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Chapter 1. General Introduction

1.1 Computerized ECG interpretation

The year 1902 saw the birth of clinical electrocardiography when Willem Einthoven
published the first electrocardiogram (ECG) of unprecedented quality recorded with
his newly invented string- galvanometer [1]. The foundations of electrocardiographic
diagnosis were laid in the half century that followed. After the second world war elec-
tronic pen-writing recorders made their appearance and quickly pushed the bulky
string galvanometers from the scene, notwithstanding a far inferior frequency re-
sponse. Standards for performance were then issued that were unfortunately based on
the frequency characteristics of this type of equipment. We will return to this subject
in the chapter on the minimum bandwidth requirements for the recording of pediatric
ECGs (Chapter 2).

The first attempt to automate the analysis of the ECG by computer was made as early
as in the late 1950s [2]. It was based on angles and magnitudes of spatial ventricular
gradients, calculated from the time integrals over one PQRST complex in the three
orthogonal leads. The X,Y and Z leads of the (Frank) vectorcardiogram (VCG) were
used for the main reason that three leads lay less claim to computer capacity than
12 leads. Cycle recognition was obtained through analogue circuitry, and beginning
and end of P, QRS and T were not identified in this simple screening program. The
first automatic wave recognition program became available in 1961 [3]. This program,
as well as its successors as developed by Pipberger, were also based on the vectorial
XYZ leads. The first program for conventional 12-lead analysis was made by Caceres
in 1962 [4]. By 1967 in the Netherlands Van Bemmel at the Institute of Medical Physics
started the development of the Modular ECG Analysis System (MEANS), continued
later in the departments of Medical Informatics of the Free University of Amsterdam
and the Erasmus University of Rotterdam. In the present study all ECGs were anal-
ysed by MEANS, which has extensively been evaluated both by its developers [5] and
by others [6].

Since these pioneering years and up to the present time a large research effort has
been spent on improving the quality of computerized ECG analysis. Currently, ECG
interpretation is offered in almost all electrocardiographs and PC-based ECG analysis
systems.

The systems generally consist of a measurement part and a diagnostic interpretation
part. The measurement part takes care of data acquisition, artifact detection and cor-
rection, followed by wave detection and determination of onsets and ends of the var-
ious waves. Finally, a set of measurements, such as wave amplitudes, durations, etc.,
are computated. The interpretation part derives the clinical significance of these mea-
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1.2. Pediatric ECG analysis

surements. This results in a final classification, or interpretation, of the ECG in terms
familiar to the physician.

Computerized ECG interpretation has a number of advantages. The computer anal-
ysis can improve the quality of the ECG recordings by, e.g., baseline correction, re-
moval of mains interference, and artifact detection. Furthermore, it reduces inter- and
intraobserver variability since it abolishes the subjective differences arising in visual
interpretation and through a quantitative approach may enhance correct classifica-
tion. Automatic storage and retrieval, with the possibility of comparing the new ECG
with its predecessors (serial analysis) is another asset of computerized ECG process-
ing.

However, the use of computer algorithms to interpret the ECG will only stand its
ground in a clinical environment when the quality of the diagnostic interpretation
has been proven. This instantiated a European effort, called ’Common Standards
for Quantitative Electrocardiography’ (CSE) [7]. This project was divided into two
5-year periods, the first dealing with measurements, the second with diagnostic in-
terpretation. The main objectives of the first part of the CSE project were to establish
standards for computer-derived ECG measurements and to compare the results of
measurements from different programs. In the second part of the CSE project the di-
agnostic interpretations of various systems were compared with those of a panel of
experienced cardiologists and with the diagnose based on clinical evidence, not in-
volving the ECG. The CSE study showed that computer algorithms are almost as well
as experienced electrocardiographers and can assist clinicians in interpreting ECGs. It
made available reference libraries for the evaluation and improvement of ECG com-
puter programs.

1.2 Pediatric ECG analysis

While much research has been devoted to computerized interpretation of the adult
ECG, automatic interpretation of pediatric ECGs has received much less attention.
Nevertheless, computer support in pediatric electrocardiography could be even more
beneficial because the interpretation is more complex due to the strong age-dependen-
cy of the diagnostic criteria [8–10]. Especially in the first year of life the electrical be-
haviour of the heart changes rapidly [11]. This is mainly the result of a change from
right to left ventricular predominance, which is reflected in changes in wave ampli-
tudes. In addition, intervals are markedly reduced in the young child and, as the
child grows, gradually prolong to adult values in relation to the decreasing heart rate.
Consequently, for diagnostic criteria one has to rely on extensive tables of values for
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Chapter 1. General Introduction

amplitudes, durations, and angles. A computer program could be helpful in reliev-
ing the pediatric cardiologist from memorizing or consulting tables of large numbers
of age-dependent criteria. In addition, qualified readers of pediatric ECGs are rare
and mostly located in university centers [12]. Inter- and intraobserver variability in
reading pediatric ECGs was shown to be substantial [13].

In the past the Mayo computer system routinely processed the pediatric VCG for
some time [8], and in the VA Research Center for Cardiovascular Data, a large co-
operative study has been undertaken in this field [14]. Other programs have been
developed for pediatric VCG [15,16] and 12-lead ECG [17–19]. The combination of
ECG and synthesized VCG measurements to discriminate between mild RVH with
terminal conduction delay and partial RBBB in children was described by Zhou et
al. [20]. Relatively few evaluation studies of pediatric ECG programs have been per-
formed. In a study of 248 pediatric ECGs for which the clinical diagnosis was known
by ECG-independent means, the HP pediatric program had a 70% sensitivity and 82%
specificity for RVH and a 38% sensitivity and 93% specificity for LVH [21]. In a study
by Hamilton et al. [22], the diagnoses of RVH and LVH by the pediatric version of the
Glasgow program were compared with those of two pediatric cardiologists. When
the cardiologists were not provided with clinical information, sensitivity of the pro-
gram for RVH was 73% at a specificity of 97%, but sensitivity for LVH was only 25%
at 96% specificity. Finally, pediatric ECG interpretations by the Marquette 12 SL pro-
gram were compared with those of emergency department physicians in a 12-month
prospective study, taking the interpretation by a pediatric electrophysiologist as the
reference [23]. The computer proved to be more accurate than this group of physicians
for interpretations considered to be of minimal or indeterminate clinical significance,
but both performed poorly in interpreting the few cases that were classified as being
of definite clinical significance by the expert.

1.3 Development of a pediatric ECG analysis system

We wanted to develop a pediatric version of MEANS, to be called the PEDiatric ECG
Analysis System (PEDMEANS). For that purpose, we had to modify both the mea-
surement part and the diagnostic interpretation part of MEANS.

The following issues are addressed in this thesis: minimum bandwidth requirements
to record pediatric ECGs accurately, estimation of new up-to-date normal limits, for-
malization of expert knowledge with the use of a learning algorithm, and collection
of a large pediatric ECG database for development and evaluation purposes.
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1.3. Development of a pediatric ECG analysis system

Minimum bandwidth requirements

For accurate recording of pediatric ECGs, the bandwidth of the acquisition system is
of major importance. The bandwidth, defined as the frequency range between low
and high-frequency cutoffs (-3 dB), should at least extend to the highest frequency
component in the ECG signal. Previous studies that determined the frequency content
had their limitations: the study population was too small or the sampling frequency
used by the recording system was too low [24,25]. Therefore, we need to determine the
minimum bandwidth requirements for pediatric ECGs based on a large set of ECGs
recorded at a high sampling rate.

Normal limits

For the development of a computer program for pediatric ECG interpretation, reli-
able normal limits are essential. Several studies have been conducted to this end
[11,26–33]. However, all these studies have certain imperfections that limit their prac-
tical applicability. Firstly, normal limits have often been derived for an incomplete
set of clinically relevant parameters and leads. Secondly, in many studies parameters
were measured by hand from ECGs recorded on paper. Computer analysis of dig-
itized ECGs allows more accurate measurement. Thirdly, in some studies the ECG
signals may have been deformed owing to too low sampling rates or to the use of
ECG amplifiers with too small bandwidth. Therefore, we want to establish up-to-date
normal limits for the pediatric ECG based on a large set of normal ECGs analyzed by
computer and recorded at a high sampling rate.

Formalization of diagnostic criteria

The diagnostic interpretation part of PEDMEANS consists of diagnostic criteria rep-
resented in the form of decision rules for all pediatric ECG abnormalities. The elu-
cidation of expert knowledge to obtain accurate decision rules is a tedious and time-
consuming task. Whereas the pediatric cardiologists are generally well able to clas-
sify a ECG, they often have difficulties to articulate the knowledge they are using to
do this, the more so if that knowledge has to be precisely formulated in order to be
implemented in a computer program. To alleviate this problem, learning algorithms
can be used that automatically construct a classifier based on a set of example cases.
Each case consists of a set of feature values and a label indicating the class to which
the case belongs. The learning algorithms search the feature space to generate the best
classifier in terms of the number of correctly classified cases.
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Chapter 1. General Introduction

Most available algorithms aim to maximize the accuracy of the classifier that is being
learned. However, in medicine, sensitivity and specificity are more commonly used
measures to characterize classification performance. Often, a classifier needs to be
maximal for one of these performance measures while fulfilling a user-specified min-
imum performance requirement for the other. Such optimization under constraints
is difficult to achieve with available algorithms. Moreover, currently available algo-
rithms cannot guarantee to find the best classifier by nature of their learning method-
ology. Therefore, research to develop an algorithm that overcomes these shortcomings
is wanted.

Data acquisition

No ECG reference databases, such as were established in the CSE project for adult
ECGs [6], are available for the pediatric ECG. However, such a database is mandatory
for program development and evaluation. A large number of pediatric ECGs has
therefore to be collected from a hospital population with a diversity of abnormalities.
These ECGs need to be interpreted by experienced pediatric cardiologists to obtain a
reference diagnosis.

1.4 Aims and scope of this study

The aim of this study is to develop and evaluate a computer program for the interpre-
tation of pediatric ECGs. In Chapter 2, we determine minimum bandwidth require-
ments for accurate recording of pediatric ECGs. The averaged beats of a large set of
ECGs are passed through digital filters with different cutoff points and the absolute
errors in maximum QRS amplitude for each simulated bandwidth are used to deter-
mine the minimum bandwidth requirements. In Chapter 3, we derive new normal
limits for the pediatric ECG based on a large set of ECGS from children recruited at
three child health centers, three primary schools, and a secondary school in Rotter-
dam. These new normal limits are used as cutoff points in the diagnostic criteria of
the program. In Chapter 4, we describe research that extends our learning algorithm,
called EXPLORE (Exhaustive Procedure for LOgic-Rule Extraction), that exhaustively
generates rules that fulfill user-specified performance requirements [34]. Because of
the exponential growth of the search space we present several new approaches that
improve the speed of induction without loss of performance. In Chapter 5, we de-
scribe the modifications made in both the measurement part and diagnostic interpre-
tation part of MEANS to allow pediatric ECG interpretation. We discuss the usage of

6



1.5. References

the learning algorithm in the development process and assess the performance of the
system on an independent test set. Finally, in Chapter 6 we focus on the validity of the
ECG in diagnosing left ventricular hypertrophy (LVH) in children and try to develop
better criteria for computerized LVH diagnosis by combining diagnostic parameters
with the use of the EXPLORE algorithm.
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Chapter 2. Minimum bandwidth requirements for the recording of pediatric ECGs

Abstract

Previous studies that determined the frequency content of the pediatric electrocardio-
gram (ECG) had their limitations: the study population was small or the sampling
frequency used by the recording system was low. Therefore, current bandwidth rec-
ommendations for recording pediatric ECGs are not well founded. We wanted to
establish minimum bandwidth requirements with the use of a large set of pediatric
ECGs recorded at a high sampling rate.

For 2169 children aged 1 day to 16 years, a 12-lead ECG was recorded at a sampling
rate of 1200 Hz. The averaged beats of each ECG were passed through digital filters
with different cutoff points (50-300 Hz in 25 Hz steps). We measured the absolute
errors in maximum QRS amplitude for each simulated bandwidth, and determined
the percentage of records with an error greater than 25 µV. We found that in any lead
a bandwidth of 250 Hz yields amplitude errors less than 25 µV in more than 95% of
the children younger than one year. For older children, a gradual decrease in ECG
frequency content was demonstrated.

We recommend a minimum bandwidth of 250 Hz for the recording of pediatric ECGs.
This bandwidth is considerably higher than the previous recommendation of 150 Hz
of the American Heart Association.

Keywords: electrocardiography, pediatrics, bandwidth
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2.1. Introduction

2.1 Introduction

For accurate recording of electrocardiograms (ECGs), the bandwidth of the recording
system is of major importance. The bandwidth, defined as the frequency range be-
tween low and high-frequency cutoffs (-3 dB), should at least extend to the highest
frequency component in the ECG signal. Many studies have been performed to de-
termine the frequency content of the adult ECG [1–8], but only few studies addressed
the frequency content of the pediatric ECG [9,10].

Riggs et al. [9] studied the frequency spectrum of the ECG of only 8 children and
concluded that the vast majority of the information is confined to frequencies below
100 Hz. However, determining the frequency content of an ECG by inspecting its
frequency spectrum is difficult. The ECG spectra appear to be monotonically decreas-
ing, and it is hard to tell which frequency components belong to the ECG and which
to noise. Moreover, this approach does not show the effect of reduced bandwidth on
wave amplitudes, which from a clinical point of view is the more important informa-
tion.

Berson et al. [10] recorded vectorcardiograms from a group of 600 infants. They fil-
tered the waveforms with different low-pass filters and determined the amplitude
differences between filtered and unfiltered waves, concluding that a bandwidth of
100 Hz is required to avoid amplitude errors of 10% or more. However, the original
signals were recorded at a sampling rate of 500 Hz. It has been questioned whether
this rate is high enough to obtain accurate measurements in pediatric ECGs [1,4,11].

The American Heart Association (AHA) recommends 150 Hz as minimum bandwidth
and 500 Hz as minimum sampling rate for the recording of pediatric ECGs, but also
states that it is yet unknown how far the bandwidth of systems has to extend, due to
the limitations of previous studies [12]. In the present study, we wanted to determine
the minimum bandwidth requirements for recording pediatric ECGs with the use of
a large set of ECGs recorded at a high sampling rate.

2.2 Methods

The study population consisted of 2169 children, with and without cardiac abnor-
malities, who had been referred to the pediatric cardiology department of the Sophia
Children’s Hospital in Rotterdam, the Netherlands. Table 2.1 shows the age distribu-
tion of the children. For each child, a 12-lead ECG was recorded at a sampling rate
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Chapter 2. Minimum bandwidth requirements for the recording of pediatric ECGs

of 1200 Hz using a PC-based acquisition system (Cardio Control, Delft, the Nether-
lands). The frequency response of the ECG recorder was flat to 320 Hz (-3 dB point).
Following common practice in the department of pediatric cardiology in Rotterdam,
V3R was used instead of V3 and V7 instead of V5.

Table 2.1. Age distribution of the children.

Age Total
0 to 3 month 606
3 to 6 months 226
6 to 12 months 213
1 to 3 years 244
3 to 5 years 240
5 to 8 years 265
8 to 12 years 189
12 to 16 years 186
Total 2169

All ECGs were processed by the Modular Ecg ANalysis System (MEANS), which has
extensively been evaluated both by its developers [13] and by others [14]. For each of
the twelve leads, the program computes a representative averaged beat, from which
ECG measurements are derived. The averaged beats of the 1200 Hz recordings were
passed through digital low-pass filters with different -3 dB points, at 50, 75, to 300
Hz in 25 Hz steps, thus simulating recording systems with reduced bandwidths. The
filters were developed with the signal processing toolbox of Matlab (Massachusetts,
USA). They were designed to have a ripple smaller than 0.001 dB in the pass-band,
and an attenuation of less than -40 dB within 25 Hz of the cutoff point.

To determine the effect of reduced bandwidth on wave amplitudes, we measured the
absolute differences between the maximum QRS deflections in the filtered and unfil-
tered leads for each of the cutoff points, and calculated the 95th percentile of these
absolute differences. Since we expected the frequency content of the pediatric ECG to
decrease with increasing age, ECGs from children younger than one year (n = 1045)
were taken to determine minimum bandwidth requirements. The total population
was used to assess the effect of age on the frequency content of the ECG signals. Addi-
tionally, we calculated the percentage of recordings in which the absolute differences
between the maximum deflections of the filtered and unfiltered leads exceeded 25 µV.
The 25 µV threshold was chosen because this was considered an amplitude difference
still distinguishable by human interpreters from standard paper ECG recordings.
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2.3. Results

2.3 Results

Fig. 2.1 and Fig. 2.2 show the 95th percentile of the absolute differences between fil-
tered and unfiltered leads for the maximum positive and maximum negative QRS
deflections, respectively.

Figure 2.1. 95th percentile of the absolute differences between the maximum positive QRS de-
flection in filtered and unfiltered leads for different bandwidths.

Figure 2.2. 95th percentile of the absolute differences between the maximum negative QRS
deflection in filtered and unfiltered leads for different bandwidths.
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The largest absolute differences in both positive and negative deflections are found in
lead V4, whereas the smallest differences are seen in lead aVR for positive deflections
and in lead I for negative deflections. The clinically important leads V2 and V6 also
show large absolute differences in both positive and negative deflections.

Fig. 2.3 presents, for each lead, the percentage of recordings with the differences be-
tween the maximum positive QRS deflections in the filtered and unfiltered leads ex-
ceeding 25 µV. Fig. 2.4 gives these results for maximum negative deflections. The
errors in the positive deflections are higher than in the negative deflections and am-
plitude errors increase considerably with decreasing bandwidth. In any lead, a band-
width of 250 Hz yields amplitude errors less than 25 µV in more than 95% of the cases
(see Fig. 2.1 and Fig. 2.3).

Figure 2.3. Percentage of recordings with the differences of the maximum positive QRS deflec-
tion in filtered and unfiltered leads exceeding 25 µV for different bandwidths.

Fig. 2.5 shows the relationship between age and the 95th percentile of the difference
in maximum positive QRS deflections in lead V1 for different bandwidths, illustrating
that ECGs have a higher frequency content at younger ages. For example, for children
from 0 to 3 months the effect of a low-pass filter at 100 Hz triples as compared to the
oldest children in our study population. In V4, the lead that showed the largest ampli-
tude differences, there is a small initial increase of the difference with increasing age
up to approximately one year, with a gradual decrease onwards (Fig. 2.6). The other
leads show comparable patterns of decreasing frequency content with increasing age.
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2.4. Discussion

Figure 2.4. Percentage of recordings with the differences of the maximum negative QRS deflec-
tion in filtered and unfiltered leads exceeding 25 µV for different bandwidths.

Figure 2.5. 95th percentile of the differences of the maximum positive QRS deflection in the
filtered and unfiltered lead V1 for different age groups.

2.4 Discussion

To establish minimum bandwidth requirements for accurate recording of pediatric
ECGs, we used a large set of pediatric ECGs recorded at a high sampling frequency
of 1200 Hz, thus obviating some of the limitations of previous studies [9,10]. To our
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Figure 2.6. 95th percentile of the differences of the maximum positive QRS deflection in the
filtered and unfiltered lead V4 for different age groups.

knowledge, this is the first study that demonstrates the effect of bandwidth limita-
tions for all 12 leads of the ECG and that illustrates the influence of age on frequency
content. Based on our results, we recommend a minimum bandwidth of 250 Hz for
the recording of pediatric ECGs. This bandwidth requirement of 250 Hz is consid-
erably higher than the 150 Hz previously recommended by the AHA [12]. With a
bandwidth of 150 Hz, 38% of the cases in our study has an error greater than 25 µV
in the maximum positive deflection in lead V4. For leads V2 and V6, these percent-
ages are 25% and 23%, respectively. In vectorcardiographic leads, Berson et al. [10]
found amplitude errors greater than 50 µV in 8% of the R-wave amplitudes and 5% of
the S-wave amplitudes when using a 150 Hz filter. In our study, 15% of the positive
deflections and 7% of the negative deflections in V4 have amplitude errors exceeding
50 µV when a 150 Hz filter is used. These differences between the two studies may
partly be explained by the difference in sampling rate (500 vs 1200 Hz) and by the use
of different lead systems. Furthermore, the analyses by Berson et al. were not done
on each separate lead but on leads X, Y, and Z combined, which is likely to under-
estimate the effect of filtering for individual leads. More importantly, however, we
find a threshold of 25 µV instead of 50 µV is to be prefered for measuring the effect of
reduced bandwidth on signal amplitudes.

We also studied the effect of age on the frequency content of the ECG signals. As
shown in Fig. 2.5 and Fig. 2.6, the frequency content gradually decreases from infancy
till adulthood. Strictly speaking for older children a lower bandwidth would suffice.
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Our data for children of 12 to 16 years indicate that the system bandwidth should be
about 150 Hz to yield amplitude errors less than 25 µV in more than 95% of the cases
in this age group. This is close to the 125 Hz recommendation of the AHA for the
adult ECG [12]. Nevertheless, we recommend to use the minimum bandwidth of 250
Hz for the entire pediatric population, because the age-range of the patients will often
not be known in advance.

An increase in bandwidth will also affect the sampling rate. Shannon’s theorem pre-
scribes a minimum sampling rate that is twice the highest frequency in a signal, which
in our case gives a rate of 500 Hz. However, this theorem is valid only for an infi-
nite sampling period and would require a sophisticated but impractical interpolation
technique. Therefore, the AHA recommends a sampling rates of 2 or 3 times the the-
oretical minimum [12]. On the basis of this rule of thumb, a sampling frequency of at
least 1000 Hz would seem desirable.
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Chapter 3. New normal limits for the pediatric electrocardiogram

Abstract

Previous studies that determined normal limits for the pediatric electrocardiogram
(ECG) had their imperfections: ECGs were recorded with relatively low sampling
rate, ECG measurements were done manually, or normal limits were presented for
only a limited set of parameters. The aim of this study was to establish an up-to-date
and complete set of clinically relevant normal limits for the pediatric ECG.

ECGs from 1912 healthy Dutch children (age 11 days to 16 years) were recorded at
a sampling rate of 1200 Hz. The digitally stored ECGs were analysed using a well-
validated ECG computer program. Normal limits of all clinically relevant ECG mea-
surements were determined for nine age groups. Clinically significant differences
were shown to exist, compared with previously established normal limits. Sex differ-
ences could be demonstrated for QRS duration and several amplitude measurements.

These new normal limits differ substantially from those commonly used and suggest
that diagnostic criteria for the pediatric ECG should be adjusted.

Keywords: electrocardiography, pediatrics, normal limits, computer
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3.1. Introduction

3.1 Introduction

Several studies have been conducted to determine normal limits for the pediatric elec-
trocardiogram (ECG) [1–9]. However, all these studies have certain imperfections that
limit their practical applicability. Firstly, normal limits have often been presented for
an incomplete set of clinically relevant parameters and leads. Secondly, in many stud-
ies parameters were measured by hand from ECGs recorded on paper. At present,
computer analysis of digitised ECGs allows more accurate measurement. Thirdly, in
some studies the ECG signals may have been recorded less than perfectly owing to
low sampling rates or the use of ECG amplifiers with small bandwidth.

Probably the most comprehensive study to date has been that of Davignon et al. [4], in
which ECGs of 2141 children aged 0 to 16 years were recorded. The ECGs were digi-
tised at a sampling rate of 333 Hz and normal limits were determined using computer-
assisted measurements. Normal limits for a large number of parameters were pre-
sented as percentile charts ranging from the 2nd to the 98th percentile. However, in
a study of 1780 children, Macfarlane et al. [6] recorded ECGs at a sampling rate of
500 Hz and showed that the 98th percentile of normal amplitudes could be up to 46%
higher than published by Davignon [4]. Unfortunately, in the study of Macfarlane
normal limits were presented for only a few parameters [6] . Moreover, it has been
questioned whether even a sampling rate of 500 Hz is high enough to obtain accurate
measurements in pediatric ECGs [10–12].

In this study, we wanted to establish an up-to-date and complete set of clinically rele-
vant normal limits for the pediatric ECG, using a high sampling rate of 1200 Hz and
an ECG computer program for measurement.

3.2 Methods

Study population

The study population consisted of 1912 children aged 11 days to 16 years, recruited
at three child health centers, three primary schools, and a secondary school in Rot-
terdam. In the Netherlands all children as from about three weeks to four years old,
periodically visit child health centers for a physical examination. Children with pre-
viously known cardiovascular abnormalities were excluded from the study. The total
population is divided into nine age groups, similar to the grouping used by Davignon
et al [4]. All children up to one month are combined in one group, because of the rel-
atively small sample size. Table 3.1 shows the sex distribution for each age group.
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For each child, weight and height was measured prior to the ECG recordings. Data
for weight and height corresponded well with the Dutch growth standard [13]. The
study was approved by the local ethics committee. All parents and all children aged
12 or older gave their written informed consent.

Table 3.1. Age and sex distribution of the study population.

Age * Male Female Total
0 to 1 month 16 28 44
1 to 3 months 67 71 138
3 to 6 months 78 104 182
6 to 12 months 130 105 235
1 to 3 years 95 110 205
3 to 5 years 79 79 158
5 to 8 years 142 118 260
8 to 12 years 137 187 324
12 to 16 years 200 166 366
Total 944 968 1912
* The term "to" specifies the upper limit of the age range in the sense of "less
than" logic.

ECG measurements

For each child, a 12-lead ECG was recorded using a portable PC-based acquisition
system (Cardio Control, Rijswijk, the Netherlands) at a sampling rate of 1200 Hz. The
frequency response of this recorder is flat to 320 Hz (-3 db point). The ECGs were
recorded by the same technician throughout the study. Following common practice
in the department of pediatric cardiology in Rotterdam, V3R was used instead of V3

and V7 instead of V5. All ECGs were processed by the Modular Ecg ANalysis System
(MEANS) [14]. To reduce noise, MEANS computes a representative average beat for
each of the twelve leads, from which ECG measurements are derived. MEANS has
extensively been evaluated both by its developers [14] and by others [15,16]. In the
latter studies, the performance of MEANS was gauged against the measurements ob-
tained from a group of cardiologists, and its good performance shown. Plots of all
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3.2. Methods

ECGs showing wave onsets and ends as found by MEANS were visually checked.
Because of waveform recognition errors, mainly due to excessive noise, 16 ECGs were
removed from the data set. The excluded ECGs were randomly distributed over the
age groups.

Estimation of normal limits

The 2nd and 98th percentile of the measurement distribution were taken as the lower
limit and the upper limit of normal, respectively. Zero amplitude values indicating
absent Q, R, or S waves, were excluded from the statistical analysis of the data. Prior
to the estimation of the percentiles, a linear regression analysis on age was performed
in each age group. Percentiles were then estimated parametrically on the residuals.
Since parametric estimation assumes a sample distribution to be gaussian, possible
non-gaussianity of the residuals was removed using a two-stage transformation pro-
cedure as recommended by Solberg [17]. In the first stage, asymmetry (skewness)
was iteratively eliminated using the exponential function of Manly [18]. In the second
stage, peakedness (kurtosis) of the resulting symmetrical distribution was iteratively
eliminated with the modulus function of John [19]. To test the gaussianity of the trans-
formed distribution, the Kolmogorov-Smirnov test was used. Finally, estimated per-
centiles and their 95% confidence intervals were back-transformed to the original unit
of measurement. If a distribution remained non-gaussian after transformation, the
non-parametrical ranked-based method as described by Solberg [17] was applied on
the original data. Sex differences were identified by non-overlapping 95% confidence
intervals of the percentiles.

Apart from a tabular presentation of normal limits in age groups, we determined age-
dependent curves that present the normal limits in a continuous form. The two-stage
transformation as described above was applied in a window of 200 measurements,
moving along the age axis with a step size of one measurement. For each window
position the percentiles and their confidence intervals were calculated and related to
the median of the age values included in the window. This procedure would imply
that the first normal limit corresponds with the median age of the first 200 measure-
ments. To allow for estimates at younger ages, the procedure starts with a small initial
window that grows till 200 measurements are included. As a consequence, confidence
intervals at the youngest ages are wider. Polynomial curves were then fitted through
the 2nd and 98th percentile values to obtain percentiles that smoothly change with
age. The order of the polynomials was determined by visual inspection of the fit,
selecting the lowest order that yielded curves remaining within the estimated confi-
dence intervals.
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3.3 Results

Table 3.2 to Table 3.7 on the following pages show normal limits for the clinically
most relevant parameters. Median values are given together with the 98th percentiles,
taken as the upper limits of normal (ULN). The 2nd percentiles, taken as the lower
limits of normal (LLN), are supplemented if clinically relevant. Normal limits are pre-
sented separately for boys (upper row) and girls (lower row). To indicate sex differ-
ences, non-overlapping 95% confidence intervals are visualized by bold percentiles.
Because of space limitations, continuous age-dependent percentile curves are only
shown for heart rate (Fig. 3.1) and QRS duration (Fig. 3.2) on page 33.

Table 3.2 summarizes the normal limits for the lead-independent ECG measurements.
Heart rate substantially decreases with age as also illustrated in Fig. 3.1. The ULN of
the heart rate is slightly higher for girls than for boys from the age of 8 years onward.
The decrease in heart rate during growth is accompanied by an increase in the dura-
tion of the P wave, PR interval, and QRS complex. The median QRS duration is greater
for boys than for girls in most age groups, but the differences in ULNs are small, rang-
ing from 2 to 7 ms. The median QRS axis is directed to the right in the first months
of life, reflecting the still increased right ventricular mass in that period. From the age
of 3-6 months no further changes in QRS-axis direction are observed. The QTc inter-
val, calculated according to Bazett’s formula [20], remains relatively constant over the
years with an ULN of approximately 450 ms.

In Table 3.3, the P-wave amplitude is given for leads II, V1, and V2. The P-wave
amplitudes in II and V1 do not change during growth, while in V2 a gradual decrease
with age is apparent. The highest ULNs of the P-wave amplitude, approximately 0.25
mV, were found in lead II.

The Q-wave amplitude is presented for clinically important leads in Table 3.4. The
ULN of the Q-wave amplitude in the first month of life increases at least twofold to
a maximum between one and three years, after which a decrease is seen towards the
initial value. In the 12-16 year group, girls have significantly lower ULNs of the Q-
wave amplitude in V6 and V7 than boys.

The normal limits of the amplitude of the R and S wave are shown in Table 3.5 and
3.6, respectively. R-wave amplitudes decrease with age in the right precordial leads,
with a concomitant increase in the left precordial leads. S-wave amplitudes show
a similar but inverse pattern. In the early adolescent years, girls have substantially
lower precordial R-wave amplitudes than boys. However, the S waves in V4, V6, and
V7 are lower for girls than for boys from the first month of age onward.
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Chapter 3. New normal limits for the pediatric electrocardiogram
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3.3. Results
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3.3. Results

Figure 3.1. Continuous age-dependent percentile curves of the heart rate for the total popula-
tion.

Figure 3.2. Continuous age-dependent percentile curves of the QRS duration for the total pop-
ulation.
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In Table 3.7, the R/S ratio is presented for the precordial leads. Although a steady
decrease is observed, the median R/S ratio in V1 remains greater than one up to three
years of age. In some age groups the ULN could not be calculated because S waves
were absent in more than two percent of the ECGs.

3.4 Discussion

ECGs of healthy children change markedly from birth to young adulthood. Knowl-
edge of the normal variation of ECG measurements with age is essential for proper
interpretation of the pediatric ECG. Previous studies that determined normal limits
for the pediatric ECG had their imperfections: ECGs were recorded with relatively
low sampling rate, ECG measurements were done manually, or normal limits were
presented for only a limited set of parameters. In this study, normal limits of ECG
parameters were based on computerized analysis of a large set of ECGs recorded at a
high sampling rate, thus obviating some of the limitations of previous studies. These
new normal limits differ substantially from the limits presented by Davignon et al. [4],
which are commonly used in pediatric electrocardiography, and may call for changes
in diagnostic ECG criteria. We will discuss some implications for the assessment of
prolonged QRS and QTc-interval duration, and for the diagnosis of right atrial hyper-
trophy and ventricular hypertrophy.

Normal limits for the QRS duration are substantially higher than those reported by
Davignon et al. [4]. For instance, children aged 12-16 years had a median QRS du-
ration of 90 ms compared to 65 ms in the Davignon study. However, Davignon only
calculated the QRS duration in V5, whereas MEANS determines the QRS duration
over all leads, which yields longer QRS durations. Our findings corroborate with the
study of Macfarlane et al. [6], who reported a mean QRS duration of 86 ms for children
aged 13-14 year.

QTc-interval prolongation is a valuable tool for detecting and quantifying the risk of
arrhythmia due to drugs [21,22]. Moreover, QTc interval prolongation has been asso-
ciated with sudden infant death syndrome or apparently life threatening incidents in
infants [23]. Valid normal values are a prerequisite for proper interpretation in these
studies. We found an ULN for the QTc interval of approximately 450 ms, which is
higher than the commonly used criterion of 440 ms [24].

For the diagnosis of right atrial hypertrophy (RAH), the P-wave amplitude should be
greater than 0.25 mV [24] or 0.30 mV [2,5] in any lead. This criterion is based on the
upper limit of the normal P-wave amplitude. In our study the ULN of the P-wave
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3.4. Discussion

amplitude is 0.25 mV in lead II, while in V1 and V2 substantially lower ULNs are
found (Table 3.3). These results suggest that the amplitude criterion in the diagnosis
of RAH should be made lead dependent.

In diagnosing ventricular hypertrophy, amplitude criteria for different ECG parame-
ters are employed. Deep Q waves in V6 are suggestive of left ventricular hypertrophy
(LVH) [5]. The ULN of the Q-wave amplitude in our study is substantially higher than
presented by Davignon et al. [4]. For example, for children aged 3-5 years we found
an ULN of the Q-wave amplitude of 0.54 mV against 0.30 mV in the Davignon study.
Macfarlane et al. [6] obtained similar results for Q-wave amplitudes in neonates. Con-
sidering that narrow deep Q waves contain relatively high frequencies, our findings
may demonstrate the effect of using a higher sampling rate. Another reason that may
partly explain the differences is that we only included non-zero values in comput-
ing the percentiles. It is not clear whether this was also done in the Davignon study.
When we recomputed the ULN of the Q-wave amplitude with zero values included,
the ULN decreased to 0.47 mV. However, because a Q wave is defined as a negative
deflection, we believe the exclusion of zero values is the preferred approach.

R-wave and S-wave amplitudes in the precordial leads are important parameters in
the diagnosis of both right and left ventricular hypertrophy. We found considerable
differences in R- and S-wave amplitudes compared to Davignon et al. [4], especially
in V6. For example, in our study the median of the R-wave amplitude in V6 for chil-
dren aged 8-12 years is 2.09 mV as compared to 1.68 mV in the study of Davignon.
Higher R-wave amplitudes in V6 were also presented by Macfarlane et al. [6], who
found a mean R-wave amplitude in V6 of 1.9 mV for children aged 5-12 years. For all
age groups, the ULNs of the R-wave amplitude in V6 are substantially higher in our
study, e.g., 3.14 mV for children aged 5-8 years compared to 2.65 mV in the study of
Davignon. Notably, the ULN of the R-wave amplitude in V3R, V2 and especially V4 is
lower in almost all age groups. For instance, Davignon reports an ULN of 4.5 mV in
V4 for children aged 3-5 year, compared to 3.27 mV in our study. R-wave amplitudes
in V4 larger than 3.5 mV are exceptional in our material. S-wave amplitudes are con-
siderably larger than reported by Davignon in V6 for all age groups, and in V4 after
3 years of age. In the other precordial leads the S-wave amplitude is comparable in
most age groups. These findings suggest that the amplitude criteria for ventricular
hypertrophy should be adjusted.

Influence of sex differences on the pediatric ECG has been reported in a number of
studies [3,7,8,25–27]. However, to our knowledge this is the first major study that ex-
amined sex differences in amplitude measurements for children in all age groups. In
our study, amplitudes of the Q, R and S waves are higher for boys than for girls during
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Chapter 3. New normal limits for the pediatric electrocardiogram

adolescence in most precordial leads. For example, the ULN of the R wave in V6 is
3.05 mV for boys and 2.55 mV for girls in the age group of 12 to 16 years. Little change
in voltages is seen in boys during adolescence, while in girls a progressive decline is
observed. In a study of 114 adolescents, Strong et al. [3] stated that the sex differences
were primarily a reflection of the boys being greater than girls of reproductive age.
Another reason for the amplitude differences during adolescence could be the devel-
opment of breast tissue [28]. Moreover, we found clinically significant differences at
younger ages, especially in the S waves in the left precordial leads. At this point we do
not have any further elucidation for the reason of these sex differences. The amplitude
differences are substantial and indicate that sex-dependent criteria could improve the
sensitivity and specificity for left ventricular hypertrophy in children. For adoles-
cents, this has already been noted in the early seventies by Walker et al. [25], but is in
our experience not used in daily practice. Furthermore, effects of sex on ECG interval
measurements were seen for QRS duration, which is consistently longer for boys in all
age groups. This was also previously shown by Macfarlane et al. [7]. No substantial
sex differences for the QTc interval could be demonstrated. However, in the group of
12-16 years the confidence intervals of the ULN of the QTc interval only marginally
overlapped, indicating possibly longer QTc intervals for girls. In a recent study, Eberle
et al. [27] also suggested that there is an influence of gender on the QT interval in the
group of 13 to 16 years. Pearl et al. [8] demonstrated significantly longer QTc intervals
for girls from the age of 14 years. The difference appears to be due to QT shortening
in boys rather than a QT prolongation in girls [26].

A minimal sampling rate of 500 Hz has been recommended for the adult ECG [29],
but for pediatric ECGs higher sampling rates have been suggested [11,12]. We used
a sampling rate of 1200 Hz, which was deemed sufficiently high to accurately record
pediatric ECGs. When we downsampled the signals to 500 Hz and repeated our anal-
yses, normal limits remained essentially the same. However, when we downsampled
to 333 Hz as used by Davignon [4], lower amplitudes were found, e.g., R-wave am-
plitudes in V6 decreased up to 0.15 mV. Still, we consider it unlikely that amplitude
differences between our study and Davignon’s can solely be attributed to differences
in sampling rate, since we found lower QRS amplitudes in some leads. Other fac-
tors may also play a role, such as population differences and physiological changes in
children, e.g., length, in the twenty years that passed between both studies.

We chose to present most of our results in tables rather than in plots because of space
limitations. However, one should be aware that the tabulated normal values are esti-
mates for the median age in the age groups and that an age-effect within age groups
may still be present. For children with ages close to the boundary of an age group, it is
prudent to interpolate normal values between adjacent age groups. This is well illus-
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3.5. Study Limitations

trated by the continuous age-dependent percentile curves of the heart rate in Fig. 3.1,
which shows a strong age-dependency within the age group of one to three years.
Moreover, continuous age-dependent curves are preferred for computerized interpre-
tation of pediatric ECGs, since they help to avoid abrupt changes in diagnosis with
small differences in age.

3.5 Study Limitations

The normal limits of the group of 0-1 month should be used with caution, because the
sample size of this group is relatively small and our database does not contain ECGs
recorded during the first ten days after birth. The collection of the huge number of
ECGs, necessary to obtain reliable estimates of normal limits for the youngest ages,
would require a further study.

3.6 Conclusions

Normal limits have been estimated for pediatric ECGs recorded at a high sampling
rate of 1200 Hz and analysed with the use of a computer program, thus obviating
some of the limitations of previous studies. Normal limits of many ECG measure-
ments were shown to differ from those reported earlier. Significant sex differences
could be demonstrated for amplitude measurements and QRS duration. These find-
ings are clinically significant and suggest that diagnostic criteria for the pediatric ECG
should be adjusted.
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Chapter 4. Exhaustive rule induction under constraints

Abstract

Most learning algorithms are not evaluating every description which may result in a
suboptimal classifier. Furthermore, they are aimed at the maximization of the accu-
racy of the classifier. However, in many application areas, for example in medicine,
sensitivity and specificity are more pertinent measures to characterize classification
performance. In this study, we present a new version of our induction algorithm,
called EXPLORE (Exhaustive Procedure for LOgic-Rule Extraction), that exhaustively
generates rules that fulfill user-specified performance requirements. Several new tech-
niques are introduced to search the feature space more efficiently than by a straight-
forward, brute-force exhaustive search. The new version of EXPLORE, incorporating
these techniques, is able to perform an exhaustive search considerably faster. On five
standard data sets from the medical domain the accuracy of the best rule generated
by EXPLORE is comparable to or surpasses the accuracy of the classifiers generated
by the greedy algorithms C4.5 and CART.

Keywords: learning, induction, exhaustive, algorithm
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4.1. Introduction

4.1 Introduction

There exist many algorithms by which classifiers, such as decision rules or decision
trees are learned from a set of example cases [1–5]. Each case consists of a set of
feature values and a label indicating the class to which the case belongs. These in-
duction algorithms search the feature space to generate the best classifier in terms of
the proportion of correctly classified cases. To find this best classifier, most induction
algorithms use a "greedy" approach to search the feature space, i.e., they do not con-
sider all possible classifiers but build up a classifier iteratively. At each iteration the
feature test that performs best according to some criterion is selected, without recon-
sidering the selections that were made during the previous steps. Greedy algorithms
have been shown to perform well on a variety of problems, but they also have several
limitations.

In the first place, greedy approaches may miss the best classifier. Only an exhaustive
search of the feature space guarantees to find this classifier, so that a greedy approach
would only be called for if an exhaustive search is not feasible. Unfortunately this
is often the case, even with ever-increasing computing power and exhaustive search
is still unwieldy for all but the simplest classification problems. A second limitation
of greedy algorithms is that they are aimed at the maximization of the accuracy of
the classifier that is being learned. However, in many application areas, for example
in medicine, sensitivity and specificity are more pertinent measures to characterize
classification performance [6]. A classifier in these areas often needs to be maximal for
either one of these performance measures while fulfilling a user-specified minimum
performance for the other. Such optimization under constraints is difficult to achieve
with greedy algorithms by the nature of their method to select feature tests, but is
straightforward when an exhaustive search algorithm is used.

In the past, a few algorithms have been developed that approximate an exhaustive
search [7–9]. The Predictive Value Maximization (PVM) algorithm described by Weiss
et al. [7] generates decision rules based on a modified beam search strategy. Beam
search is a heuristic search algorithm that is an optimization of the greedy approach.
Like the greedy approach, it uses a heuristic function to estimate the promise of each
node it examines. Beam search, however, unfolds a fixed number of most promising
nodes at each depth. The beam search heuristic is a massive search, but it is not ex-
haustive because it does not generate all possible combinations of feature tests. Nev-
ertheless, Weiss showed that this massive search strategy often outperforms a greedy
search. An attractive feature of the PVM algorithm is that it enables the desirable
"optimization under constraints". Another massive search algorithm, called BRUTE,
was also based on a beam search approach [8]. In BRUTE the search space is reduced
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to manageable proportions without loss of performance using an admissable search
strategy [9]. BRUTE was shown to perform better than greedy search algorithms on
a large number of data sets [8]. A disadvantage of BRUTE is that it can only gen-
erate rules consisting of conjunctions of feature tests, whereas rules that allow both
conjunctions and disjunctions may be more appropriate in many situations. The algo-
rithm allows the user to specify a performance measure to be optimized, but it is not
possible to simultaneously impose constraints on other performance measures.

To our knowledge, two algorithms that perform a truly exhaustive search have been
described. The 1R algorithm [10] searches exhaustively for the best classification rule
of length one, that is, a rule that contains only one feature test. Such very simple clas-
sification rules were shown to perform surprisingly well on many data sets, but ob-
viously, longer rules that could perform much better are missed. Previously, we our-
selves developed an induction algorithm, called EXPLORE (Exhaustive Procedure for
LOgic-Rule Extraction), which exhaustively generates rules that fulfill user-specified
performance requirements [11]. In this earlier version of EXPLORE the rules were
generated exhaustively using a time-consuming brute-force approach, which limited
its practical applicability.

In this study, we present several new techniques to search the feature space more
efficiently than a straightforward, brute-force exhaustive search. We show that a new
version of EXPLORE, incorporating these techniques, is able to perform an exhaustive
search considerably faster.

4.2 Exhaustive rule induction under constraints

The EXPLORE induction algorithm generates the best decision rule for a two-class
classification problem. The user defines which performance measure should be opti-
mized and specifies constraints on other performance measures. Table 4.1 shows the
allowable performance measures and illustrates how they can be estimated from a
2 × 2 classification matrix.

The algorithm systematically generates all possible rules of a certain length, based on
the following format:

if <logical expression> then <class 1> else <class 2>

The logical expression consists of an ensemble of feature tests joined by the logical
operators AND and OR. Each feature test compares a feature value with a threshold
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4.2. Exhaustive rule induction under constraints

Table 4.1. Estimation of performance measures from a 2 × 2 classification matrix.

Rule positive Rule negative
Class 1 Correct positives (CP) False negatives (FN)
Class 2 False positives (FP) Correct negatives (CN)

Sensitivity = CP/(CP + FN)
Specificity = CN/(FP + CN)
Positive predictive value = CP/(CP + FP)
Negative predictive value = CN/(FN + CN)
Accuracy = (CP + CN)/(CP + FN + FP + CN)

value through a relational operator (≤ or >). A feature test comes out true or false,
dependent on the feature value of a particular cases. The then- and the else-clauses of
the rule specify the class to which a case is assigned if the logical expression evaluates
to true or false, respectively. EXPLORE generates these logical expressions in Dis-
junctive Normal Form (DNF), defined as disjunctions (OR ) of conjunctions (AND) of
feature tests. The length of a rule, n, is defined as the number of feature tests in the
rule. The ensemble of features and operators in a rule we call a "feature-operator set"
and the ensemble of threshold values a "threshold set".

Brute Force approach

In the earlier version of the EXPLORE algorithm the rules were generated in a brute-
force manner. The number of rules that are generated and evaluated when using
this approach is very large and depends on the number of features, operators, and
threshold values.

Suppose that each case in the data set is composed of f features and that each feature
has t potential threshold values. Further let us assume that rules of length n are to
be generated. When only one logical operator, either AND or OR , is allowed f n

different expressions can be made. These expressions can then be instantiated in 2n

different ways by the relational operators ≤ and >, and in tn ways by the thresh-
olds. When both logical operators are used to generate the expressions, the factor f n

must be multiplied by the nth Bell number, Bn, which indicates the number of ways to
partition a set of n elements into a set of disjunct subsets [12].
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The Bell number is recursively defined as:

Bn+1 =
n

∑
k=0

(
n
k

)
Bk (4.1)

with B0 = 1. For n = 0, 1, 2, 3, Bn+1 = 1, 2, 5, 15. The number of rules to generate is
therefore:

f n × 2n × tn × Bn (4.2)

However, the number of threshold values per feature is not fixed and will vary from
feature to feature. This can be taken into account by combining the terms f n and tn.
Assuming that feature k has tk threshold values, one feature test, i.e., a rule of length
1, can be instantiated in ∑k tk different ways; similarly, a rule of length n in (∑k tk)

n

ways. Thus the number of rules to generate is equal to:

(
f

∑
k=1

tk

)n

× 2n × Bn (4.3)

We will call this kind of search a naïve exhaustive search, because in this approach
many logically identical rules are generated.

Systematic rule generation

EXPLORE consists of three nested do-while loops (Alg. 4.1), which systematically
generate all possible and relevant decision rules. The outer loop instantiates a rule
of given rule length with logical operators (a logical-operator set), the second loop
adds features and relational operators (a feature-operator set), and the inner loop adds
threshold values (a threshold set). The fully instantiated rule is then evaluated, and
if it fulfills the performance constraints and outperforms the current best rule, the
latter is replaced by the new rule. In the following we will give a detailed description
of each of the three loops, focussing on the routines that perform loop initialization
(InitLogicalOperatorSet, InitFeatureOperatorSet, InitThresholdSet) and loop control
(NextLogicalOperatorSet, NextFeatureOperatorSet, NextThresholdSet).
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Algorithm 4.1: EXPLORE

InitLogicalOperatorSet;1

do2

InitFeatureOperatorSet;3

do4

InitThresholdSet;5

do6

Calculate performance measures of the current rule;7

if current rule outperforms best rule AND current rule fulfills constraints then8

Replace best rule by current rule;9

end10

while NextThresholdSet ;11

while NextFeatureOperatorSet ;12

while NextLogicalOperatorSet ;13

4.2.1 Generation of logical-operator sets

The generation of logical-operator sets is implemented as a routine that exhaustively
generates the next unique combination of disjunctions and conjunctions. As an exam-
ple, Table 4.2 shows all unique logical-operator sets for rule length n = 5.

Table 4.2. Enumeration of all logical-operator sets for rule length n = 5. Numbers indicate the
number of feature tests in a conjunction.

5
4 OR 1
3 OR 2
3 OR 1 OR 1
2 OR 2 OR 1
2 OR 1 OR 1 OR 1
1 OR 1 OR 1 OR 1 OR 1

To generate this sequence we reformulate the problem in terms of the partitioning
of a positive integer n [13]. A partition of a positive integer n is a finite decreasing
sequence of positive integers (λ1, λ2, . . . , λm) such that ∑m

i=1 λi = n. The λi are called
the parts of the integer. In our context of rule generation, a rule of length n is denoted
as λ1 OR λ2 OR . . . OR λm, in which λi indicates the size of conjunction i, i.e., the
number of feature tests in the conjunction; λi = 1 represents a single feature test. For
example, 4 OR 1 represents a disjunction of a conjunction of size 4 and a single feature
test.
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Initialization of logical-operator set

The initialization of the logical-operator set is extremely simple: we start with a single
conjunction with a size that equals the rule length (Alg. 4.2).

Algorithm 4.2: InitLogicalOperatorSet

m = 1; // number of conjunctions is one1

λ1 = n; // the size of the conjunction equals the rule length2

Generation of next logical-operator set

To generate the next integer partition, or in our context the next logical-operator set,
several algorithms have been developed [14]. They are all based on the general idea
of subtracting one from the smallest part λi > 1 and collecting λi = 1 parts to form
a next partition. We define h as the number of parts greater than 1, i.e. λi > 1 for
1 ≤ i ≤ h, and λi = 1 for h < i ≤ m. The last integer partitioning consists of n parts of
size λi = 1 (Alg. 4.3).

Algorithm 4.3: NextLogicalOperatorSet

// Is there a next logical-operator set?

if λ1 > 1 then1

if λm = 1 then2

Replace λh , λh+1 = 1, . . . , λm = 1 by c − 1 integers equal to (λh − 1), and a single integer d,3

such that 0 < d ≤ λh − 1 and (λh − 1)(c − 1) + d = λh + m − h
else4

Replace λ1, . . . , λm by λ1, . . . , λm − 1, 15

end6

Return TRUE;7

else8

Return FALSE9

end10

For example, given the logical-operator set 3 OR 1 OR 1 (m = 3, h = 1, λh = 3), the
next logical-operator set is 2 OR 2 OR 1 (c = 3, d = 1).
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Number of logical-operator sets

Let p(n, k) be the number of partitions with all parts λi ≥ k. The number of logical-
operator sets, p(n, 1), can then be calculated by the following recursive formula [13]:

p(n, k) = p(n, k + 1) + p(n − k, k)
p(n, k) = 1 if (k = n)
p(n, k) = 0 if (k > n)

(4.4)

For n = 1, 2, 3, 4, 5,p(n,1) = 1, 2, 3, 5, 7. For example, a rule of length n = 5 will have 7
different logical-operator set (Table 4.2).

4.2.2 Generation of feature-operator sets

After a new logical-operator set has been generated, the rule will be instantiated with
features (A, B, C, . . .) and operators (≤, >). Several decision rule characteristics can
help to greatly reduce the number of instantiations as compared to the naïve ap-
proach, without loss of performance.

Firstly, in the naïve approach multiple occurrences of the same feature and operator
in a single conjunction are generated, for example A > AND A >. However, this is
logically identical to a rule with only one feature test, A >. Note that A > AND A ≤
cannot be reduced to a rule of smaller length. We can say, however, that each unique
combination of feature and operator should occur only once per conjunction. For this
reason, we will not use an instantiation of features and a subsequent instantiation with
operators, but will combine both to a single instantiation that can occur only once per
conjunction. We define a feature-operator pair (FOP) as a combination of a feature
with a relational operator, e.g., A >.

Secondly, permutation of the FOPs in a conjunction is redundant. For example, (A >

AND B ≤) is logically equivalent to (B ≤ AND A >). Therefore, we only instantiate
the FOPs in conjunctions in lexicographic order with > preceding ≤.

Thirdly, disjunctions of conjunctions do not have to be permutated in the rules. For
example, (A > AND B >) OR (C > AND D >) is logically identical to (C >

AND D >) OR (A > AND B >). Note that (A > AND B >) OR (A > AND B >)
should be generated because it can be logically unique when the threshold values in
the conjunctions are different. Since the conjunctions in the rule are always ordered
downward in size (Alg 4.3), this problem only occurs for equally-sized conjunctions.
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Note that this only holds for conjunction sizes greater than 1, since A > OR A > is
logically equivalent to A >.

Table 4.3 shows all unique instantiations of a rule of length 3 with six FOPs, taking
into account the above considerations.

Initialization of feature-operator set

The FOPs of a rule are initialized by the routine InitFeatureOperatorSet (Alg. 4.4) which
calls InitFeatureOperatorsConjunction (Alg. 4.5) for each conjunction.

Algorithm 4.4: InitFeatureOperatorSet

for 1 ≤ i ≤ m do1

InitFeatureOperatorsConjunction;2

end3

Algorithm 4.5: InitFeatureOperatorsConjunction

if λi �= λi−1 then1

// unequally-sized conjunctions

for 1 < j ≤ λi do2

f oi, j = j; // lexicographically instantiate FOPs3

end4

else5

// equally-sized conjunctions

if λi �= 1 then6

for 1 < j ≤ λi do7

f oi, j = f oi−1, j; // copy previous conjunction8

end9

else10

// size equals one

f oi, j = f oi−1, j + 111

end12

end13

Let f oi, j denote the index of the FOP in conjunction i = 1 . . . m at position j = 1 . . . λi

in the list of all r lexicographically ordered FOPs, then the ensemble of all f oi, j indi-
cates a feature-operator set. As shown in Alg. 4.5, each conjunction is initialized to
a lexicographically ordered set of FOPs from the list (lines 2-4). However, if the size
of a conjunction is greater than 1 and equal to the size of the preceding conjunction,
the conjunction is initialized by copying the instantiation of the preceding conjunction
(lines 7-9). For multiple conjunctions of size 1, the conjunctions are instantiated with
FOPs in lexicographical order (line 11).
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Table 4.3. Enumeration of the instantiations of six FOPs (A >, A ≤, B >, B ≤, C >, C ≤) for
rule length 3

3 2 OR 1 1 OR 1 OR 1
A > AND A ≤ AND B > A > AND A ≤ OR A > A > OR A ≤ OR B >

A > AND A ≤ AND B ≤ A > AND A ≤ OR A ≤ A > OR A ≤ OR B ≤
A > AND A ≤ AND C > A > AND A ≤ OR B > A > OR A ≤ OR C >

A > AND A ≤ AND C ≤ A > AND A ≤ OR B ≤ A > OR A ≤ OR C ≤
A > AND B > AND B ≤ A > AND A ≤ OR C > A > OR B > OR B ≤
A > AND B > AND C > A > AND A ≤ OR C ≤ A > OR B > OR C >

A > AND B > AND C ≤ A > AND B > OR A > A > OR B > OR C ≤
A > AND C > AND C ≤ A > AND B > OR A ≤ A > OR C > OR C ≤
A ≤ AND B > AND B ≤ A > AND B > OR B > A ≤ OR B > OR B ≤
A ≤ AND B > AND C > A > AND B > OR B ≤ A ≤ OR B > OR C >

A ≤ AND B > AND C ≤ A > AND B > OR C > A ≤ OR B > OR C ≤
A ≤ AND C > AND C ≤ A > AND B > OR C ≤ A ≤ OR C > OR C ≤
B > AND B ≤ AND C > A > AND B ≤ OR A > B > OR B ≤ OR C >

B > AND B ≤ AND C ≤ A > AND B ≤ OR A ≤ B > OR B ≤ OR C ≤
B > AND C > AND C ≤ A > AND B ≤ OR B > B > OR C > OR C ≤
B ≤ AND C > AND C ≤ A > AND B ≤ OR B ≤ B ≤ OR C > OR C ≤

A > AND B ≤ OR C >

A > AND B ≤ OR C ≤
B > AND B ≤ OR A >

B > AND B ≤ OR A ≤
B > AND B ≤ OR B >

B > AND B ≤ OR B ≤
B > AND B ≤ OR C >

B > AND B ≤ OR C ≤
B > AND C > OR A >

B > AND C > OR A ≤
B > AND C > OR B >

B > AND C > OR B ≤
B > AND C > OR C >

B > AND C > OR C ≤
B > AND C ≤ OR A >

B > AND C ≤ OR A ≤
B > AND C ≤ OR B >

B > AND C ≤ OR B ≤
B > AND C ≤ OR C >

B > AND C ≤ OR C ≤
C > AND C ≤ OR A >

C > AND C ≤ OR A ≤
C > AND C ≤ OR B >

C > AND C ≤ OR B ≤
C > AND C ≤ OR C >

C > AND C ≤ OR C ≤
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Generation of next feature-operator set

We generate the next set of FOPs by increasing the index of the FOPs, f oi, j from right
to left in the rule. We start at the last conjunction (Alg.4.6, line 1) and try to generate
a new set of FOPs. If all FOP sets have been generated for this conjunction we move
one conjunction to the left until we find a conjunction that can be iterated (lines 2-4).
All the conjunctions to the right of this conjunction are then initialized (lines 5-10).

To generate the next FOP set for a conjunction i, we start with the last FOP in that
conjunction and check from right to left if any FOP is the last possible for its position
j (Alg. 4.7, lines 1-6). For example, in Table 4.3 the last possible FOP at j = 1 for the
conjunction of size 3 is B ≤, since the next FOP, C>, would not allow us to instantiate
FOPs incrementally at positions j = 2 and j = 3. If j ≥ 1 we have not arrived at the
last set and we take the next FOP for this position from the ordered list and reset all
FOPs to the right incrementally (lines 7-14).

Number of feature-operator sets

Suppose we have a rule that consists of a single conjunction. In this conjunction each
FOP can occur only once. The number of possible FOP sets for a single conjunction
of size λ from a set of r different FOPs is equal to (r

λ). To calculate the total num-
ber of possible FOP sets for a rule we have to take the size of each conjunction into
consideration. If all conjunctions have different sizes the total number of FOP sets
is the product of the number of FOP sets for the individual conjunctions. However,
a rule can have conjunctions of the same size. EXPLORE generates conjunctions of
equal size with replacement and without ordering from the set of (r

λ) possible FOP
combinations. This only holds for conjunctions of size λ > 1, since A > OR A > is
not generated. The number of FOP sets for equally-sized conjunctions, λ > 1, can be
calculated by:

C(n, r, λ) =
(

n + (r
λ)− 1
n

)
(4.5)

with n the number of conjunctions of size λ and r the number of FOPs.

Finally, in multiple conjunctions of size λ = 1, each FOP is allowed only once. There-
fore, the number of FOP sets for n conjunctions with size 1 is equal to (r

n).

In the case of rules that consist of different sizes of conjunctions the total number is
obtained by multiplying the separate number of FOP sets, e.g. for 3 OR 2 OR 2 the
total number of FOP sets is C(1, 4, 3)× C(2, 4, 2) = 84.
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Algorithm 4.6: NextFeatureOperatorSet

i = m; // start at last conjunction1

// Generate Next FOPs set for the conjunction not completed yet

while Not (NextFeatureOperatorsConjunction) AND i ≥ 1 do2

i = i − 1; // move conjunction to the left3

end4

if i ≥ 1 then5

// initialize all conjunctions to the right

while i < m do6

i = i + 1;7

InitFeatureOperatorsConjunction;8

end9

Return TRUE;10

else11

Return FALSE; // all FOP sets have been generated12

end13

Algorithm 4.7: NextFeatureOperatorsConjunction

j = λi ; // start at last position in conjunction1

// determine which j is not at last possible FOP index

last = r;2

while f oi, j = last do3

j = j − 1;4

last = last − 1;5

end6

// insert FOPs from current position ( j ≥ 1) till last position

if j ≥ 1 then7

f oi, j = f oi, j + 1;8

while j < λi do9

j = j + 1;10

f oi, j = f oi, j−1 + 1;11

end12

Return TRUE; // next set of FOPs generated13

else14

Return FALSE; // last set of FOPs generated15

end16
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Up to now we only calculated the number of FOP sets for a specific logical-operator
set. The total number of FOP sets for a certain rule length can be calculated by repeat-
ing the calculation described above for each logical-operator set. There is a large re-
duction compared to the naïve exhaustive search (Equation 4.3). For example, Fig. 4.1
shows the ratio of the number of rules instantiated with FOPs in the naïve approach
and the number of rules in the approach used in EXPLORE for 6, 10, and 14 FOPs, up
to rule length 5.

Figure 4.1. Reduction of number of feature-operator instantiations in the new algorithm com-
pared to the naïve approach for 6, 10, and 14 FOPs at different rule lengths.

As shown in Fig. 4.1 the gain increases with the rule length because the naïve approach
generates more unnecessary repetitions with increasing rule length. Furthermore, for
a certain rule length the gain is higher if the number of FOPs is lower. This is the result
of the unnecessary repetitions of identical conjunctions in the naïve approach, which
are skipped in the EXPLORE algorithm, e.g., for logical-operator set 1 OR 1 OR 1 the
gain equals r3/(r

3) which is higher for lower values of r.

4.2.3 Generation of threshold sets

The next task is to instantiate the threshold values in the rules that up to now consist
of logical operators and FOPs. Because the number of potential threshold values is
often very large compared to the number of FOPs, especially for continuous-valued
features, the total number of rules that are generated is mainly determined by the
number of potential threshold values per feature. Next we propose two methods to
greatly reduce the search space at the threshold instantiation level of EXPLORE.
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Determination of candidate threshold values

Since EXPLORE performs an exhaustive search, the simplest method would be to
use all measurements in the data set as potential threshold values. The question is,
whether we need to look at all these values to perform an exhaustive search. The
answer is that a large reduction in threshold values is possible if the principals of
subsumption pruning, often used in beam search strategies, are applied to the dis-
cretization problem.

In subsumption pruning a rule is removed from the set of promising rules if there
exists another rule that covers a superset of the cases that belong to the class for which
the rule is developed (positive cases) and a subset of cases that belong to the other
class (negative cases) [9]. For example, if we have the following two rules:

1. if A > 5 then class = 1

2. if B > 7 then class = 1

If rule 1 covers a superset of the positive cases covered by rule 2, and a subset of the
negative cases, then rule 1 has a higher coverage of correct cases. Any conjunctive
extension of rule 1 with a second feature test will be better than the same extension of
rule 2.

The ideas behind subsumption pruning can also be used for our purpose to reduce the
number of potential threshold values without degradation of performance. Suppose
we have a small data set ordered by increasing feature values of a feature A as shown
in Table 4.4, and we want to determine the candidate threshold values.

Table 4.4. Small data set consisting of 6 cases with values of a feature A and their class label.

Feature A Class

4.50 0
5.00 0
5.10 1
5.20 1
5.40 0
6.00 1

The simplest solution would be to take all 6 feature values as candidate threshold
values for both FOPs (A > and A ≤). However, it does not pay off to select threshold
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values at adjacent feature values that assign to the same class, because the separation
of the classes will never improve at those values. Meaningful threshold values can
only occur between the feature values of two adjacent, but differently labeled cases.
This has previously been shown by Fayyad for greedy approaches [15]. However,
there is a larger reduction possible if we use the subsumption principle as well. To
illustrate this we calculate for FOP A >, the number of correct positives (CP) and false
positives (FP) for all average feature values of adjacent cases as shown in Table 4.5.

Table 4.5. The number of correct positives (CP) and false positives (FP) taking the average
feature values of adjacent cases as the threshold values for the > operator.

FOP A > CP FP

>4.75 3 2
>5.05 3 1
>5.15 2 1
>5.30 1 1
>5.70 1 0

Based on the subsumption principle, only those threshold values should be used that
cover a superset of the positive cases and a subset of the negative cases. Thus, in our
example, > 5.05 is preferred above > 4.75, because there are less FPs for the same
number of CPs. This also holds for > 5.15, since the same number of FPs are covered
but less CPs. In our example the final candidate threshold values are 5.05 and 5.70.
For the relational operator >, only threshold values that are at a class boundary from
0 to 1 need to be taken as candidate threshold values for EXPLORE. Similarly, for
the relational operator ≤ we only need to include threshold values that are at a class
boundary from 1 to 0. However, if there are cases in the data set with equal feature
values but with different class labels, these boundaries have to be taken as candidate
threshold values for both relational operators.

Application of the subsumption principle thus allows us to remove a large number
of measurement values from the list of candidate threshold values for each FOP. In
Table 4.6, the effect of different threshold selection strategies on the total number of
threshold values of all FOPs are presented for 5 well-known data sets taken from the
UCI data repository [16].
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Table 4.6. Number of candidate threshold values for five standard data sets using three differ-
ent approaches of threshold value generation: exhaustive, class boundaries, and the
subsumption principle. The percentage reduction of the class boundaries and sub-
sumption approach compared to exhaustive generation is indicated in parentheses.

#Threshold values

Data set #Features Exhaustive Boundaries Subsumption

Heart 13 756 580 (-23.3%) 426 (-43.7%)
Hepatitis 19 542 232 (-57.2%) 152 (-72.0%)
Diabetes 8 2496 1714 (-31.3%) 1174 (-53.0%)
Breast 9 178 144 (-19.1%) 130 (-27.0%)
Liver 6 654 538 (-17.7%) 432 (-34.0%)

Threshold instantiation by branch and bound

After the candidate threshold values have been selected EXPLORE will instantiate the
rules with the threshold values in a systematic manner using a branch and bound ap-
proach. Branch and bound is a technique that is often used to solve large-scale com-
binatorial optimization problems [9]. The complete space of solutions is iteratively
searched by applying branching and bounding rules. The first operation of an itera-
tion is branching, i.e., the unexplored solution space is subdivided into two or more
subspaces to be investigated in a next iteration. Subsequently, a bounding function
for each of the subspaces is calculated and compared to the current best solution. If it
can be established that a subspace cannot contain the optimal solution, this subspace
is discarded, else it is further explored and the solution replaces the current best. The
search terminates when there is no unexplored part of the solution space left, and the
optimal solution is the then current best solution. The branch and bound technique
can provide a tightly focused traversal of the search space, while assuring that the
optimal solution will be found.

In our threshold instantiation problem we need to systematically instantiate all com-
binations of threshold values for all FOPs in each rule. To apply the branch and bound
technique to this problem we need to define bounding rules. Clearly, the bounds are
dependent on the performance measure to be optimized and on the user-defined per-
formance constraints. We will present the definition of the bounding rules for two
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optimization problems: sensitivity optimization with a constraint on specificity, and
accuracy optimization.

Sensitivity optimization with constraints on specificity

In sensitivity optimization the number of CPs needs to be maximized. We define the
feature test f ti, j as the combination of the FOP and the threshold value of conjunction
i at position j. An important consideration is that the maximum number of cases that
are correctly assigned to the positive class by conjunction i (CPmaxi) is determined by
the feature test that has the lowest number of CPs (CPi, j).

CPmaxi = min(CPi,1, . . . , CPi,λi
) (4.6)

Suppose we have a rule that consists of one conjunction (A > AND B >). If a feature
test A > 5 correctly classifies 10 cases as belonging to the positive class (CP1,1 = 10)
and the current best rule classifies 15 cases correctly (CPbest = 15), then no instan-
tiation of threshold values in the subsequent features test (B >) will ever result in a
decision rule with a higher sensitivity than the current best. All conjunctive exten-
sions of A > 5 can be skipped without loss of performance. Note that even if all
feature tests have a CPi, j > CPbest we cannot conclude that the whole conjunction
will have a better CP than the current CPbest, because the same cases can be classified
correctly by one feature test and incorrectly by another.

Now suppose we have a rule that consists of more than one conjunction. Then we
can use a similar approach for each conjunction but the minimum number of CPs of
conjunction i (CPmini), depends on CPbest and the number of CPs of the other con-
junctions. Let CPk be the cumulative number of correct positives of the rule up to con-
junction k. For example, if we have a logical-operator set 2 OR 2 OR 2, CP2 equals the
number of CPs of the disjunction of the first two conjunctions. In EXPLORE we mod-
ify threshold values in the rule starting at the last FOP in the last conjunction while
the other FOPs are not changed and we move to the left if this is necessary based on
the bounding rules. Therefore, each cumulative CPi can be calculated once and used
as long as no feature tests are changed in that particular ensemble of conjunctions.
We can now calculate the CPmini bound by taking into account the cumulative num-
ber of CPs up to conjunction i − 1, CPi−1, as well as the CPmaxi of the conjunctions
i + 1, . . . , m:

CPmini = CPbest − CPi−1 −
k=m

∑
k=i+1

CPmaxk (4.7)
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4.2. Exhaustive rule induction under constraints

The next step is to also define a bound based on the specificity constraint and reduce
the search space even further. By defining a constraint on specificity the user actually
allows a maximum number of cases that may falsely be classified as positive (FPmax).
We can use this as a bound on the number of FPs of a conjunction i, FPi, i.e., FPi ≤
FPmax. Note that we now cannot use a different FPmax for each conjunction since the
same cases can be classified as false positives by multiple conjunctions. This FPmax
bound is a constant value defined by the user, in contrast to the CPmin bounds which
are updated after a new threshold set is generated and the performance is calculated.

Initialization of threshold values

The first threshold set is generated by the algorithm InitThresholdSet (Alg. 4.8) which
calls InitThresholdsConjunction (Alg. 4.9) for each conjunction.

Algorithm 4.8: InitThresholdSet

for 1 ≤ i ≤ m do1

InitializeThresholdsConjunction;2

end3

Algorithm 4.9: InitThresholdsConjunction

for 1 ≤ j ≤ λi do1

thi, j = 1 ; // Initialize to the first threshold in the list2

end3

// Check CP and FP Bound

if CPi, j < CPmini then4

Return FALSE ; // Conjunction can never fulfill CP bound5

end6

if FPi > FPmax then7

if NextThresholdsConjunction then8

Return TRUE;9

else10

Return FALSE11

end12

else13

Return TRUE;14

end15

The InitThresholdsConjunction routine (Alg. 4.9) initializes to the first set of threshold
values that fulfills the current bounds. Let thi, j be the index in the list of candidate
threshold value and nti, j the number of candidate threshold values of FOP f oi, j. For
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each threshold value of all feature-operators the number of CPs are calculated before-
hand and ordered downwards. Without prior knowledge, the threshold values with
the highest number of CPs appear to be the best threshold set to start with since it
has the highest potential to improve on CPbest (lines 1-3). If the CP bound is not met
we return "FALSE" because a higher number of CPs will not be possible (line 4-6).
Then we check the FP bound and, if FPi > FPmax, call the NextThresholdsConjunction
routine (Alg. 4.11), which generates the next set of threshold values that fulfills both
bounds (line 7-13).

Generation of next threshold set

The NextThresholdSet routine instantiates the next set of threshold values for the com-
plete rule (Alg. 4.10). It starts with the last conjunction and generates the next set
of threshold values for that conjunction, if possible (line 4). If this is not possible we
move to the left until a conjunction is found that can be instantiated with a new set
of threshold values (line 11). Each time a conjunction i can be instantiated we have to
initialize all conjunctions to its right again (lines 6-9). However, it is possible that one
of these conjunctions cannot be initialized to a value that fulfills the bounds. In that
case, we determine the next threshold set for conjunction i and try again. The routine
will return "TRUE" if a rule is found that fulfills both bounds.

Algorithm 4.10: NextThresholdSet

i = m; // Start with last conjunction1

result=FALSE;2

while i > 1 AND NOT result do3

if NextThresholdsConjunction then4

result=TRUE;5

// initialize conjunctions i + 1, . . . , i = m
while i < m and result do6

i = i + 1;7

result=InitThresholdsConjunction;8

end9

else10

i = i − 1;11

end12

end13

Return result;14

To generate the next threshold set for a conjunction (Alg. 4.11), we start with the last
FOP (line 1) and search for the FOP for which there still exists a next threshold value
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(thi, j < nti, j) and has a CPi, j ≥ CPmin (line 2-5). We then increment the threshold index
for that FOP and evaluate the complete conjunction. If the bounds are not met we call
the routine again.

Algorithm 4.11: NextThresholdsConjunction

j = λi; // start with last FOP1

// Find FOP that is not at its last threshold value and CPi, j ≥ CPmini

while (thi, j = nti, j OR CPi, j < CPmini) AND j ≥ 1 do2

thi, j = 1; // reset to first threshold3

j = j − 1; // move one FOP to the left4

end5

if j ≥ 1 then6

thi, j = thi, j + 1; // instantiate next threshold value7

Evaluate Conjunction; // determine CPs and FPs of the conjunction8

if CPi < CPmini OR FPi > FPmax then9

NextThresholdsConjunction;10

else11

Return TRUE;12

end13

end14

Return False;15

Execution time with and without branch and bound

In Table 4.7 the effect of the branch and bound approach on the execution time is
illustrated if we generate rules up to length n = 3. The sensitivity of the rule is
optimized with minimum specificities of 90%, 95%, and 99%. The execution time is
compared to the procedure without branch and bound optimization. EXPLORE was
implemented on an Intel Pentium 1.7 GHz with 1.0 Gb system memory.

From Table 4.7 it is apparent that the execution time is greatly reduced by the branch
and bound approach, i.e. a very large number of combinations of threshold values is
skipped without loss of performance. Execution time increases with increasing speci-
ficity bound, which at first might seem counter-intuitive. However, the higher con-
straint on specificity will lower the CPbest and thus reduces the effect of the CPmin
bounds within all conjunctions.
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Table 4.7. Execution time (hour:min:sec) of EXPLORE without the use of branch and bound
(BB), and with BB when rules up to rule length 3 are optimized for sensitivity at
different specificity constraints of 90%,95%, and 99% (Sp90, Sp95, and Sp99, respec-
tively).

with BB

Data set #Features #Cases without BB Sp90 Sp95 Sp99

Heart 13 270 0:06:06 0:00:08 0:00:21 0:00:22
Hepatitis 19 155 0:00:20 0:00:02 0:00:03 0:00:03
Diabetes 8 768 2:37:56 0:03:27 0:06:53 0:14:30
Breast 9 699 0:00:17 0:00:02 0:00:02 0:00:02
Liver 6 345 0:06:23 0:00:22 0:00:28 0:00:41

Accuracy optimization

It is also possible to use the branch and bound principle for the optimization of the
accuracy. Accuracy is determined as the total number of correct classifications, CT =
CP + CN. If we assume that all negative cases are correctly classified then we can
calculate for each conjunction the minimal number of CPs, CPmini, to improve on the
current number of correctly classified cases, CTbest. CPmini for each conjunction can
be calculated by taking into account the cumulative number of CPs up to conjunction
i − 1, CPi−1, as well as the CPmaxi of the conjunctions i + 1, . . . , m:

CPmini = CTbest − #Negative cases − CPi−1 −
i=m

∑
i+1

CPmaxi (4.8)

An FPmax bound can be defined if we assume that all positive cases are correctly
classified:

FPmax = #cases − CTbest (4.9)

We can now use the same algorithm as described for the sensitivity optimization with
specificity constraint but with different values for the CPmin’s and for FPmax. These
bounds are less strong than for sensitivity optimization because they are defined for
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the extreme case that all negative or positive cases are classified correctly. Neverthe-
less, the reduction in execution time is still large as shown in Table 4.8.

Table 4.8. Execution time (hour:min:sec) of EXPLORE without the use of branch and bound
(BB), and with BB when rules up to rule length 3 are optimized for accuracy.

Data set #Features #Cases without BB with BB

Heart 13 270 0:06:06 0:00:41
Hepatitis 19 155 0:00:20 0:00:05
Diabetes 8 768 2:37:56 0:29:32
Breast 9 699 0:00:17 0:00:02
Liver 6 345 0:06:23 0:02:39

4.3 Experiments

We compared the performance of EXPLORE up to rule length n = 3 with two decision-
tree algorithms, C4.5 [5] and CART [4]. Table 4.9 shows the average accuracy and
standard error of ten runs of a 10-fold cross-validation experiment on the data sets
used before. Before each run we first randomized each of the data sets into 10 folds
and used the same folds for all algorithms.

Most exhaustive search results are comparable to the best classifiers generated by the
other two algorithms, but for the Heart data set a higher performance is obtained with
EXPLORE. By using the same folds we were able to compare the classifiers generated
by the different algorithms for each fold. For the Diabetes and Liver data set, the rules
generated by EXPLORE often consisted of the same FOP sets with slightly different
threshold values. The classifiers generated by CART and C4.5 vary more in size of,
over the folds. Generally, these algorithms show larger variability in accuracy than
EXPLORE, as expressed by lower standard errors for EXPLORE.

Since EXPLORE is the only of the three algorithms that can optimize sensitivity under
specificity constraints, it is not possible to compare the algorithms in this respect. As
an illustration, Fig. 4.2 shows the Receiver Operator Curve (ROC) for the Heart data
set as generated by EXPLORE for rule lengths up to n = 3 if we use all available
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Table 4.9. Comparison of average accuracy (standard error) of the three induction algorithms
on five standard data sets.

EXPLORE

Data set CART C4.5 n=1 n=2 n=3

Heart 78.8 (0.5) 78.5 (0.5) 73.9 (0.4) 73.5 (0.6) 82.1 (0.2)
Hepatitis 87.7 (0.6) 82.6 (0.8) 80.4 (0.5) 86.9 (0.7) 87.5 (0.7)
Diabetes 75.9 (0.2) 74.2 (0.5) 73.7 (0.1) 76.7 (0.1) 75.5 (0.2)
Breast 95.2 (0.2) 95.6 (0.2) 91.6 (0.2) 95.3 (0.1) 94.9 (0.1)
Liver 68.9 (0.5) 64.9 (0.7) 61.2 (0.4) 68.3 (0.3) 66.4 (0.3)

data for learning. This curve was generated by repeatedly optimizing sensitivity with
EXPLORE with an increasing constraint on specificity in steps of 5%.

Figure 4.2. Receiver operator curves for the Heart data set up to rule length n = 3.
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4.4 Discussion

We developed an algorithm, EXPLORE, that performs an exhaustive search to find a
decision rule that optimizes a performance measure while enforcing user-specified
constraints on other performance measures. The execution time of the algorithm
could be significantly reduced compared to a more naïve approach by incorporating
several new techniques that greatly reduce the search space. Firstly, the instantiation
of feature-operator pairs instead of features and operators separately enables to gen-
erate rules in a more efficient and systematic manner. Secondly, application of the
subsumption principle reduced the number of candidate thresholds in the five stan-
dard data sets by a third on average as compared to only taking thresholds at the
class boundaries. Thirdly, the use of the branch and bound techniques assures that
no rules are generated and evaluated that cannot have a higher performance than
the currently best performing rule. Note that the execution time of the naïve search
would greatly exceed those presented in Table 4.7 for EXPLORE without the use of
branch and bound since in the latter algorithm we still make use of the reduction in
thresholds and the FOP approach.

On five standard data sets from the medical domain the accuracy of the classifiers
generated by EXPLORE are comparable to or surpasses the accuracy of the classifiers
generated by the greedy algorithms C4.5 and CART. More importantly, however, is
the capability of EXPLORE to optimize diagnostic performance measures under con-
straints. In CART it is possible to steer the trade-off between sensitivity and specificity
with the use of cost functions [4]. In practice this is often a trial-and-error approach,
because the relation between the cost functions and their effect on diagnostic perfor-
mance is unknown. To our knowledge, the only algorithm that allows control over
more than one performance measure is the PVM algorithm [7], but PVM performs
a heuristic beam search strategy, not an exhaustive search. The control over other
performance measures is important, especially in medical problems where a balance
must be struck between sensitivity and specificity. In the medical data sets that we
used to validate EXPLORE, the highest accuracy value often leads to a position on the
ROC curve that has no value in medical practice. With EXPLORE we can enhance the
sensitivity of the rule by lowering its specificity while imposing minimum constraints
on the accuracy. However, the performance measures are not independent meaning
that the various minimum constraints should be selected carefully, i.e. when more
than one constraint is imposed it is possible that no solution exists.

There are several ways to further increase the induction speed of EXPLORE. Currently
we are developing a distributed version of EXPLORE that runs in parallel on a grid
of computers. The systematic rule generation of EXPLORE enables parallel computa-
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tion on different levels of the algorithm. Another approach is to use expert knowledge
in the induction process. In the version of EXPLORE described here we did not in-
corporate any available knowledge to guide the search. However, EXPLORE lends
itself very well to the incorporation of expertise, which can lead to a large reduction
in complexity without loss of performance. For example, based on prior knowledge
some features can be made obligatory, ranges for candidate threshold values can be
specified, or rules can be defined as a starting point for induction. The expert may
also predefine a minimum value of the sensitivity by increasing the CPmin bound be-
forehand and then optimize sensitivity with a constraint on the specificity. This can
improve the speed of the search considerably because a higher bound at the start of
the induction reduces the number of potential rules. Another advantage of the use of
expert knowledge is that this may also improve the comprehensibility of the resulting
rule. Comprehensibility is generally greater for smaller rules and for rules that con-
tain features that are easily interpretable for the end-user. Finally, heuristics can be
applied to improve the speed. For example, the number of reoccurences of a FOP in
a rule could be restricted. Our future research, will focus on the enhancement of the
processing speed of the algorithm.
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Abstract

The interpretation pediatric electrocardiograms (ECGs) is complicated because of the
strong age-dependency of the diagnostic criteria. We wanted to develop and evaluate
a computer program for the interpretation of pediatric 12-lead ECGs.

Continuous age-dependent normal limits were established based on ECGs from 1912
healthy Dutch children. Additionally, a reference interpretation was obtained for 1718
ECGs recorded at the Sophia Children’s Hospital. The total set of ECGs was divided
in a training set of 1076 ECGs and a test set of 642 ECGs. All ECGs were recorded at a
sampling rate of 1200 Hz. Based on the normal limits and the training set, diagnostic
rules were formalized in an iterative process, using expert interviews and automatic
rule induction. The resultant rules were evaluated on the test set.

The performance of the program, on our study population, appears to justify its use
in a clinical setting. Preferably, the program should also be evaluated in other clinical
centers.

Keywords: computer program, electrocardiography, pediatrics
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5.1 Introduction

While much research has been devoted to computerized interpretation of the adult
electrocardiogram (ECG), automatic interpretation of pediatric ECGs has received lit-
tle attention. It has been argued, however, that computer support in pediatric elec-
trocardiography would be even more beneficial because the interpretation is more
complex due to the strong age-dependency of the diagnostic criteria [1–3]. Especially
in the first year of life the electrical behaviour of the heart changes rapidly [4,5]. This
is mainly the result of the change from right to left ventricular predominance, which is
reflected in changes in normal wave amplitudes. In addition, intervals are markedly
reduced in the young child and gradually prolong to adult values as the child grows.
This age-dependency forces the pediatric cardiologist to make use of extensive tables
of normal values. A computer program could be helpful in relieving the pediatric
cardiologist from memorizing the large number of age-dependent criteria. Also, a
computer program would make possible interpretation of pediatric ECGs at places
currently devoid of cardiologic experience.

A small number of computer programs have been developed for the interpretation of
the pediatric ECG [2,6–9] or vectorcardiogram [1,3,10–12]. In some early systems [6–
8], leads were recorded and processed in groups of three simultaneously, and the ECG
signals were sampled at 250 Hz. Nowadays, modern electrocardiographs record 12
simultaneous leads at higher sampling rates that have been shown to avoid significant
errors, especially in wave amplitudes [5,13]. More recently, Macfarlane extended the
Glasgow program with a pediatric ECG interpretation module for simultaneous 12-
lead ECGs, sampled at a rate of 500 Hz [9]. Unfortunately, the performance of this
program has not yet been reported. Also, it has been questioned whether even 500 Hz
is a high enough sampling rate for the recording of pediatric ECGs [14–16].

For the development of a computer program for pediatric ECG interpretation, up-to-
date normal limits are essential. Several studies have been conducted to determine
normal limits for the pediatric ECG [4,13,17–21]. However, all these studies have cer-
tain imperfections that limit their practical applicability. Firstly, normal limits have
often been presented for an incomplete set of clinically relevant parameters and leads.
Secondly, in many studies parameters were measured by hand from ECGs recorded
on paper. At present, computer analysis of digitised ECGs allows more accurate mea-
surement. Thirdly, in some studies the ECG signals may have been recorded less than
perfectly owing to low sampling rates or the use of ECG amplifiers with small band-
width. Therefore, the establishment of new up-to-date normal limits would seem
necessary.
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This study describes the development and evaluation of a computer program for the
interpretation of pediatric ECGs, based on a large set of normal and abnormal ECGs
recorded at a high sampling rate of 1200 Hz.

5.2 Materials and Methods

Our newly developed pediatric ECG interpretation program, which is called PEDi-
atric Modular ECG ANalysis System (PEDMEANS), is based on the Modular ECG
ANalysis System (MEANS) for the interpretation of adult ECGs [22]. We had to mod-
ify both the signal analysis and the classification sections of MEANS to allow for pe-
diatric ECG interpretation. The signal analysis section takes care of ECG-complex
detection and typification, selective averaging, waveform recognition, and measure-
ment of ECG parameters, while the classification section deals with rhythm analysis
and morphological (contour) interpretation. Children, as compared to adults, have
higher heart rates, narrower QRS complexes, and the ECGs are often noisier and show
more artifacts. To take care of these differences, we modified several digital filters and
detection algorithms. Also, changes were made in the measurement part of MEANS.
Furthermore, since MEANS has been developed for ECGs sampled at 500 Hz, the sig-
nal analysis algorithms were changed to comply with the higher sampling rate of 1200
Hz. The rhythm analysis of MEANS was basically left the same, but threshold values
were adjusted and made age-dependent. Because of the large differences in contour
interpretation between adults and children, this part has completely been redevel-
oped for PEDMEANS. To that end, we established new normal limits for pediatric
ECGs and developed decision rules for all diagnostic categories.

Continuous age-dependent normal limits

Data collection and analysis for the establishment of normal limits have been de-
scribed previously [5]. Briefly, 1912 children aged 11 days to 16 years were recruited
at three child health centers, three primary schools, and a secondary school in Rotter-
dam. Children with previously known cardiovascular abnormalities were excluded
from the study. For each child, a 12-lead ECG was recorded using a portable PC-based
acquisition system (Cardio Control, Delft, the Netherlands) at a sampling rate of 1200
Hz and then processed by PEDMEANS. To reduce noise, PEDMEANS computes a
representative averaged beat for each of the twelve leads, from which ECG measure-
ments are derived. The 2nd and 98th percentiles of the measurement distribution
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were taken as the lower limit and the upper limit of normal, respectively. In addi-
tion to the estimation of normal limits for age groups, we determined age-dependent
curves that represent the normal limits in a continuous form, to avoid abrupt changes
in diagnosis with small differences in age. In a window of 200 measurements, mov-
ing along the age axis, percentiles and their confidence intervals were calculated for
each window position according to a two-stage transformation procedure [5]. Poly-
nomial curves were then fitted through the 2nd and 98th percentile values to obtain
percentiles that smoothly change with age. The order of the polynomials was deter-
mined by visual inspection of the fit, selecting the lowest order that yielded curves
remaining within the estimated confidence intervals. As an example, Fig. 5.1 shows
the estimated continuous age-dependent normal curves for QRS duration.

Figure 5.1. Continuous age-dependent percentile curves of the QRS duration.

Database

To develop and validate the diagnostic rules, 1718 ECGs were recorded at the Sophia
Children’s Hospital in Rotterdam with the Cardio Control equipment described above.
Two pediatric cardiologists independently interpreted all ECGs and rated the cer-
tainty of each abnormality on a four-point scale: absent (=0), possible (=1), probable
(=2), and definite (=3). If the interpretations of the two pediatric cardiologists differed
by only one point, either of them was randomly selected as the final reference interpre-
tation. If the interpretations differed by two or three qualifier points, a third pediatric
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cardiologist adjudicated the ECG and his interpretation was then taken as the refer-
ence. The ECGs were divided in a training set of 1076 ECGs and a test set of 642 ECGs.
In Table 5.1, the number of cases in the categories left ventricular hypertrophy (LVH),
right ventricular hypertrophy (RVH), left bundle branch block (LBBB), and right bun-
dle branch block (RBBB) are shown. The remaining cases are a mixture of different
other abnormalities and normals. Based on the training set, diagnostic rules were
developed through expert interviews and with the use of a modified version of our
EXPLORE (Exhaustive Procedure for Logic-Rule Extraction) induction algorithm [23].

Table 5.1. Number of cases in the categories: right ventricular hypertrophy (RVH), left ventric-
ular hypertrophy (LVH), right bundle branch block (RBBB), and left bundle branch
block (LBBB), in the training set and test set.

Training set Test set
Abnormality Possible Probable Definite Possible Probable Definite
RVH 50 29 52 76 40 34
LVH 51 32 33 80 21 13
RBBB 5 21 67 11 18 32
LBBB 0 2 6 0 0 4

Automatic Rule induction

The elucidation of expert knowledge for decision-support systems is a tedious and
time-consuming task. Whereas experts are generally well able to classify a set of given
objects, they often find it difficult to articulate the knowledge they are using to do this,
the more so if that knowledge has to be precisely formulated in order to be imple-
mented in a computer program. To alleviate this problem, induction techniques can
be used that automatically construct a classifier based on a set of labeled objects [24].
Our EXPLORE (Exhaustive Procedure for LOgic-Rule Extraction) induction algorithm
generates decision rules that fulfill user-specified performance constraints. Most in-
duction algorithms try to maximize the accuracy of the classifier that is being derived,
whereas in medicine a classifier often needs to be optimal with respect to other diag-
nostic performance measures, such as sensitivity or specificity. Basically, EXPLORE
generates all possible rules and searches for the one with the best performance. To
reduce the number of logical combinations to be generated, several heuristics can be
employed that reduce the number of features, thresholds, or relational operators [23].
A further reduction of search complexity was obtained by adding several options that
take advantage of prior expert knowledge. This may also improve the comprehensi-
bility of the resulting rule. First, we modified EXPLORE to allow the expert to indicate
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which features must be present in a decision rule for the rule to make sense. For exam-
ple, in RVH the R-wave amplitude in V1 should definitely be present in the decision
rule. Second, the expert may define ranges of threshold values and let the induction
algorithm find the optimum threshold within the specified range. Such a specification
may for example be based on reasonable assumptions about normal limits of param-
eters. Third, the expert may specify subrules that partially describe an abnormality
and are a starting point for further induction by EXPLORE. For example, in right ven-
tricular hypertrophy the R-wave amplitude in lead V1 and the S-wave amplitude in
V6 are known to be important, but a pediatric cardiologist may find it difficult to give
precise threshold values. In the extended version of EXPLORE, the following subrule
could then be defined:

(R wave V1 > ? AND S wave V6 > ?) (5.1)

where the question marks indicate threshold values to be derived by EXPLORE. The
algorithm will then only consider rules that contain this subrule. The expert may
also replace operators by question marks, or may specify complete subrules without
question marks, in concordance with his prior knowledge.

Rule development

Using the learning set, we tried to maximize the sensitivity of the decision rules while
keeping specificity at ≥ 95%, a level which we considered necessary for the rules to be
of practical utility. This was accomplished by an iterative procedure in which a pedi-
atric cardiologist was asked to articulate his knowledge in the EXPLORE formalism,
EXPLORE generated the best decision rule, and the comprehensibility and perfor-
mance of this rule was discussed with the expert, possibly resulting in refinement of
the specified prior knowledge. These steps could be reiterated until a satisfactory rule
was obtained.

Performance evaluation

The test set was used to assess the performance of the final rules. Accuracy, sensitivity,
and specificity for each diagnostic category were calculated from 2-by-2 classification
matrices. Category dichotomization was performed by mapping qualifiers "probable"
and "definite" to "present", and "possible" and "absent" to "not present".
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5.3 Results

To illustrate our rule-development approach, we will elaborate on the decision rule
for RBBB. In RBBB, the right ventricle is not depolarized directly through the Purkinje
system, but through the ventricular myocardium at a much slower rate due to the
slower conduction velocity in the myocardium. This results in a sequential depolar-
ization of the left and right ventricles and a terminal depolarisation that is directed
rightward and anteriorly. The ECG shows a QRS duration that is longer than nor-
mal for age, wide and slurred R’ waves in V3R, V1, and aVR, and wide and slurred S
waves in I, II, V6, and V7. After studying all the RBBB cases in the training set during
the expert interviews, it appeared that the pediatric cardiologists looked at the total
QRS duration, the ratio of R’ and S durations in V3R, V1, and aVR, and the ratio of
R and the S durations in I, II, V6, and V7. However, they found it difficult to supply
threshold values for these parameters and were hesitant to indicate the number of
leads in which these thresholds should be met for the diagnosis to be made. Because
of the age-dependency of the QRS duration, as illustrated in Fig. 5.1, we defined the
difference between the measured QRS duration and the upper limit of normal for age
(ULN) as a new feature (∆QRS duration), and specified a search range from -20 to
20 ms for EXPLORE. Furthermore, the wave-duration ratios of the RBBB cases were
often seen to be larger than two. We then introduced another feature, #prolonged
waves, indicating the number of leads in which this condition is met, and defined the
following subrule:

(∆QRS duration > ? AND #prolonged waves > ?) (5.2)

Using the training set, EXLORE found that thresholds of 5 ms for ∆QRS duration and
3 for #prolonged waves yielded a rule which fulfilled our performance constraints. We
decided to use the ULN for the QRS duration instead of the ULN + 5 ms, because the
difference in performance proved to be negligible. This gave the following decision
rule:

I f (QRS duration > ULN AND #prolonged waves > 3) then RBBB (5.3)

This simple rule had a sensitivity of 86.4% and a specificity of 97.9% on the training
set. On the test set, the sensitivity was 84.0% and the specificity 95.3%, which was
considered acceptable.

In a similar way, we developed decision rules for all diagnostic categories and state-
ments as shown in Table 5.2. In addition, PEDMEANS can give localization (e.g., pos-
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terior, inferior), severity scores (e.g., marked, mild), and certainty scores (e.g., prob-
able, possible) for some categories. Also, PEDMEANS can give an explanation of its
reasoning by showing the major fulfilled criteria for each given statement.

Table 5.2. Diagnostic statements of PEDMEANS.

Rhythm categories Contour categories

aberrantly conducted complexes axis deviation
accelerated AV junctional rhythm biventricular hypertrophy
atrial fibrillation high voltage
atrial tachycardia infarct
AV junctional escapes intraventricular conduction delay
AV junctional rhythm left bundle branch block
AV junctional tachycardia long QTc interval
ectopic atrial rhythm low voltage
first degree AV block left ventricular hypertrophy
idioventricular rhythm left atrial hypertrophy
PR interval variation right atrial hypertrophy
premature atrial complexes right bundle branch block
premature supraventricular complexes repolarization disturbance
premature ventricular complexes right ventricular hypertrophy
second degree AV block ST depression
short PR interval ST elevation
sinus arrhythmia unusual P axis
sinus bradycardia Wolf-Parkinson-White syndrome
sinus rhythm
sinus tachycardia
supraventricular escapes
supraventricular tachycardia
ventricular escapes

In Table 5.3, the classification matrices for the test set are given for RBBB, LBBB, RVH
and LVH. Table 5.4 gives the performance on the training and test sets.
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Table 5.3. Classification matrices of right bundle branch block (RBBB), left bundle branch block
(LBBB), right ventricular hypertrophy (RVH), left ventricular hypertrophy (LVH) for
the test set.

RBBB Cardiologists
PEDMEANS absent possible probable definite
absent 557 7 6 2
possible 0 0 0 0
probable 18 2 5 8
definite 6 2 7 22

LBBB Cardiologists
PEDMEANS absent possible probable definite
absent 636 0 0 1
possible 0 0 0 0
probable 1 0 0 0
definite 1 0 0 3

RVH Cardiologists
PEDMEANS absent possible probable definite
absent 461 46 5 2
possible 23 14 6 6
probable 6 10 11 1
definite 2 6 18 25

LVH Cardiologists
PEDMEANS absent possible probable definite
absent 491 56 3 2
possible 23 11 2 0
probable 10 7 4 1
definite 4 6 12 10

Table 5.4. Performance measures of the training set and test set for the major diagnostic cate-
gories.

Training set Test set
Abnormality Sens (%) Spec (%) Sens (%) Spec (%)
RVH 71.7 97.1 74.3 96.5
LVH 80.0 95.0 79.4 95.6
RBBB 86.4 97.9 84.0 95.3
LBBB 62.5 99.3 75.0 99.7
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5.4 Discussion

We developed and evaluated a computer program for interpretation of pediatric 12-
lead ECGs with the use of a modified version of our EXPLORE induction algorithm.
The combination of expertise of the pediatric cardiologist and the algorithm appeared
to be a powerful tool in the development of the decision support system. By allowing
more user-interaction we could incorporate the knowledge of the pediatric cardiolo-
gists, which decreased the search time of EXPLORE and improved the comprehensi-
bility of the resulting decision rules. Furthermore, the ability of EXPLORE to optimize
sensitivity with constraints on the specificity enabled us to develop rules that ful-
filled our performance requirements. Since high specificities are generally considered
mandatory for a rule to be practically useful, we chose to develop diagnostic criteria
with specificities of at least 95%, while maintaining sensitivity as high as possible.
With other induction techniques, such as CART [25], this would have been more dif-
ficult, since the user has no direct control over the sensitivity and specificity and must
resort to a process of trial-and-error in deriving a classifier that suits his needs.

The collection of normal ECGs proved to be essential for obtaining reliable normal
limits that could be used to define age-dependent criteria. During the expert inter-
views, it became clear that our pediatric cardiologists had difficulties to define age-
dependent criteria, and even more difficulties to use these criteria consistently during
their interpretations. Therefore, we estimated continuous age-dependent normal lim-
its and used these as threshold values in the decision rules to avoid abrupt changes
in diagnosis with small changes in age. These new normal limits differ substantially
from those commonly used and suggest that diagnostic criteria for the pediatric ECG
should be adjusted [5]. This presents a difficulty in program validation. Since the pe-
diatric cardiologists were not able to use the new normal limits during their interpre-
tations, differences with the interpretation program were unavoidable. For example
for intraventricular conduction delay, in which the QRS duration is the main crite-
rion, it was difficult to use the pediatric cardiologists as a reference. If PEDMEANS
stated that the QRS was prolonged on basis of the new normal limits, the pediatric
cardiologists had no ground to overrule this. Therefore, in this study we only present
performance measures for a selected set of abnormalities. In might be interesting to
have the pediatric cardiologists re-examine a set of ECGs with the newly estimated
normal limits to see whether the disagreement between program and reference de-
creases.

Comparison of our results with those of earlier pediatric ECG computer programs
is difficult: most studies did not report performance measures, sampling rates were
much lower, and often the 12 leads were not recorded simultaneously. A validated
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database of pediatric ECGs for testing and comparing pediatric ECG interpretation
programs, following the lines of the seminal Common Standards for Quantitative
Electrocardiography (CSE) study [26] for adult ECG programs, would be extremely
helpful but is a huge task not easily accomplished. In our present evaluation, the per-
formance on the test set was comparable with the performance on the training set.
This indicates that the rules were not over-specialized on the training set. All speci-
ficities on the test set proved to be greater than 95% as we aimed for. Corresponding
sensitivities, in this study population, were considered quite acceptable for use in a
clinical setting.

5.5 Study limitations

We did not present performance measures for the rhythm part of PEDMEANS, be-
cause our dataset contained only few rhythm abnormalities to make an evaluation
possible. Although, we believe that the modified adult rhythm classification is a good
starting point, we should still collect a dataset that enables us to optimize and validate
the rhythm section of PEDMEANS.

Our database of normal ECGS is limited in that it does not contain children younger
than 11 days, which only allowed us to partially evaluate the performance. For this
reason we choose not to make definite statements for children younger than 2 weeks,
but only suggest possible abnormalities. A final limitation of our study is that the
number of cases for some categories, (e.g., LBBB) is small and needs to be expanded
to more reliably gauge the performance for these categories. Preferably, PEDMEANS
should also be evaluated in different clinical centers.

5.6 Conclusions

A computer program for the interpretation of pediatric ECGs has been developed and
evaluated. The performance of the program, on our study population, seems to justify
its use in a clinical setting.
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Abstract

In pediatrics, the electrocardiogram (ECG) is still an important tool for the initial di-
agnosis of left ventricular hypertrophy (LVH). Earlier studies in patient groups with
specific cardiac diseases report sensitivities varying widely from 20% to 67% for de-
tecting LVH. A validity study on an unselected pediatric hospital population with
mixed cardiac abnormalities has not been performed yet. Futhermore, several criteria
that were shown to improve the detection of LVH in adults have not been tested in
children.

The study population consisted of 832 children from whom a 12-lead electrocardio-
gram and an M-mode echocardiogram were taken on the same day at the Sophia Chil-
dren’s Hospital in Rotterdam in the period 2003 to 2005. Two pediatric cardiologists
were independently presented with the medical record of each patient and scored the
likelihood of volume or pressure overload of the left and right ventricle on a three-
point scale (absent, possible, probable). Disagreements, defined as more than one
point difference were solved by consensus. LVH in the echocardiogram was defined
as a LVM index (LVMI), taken as LVM (in g) divided by body weight (in kg), exceed-
ing a gender-independent value of 3. The validity of current pediatric and adult ECG
criteria was judged on the basis of an abnormal LVMI , alone and in combination with
the clinical LVH score of the cardiologists. In addition, a search was made for pos-
sibly better performing combinations of criteria with the use of automatic learning
techniques.

The ECG criteria have relatively low (<25%) sensitivity rates at 95% specificity in the
pediatric hospital population when an elevated LVMI is taken as the reference for
LVH. The performance appears to improve with age. When clinical evidence is also
taken into account in the definition of LVH, the sensitivity improved to 43%. By com-
bining two ECG parameters the maximum sensitivity is raised to 32% in the group
with abnormal LVMI and to 51% in the group with a combination of abnormal LVMI

and clinical evidence suggestive of LVH.

The sensitivity of the pediatric ECG in detecting LVH in a hospital population is low
when LVMI is taken as the reference. When the clinical evidence of LVH is also taken
into account, the performance of the ECG is considerably higher. The sensitivity can
be further improved if ECG parameters are combined.

Keywords: electrocardiography, pediatrics, LVH, echocardiography
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6.1 Introduction

Left ventricular hypertrophy (LVH) results from adaptation of the heart to increased
hemodynamic burden. Therefore, early detection of LVH is important, especially in
children. Although the 12-lead electrocardiogram (ECG) is still valued as an initial
diagnostic test for LVH, its sensitivity in this respect leaves to be desired. In a recent
large study on HIV-infected children, Rivenes et al. [1] found sensitivities of <20%
at specificity levels of 88% to 92%. On the other hand, in a number of smaller stud-
ies on patients with a specific cardiac disease the performance of the pediatric ECG
was found to be higher [2–6]. For example, Fogel et al. [2] found in a group of 19
aortic stenosis patients and 21 normals a sensitivity of 67% at 95% specificity. None
of these studies was done on an unselected pediatric hospital population with mixed
cardiac abnormalities. For the present investigation we have collected such a popula-
tion and have sought to improve the sensitivity of the pediatric ECG in detecting LVH
by means that issue from the following considerations:

Firstly, in pediatric electrocardiology only a limited number of criteria have been used
for assessing LVH. Several criteria that were shown to improve the detection of LVH
in adults have not been tested in children. Pediatric electrocardiographers have fo-
cused on the QRS amplitude, although the time-voltage area of the QRS complex or
its approximation by the product of maximum QRS voltage and QRS duration were
proposed as useful criteria to improve LVH diagnosis in adults [7]. Likewise, in adults
combinations of criteria have been shown to improve performance [8–10], which ap-
proach has not yet been attempted for children.

Secondly, older validity studies have used obsolete limits of normal for the pediatric
ECG parameters. In a previous study [11], we established new age-dependent normal
limits that differ considerably from the older figures [12,13]. Hitherto, normal limits
have not been revised for LVH detection.

Finally, the reference standard for LVH on the ECG has usually been the left ventric-
ular mass (LVM) as estimated from echocardiographic measurements. This reference
has been criticized for being vulnerable to measurement error and for oversimplify-
ing the geometry of the left ventricle [14,15]. Alternatively, a combination of increased
LVM and clinical evidence of volume or pressure overload of the left ventricle may be
a better reference standard for the validity of ECG criteria.
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6.2 Methods

Study population

We collected data of all 904 children from whom a 12-lead electrocardiogram and
an echocardiogram were taken on the same day at the Sophia Children’s Hospital
in Rotterdam in the period 2003 to 2005. We excluded 5 children who had received
heart transplantation and 67 children with complete transposition of the great arteries,
leaving a study population of 832 children. In Table 6.1, the age and sex distribution
of the population is shown.

Table 6.1. Age and sex distribution of the study population.

Age Male Female Total
0 - 2 months 14 18 32
3 - 5 months 15 8 23
6 - 11 months 18 13 31
1 - 2 years 50 45 95
3 - 4 years 66 47 113
5 - 7 years 77 65 142
8 - 11 years 106 82 188
12 - 15 years 109 99 208
Total 455 377 832

Clinical data were studied by two pediatric cardiologists (MW and ADJH) who were
independently presented with the medical record of each patient. Each cardiologist
had to score the likelihood of volume or pressure overload of the right and/or left
ventricle on a three-point scale (0=absent, 1=possible, 2=probable). LVH was consid-
ered present in patients with, e.g., aortic stenosis or regurgitation, and RVH in patients
with tetralogy of Fallot or pulmonary hypertension. Disagreements, defined as more
than one point scoring difference, were settled by consensus.

Electrocardiography

Twelve-lead ECGs were recorded by means of a PC-based acquisition system (Welch
Allyn Cardio Control, Delft, The Netherlands) at a sampling rate of 1200 Hz. Follow-
ing common practice in the department of pediatric cardiology in Rotterdam, V3 was
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moved to the V3R position, and V5 was moved to the V7 position. All ECGs were pro-
cessed by the pediatric ECG computer program PEDMEANS [16]. To reduce noise,
PEDMEANS computes a representative averaged beat for each of the twelve leads,
from which ECG measurements are derived. Wave onsets and offsets as found by
PEDMEANS were visually checked.

A total of 15 ECG parameters for diagnosing LVH in children were evaluated (Ta-
ble 6.2). In addition to the standard pediatric parameters, we included parameters
based on V3R and V7, and defined an additional version of the Sokolow-Lyon crite-
rion by using V3R and V7 instead of V1 and V6. Furthermore, the sum of the R- and
S-wave amplitudes in all leads (12-lead sum), and the QRS voltage-duration product
and voltage-time integral versions of the Sokolow-Lyon and 12-lead sum criteria were
added. The sensitivities of the voltage-duration product version and the voltage-time
integral version were compared with their amplitude versions by means of the Mc-
Nemar’s modification of the chi-square method for paired proportions.

Table 6.2. Evaluated ECG parameters for LVH.

Parameter Description
SV3R S-wave amplitude in V3R

SV1 S-wave amplitude in V1

RV6 R-wave amplitude in V6

RV7 R-wave amplitude in V7

TV6 inverted T wave in V6

TV7 inverted T wave in V7

SV1 + RV6 Sokolow-Lyon voltage
(SV1 + RV6) × QRSd Sokolow-Lyon voltage-duration product
(SV1 + RV6) area Sokolow-Lyon voltage-time integral
SV3R + RV7 additional Sokolow-Lyon voltage
(SV3R + RV7)× QRSd additional Sokolow-Lyon voltage-duration product
(SV3R + RV7) area additional Sokolow-Lyon voltage-time integral
12-lead sum sum of top-top deflections of all leads
12-lead sum × QRSd 12-lead sum voltage-duration product
12-lead sum area 12-lead sum voltage-time integral

The polarity of the T wave in V6 or V7 was taken as a binary value. For all other
parameters, reference values were derived from a normal population of 1912 children
aged 11 days to 16 years [11]. The 98th percentile of the parameter distribution was
taken as the upper limit of normal (ULN). We estimated age-dependent percentile

87



Chapter 6. Electrocardiographic criteria for left ventricular hypertrophy in children

curves using a two-stage parametric approach described before [11]. As an illustra-
tion, the age-dependent normal curve for the 12-lead sum is presented in Fig. 6.1. For
each LVH parameter, the difference between the parameter value and its correspond-
ing normal limit was taken for further processing.

Figure 6.1. Scatter diagram for the 12-lead sum against age. The solid lines indicate the 2nd and
98th percentile curves.

Echocardiography

The echocardiograms were recorded with a Philips Sonos 5500 (Philips, Best, The
Netherlands). The following M-mode measurements were obtained according to the
American Society of Echocardiographers’ convention [17]: interventricular septum
thickness at end diastole (IVSd), posterior wall thickness at end diastole (PWLVd),
and left ventricular internal dimension at end diastole (LVIDd). Left ventricular mass
(LVM) was calculated with the anatomically validated formula of Devereux [18]:

LVM = 0.8(1.04(IVSd + PWLVd + LVIDd)3 − (LVIDd)3) + 0.6 [g]

The LVM index (LVMI) adjusts for body size and is taken as LVM (in g) divided by
body weight (in kg). As shown in Fig. 6.2, we estimated a partition value of 3 for
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LVMI , based on a set of 587 normal echocardiograms of 361 boys and 226 girls aged
birth to 18 years previously described by Overbeek et al. [19]. We calculated the LVM
using the formula of Devereux from the measurements provided to us by Overbeek.

Figure 6.2. Left ventricular mass (LVM) calculated on 587 normal echocardiograms plotted
against body weight. The solid line represents the partition value of the LVM index,
LVMI = LVM/Weight = 3.

Reference standards for LVH

The ECG criteria for LVH were validated using two different reference standards. Like
in other validation studies, one standard is based only on the LVMI . LVH was con-
sidered present if LVMI > 3 (LVM+). In the second standard the clinical evidence of
LVH is also taken into consideration and LVH was defined at two different likelihood
levels. LVH was assumed to be present at the first level, if LVMI > 3 and at least one
cardiologist scored "possible" (LVM+L1), and at the second level if LVMI > 3 and at
least one cardiologist scored "probable" (LVM+L2). Note that the difference between
the two cardiologists can never be higher than one scoring point due to the obtained
consensus. The cases with a LVMI ≤ 3 were classified as non-LVH.
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Combination of ECG parameters

Combinations of LVH-ECG parameters were evaluated using our EXPLORE induc-
tion algorithm [20]. EXPLORE can search for the decision rule that has the highest
sensitivity at a user-specified level of specificity. In this study, we wanted EXPLORE
to find the best decision rule consisting of two ECG parameters at a specificity of 95%.
EXPLORE takes as its input a set of ECGs, each presented by a set of parameters, and
a label indicating whether LVH is present of not. We searched for the best parameter
combination for each of the three LVH definitions: LVM+, LVM+L1, and LVM+L2.

6.3 Results

Performance of individual LVH-ECG parameters

Table 6.3 shows the diagnostic performance of all ECG parameters for different age
groups and for the total study population, taking LVM+ as LVH definition.

Table 6.3. Sensitivity (in %) at 95% specificity for three age groups and for the total population
taking LVM+ as LVH definition.

Parameter 0 - 5 yr 6 - 11 yr 12 - 15 yr 0 - 15 yr
SV1 16.5 17.1 19.4 16.7
SV3R 18.3 20.0 33.3 20.4
RV6 12.2 15.7 16.7 16.3
RV7 19.1 20.0 25.0 22.2
TV6 7.0 10.0 13.9 9.0
TV7 17.4 14.3 25.0 15.8
SV1 + RV6 20.0 22.9 19.4 22.2
(SV1 + RV6) × QRSd 16.5 21.4 22.2 24.0
(SV1 + RV6) area 19.1 21.4 19.4 24.4
(SV3R + RV7) 29.6 18.6 27.8 25.3
(SV3R + RV7)× QRSd 22.6 20.0 22.2 23.1
(SV3R + RV7) area 20.0 20.0 19.4 20.8
12-lead sum 15.7 17.1 22.2 17.2
12-lead sum ×QRSd 19.1 17.1 22.2 18.6
12-lead sum area 22.6 14.3 27.8 22.6
#cases (LVH + /LVH−) 115/225 70/214 36/172 221/611

In the complete set (0-15 years), the additional version of the Sokolow-Lyon parameter
(SV3R + RV7) performs best, with 25.3% sensitivity. Multiplying by QRS duration or
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taking the voltage-time integral does not improve this criterion. However, there is
an increase in sensitivity of 31% of the area version compared to the amplitude-only
version of the 12-lead sum in the complete set (p=0.045).

The effect of age on the results is mixed. For different age groups different parame-
ters perform best and the improvement of the 12-lead sum is not consistent in all age
groups. However, this may be accounted for by the lower number of LVH cases in
the higher age groups. For SV1, SV3R, RV6, RV7, TV6, and (SV1 + RV6)× QRS du-
ration an increasing performance is seen with age. In all age groups, SV3R appears to
perform better than SV1, and RV7 better than RV6.

In Table 6.4 the diagnostic performance of the individual ECG parameters is presented
for the different definitions of LVH.

Table 6.4. Sensitivity (in %) at 95% specificity for three LVH definitions.

Parameter LVM+ LVM+L1 LVM+L2
SV1 16.7 21.1 30.0
SV3R 20.4 25.9 33.8
RV6 16.3 19.0 26.3
RV7 22.2 25.9 36.3
TV6 9.0 10.9 12.5
TV7 15.8 20.4 26.3
SV1 + RV6 22.2 25.2 35.0
(SV1 + RV6)× QRSd 24.0 29.9 31.3
(SV1 + RV6) area 24.4 30.6 41.3
(SV3R + RV7) 25.3 30.6 42.5
(SV3R + RV7) × QRSd 23.1 28.6 37.5
(SV3R + RV7) area 20.8 26.5 37.5
12-lead sum 17.2 21.1 33.8
12-lead sum ×QRSd 18.6 21.8 33.8
12-lead sum area 22.6 27.9 37.5
#cases (LVH + /LVH−) 221/611 147/611 80/611

The sensitivity of all ECG criteria improves considerably when, apart from LVM+, the
clinical evidence of LVH is also required in the definition of LVH. The more certain
the cardiologists were about the presence of LVH, the better the ECG performs. The
additional Sokolow-Lyon criterion (SV3R + RV7) performs best for all reference stan-
dards. Removal of all LVH cases from the LVM+L2 group which were also marked by
at least one cardiologist as probable RVH (n=15) did hardly change the performance
of the parameters.
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Performance of a combination of two LVH-ECG parameters

Using the EXPLORE algorithm, we found that for all definitions of LVH the best rule
consisted of (SV3R + RV7) area in conjunction with 12-lead sum area. The threshold
values of these parameters were optimized by EXPLORE to ensure 95% specificity.
Table 6.5 shows that this combination improves the sensitivity by 21-25% as compared
to the best single parameter (SV3R + RV7).

Table 6.5. Sensitivities (in %) for the best single parameter (SV3R + RV7) and the best combi-
nation of two parameters ((SV3R + RV7) area with 12-lead sum area) for the three
LVH definitions at a 95% specificity level.

LVH definition 1 parameter 2 parameters % increase
LVM+ 25.3 31.7 25.3
LVM+L1 30.6 38.1 24.5
LVM+L2 42.5 51.3 20.7

6.4 Discussion

We performed the first large study on the validity of ECG criteria for detecting LVH
in an unselected pediatric hospital population with up-to-date reference standards
for both electrocardiographic and echocardiographic parameters. The unreliability of
reference standards for both the ECG criteria and the echocardiographic based crite-
ria may previously have accounted for the disappointing performance of the ECG.
Rivenes et al. [1] demonstrated that the often used standard of normal ECG limits
by Davignon et al. [12] needed to be revised. They derived new age-adjusted refer-
ence values for their HIV-uninfected group of children below 6 years. With these new
normal values the sensitivity slightly decreased (from <20% to <17%) while speci-
ficity improved (from 88%-92% to 94%-100%). Regarding the echocardiogram, a re-
cent study provided echocardiographic dimensions that differed significantly from
previous data, probably owing to improved measurement techniques [19].

The sensitivity of the ECG for detecting LVH in children is relatively low when LVM+
is taken as LVH definition (Table 6.3). The best single parameter is (SV3R + RV7)
with a sensitivity of 25.3% at 95% specificity. Notably, SV3R, RV7 and (SV3R + RV7)
perform better than SV1, RV6, and (SV1 + RV6), respectively. The best performing
parameter that uses leads from the standard 12-lead ECG is the voltage-time integral
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version of the Sokolow-Lyon criterion with a sensitivity of 24.4%. Further, the use
of voltage-duration product and voltage-time integral of the 12-lead sum resulted in
higher sensitivities than the amplitude-only version in the total population. How-
ever, overall the use of voltage-duration products and voltage-time integrals for the
diagnosis of LVH remains less effective than in adults.

In most studies on the usefulness of the ECG in detecting LVH, echocardiographic
determined LVM was taken as the reference standard. However, we believe that the
ECG should not only be judged by taking LVM as the reference. LVM determination
suffers from large measurement errors [14,15]. When LVM is overestimated the ECG is
penalized for stating normal. We therefore also used combinations of increased LVM
and clinical indices of volume or pressure overload to ascertain the validity of ECG
criteria. We found that the ECG is performing considerably better when there is more
certainty about the presence of LVH on clinical grounds. Fogel et al. [2] showed that
the sensitivity was 67% in a small group of 19 children with aortic stenosis. Unfortu-
nately, we could not collect a large enough group of aortic stenosis patients without
other abnormalities to make a better comparison with Fogel possible.

In adults combining different ECG-LVH parameters is known to improve performance
[8–10]. The combination of highly specific criteria can be a fruitful approach to in-
crease sensitivity without generating an unacceptable number of false-positives. We
restricted the search of our EXPLORE algorithm to combinations of only two param-
eters because more parameters might introduce over-specialization on a data set of
our size. A combination of (SV3R + RV7) area and 12-lead sum area was found to
improve the sensitivity by 25% in the LVM+ and LVM+L1 groups and by 21% in the
LVM+L2 group, at 95% specificity. Combination of parameters can thus be useful in
the pediatric population also.

Our study has several limitations. Firstly, we validated the ECG criteria for LVH using
LVM as measured by M-mode echocardiography. However, there are studies in adults
that suggest that cardiac MRI can more accurately and reproducibly measure LVM
[14,21]. In children this has not yet been confirmed. Secondly, in our study V3 was
moved to the V3R position, and V5 was moved to the V7 position. Therefore, the 12-
lead sum included these leads instead of V3 and V5, which makes comparison with
other studies using standard lead sets more difficult. Thirdly, we could not determine
the effect of concomitant RVH on the performance of the ECG in detecting LVH due to
the low number of cases scored as probable RVH by the cardiologists (n=15). Fourthly,
we could not establish the effect of gender because of the limited size of the study
population. In adults gender influences the performance of the ECG criteria for LVH
[14,22,23]. In our normal pediatric ECG population we did find gender differences in
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QRS duration for all ages and in R- and S-wave amplitudes for children aged 12 to
16 years [11]. The effect of gender on ECG-LVH criteria in the pediatric population
awaits investigation on a larger population.

6.5 Conclusion

The sensitivity of the pediatric ECG in detecting LVH is low when LVMI is taken as
the reference. When the clinical evidence of LVH is also taken into account, the per-
formance of the ECG is considerably higher. The sensitivity can be further improved
if ECG parameters are combined.
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Chapter 7. General Discussion

For both the general pediatrician and the pediatric cardiologist the electrocardiogram
remains an important tool for the evaluation of children with possible cardiac dis-
ease. It is the cornerstone for interpretation of rhythm and conduction disorders, in-
cluding QT prolongation syndromes. For recognition of either congenital or acquired
structural heart disease it is routinely used in combination with physical examination.
Based on clinical findings and the ECG those patients are selected in whom additional
echocardiography is needed to confirm or exclude a cardiac malformation.

The wide variation in normal voltage range and the changes during growth hinder
rapid visual interpretation of a pediatric ECG. This is especially true for the general
pediatric practice where cardiac problems form a minority of daily care. Most pedi-
atric cardiologists have been trained in ECG interpretation based on ECG criteria from
several decades ago and will find it difficult to include changed criteria in visual ECG
interpretation. Therefore establishment of new normal values and automatic ECG
interpretation based on these new pediatric data are of great value for daily clinical
practice.

In this thesis we described a number of issues related to the development of the PEDi-
atric Modular ECG Analysis System (PEDMEANS) for the automatic interpretation of
pediatric ECGs. We will discuss our main findings and for each issue indicate further
directions of research.

Minimum bandwidth requirements

In Chapter 2, we established minimum bandwidth requirements for recording pedi-
atric ECGs and recommended a minimum bandwidth of 250 Hz. This bandwidth is
considerably higher than the previous recommendation of 150 Hz of the American
Heart Association [1]. This finds its reason in the fact that in previous studies that
determined the frequency content of the ECG, the study population was too small
or the sampling frequency used by the recording system too low. Furthermore, we
showed that the bandwidth is age-dependent, e.g., for children of 12 to 16 years the
system bandwidth can be reduced to 150 Hz without introducing any performance
degradation. To our knowledge, this is the first study that demonstrates the effect
of bandwidth limitations for all 12 leads of the ECG and illustrates the influence of
age on the frequency content. In the upcoming version of the recommendations of
the AHA the minimum bandwidth requirements for recording pediatric ECGs will be
modified on the basis of our study.

To determine the minimum bandwidth of the pediatric ECG we measured the ab-
solute errors in maximum QRS amplitude for each simulated bandwidth, and de-
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termined the percentage of records with an error higher than 25 µV. However, the
influence of reduced bandwidth of ECG recording equipment on diagnostic interpre-
tation has not been studied yet. The 25 µV threshold was only chosen because it was
considered an amplitude difference still distinguishable by human interpreters from
standard paper ECG recordings being equivalent to 1/4 mm.

Normal limits

In Chapter 3, we derived new normal limits for the pediatric ECG that showed clin-
ically significant differences with those in older studies. This implies that diagnostic
criteria for the pediatric ECG should be adjusted. Recently, this was underlined by
Dickinson who compared our data with the data of Davignon [2]. The number of
studies that use the new normal limits is increasing [3–9]. Our normal curves demon-
strated a strong age-dependency. Memorizing these normal limits is cumbersome for
the pediatric cardiologist and automatic interpretation can thus be of great help. Pos-
sibly, the normal curves can be made available for use in a PDA to allow a quick
reference during manual interpretations also.

We estimated continuous age-dependent normal limits to obtain a smooth transition
of the normal limits with age. This reduces the effect of sudden jumps in diagnostic
outcome of an automatic interpretation. With the use of tabulated normal limits a
small change in age could result in a sudden change in normal limit.

Some aspects still need further consideration. The effect of electrode placement should
be addressed. Earlier studies showed that large amplitude changes can occur if elec-
trodes are shifted [10,11]. This must be an important source of variability especially
in small children. Furthermore, in our study we used lead V3R and V7 instead of
leads V3 and V5 because these are easier to position on the chest in infants and young
children. Normal limits for leads V3 and V5 need to be estimated in a future study.
Moreover, additional data is needed for children aged 0 to 1 month which are low in
number in our population.

Formalization of diagnostic criteria

The performance of a decision support systems strongly depends on the expert knowl-
edge that is implemented in the system. To assist in formalizing this knowledge, ex-
haustive rule generation proved to be of value. However, exhaustive generation of
decision rules is very computer intensive. In Chapter 4, we presented a new version
of our Exhaustive Procedure for LOgic-Rule Extraction (EXPLORE) algorithm and
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showed that, with new insights, we could reduce the execution time of the algorithm
considerably. Firstly, by instantiating feature-operator pairs instead of features and
subsequently operators, the rules can be generated in a more efficient and systematic
manner. Secondly, applying the subsumption principle reduced the number of can-
didate thresholds by 34% on average, compared to when only boundaries are taken,
in the five data sets we used. Thirdly, the use of the branch and bound technique to
generate rules exhaustively, by applying constantly updated bounds on the number
of correct positives and false positives, has a very large favorable effect on the execu-
tion time. In this way the speed of induction is increased considerably, but heuristic
approaches to induce larger rules or induce rules on large data sets will still be needed
because of the exponential growth of the search space. Fourthly, an important asset of
EXPLORE is the possibility to incorporate prior expert knowledge. This improves the
comprehensibility of resulting rule, and may greatly speed up the induction process.

For the development of PEDMEANS we used a learning set of annotated ECGs and
we tried to maximize the sensitivity of the decision rules while keeping specificity
at ≥ 95%, a level that we considered necessary for the rules to be of practical util-
ity. This was accomplished by an iterative procedure in which a pediatric cardiologist
was asked to articulate his knowledge in the EXPLORE formalism. EXPLORE gen-
erated the best decision rule, and the comprehensibility and performance of this rule
was discussed with the expert, possibly resulting in refinement of his specified prior
knowledge. These steps could be reiterated until a satisfactory rule was obtained.
We experienced that the pediatric cardiologists were often able to define rules which
seemed to perform well on the easy cases. They could define the important parame-
ters but the threshold values to be used were often more difficult to define accurately,
probably due to the strong age-dependency of the normal limits. The combination of
expert interviews and automatic learning techniques proved to be of great value in de-
veloping a decision support system like PEDMEANS. The cardiologist was allowed to
define which parameters were thought to be of definite value and could suggest sub-
rules to be optimized further by EXPLORE. In this way we obtained a better balance
between performance and comprehensibility of the resulting classifier.

Performance of PEDMEANS

Although the performance of PEDMEANS is acceptable for use in a clinical environ-
ment, the human expert is in some cases still a better ECG reader. This can partly
be contributed to the fact that humans still outperform computer algorithms in rec-
ognizing waveforms, in particular P waves. Furthermore, the experts use insight in
the underlying physical processes that result in an ECG on the body surface, which
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is not always incorporated in the decision rules in the system. As discussed in Chap-
ter 5, we were able to fine-tune the rules defined by the cardiologist with the use
of EXPLORE and obtained high sensitivity values for most abnormalities. However,
some remarks need to be made. Firstly, our reference standard consisted of a con-
sensus of three cardiologists who were also involved in system development. An
independent evaluation of the system by other pediatric cardiologists is therefore also
advisable. Secondly, the cardiologists experienced difficulties in using correct age-
dependent threshold values in their ECG criteria. During the expert interviews we
found cases in which PEDMEANS scored abnormal based on the new normal lim-
its even though the experts scored this case as normal. In such cases it is not clear
what should be the reference, the computer or the human interpreter. Probably, if
we would have given the cardiologists a measurement table for each ECG showing
which parameters were abnormal on the basis of the new normal limits, the agree-
ment between PEDMEANS and the cardiologist would improve. Thirdly, we might
evaluate the system on ECG-independent data like the echo-LVH dataset collected in
Chapter 6. However, our first goal was to develop a system that performs as well as
an experienced group of pediatric cardiologists reading the ECG manually. Fourthly,
the rhythm statements made by PEDMEANS can be further optimized and should be
evaluated on a large database of cases with rhythm abnormalities. In the current ver-
sion of PEDMEANS we only modified the criteria of the adult MEANS version using
the new normal limits for children. Finally, it should be realized that the performance
of decision support systems is dependent on the composition of the database used for
development and validation purposes. Therefore, conclusions from our performance
evaluation may not be applicable to other clinical environments.

Development of new diagnostic criteria

In Chapter 6, we studied the validity of ECG criteria in detecting LVH based on
echocardiographically determined left ventricular mass. We showed that current LVH
criteria have relatively low (<25%) sensitivity rates at 95% specificity in the pediatric
hospital population. When there is more certainty about the presence of LVH on clin-
ical grounds the ECG is performing considerably better. Furthermore, by combining
the (SV3R + RV7) area with 12-lead sum area, with the use of the EXPLORE algorithm,
the maximum sensitivities could be raised considerably. These combined criteria are
possibly too complex for manual ECG interpretation but are easily implemented in a
computer program. It should be interesting to follow this approach for other abnor-
malities as well, taking ECG independent material as the reference, e.g. for RVH.
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Future directions

To further improve the performance of PEDMEANS, a large data set of ECGs from
children with a diversity of cardiac malformations, including rhythm disturbances, is
needed. Ideally, a large database should become available for validation of pediatric
ECG analysis systems, just like in the CSE study for adults [12].

Furthermore, in adults we were able to improve the performance of MEANS by com-
bining ECG and VCG criteria [13]. Interestingly, to avoid the necessity of recording a
VCG in addition to the ECG, the VCGs were reconstructed from the ECGs and then
interpreted by the VCG classification program. The combined ECG and reconstructed
VCG results were almost the same as those of the combined ECG and original VCG.
Zhou et al. [14] showed that the combination of ECG and synthesized VCG measure-
ments to discriminate between mild RVH with terminal conduction delay and partial
RBBB in children significantly improved the classification results. Therefore, it seems
interesting to study the combination of ECG and VCG criteria to further improve the
performance of PEDMEANS as well.

Finally, the performance of PEDMEANS needs to be evaluated in different clinical
settings.
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Summary
The aim of this study was to develop and evaluate a computer program for the in-
terpretation of pediatric ECGs. Earlier the Modular ECG Analysis System (MEANS)
for adult ECG analysis had been developed. We now wanted to produce a pediatric
version, to be called the PEDiatric Modular ECG Analysis System (PEDMEANS). For
that purpose, the measurement part and the diagnostic interpretation part of MEANS
had to be modified. The following issues are addressed in this thesis: minimum band-
width requirements to record pediatric ECGs, estimation of up-to-date normal limits,
formalization of expert knowledge with the use of a learning algorithm, and the devel-
opment and evaluation of PEDMEANS. Finally, the validity of the ECG in diagnosing
LVH in children is studied.

Chapter 2 addresses minimum bandwidth requirements for accurate recording of pe-
diatric ECGs. The averaged beats of a large set of ECGs were passed through digital
filters with different cutoff points. We measured the absolute errors in maximum QRS
amplitude for each simulated bandwidth, and determined the percentage of records
with an error greater than 25 µV. We found that in any lead a bandwidth of 250 Hz
yields amplitude errors less than 25 µV in more than 95% of the children younger
than one year. For older children, a gradual decrease in ECG frequency content was
demonstrated. However, we recommend a minimum bandwidth of 250 Hz for the
recording of pediatric ECGs. This bandwidth is considerably higher than the previ-
ous recommendation of 150 Hz of the American Heart Association.

Chapter 3 presents new normal limits for the pediatric ECG based on a large set of
ECGs from children recruited in Rotterdam. These normal limits are used as cutoff
points in the diagnostic criteria of PEDMEANS. Normal limits of all clinically rele-
vant ECG measurements were determined for nine age groups and are presented in
the form of continuous age-dependent curves. Clinically significant differences were
shown to exist in comparison with previously established normal limits. Sex differ-
ences could be demonstrated for QRS duration and several amplitude measurements.
These new normal limits suggest that diagnostic criteria for the pediatric ECG should
be adjusted.
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Chapter 4 discusses research that extends our learning algorithm, called EXPLORE
(Exhaustive Procedure for LOgic-Rule Extraction), which exhaustively generates rules
that fulfill user-specified performance requirements. We present several new tech-
niques to search the feature space more efficiently than by a straightforward, brute-
force exhaustive search. The new version of EXPLORE, incorporating these tech-
niques, is able to perform an exhaustive search considerably faster. On five standard
data sets from the medical domain the accuracy of the best decision rule generated by
EXPLORE is comparable to or surpasses the accuracy of the classifiers generated by
the greedy induction algorithms C4.5 and CART.

Chapter 5 describes the modifications made in both the measurement part and the
diagnostic interpretation part of MEANS to allow pediatric ECG interpretation. We
discuss the use of the learning algorithm in the development process and assess the
performance of the system on an independent test set. The performance, on our study
population, appears to justify its use in a clinical setting. Preferably, the system should
also be evaluated in other clinical centers.

Chapter 6 focusses on the validity of the ECG in diagnosing LVH in children taking
the echocardiogram as the reference. LVH in the echocardiogram was defined with
the use of a gender-independent LVM index (LVMI). The validity of current pedi-
atric and adult ECG criteria was judged on the basis of an abnormal LVMI , alone
and in combination with a LVH score of two pediatric cardiologists based on clinical
evidence. In addition, a search was made for possibly better performing combina-
tions of criteria with the use of EXPLORE. We conclude that the ECG criteria have
relatively low (<25%) sensitivity rates at 95% specificity in the pediatric hospital pop-
ulation when an elevated LVMI is taken as the reference for LVH. The performance
appears to improve with age. When clinical evidence is also taken into account in the
definition of LVH, the sensitivity improved to 43%. By combining two ECG param-
eters the maximum sensitivity was raised to 32% in the group with abnormal LVMI

and to 51% in the group with a combination of abnormal LVMI and clinical evidence
suggestive of LVH.

Chapter 7 discusses our main findings and for each issue indicates further directions
of research. A large data set of ECGs from children with a diversity of cardiac mal-
formations, including rhythm disturbances, is needed to further improve the perfor-
mance of PEDMEANS. Also, a large database should become available for validation
of pediatric ECG analysis systems in general. Furthermore, it seems interesting to
study the combination of ECG and VCG criteria to further improve the performance
of PEDMEANS which was shown to be of value in adults.
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Samenvatting
Het doel van deze studie was het ontwikkelen en evalueren van een computerpro-
gramma voor de beoordeling van kinder-elektrocardiogrammen. Eerder was reeds
het ’Modular ECG Analysis System’ (MEANS) ontwikkeld voor de analyse van ECG’s
van volwassenen. In deze studie wilden we een versie voor kinderen ontwikkelen
genaamd het ’Pediatric Modular ECG Analysis System’ (PEDMEANS). Hiertoe moest
het metingendeel en het interpretatiedeel van MEANS gewijzigd worden. De vol-
gende onderwerpen worden in dit proefschrift besproken: minimum eisen voor de
bandbreedte van opname-apparatuur voor het registreren van kinder-ECG’s, vast-
stellen van up-to-date normaalwaarden voor het kinder-ECG, het formaliseren van
expertkennis door gebruik te maken van een leeralgoritme, en de ontwikkeling en
evaluatie van PEDMEANS. Tot slot is de validiteit van het kinder-ECG voor de diag-
nose van linker kamerhypertrofie (LVH) onderzocht.

Hoofdstuk 2 bespreekt de minimum bandbreedte eisen voor het nauwkeurig registr-
eren van kinder-ECG’s. De gemiddelde slagen van een grote verzameling ECG’s zijn
gefilterd met digitale filters met verschillende kantelpunten. We hebben de absolute
fout in de maximale QRS-amplitude voor elke gesimuleerde bandbreedte gemeten en
hebben het aantal metingen met een fout groter dan 25 µV bepaald. We vonden dat in
iedere afleiding een bandbreedte van 250 Hz resulteerde in een amplitudefout kleiner
dan 25 µV in 95% van de kinderen jonger dan een jaar. Voor oudere kinderen werd
een graduele afname in frequentie-inhoud van het ECG aangetoond. Onze aanbevel-
ing is echter om 250 Hz als minimum bandbreedte te hanteren voor het opnemen van
kinder-ECG’s. Deze bandbreedte is aanzienlijk hoger dan de huidige aanbeveling van
150 Hz van de ’American Heart Association’.

Hoofdstuk 3 presenteert nieuwe normaalwaarden voor het kinder-ECG gebaseerd op
een grote verzameling ECG’s uit Rotterdam. De normaalwaarden worden gebruikt
als drempelwaarden in de diagnostische criteria in PEDMEANS. Normaalwaarden
zijn bepaald voor alle klinisch relevante ECG-metingen in negen leeftijdsgroepen en
worden gepresenteerd in de vorm van leeftijdsafhankelijke curven. Klinisch signifi-
cante verschillen zijn aangetoond in vergelijking met eerder gepubliceerde normaal-
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waarden. Voor de tijdsduur van het QRS-complex en diverse amplitudemetingen zijn
verschillen gevonden tussen jongens en meisjes. Deze nieuwe normaalwaarden sug-
geren dat diagnostische criteria voor het kinder-ECG aangepast moeten worden.

Hoofdstuk 4 behandelt onderzoek betreffende ons leeralgoritme EXPLORE (Exhaus-
tive Procedure for LOgic-Rule Extraction) dat uitputtend regels genereert die vol-
doen aan door de gebruiker gedefinieerde prestatievereisten. We presenteren een aan-
tal nieuwe technieken om de zoekruimte efficiënter te doorzoeken en laten zien dat
de nieuwe versie van EXPLORE, waarin deze nieuwe technieken zijn opgenomen,
een uitputtende zoekactie aanzienlijk sneller uitvoert. Op vijf standaard medische
datasets blijkt de nauwkeurigheid van de regels gegenereerd door EXPLORE verge-
lijkbaar aan of beter dan de nauwkeurigheid van de classificatoren gegenereerd door
de ’greedy’ leeralgoritmen C4.5 en CART.

Hoofdstuk 5 bespreekt de wijzigingen die gemaakt zijn in het metingendeel en het
interpretatiedeel van MEANS om kinder-ECG beoordeling mogelijk te maken. We
bespreken het gebruik van het leeralgoritme in de ontwikkeling van PEDMEANS en
evalueren de prestatie van het systeem op een onafhankelijke testset. De resultaten op
de studiepopulatie lijkt het gebruik in een klinische omgeving te rechtvaardigen. Het
is echter aan te bevelen om ook een evaluatie in andere ziekenhuizen uit te voeren.

Hoofdstuk 6 gaat in op de bruikbaarheid van het ECG voor de diagnose van LVH
bij kinderen, waarbij het echocardiogram als referentie wordt gebruikt. LVH in het
echocardiogram werd gedefinieerd aan de hand van een LVM index (LVMI), on-
afhankelijk van het geslacht van de patiënt. De validiteit van huidige criteria voor
LVH bij kinderen en volwassenen is beoordeeld op basis van een abnormale LVMI ,
zowel alleen als in combinatie met een LVH-score van twee kindercardiologen op ba-
sis van klinische gegevens. Daarnaast is met behulp van EXPLORE onderzocht of
combinaties van parameters mogelijk tot betere prestaties leiden. ECG-criteria blijken
een relatieve lage sensitiviteit te hebben (<25%) bij 95% specificiteit in een kinder-
ziekenhuispopulatie, wanneer een abnormale LVMI als referentie voor LVH wordt
genomen. De prestaties verbeteren met de leeftijd. Wanneer de aanwezigheid van
LVH tevens wordt gebaseerd op klinisch bewijs, verbetert de sensitiviteit tot 43%.
Door het combineren van twee ECG-parameters neemt de maximale sensitiviteit toe
tot 32% in de groep met abnormale LVMI en tot 51% in de groep met abnormale LVMI

in combinatie met klinische indicaties van LVH.

Hoofdstuk 7 bespreekt onze belangrijkste bevindingen en toekomstig onderzoek. We
menen dat een groot bestand van kinder-ECG’s beschikbaar moet komen met een
diversiteit aan cardiale afwijkingen, inclusief ritme-afwijkingen, om verdere verbe-
tering van PEDMEANS mogelijk te maken. Bovendien zou een groot bestand ter
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beschikking moeten komen voor de validatie van interpretatieprogramma’s voor kin-
der-ECG’s in het algemeen. Daarnaast kunnen de prestaties van PEDMEANS mo-
gelijk verder verbeterd worden door ECG-criteria te combineren met criteria op basis
van het vectorcardiogram, een combinatie die bij de interpretatie van het volwassen-
ECG goed blijkt te werken.
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Dankwoord
Samenwerking is cruciaal bij het uitvoeren van wetenschappelijk onderzoek en met
name bij het tot standkomen van een proefschrift als dit. Met veel plezier heb ik de
afgelopen jaren kunnen samenwerken met een groot aantal collega’s in de kindercar-
diologie en medische informatica. Een aantal wil ik hier in het bijzonder bedanken:

Jan van Bemmel, jouw ruime ervaring in de medische informatica heb ik altijd zeer
bewonderd. Ik wil je enorm bedanken voor de ruimte die je me gegeven hebt om
naast mijn wetenschappelijke activiteiten ook mijn muzikale talenten te ontplooien.

Jan Kors, als ik van iemand veel geleerd heb de afgelopen jaren dan ben jij het. Het
voorbeeld van een perfecte wetenschapper in mijn ogen. Jouw input in dit onderzoek
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we hebben gehad over de niet-wetenschappelijke onderwerpen. Ik hoop nog lang met
je te kunnen samenwerken.

Maarten Witsenburg, jij was altijd bereid om data ter beschikking te stellen of mee
te denken over nieuw onderzoek. Wat ik nooit zal vergeten is de leuke tijd die we
hebben gehad in New Orleans en bij het verzamelen van de normale ECG’s op de
scholen als het ’E-team’ in jouw busje.

Gerard van Herpen, veelzijdig en onmisbaar. Jouw hulp bij de interpretatie van de
data en met name je ervaring in het schrijven van wetenschappelijke artikelen in de
voor mij soms moeilijke Engelse taal, waren bijzonder.

Voor dit onderzoek zijn een groot aantal ECG’s verzameld. Ik wil Joke van Woerkom
bedanken voor het registreren van de normale ECG’s en Marco Kruit en Arno van
Vliet voor hun medewerking vanuit kindercardiologie. De interpretatie van de data
door John Hess, Andras Szatmari en Derk Jan ten Harkel wordt ook zeer gewaardeerd.

Mama, helaas mocht je het afronden van mijn proefschrift niet meer meemaken. Zon-
der alles wat ik van jou geleerd heb zou ik dit nooit voor mekaar hebben gekregen. Ik
heb dit proefschrift dan ook aan jou opgedragen.
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