synthesis 

was not found in hypophysectomized rats. Therefore it was 

further attempted to study a possible role of LH in this 

respect. 

6.3 The effect of oestrogens on plasma LH levels and testicular testosterone 

production 

The action of oestrogens on plasma LH levels and testi­

cular testosterone production have been described in 

chapter 4. After injection of 100 ug oestradiol LH levels 

were significantly decreased, concomitant with a decreased 

testosterone production in the testis. Twenty-four hours 

after injection plasma LH levels as well as testosterone 

production were normal. The decrease in plasma LH leVA-ls and 
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testosterone production 6 hours after injection of 100 ~g 

oestradiol is accompagnied by an increase in uridine 

incorporation in testis interstitial tissue. It would rather 

be expected that a decrease in plasma LH levels would cause 

a decrease rather than an increase in RNA synthesis (165) 

Therefore the observed increase in uridine incorporation 

must reflect either a direct effect of oestradiol on the 

interstitial tissue or a change in the metabolic state of 

the cell due to changes in testicular testosterone levels. 

Another possibility is that oestradiol has an influence on 

other tropic hormones which in turn could have an effect 

on RNA synthesis. Examples of an effect of oestradiol on the 

secretion of tropic hormones other than LH has been 

described for the male rat. Prolactin levels are increased 

(20,21,190) and FSH levels are decreased (23,24,191) after 

oestradiol administration. 

Not only injection of 100 ~g oestradiol but also adminis­

tration of 50 ~g E2B or 500 ng oestradiol resulted after 

24 and 3 hours respectively in decreased plasma LH levels 

and testicular testosterone production. No effect of oestro­

gen administration could be found in hypophysectomized rats 

so that the inhibiting effect of oestrogens on testicular 

testosterone production in these experiments can be explained 

by a negative feedback action on LH secretion. 

Nevertheless there are still two observations which cannot 

be fully explained by a negative feedback action on LH secre­

tion, i.e. subcutaneous injection of 500 ng oestradiol or 

50 ~g E2B resulted in decreased testicular testosterone pro­

duction after 1 and 6 hours respectively, whereas no signi­

ficant change in LH plasma levels has been observed. This 

inhibitory effect on testosterone synthesis could not be 

observed in hypophysectomized rats. These observations might 

be explained by an effect of oestradiol on the secretion of 

other tropic hormones, which also play a regulatory role in 

testosterone synthesis. As suggested by some authors both 

FSH (192,193) and prolactin (193,194,195) have a stimulatory 

effect on testosterone synthesis. 
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Because oestradiol can have an influence on the secretion 

of LH, FSH and prolactin in the male rat, the intact adult 

male rat is a too complicated experimental model to study 

direct effects of oestradiol on the testis. 

6.4. The effect of oestrogens on LH sensitivity of isolated Leydig cells from 

immature rats 

The effect of oestradiol on testosterone production in 

the testis of adult rats seems not clear. The possibility 

exists that an effect of oestradiol might be restricted to 

a certain developmental stage of the Leydig cell. In the 

immature male rat oestradiol is present (174) and the 

oestradiol receptor in the testis is located in the nucleus 

due to endogenously present oestradiol (25). Therefore an 

attempt has been made to study whether oestradiol and its 

receptor have an effect on the Leydig cell of the immature 

rat. 

In chapter 5 of this thesis the results are described of 

a study concerning the effect of in vivo oestrogen adminis­

tration on LH stimulated testosterone production in isolated 

Leydig cells from immature rats. It was possible to isolate 

a Leydig cell preparation from immature rat testis in which 

testosterone production was stimulated by LH in a dose 

dependent way. The ability of such isolated Leydig cells to 

respond to LH after hypophysectomy was decreased with respect 

to both testosterone production and cAMP production.FSH treat­

ment of hypophysectomized rats partly restored LH sensiti­

vity in terms of testosterone production. This restoration 

cannot be due to an increase in the ability to synthesize 

cAMP, since LH stimulated cAMP production was not increased 

after treatment of hypophysectomized rats with FSH. 

The restored LH responsiveness in FSH treated hypophy­

sectomized rats was rather unexpected, since it is generally 

accepted that LH acts on the interstitial tissue (1,2) and 

FSH on the seminiferous tubules (10,11). Still there are 

other examples for a possible regulatory role of FSH in the 



interstitial tissue of the immature animal. FSH can for 

example increase glucose-6-phosphate dehydrogenase in the 

mouse testis (196) and this enzyme is localized in the 

interstitial tissue (1971 Also, it has been reported 

that Sa-reductase activity, predominantly present in inter­

stitial tissue (198) may be influenced by FSH in the immature 

rat (178). Whether these effects of FSH are due to a direct 

interaction of FSH with the Leydig cell is not yet clear. 

FSH is probably not the only hormone necessary for main­

tenance of LH responsiveness after hypophysectomy. In spite 

of FSH treatment immediately after hypophysectomy, LH res­

ponsiveness is not restored to levels of intact rats. The 

lack of other hormones which play a regulatory role in LH 

sensitivity must be responsible for the decrease in LH res­

ponsiveness. It has been suggested that prolactin (195) and 

corticosteroids (199) are involved in the regulation of LH 

sensitivity. 

The effect of FSH on LH responsiveness becomes clear 

after 3 days treatment of hypophysectomized rats. Whereas in 

untreated hypophysectomized rats LH responsiveness is lower, 

LH responsiveness is maintained at a level of 50% of the 

responsiveness of intact rats by FSH treatment. Odell et al. 

(175) have suggested that FSH plays a role in the develop­

ment of LH sensitivity in the Leydig cells: through the high 

FSH levels before puberty the testis becomes more sensitive 

to stimulation by LH. Our results are in agreement with this 

hypothesis. 

When in addition to FSH, oestradiol benzoate was adminis­

tered to hypophysectomized immature rats no induction of LH 

responsiveness occurred. The effect of oestradiol benzoate 

could already be shown after a single injection, but could 

only be observed at that time after hypophysectomy at which 

the induction of LH responsiveness by FSH was clear. At 

which stage of the LH response oestradiol benzoate acts is 

not clear yet. No difference between the LH stimulation of 

cAMP production in FSH treated or FSH plus oestradiol ben­

zoate treated rats could be observed. The possibility exists 
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that oestradiol increases testosterone metabolism, but the 

results of our experiments gave no conclusive proof for an 

increased testosterone metabolism after oestradiol treatment 

of FSH treated hypophysectomized rats. 

Whether in vivo oestradiol and FSH really play a regula­

tory role in the testis during sexual development of the male 

rat is not known. Nevertheless the following remarks can be 

made. 

No great differences exist between LH levels of immature 

and adult rats (200,201,202,203) but still testosterone 

levels remain low until day 30-40. FSH levels peak between 

day 20-40 (200,201,202,203,204,205) and this period 

is followed by a gradual increase in testosterone levels 

(206,207). According to Odell et al. (176) this is due to 

the induction of LH sensitivity by FSH. Oestradiol levels 

are higher before day 30 (174) than in adult rats and the 

role of oestradiol could be to inhibit testosterone produc­

tion during the induction of LH sensitivity till maturation 

of the testis has been achieved. This possible mechanism of 

action of FSH and oestradiol in the testis is schematically 

presented in Figure 1. 
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Figure Possible mechanism of action of FSH and oestradiol 

in the testis. FSH induces either by direct interaction with 

the Leydig cell or indirectly via the Sertoli cell a factor 

X which is required for the effect of LH on testosterone (T) 

production. FSH also promotes the conversion of testosterone 

to oestradiol (E
2

) in the Sertol i cell (208). 

Oestradiol in turn can be bound by the oestradiol receptor 

in the Leydig cell and the cytoplasmic receptor steroid 

complex (E 2 Rc) is translocated to the nucleus. The inter­

action of the oestradiol-receptor complex with chromatin 

will induce the synthesis of a factorY, probably via 

induction of specific RNA molecules. This factorY may 

inhibit the stimulation of testosterone production by LH. 
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Summary 

Steroid hormone action seems to be mediated by specific 

binding proteins: 'receptors' which are located in the 

hormone target tissues. This thesis describes several 

results of studies on different aspects of the oestradiol 

receptor in the testis and the possible function of this 

receptor in the effect of oestradiol on testis function. 

In chapter 4 the action of LH and FSH on the testis have 

been summarized. Some aspects of the mechanism of action of 

steroid hormones particularly the role of steroid receptors 

in the effect of steroids on RNA synthesis in target tissues 

are discussed in chapter 2. 

In chapter 3 results of experiments on the presence of 

oestradiol receptors in tissues of the male rat and properties 

of ~he oestradiol receptor in rat testis are described. 

The cytoplasmic receptor £rom the testis is heat labile and 

sensitive to pronase treatment. The receptor has a high 

affinity for oestradiol-17S and diethylstilboestrol, a mode­

rate affinity for oestrone, oestriol and oestradiol-17a and 

a low affinity for testosterone and dihydrotestosterone. 

Agar electrophoresis, Sephadex chromatography, adsorption 

by dextran coated charcoal and sucrose gradient centrifuga­

tion have been compared for the quantitative determination 

of specific oestradiol binding in cytosol from rat testis. 

The four different methods gave similar results. 

In the male rat an SS saturable oestradiol binding protein 

could also be demonstrated in liver, prostate, seminal 

vesicle, epididymis, pituitary and adrenal glands. 

Binding of oestradiol to the receptor in testis results 

in the translocation of the receptor-hormone complex to the 

nucleus. Since nuclear translocation of hormone-receptor 

complexes precedes the subsequent stimulation of RNA synthe­

sis, the effect of oestradiol administration on testicular 

RNA synthesis has been studied in chapter 3.2. 

Administration of 100 ~g oestradiol to intact male rats 

resulted after 6 and 24 hours in an increased uridine uptake 

in RNA from interstitial tissue whereas no effect in semini-
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ferous tubules has been observed. The uptake of uridine in 

the nucleotide pool did not change after 6 hours but after 

24 hours the specific activity of the nucleotide pool in 

interstitial tissue seemed to be increased. The effect of 

oestradiol on uridine incorporation in RNA and nucleotide 

pool could not be demonstrated in hypophysectomized rats 

whether they were treated with HCG or not. 

In chapter 4 the results of experiments on the effect of 

oestrogen on plasma LH levels and testicular testosterone 

production have been summarized. 

Six hours after injection of 100 ug oestradiol to intact 

rats testicular testosterone production was significantly 

decreased concomitant with plasma LH levels. Twenty-four 

hours after injection neither testosterone nor plasma LH 

levels were decreased anymore. Injection of 50 vg oestradiol 

benzoate resulted after 24 hours in a decreased testicular 

testosterone production and plasma LH levels. Six hours 

after injection testosterone production was decreased, plasma 

LH levels however were not significantly lowered. Also injec­

tion of 500 ng oestradiol decreased testicular testosterone 

production and plasma LH levels after 3 hours. One hour after 

injection of 500 ng oestradiol testosterone production was 

decreased whereas plasma LH levels were not significantly 

lower. No effect of oestrogen administration on testosterone 

production could be observed in hypophysectomized rats. 

On basis of these results it was concluded that the effect 

of oestrogens on testicular testosterone production was at 

least partly due to a negative feedback action on LH secre­

tion. 

Since a direct effect of oestrogens on the testis of the 

adult rat is not clear, an attempt has been made to investi­

gate whether oestradiol has a direct effect on the testis of 

the immature rat. 

In chapter 5 the results are presented of a study concern­

ing the effect of oestrogens on LH stimulated testosterone 

production in isolated Leydig cells from 20-25 day old rats. 

A cell preparation could be isolated from immature rat 
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testis, which contained 53% Leydig cells when 3s-hydroxy­

steroid dehydrogenase was taken as a marker enzyme. The 

characteristics of the Leydig cell preparation from immature 

rat testis showed marked functional differences with Leydig 

cell preparations from adult rat testis. Although testoste­

rone production in cells from immature rats could be stimu­

lated by LH in a dose-dependent way, the maximal amount of 

testosterone produced in cells from immature rats was 10 times 

lower than in cells from adult rats. Testosterone metabolism 

in cells from immature rats waa higher due to the conversion 

of testosterone to Sa-reduced metabolites. 

Hypophysectomy of immature rats resulted after 5 days in 

a loss of LH responsiveness of Leydig cells. In contrast 

cells from adult rats still responded to LH after hypophy­

sectomy in the same way as cells from intact rats. LH 

responsiveness in cells from immature hypophysectomized rats 

could be partly restored by treatment with FSH for 5 days. 

When oestradiol benzoate was administered together with 

FSH to hypophysectomized rats the induced LH responsiveness 

could not be observed. 

The loss in LH responsiveness after hypophysectomy in 

terms of testosterone production could neither be ascribed 

to a change in the amount of Leydig cells present in the 

Leydig cell preparation nor to a higher conversion of tes­

tosterone. The LH stimulated cAMP production however was 

very low in cells from hypophysectomized rats compared to 

cells from intact rats. There was no difference between cAMP 

production of Leydig cells from untreated, FSH treated or 

FSH plus oestradiol benzoate treated hypophysectomized rats. 

After hypophysectomy LH responsiveness declines for the 

first 2 days both in untreated and FSH treated rats in the 

same way. From day 2 after hypophysectomy LH responsiveness 

declines further in cells from untreated rats but remains at 

a constant level in cells from rats treated with FSH. 

A single injection of oestradiol benzoate to hypophysec­

tomized rats treated with FSH did inhibit LH responsiveness 

only when oestradiol was administered at that time after 
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hypophysectomy, when the effect of FSH on LH responsiveness 

was clear. 

An attempt has been made to correlate the presence of the 

oestradiol receptor in the nucleus and the inhibiting effect 

of oestradiol benzoate on LH stimulated testosterone produc­

tion. Three hours after injection of oestradiol benzoate in 

hypophysectomized rats treated with FSH nearly all the 

receptor molecules were translocated to the nucleus. After 

24 hours part of the receptor molecules were still present 

in the nucleus. At these times oestradiol benzoate appeared 

to inhibit the LH stimulated testosterone production in 

isolated Leydig cells. These observations could be an indi­

cation for the involvement of the receptor in the effect of 

oestradiol benzoate. 

Finally in chapter 6 it has been attempted to integrate 

the results presented in this thesis and a possible mechanism 

of action of FSH and oestradiol in the testis is proposed. 
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Samenvatting 

Waarschijnlijk oefenen steroidhormonen hun werking uit 

door rniddel van specifiek bindende eiwitten zg·. receptoren, 

die aanwezig zijn in de doelwitorganen van de hormonen. 

proefschrift worden de resultaten van onderzoekingen naar 

verschillende aspekten van de oestradiol-receptor in de tes­

tis en de rnogelijke rol van de receptor in het effekt van 

oestradiol op de testisfunktie besproken. 

In hoofdstuk 1 is een overzicht gegeven van de werking 

van LH en FSH op de testis. In hoofdstuk 2 zijn enige aspek­

ten van het werkingsmechanisme van steroidhorrnonen besproken, 

waarbij de nadruk is gelegd op de rol van de steroidrecepto­

ren in het effekt van steroiden op RNA synthese in doelwit­

organen. 

In hoofdstuk 3 zijn de resultaten weergegeven van een 

onderzoek naar de eigenschappen van de oestradiol receptor 

in de rattetestis. De cytoplasmatische receptor uit de tes­

tis is gevoelig voor hoge temperaturen en voor pronase behan­

deling. De receptor heeft een hoge affiniteit voor oestradiol-

17S en diethylstilboestrol, een iets minder hoge affiniteit 

voor oestron, oestriol en oestradiol-17a en een lage affini­

teit voor testosteron en dihydrotestosteron. 

Kwantitatieve bepalingen van specifieke oestradiol binding 

in het cytosol van rattetestis met behulp van agar elektro­

forese, Sephadex chromatografie, adsorptie aan "dextran 

coated charcoal 11 en succose gradient centrifugering zijn met 

elkaar vergeleken. Er was geen verschil in de resultaten 

··Verkregen met deze vier methodes. 

Behalve in het interstitium van de testis kon ook een ver­

zadigbaar oestradiol bindend eiwit met een sedimentatiewaarde 

van BS worden aangetoond in: lever, prostaat, zaadblaas, epi­

didymis, hypofyse en bijnier. 

Binding van oestradiol aan de testikulaire receptor resul­

teert in de verplaatsing van het receptor-horrnoon-komplex 

naar de kern. Orndat bekend is, dat verplaatsing van horrnoon­

receptor-kornplex naar de kern in het algerneen leidt tot sti-
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mulatie van RNA synthese, is het effekt van in vivo oestra­

diol toediening op testikulaire RNA synthese bestudeerd 

(hoofdstuk 3.2). 

Toediening van 100 ~g oestradiol aan intakte mannelijke 

ratten had na 6 en 24 uur een toenarne in uridine inbouw in 

ru~A van het interstitium tot gevolg, terwijl dit niet het 

geval was in de seminifere tubuli. De opname van uridine in 

de nucleotide pool was na 6 uur niet veranderd, maar er zijn 

aanwijzingen gevonden dat na 24 uur de specifieke aktiviteit 

van de nucleotide pool van het interstitium was toegenomen. 

In gehypofysektomeerde ratten, die al dan niet met HCG be­

handeld waren kon geen verandering van uridine inkorporatie 

in RNA en nucleotide pool worden aangetoond na oestradiol 

injektie. 

In hoofdstuk 4 is een samenvatting gegeven van de resul­

taten van een studie over het effekt van oestradiol op 

plasma LH levels en testikulaire testosteronproduktie. Toe­

diening van 100 vg oestradiol veroorzaakte na 6 uur een 

signifikante daling zowel in plasma LH levels als testoste­

ronproduktie. Na 24 uur waren de plasma LH levels en de 

testosteronproduktie niet meer verlaagd. Injektie van 50 ~g 

oestradiol benzoaat had na 24 uur verlaagde testikulaire 

testosteronproduktie en plasma LH spiegels tot gevolg. Zes 

uur na injectie van 50 vg oestradiol-benzoaat was de testos­

terone produktie ook verlaagd, de plasma LH spiegels echter 

waren niet signifikant lager. Injektie van 500 ng oestradiol 

verlaagde de testikulaire testosterone produktie en plasma 

LH spiegels na 3 uur. Een uur na injektie van 500 ng oestradiol 

was de testosteronproduktie verminderd terwijl de plasma LH 

spiegels op dit tijdstip niet signifikant veranderd waren. 

Oestrogeen toediening aan gehypofysektomeerde ratten had 

geen enkele verandering in testosteronproduktie tot gevo~g. 

Gebaseerd op deze resultaten is gekonkludeerd dat het ef­

fekt van oestrogenen op testikulaire testosteronproduktie 

tenminste voor een gedeelte het gevolg is van een negatieve 

feedback op de LH sekretie. 

Omdat het effekt van oestrogenen op de testis van de vol-
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wassen rat niet duidelijk is, is onderzoeht of oestradiol 

mogelijk een direkt effekt uitoefent op de testis van de 

jonge rat. 

In hoofdstuk 5 zijn de resultaten besehreven van een on­

derzoek naar het effekt van oestrogenen op de door LH ge­

stirnuleerde testosteronproduktie in gelsoleerde Leydig eel­

len van 20-25 dagen oude ratten. Het was rnogelijk uit testes 

van jonge ratten een celpreparaat te isoleren dat op basis 

van 3s-hydroxysteroid-dehydrogenase aktiviteit 53% Leydig 

eellen bevatte. Het Leydig eel preparaat van jonge ratten 

toonde enige opvallende funktionele verschillen met die van 

volwassen ratten. Hoewel de testosteronproduktie in eellen 

van jonge ratten gestimuleerd kon worden met LH op een dosis 

afhankelijke wijze, was de rnaxirnale hoeveelheid geprodueeerd 

testosteron lOx lager dan in eellen van volwassen ratten. 

Het rnetabolisrne van testosteron in cellen van jonge ratten 

was hoog door een ornzetting naar 5a-gereduceerde metabolie­

ten. Vijf dagen na hypofysektomie bleken Leydig cellen van 

jonge ratten hun kapaeiteit om op LH te reageren verloren 

te hebben. Cellen van volwassen ratten daarentegen werden 

na hypofysektomie nog steeds door LH gestimuleerd op dezelf­

de wijze als eellen van intakte ratten. Het verlies in LH 

gevoeligheid van cellen van jonge gehypofysektorneerde rat­

ten kon ten dele worden hersteld door behandeling met FSH 

gedurende 5 dagen. Werd tegelijk met FSH oestradiol benzoaat 

toegediend aan gehypofysektorneerde jonge ratten dan werd de 

door FSH gelndueeerde LH gevoeligheid niet waargenornen. 

Na hypofysektomie is noch een verandering in de hoeveel­

heid Leydig cellen in het celpreparaat noch een verhoogde 

afbraak van testosteron verantwoordelijk voor het verdwijnen 

van de LH stirnuleerbaarheid van de testosteronproduktie. De 

LH gestirnuleerde eAMP-produktie van Leydig eellen van gehy­

pofysektorneerde ratten was lager dan van eellen van intakte 

ratten, Er was geen versehil in eAMP-produktie van Leydig 

cellen van onbehandelde, FSH of FSH plus oestradiol-ben­

zoaat behandelde gehypofysektomeerde ratten. 

Gedurende de 2 dagen na hypofysektomie'neemt de LH gevoe-
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ligheid van de Leydig cellen op dezelfde wijze af, of de 

ratten met FSH worden behandeld of niet. Vanaf dag 2 na de 

hypofysektomie neemt de LH gevoeligheid in cellen van onbe­

handelde ratten verder af, terwijl de de LH gevoeligheid in 

cellen van met FSH behandelde dieren gehandhaafd wordt op 

een konstant niveau. 

Wanneer gehypofysektomeerde ratten, die behandeld waren 

met FSH eenrnaal werden gelnjekteerd met oestradiol benzoaat, 

dan werd de stimulatie van de testosteron-synthese slechts 

geremd op dat tijdstip na hypofysektomie waarop het effekt 

van FSH op de LH gevoeligheid duidelijk is. 

Gepoogd is de aanwezigheid van de oestradiol-receptor in 

de kern te korreleren met het remmend effekt van oestradiol 

benzoaat op de LH gestimuleerde testosteronproduktie. Drie 

uur nadat gehypofysektomeerde met FSH behandelde dieren ge­

injekteerd zijn met oestradiol benzoaat zijn bijna alle in 

de eel aanwezige receptor rnolekulen in de kern aanwezig. Na 

24 uur was nog steeds een gedeelte van de receptor rnolekulen 

in de kern aanwezig. Op deze tijdstippen lijkt er ook een 

remmend effekt van oestradiol op de testosteronproduktie in 

Leydig cellen te zijn. Deze waarnemingen duiden er mogelijk 

op dat de receptor een rol speelt in het effekt van oestra­

diol benzoaat. 

Tenslotte is in hoofdstuk 6 een poging gedaan om de re­

sultaten te passen in een mogelijk werkingsmechanisme van 

FSH en oestradiol in de testis. 
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- androgen binding protein 

-cyclic adenosine-3':5'-monophosphoric acid 

- dihydrotestosterone 

- deoxyribonucleic acid 

- disintegrations per minute 

- oestradiol 

- oestradiol-3-benzoate 

- human chorionic gonadotropin (human chorio-
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- heterogeneous nuclear RNA 

- hypophysectomized 
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- international unit 
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- messenger RNA 

- number of determinations 
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- ribonucleic acid 

- ribosomal RNA 

- Svedberg unit 

- standard error of the mean 

- transfer RNA 
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178-triol 
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High-Affinity Binding of Oestradiol-17P by Cytosols from 
Testis Interstitial Tissue, Pitnitary, Adrenal, Liver and Accessory Sex 

Glands ofthe Male Rat 

By WILMA M. 0. VAN BEURDEN~LAMERS, ALBERT 0. BRINKMANN, 
EPPO MULDER and HENK J. VAN DER MOLEN 

Department of Biochemistry (Divisiono/Chemical Endocrinology), Medical Faculty, Erasmus University Rotterdam, 
Rotterdam, The Netherlands 

(Received2l December 1973) 

The specificity of the binding of oestradiol~17 f3 by cytoplasmic fractions of several tissues 
of the male rat was investigated. 1. Agar~gel electrophoresis, Sephadex chromatography, 
adsorption by dextran-coated charcoal and sucrose-gradient centrifugation were used to 
estimate the binding capacity and specificity. The four different methods all gave similar 
results for the capacity of the specific oestradiol-17 /3-binding macromolecules in the testis. 
2. The presence of a specific saturable binding protein with a sedimentation coefficient of 
8S was demonstrated in liver, adrenal, pituitary, prostate, epididymis and testis interstitial 
tissue. The highest concentration of oestradiol-17ft. binding macromolecules was found 
in testis interstitial tissue (0.12pmol/mg of protein) and in the pituitary (0.075pmol(mg of 
protein). 3. The oestradiol-17 f3 receptor in the testis cytosol showed the characteristics of 
a protein with respect to Pronase treatment and temperature sensitivity. In competition 
experiments with different steroids the receptor showed a high affinity for oestradiol-17 /3, 
a moderate affinity for diethylstilboestrol and oestradiol~l7a and a low affinity for 
oestrone, oestriol, testosterone and 5a-dihydrotestosterone (17/3-hydroxy-So:-androstan-
3-one). 4. The wide distribution of oestradiol-17/3 receptors in the male rat is in apparent 
contradiction to the current concept of the specificity of steroid-hormone action. Further 
research is required to investigate a possible physiological meaning of the presence of 
specific receptors in the different tissues. 

The action of sex steroid hormones on target tis­
sues may be mediated through specific receptors. The 
presence of an oestradiol-17,8 receptor has previ­
ously been demonstrated in the interstitial tissue 
of the rat testis {Brinkmann eta!., 1972). A nuclear 
form of receptor has also been found and it appears 
that the cytoplasmic receptor can be transferred to the 
nuclei of testis interstitial tissue (Mulder et al,, 1973). 

Baulieu et al. (1971) formulated the criteria for a 
true steroid receptor, i.e. a receptor should show 
high affinity, saturability, steroid specificity and 
tissue specificity. It was previously shown that the 
cytoplasmic oestradiol-17 Preceptor in testis intersti­
tial tissue has a high affinity for oestradiol-17/3 (K, is 
101oM-1) and that only a limited number of binding 
sites are present (Brinkmann et at., 1972). In the 
present paper we present the results of an investigation 
on tissue specificity and steroid specificity of cyto­
plasmic oestradiol-17 /) binding. 

Materials and Methods 

Materials 

[2,4,6,7-3 H]Oestradio!-17 f3 (specific radioactivity 
l05Ci/mmol) was obtained from New England 
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Nuclear Corp. (Boston, Mass., U.S.A.). The radio­
chemical purity was verified by paper chromato­
graphy and t.Lc. 

Deoxyribonuclease, ribonuclease and Pronase 
were obtained from Sigma Chemical Co., St. Louis, 
Mo., U.S.A. 

Preparation of subcellular fraction and incubation 
procedures 

Male Wistar rats (200-250g) were killed by 
decapitation. The isolated tissues were homogenized 
in 1 vol. of lOmM-Tris~HCl buffer, pH7.4, at 0°C 
with three strokes of a Potter~E\vehjem homogenizer 
at 1100rev./min. The homogenate was centrifuged 
at 105000g for 60min at 0°C. The 105000g super­
natant (cytosol) was incubated with steroid for 2h 
at 0°C. 

Isolated interstitial tissue and seminiferous tubules 
were obtained by wet dissection of decapsulated whole 
testis tissue (Christensen & Mason, 1965). 

Measurement of steroid binding 

When cytosol is incubated with oestradiol-17 /3 
the steroid may bind to specific and non-specific 

495 



W. M. 0. VAN BEURDEN-LAMERS AND OTHERS 

binding proteins. The cytosol was incubated with 
[

3 HJoestradiol-17P to determine total binding and 
with [3H]oestradiol-17P plus a 100-fold excess of 
unlabelled oestradiol-17P to determine non-specific 
binding {Williams & Gorski, 1973). The quantity of 
specifically bound hormone was calculated by sub­
tracting the value for [3H]oestradiol-17 p bound in 
the presence of a 100-fold excess of unlabelled 
oestradiol-17 p {non-specifically bound oestradiol-
17P) from the value for total [3H]oestradiol-17P 
binding. 

After incubation of cytosol with steroids bound 
and unbound steroid were separated by one of the 
following techniques. (In control experiments buffer 
with labelled steroid was used instead of cytosol.) 

(a) Gradient centnfugation. After incubation with 
steroid 200,ul of cytosol was layered on 5ml of a 
5-20% (w(v) sucrose gradient prepared in lOmM­
Tris-HCI buffer, pH7.4. After centrifugation in a 
Beckman L2-65B centrifuge at ooc for 16h at 
150000g~,, in a SW65 rotor the bottom of the tube 
was pierced and 30 fractions were collected. Radio­
activity was measured in each fraction. 

(b) Dextran-coated charcoal adsorption method. A 
0.25% charcoal suspension (200,ul), containing 
0.025% dextran, was added to IOO,ul of cytosol after 
incubation with steroid. After mixing the suspension 
was kept at occ for 15min. The samples were then 
centrifuged for lOmin at 1200g to separate bound 
from free steroid. A 200,ul portion of the supernatant 
was taken for measurement of radioactivity in the 
bound-steroid fraction. 

(c) Agar-gel electrophoresis. Agar-gel electrophore­
sis was performed essentially as described by Wagner 
1972). A 50,ul portion of incubated cytosol was 
layered on an agar plate (100mmx85mmx5mm 
thick) kept at O"C {agar Noble; Difco, Detroit, 
Mich., U.S.A.). It was possible to apply ten samples 
on one plate. After electrophoresis for 90min at 
130mA per plate (200-250V) at 0°C, the plate was 
cut into ten strips, each containing one sample, and 
each strip was divided in 20 fractions of 4mm. For 
counting of radioactivity, steroid from the individual 
agar fractions was dissolved by shaking for 12h at 
room temperature in 10m] of Triton-containing 
scintillation fluid (see under 'Measurement of 
radioactivity'). 

(d)Sephadex chromatography. Sephadex chromato­
graphy was performed as described by Williams & 
Gorski (1973). A 50.ul portion of incubated cytosol 
was layered on a column (8cmx0.6cm) of Sephadex 
G-25 (superfine grade). The column was eluted with 
lOmM-Tris-HCI buffer, pH7.4, at 0°C and the ex­
cluded volume (bound radioactivity) was collected 
in a vial and radioactivity was measured. 

Pretreatment with charcoal 

When indicated excess of unbound steroid was 
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removed by adding0.5mg of dextran-coated charcoal 
to 200,ul of incubated cytosol. After mixing, the 
suspensions were incubated for 15min at ooc. 
Charcoal was removed by centrifugation for IOmin 
at 1200g. 

Protein determination 

The protein content of the isolated cytosols was 
determined by the method of Lowry eta!. {1951) with 
bovine serum albumin as standard. Generally the 
cytosols contained 20-25mg of protein/mi. Cytosols 
of interstitial tissue, pituitary, hypothalamus and 
uterus, however, contained 4-IOmg/ml of cytosol. 

DNA determination 

DNA content was measured as described by Giles 
& Myers (1965). 

Measurement ofradioactirity 

Radioactivity was measured in a Packard model 
3375 liquid-scintillation spectrometer. The scintilla­
tion fluid consisted of a mixture of Triton X-100 
(Rohm and Haas, Philadelphia, Pa., U.S.A.) and 
toluene (I :2, vfv) containing O.lg of POPOP 
[1,4-bis-(5-phenyloxazol-2-yl)benzene]/1 and 4.8g of 
PPO (2,5-diphenyloxazole)/l (Packard instrument 
S.A. Benelux, Brussels, Belgium). 

Results 

Properties of the oestradivl-17 fJ receptor in the testis 
cytosol 

Steroid specificity of the oesnadiol-17P receptor in 
the testis. Relative affinities of a number of steroids for 
the oestradiol-17 fJ receptor in the testis are presented 
in Fig. 1. These experiments were carried out by 

i!!l_~~ .S70 ~~ ~ ill "-~ "" '• 
1:l 20 ~~ ~ 
tl 10 

" 0 ~ I 10 100 1000 10000 

Unlabelled steroid (fmol/mg of protein} 

Fig. I. Binding affinity of carious sreroids .for rhe te.,·tl:> 
('_\'/o.ml oestmdio!" 17 (I rec<"pl(il 

Testis cytosol was incubated with 0.07 nM-['H]oc~tradiol-
17[1 and increasing amount~ of unlabelled steroids. After 
incubation (2h} the percentage binding was measured by 
the charcoal technique. e, Oestradiol-17(1; 0, diethyl­
stilboestrol; A., oestradiol-17o:; r.,, oestrone; o, oestriol; 
~;:, 5o:-dihydrotestosteronc; 11, testo>terone. 
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Table 1. Comparatire binding affinity ofr.-'arious steroids for 
the rest is cyfV!iVI oCSt!·adiof- I 7 j] rarptvr 

Testis cytosol was incubated with 0.07 nM-[2H]ocstradiol-
17/J and increasing an:ounts of unlabelled steroids. 
Percentage binding was meu,ured by the charcoal tech­
niqu<::. Comp:uative binding affinity was calculated as the 
amount of steroid that will decrease th.; initial percentage 
binding of the labelled oestradiol-17ft to 50%. 

Steroid 

Oestradiol-17 p 
Dkthylstilboestrol 
Oestradio\-17 D: 

Oestrone 
Oest1·iol 
Dihydroteslosterone 
Testosterone 

(•) 

)00 

~ 

E 

" " 200 
~ 
:~ 

" 5 
'0 
" ~ 

100 

Comparative binding affinities 
(fmol/mg of protein) 

6.3 

ADH 

I 
" '' ' ' i l I , 

' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' 

25 
38 

127 
190 
500 

3000 

BSA 

I 

/'-.\ / .. 
I. ;" 

'-~~~~,;'",~-"-~-,2;0~~-----;0 

incubating 200.ul of cytosol with 3500 d. p.m. (0.07nM 
of [·1H]oestradiol-17 fi and increasing amounts of the 
different unlabel!ed steroids. The percentage binding 
was measured by using the charcoal technique. In the 
competition experiments with testosterone and 
dihydrotestosterone it was necessary to decrease the 
concentration of endogenous steroids by hypophy­
sectomy of the animals 8 days before the experiment. 
Comparative binding affinities were determined 
by the method of Korenman (1969). The results are 
given in Table I. The highest competition for the 
binding sites was achieved with oestradiol-17P, 
diethylsti!boestrol and oestradiol-17a. The decrease 
in percentage binding after incubation with increasing 
amounts of unlabelled oestradiol-17f_l was the same 
whether the testis cytosol was prepared from normal 
or hypophysectomized animals. 

2000 

(b) ADH BSA 

l l 

1600 

1100 

800 

10 20 lO 

Fraction number 

Fig. 2. l·.'{/;•cr of en:ynw di~rc.\·rion and preiwubmioll at differem temperarures on oesrradiol-17 fJ binding by cyrosol of rat testis 

(rd -r._,~ti'i cytoo,Jl was pr~incubatcd whh :!pg or Pronase, I mg of deoxyribonuclease or ribonuclease for 30min at 12"C. 
After 1 h incubation 11ith 0.08nM-['H]oestradiol-17/l a 200pl portion was layered on a sucrose gradient. Alcohol dehydro­
g:c-na~·~ (ADH, 7.4SJ and bovinc,crum alhumi11 (BSA, 4.6S) l'><.:rC us.::d as sedimentation markers.-- Ribonuclease 
trc;1tnwnt; ----. deoxyribonlt~·lcasc trc:~t111cnt: ·,Pronase treatment. (b) Sucrose-gradient analysis was performed 
<tl'ter labelling in ritro of tcstic;ul:tr cytosols rrein.:ubatcd at O'C, 30'C and 37T for 30min. --, Preincubation at 37"C; 
· · · ·, prcinvubali<lll at 30 'C; . - ---,preincubation at 0 'C. 
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Fig. 3. Gradient centrifugation and agar-gel electrophoresis of testis cytosol labelled with [3 H]oesrradiol-!7 jJ 

Testicular cytosol was incubated with 0.4nM-['H]oestradioi-17P (G------0) or with 0.4nM-[JH]oestradiol-17jJ plus 0.04,..M­
unlabelled oestradiol-17ft (e-~--e). After incubation binding was determined by gradient centrifugation (a) or agar-gel 
electrophoresis (b). Shading indicates specific binding. Alcohol dehydrogenase and bovine St;':rum albumin were run in a 
parallel gradient to determine the sedimentation values. 

Protein character of the oestradiol-17 P receptor in 
the testis. Testis cytosol (I.Oml) was preincubated 
with Pronase, deoxyribonuclease or ribonuclease. It 
was shown by gradient centrifugation that the SS 
receptor was absent only after Pronase treatment, 
as shown in Fig. 2(a). Preincubation of cytosols at 
30° and 37"C affected the amount of receptor-bound 
steroid. After preincubation at 30°C a decrease 
in steroid bound to 8S receptor was observed and 
after preincubation at 3rC no 8S steroid-receptor 
complex was found (Fig. 2b ). 

Comparison of different techniques for quallfitative 
analysis of hormone binding 

In four series of experiments cytosol of total testis 
tissue was incubated with different amounts of 
labelled oestradiol-17P ranging from 0.3 to 3.9nM. 
Analysis of oestradiol-l7P binding by agar-gel 
electrophoresis and gradient centrifugation is illus­
trated in Fig. 3. Non-specific and specific binding 
were calculated as described in the Materials and 
Methods section. 

The results are presented in Table 2. When the 
results for each concentration were compared by the 
rank-correlation test of Wilcoxon (1945) it appeared 

498 

that the values for non-specific binding calculated 
from the gradient-centrifugation curves were signifi­
cantly lower (P = 0.05) than the values obtained with 
the other techniques. Highest values for non-specific 
binding were calculated from the results obtained 
with the charcoal techniques (P<0.05). 

The apparent increase in non-specific binding with 
increasing amounts of oestradiol-17P was not caused 
by an incomplete separation of free and bound 
oestradiol-17 p. When 4nM-[3H]oestradiol-17 p was 
incubated with buffer only, none of the four tech­
niques showed the presence of radioactivity in the 
fractions which normally contain the macromole­
cular bound oestradiol-I7P. A comparison by using 
Wilcoxon's (1945) test for the values of the amount 
of specifically bound oestradiol-17P showed no 
significant difference between the results obtained 
with the four different techniques. This may reflect 
that after sucrose-gradient centrifugation the specifi­
cally bound oestradiol-l7P is completely present in 
the 8S area, which was used for estimation of specific 
binding. In all further experiments agar-gel electro­
phoresis and Sephadex chromatography were used 
for quantitative analysis of specific binding. Sucrose­
gradient analysis was not used because in tissues 
other than testis, specific binding proteins might 
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Table 2. Analysis by different techniques of oestradiol-!? P binding by testis cytosol 

Testis cytosols from different rats were incubated in four series of experiments with increasing amounts oflabelledoestradiol-
17/J (0.3-3.9nM). Non-specific binding and specific binding were determined by using agar-gel electrophoresis, the charcoal 
technique, Sephadex chromatography and sucrose-gradient centrifugation. Determinations of non-specific and specific 
binding after incubation with [3 H]oestradiol-l7 fJ are presented. 

Concn. of Non-specific binding Specific binding 
[3H)- (fmollmg of protein) (fmol/mg of protein) 

oestradiol 
Expt. no. (nM) Agar Charcoal Sephadex Gradient Agar Charcoal Sephadex Gradient 

1.4 1.8 5.0 1.9 6.4 8.0 6.0 
3.8 5.0 11.0 2.9 7.7 7.8 9.0 

II 0.3 1.2 0.9 0.7 0.6 2.9 2.9 2.9 4.8 
1.6 3.5 3.7 2.1 1.4 6.2 5.4 5.6 6.3 
3.9 4.5 10.0 3.0 2.1 8.4 7.0 7.4 5.7 

lll 0.4 1.7 1.6 0.8 1.3 6.1 6.9 5.7 5.8 
1.5 3.7 4.7 3.5 1.5 12.2 14.3 15.2 14.2 
3.0 6.6 10.0 9.0 12.4 13.7 11.0 

1V 2.2 4.3 15.1 3.9 9.3 10.2 8.3 

Table 3. Specific binding of oestradiol-!? p by different tissues of the male rat 

Cytosols of different tissues of the male rat were incubated with 4nM-[3H]oestradiol-17fJ and with 4nM-labelled plus 0.4,uM­
unlabelled oestradiol-17 jJ. Specific binding was determined by both agar-gel electrophoresis and Sephadex chromatography. 
Specific binding is expressed as fmollmg of protein of the cytosol and as fmol/mg of DNA of the homogenate. Each value is 
the mean of at least two determinations. The presence or absence of a binding protein with a sedimentation value of8S is 
indicated with a plus or minus mark. For the sake of comparison the value of the specific binding in female rat uterus is 
also included. 

Specific binding 

(fmol/mg of protein) (fmol/mg of DNA) 

Tissue Agar gel Sepbadex Agar gel Sephadex ss 
Liver 2.3 2.1 32.2 29.4 + 
Kidney 1.4 20.0 6.6 94.0 
Adrenal 22.2 121.3 + 
Plasma <0.5 <0.5 <25 <25 
Skeletal muscle <0.5 <0.5 <2.5 <2.5 
Pituitary 75.6 75.6 68.7 68.7 + 
Hypothalamus 2.6 1.5 13.8 8.0 
Prostate* 11.4 8.5 69.1 51.5 + 
Epididymis 8. 7 7.9 46.1 41.9 + 
Seminal vesicle 0.1 0.7 0.7 4.9 
Total testis tissue 9.8 9.6 35.2 34.6 + 
Seminiferous tt1bules <0.5 <0.5 <2.5 <2.5 
Testis interstitial tissue 140 100 518 370 + 
Uterus 240 + 

*The 4S peak also contained specifically bound oestradiol-17/). 

occur in the 4S area of the gradients and the separa­
tion between bound steroid in the 4S area and free 
steroid on top of the gradient is less accurate. Also 
the gradient centrifugation is more time-consuming. 
With the charcoal technique the high percentage of 
non-specific binding makes the estimation of specific 
binding less accurate, particularly in tissues containing 
a low amount of specific binding proteins. 

Vol. 140 

Occurrence of oestradiol-17/] receptors in different 
tissues oft he male rat 

Cytosols of 13 different tissues of the male rat 
were incubated with4nM-[3H]oestradiol-17fi. Specific 
binding was determined by using both agar-gel 
electrophoresis and Sephadex chromatography. The 
presence of an 8 S receptor in each tissue was deter-
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Fig. 4. Sllcrose-gradifnt mwlysis of m's!radfol-17/i btizding in cytosol ofte.l'f{s and proJ/ali' 

Cytosols of testis (a) and prost\ite (b) were incubated with 2 nM-[,H]oestradiol-17 ji ( •--•) or with 2 nM-Iabelled plus 0.2JIM­
unlabelled oestradiol-17 f3 (G----0). After charcoal pretreatment specific binding w:1s dete!"mined hy gradient centrifugation. 
Shading indicates specific binding. Sedimentation values have been determined as described in Fig. 2. 

mined by sucrose-gradient centrifugation. The results 
are given in Table 3. The uterus of the female rat was 
used as a control tissue. All values are the mean of 
at least two determinations. The results show that a 
specific binding protein with sedimentation coeHicient 
of 8S was present in liver, adrenal, pituitary, testis 
interstitial tissue, prostate and epididymis. Such a 
protein, however, could not be found in plasma, 
muscle, hypothalamus, seminal vesicle and semini­
ferous tubules. The amount of specific binding in the 
uterus was 0.24pmol/mg of protein. This is in 
agreement with the values obtained by other authors 
(Truong & Baulieu, 1971; Toft et a!., 1967). The 
largest amount of oestradiol-17/]-binding macro­
molecules in the male rat was found in testis intentitial 
tissue and in the pituitary. In the experiments with 
prostate the value for specific binding of ocslradiol-
17 jJ to receptors in the 8S area obtained after gradient 
centrifugation was lower than the specific binding 
determined by Sephadex chromatography. Gradient 
centrifugation after addition of excess of unlabelled 
oestradiol-17 fJ to prostate cytosol showed, however, 
the presence of specific low-capacity oestradiol-! 7 If 
binding in the 45 area (Fig. 4). In this respect specific 
receptors for oestradioi-17P in testis cytosol, which 
occurred only in the SS area, may be different from 
receptors in prostate cytosol, which occurred in both 
the SS and 4S areas. 
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Jn the kidney specific binding was demonstrd.ted 
by using Sephadex chromatography and the charcoal 
technique. After gradient centrifugation it appeared 
that the specific binding was eompletely located in the 
4S peHk. However, it was not possible to find any 
specific binding in the kidney by Llsing agar-gel 
electrophoresis. A possible explanation could be that 
there is a labile saturable pmtcin \\ilh a 4S sedimenta­
tion coetlicient. 

Discussiou 

Various methods can be used for the quantitative 
measureml.'!nt of the amount of steroid specifically 
bound by macromolecules. In the present study the 
binding of oestradiol-17 {f by the cytoplasmie receptor 
in interstitial eel is of the testis was analysed by using 
agar-gel electrophore~i~, sucrose-gradient centrifuga­
tion, Sephadex chromatography and a charcoal­
binding a>say. The amounts of receptor-bound 
steroid found by these four methods did not difl"er 
significantly from ead1 other. Jungblut <'I a!. (!972) 
observed a similar· agreement between agar-gel 
electrophoresis and Sephadc\ chromatography for 
the analysis of oestradiol-17/1 binding by ..:ytosols 
of uterine tissue. However, with gradient centrifuga­
tion Jungblut et a!. (1972) ob;,crvcd a much lower 
specific binding in uterine tissue. It was established 

1974 



OESTRA.DlOL-17/1 RECEPTORS IN DIFFERENT TISSUES OF MALE RAT 

that all the non-specifically bound steroid dissociates 
during the agar-gel electrophoresis, whereas in our 
study some non-specific binding was always present. 
In uterine tissue the concentration of specific binding 
proteins is much higher than in testis tissue and there­
fore small amounts of non-specifically bound steroid 
might not have been detected. Another reason for 
the observed difference could be that Jungblut eta!. 
(1972) determined specific binding as the difi."ercnce 
between the binding before and after heating. In 
our study the amount of specifically bound steroid 
was estimated by subtracting the amount of bound 
steroid after incubation with labelled and unlabelled 
oestradiol-17/1 from the amount after incubation of 
cytosol with labelled hormone only. 

The present results, showing some further charac­
teristics of the receptor in the interstitial cells of the 
testis, established the protein nature and temperature­
sensitivity of the oestradiol-17/1-binding macro­
molecule. "fhey were similar to results found for 
uterus receptor {Toft & Gorski, 1966). Previous 
studies (Brinkmann et a!., 1972) showed that the 
testis receptor has a high affinity for oestradiol-17/J 
(K, 10 10 r .. r'). The steroid specificity of the receptor 
was high; oestriol, oestrone, testosterone and 
dihydrotestosterone shov . ..-ed a low degree of com­
petition for the bindi11g sites, whereas diethylstilb­
oestrol and oestradiol-17:x demonstrated relatively 
high competitive activities. 

In the male rat specific binding of oestradiol-17 P 
appears to occur in sen':ral tissues (Table 3). In 
addition to the testis interstitial tissue specitic 
binding wet~ observed in li\·et·. adrenal, pituitary, 
prostate and epididymis. but not in seminiferous 
tubules, pla~ma, kidney. skektal muscle, seminal 
vesicle and hypothe~lamus. 

The occurrence of an oestradiol-17/j receptor in 
the adrenal was not observed in other studies 
(Jungblut ('/ a! .. 1967: Stun:pf. 1969). Chobanian 
ct a!. (196R), howe\W, showed a high oestradiol-17/:1 
uptake in dog adrenal. In the liver of calf and rat no 
specific uptake of oestradiol-17/i could be demon­
strated by Jungblut eta!. (1967) and Stumpf (1969). 
Rao & Talwar (1969) on the other hand showed 
retention of oestradio!-17 jj in the liver of the female 
rat, which might suggest the presence of an oestradiol-
17/1 receptor. The existence of an oestradiol-!7fj 
receptor in the rat epididymis has not previously been 
reported. The presence of an androgen receptor in 
the epididymis has been reported (Blaquier & 
Cal<~ndra, 1973). so th<lt the epididymi~ cnuld be 
another e"Xample or the 'iimultancou-; t'l"~·ur·r·<.'iKe of 
ditferent oe~tJ"('gen and :tndrogen n::L·cl">il'h in a 
single ti~suc. Jungblul ct uf. (1971) h'IIC already 
demonstrated very clearly the C.\istcncc of indiYiJual 
anJI"Ogen anJ t1C~trugcn r..::ccpttn~ in c~<lf prosta tc <tnd 
seminal v.:siclc. \\'e also ohscneJ an ~S ocstradiol-
17flrcccpltlr i11 the prostatc.llowclcr, in the ~cmin<ll 
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vesicle we were not able to find any specific oestradiol-
17 {J binding. ln the kidney indications were obtained 
for the existence of a labile saturable protein with a 
sedimentation coefficient of 4S, that dissociates 
during agar-gel electrophoresis. 

The occurrence of an 8S oestradiol-17,8 receptor 
in the pituitary of the female rat is well known 
(Vertes. & King, 1971; Eisenfeld, 1970; Mowles eta!., 
1971). In the male rat Clark et at. (1972) demonstrated 
a nuclear oestradiol-17/1 receptor in the pituitary 
but not in the hypothalamus. This is in agreement 
with the results of our present study. Oestradiol-17 P 
can be bound by cytosol of the hypothalamus of the 
ovariectomized female rat (Vertes & King, 1971; 
Eisenfeld, 1970; Mowles et al., 1971). Oestradiol-17 P 
uptake by the hypothalamus of the castrated male 
rat was established by radioautography (Attramadal, 
1970). Injections of testosterone (Vertes & King, 
1971; Tuohimaa & Johansson, 1971) lower the 
oestradiol-17/1 binding in the hypothalamus of the 
female rat. Therefore the endogenous high concentra­
tions of androgens in the male rat could be a possible 
explanation for the fact that it was impossible to 
demonstrate a receptor in the hypothalamus. Another 
explanation might be that the presence of the aro­
matizing system (Massa ('fa!., 1972) in the hypothala­
mus of the male rat causes a higher endogenous 
oestradiol-17/J concentration that could mask the 
presence of an oestradiol-17 fi receptor. 

The physiological meaning of the oestradio1-17f/ 
receptors in the different tissues of the male rat is not 
yet clear. It has been suggested that the presence of 
specific steroid-binding macronoolecules in the cyto­
plasm is a prerequisite for steroid-hormone action 
(Jensen & lie Sombre, 1972). To what extent the 
occurrence of a receptor in these different tissues 
implies a steroid-induced transformation of the 
cytoplasmic receptor and a transfer of steroid to 
specific receptor sites on the chromatin in the nucleus 
remains to be investigated. 

Oestradiol-17 j3 is present in the male rat. The con­
centration in testis tissue is 44.6pgjg of testis (de 
Jong et a!., 1974). It is not known whether this 
concentration is sufficiently high to initiate any 
biological action, nor is anything known about the 
concentration of oestradiol-!? P in the other tissues 
containing specific receptors for this steroid. 

Under certain conditions there might be a co­
operative etTect of several steroids on a target tissue. 
Palmiter & Haines (1973) have reported the effect of 
oestmdiol-17 fi, progesterone and dihydrotestosterone 
and their receptor~ on pi"Otein synthesis in one cell 
type or the chick oYiduct. Apparently all three 
stcr~1ids need 1u be present for maximal stimulation 
ol· the synthesis of some proteins in the oviduct. 
Hence the po~~ibility may be considered that the 
ocstrad itll-17/l receptors observed in different tissues 
ul" th~e male r;tt might ha1e a similar positive or 
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negative co-operative effect with androgen receptors 
on induced protein synthesis. 
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Abstract 

Intact male rats were injected with 50 ~g E2B (estradiol 

benzoate) or with 100 ~g E2 (estradiol). Six hours after in­

jection plasma and testicular testosterone levels and pro­

duction were significantly decreased. Concomitant with this 

change a lowered LH plasma level could be observed in the 

estrogen treated animals. Twenty four hours after injection 

of 50 ~g E
2

B LH levels, testosterone levels and testicular 

testosterone production were still reduced, whereas 24 hours 

after E
2 

administration both testosterone and LH levels were 

raised again. One and 3 hours after injection of 500 ng es ­

tradiol, plasma and tissue testosterone levels as well as 

testicular testosterone production were significantly decrea­

sed. However, this low dose of E
2 

also caused a decrease in 

LH plasma levels. In order to investigate whether estrogens 

would inhibit testicular testosterone synthesis or release 

by mechanisms other than inhibition of LH secretion, estrogen 

or vehicle only were injected into hypophysectomized animals 

given exogenous LH. No effects of estrogens on testosterone 

levels or production were observed in such animals. 

These £indinqs su~port the view that the observed effect 

testosterone production in rat 
of administered estrogens on 
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testicular tissue reflect primarily extra testicular estro­

gens actions such as the negative feedback effect on LH se­

cretion. 

Introduction 

Binding of steroid hormones to cytoplasmic receptor pro­

teins has been indicated as a prerequisite for their biolo­

gical activity (l). Estradiol-l7S (E 2 ) is produced (2) in 

the testis and a high concentration of specific E2 receptors 

is present in rat testis interstitial tissue {3,4,5), but 

little is known about the possible physiological function of 

estradiol in the male rat. Several authors (6,7,8,9) have 

demonstrated that after daily injection of estrogens to in­

tact rats testosterone levels in plasma and testicular tis­

sue were decreased, while no change in plasma LH levels was 

observed. In contrast Verjans et al. (10) and de Jong et al. 

(11) observed reduced LH levels after estrogen injections. 

Tcholakian et al. (12) showed that a single injection of 

50 ~g E2B (estradiol benzoate) resulted already within 

3 hours in a decrease of plasma and testicular testosterone 

levels, while no change in plasma LH levels was observed. 

This could mean, that although LH inhibition occurs (10,11) 

inhibition of testicular testosterone secretion might pre­

cede LH inhibition (12). 

In the present study we have re-examined the effects of a 

single injection of estrogens on plasma LH levels and on 

plasma and testicular testosterone levels in intact male 

rats. The effect of estrogens on testosterone production in 

hypox rats was also investigated. We found no evidence of 

effects of estrogens which were not accompanied by effects 

on LH levels. 
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Materials and methods 

Ovine LH (NIH-LH-S18, 1.03 units/mg) was a gift from the 

Endocrinology Study Section, National Institute of Health, 

Bethesda, Maryland, USA. (1,2,6,7) 3H-testosterone was pur­

chased from Radiochemical Centre, Amersham, U.K. and was pu­

rified using paper chromatography. Adult male Wistar rats 

substrain R-Amsterdam (14-16 weeks old, 200-250 g) were used. 

The animals were injected subcutaneously with estradiol or 

estradiol benzoate using sesame oil as vehicle. Control ani­

mals received 0.1 ml vehicle. Ovine LH was dissolved in po­

lyvinyl pyrrolidone as described by Morishige et al. (13) 

for prolactin and injected subcutaneously. The animals were 

killed by decapitation. Blood was collected from the trunk 

in heparinized glass tubes. Plasma was stored at -20°C until 

assayed. Testes were removed and chilled in ice-cold 0.25 M 

sucrose, containing 1 mM EDTA. After removing the tunica al­

buginea one testis was homogenized in 10 ml 0.25 M sucrose, 

EDTA (1 mM) using a Potter Elvehjem homogenizer. 

Estimation of testosterone and LH 

Testosterone was estimated by a radioimmunoassay techni­

que described by Verjans et al. (14). This method is essen­

tially a modification of the method of Furuyama et al. (15). 

LH was determined by radioimmunoassay using the antibody 

described by Welschen et al. (16). All assays were perfor­

med in duplicate. LH values were expressed as ng NIAMD -

rat LH-RP-1 per ml plasma. 

Estimation of testosterone production 

The production of testosterone from endogenous substrate 

in testis homogenate was estimated by incubating 0.5 ml ho­

mogenate for 30 1 at 33°C in an o 2;co
2 

(95:5, v/v) atmosphere 

in 2 ml medium as described by van der Vusse et al. (17). 

The reaction was stopped by adding 3.5 rnl ethylacetate con­

taining 20,000 dpm 3H-testosterone as internal standard. The 
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reaction mixture was extracted two times with 3.5 ml ethyl­

acetate. Testosterone was measured in the combined fractions. 

Endogenous steroid production was calculated from the diffe­

rence in the amount of testosterone present in incubation 

mixtures after 30 minutes and at zero time. 

Protein determination 

Protein was measured by the method of Lowry et al. (18) 

using bovine serum albumin as standard. The protein content 

of the tissue homogenate was in the order of 10 mg protein 

per ml. 

Measurement of radioactivity 

Counting of radioactivity was done in a scintillation 

fluid prepared by dissolving 80 g naphtalene and 5 g Perma­

blend II in a mixture of 500 ml toluene and 500 ml methoxy­

ethanol. 

Statistics 

LH levels of estrogen treated animals were compared with 

LH levels of control animals using the Wilcoxon's test. The 

significance of the difference in testosterone levels of 

estrogen treated animals and control animals was determined 

with the two tailed Student t-test. 

Results 

The effect of estrogen injection on testosterone synthesis and plasma LH levels 

of intact rats 

To study the effect of estradiol on testosterone synthe­

sis and LH secretion in intact rats three series of experi­

ments were performed. 
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1. Effect of 50 ~g estradiol benzoate 

Sixteen animals were injected with 50 ~g E2B and 16 ani­

mals received vehicle only to serve as control. Six and 

24 hours after injection 8 control rats and 8 E2B treated 

rats were killed. Testosterone levels in plasma and in tes­

ticular tissue and testosterone production from endogenous 

precursors in testis homogenate were determined. Results are 

given in Figure 1. 

A B c 

Ocontrol 
30 

* 
2 * 20 

10 * 

* * 
~ 6 ._~!----L--'-6 6 ~ 24 24c._ ___ _L___cL_6 6 

---+ hours after injection 

Figure Effect of 50 ~g E
2

B on testosterone levels in 

plasma and testicular tissue and on testicular testosterone 

production. 

Intact male rats were injected with 50 ~g E 2B. Samples were 

taken 6 and 24 hours after injection. Values are expressed 

as means+ S.E.M. (n=8). 

A· Testosterone levels in tissue expressed as pmol T/mg 

protein. 

B: Testosterone production in testis homogenate. Data ex­

pressed as pmol T/mg protein/30 1
• 

C: Testosterone plasma levels as pmol T/ml plasma. 

xsignificantly different from control (p ~ 0.01). 
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ng LH/ml 

i 
o vehicle only 

• 50 1'9 E2B 

0 

0 

4D 

0 

30 0 
0 

20 0 

10 0 

--~-~-----~- detection limit 

0~--~~------,~,~2~4~*------­

hours ofter injection 

Figure 2 Effect of 50 ~g E 2B on plasma LH levels. Intact 

male rats were injected with 50 ~g E
2

B. After 6 and 24 hours 

LH levels in plasma were determined. Data expressed as 

ng NIAMD-rat-LH-RP-1/ml plasma (individual values). 

;::significantly different from control group (p~ 0.01). 

LH levels in plasma were determined and are represented in 

Figure 2. 

A significant decrease of testosterone levels in tissue 

and plasma was observed both at 6 and at 24 hours after in­

jection. Testicular testosterone production was also signi­

ficantly lower 6 and 24 hours after E2B injection. Plasma 

LH levels were significantly lower 24 hours after E2B admi­

nistration. At 6 hours after E2B injection the LH levels 

tended to be lower but this change was not statistically 

significant. 

2. Effect of 100 ~g estradiol 

In the second experiment 16 rats were injected with 

100 ~g E2 (estradiol-1 /13) and 16 rats were used as controls. 
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Six and 24 hours after injection testosterone and LH were 

measured as described in experiment 1. Testosterone concen­

trations in plasma and testicular tissue and testicular tes­

tosterone production are given in Figure 3, plasma LH levels 

in Figure 4. Six hours after injection of 100 ~g estradiol 

a significant decrease in testosterone levels and production 

could be observed. Concomitant with the decrease in testos­

terone synthesis LH levels were also significantly decreased. 

However, 24 hours after E2 injection testosterone levels and 

production were not different from values in control animals, 

whereas LH levels in the E2 treated animals were signifi­

cantly increased. 

A B c 

Qcontrol 
30 

~E2 

6 ~60 

rt " :g_ 20 2 
~ 

4 ~40 0 

rt E 

~ 
~ 

0 

rfl E 
~ 

* 
~ 

10 

2f- * ~ 
20 

* 
~ L ~ ~ 

6 6 24 24 6 6 24 24 6 6 24 24 
____,.. hours after injection 

Figure 3 Effect of 100 ~g E
2 

on testosterone levels in 

plasma and testicular tissue and on testicular testosterone 

production. 

Intact animals were injected with 100 ~g E
2

. Testosterone 

was measured 6 and 24 hours after injection. Values given as 

means+ S.E.M. (n=8). A,B,C see Figure 1. 
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ng LH/ml 
0 

~f 0 vehicle only 

olOO~gE2 
so 

~~ 
0 

301 

0 

0 

20 0 

0 0 

_ -8- -~ ____ -t -,- _ _:J_e~c~o~l~i!_ 

24 24 **hours ofter injection 

Figure 4 Effect of 100 ~g E
2 

on plasma LH levels. 

Intact male rats were injected with 100 11 g E
2

. Six: and 

24 hours after injection LH levels in plasma were measured. 

Data expressed as ng NIAMD-rat-LH-RP-1/ml plasma {individual 

values). 

* p ~ 0.05. Significantly lower than control group. 

"" p ~0.05. Significantly higher than control group. 

3. Effect of 500 ng estradiol 

In this experiment 20 rats were used. Ten control rats 

received 0.1 ml sesame oil only, 10 rats received 500 ng es­

tradiol. One and three hours after injection 5 control rats 

and 5 estradiol treated rats were killed and testosterone 

levels and production (Fig. 5) and LH levels (Fig. 6} were 

estimated. 

Testosterone levels and production 1 and 3 hours after 

E2 injection were significantly decreased. The LH levels 

1 hour after injection were diminished. However, this change 

was not significant. Three hours after injection the LH le­

vels were significantly lower in E2 treated animals. 
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0.. 12 e 120 ;:c 
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~ 10 ~ 

0 
E 0 
~ E 
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rh 30 

60 * ~ 6 * 
* 4 40 

i 10 * 2 20 

3~ 1 '--':J· 3 
~- '-

1 1 1 I I 3 3 - hours after injection 

Figure 5 Effect of 500 ng E
2 

on testosterone levels in 

plasma and testicular tissue and on testicular testosterone 

production. 

Intact male rats were injected with 500 ng E
2

. Testosterone 

was measured I and 3 hours after injection. Data expressed 

as means + S.E.M. (n=S). A.B,C see Figure 
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ng LH/ml 

BB 

--~ 

-

8 

o vehicle only 

• 500 ng E
2 

_ h __ d_:_~::r~n_.!imit 
3 3 * ho~rs oher •njedian 

Figure 6 Effect of 500 ng E
2 

on LH plasma levels. 

Rats were injected with 500 ng E
2

. LH plasma levels were 

measured after I and 3 hours. Data given as ng NIAMD-rat­

LH-RP-1 (individual values). 

~p ::!!5 0. 0 2. 

Effect of estrogens on testosterone synthesis in hypophysectomized rats 

In order to investigate whether estradiol can have a di­

rect effect on testicular testosterone synthesis different 

from the effect caused by a negative feedback on LH secre­

tion, hypophysectomized animals were used. Two series of 

experiments were performed. 

1. Effect of estrogen 1 day after hypophysectomy 

In the first experiment animals were hypophysectomized 

and immediately injected with 10 ~g ovine-LH dissolved in 

polyvinyl pyrrolidone for maintenance of testosterone syn­

thesis. The LH was dissolved in polyvinyl pyrrolidone in 

order to obtain a constant LH level (12). After 15 hours 

the animals received a second injection of LH (10 ~g) in 

polyvinyl pyrrolidone and 2 hours later 8 animals were in­

jected with 50 ~g E2B in sesame oil and 8 animals with ve­

hicle only. Six hours after E2B administration both groups 

of animals were killed and plasma and testicular testoste-

10 



lA 
c 

control 

D 30 

0 60 
~E2 B 

' '> 
' ' J2o 
r ' :0A r"' I l :0 
l l 

" 20 i 

I rtl.. 

Figure 7 The effect of 50 ~g E
2

B on testosterone levels in 

plasma and testicular tissue and on testicular testosterone 

production in hypophysectomized rats. 

One day hypophysectomized animals, injected with LH, were 

injected with 50 ~g E
2

B. Six hours after administration of 

E 2 B testosterone values were measured. Values expressed as 

means+ S.E.M. (n=8). A,B,C see Figure l. 

rone levels and testicular testosterone production were mea­

sured. 

Frorrl the results in Figure 7 it can be concluded that E
2

B 

had no effect on testosterone levels in plasma and testicu­

lar tissue and on testosterone production in hypophysecto­

mized rats. 

2. Effect of estradiol immediately after hypophysectomy 

In the second experiment 14 rats were hypophysectomized 

and immediately injected with 50 ~g LH dissolved in polyvi­

nyl pyrrolidone. One group of animals were injected with 

500 ng E2 and the other animals received vehicle only to 

serve as control animals. One hour after estradiol injec­

tion the animals were killed and testosterone was measured. 

The results are given in Figure 8. There was no significant 

effect of estradiol on testosterone synthesis and on testi­

cular and plasma testosterone levels. 
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Figure 8 Effect of 500 ng E
2 

on testosterone levels in 

plasma and testicular tissue and on testicular testosterone 

production in hypophysectomized rats. 

Immediately after hypophysectomy rats were injected with 

50 ~g LH and with 500 ng E
2

. One hour after injection tes­

tosterone values were measured. Data expressed as means + 

S.E.M. (n=7). A,B,C see Figure I. 

Discussion 

Our results of the present investigation on estrogen ad­

ministration in male rats support the generally accepted 

belief that a reduction of testicular testosterone in in­

tact animals is always accompanied by a decline in circula­

ting LH. This is clearly demonstrated by the experiments 

with intact rats where injection of 50 ~g E2B or 100 ~g E
2 

caused a decrease in testosterone synthesis with a concomi­

tant decrease in plasma LH levels in estrogen treated ani­

mals. Our results appear to contrast with the findings of 

Tcholakian et al. ( 12) , who in similar exper irnents did not 

observe a diminished LH level after a single injection of 

50 ~g E2B. Possible explanations for this discrepancy inclu­

de differences in strains of rats or in assays. Tcholakian 

et al. (12) used an antiserum against rat LH and rat LH for 

iodination - a system designated as 'RR rat LH RIA' by 

Niswender et al. (19). We have used an 'OR rat LH RIA' in 
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which an anti-ovine LH was used as described by Welschen 

et al. (16). Since the sensitivity of the OR rat LH RIA is 

six times higher than that of the RR rat LH RIA (20) , it 

might be possible that changes in LH levels which could be 

detected with the OR rat LH RIA system remained unnoticed 

using the RR rat LH RIA. 

One hour after injection of 500 ng oestradiol the trans­

location of the E2 receptor from the cytoplasm to the nu­

cleus in rat testis interstitial tissue is completed (21). 

This implies that with 500 ng E2 it should be possible to 

induce a direct effect in rat testicular tissue. One and 

three hours after administration of 500 ng E2 a reduced 

testosterone production was observed. However, this amount 

of E2 also caused a significant decrease in LH plasma levels. 

Several authors have found that daily injection for 5 days 

of 500 ng E2 or E2B did not cause a decrease in plasma LH 

levels in castrated and intact male rats (8,21,22), but 

others (24,25) did observe that plasma LH levels were reduced 

after 5-7 days of daily injection of 500 ng E2B into castra­

ted male rats. Kalra et al. (26) concluded that a single in­

jection of 500 ng E2B did not increase LH levels measured 

16-24 hours later in castrated male rats. However, Figure 3 

shows that different results can be obtained when LH levels 

are measured at different times after injection. Although 

injection of 100 ~g E2 reduced plasma LH levels 6 hours later 

the effect was no longer evident 24 hours after injection, at 

which time LH levels were even significantly higher than in 

the controls. These findings may be similar to those of 

Libertun (27), who demonstrated that administration of 500 ng 

E2 to castrated female rats which were continuously perfused 

with LHRF, caused a decrease in LH levels already one hour 

after injection whereas 6 hours after injection the LH levels 

were raised above control levels. 

The results of our experiments with intact rats reflect a 

variability of testosterone values in plasma and testicular 

tissue. There are several possible explanations for this 

variability. First there appears to be a seasonal variation 
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Table 1 Testicular testosterone (T) production and T levels and 

plasma T levels in different time periods of the year 

Month T level in plasma testicular T production 

pmol/ml pmol/mg protein/30' 

July 13.7 ~ 0.9JI.< ( 3 2) 45.2 ~ 2. 2 { 32) 

October 30.7 + 4.8 (1 0) 85.6 ~ 8. 6 ( 10) 

November 19.5 ~ 2.8 I 4} 30.1 ~ 2. 6 I 4) 

!l:x _::: S.E.M. (n) 

testicular T level 

pmol/mg protein 

2. 7 ~ 0. 2 ( 32) 

13.4 ~ 2. 2 ( 12) 

5. 9 ~ 1.0 I 4 I 

ofT levels in male rats (28,29). The experiments presented 

in Figures 1 and 3 were performed in June-July, whereas 

the experiments presented in Figure 5 were performed in Oc­

tober. The testosterone productions and testosterone levels 

in testicular tissue and plasma from control animals in the 

different time periods are given in Table r. A possible in­

fluence of the time after injection might be another expla­

nation. Krulich et al. (30) showed that there are changes 

in LH levels after injection of saline or after stress si­

tuations. To exclude such influences it is necessary always 

to take a control group which is killed at the same time 

after injection as the hormone treated group. The variabili­

ty of testosterone values cannot be explained by differences 

in the radioimmunoassay system. Each assay series included 

several samples containing a known amount of testosterone as 

control values. 

In order to investigate the possibility that E2 might 

have a direct effect on testosterone synthesis in addition 

to effects via its negative feedback action on LH secretion, 

we used hypophysectomized animals. Hypophysectomy has no in­

fluence on the amount of E2 receptor in rat testis intersti­

tial tissue (21). Therefore it should be possible to see a 

direct effect of E2 in hypophysectomized animals. For main-
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tenance of testosterone synthesis a prolonged constant level 

of LH was maintained through injection of LH dissolved in 

polyvinylpyrrolidone (13). Under these conditions injection 

of 50 w.. g E 2B did not influence testosterone production le­

vels in one day hypophysectomized rats. Testosterone levels 

in testicular tissue and testosterone production of the con­

trol animals were in the same range as was normally found 

for intact animals in that period of the year (July), plasma 

levels were lower than the plasma levels from intact rats. 

Since the results might have reflected the loss of some 

pituitary factors involved in an action of E2B on the tes­

tis, we injected 500 ng E2 together with 50 ~g LH immedia­

tely after hypophysectomy. In these animals as well no ef­

fect of E2 on testosterone synthesis could be observed. The 

testosterone levels of these animals should be compared with 

the levels of intact animals in November. 

Our results are in agreement with the results of Samuels 

et al. (31), who observed reduced activity of steroidogenic 

enzymes after treatment of intact but not of hypophysecto­

mized rats with diethylstilbestrol. The effects of adminis­

tered estrogens on testicular testosterone production in 

the rat thus appear to be mediated via a feedback action on 

LH secretion. However, it is also known that rat testis in­

terstitial tissue contains E2 receptor in concentrations 

comparable to those in the rat uterus. The presence of this 

receptor suggests that the Leydig cell may be an estrogen 

target cell, but a possible direct action of estrogen on the 

Leydig cell, if any, remains to be defined. 
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ABSTRACT 

Testosterone production in isolated Leydig cells from testes 
of immature and adult rats was stimulated by addition of LH 
in a dose dependent way. Hypophysectomy of adult rats had no 
influence on LH-stimulated testosterone production in isola­
ted Leydig cells after 5 days. In cont~ast hypophysectomy of 
immature rats resulted after 5 days in an almost complete 
loss of LH sensitivity of isolated Leydig cells. Daily admi­
nistration of FSH during 5 days starting immediately after 
hypophysectomy maintained LH responsiveness of isolated 
Leydig cells of immature rats. Also FSH administration 
starting on day 5 after hypophysectomy resulted in a restora­
tion of LH responsiveness. Estradiol benzoate, injected simul­
taneously with FSH, abolished the FSH-induced LH responsive­
ness. 

INTRODUCTION 

In testicular tissue of adult rats both estradiol and an 

estradiol receptor are present (1,2), but no clear effect of 

estradiol in testicular tissue has been demonstrated. Some 

reports have shown that estradiol administration to intact 

adult rats is followed by a decrease in plasma testosterone 

but not in LH levels, which could indicate that estradiol 

directly influences testicular testosterone production (3,4, 

5,6). However, in a number of other studies (7,8,9) it 

seemed not possible to suppress plasma and testicular testa-

sterone levels after estradiol administration without a con-

comitant decrease in plasma LH levels. 



Not only in adult but also in immature rats an estradiol re­

ceptor is present (10). It has been demonstrated that part 

of the receptor is located in the nuclei of immature rat 

testes presumably due to endogenously present estradiol 

( 1 1 ) • 

In immature rats testicular Leydig cell function and deve­

lopment are under the influence of several controlling fac­

tors. It has been shown that LH administration causes an in­

crease in the number of Leydig cells (12) and a rise in 

plasma testosterone levels (13,14). Hypophysectomy of imma­

ture rats appears to destroy the steroid responsiveness of 

the testis to LH, while administration of FSH can restore 

the ability to respond to LH (15,16,17). 

In experiments described in the present report we have 

studied the effect of LH on testosterone production in iso­

lated Leydig cells. A comparison has been made of isolated 

Leydig cells from immature and adult rats. It is known that 

the rate of testosterone metabolism in testicular tissue of 

immature rats is higher than in testes from adult rats (18, 

19,20,21,22,23). Therefore we also studied to which extent 

such metabolism of testosterone may influence the estimated 

amounts of testosterone which were used as a parameter for 

LH responsiveness. Finally we have examined the influence 

of in vivo pretreatment of hypophysectomized immature rats 

with FSH and estradiol on the LH stimulation of testosterone 

production in isolated Leydig cells. This use of isolated 

Leydig cells from hypophysectomized rats makes it possible 
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to study a possible direct action of estradiol on testicular 

testosterone synthesis without interfering with the secre-

tion of pituitary gonadotrophins. 

MATERIALS AND METHODS 

Materials 

Rat follicle stimulating hormone (NIAMD rat FSH-Bl) was a 
gift from the National Institute of Arthritis and Metabolic 
Diseases, Bethesda, Maryland, U.S.A. Ovine follicle stimu­
lating hormone (ovine, NIH S-11) and luteinizing hormone 
(ovine, NIH S-18) was a gift from the National Institute of 
Health, Bethesda, Maryland, U.S.A. The collagenase type I 
was purchased from Sigma Chemical Company, St. Louis, 
Missouri, U.S.A. Ficoll 400 fro~ Pharmacia Fine Chemicals 
A.B., Uppsala, Sweden. Lima bean trypsin inhibitor from 
Boehringer Mannheim GmbH, Germany and bovine albumin frac­
tion V from Fluka, Bucho, Switzerland. 

Animals 

All rats used were rats from the Wistar strain, substrain 
R-Amsterdam. Immature rats were hypophysectomized on day 21-
25. Rats were killed 5 or 10 days later. Control intact 
animals were from the same age as the hypophysectomized 
rats. Adult rats were 3-5 months old. 
FSH was injected subcutaneously (60 ~g in 100 ~1 saline per 
day). LH dissolved in 0.06% bovine albumin in saline was 
injected subcutaneously. Estradiol benzoate ~as dissolved 
in sesame oil and injected subcutaneously. Control animals 
received vehicle only. 

Isolation of Leydig cells 

Rats were decapitated and the testes were removed and de­
capsulated. Two testes from adult rats or 4-6 testes from 
immature rats were incubated with 7 ml collagenase (I mg/ml) 
according to the method described by Janszen et al. (24). 
After centrifugation of cells through 13% Ficoll solution 
the sediment was washed with Krebs Ringer bicarbonate buffer 
(KRBG) pH 7.4, containing 0.1 mg/ml lima bean trypsin 
inhibitor. After centrifugation for 10 min at 100 g at room 
temperature the cells were resuspended in KRBG pH 7.4, con­
taining 0.1 mg/ml trypsin inhibitor. Cell densities of these 
suspensions were determined by counting of the nucleated 
cells in a hemocytometer. 

Incubation of cell suspension and estimation of testosterone 

The cells were preincubated for one hour at 32°C under an 
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atmosphere of Oz/C0
2 

(95:5 v/v), The incubations were 
carried out in dupl1cate in volumes of 200 wl in plastic 
tubes with a cell density of 3-4 x 106 cells/ml at 320C 
under 02/C0 2 (95:5 v/v), The tubes were continuously shaken 
at 100 cycles/min. LH was added in 200 wl KRBG 0.1% bovine 
albumin. After 2 hours incubation 3.5 ml ethylacetate was 
added and steroids were extracted. Each incubation was per­
formed in duplicate. Testosterone was estimated using the 
radioimmunoassay system described by Verjans et al. (25). 

Histochemical demonstration of 38-hydroxysteroid dehydro­
genase activity 

38-Hydroxysteroid dehydrogenase activity was determined 
according to Janszen et al. (24). 

Estimation of testosterone metabolism in isolated Leydig 
cells 

After 1 hour preincubation 106 dpm JH-testosterone (s.a. 
400 dpm/pmole) in 200 wl KRBG 0.1% bovine albumin was added 
to 200 wl cell suspension. Reaction was stopped after 10 
min, by adding 3-5 ml ethylacetate. During this time period 
the formation of metabolites was linear. The ethylacetate 
extract was separated by thin layer chromatography on 
silicagel in dichloromethane diethylether, 85 15. 
After development, the plate was dried at room temperature 
and was developed a second time. The areas corresponding 
with the Rfvalues of the following steroids were scraped off 
the plates and were transferred to counting vials: Rf 0-0.15: 
polar steroids; Rf 0.20-0.25: 5a-androstane-3a, 17B-diol/5a­
androstane-3B, 178-diol; Rf 0.30: testosterone; Rf 0.35-0.40: 
androsterone (3a-hydroxy-5a-androstane-l7-one); Rf 0.40-0.45: 
dihydrotestosterone; Rf 0.50-0.55: 4-androstene-3,17-dione; 
Rf 0.70: 5a-androstane-3,17-dione. To the isolated silicagel 
fractions 10 ml scintillation fluid was added and after 
shaking the amount of radioactivity was determined. The scin­
tillation fluid consisted of a mixture of Triton X-100 and 
toluene (2:1 v/v) containing 0.1 g of POPOP 1,4-bis-(5-
phenyloxazol-2-yl)benzene/1 and 4.8 g of PPO (2,5-dipnehyl­
oxazole)/1. 

RESULTS 

Characterization of Leydig cells isolated from testes of 

immature rats 

Part of the cell preparations made by collagenase treatment 

of testes of immature rats, was centrifuged through a Ficoll 
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solution and another part was used immediately after incuba-

tion with collagenase. The cells were then incubated with 0, 

10 or 100 ng LH/ml. After 2 hours testosterone concentra-

tions were determined (Table 1). The Leydig cell content of 

the cell preparation was estimated histochemically by 38-

hydroxysteroid dehydrogenase activity. From the results in 

Tab 1 e it can be concluded that after centrifugation of the 

unpurified cell preparation through Ficoll the testosterone 

production per 10 6 cells is increased and that the Ficoll 

purified cell preparation contains in the order of 53% 

Leydig cells. 

Table 

Basal and LH-stimulated testosterone production in isolated 
unpurified and Ficoll purified Leydig cells of immature 
rats (means of duplicate experiments) and percentage of 38-
hydroxysteroid dehydrogenase containing cells. 
(x + S.E.M. (n)) 

ng LH/rnl 

unpurified cells 
Ficoll purified 
c e 11 s 

ng testosterone/ 
106 cells/2 h 

0 10 100 

0. 2 I . 2 5 I . 8 5 

0.3 2.65 3. 5 

36-hydroxysteroid 
dehydrogenase con­
taining cells 

28.2 + 3.5% (n 3 ) 

52.9 + 5.3% (n I I ) 

The time course of the LH-stimulated testosterone production 

in Ficoll purified cells from immature rats was studied by 

incubating the cells with 100 ng LH/ml. After 0, 30, 60 and 

120 min testosterone concentrations were determined. 
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A linear increase in the LH-stimulated testosterone produc-

tion was observed during these 2 hours (Figure 1). In the 

following series of experiments Ficoll purified cells and an 

incubation time of 2 hours were used as a routine. 

ng Testosterone 

106 cells 

30 120 mjn. 

Fig. I. Time course of testosterone production in the pre­
sence of 100 ng LH/ml by isolated Leydig cells prepared from 
testes of 21-25 day old rats. Cells were preincubated for 60 
minutes at 32°C. Means and individual values of duplicate 
observations are given. 

Testosterone production in response to different doses of LH 

was determined in Leydig cells from adult and immature rats 

(Figure 2). LH stimulated the testosterone production by 

cells from adult as well as from immature rats, although the 

testosterone production was 10 times lower in Leydig cells 

from immature rats ·as compared to cells from adult rats for 

each dose of LH used. 
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Fig. 2. Dose response curves for the effect of LH on testo­
sterone production by Leydig cell preparations from intact 
and hypophysectomized rats. 
Values are means+ S.E.M. (n =number of experiments). 
A: adult rats; B; immature rats. ·--· ·---· o---o 

cells from intact rats 
cells from rats 5 days after hypophysectomy 
cells from rats 3 days after hypophysectomy 

In order to investigate whether the lower testosterone pro-

duction in response to LH in cells from immature rats was 

the result of a higher rate of metabolism, cells of adult 

and immature rats were incubated with 3H-testosterone. The 

amount of formed metabolites was 6 
expressed as pmol/10 

cells/min. In cells from immature rats much more testoste-

rone was converted (146 
6 

pmol/10 cells/min) than in cells 

from mature rats (25.0 pmol/10
6 

cells/min). The main meta-
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bolites in cells from immature rats were 5a-androstane-3a/ 

38,178-diol, dihydrotestosterone and androsterone whereas in 

adult rats the main metabolite was androstenedione (Table 2). 

Table 2 

3 Metabolism of H-testosterone by isolated Leydig cells from 
adult and immature rats. 
Leydig cells from adult and immature rats were incubated 
with 106 dpm 3H-testosterone for 10 min. Cells from immature 
and adult rats metabolized 146 and 25 pmol/106 cells/min 
respectively. Metabolites were characterized by TLC. 

steroid 

androstenedione 
dihydrotestosterone 
3a/3S-androstanediol 
androsterone 
androstanedione 

total 

n.d. not detectable 

pmole/106 
immature 

36.5 
35.8 
45.0 
37.9 

1 . 3 

156.5 

cells/min 
adult 

23.5 
n.d. 
n.d. 
n.d. 
n.d. 

23.5 

The influence of hypophysectomy on LH stimulation of testa-

sterone production in Leydig cells from immature and adult 

rats 

Adult rats and 21-25 day old rats were hypophysectomized. At 

day 3 and 5 after hypophysectomy testis Leydig cells were 

isolated. Testosterone production was measured after incuba-

tion of the isolated Leydig cells with different amounts of 

LH. Cells of intact rats of the same age as the hypophysecto-

mized rats were used for comparison (Fig. 2). Leydig cells 

obtained from immature rats 5 days after hypophysectomy did 

no longer respond to LH in contrast to cells obtained from 

mature rats 5 days after hypophysectomy. 
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Fig. 3. The effect of in vivo adminislration of FSH in hypo­
physectomized rats on testosterone production of isolated 
Leydig cells in the presence of LH. Immature hypophysecto­
mized rats received daily injections of 60 ~g ovine-FSH for 
5 days. Control rats were injected with saline. 
A: t--0 cells from rats treated with FSH starting immedi­
ately after hypophysectomy; 0--0 cells from control hypox 
rats. Values are expressed as means + S.E.M. (n = number of 
experiments). -
B: FSH: cells from rats treated with FSH from day 5 after 
hypophysectomy. Hypox control: cells from control hypox rats. 
Means and individual values of duplicate observations are 
given. 

The influence of in vivo administration of FSH to hypophy-

sectomized immature rats on LH stimulation of testosterone 

production in isolated Leydig cells 

Hypophysectomized immature (21-25 days old) rats received a 

daily injection of 60 vg ovine FSH. Control rats received 

vehicle only. After 5 days Leydig cells were isolated and 

incubated with different amounts of LH. Testosterone produc-

tion was measured. Results of testosterone production are 
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given in Figure 3A and testes weights are presented in Table 

3. After administration of o-FSH the LH responsiveness of 

the Leydig cells from these hypophysectomized immature rats 

was maintained, although production was lower than in 

control rats. In another series of experiments rats received 

daily injections of o-FSH (60 ~g/day) starting from day 5 

after hypophysectomy. Leydig cells isolated on day 10 after 

hypophysectomy were incubated with 100 ng LH/ml. From the 

results in Figure 3B it can be concluded that FSH can also 

restore the ability of the Leydig cells isolated from hypo-

physectomized rats to respond to LH. 

Table 3 

Testes weights of hypophysectomized rats treated with FSH 
vr FSH + E2 or without treatment. 

Rats were hypophysectomized at day 21-25. One group of rats 
was injected for 5 days with ovine FSH (60 ~g daily), 
another group received a daily injection of 60 ~g FSH plus 
estradiol benzoate (500 ng or 5 ~g) and a third group was 
injected with vehicle only for 5 days. For comparison the 
testes weights of intact animals of the age of 21-25 days 
and 26-30 days are given. 

animals testes weights ( g /2 testes) 

intact 21-25 days 0.20 + 0.02 ( 5) * 
intact 26-30 days 0.39 + 0. 01 ( 4 ) 
hypox 0. 1 2 + 0. 0 1 ( 5) 
hypox; FSH 0.21 + 0. 0 1 ( 8) 
hypox; FSH + 500 ng EzB 0. 1 8 + 0. 01 ( 7 ) 

hypox; FSH + 5 "g E 2B 0.22 + 0. 01 ( 3 ) 

*- x + S.E.M. (n) 

In order to investigate whether the observed effects of 

ovine FSH on the Leydig cells were due to contamination with 

LH (the specifications indicate a contamination < 1%) the 
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experiments were repeated using highly purified rat-FSH with 

a certified LH impurity< 0.1%. One group of rats received 

daily injections of 60 ~g rat-FSH, another group was injec-

ted with 600 ng ovine LH per day and a third group received 

60 ~g rat FSH plus 600 ng ovine-LH per day. Control rats 

received vehicle only. After 5 days isolated Leydig cells 

were incubated with 0 or 100 ng LH/ml in order to assess the 

stimulation of testosterone production (Fig. 4). Testes 

weights are given in Table 4. Results with rat-FSH were 

similar to those obtained with ovine-FSH. No significant 

difference could be observed between testosterone production 

in Leydig cells from hypox control rats or from hypox rats 

treated with LH. 

Fig. 4. The effect of in vivo 
administration of FSH and/or 
LH to hypophysectomized imma­
ture rats on LH stimulation 
of testosterone production in 
isolated Leydig cells. After 
5 days hypophysectomy diffe­
rent groups of rats were in­
jected daily for 5 days with 
either: 60 ~g rat-FSH per day 
(FSH), 600 ng ovine LH per 
day (LH), or 600 ng ovine LH 
plus 60 ~g FSH per day (LH + 
FSH). Control rats received 
saline (hypox control). After 
5 days Leydig cells were iso­
lated and incubated with 0 or 
100 ng LH/ml. 
Values are expressed as 
means+ S.E.M. (n). 

ng Testosterone 

106 cells,/2h 

(31 

,, 

hypox LH 
~ontrol 

~ 100 ng LH/ml 

0 0 ng LH/ml ,,, ,,, 

r I 
fSH fSH + LH 
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The influence of in vivo administration of estradiol and FSH 

in hypophysectomized rats on LH stimulation of testosterone 

production in isolated Leydig cells 

Three groups of hypophysectomized immature (21-25 day old) 

rats received respectively o-FSH (60 ~g/day), estradiol ben-

zoate (E 2 B) (500 ng or 5 ~g/day) or FSH (60 ~g/day) plus E 2B 

(500 ng or 5 ~g). Control rats were injected with vehicle 

only. After 5 days Leydig cells were isolated and incubated 

with 0 or 100 ng LH/ml. Testosterone production rates are 

presented in Figure 5 and testes weights in Table 4. Estra-

dial benzoate alone had no effect on LH-stimulated testoste-

rene production in Leydig cells of hypophysectomized rats at 

any of the concentrations used. The FSH-induced stimulation 

of LH responsiveness was greatly reduced when FSH was 

administered in combination with either 500 ng or 5 ~g 

estradiol benzoate. 

Table 4 

Testes weights of rats after hypophysectomy followed by 
treatment with FSH, LH or LH + FSH treatment. 

Rats were hypophysectomized at day 21-25; starting 5 days 
after hypophysectomy rats were injected daily for 5 days 
with 60 ~g rat FSH, or with 600 ng ovine LH or with 600 ng 
ovine LH plus 60 ~g rat FSH. One group received vehicle 
only. Testes weights of intact rats of the same age, i.e. 
3!-35 days are given for comparison. 

animals 

intact (31-35 days) 
hypox 
hypox + LH 
hypox + FSH 
hypox + FSH + LH 
,. 

X + S. E. M. (n) 

12 

testes weights (g/2 testes) 

0.51 + 0.07 
0.07 
0.06 + 0.01 
0.17 + 0.01 
0.15 + 0.005 

(6)• 
( 2 ) 
( 3) 
( 3) 
( 4 ) 



ng Te•tosterone 

10
6 

cell,/2h 

(11) 

lJ 100 ng LH/ml 

0 0 ng LH/ml 
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,, 

Fig. 5. Estradiol benzoate suppression of the effect of FSH 
on LH stimulation of testosterone production in Leydig 
cells. Rats were hypophysectomized at day 21-25 and received 
5 daily injections of either FSH 60 ug (FSH); estradiol ben­
zoate 500 ng (EzB 500 ng) or 5 "g (EzB 5 "g); 60 "g FSH plus 
500 ng estradiol benzoate (FSH + E2B 500 ng) or 60 ~g FSH 
plus 5 ug E 2 B (FSH + E 2 B 5 ug). Control rats were injected 
with vehicle only (control hypox). Intact rats of the same 
age as the hypox rats were used for comparison. Values are 
expressed as means+ S.E.M. (n). 

DISCUSSION 

The present study confirms previous observations (24) that 

isolated Leydig cells from immature and mature rats can be 

used as a model for studying the effect of LH on testicular 

Leydig cell testosterone production. The results of the 

present study reflect that hypophysectomy of immature rats 

results in a loss of LH responsiveness in isolated Leydig 
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cells. In vivo administration of FSH to hypophysectomized 

immature rats can restore the ability to respond to LH. The 

effect of FSH was prevented by simultaneous administration 

of estradiol benzoate. 

The isolated Leydig cells were obtained by collagenase 

treatment of testes from immature rats followed by centrifu­

gation through Ficoll according to the method of Janszen et 

al. (24). The cell preparation contained 53% Leydig cells, 

when 36-hydroxysteroid dehydrogenase was used as a Leydig 

cell marker enzyme (Table 1) (26,27). Cell preparations iso­

lated in the same way from testes of adult rats contained 

40% Leydig cells (24). The ability of Leydig cells of imma­

ture rats to respond to LH has been questioned (28,29). How­

ever, the present results, especially the dose response 

curve (Fig. 2) of the LH stimulation of testosterone produc­

tion, indicate that isolated Leydig cells from immature rats 

can respond to LH. This is in agreement with several obser-

vations on increased plasma testosterone concentration in 

immature rats after LH injection (13,14). It has also been 

reported that testosterone production occurs during incuba­

tion of whole testes of immature rats with LH (30). The 

response of Leydig cells from immature rats in terms of ab­

solute mass of testosterone produced per 10 6 cells was 

approximately 10 times lower than the response in cells from 

adult rats. Differences in purity of the cells as a possible 

explanation for the lower response can be excluded, since 

the Leydig cell preparation of immature rat testes contains 
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more Leydig cells than the cell preparation from adult rat 

testes. 

The estimated testosterone production is the result of 

simultaneous synthesis and degradation of testosterone. 

Therefore the lower testosterone production in cells from 

immature rats may be the result of either a lower capacity 

to respond to LH and/or a higher metabolism of the formed 

testosterone. With respect to the former possibility it has 

been described that the activity of the cholesterol side­

chain cleavage enzyme is lower in the 20 day old rat when 

compared to adult rats (31). Incubation of Leydig cells with 

a saturating amount of 
3
H-testosterone (Table 2) showed that 

cells from immature rats metabolize testosterone at a rate 

of 146 pmol/min/10 6 cells into dihydrotestosterone, 3a/3S­

androstanediol and androsterone. In cells from adult rats 

testosterone was metabolized at a rate of 25 pmole/10 6 

cells/min to androstenedione. The higher concentration of 

Sa-reductase and Sa-reduced metabolites has been previously 

reported for testes of rats between day 20 and day 40 (18, 

19,20,21,22,23). It cannot be concluded from the present 

experiments that the lower response to LH in terms of testo­

sterone production is due to the higher metabolism of testa-

sterone. 

The response of Leydig cells from immature rats to LH 

appeared to be more dependent on the presence of pituitary 

hormones than the response in cells from adult rats. LH sti­

mulation was hardly changed in cells from adult rats S days 
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after hypophysectomy (Fig. 2A), but no or little response to 

LH was observed in cells from immature 5 days hypophysecto­

mized rats (Fig. 2B). Similar results were obtained by Odell 

et al. (15,16), who have reported that LH administration to 

hypophysectomized rats did not result in growth of sex 

accessory glands (15), nor in a rise of plasma testosterone 

levels (16). When FSH was administered daily to hypophysec­

tomized rats for 5 days the ability of isolated Leydig cells 

to respond to LH was partly maintained (Fig. 3A) and testi­

cular weight was higher in these animals than testicular 

weights from non-treated hypophysectomized rats (Table 3), 

probably due to an increase in tubular protein synthesis 

(31). FSH also restored LH responsiveness in immature rats 

when administration was started 5 days after hypophysectomy 

(Fig. 3B). Our results are in agreement with the results of 

Odell et al. (15,16), who observed prostate growth and in­

creased plasma testosterone levels after LH administration 

to immature hypophysectomized FSH-treated rats. Administra­

tion of LH alone for 5 days did not result in a significant 

restoration of the LH response (Fig. 4). Administration of 

LH in combination with FSH caused no higher response to LH 

in isolated cells than after treatment with FSH alone. Thus 

no synergistic effect of FSH and LH, as was suggested by 

Lostroh (33), could be observed in our study. Some 

authors described higher FSH levels in 20-40 day old rats 

than in adult rats (34,35,36,37,38). Our results therefore 

tend to support the hypothesis that FSH could play a role in 
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regulation of Leydig cell function during the onset of 

puberty. 

In rat testicular interstitial tissue an estradiol receptor 

is located in the Leydig cells (39). This receptor can be 

demonstrated from day 4 onwards (10) and part of the estra­

diol receptors are present in the nuclear fraction of the 

Leydig cells of immature rats (11). It has recently been 

reported that FSH stimulates estradiol production from tes­

tosterone in Sertoli cells from young rats (40). Therefore 

we have considered the possibility that FSH exerts its 

effect via estradiol formation. Treatment of hypophysecto­

mized rats with varying doses of estradiol benzoate, however, 

did not maintain responsiveness to LH in the Leydig cell. 

When different amounts of estradiol were administered 

together with FSH, the response to LH induced by FSH was 

reduced in a dose dependent way (Fig. 5). Estradiol had no 

effect on testicular weight (Table 3). Similar results have 

been obtained by Moger (6), who observed a lower response 

to LH in terms of plasma testosterone levels in intact adult 

rats after estradiol treatment. However, in these experi­

ments the influence of feedback effects of estradiol on 

pituitary hormones could not be excluded. Whether the 

effects of hypophysectomy, FSH and estrogen treatment on LH 

responsiveness is due to a change in testosterone synthesis 

or a change in T metabolism remains to be investigated. How­

ever, it is not likely that a higher metabolism of testoste­

rone in hypophysectomized immature animals compared to 
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intact animals could account for the lower response to LH, 

because enzymes involved in testosterone metabolism, espe-

cially 5a-reductases, are dependent on gonadotrophic hormones 

( 4 I ) • 

The stimulating effect of FSH on LH responsiveness of Leydig 

cells and the inhibitory effect of estradiol on the effect of 

FSH could reflect that these hormones are involved in a 

mechanism which controls the response to LH in the Leydig 

cell of the immature rat. 
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