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LIST OF SYMBOLS 
USED IN THE DESCRIPTION OF THE EXPERIMENTAL RESULTS 

2-AFC 
to 

two-alternative forced choice procedure. 
time between the end of the masker pulse and 
the onset of the test-tone pulse in forward 
masking (see Fig. 3.1). 
frequency of the lower component in two-tone 
stimuli and frequency of the masker in the 
pure-tone masking and pulsation-threshold 
experiments. 
level of the lower-frequency component and 
level of the masker. The levels are expres­
sed as ~4cibels sound pressure level (dB SPL) 
re 2.10 ~b, or relative to the absolute 
threshold of the corresponding stimulus (dB 
SL). 
frequency of the higher component in the 
two-tone stimuli. 
frequency of the test tone in simultaneous 
masking, forward masking, pulsation-threshold 
and onset-threshold experiments. 
level of the test tone. 
frequency of the (third) interfering tone in 
some of the pitch experiments with octave 
complexes. 
level of this interfering tone. 
frequency of the stimulus in the experiments 
in which a comparison is made between for­
ward masking, onset threshold, and pulsation 
threshold. 
level of this stimulus tone. 
phase of the lower-frequency component as 
used in the presentation of the data. See 
Chapter 3. 
phase of the higher-frequency component in 
the complex waveform at the entrance to the 
external auditory meatus. The relation be­
tween ¢2a and ¢1 is given in Fig. 3.3. 



¢max(¢min) 

ftrnax(ftmin) 

2 

phase of the higher-frequency component in 
the complex waveform of the movement of the 
basilar membrane at the stapes. A positive 
value of the signal corresponds to a deflec­
tion towards the scala vastibuli. 
phase ¢1 at which the loudness of the higher­
frequency component is maximum (minimum). 
maximum (minimum) value of ft at which the 
phase has any effect on the pulsation thres­
hold for octave complexes. 

LIST OF SYMBOLS 
USED IN THE DESCRIPTION OF THE MODEL 

vl 

v2 

v 
vuc(V ) 
vul u2 

p 

¢2(¢1) 

¢2max(¢2min) 

~¢2 

f 
p 

input voltage for the lower-frequency com­
ponent (f ) . 
input voltage for the higher-frequency com­
ponent (f ) . 
output voitage for the two-tone signals. 
output voltage for component I (II). 
output voltage corresponding to the plateau 
in the dynamic characteristic for component 
I. 
phase of the higher- (lower-) frequency com­
ponent in the input signal of the model. 
phase of component II for which the output 
for the complex is maximum (minimum) . 
difference in phase of component II at the 
two entrances of the model. 
delay of the output signal of the second 
£lock with respect to that of the first one. 

T 
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CHAPTER l 

GENERAL INTRODUCTION 

1.1. Subject of the present investigations 

It is well known that two simultaneously presented pure 

tones give rise to a sensation known as nbeats" when their 

frequency ratio is slightly different from m:n, where m and 

n are small integers; the combinations 400/802 Hz and 

400/603 Hz are examples of tone pairs which will give rise 

to beats. The beats are perceived as a periodic fluctuation 

in loudness, timbre, pitch or combinations of these. Al­

though the phenomenon of beats has been known for a long 

time, relatively few quantitative data on their perceptual 

characteristics are available in the literature. 

Stimuli consisting of two components with a frequency 

ratio slightly different from m:n can be considered as 

being exactly harmonic, while one component has a contin­

uously running phase. The use of components with a fre­

quency ratio of exactly m:n makes it possible to study the 

perceptual phenomena for particular phase relation's separ­

ately. Stimuli with particular phase relations between the 

components are sometimes called 11 frozen beats". The pre­

sent investigation is focussed on the interaction in two­

tone stimuli in which the tones have a frequency ratio 1:2, 

which will be called 11 two-tone octave complexes 11 from now 

on. One of the main aims of the investigation is to quant­

ify the perceptual changes due to variation of the phase. 

The above mentioned two-tone stimuli represent a special 

class of stimuli. Many investigations of the interaction 

between pure tones have been carried out for frequency dif­

ferences less than about a third of an octave (which corres-
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pond to the "critical band"). However, the frequency dif­

ferences in stimuli consisting of two tones with a frequency 

ratio of rn:n are usually larger than the critical bandwidth. 

According to the present state of our knowledge, there 

are three main ways in which stimuli are processed in the 

auditory system. The first of these is frequency analysis. 

This may be illustrated as follows. A pure-tone stimulus 

gives rise to a travelling wave on the basilar membrane in 

the inner ear. The envelope of this wave has a roughly 

triangular form, sloping steeply at the apical end and shal­

lowly at the basal end. This envelope is called the "mech­

anical stimulation pattern''. The hair cells along the bas­

ilar membrane are connected to single nerve fibres. At each 

place on the membrane, there is a certain relation between 

the amplitude of the mechanical wave and the number of 

spikes per second in the neuron. As a consequence a pattern 

called the ''activity pattern'' or ''excitation pattern'' is 

generated in the neural system. Now the frequency analysis 

implies tha-t a given position on the basilar membrane and a 

given nerve fibre have maximum sensitivity for stimulation 

at a certain frequency. Although the frequency selective 

action of the auditory system is well established, a lack 

of knowledge still exists as to the relation between the 

mechanical frequency selectivity on the basilar membrane 

and the frequency selectivity found in single neural units. 

The second main mode of processing is time-structure 

detection. Many electrophysiological investigations have 

revealed that, up to a certain frequency, the moments at 

which action potentials in a single neural unit occur are 

related to the temporal structure of the stimulus. 

The third main mode of processing is that of lateral 

suppression or contrast enhancement. A stimulus, e.g. a 

pure tone, presented to the ear has a certain masking ef­

fectiveness which can be considered as a measure of its 
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"internal strength". The addition of a second pure tone to 

the stimulus can lead to a decrease in this masking effect­

iveness. Although more energy is applied, the perceived 

''strength'' of the first tone decreases; the tone is ''sup­

pressed", This phenomenon is observed when the test tone 

is presented non-simultaneously with the masker, e.g. dur­

ing the remaining state of adaptation after the masker is 

switched off. The "suppression" also manifests itself as a 

decrease in the loudness of a tone due to the presence of 

another one. This effect is also responsible for contrast 

enhancement in a stimulus with various frequency components. 

The phenomenon has been extensively studied by Houtgast 

(1972, 1973, 1974a and 1974b). 

Frequency analysis and time-structure detection have 

been used in the literature to explain the phase effects 

observed in two-t\)ne octave complexes. One explanation re-

lates these effects to interference of a second harmonic of 

the lower-frequency component, generated in the ear due to 

distortion, with the higher-frequency component actually 

presented. The other main explanation describes the phase 

effects as due to variations in the temporal pattern of the 

stimulus. No general agreement as to the relative merits 

of these two explanations has been reached in the liter-

ature. 

The second main aim of the present investigations is to 

look for new arguments for or against the above mentioned 

explanations. The lateral-suppression effect will be intro­

duced as a new element in the discussion. The subject of 

investigation is discussed further in section 2.5, after 

the survey of the relevant literature. 

1.2. Main lines of auditory research 

Two main methods in auditory research are psychophysics 

and electrophysiology. In psychophysics data are collected 
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by people who listen to selected sounds and assess them. 

This approach has the advantage that the auditory system is 

regarded as a whole. However, it often has the drawback 

that one cannot be certain which part of the system is spec­

ifically involved in a given phenomenon. Conclusions on 

this point can only be drawn by making assumptions and test­

ing them. 

In electrophysiological experiments data are collected 

from one element in the auditory system (often in an exper­

imental animal), e.g. a neuron or a group of neurons; the 

function of the measured properties in the whole system is 

often unknown. An example is the timing of the signals 

that pass along the neural pathway. In general both met­

hods are needed to gain a complete insight into the oper­

ation of the auditory system. 

The present study is based on psychophysical measure-

ments. In general, sounds of a given duration have three 

perceptual attributes. First, they can be located on a 

tonal scale: one stimulus may sound higher than another 

one. This attribute is called "pitch". The second charac­

teristic is a location on a 11 loudness scale". Thirdly, two 

sounds which have the same pitch and loudness, may still 

have a different "tirnbre". It is rather difficult to define 

an absolute measure of these sensations. The attributes 

"pitch" and "loudnessn are quantified usually by a matching 

procedure, in which the stimulus is presented in alternation 

with a pure tone called the "test tone" or "matching tone". 

The pitch of the stimulus is then expressed as the frequency 

of the matching tone which gives the same pitch as that of 

the stimulus. Similarly, the loudness of the stimulus is 

expressed as the level of the matching tone which gives the 

same loudness as the stimulus. The procedure becomes more 

difficult when the pitch or the loudness of a component of 

a complex signal has to be matched. The question of how to 
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quantify timbre is more difficult to answer, since timbre 

is a multidimensional quantity. However, the measurement 

of timbre is not involved in our investigations. 

Another way of quantifying the output of the auditory 

system is by means of a "threshold procedure", as used e.g. 

in masking experiments. Here a relatively high-level pure 

tone (the "masker") and a second tone called the "maskee" 

or ''test tone" are presented simultaneously, and the level 

of the test tone is adjusted until this tone is just in-

audible. The level obtained is called the "masked thres-

hold of detectabili ty". Here the notion "threshold" irn-

plies the detection of the boundary between audibility and 

inaudibility. 

It was assumed for a long time that the results of 

masking experiments reflected some kind of internal excit­

ation in the auditory system. Close comparison of electro­

physiological and psychophysical data over the past decade 

has activated the development of a new psychophysical met­

hod, the ''pulsation-threshold method'' (Houtgast, 1972), 

which gives results agreeing closely with those of single­

cell recordings in the peripherical auditory system. The 

pulsation-threshold method is the best psychophysical pro­

cedure for finding some kind of internal representation of 

the auditory stimuli known so far. It has, therefore, been 

widely used in the present investigations. 

The pulsation-threshold method is a "threshold procedure" 

too, though in this case the threshold is one between cont­

inuity and pulsation, not between audibility and inaudib­

ility as in masking experiments. The position of a thres­

hold is always determined according to a certain criterion, 

on the basis of which the observer decides under which con­

ditions the test tone is on one side of the boundary and 

under which conditions on the other. A problem with thres­

hold procedures is that the results for different observers 
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may show systematic differences because different criteria 

are used. This sometimes also holds for the same experiment 

performed by the same observer on different days. Although 

the criterion problem is an important one, it rarely has 

very serious consequences for the reproducibility of the 

results. 

1.3. Survey of the contents of this thesis 

Chapter 2 contains a review of the published experiment­

al data on and explanations of the phase effects in the 

field of two-tone stimuli, followed by a more precise def­

inition of the scope of the present investigations. The 

methods of measurement are discussed in Chapter 3. Chap­

ters 4 and 5 present the results of our experiments on the 

sensations in two-tone octave complexes, in particular on 

the pitch and the loudness of the higher-frequency compon­

ent as functions of level and phase for different frequency 

combinations. Chapters 6-9 are devoted to the considerations 

of how the stimuli are represented "internally" under the 

various phase and level conditions. This involves discus-

sian of the current explanations of phase effects. In 

Chapter 10 we consider the pulsation-threshold method it­

self, to decide whether more than one dynamic system is in-

valved in the results. Finally, Chapter 11 presents a 

model which may describe the phase effects. 

1.4. Terminology 

The lower-frequency component of the two-tone stimuli 

is called component I, its frequency f 1 and its l~vel L1 . 

The higher-frequency component is called component II, its 

frequency £
2 

and its level L
2

. 

decibels sound pressure level 

The levels are expressed as 
-4 (dB SPL) re 2.10 ~b. When 

the level of a stimulus is given relative to the absolute 

threshold of that stimulus, the expression "sensation level" 
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(SL) is used. 

When the masked threshold of component II is determined, 

component I being the masker, we speak of pure-tone masking 

and call component II the test tone. Generally in the pure-

tone masking experiments and in the pulsation-threshold 

experiments the level and the frequency of the masker are 

called L1 and £
1

, respectively, and the level and the fre-

quency of the test tone ft and Lt' respectively. 

of ft is not necessarily equal to 2£
1

. 

The value 

Two pure tones presented simultaneously may give rise 

to combination tones which are frequently called "subject-

ive tones". In contrast to this the two tones presented 

are sometimes called 11 primary tones". 
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PART I 

SUBJECT AND METHOD 

CHAPTER 2 

SURVEY OF PREVIOUS WORK AND MORE DETAILED 
OUTLINE OF THE PRESENT INVESTIGATIONS 

2.1 Introduction 

The present investigations deal with two-tone interact-

ion in octave complexes. Reports of previous investigations 

related to this subject in the literature may be divided in-

to two groups. The first group deals with experiments with 

two-tone stimuli in which the frequency ratio of the compon­

ents is slightly different from rn:n, where m and n are small 

integers and m<n. These "mistuned consonances" or "mistuned 

harmonics" can give rise to audible beats. 

The second group relates to the experiments with two­

tone stimuli in which the frequency ratio of the components 

is exactly m:n, while the phase relation between the cornpon-

ents is adjustable. In this case we will restrict ourselves 

to the condition m=l, since most experiments with phase­

locked components and mfl described in the literature were 

concerned with the perception of either third- or higher­

order combination tones or the pitch of the stimuli. The 

present investigations, however, are mainly concerned with 

the perception of the primary tones themselves (see section 

2.5). For m=l, the phase variation gives rise to alterations 

in timbre, loudness, pitch masked threshold of the higher­

frequency component, and detectability of the complex in the 

presence of a masking noise. The alteration in timbre and 
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loudness can concern either the stimulus as a whole or 

one of its components. 

Naturally, the two groups of investigations mentioned 

above are closely related, since stimuli consisting of two 

slightly mistuned harmonics can be considered as consisting 

of two exactly tuned ones with a continuously running phase. 

Nevertheless, we discuss them separately 1 because this sep­

aration is found throughout the literature. 

Each of the two groups comprises certain types of exp­

eriments, certain presuppositions and certain explanations 

of the experimental results which are relevant for the pre­

sent investigations. 

The experiments in the two groups and their results are 

reviewed and discussed in sections 2.2 and 2.3. The values 

of L1 and L 2 at which the various experiments with octave 

complexes were performed are indicated in Fig. 2.1. The 

figure will be discussed in section 2.3.4. Section 2.4 con-

tains a survey and discussion of the explanations of the 

phase effects found in the literature. In section 2.5, the 

subject of investigation is formulated more precisely on the 

basis of the above considerations, while finally the main 

line of our investigations is indicated in section 2.6. 

2.2. Previous experiments on beats of mistuned harmonics 

The beats evoked by two simultaneously presented pure 

tones with a frequency ratio slightly different from m:n 

where m and n are small integers and m<n is a well known 

phenomenon. The number of beats per second (A) is given 

the formula A=mf 2-nf1 , published by Ohm in 1839. Plomp 

(1967) has written an extensive historical review of the 

discovery of this phenomenon and subsequent studies. 

Various authors describe the beats evoked by stimuli 

by 

with m=l in different ways. Helmholtz (1856) characterized 

it as a variation in timbre. KOnig (1881) described it as 
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a variation in the loudness of component I. Bosanquet (1879, 

1881), Stumpf (1896) and Schouten (1938; see section 2.3) 

distinguished between a loudness variation of component I 

and a loudness variation of component II, both at the same 

rate. These authors carried out their experiments with 

stimuli in which the frequency of the higher component was 

600 Hz or less. 

Wegel and Lane (1924) found that the beats heard in 

stimuli with m=l were most prominent for a certain value of 

L2 relative to L1 . For n=2 and £ 1=1200 Hz this was the case 

when L2=L1 -lO dB. The level conditions for "best beats" 

were later estimated by Wever (1929), Fletcher (1930), von 

B§k§sy (1934), Cotton (1935), Moe (1942), Egan and Klumpp 

(1951), Opheim and Flottorp (1955), and Lawrence and Yantis 

(1956a, 1956b) for various values of f 1 and L1 . They all 

found "best beats" when L2 was 10 to 20 dB lower than L1 for 

n=2. The precise perceptual nature of the beats was not 

closely investigated by these workers. 

Plomp (1967) studied the beats heard in two-tone com­

binations with m=l in relation to those in stimuli with m~l. 

Different values of £ 1 (125 Hz, 250 Hz, 500 Hz, 1000 Hz and 

2000 Hz) and L1 {between 60 and 100 dB SPL) were considered. 

The value of L2 found for ''best beats'' was plotted as a 
n . h function of the ratio ffi wlt Ll and fl as parameters. The 

resulting graphs show curves which slope downwards with in­

creasing f 2 . The experimental points for m~l fit the curves 

as well as those points for m=l. For n=2, the beats were 

most pronounced when L 2 was 10 dB lower than L1 . The range 

of values of m and n for which best beats were found became 

narrower with increasing f 1 . At L1=100 dB SPL and £ 1=125 Hz 

best beats were found at 25 different ratios m:n, the largest 

one being 1:12; while at £ 1=2000 Hz the maximum ratio at 

which best beats could be heard was 1:2. 
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2.3. Previous data on phase effects 

2.3.1. Effect of phase on loudness~ timbre and 
detectabilit 

Chapin and Firestone (1934) used the octave complex 

108/216 Hz with L
1

=104 dB SPL as the stimulus. They found 

that the loudness of this complex was phase dependent for 

certain values of L
2

, with a maximum variation of 12 dB at 

L 2 ~87 dB SPL. 

Trimmer and Firestone (1937) carried out comparable ex­

periments with stimuli in which the components had a fre­

quency ratio of l:n with £
1

=100 Hz and L
1

=104 dB SPL. 

Both Chapin and Firestone and Trimmer and Firestone ob­

served variations in timbre (which they called "roughness") 

as well as loudness variations when the phase was varied. 

Trimmer and Firestone minimized the loudness and the rough­

ness of the stimuli separately by adjusting L
2 

and the 

phase. With the octave complex 100/200 Hz minimum rough­

ness was reached at L2=85 dB SPL and minimum loudness at 

L2=82 dB SPL. At these values of L
2

, the loudness of the 

stimulus varied about 5 dB as a function of the phase. 

Schouten (1938) performed experiments with a frequency 

combination 200/400 Hz with L
1

=105 dB SPL. He found a 

"very marked" effect of phase on tone quality when L2 was 

about 25 dB below L1 . 

Craig and Jeffress ( 1960, 1962) studied the detect­

ability of the difference between the octave complex. 

p(t)~A 1 sin(2Tif 1 t) + A
2

sin(2TI2f
1
t+¢) 

which they called the "basic-phase condition", and the in­

verse stimulus. 

p(t)~A 1 sin(2Tif 1 t) + A
2

sin(2TI2f 1 t+¢+180°) 

which they called the "reversed-phase condition". 

The value of f
1 

in their experiments was 250 Hz, the 

variables being the phase ¢, L1 and L2 • The difference 

studied could be anything, either the loudness, the timbre 
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or the pitch. On the basis of their results 1 they divided 

the phase effects observed into two classes: for L
1

<75 dB 

SPL independent of the value of L2 , and for L
1

>75 dB SPL 

and L
2

>40 dB SPL. In the former class the difference be­

tween the stimuli was assessed on the basis of timbre and 

pitch, while in the latter class the assessments were made 

on the basis of loudness differences. 

Similar experiments were performed by Raiford and 

Schubert (1971) with a method developed by Nixon, Raiford 

and Schubert (1970). The stimulus here was the frequency 

combination 250/500 Hz with L
1

=60 and L
2

=SO dB SPL. The 

cosine sum of the frequency components was used as a stand­

ard stimulus, and the subjects had to decide whether a sec­

ond stimulus with a different phase relation differed or not. 

The scores obtained were found to depend on the phase dif­

ference used, with a broad maximum for phase differences 

round 180°. Further experiments suggested that it does not 

matter what the phase relation is in the standard stimulus. 

The latter result was confirmed by Hall and Schroeder (1972), 

who used the combinations 100/200 Hz, 200/400 Hz and 400/800 

Hz as stimuli. They studied the perceptual differences be­

tween the stimuli under the various phase conditions by the 

method of triadic comparison. The level conditions were 

L2=L 1 t L
2

=L 1-6 dB and L
2

=L 1-12 dB respectively, with L1=50 

dB SPL. 

Fricke (1968) studied phase effects from the point of 

view of signal detection theory (Green, 1958). His fre­

quency combination was 525/1050 Hz, with L1 and L2 both 

65 dB SPL. After white noise had been added, the detect­

ability of the complex was estimated as a function of the 

phase for different signal-to-noise ratios near the masked 

threshold. A four'-alternative forced-choice procedure was 

used. The number of correct responses was found to vary 

from 25% to 100%, i.e. the whole range of values covered by 

the psychometric curve. 
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2.3.2. Effect of phase on the masked threshold 
o-L" component II 

Newman, Stevens and Davis (1937) were the first investi­

gators to determine the masked threshold of detectability 

of component II qf an octave cornplex 1 with component I as 

masker. Their stimulus was the combination 370/740 Hz. 

They measured the masked threshold as a function of L1 . 

The resulting curve had a slope of about 2 for L1 between 

65 and 80 dB SL. A value of L1 corresponding to 70 dB SL 

gave a masked threshold corresponding to 22 dB SL. 

The masked threshold as a function of phase was also 

studied by Clack (1967, 1968), Clack and Bess (1969), Clack, 

Erdreich and Knighton (1972), Clack (1975), Nelson and 

Bilger (1974) and De Boer and Bouwrneester (1975) e Clack 

(1967, 1968) and Clack et al (1972) used the frequency com­

bination 1000/2000 Hz as stimulus. The maximum phase effect 

was 15 dB. Nelson and Bilger (1974) used the combinations 

250/500 HZ, 500/1000 Hz, 1000/2000 Hz and 2000/4000 Hz. 

These authors reported a maximum effect of 12 dB for the 

higher-frequency combinations and of 33 dB for the lowest­

frequency one. De Boer and Bouwmeester (1975) performed 

experiments with the combination 1000/2000 Hz. Their result 

shows a maximum effect of nearly 20 dB. All authors per­

formed the experiments at different values of L1 . For the 

frequency combinations around 1000/2000 Hz and beyond, rep­

resentative values of L2 at the masked threshold, averaged 

over the phase conditions are 30 dB SPL for L1=70 dB SPL, 

50 dB SPL for L1=80 dB SPL and 70 dB SPL for L1=90 dB SPL. 

At lower frequencies, the values of L2 found are generally 

lower than the above. 

2.3.3. Effect of vhase on pitch 

Very few data on pitch variations as a function of the 

phase in two-tone stimuli with a frequency ratio of the com-
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ponents of l:n are available. Stumpf (1910) reported per­

iodic variations of the pitch for frequency ratios slightly 

different from 1:3 and 1:5. Craig and Jeffress (1962) and 

Clack (1968) mentioned that their subjects sometimes heard 

pitch effects when the phase was varied. 

Plornp (1967) matched the pitch of the higher-frequency 

component as a function of the phase for a stimulus with a 

frequency ratio of 1:3 1 with £
1

=200 Hz. The level condit­

ions were: L1=100 dB SPL, and L2 adjusted to the value for 

which the phase effects were most pronounced ("best beats" 

condition)~ He found a pitch shift of maximally 13% up­

wards. Plomp called this phenomenon the "sweep-tone effect" .. 

The curve representing the dependence of pitch on the phase 

of component II has the shape of a decreasing sawtooth. 

A phase-dependent pitch effect in octave complexes was 

found by Terhardt and Fastl (1971) for the frequency com­

bination 200/400 Hz. In their experiment the value of L
1 

was 70 dB SPL, while the value of L
2 

was adjusted to 10 dB 

SL for each phase condition. The maximum pitch shift was 

11% upwards. 

2.3.4. Discussion 

The ranges of L
1 

and L
2 

at which the various experiments 

discussed above were performed are shown in Fig. 2.1. The 

initials in the graphs indicate the areas studied by the 

different authors. The highest frequency combination pre­

sented is 500/1000 Hz, in order to avoid a too large var­

iation in frequency combination among the experimental mat­

erial considered. Two main areas of interest~ may be dis­

tinguished. The first one (shaded in the figure) in which 

ubest beats" could be found, loudness and roughness could 

be minimized and phase differences wer~ detectable. The 

second area (bounded by the two broken lines) is that in 

which the phase-dependent masked threshold can be determined. 
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Unfortunately, the phase effects do not give rise to a 

uniform sensation in each of these two areas. For example, 

Trimmer and Firestone (1937) described the phase effects in 

the "best beats" area as variations in loudness and timbre, 

while Craig and Jeffress (1962) heard only variations in 

loudness in the same region. In the other region, Terhardt 

and Fastl (1971) found a phase-dependent pitch shift for 

L
2

=10 dB SPL (L
1

=70 dB SPL), while Nelson and Bilger (1974) 

found no such shift and Craig and Jeffress (1962) reported 

that the detection was based on timbre and pitch differen­

ces. We may thus conclude that the sensations observed in 

the regions which have been investigated so far are very 

complex. On the other hand, very few studies have been 

performed in the area between the two mentioned above. 

This region, therefore, would seem to be a promising one 

for new investigations. 

2.4. Explanations proposed for the phase effects 

2.4.1. Introduction 

The two main explanations proposed for the origin of 

the phase effects (including beats) for the frequency ratio 

l:n are as follows: 

(1) Component I of the complex, if presented at a suffic­

iently high level, gives rise to subjective ("aural") harm­

onics generated by distortion in the mechanical/hydraulic 

part of the auditory system (the middle-ear system or the 

cochlea) . The phase effects are supposed to be due to in­

terference between the aural harmonic and the highest fre­

quency component of the stimulus. 

(2) The phase effects are related to variations in the wave­

form of the superimposed sinusoidal components. 

A third explanation found in literature relates the 

phase effects to interference between a combination tone 
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("£
2
-£

1
" for n=2) and component I of the stimulus. 

This explanation will not be considered here, since we 

are mainly interested in the perception of the higher­

frequency component (see section 2.5). 

Supporters of both hypotheses can be found in the liter-

ature. Plornp (1967) has given an extensive review of the 

various points of view expressed. 

2.4.2. Aural harmonics 

The idea that aural harmonics might cause phase effects 

was first suggested by MUller (1871) and Hermann (1896) 

(see Plornp, 1967). Many investigators, already mentioned 

in section 2.2, used the method of "best beats" for fre­

quency ratios of the components slightly different from l:n 

to estimate the levels of the aural harmonics - which were 

thought to correspond to the levels of the higher-frequency 

component for which the beats were most pronounced. The 

values of L2 found in this way were very high, viz. 10 to 

20 dB below L
1

. All investigators regarded the presence of 

the beats and the possibility of adjusting the experimental 

conditions so as to give 11 best beats" as demonstrations of 

the existence of aural harmonics. 

Plomp (1967) performed experiments in order to deter­

mine whether the beats under the "best-beats" conditions 

are actually caused by aural harmonics. His reasoning was 

based on the monotonic shape of the curve representing the 

value of L
2 

for best beats as a function of ~ for a given 

value of L
1

. 

As we have already mentioned in section 2.2, the values 

for m~l fitted this curve as well as those for m#1. Plomp 

added high-pass noise to a stimulus with m~1 in order to 

mask the supposed aural harmonics. 

ible so they could not be caused by 

harmonic of component m and the mth 

The beats remained 

interaction of the 

aud­
th 

n 

harmonic of component n. 
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Plomp extrapolated this result to the case m=l. He conclud-

ed that, at lower frequencies, the beats were not caused 

solely by aural harmonics. The extrapolation procedure 

failed at higher frequencies because e.g~ at £1=2000 Hz 

beats could only be heard for n=2 and m=l. In these cases, 

a possible r6le of aural harmonics could not be excluded. 

Furthermore, Plomp argued that the sweep-tone effect in the 

pitch is difficult to explain in terms of nonlinear dis­

tortion. 

Plomp {1967) also checked whether aural harmonics could 

be heard in a pure-tone stimulus, and found that this was 

sometimes but by no means always - the case. Moreover, 

there was no relation between this ability and the ability 

to hear beats. 

A second method often used to detect subjective harmon­

ics is the steady-tone phase-effect method (see section 

2.3.1). The value of L
2 

at which the loudness of the com­

plex is minimum under specific phase conditions has been 

assumed to correspond to the level of the aural harmonic~ 

This interpretation was complicated by the fact that not 

only loudness but also timbre ("roughness") varies with the 

phase. For this reason Trimmer and Firestone (1937) con­

cluded that component II of the complex cannot be considered 

as an independent "probe" tone. They considered it "point­

less to try to use the phase effect as a probe method for 

studying the phases and amplitudes of the subjective harm­

onics of the fundamental". Comparable reserve can be found 

in the paper by Schouten (1938). 

The aural-harmonics explanation was also supported by 

Clack and co-workers (see section 2.3.2), Schubert (1969) 

and Erdreich and Clack (1972), on the basis of the results 

of their experiments on the phase dependence of the masked 

threshold of component II for the frequency combination 

1000/2000 Hz. The authors examined whether vector summation 
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of the supposed aural second harmonic and component II ag-

reed with their results. The calculated levels of the as-

sumed aural harmonic, plotted as a function of L
1

, gave a 

straight line with a slope of 2~ A lower-frequency com­

ponent with L
1

=70 dB SPL gave rise to a supposed aural sec­

ond harmonic with a level corresponding to 20 dB SPL. 

Nelson and Bilger (1974) found that this slope was frequen­

cy-dependent; for example, at £
1

=250 Hz a slope of l was 

found. 

De Boer and Bouwmeester (1975) applied the vector­

summation model to results obtained with the same frequen­

cy combination as that used by Clack and co-workers. The 

levels calculated were similar to those of Clack and co-

workers. De Boer and Bouwmeester also calculated the 

phases of the assumed aural harmonics which, however, var­

ied widely from observer to observer. No level dependence 

was found. 

2.4.3. The waveform hypothesis and other explanations 

De Morgan (1864) was probably the first to prove that 

the rate at which the waveform obtained by superimposing 

two sine waves with a frequency ratio slightly different 

from m:n varies is in agreement with the formula of Ohm 

(1839; see Plomp, 1967). The waveform hypothesis was fur-

ther adopted by KOnig (1876), Lottermoser (1937), Meyer 

(1949, 1954, 1957), Chocholle and Legouix (1957a, 1957b) 

and Plomp (1967). 

These authors' preference for the waveform hypothesis 

was generally based on rejection of the aural-harmonics 

explanation on the basis of two arguments. Firstly, it was 

claimed that if the aural harmonics were as strong as sug­

gested by the "best-beats" method, they should be audible 

in a pure tone. Secondly, experiments with three harmonic-

ally related components showed that when the components 
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were slightly rnistuned, beats could be heard even at very 

low levels (Thomson, 1878; Ter Kuile, 1902) r which makes it 

improbable that these are caused by nonlinear distortion. 

The experimental evidence against the aural-harmonics 

explanation presented by Plomp (1967) has already been des-

cribed in section 2.4.1. Plomp suggested that the beating 

sensation might be caused by slow variations in the time 

pattern of the nerve impulses evoked by the stimulus. The 

sweep-tone effect might be understood from the point of 

view of the "time theory", in which the reciprocals of the 

time intervals between successive prominent peaks in the 

waveform are thought to represent the pitch (Schouten et 

al., 1962; Ritsrna, 1967). Plomp considered the time pat­

tern of the waveform of a stimulus with f
1
:f

2 
= l:n as 

consisting mainly of two pulse trains, with a time delay 

between the two that varies with the phase. The reciprocal 

of this time delay varies like a sawtooth as a function of 

phase. 

Craig and Jeffress (1962) took a reserved stand upon 

both the aural harmonics and the waveform hypothesis. They 

proposed a third possible explanation for the phase effects, 

according to which these are thought to be caused by a shift 

in the locus of vibration on the basilar membrane. This 

hypothesis was based on ideas of von B§k§sy (1957) origin­

ating from his experiments with models of the cochlea. 

2.4.4. Discussion 

Our survey of the literature has shown that neither the 

aural-harmonics hypothesis nor the waveform hypothesis has 

achieved general acceptance as an explanation of the phase 

effects. We feel that one of the main reasons why a gen­

erally acceptable model has not been developed so far is 

the lack of attention to the perceptual nature of the beats. 

We need to be much better aware of which perceptual attrib-
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utes of the tonal complex actually vary when the phase is 

changed. 

A similar objection was made e.g. by Tri~mer and Fire­

stone (1937; see section 2.4.2) 1 who concluded that com­

ponent II of the complex could not be used as an independ­

ent probe tone, because of the differences in timbre in­

volved. 

The study of Plomp (1967; see section 2.4.2) has pro­

vided quite strong evidence against the validity of the 

aural-harmonics hypothesis. The fact that beats remained 

audible even though the presumed aural harmonics had been 

masked, may be regarded as a strong indication that beats 

under ''best beats'' conditions at low frequencies are not 

due to aural harmonics. 

Another crucial point in this connection is whether the 

vector summation model (see section 2.4.2) is applicable, 

i.e. whether the beats are really due to vector summation 

of the aural harmonics and component II of the complex. 

The results of Clack and co-workers and of de Boer and 

Bouwmeester (section 2.3.2) seem to suggest that this model 

is applicable, in view of the good fit of their calculated 

results with the experimental points, and in particular in 

view of the fact that the curve of the level of the pre­

sumed aural harmonic as a function of L1 has a slope of 2r 

as predicted. On the other hand, Nelson and Bilger (1974) 

considered the fact that the magnitude of the effect of 

phase on the masked threshold, and the slope of the masked 

threshold-L 1 curve, were frequency-dependent was an argu­

ment against the assumption of aural harmonics produced by 

distortion in the mechanical/hydraulic part of the ear. 

As we have already mentioned, there is little direct 

experimental evidence for the waveform hypothesis. Most of 

the authors who have expressed themselves in favour of this 

hypothesis have done so because the aural-harmonics hypo-
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thesis had 1 in their opinion 1 been discredited by evidence 

such as that given above. 

It will thus be clear that there is an urgent need for 

experimental evidence that will help us to make a definite 

choice between the various alternative explanations. The 

main points which require attention are the perceptual 

nature of the phase effects themselves, whether component 

II can be considered as an independent probe tone and whet­

her the vector-summation model is applicable. 

2.5. The scope of the present investigations 

We concluded in section 2.3.4 that very few experiment­

al data are available in the intermediate region below that 

for best beats and above that for the masked threshold of 

component II (see fig. 2.1). Preliminary listening reveal-

ed that the phase effects in this region are relatively 

simple from a perceptual view, since only the loudness and 

pitch of the higher-frequency component v1ere involved. The 

sensations in this region were, therefore, chosen as our 

primary field of investigation. 

We may note that at higher values of L 1 , this inter­

mediate region becomes narrower because the masked-threshold 

curves become steeper than the "best beats" curves. This 

effect is still more distinct for higher values of £1 , as 

shown by the results of Clack et al. (1972). However, the 

masked threshold will only play an incidental part in our 

investigations. 

There is reason to expect that study of the pitch and 

loudness effects near the masked threshold may help us to 

determine whether component II may be considered as an in­

dependent probe tone, and whether the vector-summation model 

is applicable under these conditions. Finally, we hope to 

find direct evidence for or against the waveform hypothesis. 

Summarizing, we hope to provide an answer to the follow-
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ing four questions with our investigations: 

(1} What are the sensations of the stimulus components in 

the field of investigation chosen? 

( 2) li-Jay the higher-frequency component of the camp lex be 

considered as an independent probe tone? 

(3) Is the vector-summation model applicable~ i.e. do the 

calculated levels of the aural harmonics really correspond 

to components present in the ear? 

(4) Is there experimental evidence for the waveform explan­

ation? 

2.6. Outline of the present investigations 

(1) The first topic of investigation is formed by the phase 

effects in the perception of octave complexes for values of 

L
1 

beyond 60 to 70 dB SPL and L
2 

at least 20 dB below L1 . 

Special attention will be paid to possible pitch effects in 

this area. The effects observed with octave complexes are 

then set in a framework of interaction phenomena in two­

tone stimuli in general, with or without a phase relation 

between the components. 

(2) Extensive pulsation-threshold experiments will be des­

cribed. As we have already mentioned in Chapter 1 and will 

discuss in greater detail in Chapter 3 the pulsation thres­

hold reflects some kind of internal representation of the 

stimuli. This method may, therefore, help us to study how 

the stimuli are processed. We are interested in the test­

tone frequency region involved in the interaction, the dyn­

amic behaviour in that region, nonlinearities and possible 

phase relations. In addition, the questions formulated in 

section 2.5 will be discussed in Chapters 8 and 9. 

(3) The contents of Chapter 10 forms a preparation to a 

model to be presented in Chapter 11. We shall consider the 

dynamic behaviour of the pulsation-threshold results in 

relation to the results of forward-masking experiments and 
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discuss the implications of this comparison for the inter­

pretation of the phase effects. The model to be presented 

in Chapter 11 may be regarded as a first step in seeking for 

an alternative to the aural-harmonics and waveform hypo­

thesis. 
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CHAPTER 3 

METHODS, PROCEDURES AND APPARATUS 

3.1. Methods and procedures 

3.1.1. Pitch exveriments 

In the pitch experiments component II was presented al­

ternately with a pure-tone stimulus in the sequence indic­

ated in Fig. 3.la. The observer adjusted the pure tone in 

frequency until component II and the pure-tone stimulus had 

the same pitch. This adjustment was performed by turning a 

knob, starting from an arbitrary initial value of the fre­

quency. Before each adjustment the level of the pure-tone 

stimulus was adjusted so that the loudness of this stimulus 

was roughly equal to that of component II. 

The duration of presentation of component II varied 

from 400 Hz for the lowest frequencies investigated to 200 

ms for the highest ones. Component II was presented with a 

shorter duration than component I, to facilitate the recog­

nition. The pure-tone stimulus which was adjusted in fre­

quency is sometimes called the "matching tone". The match­

ing tone had the same duration as component II. The pitch 
f -f 

is expressed in relative terms by the ratio m 2, where fm 

is the adjusted frequency of the matching tone~2 
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3.1.2. Loudness experiments 

The same stimulus configuration as for the pitch exper­

iment was used to match the loudness of component II (Fig# 

3.l.a). The observer adjusted the pure-tone stimulus in 

level until it had the same loudness as component II. This 

adjustment was again performed by turning ~ knob, starting 

from an arbitrary initial level. Before each adjustment 

the pitch of the matching tone was made roughly equal to 

that of component II. The loudness of component II is exp­

ressed by the level of the matching tone. 

3.1.3. Masking-level measurements 

In measurements of the masking level, the lowest level 

of white noise needed to mask a given component of a complex 

sound is taken as a measure of the subjective strength of 

the latter. A linear relation exists between the level of 

a pure-tone stimulus and the above mentioned noise level, 

apart from some departure from linearity near the absolute 

threshold (Hawkins and Stevens, 1950). In the present exp­

eriments, the method was used to measure the strength of 

component II of octave complexes. The subjects determined 

the white-noise masking level in a two-alternative forced­

choice (2-AFC) procedure. The configuration of the stimuli 

is shown in Fig. 3.l.b. Each trial was preceded by a pure­

tone pulse that acted as a warning signal, the pitch and 

the loudness of which were roughly equal to those of com­

ponent II. Two points of the psychometric curve were deter­

mined by adjusting the noise level, and the noise level cor­

responding to 75% correct responses was obtained by inter­

polation. This value was called the "white-noise masking 

level". This procedure was not followed under those phase 

conditions where component II was near the masked threshold. 

In these cases the detectability of the signal was measured 
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in the absence of the noise, and the psychometric curve for 

a pure tone of frequency £
2 

was used to transform the per­

centage detectability into decibels with respect to the ab­

solute threshold, expressed in terms of the white-noise 

masking level. This threshold was defined with the aid of 

the Hawkins and Stevens function just mentioned. The linear 

part of this curve was extrapolated until it cut the level 

corresponding to the absolute threshold of the tone. The 

white-noise masking level corresponding to this point was 

called the absolute threshold in terms of the masking level. 

3.1.4. Simuitaneous-maskina experiments 

In the simultaneous-masking procedure the masker and 

the test tone are presented simultaneously. The sequence 

of presentation we used is indicated in Fig. 3.l.c. The 

simultaneous-masked threshold of the test tone was defined 

as the highest level of this tone for which the observer 

could not decide whether the test tone was present or not. 

The experiments were performed by an adjustment procedure. 

In our experiments, component I was used as masker and com-

ponent II as test tone. 

"pure-tone masking". 

This type of experiment is called 

3.1.5. Forward-masking exveriments 

The forward-masking method is a non-simultaneous masking 

procedure_ in which the test tone is affected by the masker 

shortly after the termination of the latter. One makes use 

of the residual adaptation left after the masker is switched 

off. The temporal stimulus configuration is given in Fig. 

3.l.d, The forward-masked threshold of the test tone was 

defined as the highest level for which it was not possible 

to decide whether the test tone was present or not. Most 

of the experiments were performed by a 2-AFC procedure, a 

few by an adjustment procedure. 
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3.1.6. Pulsation-threshold experiments 

In the pulsation-threshold method the stimulus and the 

test tone are presented alternately. 

sentation is indicated in Fig. 3.l.e. 

The sequence of pre­

The pulsation thres-

hold of a test tone was obtained by adjusting its level to 

the highest value at which the test tone appeared to be con-

tinuously present. Because of the alternating presentation 

of stimulus and test tone, the pulsation-threshold method 

is often considered as a non-simultaneous masking procedure 

(see e.g. Houtgast, 1973). 

3.2. Discussion of the masking methods 

Masking experiments are used to study the internal rep­

resentation of sounds (see Chapter 1). As we mentioned 

above, there are two types of masking methods, simultaneous 

masking and non-simultaneous masking. The simultaneous met-

hod has 

2). The 

Houtgast 

bee~ used most frequently in the literature (Chapter 

pulsation-threshold method, introduced recently by 

(1972)*, is not really a masking method at all, as 

the test tone remains audible below the 11 thresholdn. 

Houtgast sometimes called the pulsation threshold of the 

test tone the masking effectiveness of the stimulus in the 

frequency region of the test tone. In view of the analogy 

with simultaneous masking we shall continue to speak of 

"masker" and "test tone" even when the pulsation-threshold 

method is being applied. 

The second non-simultaneous procedure, forward masking, 

makes use of the residual adaptation left after the masker 

is switched off. The pulsation-threshold methods and for-

ward masking lead to very comparable results. We shall 

return to this point in Chapter 10. 

XThis method is based on the 11 continuity effect11 discovered by Thurlow 
(1957). 
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Houtgast (1973) made an extensive comparison of the sim­

ultaneous and non-simultaneous procedures. The results ob­

tained with the non-simultaneous procedures revealed a 

specifically nonlinear phenomenon. Under these conditions, 

the masking evoked by a pure tone could be reduced by adding 

other sounds to the stimulus. The phenomenon has been cal­

led 11 two-tone suppre~sion" or "two-tone inhibition", The 

same phenomenon has been found in the results of single­

cell recordings in the auditory nerve (Kiang et al.,l965 

and Sachs and Kiang, 1968). The phenomenon of suppression 

has never been found with the simultaneous-masking proced­

ure. This has been interpreted as due to the fact that the 

test tone passes the same suppressing nonlinear mechanism 

as the stimulus 1 implying that the signal-to-noise ratio 

determining the threshold of detectability is measured at 

a stage prior to the nonlinearity. We 1 therefore/ prefer 

non-simultaneous masking procedures 1 in particular the 

pulsation-threshold method because it is more sensitive 

than the forward-masking procedure. Simultaneous-masking 

experiments have only been performed incidentally/ to permit 

a comparison with data given in the literature. 

3.3. Apparatus 

The block diagram of the apparatus we used in our in­

vestigations is given in Fig. 3.2. Each phase-lock gener­

ator consists of a Hewlett and Packard 3300 A function gen­

erator in combination with a 3302 A trigger phase-lock plug­

in unit. The first generator was triggered directly by an 

oscillator and the second one after division of the frequen­

cy by two. The output signals of the two phase-lock gener­

ators for the stimulus and another oscillator for the test 

tone were filtered (to suppress harmonic distortion) and 

gated. The gates were part of a preset-counter/gate circuit 

which enables the experimenter to adjust the required stim-
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Fig. 3.2, 

Block diagram of the apparatus 

ulus c~nfiguration, including the configuration for the 

forced-choice procedure. 

The signals presented were given a Gaussian envelope, 

having a 10-90% rise/decay time of 20 ms. The duration of 

the signals was defined as the time between the initial and 

final half-height points. The second harmonic distortion of 

the tones presented was below -55 dB. A Grason Stadler TDH 

39 circumaural earphone was used. The observers were seated 

comfortably in an acoustically insulated booth. 

The stimuli were presented monaurally. A total of ten 

observers participated in the experiments. Most experiments 

were performed by at least two observers. 
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3.4. Presentation of the results 

The results are presented throughout this study as a 

function of the phase of component I. A full cycle of the 

different waveforms of the complex then corresponds to a 

phase range from 0° to 180°. 

The phase relation between the acoustic signal and the 

electric signal on the earphone was estimated as a function 

of frequency with a Bruel and Kjaer 4153 artificial ear, 

without the cushion. With the aid of this phase character­

istic the stimulus can be represented by the formula 

f(t)~A 1 sin(2nf 1 t) + A2sin(2n2f 1t+¢ 2a) (1) 

where ¢ 2acorresponds to the phase of component II in the 

acoustic signal as determined with the artificial ear. 

Formula (l) can be re-written in the form 

i(t)~A 1 sin(2nf 1t+¢ 1 a) + A2sin(2n2f 1t) 

where ¢1a=-2¢ 2ar represents the phase of component I in the 

acoustic signal. For the sake of surveyable lay out of the 

diagrams, the results are in fact plotted as a function of 

the phase ¢ 1 of component I where 

¢l~¢la+l5o 
To facilitate the conversion of ¢ 1 into ¢2a, a conversion 

scale is given in Fig. 3.3. 

We shall discuss in Chapter 7 how the phase relation 

between the acoustic and electric signals is influenced 

by the earphone cushion, and how the phase shift in the ear 

canal and the middle ear can be taken into account. 
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Fig. 3.3. 

Conversion scale between ¢
1

, the phase plotted 
in the presentation of the experimental results, 
and the phase ¢

2 
of the higher-frequency com­

ponent in the ac3ustic signal at the entrance 
of the ear canal. See also section 3.4. 
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PART II 

QUANTIFICATION OF THE SENSATIONS 
INVOLVED IN THE PERCEPTION OF PHASE 
EFFECTS IN TWO-TONE OCTAVE COMPLEXES 

CHAPTER 4 

PERCEPTION OF THE HIGHER-FREQUENCY 
COMPONENT IN TWO-TONE OCTAVE COMPLEXES 

4.1. Phase dependence of pitch, masking level and loudness 

The pitch, masking level and loudness of component II 

were measured as a function of phase for the frequency com­

binations 200/400 Hz, 400/800 Hz, 760/1520 Hz and 1600/3200 

Hz. Three observers participated in the experiments. Some 

representative results are shown in Fig. 4.1. and 4.2. Each 

panel in these figures gives the results for a specific 

(L
1

,L
2

) combination. The phase dependence of the masking 

level and the pitch is given in Fig. 4.1. for the four 

(£1 ,£2 ) combinations. The phase depencence of the loudness 

and the pitch is given in the Figs. 4.2.a and 4.2.b for the 

(£
1

,£
2

) combination 200/400 Hz and in the Figs. 4.2.c and d 

for the combination 400/800 Hz. For the 1600/3200 Hz fre­

quency combination, none of the observers could detect a 

pitch shift. 

The shape of the masking-level and loudness curves was 

found to be remarkably constant for a specific (f
1
,f2 ) com­

bination. The parts of the masking-level curves at the low­

phase side of the minimum are generally somewhat flatter 

than those at the high-phase side. This is very pronounced 
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White noise masking level and pitch of component II as a function of the 
phase of component I (¢

1
) for different frequency and level combinations. 

The upper horizontal lines in the graphs represent the masking level of 
component II in the absence of component I. The lower horizontal lines 
represent the absolute threshold of component II. For the definition of 
this threshold in terms of the white-noise masking level we refer to sec­
tion 3.1.3. The experimental points of the masking level near the abs­
olute threshold of component II (indicated by ~ ) were measured as per­
centage detectabilities in the absence of the noise and transformed into 
dB with respect to the absolute threshold expressed in terms of the white­
noise masking level (see section 3.1.3). The pitch of component II is 
plotted in the right hand half of each graph as the freque-ncy ratio of 
the matched p-ure tone and component II. The horizontal lines in the 
pitch graphs correspond to the pitch which would have been obtained in 
the absence of component I. 
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Fig. 4.2. 

Loudness and pitch of component II as a function of the phase of com­
ponent I (¢

1
). The significance of the horizontal lines in the graphs 

is the same as in Fig. 4.1. 

for the 1600/3200 Hz combination. The gap in a number of 

curves for some phase region means that component II was not 

detectable at all. The maximum phase effect found in the 

masking-level and loudness results is 20 dB. 

Under the phase .condition corresponding to maximum aud-

'i 

'" 
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ibility of component II the masking level is generally a few 

decibels higher than that for component II alone. A compar­

able effect for the loudness was not found. In fact, the 

loudness was after lower than that of component II alone 

under these conditions. 

The pitch-phase curve generally resembles a sawtooth 

function. The pitch is roughly equal to that of component 

II alone at the beginning of the sweep and higher at all 

other phases. The maximum pitch shift found is 20%. Under 

some conditions one observer (TE) obtained curves that star­

ted at a lower pitch than that of component II alone {Fig. 

4.2.a). For a specific (£
1

,£
2

) and (L
1

,L
2

) combination 

(400/800 Hz, 82/33 dB SPL), observers TE and PL found amb­

iguity in the pitch of component IIi The results for ob­

server TE are shown in Fig. 4.3. All observers reported 

that component II of the complex sounded like a pure tone, 

but with a pitch depending on the phase. 

The scatter in the masking-level and loudness data dep­

ends on whether the masking level and loudness are close to 

that of component II alone or whether they correspond to 

the absolute threshold of component II. This scatter (def­

ined as twice the standard deviation for three adjustments 

increases from 2 dB at higher levels and loudnesses to 5 dB 

near the threshold. The accuracy of the pitch rnatchings 

varies in a similar way between 0.3% and 2%. 

The results show an additional day-to-day variation in 

the depth of the minimum in the curves. This subject will 

be discussed in section 4.3.2. 

The phase of the minimum irL the masking-level and loud­

ness curves coincides with that of the jump in the corres­

ponding pitch curves. The phase at which the minimum occurs 

is almost constant for each (f 1 , f
2

) combination. Closer 

investigation of this dependence for the 400/800 Hz fre­

quency combination revealed an increase in the phase of this 



Fig. 4.3. 

Pitch of component II as a func­
tion of ¢ , The different sym­
bols inditate the different pit­
ches that could be found under 
specific phase conditions. 

40 

>- I I I I I z 
"'120 -z 
0 obs. T E 0.. 

~ 116 -
u 
>-
~1.12 1-

"' :::> 
a 
w lOB f-
"" ~ 
' "" "' -J: 1.04 ~--... (.') 

I ~:-
"' J: 1.0 

\ .,K >-
~ 

0 
~0.96 r-
I 400Hz 82 dBSPL 

"' 800Hz: 33 dBSPL J: 
u0.92 r-
'= I I I I I 0.. 

0 30 60 90 120 150 180 

PHASE COMPONENT I (DEGR.) 

minimum with increasing value of L
1 

(about 10°/10 dB). No 

dependence on L2 was found. The scatter in the phase ad­

justments is 20°. The dependence of the phase for minimum 

loudness on the absolute frequencies of the components will 

be described in Chapter 7. The highest frequency combin­

ation for which we found a loudness minimum is 3500/7000 Hz. 

Both the pitch and the loudness effects could also be 

perceived when the stimuli were presented binaurally. How­

ever, with dichotic presentation of a slightly mistuned oct­

ave complex (one tone to each ear) , the observers only had 

a very vague sensation of something moving inside the head. 

4.2. Phase effects as functions of L1 

The pitch, the masking level and the loudness of compon-
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ent II were then measured as a function of L
1

. We only in­

vestigated the two extreme phase conditions i.e. those cor­

responding to minimum audibility of component II (¢ . ) and 
mln 

to maximum audibility (¢max). The measurements were per-

formed with L
2 

as the parameter, the maximum value of L
2 

being 45 dB SPL. The (£ 1 ,£2 ) combinations were the same as 

in the preceding section. The value of L1 was increased in 

steps of 1 or 2 dB over a range of up to 30 dB, until com­

ponent II was fully masked. Typical results are shown in 

Fig. 4.4 for pitch, in Fig. 4.S.a for masking level and in 

Fig. 4.5.b for loudness. 

When ¢ 1=¢rnin the pitch of component II increases very 

fast at higher values of L1 . When ¢1=¢max the pitch does 

not change with L
1 

but is generally somewhat higher than in 

the absence of component I. The maximum pitch shift evoked 

by component I and the shape of the curves do not depend on 

L2 . When ¢ 1=~rnax' there is a change in timbre at the same 

time as the decrease in loudness. No change in timbre was 

found for ¢ 1=¢min' The scatter in the adjustments varies 

from 0.3% in cases with little pitch shift up to l-2% for 

the maximum pitch shift. 

The masking level and the loudness fall off sharply just 

before component II is fully masked by component I. The 

increase in the masking level above that in the absence of 

component I has already been described in section 4.1. 

Each pair of curves shown in Fig. 4.4 and 4.5 was some­

times shifted in a horizontal direction by a few decibels 

when determined in different sessions. However, the dist­

ance between the two curves remained constant. This vari­

ation is not due to differences in the position of the ear­

phone. 

Naturally 1 component II could not be detected and no 

difference could be heard between the complex and component 

I alone if the curves for~ -~ (120°) in Fig. 4.5.a and 
·~-·~n 
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4.5.b crossed the absolute threshold level. However, a dif-

ference could be heard again if L1 was increased slightly. 

All observers had the impression that component I was involv­

ed in the perceptual alteration due to the addition of com­

ponent II to component I for this (L 11 L2) combination. The 

effect was most marked for the (f 1 ,£2 ) combination 200/400 Hz~ 

*This effect indicates that different detection criteria can be used in 
the determination of the. masked threshold. Smoorenburg (1972) differ­
entiated between the threshold of identification and the threshold of 
detection. The threshold of identification corresponds to the dis­
appearance of the characteristic pitch of the test tone, while the 
threshold of detection is found when no difference can be heard between 
the masker with and without the test tone; interaction phenomena such 
as combination tones then determine the masked threshold. In our exp­
eriments we determined the identification threshold. 
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Masking level of component II as a function of L
1 

for ¢
1
=¢ and 

¢1=¢min' The upper horizontal line indicates the masking T~~el of com­
ponent II alone, and the lower one the absolute threshold of component 
II. The experimental points within squares near the absolute threshold 
were measured as percentage detectabilities in the absence of noise 
(see section 3. 1 .3). The broken vertical lines are explained in section 
4.3.2. 
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4.3. Discussion 

4.3.1. Pitch 

The results presented show a distinct change in the per­

ceived pitch of component II with changing phase. 

The maximum pitch effect found (20%) agrees well with 

the results of Terhardt and Fastl (1971) who found a maximum 

effect of 11% for the (£
1

,£
2

) combination 200/400 Hz. How­

ever, the shapes of the curves are not comparable, owing to 
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the different methods of measurement used. 

The sawtooth-like shape of our curves agrees very nicely 

with the results of Plornp (1967) for a 1:3 frequency ratio 

(200/600 Hz). Plornp plotted his results as a function of 

the phase of the higher-frequency component. If we mirror 

his figure, i.e. plot his results as a function of the phase 

of the lower-frequency component, we get a sawtoothlike 

curve with a positive slope just as in our results. The 

agreement seems to indicate a similar interaction mechanism 

for the two frequency ratios. 

One might expect the change in pitch as a function of 

phase to be due to the change in loudness. There are two 

reasons why we do not believe this to be the case. First, 

the pitch shifts we found are much larger than can be exp­

ected on the basis of a pitch-loudness dependence (maximum 

2%/20 dB; Verschuure, 1975). Secondly, the curve repres-

enting the dependence of pitch on phase is not symmetrical 

with respect to the phase giving maximum pitch shift. Equal 

loudnesses would give rise to equal pitches. 

4.3.2. Masking level and loudness 

It may be concluded from Fig. 4.2. that the loudness of 

component II when ¢1=¢max tends to be matched lower than 

when component II is matched alone. Zwicker (1963) 1 Scharf 

(1964) and Houtgast (1974a) found that the loudness of a 

tone can be reduced in the presence of a noise. Houtgast 

(1974a) correlated this "loudness reduction" with the phe­

nomenon of "two-tone suppression".~ 
J:.To avoid confusion between the terms 11 suppression11 and 11 reduction11

, we 
define them as follows. nsuppressionn is the phenOmenon that for a pure­
tone stimulus the pulsation threshold, or the spike rate in a single 
cell recording, can decrease when other sounds are added to the stimulus 
(Houtgast, 1973; Kiang et al., 1965). This effect is also called ntwo­
tone suppression", "two-tone inhibition!! or "lateral suppression" and is 
included in the more general terms ntwo-tone nonlinearity" and "two-tone 
interaction!!. The decrease in the loudness of the tone in question under 
these conditions is called "loudness reduction11 (Houtgast, 1974a). 
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The results of our loudness matchings may be affected by 

such a loudness reduction. A reduction in the white-noise 

masking level when ¢ 1=¢max was never found. In fact, this 

level was always higher than in the absence of component I. 

In the masking-level procedure, the noise (i.e. the test 

signal) is presented simultaneously with the octave complex. 

Houtgast (1972) showed that simultaneous presentation of the 

stimulus and the test signal obscures the two-tone nonlin­

earity because the two are suppressed in the same way. In 

a similar way the masking noise cannot be used to detect 

some internal level of component II. This is a serious dis­

advantage of the masking-level procedure. We conclude that 

the method can be used to give a rough description of the 

phase effects, but that it is unsuitable for study of the 

contribution of the two-tone nonlineari~y. The latter will 

be discussed in more detail in Chapter 6. 

The day-to-day horizontal shift of the curves in Fig. 

4.5.a and 4.5.b mentioned in section 4.2 explains the large 

variation in the magnitude of the phase effects (section 

4.1). For instance, in Fig. 4.5.a for L1=75 dB SPL the dif­

ference in masking level for ¢1=30° and ¢1=120° is 9 dB. 

This is the maximum phase effect for that (L1 ,L 2 ) combin­

ation. If we suppose that the curves were shifted 2 dB to 

the left in another session, we would measure a maximum 

phase effect of 22 dB for the same (L
1

,L2 ) combination. The 

two cases are indicated by broken lines. 

4.4. conclusions 

1) A distinct phase dependence of pitch, masking level and 

loudness of component II is found in octave complexes. 

2) The magnitude of the effects depends on the levels of 

the components and on the frequency combination used. 

3) The plot of pitch against phase resembles a sawtooth 

function. The maximum shift is 20% upwards. 
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4) The maximum phase effect in the loudness and masking 

level is 20 dB. 

5) The phase condition under which the loudness or the mask­

ing level is minimum coincides with that for the jump in the 

pitch function. 

6) The loudness data suggest that "loudness reduction" is 

operative. 
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CHAPTER 5 

PITCH AND MASKED THRESHOLD IN OCTAVE 
COMPLEXES IN RELATION TO INTERACTION 

PHENOMENA IN TWO-TONE STIMULI IN GENERAL 

5.1. Introduction 

The common aspect of the experiments to be described in 

the present chapter is that a comparison is made of phenom­

ena and functions in octave complexes with those in two­

tone stimuli in which the frequency ratio of the tones is 

different from two. The experiments involved are pitch 

matchings, simultaneous-masking experiments and pulsation­

threshold experiments. Because the aim of the pitch exper­

iments is rather different from that of the masking and 

pulsation-threshold experiments, we introduce them separ­

ately. 

5.1.1. Introduction to the pitch experiments 

Octave complexes are not the only two-tone stimuli in 

which the pitch of one of the components can be influenced. 

Plornp (1967) found a phase-dependent pitch in a 200/600 Hz 

frequency combination. walliser (1969) reported pitch 

shifts in a 4-kHz pure tone due to the presence of a second 

interfering tone. In that case there w~s no simple harmonic 

relation between the frequencies of the two tones. Each of 

them had a loudness level of 30 phones. The maximum pitch 
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deviation corresponded to a positive frequency shift of 1.5%. 

Positive pitch shifts of a few percent were also found by 

Terhardt and Fastl (1971) for stimuli in which the frequen­

cies of the tones had a ratio 2:3, 3:4 and 1:3. The tones 

had levels from 50 up to 70 dB SPL. The authors found no 

phase dependence of the pitch in these cases. The relation 

of the pitch effects in octave complexes to those in two­

tone stimuli in general is the subject of the first part of 

this chapter. 

Our conclusions here will also have implications fer 

the theories of pitch perception. Until some years ago it 

was accepted by several authors that the pitch of a sound 

was determined by the reciprocal of the time interval be­

tween prominent peaks in the rectified waveform (see Chapter 

2). Within the framework of that time theory, Plomp (1967) 

suggested that the sweep effect might be related to such a 

"time-interval detection". On the other hand the pitch 

effects in two-tone stimuli found by Walliser (1969) have 

never been considered in the light of the time theory, but 

in terms of a shift of a maximum in the masking pattern 

which was. interpreted as an "excitation pattern". The lat­

ter idea originates from Egan and Meyer (1950). An exten­

sive discussion of this explanation in spectral terms has 

been given by Terhardt (1972). Consideration of whether 

there is a relation between the pitch effects in all two­

tone stimuli may help us to decide whether one and the same 

explanation will suffice to deal with all the different 

stimuli. 

5.1.2. Motivation of the masking experiments 

The masking experiments have been carried out to invest­

igate the possibility that the masked threshold of a test 

tone one octave above the frequency of the masker might be 

affected by an aural second harmonic. A supporting argument 
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frequently used in the literature (see Chapter 2) is that 

the curve showing the dependence of the simultaneously­

masked threshold on L1 has a slope of 2. In our experiments 

the simultaneously-masked threshold and the pulsation thres­

hold for ft=2£
1 

was compared with that for test-tone fre­

quencies below the octave. 

5.1.3. On- and off-ratio stimuli 

A stimulus in which the frequencies of the components 

have a ratio of m:n, where m and n are small integers will 

be called an "on-ratio stimulus". A stimulus with a fre­

quency ratio between the components different from the 

above will be called an noff-ratio stimulus". This defin­

ition is rather flexible; for example, we will call the fre­

quency combination (f
1
,f

2
) with f

2
=1.75f

1 
the off-ratio 

stimulus with respect to the on-ratio stimulus with f
2
=2f

1
. 

5.2. Pitch experiments 

5.2.1. Pitch in off-ratio octave complexes 

The stimuli in the first pitch experiment were off-ratio 

octave complexes. 

760 Hz; those of f
2 

Hz) and 2f
1
-lO Hz. 

The values of f
1 

were 200 Hz, 400 Hz and 

were 1.75f1 , 1.90f
1 

(except for f
1

=200 

The procedure in these experiments is 

similar to that for the on-ratio octave complexes in section 

4.2. We matched the pitch of a comparison tone with that of 

component II as a function of Ll with L2 as the parameter. 

The maximum value of L2 was 45 dB SPL. Ll was increased in 

steps of l or 2 dB over a range of 20 to 30 dB until compon-

ent II was masked. A representative sample of our results 

is shown in Fig. 5.1. These three curves, all for the same 

value of f
1

, have much the same shape. At lower values of 

L
1 

the pitch of cqmponent II is often significantly higher 

than that of component II alone (indicated by the horizontal 
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line). For £
2

=1510 Hz the pitch first increases and then 

decreases to slightly below the original value. Finally, 

under all three conditions the pitch increases very sharply 

near the masked threshold of component II. At the same time 

the loudness decreases. Component II does not sound like a 

pure tone any more at these higher values of L
1

: a change 

in timbre occurs. The maximum pitCh effect does not depend 

on L2 . As regards the scatter in the data and the day-to­

day variations, the remarks made in connection with the 

pitch and loudness experiments with on-ratio octave complexes 
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in section 4.2. are applicable. 

Comparison of the results obtained with on-ratio and off­

ratio octave complexes reveals that the maximum pitch shift 

in an off-ratio octave complex is roughly half that in the 

corresponding on-ratio complex for ¢1=¢min' This correlation 

is rather rough because of the spread in the highest exper­

imental points in the figures. 

5.2.2. Maximum pitch shift in two-tone stimuli with t
2
=2f

1
-10 

Hz for different values of r
1 
_______________ _ 

We determined the pitch of component II with £
2 

= 2£
1

-10 

Hz as a function of L
1 

for different values of £
1

. The ave­

rage of the highest two experimental points in the graphs 

(similar to those in Fig. 5.1) was defined as the maximum 

shift relative to £ 2 . We took the average of two experi-

mental points to reduce the scatter. The maximum pitch de£-

ined in such a way is plotted in Fig. 5.2. as a function of 

f 1 for two observers. 

Fig. 5.2. 

Maximum pitch shift of 
component II of an off­
ratio octave complex 
with f 2 ~ 2f -10Hz as 
a function of f

1
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dB SPL. 

;qi_-
~ 

~ 

I 

"' 
I 
u 
~ 

~ 

" ::> 

" X 
<( 

" 

1.16 

1 .12 

1.08 

1.04 

1.00 

200 

frequency combination 
(fJ.f2) with f2=2f 1_10Hz 

obs. PL: + 
obs.HJ:o 

400 800 1600 



53 

We saw in Chapter 4 that the maximum pitch shift in an 

on-ratio octave complex occurs when ¢1=¢min' It was con­

cluded in the preceding section that the maximum shift in 

an off-ratio complex is half that in the corresponding on­

ratio complex for ¢1=¢min" Therefore, apart from the factor 

two, Fig. 5.2. may be considered as giving the dependence of 

the maximum pitch effect in an octave complex on the fre­

quenices of the components. 

5. 2. 3. Maxim~m pitch shift 
________ Lt 2-=-~t1 -10 Hz as a 

with in two-tone stimuli 
function of ~-----------

We measured the maximum pitch shift of component II 

with £
2 

= ~f -10 Hz as a function rn 1 
of !} 

rn' where m and n are 

small integers and rn<n. The procedure was as described in 

the previous section. The results for £
1

=200 Hz are given 

in Fig. 5.3.a. and for £
2

=1200 Hz in Fig. 5.3.b. 
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Haximum pitch shift of component II of a 
n . n d f2 = -f 1-10 Hz as a funct~on of ffi• m an 

m<n, ~2=35 dB SPL. 
a) f

1 
~s constant (200 Hz) 

b) f
2 

is constant (1200 Hz) 

two-tone stimulus with 
n being small integers and 
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We concluded in section 5.2.2 that the maximum pitch ef~ 

feet in a stimulus with £ 2 = 2£1-10 Hz is a measure of that 

in the corresponding on-ratio octave complex. We extra­

polated this relation to the frequency ratios m:n used in 

the present section. It was checked for two ratios (1:3 and 

2:3) that the maximum pitch shift in the on-ratio situation 

is twice that in the corresponding off-ratio situation 1 just 

as with octave complexes. We may, therefore 1 conclude that 1 

apart from the factor two, Fig. 5.3. holds for the corres­

ponding on-ratio stimuli too. 

5.2.4. Discussion 

The experimental results indicate that pitch effects are 

not exclusive to octave complexes. Moreover, we found a cor­

relation between the pitch effects in off-ratio octave com­

plexes (Fig. 5.1) and those in on-ratio complexes. Pitch 

effects are also found for other frequency ratios. The mag­

nitude of the pitch effects for the different ratios, plot­

ted against ~ can be fitted by a single curve (Fig. 5.3). 
m 

This also holds for more complex ratios such as 2:7; it 

would thus seem as if the shifts in the pitch of the higher­

frequency component in all two-tone stimuli represent the 

same phenomenon. 

Under the level conditions chosen, the magnitude of the 

pitch shift depends on three factors. First, on the value 

of L
1 

relative to that of L
2 

(we may note here that the 

shape of the curves of Fig. 5.1 does not depend on L
2

). 

Secondly, on whether the frequencies of the components are 

relatively high or low. Fig. 5.2. illustrates this for 

octave complexes. The third factor determining the size of 

the pitch shift is the frequency ratio of the components. 

The largest effects are found for the ratios 1:2 to 1:3. 

The difference in height between the curves of Fig. 5.3.a 

and 5.3.b must be due to the second factor. 
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The relation between the phase-dependent on-ratio and 

off-ratio pitch effects is such that the maximum effect in 

the .off-ratio situation is equal to the maximum effect for 

the on-ratio stimulus averaged over the phase conditions. 

T.he experiments described so far are closely related to 

investigations of the effect on the pitch of a tone due to 

the simultaneous presentation of a white noise, a band noise 

or a low-pass noise, Such investigations were initiated by 

Egan and Meyer (1950) and continued by various authors (see 

e.g. Terhardt (1972) and Van den Brink (1975). The results 

of all these experiments with interfering sounds, (either 

a noise or a tone) show four common features: pitch shifts 

are usually only due to sounds with a frequency content 

lower than that of the stimulus frequency; pitch shifts are 

mainly upwards; the pitch shifts increase with increasing 

level of the interfering sound; and pitch effects only occur 

if the tone is partially masked, so that its loudness is 

reduced. Our results are generally in agreement with these 

findings. However, a decrease in loudness is not always 

accompanied by an increase in pitch as may be seen in Fig. 
0 4.4 for ¢ 1~20 . 

5.3. Pure-tone masking experiments 

5.3.1. Pulsation-threshold method 

The stimulus frequencies (f1 ) were 200 Hz, 400 Hz, 760 

Hz and 1600Hz, and those of the test tones 1.7Sf1 , 1.90f1 
except at f

1
=200 Hz) and 2f

1
. We measured the pulsation 

threshold of the test tones as a function of L
1 

in the range 

from 60 to 90 dB SPL. A sample of the results is shown in 

Fig. 5.4. For a given masker, the curves have much the same 

shape for all test-tone frequencies. 

experimental points is 3 dB. 

The scatter in the 

To classify the increase in the pulsation threshold 

relative to L1 , the measured curves were divided into two 
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parts, one for L1 below 75 dB SPL and one above that. The 

relative increase in each of those parts, expressed as dec­

ibels vs. decibels, is given in Table S.I for some values of 

£
1

. The scatter in these values is 0.2. 
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obs. f l = 200Hz f l = 400Hz fl = 760 Hz f l = 1600 Hz 

PL l l 1.4 l 1.4 l deer l 

AS I l 1.4 I 1.4 l deer l 

RE l I 1.4 l 1.4 l deer l 

WJ I l l deer I deer 2.4 deer I i 

Table S.l 

The increase of the pulsation threshold for pure-tone stimuli relative 
to L1, expressed as decibels vs, decibels, for different stimulus fre­
quencies fl and f =2£ 1 . The left-hand half of each column corresponds 
to the parEs of tfie curves of Fig. 5.4. for L1 below 75 dB SPL, and the 
right-hand half to the parts above 75 dB SPL. The indication "deer" 
means that the increase gradually diminishes with decreasing L

1 
in the 

part of the curve in question. 

5.3.2. Simultaneous maskina 

The stimuli and test-tone frequencies used here were 

the same as in the preceding section. The highest test-

tone frequency was 2f
1

-lO Hz, in order to avoid slow beats. 

A sample of the results is shown in Fig. 5.5. The scatter 

in the experimental points is about 3 dB. The relative in­

crease of these functions, expressed as decibels vs. deci­

bels, is given in the upper two rows of Table 5.II. The 

experimental error in these values is again 0.2. 

These experiments were also performed for test-tone fre­

quencies of exactly 2£ 1 , with ¢1=¢max and ¢1=¢min which cor­

respond to the minimum and maximum masked threshold respect­

ively. The relative increases under these two phase condit­

ions are given in the bottom two rows of Table 5.II. 



Q 

0 
I 
~ 
w 
~ 

I 

Q 
w 
~ 
~ 

~ 

~ 

501-
obs _ Pl 

1-

401-

30 

1-

20 

·. 
00 •• 

000 • 

0 • ·.· 

0 
0 

.· 

00 

.· 

tesi-!Orll! frequency: 

390Hz"" • 
355Hz::o 

-

-

-

lOL_ __ _j ____ _L ____ L_ __ _l __ __j 

60 70 80 90 100 

L1 (dB SPL) 

(a) 

58 

' I T 

601-
obs. AS 

~ 

~ .· 
~ 

"-
Q 

0 
I 
~ 

~ 

I 1-

Q 
w 
~ 40 1-~ -
~ 
~ 

-

30 

test-lone frequency: 

3190Hz:• -
3040Hz:< 
2830 H1:= o 

' 60 70 80 90 100 
l1 (dB SPL) 

(b) 

Fig. 5.5. 

Simultaneously-masked 
£ 1 and two observers. 

threshold as a 
Test tones in 

function of 1
1 

for two values of 
the frequency region around 2£

1
. 



59 

obs. f 1 = 200Hz f 1 = 400Hz f 1 = 760Hz f 1 = 1600 Hz 

PL 1.2 1.8 2.4 2.6 

AS 1.1 2.2 2.4/2.0 1.6 

PL (oct) - 1.0 2.2 2.3 

PL (oct) + 1.0 2.0 2.0 

Table S.II. 

Relative increase in the simultaneously-masked threshold of component II 
with respect to L, expressed in decibels vs. decibels, for different 
values of f , Th~ data in the top two rows correspond to conditions 
under which 1the frequency of the test tone is less than 2£ 1 . The bottom 
two rows correspond to conditions under which the frequency of the test 
tone is exactly 2£

1
. The plus and minus signs indicate the phase re­

lations between masker and test tone which yield the maximum and minimum 
masked threshold respectively. The two values for observer AS at £1=760 
Hz indicate two different relative increases in the curve, one for L1<80 
dB SPL (2.4) and the other for L1>80 SPL (2.0). 

5.3.3. Discussion 

The similarity between the curves for the different test­

tone frequencies with a constant value of £
1 

is striking. 

The data of Table S.II also indicate that the relative in­

crease in the masked threshold for ft=2f 1 hardly differs 

from that for ft less than 2f 1 . The relative increase for 

ft=2f 1 agrees reasonable well with data given in the liter­

ature by Clack et al. (1972) and Nelson and Bilger (1974). 

Over a larger test-tone frequency range 1 the relative 

increase in the functions can vary, as shown by the results 

of the pure-tone masking experiments performed e.g. by Wegel 

and Lane (1924), Egan and Hake (1950) and Nelson and Bilger 

(1974). The slopes of their curves representing the masked 

threshold of the test tone as a function of the level of the 

masker vary when the frequency of the test tone is increased 

from 1.5£1 to 3£ 1 . 
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The implications of the results for a possible explan­

ation of the phase effects in terms of aural harmonics will 

be discussed in Chapter 8. 

5.4. Conclusions 

1) The pitch effects in octave complexes described in Chap­

ter 4 are related to pitch effects found in two-tone stimuli 

in general under the same level conditions. 

2) The magnitude of the pitch shift in a two-tone stimulus 

depends on the value of L
1 

with respect to that of L
2

, on 

the absolute frequencies of the components and on the ratio 

of £2 to £1 . 

3) The pitch shift as a function of the frequency ratio of 

the components is maximum for ratios between 1:2 and 1:3. 

4) The combination 1500/3000 Hz represents the upper limit 

for pitch eEfects in octave complexes. 

5) Pitch effec·ts larger than 1 to 2% occur only under con­

ditions of partial masking. Partial masking, however, does 

not always yield pitch effects. 

6) Simultaneous-masking experiments and pulsation-threshold 

experiments with pure-tone stimuli (frequency £
1

) reveal no 

anomalous behaviour for ft=2f
1 

as compared with the results 

for values of ft less than 2£
1

. 
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PART III 

PULSATION-THRESHOLD EXPERIMENTS WITH OCTAVE COMPLEXES 

CHAPTER 6 

TWO-TONE INTERACTION IN OCTAVE COMPLEXES 

6.1. Introduction 

The data presented in Chapter 4 revealed distinct phase 

effects in the pitch and the loudness of component II. The 

experiments to be described in this chapter arose from ques­

tions about possible mechanisms underlying the phase effects, 

such as: Is there a shift in the peak of the masking pat­

tern of the complex related to the pitch shift as a function 

of phase? In which "frequency channel" of the auditory 

system do the phase effects come about? If there is an in­

ternal representation of the stimuli in a specific frequency 

region, how do the phase effects in it depend on the levels 

of the components? 

These experiments have been performed by the pulsation­

threshold method, for the reasons explained in Chapter 3. 

The involvement of "two-tone suppression" enables us to 

compare the results with the loudness data presented in 

Chapter 4 where the phenomenon of loudness reduction was 

found. The experiments were carried out with both on- and 

off-ratio complexes. 
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6.2. Experiments 

6.2.1. Pulsation-threshold vatterns of octave complexes 

Pulsation-threshold patterns, representing the pulsation 

threshold as a function of the test-tone frequency, have 

been measured for the octave complexes 200/400 Hz, 400/800 

Hz and 760/1520 Hz. Typical results are shown in Fig. 6.1. 

The values of L1 and L2 correspond to conditions under which 

the loudness and pitch of component II are affected by the 

phase, as used in Chapter 4. The measurements were per­

formed for test-tone frequencies around £
2 

under the phase 

conditions corresponding to maximum ¢1=¢rnax and minimum aud­

ibility ¢ 1=¢min of component II. The patterns for the sep­

arate components were measured in the same session, and are 

indicated schematically in Fig. 6.1. 

The results reveal differences between the pulsation 

thresholds for ¢ 1~¢ max 
from 0.80 

and ¢ 1=¢min in the test-tone fre­

f2- to 1.25 f 2 . A representative quency range 

value of the threshold difference for ft=f 2 is 10 dB. The 

difference decreases with increasing frequencies of the 

components. The peak in the patte~n of the complex around 

ft=f 2 appears to be invariably broader than the pattern for 

component II alone, indicated by the broken lines. 

The adjustments for the different test-tone frequencies 

were made in a random order. Their scatter is 3 dB. There 

was a session-to-session variation in the difference between 

the pulsatiOn thresholds for ¢ 1=¢max and ¢1=¢min for a given 

level combination and test-tone frequency. The difference 

found in a previous session could be reproduced in the next 

session by changing the value of L
1 

by a few decibels. 
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6.2.2. Pulsation threshold as a function of L1 for on-ratio 
octave complexes with ft=f

2 
__________________________ ___ 

The next step was to vary L1 , with ft equal to £2 . The 

pulsation threshold was measured with L2 as the parameter 

for ¢1 =¢rnax and ¢ 1=¢min' The corresponding level for com­

ponent I alone was also measured. The results for three 

values of L
2 

are plotted in Fig. 6.2. The curves for the 

different values of L2 were measured on different days. 

They were shifted in a horizontal direction by a few deci­

bels until all curves came together at the highest values 

of L
1 

used. 

The pulsation threshold for the complex is equal to that 

for component II alone (horizontal full lines) at relatively 

low values of L
1

, and is equal to that for component I alone 

at relatively high values of L1 (the dashed curve). The 

pulsation threshold in the intermediate range is phase­

dependent. When ¢ 1=¢min' it first decreases with increasing 

value of L1 until it is lower than that for component I alone. 

As L1 increases further, the pulsation threshold remains 

below that for component I but approaches closer and closer 

to the latter. 

The shape of the curves for ¢ 1=¢max depends strongly on 

the value of L2 . There is a pronounced drop below the level 

for component II alone for L2=45 dB SPL. The opposite effect 

is found for L 2=25 dB SPL. In this case the pulsation 

threshold for the complex at L
1

=72 dB SPL is 8 dB above that 

for each of the components, while the increase of the puls­

ation threshold relative to L1 and L
2

, expressed in decibels 

vs. decibels, is 1 for component II and 1.6 for component I 

(for L 1~72 dB SPL). 

A set of observations similar to those of Fig. 6.2. was 

also made by observer RE for the frequency combination 

760/1520 Hz. His results showed the Same trend, as did the 

individual results of two other observers. 
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Fig. 6.2. 

Pulsation threshold for an octave complex as a function of 1
1 

for three 
different values of 1 2 . Frequency combination 400/800 Hz. Test-tone 
frequency 8.00 Hz. The symbols O, D and 0 correspond to ¢]=¢ (10°) 
and the symbols* X + to ¢

1 
=¢ . (I 00°). The horizontal Iin~xcorres­

pond to the pulsation threshoTdnfor the lower-frequency component alone, 
measured as a function of 1

1
. The absence of experimental points in 

the curve for 1
2

=35 dB SPL and ¢
1

=¢ . between 11=73 and 76 dB SPL in­
dicates that no adjustment could bemffiRde due to Ehe low level of the 
test tone. It does not necessarily mean that there really is a gap in 
the curve. 

The experimental points show a scatter of 3 dB. System-

atic variation of the data from session to session was also 

found. This is more pronounced at higher values of L1 (up 

to 5 dB). The shape of the curves does not change much but 

the curves as a whole are shifted in a horizontal direction 

by a few decibels. 
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6.2.3. Relation between pulsation thresholds for off- and 
on-ratio stimuli 

The results of the experiments with octave complexes des­

cribed in the previous section show that the pulsation thres­

hold for the complex is lower than that for component II 

alone, e.g. for the level combination 78/45 dB SPL with 

¢ 1=¢max and ¢1=¢rninr and for the level combination 73/25 dB 

SPL with ¢ 1 =¢rnin' Can these reductions be identified with 

the phenomenon of "two-tone suppression" demonstrated by the 

psychophysical experiments of Houtgast (1972)? In answering 

this question we thought it better to start not from results 

obtained for on-ratio octave complexes but from comparable 

experiments with two-tone stimuli in general, without the 

choice of a phase relation (and possible internally gener­

ated components) being involved. 

A similar question can be asked in connection with the 

finding that the pulsation threshold for the complex is en­

hanced by 8 dB with respect to that for the separate comp­

onents at (L1 ,L 2 )= 72/25 dB SPL and ¢ 1=¢rnax· Is this ''en­

hancement" a general two-tone effect or is it a consequence 

of the specific stimulus? 

We designed two experiments to answer these questions; 

they were performed by a single observer. In the first 

experiment the stimulus was the off-ratio octave complex 

760/1330 Hz. We measured the pulsation threshold for 

ft=l330 Hz as a function of L
2 

for two different values of 

L
1 

(unlike section 6.2.2 where we measured the pulsation 

threshold as a function of L
1 

with L
2 

as the parameter). 

We chose the two values of L
1 

on the basis of the results of 

Fig. 6.2: a relatively low value, where enhancement could 

be expected and a relatively high one at which reduction in 

the pulsation threshold could be expected. The adjustments 

were made over the whole range of values of L 2 for which 

interaction could be found at a given value of L
1

. The 
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results are shown in Fig. 6.3.a. 

The same experiment was repeated with the on-ratio fre­

quency combination 760/1520 Hz, a test-tone frequency of 

1520Hz and ~ 1 =¢max· The results shown in Fig. 6.3.b. are 

very similar to those of Fig. 6.3.a. This similarity im­

plies that the results found for octave complexes under the 

phase condition giving maximum audibility of component II 

(¢ 1 =¢max) are representative of those for two-tone effects 

in general. 

Fig. 6.3.a. shows that the pulsation threshold is lower 

than that for component II alone only for L
1

=87 dB SPL and 

L
2 

beyond 45 dB SPL. The decrease in pulsation threshold 

for octave complexes at higher values of L
1 

87/55 

and L
2 

e.g. 

dB SPL (Fig. (L1 ,L
2

) = 78/45 dB 

6.3.b) may thus be 

"Enhancement", 

SPL (Fig. 6.2) and 

identified with two-tone suppression. 

as found e.g. in Fig. 6.2. for L
2

=25 dB 

SPL and ¢ 1=¢max' is much more difficult to define because 

we do not know how large an increase in pulsation threshold 

to expect if two non-interacting tones which give rise to 

the same pulsation threshold are added. Naturally this 

increase will depend on the relative increase for each com­

ponent separately. Taking into account that the relative 

increase in the pulsation threshold for the separate com­

ponents expressed in decibels vs decibels does not differ 

much from l, we may regard a 3-dB increase as "normal" if 

the tones have no fixed phase relation and interaction is 

absent. The increase actually found, however, at lower 

values of L1 and L
2 

(72/30 dB SPL in Fig. 6.3.b. and 71/25 

dB SPL in Fig. 6.2) was always 6 to 8 dB. Because this 

effect is so consistently found in our results, we propose 

the term 11 two-tone enhancement 11 for it. However, further 

investigation is needed to explore the nature of this 

phenomenon. 

An effect found only in on-ratio octave complexes is 
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the decrease in the pulsation threshold to below that for 

the lower-frequency component alone. This effect is not 

called nsuppressionn as it could have another origin. 
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6.2.4. Re~ation between pulsation threshold and loudness 

The data presented in Chapter 4 showed that the loudness 

of component II in an octave complex was often lower than 

that of component II alone for ¢
1

=¢ . In the preceeding 
max 

sections we found that the pulsation threshold for the com-

plex, even at maximum audibility, was below that for compon­

ent II alone for some level conditions, e.g. 78/45 dB SPL. 

Is this effect associated with loudness reduction for these 

level combinations? On the other hand, the pulsation thres­

hold could be enhanced,e.g. for the combination 72/25 dB 

SPL. Is the loudness enhanced as well in this case? To 

check this, we matched the loudness of cornpone~t II for the 

same stimulus and under the same conditions as used in the 

pulsation-threshold experiment described in the previous 

section (frequency combination 760/1520 Hz). The results 

are shown in Fig. 6.4. 

Comparison of Fig. 6.3.b. and 6.4. shows that a reduc­

tion in the loudness of component II corresponds to the 

presence of suppression in the pulsation-threshold results. 

Furthermore, enhancement in the pulsation-threshold results 

corresponds to a distinct enhancement of the loudness of 

component II. 

6.3. Discussion 

6.3.1. Pulsation-threshold patterns 

The results of section 6.2.1 show that phase effects 

occur in a frequency region around £
2

. This indicates that 

the region of interaction is roughly the same as that stim­

ulated by component II itself under the level conditions 

chosen in our experiments. 

The question now arises whether the peak in the pulsat­

ion pattern of the complex around ft=f
2 

shifts with phase, 

in the same way as the pitch does. We, therefore, measured 
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pulsation-threshold patterns under phase conditions between 

the two extreme ones, but found no systematic shift of the 

peak as a function of phase for the combinations 400/800 Hz 

and 760/1520 Hz. Whether there is a shift for the 200/400 

Hz frequency combination is less easy to determine, as the 

patterns for the different phase conditions are rather flat. 

So far 1 therefore, we have no firm evidence for a shift of 

the peak as a function of the phase. However, we have found 

that the phase at which the pulsation threshold is minimum 

for a given test-tone frequency depends on that frequency. 

The consequences of such a dependence will be dealt with in 

the next chapter. 

6.3.2. Pulsation threshold and loudness 

It may be concluded that the results obtained by the 

pulsation-threshold method and by loudness matching have 

much in common. This supports the view that loudness re­

duction is caused by "two-tone suppression". On the other 

hand "loudness enhancement", as far as we know, is a new 

effect which needs further study. 

A more quantitative comparison of the results of the two 

methods has been made for the 760/1520 Hz frequency combin­

ation with reference to the data of Figs. 6.3.b and 6.4. 

The loudness of component II was plotted against the puls­

ation threshold for the same level conditions. The results 

are shown in Fig. 6.5. (right-hand and left-hand curves). 

The broken curve is from a different type of experiment, in 

which both the loudness and the pulsation threshold were 

estimated as a function of phase for a given level combin­

ation. The loudness and the pulsation threshold under each 

of these phase conditions is represented as a dot in the 

figure. It can be seen that the results of this experiment 

fit in well with the other data. 

Fig. 6.5. shows that the curves are very steep, when the 
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Loudness of component II of an octave complex as a function of pulsation 
threshold for a test-tone frequency f =£

2 
and three values of L

1
• Fre­

quency combination 760/1520 Hz, The lowest point on each curve corres­
ponds to the absolute threshold of the matching tone. The oblique line 
represents the relation bet1.reen loudness and pulsation threshold when 
the lower-frequency component is absent. 

pulsation-threshold for the complex is not much higher than 

that for component I alone. The curve for the highest value 

of L1 shows the greatest slope. The curves approach a relat­

ive increase of 1 as the pulsation threshold is raised more 

and more. The results of Fig. 6.5 illustrate that relative­

ly small variations in pulsation threshold due to the phase 

gives rise to as large effects on loudness (up to 20 dB) as 

those reported in Chapter 4. 



73 

6.4. Conclusions 

1) Pulsation-threshold experiments performed with octave 

complexes at ft=£ 2=2£ 1 reveal phase effects. 

2) The test-tone frequency region in which the pulsation 

threshold depends on phase extends from 0.80£ 2 to 1.25£
2 

for L2<45 dB SPL; This region is about the same as that 

stimulated by component II alone. There is no systematic 

shift of the component II peaks in the pulsation pattern 

of the complex as a function of the phase. 

3) The maximum effect of phase on the pulsation threshold 

is found for ft=£ 2 , and varies between 7 and 12 dB. This 

value depends on the experimental procedure and decreases 

with increasing frequency. 

4) The pulsation threshold for octave complexes exhibits 

two-tone suppression at higher values of L1 and L2 r e.g. 

for the combination 78/45 dB SPL. The reverse phenomenon, 

i.e. an increase in pulsation threshold for the complex by 

6 to 8 dB when those for the separate components are equal, 

is found at lower values of L
1 

and L2 , e.g. for the combin­

ation 72/25 dB SPL. We call this phenomenon "enhancement". 

It seems to be a general two-tone phenomenon, as it is also 

encountered in the results for off-ratio octave complexes 

with f
2
=1.7Sf

1 
under the same level conditions. An effect 

which is exclusive to on-ratio octave complexes is the de­

crease in the pulsation threshold to below that for compon­

ent II itself for some values of L1 r L2 , and ¢1 . 

5) The loudness of the higher-frequency component of an 

octave complex is closely related to the pulsation thres­

hold for the complex at ft=f 2 . Suppression in the latter 
case corresponds to reduction of the loudness, while en­

hancement of the pulsation threshold corresponds to a rise 

in loudness. 
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CHAPTER 7 

FREQUENCY DEPENDENCE OF PHASE RELATIONS 
IN TWO-TONE OCTAVE COMPLEXES 

7.1. Introduction 

The first part of the present chapter deals with the 

question of whether the phase at which the pulsation thres­

hold is maximum or minimum for a given frequency combination 

depends on the test-tone frequency. The existence of such 

phase-frequency relation might have implications for the 

phase-pitch relation found in Chapter 4. 

The second part deals with the question of whether the 

phase at which the loudness of component II is minimum or 

maximum corresponds to the same waveform of the movement 

of the basilar membrane for all frequency combinations. To 

answer this question we need to know the phase characterist­

ic of the outer/middle-ear system in addition to the results 

of the experiments mentioned above. The result of a deter­

mination of this phase characteristic is also presented. 

7.2. Phase for minimum and maximum pulsation threshold as a 
function of ft for different frequency combinations 

7.2.1. Experiments and results 

We determined cross-sections of the pulsation patterns 

of octave complexes spawn in Chapter 6 by measuring the 

pulsation threshold level as a function of the phase with 
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ft as parameter. The results for the frequency combination 

200/400 Hz for three values of ft are shown in Fig. 7.1. 

We see that the phase at which the threshold is minimum and 

maximum depends on ft. The phase at which the minimum 

occurs was then measured systematically as a function of ft 

for the frequency combinations 200/400 Hz, 400/800 Hz and 

760/1520 Hz. The results are shown in Fig. 7.2. Each exp­

erimental point was obtained by decreasing the value of Lt 

until the test tone sounded continuously under nearly all 

phase conditions except in a 11 dip 11 where it was still puls-

ating. Similar results (not shown here) were obtained with 

observer WJ. 

Fig. 7 .1. 

Pulsation threshold as a function 
for three different values of f . 
quency combination 200/400 Hz. t 

of ¢
1 Fre-
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Fig. 7.2. 

Phase (~ 1 ) at which the pulsation threshold is minimum, as a function of 
the ratio of ft and £2 for three frequency combinations. 

The phase at which the pulsation thres'1old is minimum 

was found not to depend on the values of L1 or L
2 

(for L
2 

in the range up to 45 dB SPL) for a given value of ft. 

The beginning and end of the curves of Fig. 7.2. cor­

respond to the extreme value of ft at which phase effects 

could be observed. The upper limiting value shifted slight­

ly to higher frequencies at higher values of L1 and L 2 . 

The curves in Fig. 7.2. represent the maximum range for 

L1 <45 dB SPL. 

In another experiment we investigated how the range of 

values of ft for which phase effects can be observed depends 

on the frequency combination. The size of this interaction 

region is expressed in terms of the ratio of the maximum and 
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the minimum values of ft at which phase effects can be 

found. This ratio is plotted in Fig. 7.3. as a function of 

f2. 

7.2.2. Discussion 

Comparing Fig. 7.2. with Fig. 4.1, we may conclude that 

for the frequency combinations 400/800 Hz and 760/1520 Hz 

the values of ~l at which component II is maximally and 

minimally audible coincide with the phases of maximum and 

minimum pulsation threshold, respectively, for ft=f
2

• For 

the 200/400 Hz combination, however, the value of ~min 

(90°) is somewhat higher than the phase for minimum puls-
o ation threshold at ft=£ 2 (~ 1=70 ) . Since this difference 

is so small, we shall continue to use ¢ and ¢ . to 
max rn~n 

define the extremes of both the loudness and the pulsation 

threshold. 

The curve of Fig. 7.3. represents a critical-band-like 

dependence on frequency: a constant factor above 1000 Hz 

and a constant amount for lower frequencies. The curve was 
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drawn so as to pass through the experimental point for 

£
2

=1520 Hz; it may be seen that the other three experimental 

points then give a reasonable fit. Although the width of 

the interaction region for phase effects is nearly a factor 

two larger than the width of the critical band (250 Hz as 

compared with 150 Hz at 1000 Hz), the similar dependence on 

frequency in the two cases suggests a relation. 

Fig. 7.2. gives only the phase conditions corresponding 

to the minimum pulsation threshold. Fig. 7.1. shows that 

the phases for the maxima differ 90° from those for the 

minima. It thus is plausible that the dependence of the 

phase for maximum pulsation threshold on ft will be given by 

the curves of Fig. 7.2. as well, if they are shifted 90° up­

wards or downwards. 

7.2.3. Implications for the pitch effects 

As we have just seen, there is a distinct 

for minimum and rr.aximum pulsation 

dependence of 

threshold on the phases 

ft for the 200/400 Hz combination. Now what implications 

does this result have for the pitch effects? Fig. 7.4. 

gives an idealized plot of the phases for minimum and max­

imum pulsation threshold as functions of ft for the combin­

ation 200/400 Hz, as derived from Fig. 7.2.* From now on 

we restrict ourselves to the consideration of the maxima. 

From Fig. 7.4. we can derive how the test-tone frequency at 

which the pulsation threshold is in a maximum depends on ¢
1

. 

Expressing this value of ft as a shift relative to f
2 

gives 

the graph shown in the left-hand part of Fig. 7.5. The 

same procedure applied to the frequency combination 400/800 

Hz gives the middle part of Fig. 7.5. and applied to the 

760/1520 Hz combination it gives the right-hand part of 

Fig. 7.5. 

XWe give an idealized graph here as we are particularly interested in 
the maxima. These were not measured directly, as they were more dif­
ficult to estimate than the minima. 
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The resemblance between the graph in the left-hand part 

of Fig. 7.5 and the pitch/phase curve for the 200/400 Hz 

combination (Fig. 4.l.a) is striking. If we assume that the 

different test-tone frequencies correspond to a spatial pro­

jection in some region of the auditory system this resembl­

ance implies that the pitch is generated at that 11 place 11 

where the pulsation threshold is maximum (as a function of 

phase there) . 

The results for the other frequency combinations show 

less clearly the existence of a 11 pitch-place relation"~ In 

these cases there is only an increase of the shift with in­

creasing value of ¢1 in a restricted phase region. Never­

theless, the similarity of the pitch-phase functions for the 

three frequency combinations points to a similar mechanism 

for the production of the pitch sensation. 

The following experiment was performed to find a pos-

sible "pitch-place relation 11 in another way. For the 
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Fig. 7 .5. 

Schematic representation of the value of f relative to that of f at 
which the pulsation threshold is maximum a~ a function of ¢ for ~he 
frequency combinations 200/400 Hz, 400/800 Hz and 760/1520 ~z. These 
curves were obtained from Fig. 7.2. as explained in section 7.2.3. 

frequency combinations 760/1520 Hz and 200/400 Hz we chose 

values of L
1 

and L
2 

which brought about a distinct pitch­

phase effect. The pitch was matched for four values of 

¢ 1 :~ (nearly no pitch shift), ¢ +30°, ¢ +60° and max max max 
~ +90°=~ . (maximum pitch shift). An interfering tone 
max rn1n 

with frequency fi was presented simultaneously with the 

complex. At the beginning of the experiment fi was chosen 

so far beyond f
2 

that the pitch of component II was not in­

fluenced by the interfering tone at any phase. The value 

of fi was then decreased in steps of 10 Hz, and the pitch 

was matched at each step. The results are shown in Fig. 

7.6.a and b. It may be seen that as fi decreases the 

highest pitches are eliminated or influenced first. For 
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Fig. 7.6.a. 

Pitch of component II of the octave complex 200/400 Hz as a function of 
the frequency of an interfering tone f .. The horizontal lines corres­
pond to the apsence of pitch shift; th~ small vertical lines at the 
left-hand side of the graph correspond to the condition fi=£

2
. 

example, in Fig. 7.6.a. for £~=540Hz, pitch matchings can 
. ~ 

0 0 no longer be made for ¢1=90 whereas they can for ¢
1

=60 . 

For fi=SOO Hz, the pitch corresponding to a shift of 1.13 

is also eliminated. In Fig. 7.6.b., although the effect is 

less distinct, for £.=1700 Hz the highest pitch is lowered 
l 

whereas the other ones are not. For fi=l640 Hz the pitch 

which corresponds to a shift of 1.05 (¢
1

=60°) is also low­

ered, and so on. These facts support the assumption that 

a "pitch-place relation 11 exists for both higher-and lower­

frequency combinations. 

However, a striking difference may be noted between Fig. 

7.6.a. and b. For the 200/400 Hz combination at ~ 1~60° and 

90°, pit.ch matchings cannot be made below a certain value of 



1.25 

111 · 1 2 I, 
1.20 (L 1 , l 2 )' 

L; 
o b s. P L 

:;;]- 1.15 

~ 

1.10 
I 
~ 

I 
u 1.05 
~ 

~ 

1.00 

15 20 

Fig. 7.6.b. 

82 

760/1520 Hz 

82/32dB SPL 

32 dBSPL 

1560 1600 164 0 

FREQUENCY OF INTERFERING 

1680 

TONE (H<) 

17 20 

The same dependence as in Fig. 7.6.a. for the octave complex 760/1520 Hz. 

fi because component II is no longer heard separately. For 

the 760/1520 Hz combination pitch matching remains possible, 

This discrepancy may be even when f. decreases to 1530Hz. 
1 

related to the fact that the interaction region is much wider 

for the 200/400 Hz combination than for the 760/1520 Hz com­

bination (Fig. 7.2.) The interaction region for the 200/400 

Hz combination overlaps the area from which the pitch is 

thought to originate. For the 760/1520 Hz combination the 

phase effects in the pulsation threshold are restricted to a 

narrower band around £ 2 whereas the region important for the 

pitch generation lies either outside, or at the upper limit 

of this band. Assuming that the loudness effects originate 

from the region in which the pulsation threshold is phase­

dependent, one might say that the pitch and loudness effects 
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for the 760/1520 Hz combination are more independent of each 

other than they are for the 200/400 Hz combination. Affect­

ing the pitch with an interfering tone in the latter case 

would mean that the loudness is affected too. Affecting the 

pitch for the 760/1520 Hz combination would mean that the 

loudness remains unaffected, in any case for not too low 

values of fi. 

In fact, it would be better to perform this experiment 

with the interfering tone presented before the stimulus, 

because the simultaneous presentation may induce interactions 

between the interfering tone and the octave complex. It was, 

however, not possible to obtain a sufficiently prolonged and 

frequency-selective "fatigue" at which pitch matching was 

still possible. 

Summarizing, we may state that the facts presented above 

may provide indirect evidence that the pitch of component II 

originates in an area, e.g. in the organ of Corti, which is 

maximally sensitive to a pure tone with a frequency corres-

ponding to the pitch. The explanation of the pitch effects 

will be discussed in more detail in Chapter 9, in relation 

to the movement of the basilar membrane. 

7.3. Phase of minimum loudness as a function of frequency 
combination 

7.3.1. Experiments 

Fig. 4.1. and Fig. 7.1. show that the value of ¢
1 

cor­

responding to minimum loudness of component II depends on 

the stimulus frequencies. This value of ¢ . was measured 
m1n 

as a function of £
2

. The resuJ.ts will be discussed after 

the presentation of the phase characteristics of the outer­

and middle-ear system. 

7.3.2 Phase characteristics of the outer and middle ear 

The transfer of the stimulus from the electric signal 
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applied to the headphone the movement of the basilar rnem-

brane involves three stages: (a) the coupling of the head-

phone to the concha, (b) the external auditory meatus and 

(c) the eardrum together with the middle-ear system. These 

stages are usually considered separately in the literature. 

The acoustics of "circumaural"* headphones has been studied 

by Shaw and Thiessen (1962), Shaw (1974) stated that the 

description of the coupling for a circumaural headphone is 

attended with difficulties and cannot easily be simulated 

with the aid of an artificial ear. Charan et al. (1965) 

studied the limitations of the applicability of three types 

of couplers for circumaural headphones. The amplitude 

characteristics they obtained with these couplers were not 

reliable over the whole audio-frequency range. Nor can the 

Bruel and Kjaer artificial ear, type 4153, which is available 

in our laboratory, be used to calibrate a circumaural head­

phone (Bruel et al., 1961). We may conclude that it is not 

possible to determine the phase characteristic of the coup­

ling between the headphone and the concha with an artificial 

ear. 

The sound-pressure distribution in the external auditory 

meatus due to a free sound field was investigated by Wiener 

and Ross (1946), among others. The phase characteristic of 

this part of the system has, however, never been measured. 

The eardrum and middle ear are the best known parts of 

the auditory system. Their phase characteristic may be est­

imated via measurement of the acoustic impedance in the plane 

of the eardrum (see e.g. Zwislocki, 1957 and M¢ller, 1960). 

We used the following procedure to determine the phase 

characteristic of the whole outer-ear system and to overcome 

the difficulties mentioned above. We made a plaster cast 

of the side of the obse.rver 1 S head, with the auricle and the 

concha. A hole was drilled in the dummy at the side of the 

*we used a Grason Stadler TDH 39 circumaural headphone in our experiments. 



85 

concha, perpendicular to the plane of the auricle. A brass 

tube of length 3 em and diameter 0.7 em was inserted in this 

hole. The tube was connected with a Bruel and Kjaer micro­

phone at the end opposite the auricle. The headphone was 

placed around the auricle and pressed against the dummy by 

putting a 500g weight on it. Then the phase characteristic 

of the system between the electric signal applied to the 

headphone and the sound pressure in the plane of the micro­

phone was estimated for frequencies between 100 and 2000Hz. 

The choice of the upper limiting value will be discussed 

below. To provide some check on whether the coupling of the 

headphone with the cast was representative for the coupling 

with a real ear, a tube was stuck through the headphone 

cushion and connected with a probe microphone. The phase 

of the sound-pressure signal was measured with this probe 

microphone both on the cast and on the real ear. Differences 

between the results for the cast and for the real ear were 

found only for frequencies below 1000 Hz. This result is not 

surprising, as Charan et al. (1965) found that the acoustic 

signal in the concha is most sensitive to the positioning of 

the headphone in this frequency region. The measured phase 

characteristic was corrected for these differences. 

Having estimated the phase characteristic for the first 

two parts of the system, we still need to determine the 

phase characteristic of the middle-ear system. For this 

purpose we used the phase characteristic of the middle-ear 

model of Zwislocki-Flanagan (Flanagan, 1962), which is based 

on the results of acoustic impedance measurements. We re­

stricted ourselves to frequencies below 2000 Hz to be sure 

that the eardrum acts as a rigid piston, as only under these 

conditions is the acoustic impedance a measure of the mech­

anical impedance of the middle ear (M¢ller, 1963). 

The phase characteristic obtained with the dummy together 

with that of the middle ear model of Zwislocki-Flanagan is 
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assumed to relate the electric signal applied to the head-

phone to the movement of the stapes. To relate the latter 

to the movement of the basilar membrane, we must bear in 

mind that the motion basilar membrane has a phase lead of 

90° with respect to the displacement of the stapes (Zwislocki, 

1965; Rhode, 1971). The overall phase-transfer function re-

lating the phase of the electric signal applied to the 

headphone to that of the movement of the basilar membrane at 

the stapes is given in Fig. 7.7. Displacement of the basilar 

membrane towards the scale vestibuli is taken as positive 

here. 

Fig. 7.7. 

Phase-transfer 
function between 
the electric 
signal applied 
to the headphone 
and the movement 
of the basilar 
membrane at the 
stapes. The dis­
placement of the 
membrane towards 
the scale vest­
ibuli is taken 
as positive. 

2 
0 
w 
0 

+90 

-90 

7.3.3. Discussion 

T 

phase characteristic 
relating electrical signal on 
the headphone to movement 
of the basilar membrane 
at the stapes 

100 200 4()0 

f (Hz) 
800 1600 3200 

In section 7.3.1. we described the measurement of the 

phase at which the loudness of component II is minimum (¢min) 
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as a function of £ 2 (£
2

=2£
1
). The resulting dependence of 

¢min on £ 2 (not shown) was transformed into a dependence of 

¢2 on £ 2 with the aid of the phase-transfer function of Fig. 

7.7. The result of the transformation is shown in Fig. 7.8. 

The values of ¢2 represent the phases in the waveform of the 

movement of the basilar membrane at the stapes for which the 

loudness of component II is minimum. Note that ¢2 is used 

to describe the signals now, to facilitate comparison with 

data in the literature where it is more usual to describe 

two-component signals in terms of the phase of the higher­

frequency component. 

The vertical bars in Fig. 7.8. indicate the scatter of 

the experimental points. It may be seen that the minimum 

loudness of component II does not correspond to one phase 

relation in the waveform at the basal end of the basilar 

membrane for all frequency combinations. The implications 
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Fig. 7.8. 

Value of ¢ 2 in the waveform 
f(t)=A1sin(2TI£

1
t) + A

2
sin(2rr2£

1
t+¢

2
) 

of the movement of the Basilar membrane at the stapes that correspond 
to minimum loudness of component II, as a function of £

2
=2£

1
. A pos­

itive value if f(t) corresponds to a displacement of the membrane to­
wards the scala vestibuli. 
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of this result will be discussed more thoroughly in Chapter 

9 together with the results of the first part of this chapter. 

7.4. Conclusions 

1) The phase condition under which the pulsation threshold 

is minimum or maximum is a function of the test-tone fre­

quency for a given frequency combination. The corresponding 

value of ¢1 increases with increasing ft. 

2) The range over which the phase varies as a function of 

ft decreases from 120° for the combination 200/400 Hz to 

30° for 760/1520 Hz. 

3) The width of the interaction region for a given octave 

complex, i.e. the range of ft over which the phase is found 

to influence the pulsation threshold varies as a function 

of £
2 

in the same way as the critical band. 

4) The pitch effects are subject to a "pitch-place relat­

ion". This implies that the pitch perceived originates in 

a region that is maximally sensitive to the frequency cor­

responding to the pitch. 

5) For the 200/400 Hz frequency combination the pitch cor­

responds to the value of ft at which the pulsation thres­

hold has the maximum value that, as a function of the phase, 

can be found for that ft. 

6) The phase at which the loudness of component II is min­

imum does not correspond to one and the same phase in the 

waveform of the movement of the basilar membrane at the 

stapes for the different frequency combinations. 
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PART IV 

IMPLICATIONS OF THE EXPERIMENTAL RESULTS 

CHAPTER 8 

IMPLICATIONS OF THE RESULTS FOR THE 
AURAL-HARMONICS HYPOTHESIS 

8.1. Introduction 

Let us now return to the questions formulated in section 

2. 5. The first question concerns the precise nature of the 

sensations involved in the perception of the higher-frequency 

component of two-tone octave complexes. Our attempts to 

answer this question are described in Chapters 4 and 5. 

In Chapter 4 data were presented on effects of phase on 

the pitch and the loudness of component II. We saw that 

these effects are highly interdependent, in such way that 

the jump observed in the pitch coincides with the minimum 

in the corresponding loudness. It was argued that the pitch 

effects cannot be caused by the variation in loudness. 

Furthermore, we saw in Chapter 5 that the variations in the 

pitch, the pulsation threshold and the masked threshold for 

on-ratio octave complexes are related to those for off-ratio 

complexes. This supports the idea that two-tone stimuli 

give rise to a continuum of interaction effects, which are 

phase-dependent for octa·~.re complexes. 

The facts outlined above also provide an answer to the 

second question posed in section 2.5., as to whether compon­

ent II can be considered as an independent probe tone which 

can be used for detection of possible aural harmonics. On 
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the basis of our experimental results, the answer is "no", 

even for values of L
2 

below the "best beats" range (see Fig. 

2 .1) . 

8.2. To what extent can the phase effects be understood in 
terms of vector summation of an aural harmonic and 
com anent II? 

The rest of this chapter is devoted to answering the 

third question formulated in section 2.5~ whether the phase 

effects can be understood in terms of vector summation of 

an aural harmonic and component II. First, we will find out 

whether there is general evidence for aural harmonics and 

what is the contribution of two-tone nonlinearity in this 

connection. 

8.2.1. Evidence for aural harmonics. 
eneration 

Possible site of their 

As far as we are aware, the first study on the linearity 

of the eardrum and ossicles under physiological conditions 

was performed on the cat by Guinan and Peake (1967) with 

light microscopy in stroboscopic illumination. Unfortunate­

ly, their method was not sufficiently sensitive to show pos-

sible distortion below - 20 dB. Further indications that 

the response of the eardrum and middle ear is linear can be 

found in the data of Rhode (1971) who applied the MOssbauer 

technique in the squirrel monkey, and Wilson and Johnstone 

(1975) who applied a capacitive probe technique in the 

guinea pig. Moller (1974) concludes that, if the conditions 

found in the cat are valid for men too, the middle ear can 

be regarded as a linear element which does not produce any 

distortion components of importance for the perception of 

ordinary sounds. 

Several authors have investigated whether the basilar 

membrane has a linear or a non-linear response. Rhode (1971), 

Rhode and Robles (1974) and Robles et al. (1976) found non-
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linearities near the vibration maximum for levels between 70 

and 110 dB SPL at a frequency of 7 kHz. Such nonlinearities 

were not found by von B§k§sy (1949), Johnstone and Boyle 

(1967), and Wilson and Johnstone (1975). There is a clear 

discrepancy between the results of Rhode and co-workers and 

those of Wilson and Johnstone. So far, it is not known 

whether this is due to a difference in the choice of the 

experimental animal or to a difference in experimental 

technique. 

Models which can describe cochlear nonlinearities were 

developed by Tonndorf (1957, l958a, 1958b, 1959), Kim et al. 

(1974), Hall (1974) and Schroeder (1975). Tonndorf using a 

scale model of the cochlea, made an extensive study of fluid 

movement in the scalae and its relation to membrane displace­

ment. The displacement pattern of the basilar membrane 

shows peak clipping if stimulated by a "pure tone" at an 

equivalent level above 80 dB SPL. This is caused by "Bekesy 

eddies".· The harmonics generated travel back to the places 

on the basilar membrane corresponding to their own particular 

frequencies. Tonndorf (1958b) demonstrated such travelling 

waves in the cochlear microphonics 

at levels of 90 dB SPL and above. 

of guinea-pig cochleas 

However, Rhode (1971) 

found no peak clipping in the squirrel monkey. Furthermore, 

Wilson and Johnstone (1975) found the displacement of the 

guinea-pig basilar membrane to be linear. Finally, Dallos 

and Sweetman (1969), measuring cochlear microphonics in the 

guinea-pig, found that harmoniCs at low levels (60 dB SPL) 

do not give rise to travelling waves but are restricted to 

the site of the fundamental. Under these level conditions, 

distortion is attributed to the mechano-electric conversion 

process in the hair cells. At higher levels the results 

(Dallos, 1973) do not appear to show any clear tendency to 

favour either a localized process or travelling waves. The 

over-all experimental evidence, therefore, does not seem to 
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favour Tonndorf's findings. 

Kim et al. (1974), Hall (1974) and Schroeder (1975) post­

ulated a nonlinear relation between membrane velocity and 

pressure. Their model describes the nonlinearity found by 

Rhode (1971) and the behaviour of the cubic difference tone. 

Even-order distortion products can be obtained with this 

model by introducing an asymmetrical relationship between 

current and resistence. Robles et al. (1976) did not des­

cribe in detail the nonlinearity they found, but only stat­

ed that the model gives good agreement with their results. 

The question of whether mechanical nonlinearity can give 

rise to even-order distortion products or whether aural 

harmonics are generated by another kind of mechanical non­

linearity is thus still open. 

In spite of the fact that aural harmonics can be gener­

ated so easily in a model, single-cell recordings in the 

auditory nerve and the cochlear nucleus have never revealed 

any indication of the existence of aural harmonics so far, 

either in the form of peaks in patterns such as "t ... ming 

curves" (Kiang et al., 1965) or as a contribution to period 

histograms (Rose et al., 1974). 

Summarizing, we may safely conclude that aural harmonics, 

if present, are not generated in the eardrum or the middle 

ear. Generation in the mechanical part of the cochlea can­

not be excluded. There must, however, remain doubt about 

such generation because of Wilson and Johnstone's results 

(1975) and because there is no evidence for their presence 

from single-cell recordings. It may be that aural harmonics, 

once generated, are suppressed due to "two-tone suppression". 

We will discuss this briefly in the next section. 

8.2.2. Aural harmonics in relation to two-tone interaction 

The aural harmonics hypothesis involves the description 

of the phase effects in terms of vector summation of component 
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II and an assumed aural harmonic. Direct application of the 

model would imply that the loudness of component II when 

¢1=¢max is higher than that of component II in the absence 

of component I. Our loudness data confirm this at lower val-

ues of L2 ; but at higher values of L2 we generally found 

that the loudness at ¢'
1 

=¢max is lower than the original value 

(Fig. 6.4). Similar conclusions can be drawn from the 

results of the pulsation-threshold experiments. The curves 

for L2= 25 dB SPL in Fig. 6.2. agree with the picture of 

vector summation, while those for L
2
= 45 dB SPL do not. 

We concluded in Chapter 6 that the pulsation threshold 

and loudness results are subject to "two-tone suppression" 

and "two-tone enhancement" effects. If we assume that aural 

harmonics are involved in phase effects, we may, therefore, 

conclude that they are also influenced by two-tone suppres­

sion and enhancement. This view, which as far as we know 

has never been expressed in the discussion about aural 

harmonics in the literature before, provides a second argu­

ment against the supposition that component II can be regard­

ed as an independent probe tone. 

In Chapter 3 we gave arguments why 1 in our opinion, the 

pulsation-threshold method is the best technique available 

at the moment for study of two-tone interaction since the 

results obtained with it resemble single-cell recordings 

from the auditory nerve and cochlear nucleus. In the pres-

ent discussion we shall examine whether peaks are present 

in the pulsation threshold patterns of pure tones at ft=2f
1 

(see section 8.2.4). Before doing so, however, we will re-

view what is known about the localization of the two-tone 

interaction. 

8.2.3. The site of two-tone interaction 

The place along the basilar membrane or in the organ of 

Corti where two-tone interaction might take place is still 
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unknown. Most investigators assume the source of two-tone 

nonlinearity to be localized after the process of mechanical 

filtering. Furman and Frischkopf (1964) suggested that it 

might be due to interaction of receptor-neuron elements. 

Pfeiffer (1970) assumes the site of two-tone nonlinearity 

after the mechanical filter. Duifhuis (1976) situates it in 

the transfer of the movement of the membrane into that of the 

hairs. On the other hand, Schroeder (1975) assumes two­

tone nonlinearity to originate from a nonlinear loss mech-

anism in the movement of the basilar membrane. There are 

a number of reasons for disagreeing with Schroeder. In the 

first place, we concluded in section 8.2.1. that evidence 

is available that the response of the basilar membrane is 

linear. Secondly, our own results show that suppression is 

already present at a relatively low level (L
2

= 45 dB SPL; 

see Fig. 6.2). A third objection is that the pulsation 

threshold first decreases and then increases again with in­

creasing value of L
1

. If we take these objections into ac­

count, it seems justified to localize the two-tone nonlinear­

ity after the mechanical filtering. 

8.2.4. Which comes first~ two-tone interaction or generation 
of aural harmonics (if present)? 

We have seen in the above sections that the opinions 

about the sites of a possible mechanical nonlinearity and of 

two-tone nonlinearity are far from unanimous. Nevertheless, 

we may select two possible sequences of these two processes 

as being most likely. One is generation of aural harmonics 

in the mechanical part of the cochlea followed by the two-

tone nonlinearity. The other is that aural harmonics (if 

present) are generated at the same stage as two-tone non­

linearity, after the mechanical filtering. 

We will discuss these two possibilities in turn, without 

considering whether aural harmonics are actually present, 
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but only whether the phase effects can be described in terms 

of aural harrnonics 1 if they exist. 

Generation of aural harmonics in the mechanical part of 

the cochlea implies that component I and the vector sum of 

the aural harmonic and component II together form a new two­

tone stimulus which is subject to suppression and enhance-

ment. The data presented above enable us to check this 

statement. 

We repeat our assumptions. First, the assumed aural 

harmonics are considered to be due to mechanical distortion 

in the ear. The second assumption is that the two-tone non-

linearity is introduced after the mechanical distortion 

stage. Our third assumption is that we consider the puls-

ation threshold as representing the output of a system con­

sisting of the two above-mentioned stages in the order in­

dicated. 

Our aim is to estimate the levels of these assumed aural 

harmonics with the aid of Fig. 6.2, taking the nonlinear 

phenomena into account. On the basis of these results we 

can decide whether one may expect a peak in the pulsation 

patterns of the corresponding lower-frequency components 

alone. 

Let us consider Fig. 6.2. It is reasonable to suppose 

that the values of L
1 

and L
2 

at which the difference in 

pulsation threshold between ¢max and ¢min is maximum cor­

respond to conditions under which the mechanical levels of 

the aural harmonic and the higher-stimulus component are 

equal. For instance, complete cancellation takes place for 

The mechanical level of 

the aural harmonic must therefore correspond to 25 dB SPL. 

These mechanical levels are given in the second colum of 

Table S.I. The corresponding values of L
1 

are given in the 

first column. We note that the level of the assumed aural 

harmonic rises about three times as fast as the value of L1 . 
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e'1uivolenl level of contribution of 
equivalent level of 

pulsation I aural hormooic output level of 
ll mechanical aural component I without 

+ component II at 
threshold at I suppression 

aural harmonic 
harmonic aural harmonic 

<!>"' 10° "'= 10° l 

70 dB SPL 25 dB SPL ~22dBSPL 31 dB SPL 32 dB SPL ~1 dB 26 dB SPL 

74 dB SPL 35 dB SPL ;;;;22dBSPL 41 dB SPL 35 dB SPL +6 dB 33 dB SPL 

77 dB SPL 45 dB SPL 32 dB SPL 51 dB SPL 39 dB SPL I + 12 dB -• 

Table 8. I. 

*could not be determined for reasons given in the text. 

Calculation of the 
needed to describe 
in section 8.2.4. 

output levels of the hypothetical aural harmonic 
the data of Fig. 6.2. The calculation is explained 
The different coluMlS contain the following data: 

l) The values of 1
1 

for which the calculation is performed. 
2) The equivalent mechanical levels of the hypothetical aural harmonic. 
3) The contribution of component I after the effect of the aural harm­

onic has been cancelled out. 
4) The equivalent mechanical levels of the agral harmonic added at the 

correct phase to component II (¢ 1=¢ =10 . 
5) The pulsation threshold at cbl= 10° max 
6) The suppression (the difference between the values in columns 4 and 

5). A negative suppression indicates "enhancement". 
7) The output levels of the hypothetical aural harmonic. 

This does not fit in with the idea of quadratic distortion. 

Fig. 6.2. shows that the cancellation of the assumed 

aural harmonic by component II is not complete. The residual 

masking under the cancellation conditions (e.g. for L1=77 dB 

SPL, L2=45 dB SPL and ¢1=100°) may be interpreted as an out­

put due to the flat slope of the stimulation pattern of com-

ponent I. This contribution for the three values of L1 is 

given in the third column of Table 8.I. 

Reinforcement of the assumed aural harmonic and component 

II (¢
1
=10°) for the value of L1 in the first column of Table 

S.I. leads to an increase of 6 dB in the mechanical level. 

These values are given in the fourth column. The correspond-

ing pulsation thresholds are given in the fifth column. The 

difference between the fourth and fifth columns yields the 

degree of suppression, which is given in the sixth column. 
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A negative value here indicates enhancement. 

We must subtract 6 dB from the values given in the fifth 

column to obtain the output levels of the aural harmonic 

during the presentation of the lower-frequency component 

alone. However, th-is reduction is generally coupled with a 

fall-off in suppression. For L
1

=70 dB SPL there is no sup­

pression, so the output level of the aural harmonic corres­

ponds to 32-6=26 dB SPL. This value is given in the seventh 

column of Table 8.I. For higher values of L1 a decrease in 

L
2 

by 10 dB corresponds to a decrease in suppression by 6 

dB. Therefore, for L
1

=74 dB SPL the resulting decrease of 

the output is 2 dB (6-;
0

.6 dB) yielding 35-2=33 dB SPL. 

This reasoning does not hold for L
1

=77 dB SPL, as the output 

level given in column 4 (39 dB SPL) conta~ns the assumed 

aural harmonic together with a considerable contribution 

from the lower-frequency component itself (33 dB SPL; column 

3). Theref9re, subtracting 2 dB from the value of 39 dB SPL 

in column 5 would yield too high a value for the aural harm-

onic. 

The results given in column 7 show that the difference 

between the output due to the assumed aural harmonic and 

that due to component I without the aural harmonic (column 

3) is maximum for L
1

=74 dB SPL (33 as compared with ~22 dB 

SPL). This means that we would expect a peak in the puls­

ation pattern of a 400 Hz tone of L
1

=74 dB SPL in the test­

tone frequency region around f 2 . This pattern was deter­

mined by the same observer as Fig. 6.2., and is shown in 

Fig. 8.1. (full line). There is no evidence of a peak. 

The absence of peaks at ft=2f
1 

was noticed earlier by Munson 

and Gardner (1950) who measured masking patterns of pure 

tones with forward masking. 

It must thus be concluded that our experimental data of­

fer no support for the view that the phase effects are 

caused by mechanical aural harmonics. This conclusion is 
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result that would be expectea if the effects of phase on the pulsation 
threshold level were caused by mechanical aural harmonics (see section 
8. 2 .4). 

supported by the fact that no beats can be heard when the 

octave complexes are presented dichotically (see Chapter 4) 

Consequently we must conclude that our phase effects cannot 

be explained on the assumption of vector summation in com­

bination with two-tone interaction. 

The remaining possibilities are either that a second 

harmonic is generated at the same stage as that at which 

the two-tone nonlinearity occurs, or that the two-tone non­

linearity brings about phase effects in the pulsation thres­

hold and the loudness without a second harmonic playing a 

rOle. This implies that the phase effects must be generated 

at a stage after me~hanical filtering, e.g. in the hair-cell/ 

neuron transducer. In any case, a possible explanation of 

these effects would be incomplete if it did not explain the 

pitch effects too. 
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Clack et al. (1972) applied the vector-summation model 

to the effects of phase on the masked threshold of component 

II and estimated the levels of the assumed aural harmonic as 

a function of L1 . In the masking method used by these aut­

hors, the masker (component I) and the test tone (component 

II) are presented simultaneously. This has the disadvantage 

that the two-tone nonlinearity is overlooked (see also Chap­

ter 3). The arguments given above indicate that the levels 

calculated by Clack et al. do not reflect mechanical aural 

harmonics. If the phase effects originate from two-tone 

nonlinearity, the results of Clack et al. need to be re­

interpreted. 

8.2.5. Discussion of findings which seem to be in favour of 
vector summation 

In the preceeding sections we concluded that the phase 

effects cannot be described in terms of vector summation of 

component II and an aural harmonic. This fact together with 

the absence of beats when the octave complexes are presented 

dichotically indicates that aural harmonics 1 if present, do 

not behave like externally presented tones. However, there 

are some phenomena which at least at first sight, do seem 

to be in agreement with the concept of vector summation. We 

review them below in order to find out whether or not they 

really are in disagreement with the above conclusion. 

First, the form of the curves for L2=25 dB SPL in Fig. 6.2. 

is very much like what we would expect in the assumption of 

vector summation, although no corresponding peak is present 

in the pattern for component I alone. Further, very reason­

able levels of "aural harmonics" can be estimated from the 

results of tone-on-tone masking experiments, even though 

these harmonics are not in fact present. 

Another point of agreement is found in an experiment 

performed by Schouten (1938). He minimized the strength of 
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the beats in the frequency combination 200/406 Hz by adding 

a 400 Hz tone v.;ith an appropriate phase. The experiment was 

repeated and the result confirmed by Schoonderbeek (1976) 

for six observers and different frequency combinations. 

Both these authors interpreted their results as indicating 

the existence of aural harmonics; but the existence of such 

an effect can also be explained in the light of our experi­

mental results by assuming that two types of beats are pre­

sent: that of the combination (£ 1 , £ 2+6£) and that of the 

combination ( £
2

, £:2+6£) ~vhich oppose one another. 

Schouten (1938) performed another experiment, the result 

of which seems to support not only the idea of vector sum­

mation but even the audibility of "aural harmonics". 

Schoonderbeek (1976) also repeated this experiment with dif-

ferent observers and frequency combinations. The experi-

mental procedure is as follows. A continuous component I 

and a pulsating component II (200 ms on and 200 ms off) are 

presented together. A phase and a value of L
2 

can be found 

at which the observer no longer perceives the addition of 

component II but rather the removal of something. Con tin-

ued listening results in a shift of the attention so that 

one has the impression that in the intervals in which only 

component I is present a tone with a pitch roughly corres-

ponding to a frequency f 2 is added. If component II is swit-

ched off, this higher-frequency tone remains audible as a 

continuous tone for a few moments. 

The effect can be understood quite easily in the light 

of our pulsation-threshold data. Fig. 6.2. shows that, 

under specific level and phase conditions, the pulsation 

threshold for the complex at ft=£ 2 is lower than that for 

component I alone. Under these conditions a gap was found 

in the pulsation pattern of the complex around ft=£ 2 , where­

as such a gap was absent in the pattern of component I alone. 

Alternate presentation of these two patterns focusses 
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the attention on the area which varies: the frequency region 

around £
2

. The pattern without the gap (component I) can 

then be interpreted as the addition of a sensation corres­

ponding to the frequency £
2

. 

On the other hand, some of our observers reported that 

they could hear a second harmonic in a continuous pure tone 

directly, without the addition of a component II as in 

Schouten's experiment. The ''harmonic'' was perceived as be-

ing slightly too high in pitch with respect to the frequency 

f2. 

It is possible that such sensations exist without obser-

vers being clearly aware of them. Our conclusion formulated 

in the previous section only implies that, if present, they 

do not originate from mechanical distortion but from a stage 

after the mechanical filtering. In any case, our findings 

are not necessarily in contradiction with Plomp 1 s (1967) 

conclusion that it is possible to hear aural harmonics, but 

by no means everyone possesses this ability. 

2. 4. 2) . 

(see section 

In conclusion, we may state that the experimental res­

ults we have reviewed, whlch were regarded as supporting the 

concept of vector summation, can also be interpreted in 

other ways. 

8.2.6. The simultaneously-masked threshold of component II 
as a function of L ]--------------------

Plotting the simultaneously-masked threshold of compon­

ent II (component I as masker) as a function of L
1

, gives a 

curve with a slope 2 for some frequency combinations. This 

slope has been often considered as an indication of quad­

ratic distortion (see Chapter 2). We have two arguments 

against this reasoning. First, a slope of two is only found 

with simultaneous masking when two-tone interaction is over-

looked. Secondly, we found that the slope varies with the 
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frequency of the masker (Table S.II). Phase effects are 

also found when the slope differs from 2 (see also Nelson 

and Bilger, 1974). 

8.3. Conclusions 

1) The effects of the phase on loudness and pulsation thres­

hold cannot be explained in terms of mechanical aural harm­

onics, for the following reasons: 

a) the aural harmonics needed to describe the phase ef­

fects when two-tone suppression is taken into account 

are absent in the pulsation patterns of the lower­

frequency component alone. 

b) no beats can be heard when the octave complex is 

presented dichotically (one component to each ear) . 

2) The phase effects, and sensations of second harmonics 

which some observers seem to be able to hear, probably ori­

ginate in a stage after mechanical filtering, e.g. in the 

hair-cell/neuron transducer. 
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CHAPTER 9 

IMPLICATIONS OF THE RESULTS FOR THE WAVEFORM HYPOTHESIS 

9.1. Relation between the dependence of the phase for min­
imum (maximum) pulsation threshold on ft and the wave­
form of the basilar-membrane motion 

The last question formulated in section 2.5 concerned 

the possible relation between the observed phase effects and 

variations in the stimulus waveform as a function of phase. 

We shall now consider whether such a relation does exist, 

with reference to the dependence of the phase for minimum 

or maximum pulsation threshold on ft (Fig. 7.2) and the de­

pendence of the phase for minimum loudness on the frequency 

combination (Fig. 7.8). 

Let us first look at the curve for the 200/400 Hz fre­

quency combination in Fig. 7.2. A variation of this form 

can be expected if we assume that the minimum and maximum 

pulsation thresholds each correspond to a waveform on the 

basilar membrane with a specific phase relation between the 

components. This can be demonstrated qualitatively with the 

aid of the phase characteristic of the motion of the basilar 

membrane, as determined by Rhode (1971). This characterist­

ic shows a linear relation between phase lag and frequency 

for frequencies which are low compared with that frequency 

for which the site under investigation is maximally sensitive 

(7.1 kHz). This implies that the velocity of the travelling 



104 

waves on the basilar membrane is independent of frequency. 

Thus, the phase relation in the travelling wave, due to an 

octave complex will not alter along the membrane on the 

stapes side (i.e. the side away from the peak corresponding 

to component II). Indeed, the curve of Fig. 7.2. reaches a 

plateau for values of ft much larger than £ 2 . When, how­

ever1 the frequency is increased till it approaches that 

for maximum sensitivity, the phase lag in the phase charact­

eristic measured by Rhode increases faster than correspond­

ing to the linear relation for lower frequencies. This im­

plies that near the place of maximum sensitivity for com­

ponent II the phase relation in the travelling wave alters 

in such a way that the phase of component II decreases going 

from stapes to apex. This in its turn implies that the 

value of ¢
1 

in the s·timulus waveform has to be decreased in 

order to maintain the same waveform at all places along the 

basilar membrane. If the minimum and maximum pulsation 

thresholds each correspond to a specific waveform, the value 

of ¢
1 

at which the minimum or maximum occurs must thus de­

crease with decreasing f. , which is indeed found to be the 
1: 

case. 

The correspondence of both the minimum and maximum puls­

ation thresholds to constant phase relations in the wave­

form along the basilar membrane is less marked for the com­

binations 400/800 Hz and 760/1520 Hz than it is for the com­

bination 200/400 Hz. Nevertheless, the same trend is found. 

The results for a frequency ratio 1:3 with f 2=400 Hz were 

quite different, however: the pulsation threshold could be 

minimized over a wide test-tone frequency range (the ratio 

bet"~Neen ft and f . being 2. 3) but the phase at which 
max trnln 

this occured did not depend on ft. 

We can imagine two effects that might be responsible for 

these differences between the results for the different fre-

quency combinations. First, we may assume the scanning of 
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the varying waveform along the basilar membrane involves 

some kind of averaging of the different waveforms within a 

region. The variation of the size of the interaction region 

indicated in Fig. 7.3. may be taken as evidence for this. 

When the area within which the averaging occurs increases, 

the accuracy of the "scanning" will decrease. This will 

result in a decrease of the range over which the value of 

¢1 at which the pulsation threshold is minimum varies as a 

function of ft. On this assumption, it is plausible that 

the phase at which the pulsation threshold is minimum for 

£ 1 :£ 2=1:3 and £ 2=400 Hz does not depend on ft, since the 

width of the interaction region here corresponds to a factor 

2.3 as compared with a factor 1.3 for the 200/400 Hz com­

bination. 

Secondly, the part of the phase characteristic which is 

scanned may be different for the different frequency com-

binations. For the higher-frequency combinations this part 

would be near the beginning of the characteristic, where 

there is a linear or a nearly linear relation between phase 

lag and frequency. For lower frequency combinations it 

could be nearer the end of the characteristic where a clear 

deviation from the linear relation for the beginning of the 

characteristic exists. We have not been able to check the 

validity of the two suppositions. 

The deviation from a linear relation between phase and 

frequency can be identified as dispersion, i.e. the effect 

that the velocity of the travelling wave depends on fre­

quency. It is commonly found in the results of measurements 

of the motion of the basilar membrane (Rhode, 1971), and 

Wilson and Johnstone, 1975). In electrophysiological data, 

however, it is sometimes absent. Anderson et al. {1971) 

found a linear relation between the phase lag of the nerve 

discharges and the stimulating frequency in auditory nerve 

fibres of the squirrel monkey, even for a unit with a "best 
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frequency" of 200Hz. On the other hand, Pfeiffer and 

Molnar (1970) did find a dispersion-like relation for the 

discharges in cochlear fibres of the cat for units with best 

frequencies above 1000 Hz. Below 1000 Hz they found either 

a linear relation or even the opposite effect: a slower 

increase in the phase lag when the stimulating frequency 

increased up to the best frequency. Like our psychophysical 

data, these electrophysiological results do not reveal an 

unequivocal relation with the mechanical phase characteristic. 

9.2. What waveform corresponds to minimum loudness? 

It may be concluded from Fig. 7.8. that neither the min­

imum nor the maximum loudness corresponds to a constant 

waveform on the basilar membrane at the shapes for all fre-

quency combinations. However, it must be realized that both 

¢1=¢min and ¢ 1=¢max correspond to the situation for the puls­

ation threshold at ft=f 2 . This does not reflect the situ­

ation at the basal end of the membrane. Still 1 the phase 

relation continues to depend significantly on frequency 

even after correction for this difference. The dependence 

might equally well be due to the effects suggested in the 

previous section. If the area over which the varying wave-

form is averaged varies, the averaged phase may change as 

well. Similarly, differences in the averaged phase can 

appear when the interaction region covers different parts of 

the phase characteristic for the different frequency combin­

ations. Anyway, we cannot indicate one particular phase 

which gives rise to either minimum (maximum) pulsation­

threshold level or minimum (maximum) loudness. 

The values of the phase of component II at the entrance 

of the external meatus for which the loudness of component 

II is minimum (¢ 2a) or the masked threshold is maximum, as 

reported in the literature, reveal a wide variation. Nelson 

and Bilger (1974) reported a value of 90° for all frequency 



107 

combinations. Terhardt and Fastl (1971) found a value of 

90° for the combination 200/400 Hz and Kuriyagawa and 

Kameoka (1966) a value of 82° for the combination 440/880 

Hz. De Boer and Bouwmeester (1975) reported values decreas­

ing from around 360° for the combination 400/800 Hz down to 

60° at 1200/2400 Hz. This decrease is in agreement with 

our results above 500/1000 Hz. The variation in the values 

of ¢2 a found in the literature may be due to the use of dif­

ferent headphones and cushions. Some authors mentioned 

that the phase shift between the electric and acoustic sig­

nal was measured by means of an artificial ear, which makes 

mutual comparison difficult (see Chapter 7). 

Rose et al. (1974) studied the discharges in single units 

of the cochlear nucleus of the cat. For the frequency com­

bination 380/760 Hz the period histogram for minimum dis­

charge rate could best be described by the equation 

f(t)= A1 sin (2n£ 1t) + A2 sin (2n2£1 t+ 90°). 

It is not known whether this phase relation is frequency de­

pendent and what the relation is with the phase in the 

acoustic signal. 

9.3. Implications for the pitch effects 

The results presented in Chapter 7 revealed that the ef­

fect of phase on the pitch of component II is caused by a 

shift in the place determining the pitch in some internal 

representation. The pitch perceived corresponds to the fre­

quency of a pure tone for which that place is maximally 

sensitive. We also saw in Chapter 7 that the pitch of com­

ponent II in the 200/400 Hz frequency combination corresponds 

to the value of ft at which the pulsation threshold has the 

maximum value belonging ·to that test-tone frequency. Further­

more, for this combination the maximum pulsation threshold 

corresponds to a specific waveform. Combining these two 

facts and considering ft in terms of place along the basilar 
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membrane, ~Ne may conclude that the pitch corresponds to the 

place along the basilar membrane at which a specific wave­

form is found. The pitch is determined by the frequency of 

the pure tone corresponding to that place. This conclusion 

holds for the 200/400 Hz frequency combination. 

It should be further remarked that we do not know which 

waveform is involved here, for the reasons explained in 

section 9.2. Moreover, it remains an open question whether 

the characteristic of this specific waveform which makes it 

sui table for determini-ng the pitch is that it evokes a max­

imum spike rate in the connected neurons (reflected in our 

pulsation-threshold measurements) or that i·t conditions the 

spikes in some other way, e.g. by giving them a special time 

structure. This question was already involved in Chapter 6, 

where we failed to find a shift of a peak in the pulsation 

pattern as a function of ¢
1

. Patterns measured with forward 

masking, however, do shov.1 such a shift in a restricted phase 

region, as was found by Schoonderbeek (1976) for the 400/ 

800 Hz frequency combination. The maxima in these patterns 

were determined by means of an averaging technique. The 

values of ft corresponding to these maxima are plotted 

against phase in Fig. 9.1. (circles). In addition, 

Schoonderbeek measured the pitch of component II as a func­

tion of the phase for the same frequencies and levels. 

These results are also shown in Fig. 9.1. Although there 

is a partial similarity between the two curves, the ft 

curve lacks the "jump" which is so consistently found in the 

pitch. ThiS would seem to contradict the view that the 

pitch effects are due to a shift of a maximum in the intern­

al representation as measured either by the pulsation­

threshold method or by forward masking. 

The correspondence of the pitch with the place on the 

basilar membrane at which a specific waveform is found may 

indicate why two different pitches can sometimes be heard 
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simultaneously. If there is a large phase variation over 

the area corresponding to component II, the specific wave­

form can be present at different places. The fact that the 

pitch originates from the corresponding "places" agrees with 

current ideas on pitch perception, i.e. with the "internal 

spectrum" concept (see e.g. Houtsma and Goldstein, 1972 and 

Bilsen and Goldstein, 1974). 

Our experimental results are not in agreement with the 

traditional time theory of pitch, in spite of the sawtooth­

like variation of the reciprocal of the time between two 

successive peaks in the complex waveform as a function of 

phase. In the complex waveforms of the off-ratio stimuli 

mentioned in Chapter 5 the interpeak distances become larger 

and larger with increasing L1 . According to the time theory 

this would imply a decreasing pitch. However, the pitch is 
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actually found to increase (Fig. 5.1). The relation found 

between the pitch effects in the on-ratio and off-ratio sit­

uations allows us to extend this conclusion to octave comp­

lexes and, generally (on the basis of the monotonic course 

of the curves in Fig. 5.3) to all two-tone stimuli. 

Another explanation of the pitch shifts in terms of a 

varying "place" has been given by Egan and Meyer (1950) and, 

more recently, by Terhardt (1972). Terhardt uses the con-

cept of "excitation pattern 11 ("Erregungsverlauf"). This 

should not be confused with the above-mentioned "internal 

spectrum", or "central excitation pattern". The 11 excitat­

ion pattern" as discussed by Terhardt is obtained from the 

simultaneous-masking pattern of a stimulus by plotting the 

excitation level as a function ·of the "tonalness" ("bark"). 

The explanation starts from the fact that the pitch effects 

occur only under conditions of partial masking. The masking 

of - in our case - component II by component I implies that 

a certain part of the excitation pattern belonging to com-

ponent II 

ed by the 

on the low-frequency side of the pattern is remov-

presence of component I. The size of this excit-

ation pattern diminishes more and more as L1 increases, so 

that the maximum of the remaining excitation pattern shifts 

to higher frequencies. Assuming a place-pitch relation, 

this results in an upward pitch shift. 

This explanation has the advantage that use is made of 

the place-pitch relation. Moreover, the fact that partial 

masking is a necessary condition for the pitch shifts 

(Chapter 5) is taken into account. However, the rOle of the 

excitation patterns in the explanation should be considered 

with reserve for three reasons. Firstly, partial masking in 

octave complexes occurs without any pitch shift for ¢1=¢max 

(Fig. 4.4) Secondly, seperate pitches can be heard simult-

~neously. Thirdly, the fact that there is a maximum in the 

pitch shift for frequency ratios 1:2 and 1:3 is not easy to 
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understand in the light of a shift of the excitation pattern. 

9.4. Conclusions 

1) For low-frequency combinations such as 200/400 Hz the 

maximum and the minimum in the pulsation threshold as a 

function of the phase each correspond to a specific wave-

form along the basilar membrane. This conclusion is based 

on the qualitative agreement between the variation of the 

phase at which the pulsation threshold is minimum as a 

function of ft and the variation of the phase relation be­

tween the two components of the mechanical wave on the 

basilar membrane, due to dispersion. 

2) For low-frequency combinations the pitch originates from 

the area in which the waveform that gives rise to the max­

imum pulsation threshold is situated. The pitch corresponds 

to the frequency of the pure tone for which this area is 

maximally sensitive. 

3) The relation mentioned in conclusion 1 is less marked 

for the frequency combination 400/800 Hz and is nearly ab­

sent for the combination 760/1520 Hz. However, the trend 

is the same. 

4) Neither the minimum loudness nor the maximum pulsation 

threshold corresponds to a specific phase relation in the 

waveform of the motion of the basilar membrane at the 

stapes for all frequency combinations. 
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PART V 

DYNAMIC ASPECTS AND MODEL 

CHAPTER 10 

PULSATION THRESHOLD IN RELATION TO FORWARD MASKING. 
EVIDENCE FOR THE PRESENCE OF TWO DYN~MIC SYSTEMS 

IN THE PERIPHERAL AUDITORY PATHWAY 

10.1. Introduction; the onset-threshold method 

The results presented in the preceeding chapters have 

led us to the conclusion that the origin of the phase ef­

fects in octave complexes is probably to be found in the 

hair-cell transducer system. Physiological evidence sug-

gests that this system has a restricted dynamic range. Sin-

gle-unit recordings in the auditory nerve indicate a relat­

ively narrow dynamic range of about 40 dB (see e.g. Kiang 

et al., 1965). However, the dynamic characteristics deter-

mined with the aid of the pulsation-threshold method (i.e. 

the pulsation threshold measured as a function of the mas-

ker level) indicate a very wide dynamic range: from thres-

hold up to 80 dB, without any indication of saturation 

(Houtgast, 1974; similar results have been found in our own 

investigations). 

One reason for this might be that in the pulsation­

threshold method the test tone at the threshold has the same 

"' "internal strength" as the masker. Saturation for the 

~See Houtgast (1974b), who states that the test tone is perceived as 
continuous when the corresponding neural responses to the masker and 
the test tone are continuous. 



ll3 

masker would then coincide with saturation for the test-tone 

and would not be measurable by this method. Forward-masking 

measurements, in which two-tone suppression is involved as 

well*, might offer a way out of this difficulty. In these 

experiments the levels of the test tone at threshold are 

much lower than those found with the pulsation-threshold 

method. Since the dynamic characteristics for masker and 

test-tone differ, saturation may be measurable in forward 

masking experiments. 

Another possible explanation is that the system as stud­

ied with the aid of the pulsation-threshold method consists 

of two (or more) sub-systems which are excited successively. 

When the stimulus level is increased saturation might occur 

in the most sensitive system at a stimulus level for which 

the second system starts to be excited. It might be possible 

to separate these sub-systems on the basis of a difference 

in adapti~e properties, i.e. if the first sub-system decays 

more slowly than the second one. This could be checked by 

measurements involving a variable time interval 6 between 

masker and test tone. 

We, therefore, decided to carry out forward-masking exp­

eriments at different values of 6, in order to determine 

whether saturation can be found under these conditions or 

whether different dynamic systems with different adaptive 

properties are involved. The results obtained in this way 

will be projected back on the pulsation-threshold results. 

We have also developed a new method using the same stim­

ulus configuration as in the pulsation-threshold method, but 

with an adjustable time interval between masker and test­

tone pulse. We call this the "onset-threshold method". It 

has the same sensitivity as the pulsation-threshold method, 

" See Houtgast (1973) and Shannon (1976). Shannon calls the decrease in 
fonvard masking due to the addition of a second masker tone "unrnasking11

• 
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but differs in the detection criterion used. This detection 

criterion is the same for all values of 6 (in practice, we 

took 6=50 rns) and is related to the onsets of the test tone. 

At high test-tone levels these onsets are clearly audible. 

As the level is lowered, the onsets become weaker and final-

ly inaudible. The highest test-tone level at which the on-

sets can no longer be heard is defined as the onset thres-

hold. The time interval 6 is introduced symmetrically on 

both sides of the test-tone pulse, for reasons explained 

below. For 6=0 rns the onset criterion and the continuity 

criterion as used in the pulsation-threshold method give 

the same results to within a few decibels. 

Before going on to describe our experiments, we will 

describe a method which may be used for interconversion of 

the results obtained with the pulsation-threshold method, 

the onset-threshold method and forward masking, so as to 

permi't comparison of the experimental results. 

10.2. A method for interconversion of the pulsation­
threshold, onset-threshold and forward masking data 

The experimental results of Houtgast (1973) and Shannon 

(1976) have demonstrated that all non-simultaneous masking 

procedures are basically measuring the same internal rep-

resentation. We will now explain this assertion, with ref-

erence to a hypothetical system with a large dynamic range 

of 100 dB. Fig. lO.la shows schematically the decay of the 

response after the termination of a stimulus (frequency fs) 

for a certain test-tone frequency (ft). The output in dB 

with respect to an arbitrary reference level is plotted 

against time T, and the input levels of the stimulus (L ) 
s 

are indicated against various decay curves~. The output 

*rn order to avoid confusion with the experimental results, in the dis­
cussion of the hypothetical systems both here and with reference to 
Fig. 10.8., the symbols L , f and Tare used to indicate the stimulus 
level and frequency, and ~he decay time, respectively. 



Fig. 10.1. 

Decay curves and dynamic 
characteristics for a hypo­
thetical system with a wide 
range (100 dB) . L is the 
input level (in dBswith re­
spect to an arbitrary ref­
erence level), and T the 
time after the termination 
of the stimulus in arbitrary 
units. The termination of 
the stimulus is indicated 
by the vertical broken 
line. 
(a) Response level and de­
cay of the response after 
the termination of the 
stimulus. 
(b) Dynamic characteristics 
for different values of T, 
derived from (a). The 
characteristic for T=o re­
flects the situation dur­
ing the presence of the 
stimulus. 
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at T=o reflects the response during the presence of the stim­

ulus. 

In the pulsation-threshold method the threshold is assum­

ed to be reached when the test-tone input level Lt is adjust­

ed until the response to the test tone equals that to the 

stimulus in the frequency region ft at a certain value of Ls. 

Inspection of Fig. 10 .. 1. a. indicates that for Ls =80 dB the 

pulsation threshold is reached when Lt is adjusted until the 

response to the test tone equals 40 dB. When ft=f
5 

the 

pulsation-threshold method yields the trivial result Lt=Ls. 
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In practice there will be a difference of a few decibels due 

to the just noticable difference in level. In any case, the 

pulsation-threshold method can be used to determine the dyn­

amic characteristic of the system, the response being expres­

sed in terms of the input level of the test tone. 

In a forward-masking set-up, with the above f
5
/ft com­

b1eivneat1io0nf,SLd5-8-~o. dB and e.g. T=l2, the system gives a response 
In order to compare this method with the 

pulsation-threshold method we are not so much interested in 

the 8 dB response at ft but in the input level of a stimulus 

of frequency ft needed to give a 40 dB response at T=O. 

This can be found in the forward-masking set-up by determin­

ing the level of a stimulus of frequency ft that evokes the 

8 dB response in question at ft and T=l2. The output for 

L =80 dB and T=l2 is then expressed at the equivalent level s 
(Leg) of this stimulus. In this procedure it is assumed 

that a given response level always decays in the same manner, 

independently of the way in which it is evoked. With the 

system indicated in Fig. 10.1, for each f /f combination 
s t 

the procedure gives the same characteristic as found by the 

pulsation-threshold method for all values of T. The pro-

cedure is trivial for f =f , yielding L =L at each value 
s t eq s 

of T, which is - within a few decibels - also the result 

found with the pulsation-threshold method. Thus, for the 

system assumed in Fig. 10.1. the correct dynamic character­

istic can be measured both by forward masking and by the 

pulsation-threshold method. The transformation procedure 

just described is applicable to the onset method as well. 

XOutput variations of 10 dB at T=O fall to 2 dB at T=l2 in our example, 
i.e. the sensitivity of the method decreases with increasing T, as in­
dicated schematically in Fig. lO.l.b. Moreover, even at T=O forward 
masking can have a lower sensitivity than the pulsation-threshold method 
because of the different criteria used in the two methods. 
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10.3. Experimental method 

The experiments were carried out with pure-tone maskers, 

either of frequency 

and level 

fm=f 1 and level L1 or of frequency 

L
2

. The test tone had the frequency 

These stimuli are the separate components of octave 

complexes. 

eously. 

In a later stage, they were presented simultan-

As explained in section 10.2, the difference in sensit­

ivity of the three methods can be compensated for by expres-

sing the pulsation threshold, the onset threshold and the 

forward-masked threshold of the test tone in terms of the 

equivalent level L2 (Leq) of a stimulus tone of frequency £ 2 
needed to obtain the same threshold. The procedure is illus-

trated with idealized diagrams in Fig. 10.2. For the puls-

ation-threshold method the transformatior. procedure implies 

a shift of only 1 to 2 dB. 

70 

50 

30 

10 

The stimulus conditions for the pulsation-threshold and 

masker frequency f
1

-::/: ft 
70 

masker frequency f
2 

== ft 
70 

masker frequency f
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-::/- ft 

(transformed curve) 
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' I 
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Fig. 10.2. 

Transformation procedure for expressing the masked threshold L of a 
test tone of frequency f for a pure-tone masker of frequency ~ Tf in 
terms of the equivalent level L of a pure-tone masker of freq~en~y 
f =f needed to give the same m~~ked threshold. The procedure is il­

m t 
lustrated for a level L10 of the masker tone of frequency f ~f . The 
transformation from the value of L to L is indicated by ~etbroken 

t eq 
lines. 

70 
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forward-masking methods have been described in Chapter 3. 

As we mentioned in section 10.2, the stimulus conditions in 

the onset method are identical with those in the pulsation 

method except for a gap of width 6 on each side of the test­

tone pulses. The shape of the gaps was the same in all 

three methods. The forward-masking experiments were per-

formed by a 2-AFC procedure. 

the experiments. 

Two observers participated in 

10.4. Results 

10.4.1. Comparison of pulsation-threshold method with for­
ward masking at 6=0 ms 

Using pure-tone maskers of frequency 760 and 1520 Hz, we 

measured the forward-masked threshold at 6=0 ms and the puls­

ation threshold as functions of L
1 

and L2 respectively, for 

ft~l520 Hz. 

The results for fm=760 Hz were transformed by expressing 

Lt in terms of the equivalent level L2 (fm=l520 Hz) needed 

to reach the same value of Lt' according to the procedure 

illustrated in Fig. 10.2. The transformed dynamic character­

istics for fm=760 Hz obtained by the two methods are shown 

in Fig. 10.3.a. for observer PL and in Fig. l0.3.b. for ob-

server HK. We may note that observer HK performed the puls-

ation-threshold experiment with stimulus and test-tone dur­

ations of 125 ms because he was not able to perform the exp-

eriment for a duration of 300 ms. The experimental points 

indicated by circles correspond to the pulsation threshold, 

the dots to the forward-masking results. 

The forward-masking experiment for the 1520 Hz masker 

was very difficult to perform, owing to the fact that the 

test tone followed the masker pulse immediately. In order 

to facilitate the experiment, a frequency difference of 10 

Hz was introduced between masker and test-tone. Extensive 

measurement of the psychometric curve of the threshold with 



Fig. 10.3. 

Forward-masked threshold 
(6=0 ms) and pulsation 
threshold as functions 
of L . 
(a) ~or observer PL 
(b) for observer HK 
Masker frequency 760Hz. 
Test-tone frequency 1520 
Hz. The thresholds are 
given directly in L , 
obtained by the tra~~­
formation procedure ex­
plained in section 10.2. 
For the pulsation 
threshold the trans­
formation only implies 
a shift of the data over 
1 to 2 decibels. 
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the 2-AFC procedure revealed that two different detection 

criteria could be used, one corresponding to a lengthening 

of the masker pulse and 

lower masked threshold 

a second one which gave rise to a 

(6 dB down at L2=50 dB SPL). The ob-

servers used the lower detection criterion since it is reas­

onable to assume that this represents the "true 11 response 

level. 

Comparison of Fig. 10.3.a and 10.3.b shows that the 

transformed dynamic characteristics measured by the two met­

hods are very similar for observer PL but differ somewhat 
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for observer HK. This difference might be due to the higher 

repetition frequency of the stimuli in the pulsation-thres­

hold method. This assumption is supported by the fact that 

the pulsation-threshold characteristic for observer HK in 

Fig. 10.3.b. is about 10 dB higher than that for observer 

PL in Fig. 10.3.a, for which the presentation was 300 ms. 

In order to study the influence of the duration 1 a pulsation­

threshold experiment was performed with an intermediate pre-

sentation time of 200 ms. The average threshold for observer 

HK was then about 10 dB lower than the transformed forward­

masking characteristic. Thus, although the quantitative 

agreement between the two types of dynamic characteristics 

is not bad, the influence of possible differences in the 

conditions used in the pulsation-threshold method have to 

be taken into account. 

We may conclude that the dynamic characteristics measured 

by the pulsation-threshold and forward-masking methods are 

more or less the same after a correction has been made for 

the difference in sensitivity as described in section 10.2. 

Furthermore, the characteristics at 6=0 ms show no sign of 

a plateau. This indicates that the first hypothesis men-

tioned in section 10.1 has to be rejected: even when the 

"internal" level of the test tone at threshold is much lower 

than that of the masker, saturation is absent. 

We have not considered the onset-threshold method so far 

because for 6=0 ms the results obtained with it do not devi­

ate by more than a few decibels from the pulsation-threshold 

results. 

10.4.2. Forward masking and onset threshold for 6=50 ms 

Dynamic characteristics were now measured for 6=50 ms by 

forward masking and by the onset method. The frequencies frn 

of the pure-tone maskers were 1520 Hz and 760 Hz, and the 

test-tone frequency was 1520 Hz. The results obtained with 



Fig. 10.4. 45 

Forward-masked 
threshold as a 
function of L 
Masker frequeWcy: 
1520 hZ; ft=l520 
Hz, 11=50 ms. Obs. :::::;' 35 
PL. The e:xperi- e; 
ment was perform- ~ 

ed by a 2-!IFC "' procedure. The 
_:;-

horizontal line 
indicates the 
absolute thres-
hold of the short 
test pulse. 

Fig. 10.5. 

Forward-masked thres-
hold as a function of 
for f =760 Hz, 
ft =15~0 Hz and 11=50 
ms. Obs. PL. The 
experiment was per­
formed by a 2-AFC 
procedure. The hor­
izontal line indic­
ates the absolute 
threshold of the 
short test pulse. 
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forward masking for fm=l520 Hz are shown in Fig. 10.4 and 

for fm=760 Hz in Fig. 10.5. The two curves were determined 

by the 2-AFC procedure. 

The onset-threshold characteristics for f =760 Hz are 
m 

shown in Fig. 10.6.a. (observer PL) and Fig. 10.6.b. (ob-

server WJ) . The corresponding pulsation-threshold character-

istics are plotted alongside for the sake of comparison. 

The onset and pulsation thresholds are given in terms of L 
eq 
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20 
obs. WJ 

lbl 

w m w ~ 100 
Lm(dB SPL) 

directly. The transformation procedure only implied a shift 

of the experimental points over a few decibels*. Experiment­

al results obtained by observer WJ for fm=400 Hz and ft=SOO Hz. 

*rn the onset-threshold experiments, for f =f , 
1 

. 
1

t m va ue correspondlng to the start of the p ateau 
L was always below the 
(~0 dB SPL in Fig. 10.4). 
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confirmed the results shown in Fig. 10.6. The two different 

symbols used for the onset results in Fig. 10.6.b, which 

represent data obtained in two different sessions, indicate 

that there are systematic differences of up to 6 dB in the 

results from session to session. However, the shape of the 

curves does not vary. 

We now applied the method of section 10.2. to check 

whether the dynamic characteristics for frn=760 Hz measured 

by forward masking (Fig. 10.5) and the onset-threshold met­

hod (Fig. l0.6.a) yield the same result. The curve at 

6=50 ms (Fig. 10.5), transformed with the aid of the curve 

for fm=l520Hz and 6=50 ms (Fig. 10.4), and the character­

istic for 6=0 ms (the same curve as shown in Fig. 10.3.a) 

are plotted together in Fig. 10.7. This result should be 

compared with Fig. l0.6.a. We may note that the similar­

ity found here only holds for the symmetrical gap conditions 

in the onset-threshold method. When the gap between the 

stimulus and the subsequent test-tone pulse in the onset­

threshold method was 0 ms and the other gap was 50 rns, the 

result was the same as in the pulsation-threshold method. 

On the other hand, under the reverse conditions it was very 

difficult to maintain the same detection criterion and a 

result somewhere in between the two curves of Fig. l0.6.a. 

was obtained. This is why we chose to use symmetrical con­

ditions in the onset-threshold method. 

It may be concluded that plateaus are present in the 

dynamic characteristics determined by non-simultaneous 

masking procedures at 6=50 ms. With forward masking and 

ft~l520 Hz the plateau is reached at Lm~60 dB SPL when 

f =1520 Hz and at 80 dB SPL when f =760Hz. The height of 
m m 

the plateau (i.e. the corresponding value of Lt) is higher 

for fm=l520 Hz (33 dB SPL) than for fm=760 Hz (28 dB SPL). 

A plateau was also found with forward masking and values of 

6 differing from 50 ms by four other observers. 
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The similarity between the transformed forward-masking 

characteristic for f =760 Hz and 6=50 ms and the character­
m 

istic measured by the onset-threshold method implies that 

the latter represents a response that is characteristic for 

-

The onset-threshold and pulsation-t_hreshold methods 

have much the same sensitivity: transformation between these 

two only involves a shift of the data over a few decibels. 

The choice of 6=50 ms in the onset-threshold method is 

based on a compromise 

the one hand, 6 has to 

between two competing effects. On 

be as large as possible in order to 

obtain a distinct plateau. 

On the other hand too large a value of 6 reduces the 

slope of the dynamic characteristic for ft=frn, and thus 

lowers the sensitivity of the method. 



125 

10.5. Discussion 

The transformation procedure shown in Fig. 10.2. was ap­

plied by Houtgast (1974a) for a tone-plus-noise stimulus. 

His transformed forward-masking results showed the same 

trend as his pulsation-threshold results but were about 5 

dB lower. It seems unlikely that the plateaus in the dyn­

amic characteristics for ~=50 ms and ft=fm are caused by a 

shift of the peak in the excitation pattern. The plateaus 

can be found not only for test-tone frequencies of ft=2fm 

but also for ft=fm+30 Hz and fm-30 Hz. 

Munson and Gardner (1950) found a plateau for fm=lOOO 

Hz with ft=lOOO Hz and 950 Hz for 6 =100 ms in forward-

masking experiments. Indications of a plateau can also be 

found in the data of Gardner (1947). There has been some 

discussion in literature as to whether these plateaus really 

do exist (Rawnsley et al., 1952). Referring to our remarks 

on the detection criterion in section 10.4.1, we may state 

that such a discussion should be based on data obtained by 

a forced-choice procedure. Moreover, Lm should be varied 

in small steps in these experiments because the plateau 

might be missed otherwise. 

10.6, Interpretation of the presence of the plateaus in the 
dynamic characteristics for 6=50 ms 

The presence of plateaus in the dynamic characteristics 

for 6=50 ms and their absence for 6=0 rns can be interpreted 

as due to the involvement of two dynamic systems differing 

in range and adaptive properties (a fast and a slow decay) , 

as sketched in Fig. 10.8 (cf. Fig. 10.1). The complete sys-

tern consists of two parts, one with a range from threshold 

to 40 dB and one that takes over the excitation at Ls=40 dB. 

The more sensitive sys·tem has the slower decay. The dynamic 

characteristic of the system as a whole is represented in 

Fig. 10.8.b. by the straight line for T=O. The characteristic 



Fig. 10.8. 

Decay curves and dynamic 
characteristics for a hypo­
thetical system consisting 
of two subsystems, one with 
a dynamic range from zero 
up to 40 dB and a second 
one which takes over the 
response at L

1
=40 dB but 

which has a h1gher decay 
rate (see section 10.6). 
The symbols and scales as 
in Fig. 10 .1. 
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of the more sensitive system, which reaches saturation at 

Ls=40 dB 1 is indicated by the broken line. 

(b) 

It will be clear that a method which detects the response 

at T=O, suCh as the pulsation-threshold method and the for­

ward masking method at 6=0 ms, will reveal the dynamic char­

acteristic of the system as a whole but will not show the 

presence of the more sensitive system. 

However, the two systems are separated more and more by 

increasing the value of T (curves for T=4 and 9 in Fig. 
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10.8.b). The larger the value ofT the more the value of L5 
can be increased before the second system becomes apparent. 

The differences in sensitivity of the responses at the dif­

ferent values of T·can be compensated for as described in 

section 10.2. On the basis of this interpretation it can 

be concluded from Fig. 10.4 that the more sensitive system 

reaches saturation at Lm=60 dB SPL when ft=fm. When ft=2frn 

(Fig. 10.5) saturation in that same system is reached at 

Lm=SO dB SPL. In the latter case, if 6=50 ms, Lm can be 

increased up to 100 dB SPL before the second system becomes 

apparent. 

10.7. Application of the onset-threshold method to octave 
complexes 

Let us now return to the pulsation-threshold results 

described in Chapter 6. As mentioned above, the pulsation 

method deteCts a response at 6=0 ms. On the basis of the 

interpretation just given, this reflects the behaviour of 

the system in its entirety. Thus we cannot be sure which 

subsystem is involved for a given stimulus configuration. 

Moreover, since we performed many measurements as func-tions 

of L1 and L2 , a transition can take place from one system 

to the other at any given level. More ~pecifically this 

difficulty holds for the phase effects measured with the 

pulsation method. Do they originate in the more sensitive 

system or from both? In the latter case, which part of 

them originates in the more sensitive system? To answer 

these questions we must consider the stimulus levels and 

stimulus test-tone frequency combinations for which the 

experiments were performed. We will discuss this point with 

reference to Fig. 6.2. There, the stimuli are two pure tones 

with frequencies f
1 

and £
2
=2f

1
, while the test-tone frequency 

ft equals f
2

. In the pulsation-threshold experiments L
2 

never exceeded 50 dB SPL, so for component II the more 
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sensitive system will not have reached saturation at this 

value of ft~. However, L1 was varied from 60 up to 87 dB 

SPLr so we pass the level (about 80 dB SPL) at which the 

more sensitive system reaches saturation for component I 

and the second system appears. In order to study the phase 

effects for the more sensitive system separately, we deter­

ntined a set of curves comparable to those of Fig, 6.2. by 

the onset-threshold method (~=50 ms) for the frequency com­

bination 760/1520 Hz with ft=l520 Hz. In order to permit 

direct comparison of the results the same experiment was 

performed by the pulsation-threshold method. The results 

for L
2

=35 and 45 dB SPL obtained by the two methods are 

shown in Fig. 10.9. Comparable results were obtained by 

observer WJ. The experiments were also performed for an 

off-ratio octave complex 800/1520 Hz with ft=l520 Hz. 

results are shown in Fig. 10.10. 

These 

Comparison of Fig. 10.9.a and b reveals that the phase 

effects largely originate in the more sensitive system. At 

L
1

=80 dB SPL the second system is superimposed on the more 

sensitive one, so, above L
1

=80 dB SPL, we cannot decide 

which system the phase effects determined by the pulsation-

threshold method come from. 

The results shown in Figs. 10.9 and 10.10 reveal a new 

interpretation of the phenomenon of two-tone suppression. 

If L 2 exceeds the value of Leq (Fig. 10.10) corresponding 

to the plateau for component I (35 dB SPL), addition of 

component I and increasing its level will always cause both 

the pulsation threshold and the onset threshold to fall. 

In the results obtained by the onset method, the decrease 

continues until the plateau is reached. In the pulsation 

method, the second system becomes dominant above L1=80 dB SPL, 

*see section 10.6. We neglect the differences in frequency combination 
involved, as the pulsation-threshold results for these combinations are 
similar. 
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causing the curve to rise again. If the value of L
2 

is below 

35 dB SPL, addition of component I will always raise the 

threshold. The phenomenon of two-tone suppression thus seems 

to be related to the plateau in the dynamic characteristic 

for the more sensitive system. The conclusion that both 

the phase effects and two-tone suppression are related to 

the same dynamic system supports the conclusion that these 

two phenomena must originate in the same stage of the audit­

ory system (Chapter 8). 

10.8. Conclusions 

1) Dynamic characteristics measured by forward masking for 

6=0 ms show the same trend as dynamic characteristics meas­

ured by the pulsation-threshold method after compensation 

for differences in sensitivity. 

2) Dynamic characteristics measured by forward masking re­

veal a plateau for ~=50 ms or more. 

3) The onset-threshold method can be used to measure the 

same response as with forward masking for 6=50 ms, but it 

gives a higher sensitivity. 

4f The plateau in the onset-threshold and forward-masking 

characteristics for 6=50 ms may be interpreted as due to the 

presence of two dynamic systems differing in range and adapt­

ive properties in the peripheral auditory system; the effects 

of these two systems cannot be separated in pulsation­

threshold results. 

5) The more sensitive of the above systems reaches saturation 

at Lm=60 dB SPL when ft=fm and at Lm=SO dB SPL when ft=2fm. 

6) The effect of the more sensitive system can be isolated 

by forward-masking or onset-threshold experiments with 

6~50 ms. 

7) The phase effects in octave complexes described in the 

Chapters 4 and 5 originate in the more sensitive system. 

8) Two-tone suppression is related to the saturation level 
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for component I (L
8

q=35 dB SPL) at ft=£ 2=2£
1

. If the value 

of L
2 

exceeds 35 dB SPL, addition of component I and increas­

ing its level will result in a drop in the pulsation and on­

set thresholds. 

9) The finding that both two-tone suppression and the phase 

effects are related to the same dynamic system supports the 

conclusion that they originate in the same stage of the aud­

itory system. 
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CHAPTER ll 

RETROSPECT; A MODEL OF THE MORE SENSITIVE 
OF THE TWO DYNAMIC SYSTEMS IN THE 

PERIPHERAL AUDITORY PATHWAY 

11.1. Recapitulation of the contents of previous chapters 

The two main aims of the present investigations formul­

ated in Chapter 1 were quantification of the perceptual 

changes due to variation of the phase and the re-examination 

of the arguments for and against the aural-harmonics and 

waveform hypotheses. We will start this final chapter by 

considering to what extent these aims have been achieved. 

As regards the quantification of the sensations involved 

in the perception of two-tone octave complexes, new elements 

discovered in the course of the investigations are the loud­

ness and pitch variations of the higher-frequency component 

due to a change in phase, and the relationship between them. 

A further important element is the phenomenon of loudness 

reduction which is so generally reflected in our results. 

We have frequently stressed that the phase effects cannot 

be treated apart from the two-tone nonlinearity which 

causes loudness reduction. This means that experiments 

such as simultaneous masking in which two-tone nonlinearity 

is overlooked are unsuitable as a basis for conclusions 

about the possible mechanism underlying the phase effects. 

Another new element in our results is the relationship 



134 

between the pitch effects in on-ratio and off-ratio octave 

complexes and between the loudness reduction (two-tone sup­

pression) under on-and off-ratio conditions. 

The aural-harmonics hypothesis has received a lot of 

attention in this thesis. We have shown that it is improb-

able that the phase effects are due to vector summation of 

an aural second harmonic and component II, the vector sum 

being "suppressed". A more likely possibility is that the 

phase effects are generated in the part of the auditory 

system where the two-tone nonlinearity originates. The 

conclusion of Chapter 10 that the phase effects and two­

tone suppression are properties of the same dynamic system 

fits well within such a framework. This being so, one can 

debate whether one can still speak of aural harmonics as 

separate components or whether the more neutral term "phase 

effect" is more applicable. In any case, the explanation 

will not be complete as long as the pitch effects have no 

place in it. 

As regards the waveform hypothesis, the relation between 

the phase effects and variations in the waveform of the 

superimposed sinusoidal components is still not very clear. 

Although the results for the lower-frequency combinations 

could be explained in terms of dispersion along the basilar 

membrane, the relation involved is highly frequency-dependent. 

It was suggested in Chapter 9 that the size of the region in 

which the phase effects originate might vary with frequency. 

However, it is by no means clear that mechanism might under­

ly this dependence. 

As regards the explanation of the pitch effects, strong 

indications for a pitch-place relation were found, although 

here again the results we obtained were frequency-dependent. 

We may conclude that neither the aural-harmonics nor the 

waveform hypothesis can give an adequate explanation of the 

phase effects. The electric model presented in the next 
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section may be considered as a condensation of our thinking 

about the direction in which a solution should be sought. 

This model describes the behaviour of the more sensitive of 

the dynamic subsystems mentioned in Chapter 10, for both on­

ratio and off-ratio octave complexes. We shall also indic­

ate how the model might be used for description of the pitch 

effects. Finally, we close this chapter with a discussion 

of a possible physiological basis for the model. 

11.2. The model 

11.2.1. PPinciple 

The block diagram of the model is shown in Fig. 11.1. 

The model consists essentially of two combinations of a 

half-wave rectifier, a nonlinear amplifier and a gate 1 the 

output of one of them being delayed by a time L and added 

to the other. The outputs of the gates are short pulses 

with a height corresponding to the positive excursions of 

the input signal. When the system is stimulated by a sine 

wave of frequency f =1, summation occurs since the delayed 
p T 

pulse train coincides with the direct one. On the other 

hand, when the system is stimulated with a sine wave with a 

frequency one octave lower, the two pulse trains (each of 

which has a period 2t) are shifted in between each other. 

This results in a train which is similar to the above, but 

with half the amplitude. When a combination of these two 

tones with a variable phase relation is presented, the resul-

tant amplitude varies with the phase. The peak value of the 

added pulse trains is taken as the magnitude of the output 

signal of the model. 

The model may be considered as situated in a chain of 

similar elements, the tuning properties (f =1) of which 
p T 

change continuously as a function of distance. In the onset-

threshold method the interaction in octave complexes was 
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component I 

~+f 
I om 

component II 

~ 
component I 

component II 

Fig. 11.1. 

Block diagram of the model. For an explanation, see text. 

recorder V 
1 

v2 

studied for one test-tone frequency (ft=£
2

), which can be 

considered as corresponding to one element in that chain. 

However, this restriction cannot be maintained when we try 

to represent the pitch data with the aid of the model, in 

view of the pitch-place relation which we know to exist. 

The block 6¢
2 

in Fig. 11.1. introduces a difference in 

phase relation in the complex input signals of the two parts 

of the model. This block was only used in the description 

of the pitch data. 

11.2.2. Design 

The model (Fig. 11.1) is composed of two parts, each 

consisting of a combination of a half-wave rectifier, a non­

linear amplifier and a gate. The output signal· of the non­

linear amplifier is gated with the help of a differentiator 
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and another half-wave rectifier. This set-up generates short 

pulses with a height corresponding to the positive excursions 

of the input signal. The nonlinear amplifiers have S-shaped 

characteristics, the higher and lower levels and slope of 

which are adjustable. The adjustable delay is obtained with 

an Allen Avionics delay line type DD ll K. 

The model was stimulated with "electric 11 octave complex­

es, either on-ratio or off-ratio, and with the separate com­

ponents; the frequency combinations used were 500/1000 Hz and 

545/1000 Hz in all experiments. The input RMS voltages of 

components I and II are denoted by v 1 and v 2 , respectively. 

As mentioned above the peak voltage of the sum of the 

two pulse trains is taken as the magnitude of the output 

signal of the model. This peak voltage is transformed into 

a DC voltage, logarithmically amplified and recorded as a 

function of the input voltage with a Houston X-Y recorder 1 

type 2000. The output voltages are called vue for the oct-

ave complexes and Vul and vu2 for components I and II resp­

ectively. 

11.2.3. Description of the onset-threshold data uith the 
model 

First of all we presented input signals with frequencies 

of 1000 Hz and 500 Hz separately to the model, L being 1 msr 

and determined vu 2 as a function of v 2 and Vul as a function 

of v
1

. The two curves obtained are represented in Fig. 11.2. 

by the dotted curves II and I respectively. With the aid of 

curve II we determined (for a frequency of 500 Hz) the value 

of v
2 

needed to give an output voltage of 

ious values of v
1

. We call this value of 

in terms of V 

vu2=vul for var­

v2 the equivalent 

This is the 
eq value (Veq) and express Vul 

same transformation procedure as described in section 10.2. 

and illustrated in Fig. 10.2. The relation found between 

Veq and v
1 

was compared with the dynamic characteristic for 
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Fig. ll.2. 

li 

... ·;~~-;:.> 
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; 

; 
; 

; 

; 

model: 
in- output relations 
for on octave complex 
and the components 
I and II alone 

Input-output relations of the model for the octave complex 500/1000 Hz 
and the separate components. The output voltages V for the complex 
and V and V for the components I and II respect~~ely, expressed in 
dB wi¥~ respe~t to an arbitrary reference level, are plotted against 
the input voltages V and v2 (also expressed in dB with respect to an 
arbitrary reference fevel). The full lines correspond to the output 
for the complex with ¢2:¢zma , the broken lines to ~he output w~th. 
¢

2
=¢

2 
. . The dotted curve !r represents the dynam1.c characterl.Stl.c 

for cNffiPonent II alone and the curve I corresponds to the dynamic char­
acteristic for component I alone. 

component I shown in Fig. 10.9.a, and the S-shaped charact­

eristics of the nonlinear amplifiers in the model were mani­

pulated (both in the same way) until the two curves were 

identical. Now the model was ready for the presentation of 

octave complexes. 

In the stimulation of the model with octave complexes 
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of v
2 

were chosen: that yielding a value of 

the upper plateau in the dynamic characteristic 

component I alone (which we call Vp), and also Vp+lO dB 

dB. The stimulation with octave complexes gave and V -10 
p 

rise to a phase-dependent output voltage, Vue being maximum 

for ¢
2

=270° and minimum for ¢ 2=90°. In the further experi­

ments only these extreme phase conditions were considered; 

we will call them ¢2max and ¢ 2min respectively from now on. 

The output voltage Vue for the octave complexes was deter­

mined as a function of v
1 

for the three values of v 2 and 

two phases mentioned. The results are also plotted in Fig. 

11.2. The values of v and V 1 in this figure were then 
uc u 

expressed in terms of the equivalent level (V ) of the eq 
1000 Hz component needed to reach V 2=V and V 2=v 1 re-u uc u u , 
spectively. The transformed data are shown in Fig. 11.3. 

The model was then stimulated with the off-ratio complex 

545/1000 Hz according to the same procedure as described 

above. The transformed results for this stimulus are shown 

in Fig. ll. 4."' 

The curves presented in Fig. 11.3 and 4 should be comp­

ared with those shown in Fig. 10.9.a. and lO.lO.a. The sim­

ilarity is striking. After being adjusted to give a fit for 

component I alone, the model describes the phase effects 

without the need of further assumptions. There is also a 

fit with respect to some details. First, the off-ratio res-

ults resemble the on-ratio results for ¢2=¢ 2max· This res-

emblance was mentioned in Chapter 6. Furthermore, the out-

put for the complex for ¢2=¢ 2min is lower than that for 

;::In Fig. 11.2. the curves for component I and component Il become flatter 
as v

1 
decreases. This implies that the phase effects for the lowest 

value of v2 , if expressed in terms of the equivalent level, would be very 
large; this is not a realistic behaviour near the auditory threshold. 
This effect may be a consequence of the absence of a threshold in the 
model. In the transformation procedure the difficulty was overcome by 
a vertical shift of the curve for component I alone and that for the 
complex at V

2
=V -10 dB and ¢

2
=¢

2 
.. 

p m~n 
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v
2 
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.. ·,, in- output 
.·· ,1 relations for an 

V2 = 20 dB on-ratio octave 
20~-~~~~~~~~----~~~~~~ 
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10 20 30 40 50 

Fig. 11.3. 

As Fig. 11.2, but •vith the output expressed in terms of V according to 
the transformation procedure explained in section 10.2. TRe three hor­
izontal lines correspond to the output for component II of the complex 
alone at the input voltages indicated, The full lines correspond to 
¢zmax! and the br?ke~ lines to ¢2mi . The dotted curv~ represe~ts th~ 
dynamJ.c characterlStlc for componen~ I alone. The obhque straJ..ght hne 
represents the trivial dynamic characteristic for component II. 

component I alone for certain values of v 1 . This effect was 

also mentioned in Chapter 6. 

The decay of the curves for the highest value of v 2 in 

Fig. 11.3. and 11.4. is a consequence of the elimination of 

summation due to the addition of component I. A similar 

decay for L
2

=45 dB SPL in Fig. l0.9.b. and l0.10.b. was id­

entified with the effect of two-tone suppression. With ref­

erence to the model, the two-tone suppression may, therefore, 

be considered as equivalent to elimination of summation. It 
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10 20 30 

Fig. 11.4. 

model: 
in- output relations 
for an off-roti o 
octave complex 

40 50 

The transformed input-output relations for the off-ratio octave complex 
545/1000 Hz. The symbols have the same significance as in Fig. 11.3. 

occurs when the output of the model for component II, due to 

summation, exceeds the maximum output for component I (the 

saturation level) . 

The results obtained with the model also show "enhance­

ment" for lower values of v
1 

and v 2 , for both on- and off­

ratio stimuli, in the same manner as in our pulsation- and 

onset-threshold data. The model thus describes both the 

phase effects and the two-tone interaction effects found in 

our onset-threshold experiments, to a good accuracy. 

11.2.4. Suggestions for the pitch representation with the 
model 

In our description of the pitch data we must start from 
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the concept of the pitch-place relation, in which a given 

pitch corresponds to a particular place in some internal re­

presentation of the acoustic stimulus. As mentioned above, 

the model 

elements, 

tinuously 

is considered to be situated in a chain of similar 

the tuning properties (f =~) of which change con­
p T 

with distance. Now we assume that the pitch is 

associated with the element in the chain at which the out­

put signal fulfils a certain condition. As the phase shifts, 

different elements in the chain will be involved. 

In concrete terms, let us suppose that the pitch is ass­

ociated with the element in the chain with a delay T such 

that the output signal of the model has a maximally regular 

time structure i.e. the interpeak distances in the pulse 

train are as equal as possible. If this condition of max­

imum regularity is not fulfilled at fp=f
2 

for an octave com­

plex (f
1
,f

2
), the system scans the region around f

2 
to see 

whether the condition is fulfilled at some other value of 

fp. If this is the case, the frequency of the pure tone 

for which that place is maximally sensitive yields the pitch. 

This principle can be illustrated by introducing 6¢
2 

(see Fig. 11.1) as the parameter. Let us take 6¢
2
=60°. 

Note that 6¢
2 

only refers to component II whereas there is 

no phase difference in the input signals for component I 

alone. When we stimulate the model with a 1000 Hz component, 

T must be made 1170 MS in order to get the most regular time 

structure. The addition of component I disturbs the regular 

time structure to an extent depending on the phase relation. 

We determined as a function of phase, with v 1 -v
2 

as parameter, 

the valuesfo~fT whlch glve the most regular time structure. 
___!2___.3_ 1 1 

The value f , where fp=T and f 2=1170 Ms' are plotted ag-

ainst the pha~e in Fig. 11.5. The figure shows that the 

approach described above does yield a phase-dependent "pitchn 

with a magnitude depending on v
1
-v

2
. However, the figure 

shows a symmetrical relation between the frequency fp for 



Fig. ll.S. 

c.:.mponenl I 
olone 

v
1
-v

2 
=15 dB-

V -V =10 dB - \ 
I 2 1 

143 

I 

I I 

I 
I 

I 
I 
I 

I 

5dB-~ ',,_ __/' / 

~ 
• - 0 $;- 360 

9Q 

lBO 
(degr.) 

\ 
' ' 

Relative shift, with respect to £
2

, of the frequency f (f =~) at which 
the time structure of the output signal of the model fgr ~h~ octave com­
plex 500/1000 Hz is most regular, as a function of ¢2 for various values 
of v

1
-v

2
. 

which the time structure of the output signal is most reg­

ular and ¢
2

, in contrast to all pitch functions shown in 

Chapter 4. Only the part from ¢2=270° to 90°, i~e. from the 

phase corresponding to maximum output voltage to that for 

the minimum output voltage, fits the experimental data. 

The horizontal line in Fig. 11.5. represents the "pitch 11 

of component I alone. This would imply that some kind of 

second harmonic is present in the output signal for compon­

ent I alone in the form of a "pitch" which is 15% higher 

than that corresponding to a pure tone of frequency £ 2 . 
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Relative shift ~n f required 
to obtain the most Fegular 
output signal of the model, 
for the off-ratio octave com­
plex 545/1000 Hz, as a func­
tionofV1. 
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1.24 

I N 1,08 ~NJ 
~o.~ 

This result is in agreement with the observations of some of 

our subjects (see Chapter 8). 

The procedure just described was also applied for the 

off-ratio octave complex 545/1000 Hz. We determined the 

frequency f =b for which the time structure of the output 
p T 

signal was most regular by inspecting three successive peaks 

in the trace of the output signal on the screen of an osci­

lloscope and adjusting T until these successive peaks were 

equidistant. The procedure was performed for various values 

of v1-v2 . 

Fig. 11.6. 

Fig. 4. 4. 

The resulting relative shift of f is plotted in 
p 

The curve obtained bears a close resemblance to 

We may conclude that the model offers possibilities for 

the description of the pitch effects with the aid of the 

concept that pitch corresponds to the most regular time 

structure of the output signal. However, it will be clear 

that more detailed ·assumptions (which must be based on fur­

ther research) are needed to make the description complete. 
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11.2.5. Possible phusiological basis fa~ the model 

A physiological basis for our model may be found in the 

outer hair-cell system. In this system several hair-cells 

are connected with one spiral fibre and arranged in a regu­

lar way. The detailed anatomy has been discussed by Spoend­

lin (1970). Davis (1961) was the first to suggest that spat­

ial summation might take place in the outer hair-cell system. 

The basic idea of our model can be recognized in a remark 

made by Johnstone and Taylor (1970), who wroteF "the branch­

ing point of the nerve would act as a summing junction with 

the various lengths of dendrites supplying different hair 

cells acting as delay lines". 

The application of the model to the outer hair-cell sys­

tem is attended by two main difficulties. The first is the 

question of whether spatial summation indeed occurs. This 

effect requires the presence of graded potentials which 

propagate e~ectronically before they are added (Davis, 1961) 

Flock (1973) studied recordings from the terminal branches 

of the sensory neurons of the burbot (lota lota). Excitat­

ory post-synaptic potentials (EPSP's) were recorded from the 

non-myelinated portions. When the organ was stimulated mech­

anically these EPSP's were locked to one phase of the stimu­

lus, the amplitudes being determined by the stimulus intens­

ity. Similar observations were made by Furukawa and Ishii 

in the sacculus of the goldfish. However, the question as 

to whether these EPSP's propagate slowly enough and remain 

narrow enough during their course to make summation possible 

still remains open. 

The second difficulty is the requirement that the tuning 

of the summation units must vary continuously along the bas-

ilar membrane. Since there is no evidence for variation of 

the diameter of the dendrites along the membrane, another 

physiological basis for this effect must be sought. 

Summing up, we may state that there is reasonable agree-



146 

rnent between the behaviour of the model and our experimental 

findings. However, a good deal more physiological investi-

gation is needed to give it a firm experimental basis. More 

specifically, we are waiting for further results of invest­

igations of the outer hair-cell system. 
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SUMMARY 

Two pure tones presented simultaneously to the ear can 
give rise to audible beats when their frequency ratio differs 
slightly from 1:2. What an observer actually hears varies 
continuously during one period of the beats; but these var­
ious sensations can be "frozen" and studied separately by 
taking two pure tones with a frequency ratio of exactly 1:2 
and adjusting the phase relation between the two. The nat­
ure of these sensations depends strongly on the levels of 
the tones. Variations in the pitch and the loudness of the 
higher-frequency tone can be heard when the level of the 
higher-frequency tone is below 40 dB SPL and that of the 
lower-frequency tone exceeds that of the higher-frequency 
one by 30 to 40 dB. These effects of phase on pitch and 
loudness were quantified in the present investigations. 

The pitch variation as a function of the phase of the 
lower-frequency tone shows a sawtooth form: with increasing 
phase the pitch rises gradually to a maximum value (which 
may be up to 20% more than the initial value), drops relat­
ively suddenly and then increases again. The magnitude of 
this effect is largest for the lowest frequency combinations 
and increases when the level of the lower-frequency tone 
increases with respect to that of the higher-frequency tone. 

The loudness of the higher-frequency tone varies as a 
function of the phase between a maximum which is equal to 
or somewhat lower than that of this tone alone, and a min­
imum corresponding to the absolute threshold of the matching 
tone. The maximum difference between this maximum and min­
imum is 20 dB. The effect that the loudness even at maximum 
audibility can still be lower than that of the higher­
frequency tone alone, was identified with the phenomenon of 
11 loudness reductionn known from the literature. This phen­
omenon of "loudness reduction" is due to the two-tone non­
linearity. 

Further experiments showed that the pitch and loudness 
(loudness reduction) effects in octave complexes, apart from 
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the phase dependence, are general two-tone effects. Under 
the Same level conditions the effects in octave complexes 
and those in two-tone stimuli v.rith a frequency ratio dif­
ferent from 1:2 are qualitively and quantitatively related. 

The pulsation-threshold method, recently developed by 
Houtgast (1972)~ was used to investigate the internal rep­
resentation of the octave complexes in the auditory system. 
The results revealed effect of two-tone suppression known 
from the literature. It was found that suppression in the 
pulsation-threshold results corresponds to reduction of the 
loudness of the higher-frequency tone under given stimulus 
conditions. 

The pulsation-threshold results led to the following 
conclusions with respect to possible explanations of the 
phase effects. First, the pitch effects are not simply 
related to a shift of a maximum in the internal represent­
ation as determined with the pulsation-threshold method. 
Secondly, the hypothesis that the effects of phase on puls­
ation threshold and loudness are caused by interference of 
a second-harmonic distortion component generated in the 
mechanical/hydraulic ~art of the ear and the higher­
frequency tone of the complex is not supported by the data, 
even when suppression of the vector sum of aural harmonic 
and higher-frequency tone is taken into account. The phase 
effects seem rather to originate in the hair-cell transducer 
system, the same part of the auditory system at which the 
two-tone nonlinearity is generated. 

The third conclusion concerns the possible relation be­
tween the phase effects and variations in the waveform of 
the superimposed sinusoidal components. With the 200/400 Hz 
frequency combination and to a lesser extent with the other 
combinations, the phase at which the pulsation threshold is 
maximum depends on the test-tone frequency. This dependence 
can be expected when dispersion (i.e. the effect that veloc­
ity depends on frequency) occurs on the basilar membrane 
around the place that is maximally sensitive to the higher­
frequency tone. The curves found resemble qualitatively the 
function obtained by determining, as a function of place, on 
the basilar membrane and hence of frequency (frequency-place 
relation), the phase in the stimulus waveform needed to give 
a specific waveform at that place, the samE: for all places. 
Moreover, the plot of test-tone frequency for which the puls­
ation threshold is maximum against phase shows a striking 
similarity to the pitch-phase function. This indicates that 
the pitch is determined by the "place" in the internal rep­
resentation iNhich originates from a specific waveform on the 
basilar membrane. However, the relation found is strongly 
frequency-dependent, and is nearly absent ~or the combination 
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760/1520 Hz. 

The last part of the present thesis contains arguments 
in support of the statement that the pulsa·tion-threshold 
results involve contributions from two different dynamic 
systems differing in range and temporal properties. The 
range of these systems depends on the combination of stim­
ulus frequency and test-tone frequency. The more sensitive, 
slower system is operative from the auditory threshold up to 
a stimulus level of 60 dB SPL when stimulus frequency and 
test-tone frequency are equal, and up to a level of 80 dB 
SPL when the frequency of the stimulus is half that of the 
test tone. At these levels the more sensitive system 
reaches saturation and the less sensitive system appears. 

A new measuring technique, the "onset-threshold method" 1 

has been developed in order to investigate the more sens­
itive system separately. The presentation conditions in 
this method are very similar to those for the pulsation­
threshold method except that in the onset method there is 
a time interval of 50 ms between masker and test tone. The 
method was applied to both octave complexes and two-tone 
stimuli in which the frequency ratio of the components is 
less than two, where no phase relation is involved. It was 
concluded that the phase effects originate in the more 
sensitive of the two above-mentioned dynamic systems. Sup­
pression may be related to the finding that the saturation 
level of the most sensitive system is higher i= the test­
tone frequency equals that of the stimulus than if it is 
twice that of the masker. 

Finally a model is introduced to describe the phase ef­
fects obtained with the onset method. This model is based 
on summation over a delay line. Summation occurs when the 
delay time equals the period of the stimulus tone. The 
addition of a tone with a frequency one octave lower dis­
turbs the summation to an extent depending on the phase. 
The model also describes two-tone suppression as the removal 
of the state of summation due to the addition of the second 
tone. 
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SAMENVATTING 

Wanneer men het oor gelijktijdig twee zuivere tonen aan­
biedt, die bijna een octaaf in frequentie verschillen, zijn 
zwevingen te horen. De sensaties die in een zwevingsperiode 
continu worden doorlopen kunnen afzonderlijk opgewekt en 
bestudeerd worden wanneer men de tonen een frequentieverschil 
van precies een octaaf geeft en de faserelatie instelbaar 
maakt. Deze fase effecten in twee-toons octaafcomplexen 
hangen sterk a£ van de ni veaus van elk van de t·onen. Zij 
manifesteren zich als een variatie van de toonhoogte en de 
luidheid van de hoge toon als het niveau van de hoge toon 
kleiner dan 40 dB SPL is en het niveau van de lage toon 30 
tot 40 boven dat van de hoge toon ligt. De toonhoogte- en 
luidheidsvariaties onder deze condities werden gekwantifi­
ceerd. 

De toonhoogte verloopt als functie van de fase volgens 
een zaagtand: met toenemende fase van de lage toon neernt de 
toonhoogte langzaam toe tot een rnaximale waarde; dan volgt 
een snelle terugval waarna de toenarne opnieuw begint. De 
toon is bij maximale verschuiving altijd hoger dan de af­
zonderlijke toonhoogte van de hoge toon. De grootte van het 
effect neemt toe naarmate de lage toon sterker wordt t.o.v. 
de hoge en naarmate we te maken hebben met lagere frequenties 
van het octaafcomplex. De rnaximale verschuiving die werd 
gevonden is ca. 20%. 

De luidheid varieert als functie van de fase tussen een 
maxirnale waarde, die rneestal gelijk is aan of iets minder is 
dan de afzonderlijke luidheid van de hoge toon en een mini­
male waarde die overeenkomt met de absolute drempel van de 
vergelijkingstoon als de lage toon maar sterk genoeg is. 
De maxirnale luidheids variatie is ca. 20 dB. Het verschijn­
sel dat de luidheid sorns 1 zelfs voor de fase waarbij een 
maximum optreedt, geringer is dan de oorspronkelijke luid­
heid werd geidentificeerd als het uit de literatuur bekende 
fenomeen "luidheidsreductie". Dit effect is een manifesta­
tie van de twee-toons niet-lineariteit. 

Verder werd gevonden dat de toonhoogte- en luidheid-
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(luidheids-reductie) effecten in octaafcomplexen niet op 
zichzelf staan, maar 1 afgezien van de fase-afhankelijkheid, 
een algemeen twee-toons verschijnsel zijn. Bij gelijke 
niveaucondities komen de effecten voor de verschillende 
frequentiecombinaties kwalitatief en kwantitatief met el­
kaar overeen. 

Met behulp van een recent ontwikkelde meettechniek, de 
pulsatiedrempelmethode (Houtgast, 1972) werd onderzocht hoe 
octaafcomplexen intern in het auditieve systeem worden ge­
representeerd. In de resultaten werd veelvuldig de reeds 
uit de literatuur bekende twee-toons suppressie gevonden. 
Het bleek dat suppressie in pulsatieresultaten overeenkomt 
met reductie in luidheid van de hoge toon. 

Uit de resultaten van de pulsatie-experimenten konden 
conclusies worden getrokken m.b.t. mogelijke verklaringen 
van de fase-effecten. Een eerste conclusie is dat de toon­
hoogte effecten niet op een eenvoudige wijze samenhangen 
met een verschuiving van een maximum in de interne repre­
sentatie zoals die met de pulsatiemethode wordt gemeten. 
Een tweede conclusie betreft de mogelijkheid dat de fase­
effecten in pulsatiedrempel en luidheid een gevolg zijn van 
de aanwezigheid van een tweede harmonische vervormings­
component ("aural harmonic"). De fase-effecten zouden dan 
kunnen worden beschreven als een vectoroptelling van deze 
aural harmonic en de hoge toon van het complex. Deze ver­
klaring wordt, zelfs al brengt men mogelijke suppressie van 
de vectorsom van de aural harmonic en de hoge toon in rek­
ening, op belangrijke punten ondergraven door de pulsatie­
drempelresultaten. Het is waarschijnlijker dat de fase 
effecten een gevolg zijn van de twee-toons niet-lineariteit 
en ontstaan in het haar.cel transducer systeem. 

Een derde conclusie betreft een mogelijke relatie van 
de fase-effecten met de variatie van de golfvorm van het 
somsignaal van de twee tonen. Bij de 200/400 Hz frequentie­
combinatie en in mindere mate bij de andere combinaties 
bleek de fase waarbij de pulsatiedrempel maximaal is af te 
hangen van de frequentie van de testtoon. Een dergelijke 
afhankelijkheid kan men verwachten wanneer op het basilair 
membraan 1 rond de plaats die maximaal gevoelig is voor de 
hoge toon, dispersie optreedt. De gemeten curves komen 
kwalitatief overeen met de afhankelijkheid die verkregen 
wordt wanneer men als functie van de plaats op het membraan 
(dus als functie van de frequentie in het kader van de fre­
quentie-plaatsrelatie) de fase in de stimulusgolfvorm be­
paalt die nodig is om op die plaats een specifieke 1 voor 
alle plaatsen steeds dezelfde, golfvorm te krijgen. Verder 
bleek de frequentie van de testtoon waarbij de pulsatie­
drempel maximaal is~ indien uitgezet tegen de fase, een ver-
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rassende overeenkomst op te leveren met de toonhoogte­
faserela·tie. Di t betekent dat de toonhoogte wordt bepaald 
door de "plaats" in de interne representatie die afkomstig 
is van een bepaalde golfvorm op het basilair membraan. Het 
gevonden verband is echter sterk frequentie-afhankelijk: 
bij 760/1520 Hz is de relatie al vrijwel afwezig. 

In het laatste deel van dit proefschrift worden argument­
en aangevoerd voor de stelling dat in de interne represent­
atie van de stimuli zoals die met de pulsatiedrempelmethode 
wordt bepaald twee dynamische sys·temen een rol spelen die 
verschillen in bereik en temporele eigenschappen. Het be­
reik van deze systemen hangt af van de coriliinatie van stimu­
lus- en testtoonfrequentie. Ret gevoeligste en langzaamste 
systeern is werkzaarn vanaf de drernpel tot een stirnulusniveau 
van 60 dB SPL bij gelijke stimulus- en testtoonfrequentie. 
Als de frequentie van de stimulus de helft is van de fre­
quentie van de testtoon is het werkzaam tot 80 dB SPL. Bij 
60 en 80 dB SPL respectievelijk treedt verzadiging op. 
Daarboven verschijnt het minder gevoelige en snellere 
systeem. 

Een nieuwe meetmethode werd toegepast, de "inzet-drernpel­
methode" waarrnee het mogelijk was het gevoeligste systeern te 
isoleren. De presentatiecondities in deze methode lijken 
veel op die bij de pulsatiedrempelmethode, met het verschil 
dat de tijd tussen stimulustoon en testtoon 50 ms is. De 
methode werd toegepast op octaafcornplexen zowel als op twee­
toons stimuli waarbij de frequentieverhouding van de compo­
nenten iets kleiner was dan twee. Uit de resultaten werd 
geconcludeerd dat de fase-effecten afkomstig zijn van het 
gevoeligste systeem. Verder bleek dat suppressie samenhangt 
met het verschil in de verzadigingsniveaus van het gevoelig­
ste systeem voor de hoge en lage toon bij een test-toon­
frequentie die gelijk is aan de frequentie van de hoge toon. 

Tenslotte werd een model geintroduceerd dat bedoeld is 
een beschrijving te geven van de fase-effecten zoals die 
met de inzetdrempelmethode werden verkregen. Het model is 
gebaseerd op sommatie in een vertragingslijn. Sommatie 
treedt op als de vertragingstijd gelijk is aan de periode 
van de stimulustoon. Toevoeging van een toon met een octaaf 
lagere frequentie verstoort de sommatie in een mate die af­
hankelijk is van de fase. Het model beschrijft ook suppres­
sie als de opheffing van de sommatietoestand door het toe­
voegen van de lage toon. 
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