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CHAPTER I 

GENERAL INTRODUCTION 

I.A Thyroid hormone synthesis 

The thyroid is the production site of 3~3',5,5'-tetraiodothyronine 

(thyroxine, T4) which is synthetized by iodination of tyrosine residues in 

thyroglobulin and subsequent coupling-of two diiodotyrosine residues within 

the thyroglobulin molecule. Thyroxine is liberated by proteolytic 

degradation of the thyroglobulin in the follicular cells of the thyroid 

(DeGroot and Niepomniszcze 1977). Coupling of a monoiodotyrosine residue 

with a diiodotyrosine residue yields the biologically active thyroid 

hormone 3,3' ,5-triiodothyronine (T3). The secretion of T3 by the thyroid 

gland is, however, a minor source of circulating T3 (Chopra et al 1978a). 

The production and release of iodothyronines by the thyroid are under 

control of thyroid stimulating hormone (TSH) of the pituitary gland 

(Fig. 1). The rate of TSH secretion is subject to neuroendocrine 

regulation by hypothalamic peptides. The tripeptide TRH (TSH-releasing 

hormone) has a stimulatory effect on TSH secretion whereas somatostatin has 

an inhibitory effect (Reichlin 1978). In addition, thyroid ~ormone exerts 

a negative feedback on TSH secretion (Larsen 1982, Larsen et al 1981). The 

ultimate inhibition of TSH release by T3 binding to the nuclear receptor of 

the pituitary depends largely on intracellular conversion of T4 to T3 (see 

chapter I.B). Thus although a linear correlation exist between T3 binding 

to the nucleus and the degree of TSH suppression (Silva and Larsen 1978) 

the actual serum TSR concentration correlates better with the serum T4 
concentration (Larsen 1982). Little is known about the potential role of 

changes in TRR release in the physiological regulation of TSH scretion and 

thyroid function. Long term glucocorticoid excess as seen in Cushing's 

disease may reduce the pituitary sensitivity for TRH (Sowers et al 1977, 

Visser and· Lamberts 1981) or inhibit the secretion of TRH by the 

hypothalamus (Singer et al 1978) while estrogen may potentiate the 
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TRR-induced TSH release (Reichlin 1978). Finally, dopamine administration 

results in a suppression of serum TSH probably by a diTect effect on the 

pituitary (Kaptein et al 1980). Also dopamine receptor agonists suppress 

serum fSH whereas dopamine receptor antagonists stimulate TSH secretion 

(Foord et al 1983). 
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After secretion of T4 into the circulation it becomes largely bound to 

specific serum proteins. In humans T4 is mainly bound to T4-binding 

globulin (TBG) and to lesser extents to T4-binding prealbumin (TEPA) and 

albumin, resulting in a free concentration of approximately 0.03% 
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(Hoffenberg and Ramsden 1983). Recently, the presence of a specific 

T4-binding albumin (TBA) has been reported as a normal constituent of human 

serum although in limited quantities (Docter et al 1984). Inherited 

elevation of TBA results just like in inherited TBG excess in an increase 

of serum total T4 levels with normal free concentrations (Docter et al 

1981, Barlow et al 1982). The free iodothyronine concentration is 

suggested to regulate the rate of undirectional.transfer of hormone from 

plasma to tissue (Oppenheimer et al 1967). This transport phenomenon has 

been thought to be a passive diffusion-controlled process (Hillier 1970). 

Experiments with cultured rat hepatocytes have however shown the presence 

of an active transport system for iodothyronines (Krenning et al 1983). 

A variety of metabolic pathways for thyroid hormone has been published. 

Figure 2 summarizes these reactions. The deiodination of T4 is the most 

ACTIVATING PATHWAY 

METABOLIC PATHWAYS 

1. Conjugation - Sulfate or glucuronide. 
2. Oute1r ring delodlnatlon - T 3 ar. Initial produo;t 
3. Ethorbond c!e1avago - Dllodotyro~lne, monolodotyroslne 
11. Inner ring dolodlnatlon -. Reverse T3 as Initial produo;t 
S. Oeamlnatlon - Tetrac, triac, dlac 

Decarboxylation 
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important pathway and it may be calculated that in euthyroid humans 

approximately 80% of the total I 4 produced daily is metabolized by 

monodeiodination (Engler and Burger 1984). Outer ring or 5'-deiodination 

of I 4 gives rise to the production of T3• Because the intrinsic 

thyromimetic activity of T4 ~ if anything, is low in comparison with that of 

I3 it is nowadays generally accepted that I 3 is the biologically active 

thyroid hormone and T4 serves merely as a prohormone (Chopra et al 1978a, 

Visser 1978, Larsen et al 19Sl). About 80% of the serum I 3 concentration 

is derived from the 5'-deiodination of T4 in peripheral tissues (Larsen et 

al 1981, Engler and Burger 1984). In this way about 30% of produced I 4 is 

converted to I 3• The remaining 20% is secreted 

secreted I 3 may in part be derived from 

by the thyroid. This 

intrathyroidal enzymatic 

deiodination of I 4 by an enzyme with similar characteristics as the 

5·'-deiodinase found in liver and kidneys (Erickson et al 1981, Ishii et al 

1982, Wu 1983, Sugawara et al 1984). 

A roughly equal proportion of I 4 is converted by inner ·ring or 

5-deiodination tO the biologically inactive 3,3',5'-triiodothyronine 

(reverse I 3, ri3). Thyroidal secretion of rT3 is negligible so that 

peripheral deiodination accounts for 97.5% of the daily rT3 production 

(Chopra 1976). Both triiodothyronines are further metabolized by stepwise 

deiodination to a series of diiodothyronines (I2), monoiodothyronines (T1) 

and finally thyronine (T0). A central metabolite in this cascade is 

is generated by both 5-deiodination 3,3'-Iz, which 

5'-deiodination of ri3 (Gavin et al 1978, Chopra et al 1978b). 

of 

In 

T3 and 

several 

clinical situations of non-thyroidal illness typical changes in the 

metabolism of I 4 are observed. These changes are characterized by a 

reduction of serum I 3 together with an increase of serum ri3 concentration 

while I 4 levels often remain constant. Analysis of serum kinetic 

parameters of the triiodothyronines have demonstrated that the production 

of T3 is decreased but its clearance is unaffected. Conversel,Y, the 

production of ri3 is apparently not changed but its metabolic clearance 

rate is decreased (Engler and Burger 1984, Hesch 1981). This situation is 

commonly refered to as the ''low I 3 syndrome" and may be induced by caloric 

deprivation, systemic illness, surgical stress and the administration of 

certain drugs, i.e. propylthiouracil (PIU), propranolol, dexamethasone and 
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X-ray contrast agents. The teleological significance of the "low T3 
syndrome" may be that of an energy-sparing defense mechanism in situations 

of stress (Chopra et al 1978). The decrease of serum T3 production with an 

unaltered metabolic clearance and the opposite effects on the kinetics of 

rT3 has led to the hypothesis that the monodeiodination of T4 is catalyzed 

by two different enzymes, i.e. a 5'- and a 5-deiodinase, which may be 

regulated independently. Recent findings have shown that this is very 

unlikely for the liver (Fekkes et al 1982b, Chopra and Chua Teco 1982), 

which possesess a single enzyme capable of catalyzing both 5'- and 

5-deiodinations. Furthermore, it has become clear that the mechanism and 

regulation of enzymatic deiodination differs among tissues (see chapter 

II.B). 

Besides monodeiodinations some 20% of T4 is metabolized by other 

pathways. These include conjugation of the phenolic hydroxyl group with 

glucuronic acid or sulfuric acid, ether link cleavage and oxidative 

deamination of the alanine side chain. Of these processes the 

iodothyronine conjugation is probably the major pathway. The conjugates 

are formed enzymatically by sulfotransferases in the cytoplasm or 

UDP-glucuronyl transferases in the endoplasmic reticulum of mainly liver 

and kidney. Both conjugating activities represent a panel of isoenzymes 

(Sekura et al 1981, Chowdurry et al 1983) with overlapping substrate 

specificities. Reviews on 

recently (Engler and Burger 

thyroid hormone conjugation have appeared 

1984, Otten 1984b). Renewed interest in 

especially sulfation arise·s from recent findings that iodothyronine 

sulfates are much better substrates for the liver deiodinase in comparison 

with the native compounds (see chapter II). 

Iodothyronine metabolism in the phagocytosing human leucocyte follows 

mainly the pathway of ether link cleavage, resulting in the formation of 

mainly diiodotyrosine and iodide. Ether link cleavage is associated with 

the "respiratory burst" of phagocytes, involving the generation of 

superoxide anion radicals and subsequently H2o2 which cause the oxidative 

breakdown of iodothyronines (Engler and Burger 1984, Burger et al 1983). 

Although ether link cleavage is normally a minor pathway it may be 

increased during infectious diseases and thereby accelerate T4 turnover 

(Woeber 1971). Ether link cleavage requires enzymatic production of 
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radicals and B2o2 but is in nature a non-enzymatiC process (Burger et al 

1983). The ability of iodothyronines to react with free radicals make them 

excellent antioxidants (Tseng and Latham 1984). 

Finally, the alanine side chain of iodothyronines may be converted by 

oxidative deamination or decarboxylation. Very little is known about the 

occurrence and effects of decarboxylated iodothyronines. They may have a 

P-adrenergic effect as revealed by 3,3',5-triiodothyronamine in an assay of 

cAMP production in turkey erythrocytes (Meyer and Rokos 1983). Also T3 may 

have a neurotransmitter effect as is suggested by its synaptosomal 

accumulation (Dratman and Crutchfield 1978). More is known about the 

oxidative deamination resulting in the formation of acetic acid derivatives 

of iodothyronines. Experiments with dogs have shown that the acetic acid 

analogue of T4 (tetrac) may be deiodinated in vivo (Flock et al 1962). 

These experiments have also shown that the acetic acid analogues may be 

glucuronidated and sulfated as determined by their ap'pearance in the bile. 

The occurrence of reverse triac in canine serum after administration of 

radiolabeled tetrac in contrast with undetectable concentrations reverse 

triac in human serum (Engler and Burger 1984) may be caused by a remarkable 

difference between rT3 deiodination as measured in vitro by dog liver 

microsomes (Laurberg and Boye 1982). or human and rat liver microsomes 

(Visser et al 1979a, 1983a). Reverse T3 is rapidly deiodinated by human 

and rat microsomes whereas rT3 is more or less stable in incubations with 

dog. liver microsomes. From the daily production rate of tetrac in humans 

it has been calculated that oxidative deamination is a very minor pathway 

and accounts for only 1 to 2% of the daily T4 degradation (Engler and 

Burger 1984). Studies of Gavin et al (1980) have shown that up to 14% of 

the total T3 amount produced daily may be converted to triac. 

I.C Scope of the present study 

As mentioned in the preceding paragraphs, enzymatic deiodination of T4 

is the most important route for the production of the biologically active 

thyroid hormone, T3 • The liver is regarded as the principal site for the 

peripheral production of T3. Besides deiodination the liver is also most 
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active in the conjugation of the different iodothyronines with either 

glucuronic acid or sulfuric acid. Chapter II deals with a review of recent 

literature concerning cellular uptake and enzymatic deiodination of 

iodochyronines from experiments with cultured rat hepatocytes or 

subcellular. fractions. The regulation and nature of the enzymatic 

deiodination in the liver will be compared with deiodinases found in other 

tissues. In order to gain more insight in the mechanism of enzymatic 

deiodination, attempts have been made to purify the deiodinating enzyme of 

rat liver and kidneys. Our efforts towards deiodinase purification will be 

discussed in conjunction with data available from the literature. Finally, 

some remarks will be made concerning the importance of the liver in thyroid 

hormone metabolism. 

The following chapters describe investigations related to the mechanism 

of rat liver iodothyronine deiodinase. Chapters III and IV concern the 

development of convenient methods for the chemical synthesis of 

iodothyronine sulfate esters and sulfamates, and the subsequent study of 

the deiodination of these compounds, especially T4 sulfate ester. The 

chemical modification of the iodothyronine deiodinase by 

diethylpyrocarbonate or photo-oxidation with Rose Bengal is reported in 

chapter v. These results strongly suggest the presence of an active site 

histidine residue. Chapter VI describes the use of N-bromoacetyl-T3 as an 

affinity label for the deiodinase, while chapters VII and VLII deal with 

the partial purification of the enzyme from rat liver microsomal fraction. 

Basic knowledge of the deiodinating enzymes will help us to understand the 

alterations of serum iodothyronine concentrations in health and disease. 
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CHAPTER ll 

THE LIVER, A CENTRAL ORGAN FOR IODOTHYRONINE METABOLISM? 

II.A Iodothyronine uptake in cultured rat hepatoytes. 

The research into the enzymatic deiodination of thyroid hormone by rat 

liver has predominantly been carried out with tissue bomogenates or the 

microsomal fraction. 

preparations, i.e. 

Some investigators have made use of whole-cell 

primary cultured hepatocytes, hepatoma cell lines or 

liver perfusions. For a long time little attention has been paid to the 

uptake process of iodothyronines into the liver cell as it was thought to 

be only a passive diffusion-controlled process without a regulatory 

function (Hillier 1970). However, increasing evidence has been obtained 

that the uptake of thyroid hormone into isolated rat liver cells is at 

least in part carrier-mediated (Krenning et al 1983). This specific uptake 

depends on the cellular ATP concentration and may be associated with the 

sodium gradient over the plasma membrane. As T3 production is 

predominantly dependent on intracellular T4 deiodination, it follows that 

any process that lowers the intracellular concentration of T4 will. reduce 

the production of biologically active thyroid hormone. Such a process that 

regulates the uptake of T4 by tissue cells may also influence the metabolic 

clearance of T3• Recently, tracer kinetic studies in obese subjects showed 

that the transport of T4 and T3 into tissues is diminished during caloric 

deprivation. This phenomenon was much more pronounced for T4 than for T3 
(Van der Heyden et al 1985). 

The similarity between cellular uptake of T4 and T3 is still 

controversial. Studies using cultured hepatocytes suggest that rat liver 

plasma membranes contain two different sites for transport of 

iodothyronines, i.e. a common T4 and rT3 site and a different T3 site 

(Krenning et•al 1981). Other studies with freshly isolated hepatocytes 

suggest that T4 enters the cell by diffusion and that only T3 transport is 

carrier-mediated (Rao and Rao 1983). Recent studies with a monoclonal 

antibody against rat liver cells show an equal inhibitory effect on T4 and 

T3 uptake by cultured hepatocytes without affecting the sodium gradient 
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over the plasma membrane, suggesting that T4 and T3. share a common carrier 

in the plasma membrane. By electrophoretic analysis of immunoprecipitated 

prot~ins it has been shown that the uptake is mediated by a 52,000 

molecular weight protein of the plasma membrane (Mol et al 1984c). The 

concept of a regulatory role for the cell membrane in cellular T4 
metabolism merits full exploration. 

II.B Enzymatic deiodination 

Deiodination of iodothyronines in vitro was initially investigated by 

using tissue homogenates of both liver and kidney (Hesch et al 1975, Visser 

et al 1975, HUfner et al 1977, Chiraseveenuprapund et al 1978). Several 

studies have shown that deiodinase activity is most abundant in liver and 

kidney (Chopra 1977, Kaplan et al 1979). Subcellular fractionation of 

these homogenates has shown that the enzymatic deiodination requires the 

presence of a microsomal enzyme and a cytoplasmic cofactor (Visser et al 

1976, Leonard and Rosenberg 1978a). Until now no ultimate purification of 

the iodothyronine deiodinating enzyme nor the cytosolic cofactor has been 

reported. Our present knowledge of enzymatic deiodination has gained 

widely from the observation that enzyme activity is greatly enhanced by 

addition of sulfhydryl group-containing compounds such as dithiothreitol 

(DTT) and 2-mercaptoethanol to the microsomal fraction (Visser et al 1976, 

L~onard and Rosenberg 1978a, Chopra 1978) (see also the section on cofactor 

requirements). The exact localization of the deiodinating enzyme is 

somewhat controversial. Most studies report on an endoplasmic reticulum 

localization (Auf dem Brinke et al 1979, 1980, Fekkes et al 1979, Saito et 

al 1980), while another report suggested an association with the plasma 

membranes although substantial copurification with marker enzymes of the 

endoplasmic reticulum was observed (Maciel et al 1979). The kidney 

deiodinating enzyme seems to be associated with the plasma membrane 

fraction (Leonard and Rosenberg 1978a). 

Using a crude microsomal fraction in the presence of DTT it has been 

shown that at physiological pH T4 is converted in roughly equal proportions 

by 5'-deiodination to T3 or by 5-deiodination to rT3 (Visser et al 1979a). 

Among the native iodothyronines rT3 is by far the prefered substrate for 
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the deiodinase. It undergoes rapid 5'-deiodination to 3,3'-T2, which is 

also produced slowly by 5-deiodination of r 3 (Visser et al 1979a, Leonard 

and Rosenberg 1980b, Fig. 3). Studies with cultured rat hepatocytes have 

shown that sulfation and deiodination of T3 and 3,3'-Tz are strongly 

related processes (Otten et al 1983, 1984, Visser et al 1983b). Inhibition 

of the sulfotransferase activity of these cells results in a diminution of 

the metabolism of T3 and 3,3'-Iz as measured by their disappearance from 

the culture medium and 125I- formation from radiolabeled substrates. 
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Inhibition of deiodinase activity with propylthiouracil (PTU) results in an 

increase of sulfated T3 or 3,3'-Tz in the culture medium. The effect of 

sulfation was further investigated using synthetic iodothyronine sulfate 

esters which were prepared either by reaction with concentrated H2so4 or 

chlorosulfonic acid in dimethylformamide as is reported in chapter III. 

Sulfation of T3 results in an increase of the Vmax of approximately 30 

times (Visser 1983b). The effect of sulfation on subsequent deiodination 

of T4 and rT3 is described in chapter IV. Although T4 is normally 

converted to both T3 and rT3 (at pH 7.2), sulfation seems to inhibit the 

5'-deiodinative pathway to T3 sulfate whereas 5-deiodination to rT3 sulfate 

is greatly enhanced (Fig. 4). The efficiency of the 5-deiodination of T4 
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is stimulated 200-fold by sulfation due to an increase of Vmax with a 

concomitant decrease of the ~· Table I summarizes the measured kinetic 

parameters of the deiodination of both native and sulfated iodothyronines 

by rat liver deiodinase (see also the section on enzyme mechanism). 

Nowadays consensus is achieved in that rat liver contains a single 

enzyme which is involved in 5-deiodination and 5'-deiodination of 

iodothyronines, called type I deiodinase. The hypothesis of a single 

enzyme was originally based on the equal competitive inhibition of the 

5'-deiodination of 3',5'-T2 and the 5-deiodination of T3 by 

iodothyronines and radiographic contrast agents (Fekkes 

a series of 

et al 1982b). 

Similar results were obtained by Chopra and Chua Teco (1982). Further 

arguments for one deiodinating enzyme are the co-purification of both 5-

and_S'-deiodinating activities in a series of chromatographic steps after 

solubilization as described in the chapters VII and VIII, and an equal 

reaction mechanism (vide infra). Comparison of the 5-deiodination of T4 
sulfate and 5'-deiodination of rT3 also strongly suggests that sUlfated 

iodothyronines are converted by the 

iodothyronines (chapter IV). 

same enzyme as the native 

Finally, a variety of competitive inhibitors of iodothyronine 

deiodinating activity have been reported, mainly compounds structurally 

related to the substrates. These include iodinated radiographic contrast 

agents (BUrgi et al 1976, Chopra et al 1978a, Fekkes et al 1982a), and 

halogenated derivatives of the dyes phenolphthalein (Fekkes et al 1982c) 

and fluorescein (Ruiz and Ingbar 1982, Mol et al 1984b). The latter may 

also give rise to formation of oxygen radicals which lead to oxidative 

destruction of iodothyronine substrates or to oxidation of essential amino 

acid residues of the deiodinase. Furthermore, deiodinase inhibition has 

also been reported with phenolic compounds such as salicylic acid (Chopra 

et al 1980), diiodosalicylic acid (Fekkes et al 1982a), iodine-free 

polyphenolic plant extracts (Auf'mkolk et al 1984) and the 4-hydroxy 

metabolite of propranolol (J~rgensen et al 1984). Inhibition has also 

been reported with dicoumarol (Goswami et al 1982) and bilirubin (Fekkes et 

al 1982c). A review of the effects of drugs on iodothyronine metabolism in 

vivo has been published (Cavalieri and Pitt-Rivers 1981). 
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Effect of sulfation on the kinetic parameters of iodothyronine 

deiodination by rat liver microsomes. 

Substrate Reaction Km 
a 

Vmax 
b 

Vma/~ 

T4 IRO 1.9 18 9 

T4S IRO 0.3 530 1820 

rT3 ORO 0.06 560 8730 

rT3S ORO 0.06 516 8600 

T3 !RO 6.2 36 6 

r3s IRO 4.6 1050 230 

a ~M; b pmol/min/mg protein. 
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Enzyme mechanism 

The present knowledge about the mechanism of type I iodothyronine 

deiodination is obtained from experiments with the crude microsomal 

fraction since purified enzyme preparations are still not available. 
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Analysis of the stimulation of enzymatic deiodination with DTT as the 

cofactor showed parallel lines in the Lineweaver Burk plot of 3,3'-Tz 

formation from rT 3 at various fixed thiol concentrations. This suggested a 

ping-pong reaction mechanism with rT3 acting as the first substrate that is 

converted to 3,3'-Tz with a concomitant generation of a modified enzyme 

form. Reaction of the second substrate, reduced OTT, with the intermediate 

enzyme form results in the regeneration of the native enzyme and the second 

product, oxidized OTT and I-. This is also shown for the 5'-deiodination 

of T4 to T3 as depicted in Fig. 5 (Leonard and Rosenberg 1978a, 1980a, 

Visser 1979). Support for this proposed mechanism was obtained by studies 

with propylthiouracil (PTU), a competitive inhibitor of deiodinase activity 

with respect to DTT and an uncompetitive inhibitor with respect to 

iodothyronines (Leonard and Rosenberg 1978b, Visser 1979). It has been 

shown that thiouracil reacts selectively with sulfenyl iodides (SI) forming 

mixed disulfides (Cunningham 1964). The reactivity of PTU towards the 

modified enzyme suggests that the latter contains a SI group. This is in 

agreement with the mechanism of inhibition by PTU and that of stimulation 
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by DTT and it is supported by the observation that covalent incorporation 

of labeled PTU into microsomes is stimulated in the presence of substrate 

(Visser and Van Overmeeren 1979, Leonard and Rosenberg 1980a). Studies 

with selective reagents for sulfhydryl (SH) groups, especially iodoacetate 

or N-ethylmaleimide, have indicated the presenee of an active site SH group 

(Leonard and Rosenberg 1980a, Leonard and Visser 1984). It was, therefore, 

concluded that the essential SH group probably ~cts as an acceptor of the 

leaving iodonium ion. In the absence of PTU, the resultant SI group is 

reduced to the SH form by DTT (Fig. 5). Other indications for the 

catalytic mechanism of iodothyronine deiodination by rat liver type I 

deiodinase stem from either modification reactions with the enzyme or from 

studies of the structure-activity relations using substrate analogues and 

cofactor analogues. 

following section. 

The cofactor requirements will be described in the 

Reaction of microsomes with dietbylpyrocarbonate (DEP) results in a 

rapid loss of deiodinase activity (chapter V). Inactivation with DEP 

follows pseudo first order reaction kinetics. The inactivation reaction is 

inhibited by substrate and modified enzyme is reactivated by treatment with 

hydroxylamine. The effect of pH suggests the modification of an amino acid 

residue with a pK value of 7.3. Together with the observatiOn of a rose 

bengal-sensitized photo-oxidative inhibition of enzyme activity the 

location of an essential histidine residue at or near the active site is 

suggested (Mol et al 1984b). It is speculated that this histid;ne residue 

forms a hydrogen bond with the catalytically important SH group. This 

would explain the high reactivity of the latter. 

Modification of the alanine side chain of iodothyronines shows that the 

deiodination of T4 is inhibited with increasing potency when the side chain. 

is modified from alanine, to N-acetyl-alanine or to acetic acid (KBhrle 

1983). A special case is the T3 analogue N-bromoacetyl-3,3' ,5-tri­

iodothyronine (BrAcT3) as reported in chapter VI. Incubation of rat liver 

microsomes with extremely low concentrations (<1 nM) of BrAcT3 results in 

the irreversible loss of deiodinase activity due to covalent binding to the 

active site of the enzyme. Apparently, the reactive bromoacetyl group is 

in a very close proximity of a nucleophilic amino acid residue in the 

enzyme. The reaction of BrAcT3 with the deiodinase is ·optimal at pH 7.25 



although it is difficult to interpret the pH profile in terms of the 

dissociation of a single amino acid residue. 

The effect of pH on the enzymatic deiodination of iodothyronines has 

been reported. The 5'-deiodination has its optimum around pH 6.5 while 

5-deiodination is favoured by a slightly alkaline pH of around pH 8 

(Kohrle 1983). The different optimal pH values for the various 

deiodinations have been used as arguments to speculate on the existence of 

two different deiodinating enzymes, a 5'-deiodinase and a 5-deiodinase, 

respectively. The latter possibility rejected, it has been suggested that 

the direction of the deiodination by a single liver enzyme is determined by 

a pH-induced alteration of the binding site for iodothyronines on the 

deiodinase rather than by the difference in the pKa value of the phenolic 

OR-group of the substrates (KOhrle 1983). It has been speculated that the 

intracellular pH determines whether T3 or rT3 is formed from the prohormone 

T4 (KObrle 1983). The esterification of the phenolic OR-group with 

sulfuric acid shows that in general the negative charge of the sulfate does 

not influence explicitly the direction of the deiodination. The 

3'-deiodination of 3,3'-Tz is stimulated 50 times mainly due to a decrease 

in ~' whereas the 5-deiodination of T3 is accelerated 40 times mainly as 

the result of an increase in Vmax (Otten et al 1983, Visser et al 1983b). 

The 5'-deiodination of rT3 is hardly changed after sulfation. Sulfation of 

T4 results in a 200 fold acceleration of the 5-deiodination, chiefly as the 

result of an increase in Vmax, whereas the 5'-deiodination of T4 sulfate is 

not detectable (chapter IV). An answer to the question as to how the 

5-deiodination and 5'-deiodination are regulated has to 

availibility of pure enzyme and cofactor preparations. 

await the 

Finally the inhibition of deiodinase activity with thiouracil has been 

further investigated using structurally related compounds (Visser et al 

1979b, Chopra et al 1982, Harbottle and Richardson 1984). It was generally 

found that methylation of the nitrogen atom at position 1 adjacent to the 

essential 2-mercapto group prevents the inhibitory activity. Introduction 

of a hydrophobic propyl group at c5 or c6 stimulates inhibitory activity 

approximately 2 times whereas 5-iodo-2-thiouracil is 13 times as potent as 

thiouracil (Chopra et al 1982). The goitrogenic drug 
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1-methyl-2-mercaptoimldazole (methimazole) does not inhibit deiodinase 

activity due to the introduction of a methyl group on N1 . Non-methylated 

analogues of methimazole are inhibitory, greatest effects being 

1979b). In 

observed 

et al general, with 2-mercaptobenzimidazole (Visser 

modification of inhibiting thiols by 

substituents reduces the inhibitory 

the introduction of hydrophilic 

1984), suggesting that the catalytic 

potency 

center of 

(Harbottle and Richardson 

the deiodinase forms a 

hydrophobic pocket which one would also expect from the hydrophobic nature 

of iodothyronines. 

Cofactor(s) 

Until noW the nature of the cellular cofactor(s) of rat liver 

deiodinase is unknown. The addition of well-known cofactors to the 

microsomal fraction like reduced or oxidized nicotinamide adenine 

dinucleotides and flavins is without effect (Visser et al 1975, 1976, 

HUfner et al 1977, Chiraseveenuprapund et al 1978). Based on the findings 

of an essential SH group in the active site of liver deiodinase and the 

requirement of thiol reductants for enzyme activity, it was postulated that 

the most abundunt cellular thiol, reduced glutathione (GSH), would act as 

the physiological cofactor. However, incubation of iodothyro~ines with rat 

liver micro somes 

deiodination (Goswami 

in the presence of 

and Rosenberg 1983a) 

GSH shows no stimulation of 

not even if a GSH regenerating 

system is included, consisting of glutathione reductase and NADPH (Mol, 

unpublished results). Addition of GSH or NADPH to liver homogenates of 

fasted rats, however, 

1979a, Sato et al 1982). 

stimulates the deiodination of T4 (Balsam et al 

Addition of diamide to cultured rat 

causes a 83% decrease of the cellular GSH content by oxidation 

a concomitant inhibition of the deiodinating activity (Sato et 

hepatocytes 

to GSSG with 

al 1983b). 

When hepatocytes are cultured with a cystine and methionine deficient 

medium, which results in a 90% reduction of both GSH and GSSG content, no 

inhibition of deiodinating activity is found (Sato and Robbins 1981b). 

When tested with the isolated microsomal fraction, GSSG inhibits T4 
deiodination, probably by formation of an enzyme-GSR mixed disulfide. 

These results, therefore, suggest a regulatory role of the GSH-GSSG ratio 
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(Sato et al 1983b). 

The naturally occurring thiol, dihydrolipoamide (DHL), has been found 

to stimulate deiodinase activity approximately 6 times as effectively as 

DTT in rat kidney microsomes (Goswami and Rosenberg 1983a). Addition of 

oxidized DHL in the presence of NADPH to rat kidney homogenates also 

enhances deiodinase activity. However, it is likely that DHL occurs mainly 

in a protein-bound form. 

As NADPH stimulates deiodinase activity in rat liver homogenates, it is 

interesting to consider how electrons from NADPH are transferred to the 

sulfhydryl group(s) at the catalytic site of iodothyronine deiodinase. 

Recently it has been shown that a cytosolic protein may mediate the 

GSH-dependent 

1983b). The 

reduction of rat kidney deiodinase (Goswami and Rosenberg 

existence of a number of thiol: disulfide-interchanging 

enzymes with broad specificities have been reported (Battelli and Lorenzoni 

1982~ Eklund et al 1984). One such electron carrier is thioredoxin, a 

12,000 dalton protein with two cysteine residues in close proximity which 

form a disulfide in the oxidized state (Holmgren 1981). Preliminary 

experiments using thioredoxin from E. Coli in the presence of thioredoxin 

reductase and NADPH showed no stimulation of microsomal deiodinase activity 

(Mol, unpublished results). Another interesting electron carrier is 

glutaredoxin which may transfer reductive equivalents of GSH to other 

enzymes (Holmgren, 1976). In the presence of GSSG-reductase and NADPH, 

this system clearly stimulates deiodinating activity although to a limited 

extent (Mol, unpublished results). 

The concept that the reduction of the dei.odinase is mediated by 

glutaredoxin or a related protein needs to be fully explored. 

Purification of rat liver iodothyronine deiodinase. 

In rat liver the deiodinating enzyme is a constituent of the 

endoplasmic reticulum (Fig. 6). In order to purify the deiodinase it has 

to be solubilized from the membranes of the endoplasmic reticulum using 

non-denaturating detergents. It has been shown possible to solubilize 

deiodinase activity with the ionic detergents deoxycholate as used for the 

kidney enzyme, and chelate as used for the liver enzyme (Leonard and 
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Rosenberg 1981, Fekkes et al 1980). The apparent molecular weights of 

these preparations amounted to ?0,000 and 65,000 dalton, respectively, as 

determined by both gel filtration and sucrose gradient centrifugation. 

However, these preparations are unstable and enzyme activity rapidly 

deteriorates probably due to denaturation and aggregation. Leonard and 

Rosenberg (1981) have demonstrated that this is partially overcome by 

addition of soybean lipids to the dispersed ki~ney 

has been made by Fekkes et al (1983) using the 

enzyme. Some progress 

non-ionic detergent W-1 

ether. Isoelectric focusing of a W-1 ether extract of microsomes revealed 

an isoelectric point near pH 6.4. However, after removal of phospholipids 

the W-1 ether-dispersed enzyme ~oncentrated at pH 9.3, showing that the rat 

liver deiodinase is a basic protein. Further purification proved to be 

difficult. 

' ' 
H0-0- 00- CH~HCOOH 

I NH 2 

' ' 
HO 0 0-0- CH ~~HCOOH 

I NH
2 

Ftg.6. Purf..tf..catt.on of rat 'Z.f..ver t.odothyronf..ne detadf..nase. 

Renewed investigations into which detergents are useful for subsequent 

purification are presented in chapter VII. In order to obtain a stable 

enzyme preparation high detergent concentrations are necessary. It appears 

that the non-ionic detergent Emulgen-911 is most suitable for column 

chromatography when used in the presence of 20% glycerol and a minimal NaCl 

concentration of 15 mM- Using rat liver microsomes from hyperthyroid rats 
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Tab!~ II Characteristics oft he pathways ofiodothyronine deiodination in the rat 

Deiodination site 
Substrate preference 
Kinetic pattern 
Km forT4 in microsomal 
preparations 
Tissue localization 

Thiol redw::tants 
Propylthiouracil 
lopanoic acid 
Hypothyroidism 

Fetal/neonatal life 

Type! 

phenolic and tyrosyl rings 
rT3 > T4 > T3 
ping-pong 
- l)lM(at 1-5 mMDITJ 

highest in liver, kidney and 
thyroid, present in many other 
organs 
stimulatory 
inhibitory 
inhibitory 
reduced activity in liver and 
kidney, increased in thyroid 
decreased in ii\·er 

Type II 

phenolic ring only 
T4 <.! rT3 
sequential 
-I nM(at20mMDTI) 

pituitary, central nen·ous 
system, and brown adipose 
tissue 
stimulatory 
no effect 
inhibitory 
increased activity 

increased in pituitary, complex 
in brain 

Type III 

tyrosyl ring only 
T3 > T~ 
sequential 
~ 40nM(at50mMDTT) 

central nen'OU s system, eye, an.d 
placenta 

stimulatory 
no effect 
inhibitory 
decreased activity, in brain 

increased in brafn and eye 

The identities of the pathways in the th)'roid gland,eye and placenta are probable, but not definite. DIT = Dithiothreitol. 

Michael M. Kaplan (1984) 



an ultimate purification of about 2400 times is achieved by means of a 

variety of chromatographic steps, details of which are presented in chapter 

VII and VIII. The thus obtained enzyme preparation is approximately 50% 

pure but shows to be labile. This may be due to dissociation of subunits 

since affinity-labeling experiments with BrAcT3 (chapter VI) suggest that 

the deiodinase is composed of subunits. 

Iodothyronine deiodination in other tissues. 

The characteristics of T4 and rT3 deiodination in rat kidney are very 

similar to those of the rat liver enzyme (Kaplan et al 1979). However, 

clearly different deiodinase activities are found in other tissues. Until 

now three different iodothyronine deiodinases have been described (Table 

II). The enzyme predominantly found in liver, kidneys and also thyroid 

gland is called type I deiodinase (D-I). It is characterized by its 

susceptibility to inhibition by PTU and iodoacetate, by the postulated 

ping-pong reaction mechanism and by the preference £or rT3 as the 

substrate. Type II 5'-deiodinase (5'D-II) is mainly found in the central 

nervous system, pituitary gland, brown adipose tissue and placenta (Kaplan 

1980, 1984, Melmed et al 1981, Visser et al 1981, 1982, 1983c, Leonard et 

al 1983). Type II deiodinase is a specific 5'-deiodinase which requires 

high concentrations of DTT in comparison with type I, is not inhibited by 

PTU and less sensitive to inhibition with iodoacetate (Visser et al 1982, 

1983d). Under the conditions used, type II deiodinase is also 

characterized by low~ and Vmax values. Analysis of the enzyme kinetics 

suggests a "sequential" reaction mechanism (Visser et al 1982). 

Furthermore, T4 is the prefered substrate for the type II enzyme. 

The third iodothyronine deiodinase is a true 5-deiodinase which only 

catalyzes the deiodination of the tyrosyl ring. Type III 5-deiodinase 

(SD-III) is mainly found in human and rat placenta (Roti et al 1981, 1982, 

Fay et al 1984) and in the central nervous system of the rat (Kaplan and 

Yaskoski 1980)·· It is characterized by intermediate~ values, and it is 

not or only little affected by PTU. As proposed for S'D-II this specific 

5-deiodinase also shows "sequential" reaction kinetics with T3 as substrate 

and DTT as cofactor (Kaplan et al 1983). 
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II.C Regulation of deiodinase activity in vivo. 

Age re1ated changes in enzyme content 

The production of the biologically active thyroid hormone T3 from T4 by 

type I deiodinase (D-I) as found in liver, kidneys and thyroid, and by type 

II deiodinase (S'D-II) as found in the ceutral nervous system, pituitary 

and brown adipose tissue depends largely on age, thyroid status, diet and 

exposure to a variety of drugs. In this section some remarks will be made 

concerning the regulation of the deiodinase activity in a variety of 

tissues with special emphasis on the contribution by the liver to plasma 

T3• The regulation at the level of the deiodinase activities will be 

discussed here, although thyroid hormone metabolism may also be regulated 

by changes in the availibility of intracellular hormone through alterations 

in plasma binding or in cellular uptake (Hoffenberg and Ramsden 1983, Van 

der Heyden et al 1985). The content of D-I appears to follow a general 

maturational pattern for all tissues studied so far. Neonatal rat livers 

contain low 5'-DI activities which increase with age until an adult level 

is attained at 20-30 days of age (K8hrle 1983, Sato et al 1983a). No 

differences in the development of rat liver SD-I and S'D-I activities are 

detected (K8hrle 1983) which is additional evidence that both activities 

are intrinsic to a single enzyme (Fekkes et al 1982b). It has been 

suggested that the low D-I activity in the fetal and neonatal period is not 

only a function of D-I content but also caused by a reduced capacity of 

NADPH to support deiodination in cell homogenates (Sato et al 1983). In 

the female rat a significant decrease in hepatic T3 generation is observed 

at the age of 30 days which remains constant thereafter at approx~tely 

50% of the value in age-matched male rats. This sex-related difference is 

attributed to a decreased enzyme content rather than differences in 

cofactor concentrations (Harris et al 1979). S'D-II activity in the 

hypothalamus increases also with age in contrast with SD-III as measured 

with T3 as the substrate which has the highest activity in fetal rats and 

shows a rapid decline during the first weeks of life (Kaplan 1984, McCann 

et al 1984). Similar observations have been made in rat retina during 

postnatal development (Ientile et al 1984). 
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Thyroid status 

It has been shown that the content of deiodinase in the various tissues 

depends largely on the thyroid status~ In general, D-I activity in 

especially liver is reduced by thyroidectomy"to approximately 30% of the 

values found in the euthyroid rat whereas a 2-3 fold increase is observed 

in rats injected with T4 to render them thyrotOxic (Kaplan 1979b, Balsam et 

al 1979b). Results obtained with the microsomal fraction in the presence 

of DTT strongly suggest effects on enzyme content (Kaplan 1979b) rather 

than changes in cofactor concentrations as proposed by others (Balsam et al 

1979b). The effect of hypothyr6idism on D-I requires at least a few days 

before a decrease will be observed~ Similar changes in enzymatic activity 

~n altered thyroid states have been reported for the kidneys (Kaplan et al 

1979, Larsen et al 1981). Interestingly, the D-I of rat thyroid depends on 

circulating TSH concentrations (Erickson et al 1982, Ishii et al 1983, Wu 

1983)~ Ten days after hypophysectomy, when T4 levels are maintained at 

control levels by T4 replacement, no detectable D-I is present in the 

thyroid while the liver content remains normal (Erickson et al 1982). 

Inhibition of T4 production by chronic ingestion of methimazole leads to a 

concomitant increase in serum TSH and D-I content of the thyroid~ In this 

case rat liver D-I levels decrease due to the low plasma T4 concentration~ 

In contrast with the slow adaption of the liver enzyme to an altered 

thyroid status, 5'D-II of the cerebral cortex responds rapidly to changes 

in thyroid hormone concentration (Leonard et al 1981)~ Within 24 hours 

after thyroidectomy a 2-4 fold increase in 5'D-II is observed. The 

increase in chronically hypothyroid animals is normalized within 4 hours 

after injection of T3• It has been shown that in short-term hypothyroidism 

(12 days) the augmentation in 5'-deiodination is the result of an increase 

in the specific 5'-DII enzyme which.is insensitive to inhibition by PTU 

(Visser et al 1981, 1982). The 5'D-II appears also to be present in 

secretory cells of the pituitary with highest activities in isolated 

lactotrophs and somatotrophs and a remarkably lower enzyme level in 

thyrotrophs (Koenig et al 1984)~ The increase in S'D-II content of the 

cerebral cortex and pituitary in hypothyroid rats is achieved by a decrease 

in the degradation/inactivation rate rather than by an increase in the 
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synthesis of the enzyme (Leonard et al 1984). Conversely, administration 

of T3 induces an increase in 5'D-II turnover, by an extra-nuclear action 

which requires no protein synthesis. This is consistent with reports on a 

rapid decrease of 5'D-II levels after administration of T4 or rT3 (Silva et 

al 1983, Kaiser et al 1984). The 5'D-II of brown adipose tissue increases 

also in hypothyroidism (Leonard et al 1983). 

Finally, the specific 5D-III content of the cerebral cortex increases 

in hyperthyroid rats and decreases or remains constant in hypothyroid 

neonatal rats (Kaplan et al 1983). 

Hormonal regulation of T4 monodeiodination. 

States of hypoinsulinaemia, i.e. fasting or diabetes mellitus, are 

associated with decreased serum T3 concentrations and elevated rT3 
concentration in man, the so-called "low T3 
197$). Turnover studies have shown that 

syndrome" (Saunders et al 

during 

decreased due to lowered production rates, whereas 

fasting serum_T3 is 

plasma rT3 increases 

rather as a result of decreased elimination rates (Suda et al 1978). 

Various hypotheses have been put forward to explain the altered production 

of T3, namely a decrease in deiodinase content (Balsam et al 1981, Gavin et 

al 1981), a decrease in cytosolic cofactor(s) (Balsam et al 1979) or a 

reduced uptake of T4 by the liver (Jennings et al 1979, Van der Heyden et 

al 1985). Fasting-induced changes of T3 and rT3 plasma levels are restored 

predominantly by refeeding with a carbohydrate-rich diet in the rat (Gavin 

et al 1981), indicating a glucose-mediated effect. Studies with rat 

hepatocytes in primary culture show that 5'-deiodinase activity is reduced 

if the GSSG/GSH ratio is increased by diamide. This effect is not seen in 

the presence of glucose in the medium (Sato et al 1983b). It has been 

suggested that glucose maintains enzyme activity by keeping glutathione in 

the reduced form, probably through the supply of NADPH as cofactor for 

GSSG-reductase. Furthermore, both in vitro (c~tured hepatocytes) and· in 

vivo administration of insulin enhances the deiodinase activity of the 

liver (Sato and Robbins 1981a, Loos et al 1984). The findings reported by 

Loos et al (1984) strongly suggest that insulin acts directly on de novo 

synthesis of the deiodinase. The alteration in T3 production consequent on 
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dietary restriction or diabetes are not mediated by high glucagon levels 

(Senga et al 1982, Gavin and Moeller 1983a) although glucagon may inhibit 

the insulin-mediated increase of deiodinase in cultured hepatocytes (Sato 

and Robbins 1981a). Finally, fasting and diabetes are associated with an 

increased pancreatic content of somatostatin. A continuous somatostatin 

infusion inhibits hepatic S'D-I in a carbohydrate-fed rat and prevents the 

normalization of enzyme activity by carbohydrate-refeeding of fasted rats 

(Gavin and Moeller 1983b). 

Fasting of adult rats results in decreased serum T4 and TSH 

concentrations. Significantly higher 5'-deiodination rates in hypothalamic 

homogenates are observed in fasted rats (Kaplan and Yaskoski 1982). No 

effect was seen either on che 5-deiodinase activity in cerebral cortex and 

hypothalamus or on the 5'-deiodinase activity of cerebrocortical 

homogenates (Kaplan and Yaskoski 1982). Also the inability of somatostatin 

to inhibit pituitary 5'-deiodinase indicates that the S'D-II deiodinase is 

regulated quite differently (Gavin and Moeller 1983b). 

Obviously, the low T3 syndrome has a complex etiology and may be caused 

by tissue specific effects on deiodinase content, cofactor or substrate 

availability. Also species differences may exist. When rats are fasted 

serum concentrations of TSH, T4 and T3 decrease whereas fasting in humans 

is accompanied only by a decrease in serum T3 with a reciprocal rise in rT3 
concentrations. The rise in serum 

observed in fasting dogs (De Bruijne 

concentrations of rT3, however, is not 

et al 1981, Laurberg and Boye 1984). 

Contribution of rat liver deiodinase to plasma iodotb.yronine 

concentrations. 

In euthyroid rats, PTU reduces the extrathyroidal conversion of T4 to 

T3 by almost 70%, stressing the importance of the type I deiodinase of 

liver and kidney for maintaining plasma T3 concentrations (Silva et al 

1984). In the hyperthyroid rat the contributions of the PTU-sensitive type 

I deiodinase may even be greater. The high specific activity of rat liver 

deiodinase together with the fact that the liver contains a major 

proportion of the total intracellular T4 pool (HenneQann 1981) makes it 

reasonable that the liver is an important contributor to the circulating 
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T3 ~ Circumstantial evidence is further obtained from the observation of 

low T3 concentrations during liver cirrhosis (Chopra 1981)~ Also in 

chronic renal failure reduced T3 concentrations are observed (Kaptein et al 

1983). However, during hypothyroidism the contribution of rat liver to 

serum T3 concentrations diminishes and almost all circulating T3 in 

thyroidectomized rats may be produced via a PTU-insensitive pathway (Silva 

et al 1984)~ The contribution of the PTU-sensitive deiodinase of the 

thyroid gland to plasma T3 concentration during hypothyroidism remains, 

however, to be established. 

The liver contributes not only to the production of T3, but also 

regulates the elimination of iodothyronines from the plasma pool~ From 

studies using cultured rat hepatocytes it has been shown that elimination 

of T3 largely depends on sulfation prior to deiodination. It is, 

therefore, suggested that the rate of T3 disposal may depend predominantly 

on enzymatic sulfation~ It is speculated that the unaltered metabolic 

clearance of T3 in cases of the low T3 syndrome may reflect an intact 

sulfation and glucuronidation system. The metabolic clearance of rT3 
depends probably solely on deiodination and is consequently diminished if 

liver deiodinase activity is impaired~ The fact that the production of 

plasma rT3 is unaltered after administration of PTU makes it likely that 

rT3 is mainly derived from SD-III activities~ From the tissue specific 

deiodinase activities, it is suggested that the low T3 syndrome may 

es~ecially affect tissues that depend on the plasma T3 concentration, 

whereas the tissues that depend on local conversion of T4 to T3 are less 

affected. 
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CHAPTER III 

SYNTHESIS AND SOME PROPERTIES OF SULFATE ESTERS AND SULFAMATES 

OF IODOTHYRONINES. 

Jan A. Mol and Theo J. Visser. 

Department of Internal Medicine III and Clinical Endocrinology 

Erasmus University Medical School, Rotterdam, The Netherlands. 

ABSTRACT 

In the present study convenient methods have been developed for the 

synthesis of sulfate derivatives of iodothyronines. Reaction with 

chlorosulfonic acid in dimethylformamide gave rise to the formation of the 

sulfate ester with the phenolic hydroxyl group. Reaction with the 

sulfurtrioxide-trimethylamine complex in alkaline medium afforded the 

sulfamate with the «-amino group of the alanine side chain. The sulfated 

products were isolated by adsorption onto Sephadex LH-20 in acidic medium 

followed by desorption with water. Iodide was not retarded on these 

columns while elution of native iodothyronines required alkaline ethanol 

mixtures. The yield of both reactions varied between 70% and 90%. The 

sulfates and sulfamates of thyroxine, 3,3',5-triiodothyronine, 

3,3',5'-triiodothyronine and 3,3'-diiodothyronine could be separated by 

reversed phase, high-performance liquid chromatography. The sulfamates 

exhibited high cross-reactivities with antibodies against free 

iodothyronines in contrast to the low activities of the sulfates. 

Products were further characterized by proton nuclear magnetic 

resonance, thin layer chromatography and hydrolysis by acid or sulfatase 

activity. The ,availability of large quantities of pure iodothyronine 

sulfates and sulfamates should facilitate the study of the importance of 

sulfate conjugation in the metabolism of thyroid hormone. 
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The main secretory product of the thyroid gland is the prohormone 

thyroxine (T4) (1-3). In peripheral tissues T4 is metabolized by outer 

ring deiodination to the biologically active 3,3',5-triiodothyronine (T3), 

and .by inner ring deiodination to the inactive 3,3',5'-triiodothyronine 

(reverse T3, rT3). Further stepwise deiodination of T3 and rT3 leads to, 

among other things, 3,3'-diiodothyronine (3,3'-Tz) (4-7). Besides 

deiodination, iodothyronines are also subject to conjugation with either 

glucuronic acid or sulfate (8-11). The liver and kidneys are major sites 

for these metabolic reactions. Recent work in our laboratory has shown a 

close interaction between the sulfation and deiodination of iodothyronines 

in the liver. Sulfation by cytoplasmic phenol sulfotransferases greatly 

enhances the subsequent deiodination of T3 and 3,3'-Tz by the deiodinase 

located in the endoplasmic reticulum (12,13). This prompted us to search 

for a convenient method for the synthesis of the sulfate conjugates of the 

various iodothyronines. Here we describe the preparations of the sulfate 

ester as well as the sulfamate of these.compounds. 

MATERIALS AND METHODS 

Reagents. 

All iodothyronines were obtained from Henning, Berlin, FRG; 

[3',5'-125I]T4 , [3'-125r]T3 and carrier-free Na125I were from Amersham, UK. 

[3',5'-125I]rT3 and [3'-125I]3,3'-T2 ·were prepared by radio-iodination of 

3,3'-Tz and 3-iodothyronine, respectively, with the chloramine-! method and 

they were purified on Sephadex LH-20 (14). N-acetyl-iodothyronines were 

prepared as described by method B of Cheng et al (15). Chlorosulfonic acid 

(Clso 3H), N,N-dimethylformamide (DMF), acetylchloride, and so3-pyridine 

complex were obtained from Merck; so 3-trimethylamine complex (so3-TMA) was 

from Aldrich. Sulfatase (from Abalone Entrails type VIII) was obtained 

from Sigma. All other chemicals. were of reagent grade. 
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Reaction of iodothyronines With different sulfurylating agents. 

a. Reaction of iodothyronines with concentrated H2so4 was performed as 

described previously (12). 

b. Reactions involving chlorosulfonic acid were started by the slow 

addition of 200 ~1 ClS0 3H (15 M) to 800 ~1 DMF or dioxane at 0°C. In 

another tube a solution of usually 100 pmol. unlabeled plus 125I-labeled 

iodothyronine in ammoniacal ethanol was evaporated under a stream of 

nitrogen. To the residue of the latter tube 200 rl of the ClS03H solution 

in DHF or dioxane was added at 0°C. Subsequently, the mixtures were 

allowed to attain room temperature, and, in general, reactions were 

continued overnight. After dilution with 800 J.ll icecold water, reaction 

products were analyzed by Sepha~ex LH-20 chromatography. 

c. In the procedure involving so 3 complexes, generally 100 ~1 of a 

solution of 2 mg so3-pyridine or so3-TMA in DMF were added to 100 pmol 

unlabeled plus 125I-labeled iodothyronine in 100 pl 0.1 N NaQR. The 

reaction was allowed to proceed overnight at room temperature or for 1 h at 

37°C. After addition of 800 ~1 0.1 N HCl, reaction products were also 

analyzed by Sephadex LH-20 chromatography. 

Analytical methods. 

Because of their increased hydrophilicity the sulfated iodothyronines 

were expected to bind less tightly to Sephadex matrices than the native 

compounds. Reaction mixtures were, therefore, analyzed by. hydrophobic 

interaction chromatography on Sephadex LH-20. The reaction products I-, 

sulfate ester or sulfamate, and native iodothyronine were separated by 

successive elution with 0.1 N HCl, water, and 1 N ammonia in ethanol. 

Reversed-phase, high performance liquid chromatography (HPLC) was 

performed on a radial-PAK ~Bondapak c18 column using a Model 6000A solvent 

delivery system and monitoring absorbance at 254 nm with a Model 440 fixed 

wavelength detector (Waters, Milford, MA, USA). 

Thin-layer chromatography (TLC) was performed on silicagel 60 F 254 

plates (Merck), using as solvent ethylacetate/acetic acid (9/1, v/v). 

After the plates were developed they were sprayed with either ninhydrin to 

47 



show a free amino group, or according to Pauly (16) to show a free phenolic 

hydroxyl g~oup. 

Proton nuclear magnetic resonance (1R-NMR) spectra were acquired on 

samples dissolved in NaOD/n2o (pD 10). Spectra were recorded at 200 MHz on 

a Nicole NT 200 NMR-spectrometer: 

Cross-reactivities of sulfated iodothyronines in the radioimmunoassays 

for the native iodothyronines were aSsessed using antisera to T4 , T3 
(Henning, Berlin), rT3 (14) and 3,3'-T2 (17). Serial dilutions of the 

sulfated or non-sulfated iodothyronines were incubated overnight at room 

temperature with 20.000 cpm of the corresponding 125I-outer ring labeled 

iodothyronine and an appropriate dilution of 

barbital/0.15 M NaCl/0.1% bovine serum albumin, 

antiserum in 1 m1 0.06 M 

pH 8.6. Antibody-bound 

radioactivity was precipitated with second antibody and polyethyleneglycol. 

Acid hydrolysis of sulfated iodothyronines was performed by reaction of 
125I-labeled sulfate derivatives for varying time periods at 37°C, 50°C or 

80°C in 0.1 or 1 N RCl. Reactions were stopped by placing the mixtures on 

ice, and hydrolysis was quantitated by Sephadex LR-20 chromatography as 

described above. Enzymatic hydrolysis was measured by incubation of 
125I-labeled sulfate derivative at 37°C with 125 ug sulfatase type VIII in 

0.5 m1 50 mM sodium acetate (pH 5.0). After various times the reaction was 

terminated by addition of 0.5 ml icecold 1 N HCl, and products were again 

analyzed by LR-20 chromatography. 

RESULTS 

The potential reactions of sulfurtrioxide (S03) or related compounds 

with iodothyronines are depicted in Fig.l (18,19). Since sulfonation of 

halogenated benzenes or phenolic compounds requires rigorous conditions, 

i.e. high temperatures and so3 as the sulfurylating agent, it seems 

unlikely to occur under the mild conditions used here. The reactivity of 

so 3 is moderated by complex formation with a base. With increasing 

strength of the base, the stability of the complex increases and its 

reactivity decreases (18). Table I shows the results of the reaction of 

various sulfurylating agents with native or N-acylated iodothyronines. The 
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REACTION OF S0
3 

WITH THYROXINE 

I I 

;

HO 9 0 QcH2-C<::H 

I \_ / i 
0 0 CD 

1. Sulfation 

2. Sulfonation ----1!1- RS0 3H 

3. Sulfamation ~ RNHS0 3H 

Ft.g. 1. • T'heore'tt.cat react 'tons oi sutfw-tr'i.o:l::'tde or t:ts organtc compl.e:res 
t.Jt.t:n tnyroo:-tne. The reac'ttons t.nctu.de forma:t"Lon of 1) 'the sutfa'te es'ter, 
2) suttont.c act.d ae~va'tt.ves, or 3) 'the sutf~e (ref.18). 

so3-TMA complex reacts in aqueous alkali with the native iodothyronines but 

not with N-acetyl iodothyronines indicating that only the amino group of 

the alanine side chain is modified by sulfamate formation. Because of the 

high stability of the so 3-TMA complex it is usable at the high pH-which is 

necessary for reaction with a dissociated amino group. At neutral or 

acidic pH, or in pyridine/DMF no product formation could be observed at the 

use of the S0 3-TI1A complex. Reaction with the less stable S0 3-pyridine 

complex under the various conditions yielded also no sulfated products. 

Chlorosulfonic acid dissolved in dioxane or, especially, in DMF reacted 

with both native and N-acylated iodothyronines indicating at least the 

formation of the sulfate ester with the phenolic hydroxyl group. The 

so3-DMF complex which is probably formed as an intermediate is one of the 

most reactive so3 complexes known so 

so3-DMF complex is that little or 

far (18). The advantage of the 

no l25r- is formed due to oxidative 

breakdown of the iodothyronines in contrast to the methods using 

The latter reactions are difficult to 

control, and although some T3 sulfate ester could be synthesized using 

H2so4 (12), reaction of T4 with H2so4 yielded merely iodide. 
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TABLE I 

Reactivity of several sulfurylating agents with native or 

N-acetylated iodothyronines. 

% product formation with:a 

Reagent Solvent N-Ac-T
3 

so 3-TMA DMF/0.1 N NaOH 90 90 0 

so3-THA DMF 7 8 0 

so3-TMA DMF/HzO 1 0 N.D. 

so3-TMA DMF/0.1 N HOAc 0 0 N.D. 

S0 3-Pyridine DMF/0.1 N NaOH 3 5 0 

C1S03H iodideb iodide iodide 

C1S03H DMF 90 65 87 

C1S0 3H Dioxane 14 10 15 

H2so4 40 iodide N.D. 

--------------------------------------------

a Reactions are positive if labeled product can be eluted with 
water from the Sephadex LH-20 column. Results are the means of 
two closely agreeing experiments each performed in duplicate. 

b Iodide indicates the appearance of large quantities of 125r­
in the HCl fraction of the LH-20 column. 

N.D. = not determined. 
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Fig-2 depicts a typical purification on Sephadex LH-20 of the reaction 

products of t 3 ~th the so3-TMA.or the so3-DMF complex. With water as the 

second solvent, the sulfamates are usually eluted as a broad peak. In 

Fig-2 the elution of the sulfamate is improved by the use of 25% ethanol 

without effecting the elution of the native iodothyronine. Both products 

and native T3 were further analyzed by TLC. In the system used T3 had an 

Rf value of 0.08 and was coloured with both ninhydrin and Pauly reagent. 

The product of the reaction of t 3 with so3-TMA had an Rf value of 0.12. It 

was coloured by Pauly reagent but not with ninhydrin, indicating a blocked 

amino group. The reaction product of T3 with so3-DMF (Rf 0.01) was 

ninhydrin-positive but Pauly-negative, sho~ng that only the phenolic 

hydroxyl group was blocked. By reaction with the so 3-TMA complex the 

sulfamates of the various iodothyronines were prepared in a yield of 90%. 

The sulfate esters were prepared with the so3-DMF complex in the following 

yields (mean of two closely agreeing experiments): 3,3'-T2 (85%), T3 
(90%), rT3 (70%) and T4 (65%). 

HCI H,O E HCI H2o E HCI 25~ E E 
W?J - fZ?2J - f?Z?I ... 

so 
A B c 

~ 

L X 25 
E 
0. 
v 

' 
8 16 ' 8 16 8 16 

fraction number 

Ft.g.2. Chromatography of 125r ou:ter rt.ng Z.abel.ed T3 'before (A) and aj"ter 
the reactton ~tth the SO -DMF compz.ex {B) or "the so3 -T.MA compLex {C). 
Reactton m~ture B uas dttut;d ~tth 800 ~~ B 0 and reac"tton ~ure C ~as 
actdttted by add£tton ot 800 ~~ 0.1 N B~L (see Matertaz.s ana Methods). 
Products uere appttea to a smal-l. 1 mt Sephadex LB~2o col-umn. ser£at 
etutton tJas performed tJ!..th 1 mt jracttons oj 0.1 N BC1.. .. tJater or 25~ 
ethanol. t:.n troter and 1 N ammont..a tn ethanol.. 
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The identity of the sulfated products was further substantiated by 

proton-NMR of the T3 sulfate ester (T3S) and of the T3 sulfam.ate (T3Ns) 

(Fig.3). It should be noted that the numbering of the protons in Fig.3 is 

different from the conventional numbering of the carbons in the 

iodothyronine structure. Formation of the sulfate ester with the phenolic 

hydroxyl group (T3S) leads to a downfield shift from 6.40 to 7.22 ppm in 

the signal of the proton H-1 in the ortho position with minor downfield 

shifts of the meta protons H-2 (6.55 to 6.78 ppm) and H-3 (6.93 to 7.12 

ppm). The chemical shift of especially H-1 is explained by the conversion 

of the electron-donating hydroxyl group into the electron-withdrawing 

sulfate group. In contrast to the sulfate ester, the sulfamate of T3 
(T3NS) shows no chemical shifts of the various ring protons. However, a 

downfield shift is observed from, 3.28 to 3.71 ppm of proton H-8 on the 

~-carbon atom, adjacent to the amino group. Furthermore, the signal of the 

protons H-6 and H-7 on the -carbon atom is now split into a doublet in 

contrast to the two quartets as seen in the case of native T3• The NMR 

data, therefore, confirm the identity of the sulfated T3 derivatives, and 

show that no sulfonation did occur by substitution of a ring proton by a 

sulfate group. 

Ff,g.4. Reversed-phase BPLC ot a mt.x­
ture ot tne suttamates ot 3,3'-T2, T3, 
rT3 ana T4, 1 nmot eacn. Proaucts Qere 
eLuted tsocrattca11y Qttn a m~ure of 
aceton£-tr£t. qnd 20 mM ammon£um acetate 
pB 4 (30/70, vjv) at a soLvent jZ.OQ of 
2 mt.jmtn. Absorbance Qas recorded at 
254 nm. The peak A

245 
of 3,3'-T2 sut.ta­

ma-te amounted to 0.06 absorbance un~ts. 
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c 

Vj 
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The sulfate esters and the sulfamates of the various iodothyronines 

were further analyzed by HPLC. Fig.4 depicts the isocratic elution of the 

sulfamates with a mixture of acetonitril and 20 mM ammonium acetate, pH 4 

(30/70, v/v). The sequence of elution of the various sulfamates was 

identical to that of the native iodothyronines although elution of the 

latter required a higher acetonitril concentration. In contrast, 

E 
0 

" . N 

< 

~ ~ 

ON OM 
~ t 

~g.5. Reversed-phase BPLC of a m~u-
V'l re of "the sut;fa'tes of 3,3•-TZ, T3, rT3 
o,.. and T4, l nmot each .Produc'ts rJere ez.u-
~~ 'ted ~socra~~catty lJ~~h a m~ure of 

ace tan~ 'trt 7, and ammon~um ace~a'te, p8 4 
(22/78, v/v), a~ a sotven't f~lJ of 2 

-~ 1 ~ 
1 

\ • \, \_ 1 mtjm~n. Absorbance l.)(1S recorded a't 254 
v-.... '-J - "-._) '----Jnm. Tile peak A of 3,3•-T2 su'l,fa'te 

c_~~-"+--.~~--~--~~--~--~est.er amounted ~40.07 absorbance un~ts 
3 " 5 7 8 9 10 11 12 

tR (minutes) 

for separation of the various sulfate esters at pH 4 (fig. 5), solvent with 

less acetonitril was needed, indicating that the sulfate esters are less 

hydrophobic in comparison with the sulfamates. Notable is also that in the 
I 

case of the sulfate esters rT3 elutes earlier than T3, in contrast to the 

sulfamates and the native compounds. This may be due to the fact that in 

rT3 sulfate the most hydrophobic part of the rT3 molecule, i.e. the outer 

ring, is made more hydrophilic. With the sulfamate the alteration is 

confined to the alanine side chain where the normally occurring zwitter-ion 

is replaced by a double negative charge at the pH used. The retention time 

of the sulfate ester of T3 prepared with the so3-DMF method or with 

concentrated H2so4 was 

l-Ie investigated 

identical. 

the possibility to regenerate the original 

iodothyronines by enzymatic or acid-catalyzed hydrolysis. The sulfate 

esters and the sulfamates of the various iodothyronines were almost 
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completely ()95%) hydrolyzed by treatment for 1 h at 80°C with lN HCl. The 

intact structure of the iodothyronine liberated was demonstrated by HPLC­

The susceptibility to acid hydroiysis again shows that no sulfonation has 

occurred. Radioiodide production was less than 1%, indicating that 

oxidative breakdown was negligible under the circumstances used. The rate 

of hydrolysis by 0.1 or lH HCl at different temperatures or by sulfatase 

digestion at 37°C was analyzed by Sephadex LH-20 chromatography. The 

results are summarized in Fig.6. The rate of acid hydrolysis of the 

sulfamates was independent of the structure of the iodothyronine. It was 

slower than the hydrolysis of any of the sulfate esters, e.g. half the 

rate observed with T3 and 3,3'-T2 sulfate. Acid hydrolysis of the sulfate 

esters of T4 and rT3 was considerably faster than hydrolysis of T3 and 

3,3'-T2 sulfate. Only the sulfate esters of 3,3'-T2 and T3 were hydrolyzed 

by treatment with sulfatase activity from Abalone Entrails. 

• ~--~--~--~,~.c---e---o---~ 
tlme (h) 

Fi..g .6. Hydro~ysts of t.od.o"thyrontne su~ja"tes and su~famates. A "tracer 

quan"tt"ty of "the vartous compounds uas tncubatea for "the tndtcated "ttme 
0 0 

periods l.li-"th: A, 0.1. N BCl. a"t 80 C; B, 1. N BCl. at 50 C,• C, 1. N Bet a"t 
37 °c; and D, 250 p.gjm~ sutfa"tase i'..n 50 mM soa:i'..um ace"ta"te, pEl 5. The 
resut"ts are dertvea frOm 2 "to 3 ezperi'..men"ts each perJormea tn dupttca"te. 
Dep-Leted are -the means of 3,3'-T, T, rT or T sutfama'te (II), 3,3'-T or 
T sutfa'te ( 0) ana rT or T sui'tati ( G j. 1te varta'ti:.on l.Jt'thtn -tliese 

3 3 4 
groups ~ ~ess than lOt. 
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Finally, the dose-response curves of the sulfated compounds in the 

radioimmunoassays for native iodothyronines are shown in Fig.7. In 

general, the sulfamates exhibit 100% cross-reactivity except that T4 
sulfamate shows a somewhat reduced affinity for the T4 antibody. Of the 

sulfate esters, only rT3 sulfate exhibits a cross-reactivity of 

approximately 1% while that of the other sulfates is below 0.1%. It is not 

excluded that this low degree of cross-reactivity is due to contamination 

with small quantities of non-sulfated iodothyronines~ 

"' "' A T> 

) NS A 

OS o 

50 ~ " 

~ ~ 
~ • 
~ "' , .. 

~"·' NS A 

OS o 

" " 

, 
' Jog conceotratlon (pM) 

Ft.g. 7. Dose-response curves of sul.fa"ted 'Lodot.hyront.nes "Ln "the 
radt.ot.mmunoassay for "the correspondtng na$"Lve 'Lodot.hyront.ne. The 
d"Lsptacement. of a "tracer quant.t.t.y of "tracer "Lodo"thyron"Lne from "the ant."Lbody 
~as measured by t.ncubat.t.on ~tt.h sertal. dttut.tons of non-tabeted nat.t.ve 
todo"thyrontne ( 0) or ~t.t.h "the correspondt.ng sutfama.t.e (D.) or sUl.fa"te 
est.er (0). 'l"lle resuZ."ts are "the means ·of 2 e~rtment.s 1..)-£-th t;f.)O 

preparat"tons Of "the vartous sul.ja"ted t.odo"thyrontnes. Each expertment. 7.Jas 

performed tn·t.rt.pl.t.ca"te. 
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DISCUSSION 

We have developed convenient methods for the synthesis of iodothyronine 

sulfates and sulfamates. Both reactions are easy to perform although 

especially in the case of reaction with ClS0 3H in DMF care must be taken to 

avoid high temperatures which may cause oxidative breakdown of the 

iodothyronines. The sulfated products are completely separated from native 

iodothyronines and iodide by Sephadex LH-20 chromatography. The 

selectivity of the reactions and the identity of the products are 

demonstrated by TLC, HPLC, and 1H-NMR. Supporting evidence is provided by 

the different susceptibilities of the derivatives to enzymatic and 

acid-catalyzed hydrolysis as well as by their discriminating activities in 

the radioimmunoassays. 

In general, the rate of acid hydrolysis of aryl sulfates is increased 

by the presence of electron-withdrawing substituents in the aromatic ring 

(19). This is also the case for the sulfate esters of T4 and rT3 with two 

iodine atoms in the outer ring. They are hydrolyzed about 5 times faster 

than the sulfate esters of 3,3'-T2 and T3 having one iodine atom in the 

outer ring. Enzymatic hydrolysis with sulfatase activity is expected to be 

selective for sulfate esters. However, not only the sulfama~es but also 

the sulfate esters of rT3 and T4 resist enzymatic hydrolysis, even at 

prolonged reaction times. Apparently, steric hindrance by two iodine atoms 

in the outer ring precludes the accessibility of the sulfate ester to the 

active centre of the sulfatase. 

The high cross-reactivity of the sulfamates in tbe various 

radioimmunoassays is explained by the fact that the antibodies have been 

raised against iodothyronines coupled via the alanine side chain to a 

carrier protein. Such antibodies are not expected to recognize alterations 

in this side chain such as those introduced by sulfamation. Since the 

outer ring is part of the antigenic determinant, it is not surprising that 

the sulfate esters proved to be poor competitors in each of our 

radioimmunoassays. Since iodothyronine antisera are produced according to 

the same general principles, the low cross-reactivity of sulfate conjugates 

is probably a common property of iodothyronine radioimmunoassays. 

The above findings merit further comments related to clinical 
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measurements of native and sulfated iodothyronines. Firstly, our results 

suggest that the possible occurence of sulfate conjugates in the plasma of 

patients will not interfere with the radioimmunoassay of non-conjugated 

iodothyronines. Secondly, we have shown that, although the sulfatase 

preparation from Abalone Entrails hydrolyzes the sulfate conjugates of T3 
and 3,3'-Tz, it is ineffective with T4 and rT3 sulfate. Attempts to 

quantitate iodothyronine conjugates by radioimmunoassay following enzymatic 

hydrolysis should, therefore, be interpreted with ·caution. This is 

especially true for those studies where the necessary control experiments 

could not be performed because of the lack of standard preparations of the 

conjugates (20,21). With the present method large quantities of pure 

sulfate conjugates are conveniently obtained. 

Previous studies have shown that deiodination of T3 and 3,3'-T2 by rat 

hepatocytes requires the prior sulfation of these compounds. Biosynthetic 

3,3'-!2 sulfate as well as the sulfate esters of 3,3'-Tz and T3 prepared 

with concentrated H2so4 proved to be much better substrates for the rat 

liver deiodinase than the native compounds (12,13). In preliminary 

experiments, we found that 3,3'-T2 and T3 sulfate 

method using chlorosulfonic acid are equally 

obtained by the present 

effective deiodinase 

substrates. In addition, the preparation of the sulfate esters of all 

iodothyronines enabled us to study the deiodination of rT3 and T4 sulfate 

which cannot be synthesized with H2so4 (22). Deiodination of the various 

iodothyronine sulfamates remains to be investigated. 
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CHAPTER IV 

RAPID AND SELECTIVE INNER RING DEIODINATION OF THYROXINE SULFATE 

BY RAT LIVER DEIODINASE. 

Jan A. Mol and Thea J. Visser 

Department of Internal Medicine III and Clinical Endocrinology, 

Erasmus University Medical School, Rotterdam, The Netherlands. 

ABSTRACT 

Previous studies have shown that the inner ring deiodination (IRD) of 

T3 and the outer ring deiodination (ORD) of 3,3'-diiodothyronine are 

greatly enhanced by sulfate conjugation. This study was undertaken to 

evaluate the effect of sulfation on T4 and rT3 deiodinat±on. Iodothyronine 

sulfate conjugates were chemically synthetized. Deiodination was studied 

by reaction of rat liver microsomes with unlabeled or outer ring 

l25r-labeled sulfate conjugate at 37°C and pH 7.2 in the presence of 5 mM 

dithiothreitol. Products were analyzed by high performance liquid 

chromatography or after hydrolysis by specific radioimmunoassays. T4 
sulfate (T4S) was rapidly degraded by IRD to rT3 sulfate with an apparent 

~ of 0.3 pM and a Vmax of 530 pmol/min/mg protein. The Vmax/~ ratio of 

T4s IRD is increased 200-fold compared with that of T4 IRD. However, 

formation of T3 sulfate by ORD of T4s could not be observed. The rT3 
sulfate formed is rapidly converted by ORD to 3,3'-Tz sulfate with an 

apparent ~ of 0-06 pM and a Vmax of 516 pmol/min/mg protein. The enzymic 

mechanism of the IRD of T4s is the same as that of the deiodination of 

non-sulfated iodothyronines as shown by the kinetics of stimulation by 

dithiothreitol or inhibition by propylthiouracil. The IRD of T4s and the 

ORD of rT3 are equally affected by a number of competitive inhibitors 

suggesting a single enzyme for the deiodination of native and sulfated 
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iodothyronines. In conjunction with previous findings on the deiodination 

of t 3 sulfate, these results suggest that sulfation leads to a rapid and 

irreyersible inactivation of thyroid hormone. 

In healthy humans, about 80% of the active thyroid hormone T3 is 

produced by phenolic ring or outer ring deiodination (ORD) of T4 in 

peripheral tissues (1-3). A roughly equal proportion of T4 is metabolized 

by tyrosyl ring or inner ring deiodination (IRD) to biologically inactive 

A further metabolite in the stepwise deiodination of T4 is 

3,3'-diiodothyronine (3,3'-Tz) which is generated by IRD of T3 as well as 

by ORD of rT3• The liver is an important site for these processes, where 

the ORD and IRD of the various iodothyronines are catalyzed by a single 

enzyme located in the endoplasmic reticulum (4-6). This enzyme requires 

thiols for activity (7) and is most effective in the ORD of rt3 (8). The 

liver also metabolizes iodothyronines by conjugation of the phenolic 

hydroxyl group with sulfate or glucuronic acid (9-11). We have recently 

shown that the IRD of t 3 and the ORD of 3,3'-Tz in the liver are greatly 

facilitated by sulfate conjugation (12,13). A recently developed method 

for the chemical synthesis of pure sulfate esters of iodothyronines (14) 

enabled us to investigate the effects of sulfation on the deiodination of 

T4 and rT3. Here we present the results of this study. 

MATERIALS AND METHODS 

All iodothyronines were obtained from Henning Berlin GmbH (West Berlin, 

West Germany). [3',5'-1251]!4 , [3'-125r]t3 and carrier-free Na125r were 

from Amersham International (Amersham, UK). [3',5'-125I]rT3 and 

3,[3'-lZSI]Tz were prepared by radio-iodination of 3,3'-Tz and 

3-iodothyronine, respectively (14). Sulfate esters were prepared by 

reaction of iodothyronines with chlorosulfonic acid in dimethylformamide, 

and they were purified by Sephadex LH-20 chromatography (14). 

Rat liver microsomes were prepared as described previously (8). 
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Deiodination was studied by reaction of microsomes with unlabeled or outer 

ring 125!-labeled T4 sulfate (T4S) at 37°C in 200 vl 0.1 M sodium phosphate 

(pH 7.2), 3 mM EDTA and 5 mM dithiothreitol (DTT). Products were analyzed 

in different ways. Firstly, reactions with labeled t 4s were stopped by 

addition of 30 vl 10 mM 6-n-propyl-2-thiouracil (PTU), and the unextracted 

radioactive products were separated by reversed-phase, high performance 

liquid chromatography (HPLC) on a Waters Radial-PAK c18 column. !socratic 

elution was performed with a mixture of acetonitril and 0.02 M ammonium 

acetate, pH 4, (22/78, v/v) at a flow of 1.5 ml/min. Fractions of 0.5 min 

(750 pl) were collected and counted for radioactivity. Secondly, reactions 

with unlabeled T4S were terminated by addition of 500 ~1 1 N RCl, followed 

by treatment for 1 h at 80°C to hydrolyze the sulfated products. After 

addition of 550 ~1 1 N NaOH, products were estimated in duplicate in 50 pl 

aliquots of the resulting mixtures by specific RIA's (8). Products were 

not measurable without hydrolysis, in keeping with the low 

cross-reactivities of the sulfate conjugates in 

in parallel incubations 125r- production 

the RIA's (14). Thirdly, 

from [3',5'-125r]T4s was 

quantitated after addition of 1 m1 1 N HCl by ion-exchange chromatography 

on Dow ex 50W-X2 columns (15). The ORD of unlabeled or outer ring 

125r-labeled rT
3 sulfate (rT3S) was quantitated in the same "'ay after 

hydrolysis with a 3,3'-Tz RIA or by measurement of the release of 

radio iodide by ion-exchange chromatography. The products of T4 or rT3 
deiodination were also determined by specific RIA's (8 ). Protein 

determinations were done by the method of Bradford using Dovine serum. 

albumin as the standard (16). 

RESULTS 

Figure 1 shows the effects of incubation time and enzyme concentration 

on the formation of deiodination products from T4 or T4S as determined by 

RIA- As demonstrated previously (8), approximately equal amounts of T4 are 

converted by ORD to T3 and by IRD to rT3• Little 

as it is rapidly metabolized further by ORD to 

stable in such incubations (Fig. 1, ref. 8). 

rT3 accumulates, however, 

3,3'-Tz, whereas t 3 is 
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outer ring-labeled substrate) are produced in equal amounts. Eventually, 

also the levels of 3,3'-TzS reach a plateau while those of 1251- continue 

to increase. Rapid ORD of 3,3'-TzS has also been observed previously 

(12,13). Under all circumstances T3 sulfate (T 3S) production was below the 

detection limit of the RIA representing less than 0.1% conversion of r4s by 

ORD. As is depicted in Table 1, added rT3S was found to undergo rapid ORD 
with an apparent ~ value of 0.06 ~ 0.01 pM and a Vmax of 516 + 70 pmol T2s 

formed/min/mg protein (mean + S.E., n=6), which is similar to the 

deiodination parameters for non-conjugated rT3 in the presence of 3 mM DTT. 

It is unlikely that ~he lack of T3S accumulation 

r4s is due to rapid further deiodination of this 

in reaction mixtures with 

product. 

ratio of r 3s deiodination is 37-fold lower than that of rT3s deiodination 

(Table 1). Nevertheless, rT3s is readily observed as an intermediate in 

the deiodination of T4s whereas formation of r 3s is not detectable. 

TABLE I 

Kinetic parameters of the deiodination of native and sulfated iodo­
thyronines by rat liver microsomes and 3-5 mM DTT at pH 7.2 and 37°C. 

Substrate 

T4 

T4 

T4s 

T4S 

rT3 

rT3S 

T3 

T3s 

Reaction 

ORD 

IRD 

ORD 

IRD 

ORD 

ORD 

IRD 

IRD 

K a 
m 

2.3 

1.9 

0.29 

0.06 

0.06 

6.2 

4.6 

v b 
max Ref. 

30 13 8 

18 9 8 

N.n.c this paper 

527 1820 this paper 

560 8730 8 

516 8600 this paper 

36 6 8 

1050 230 10 

--------------------------------------------------------------------
a pM;b pmol/min/mg protein; c not detectable 
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Not only the rate of T4 metabolism but also the nature of the 

deiodination products is influenced dramatically by sulfation (Fig.l). 

Reaction of T4S with rat liver deiodinase yields rT3s as the initial 

product. Subsequently, 3,3'-T2 sulfate (3,3'-TzS) and radioiodide (from 
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Deiodination products of T4S were also measured by RPLC both before and 

after hydrolysis, using different conditions for the elution of free and 

sulfated iodothyronines. The same results were obtained with either 

method, supporting the validity of the measurements done by RIA follo~ng 
hydrolysis. Figure 2 shows the direct HPLC analysis of reaction mixtures 

of T4s with increasing deiodinase concentrations. These results again 

clearly demonstrate the transient formation of rT3s and 3,3'-T2s with outer 

ring-derived iodide as the end product. Again, no formation of T3s was 

observed. 

~ 

:l~hl 
10 1SO 10 1S 0 10 15 

...,~.,tlon tlm" (min) 

Ff,g.2. HPLC ana~yst.s of -the sequen-tt.a~ aet.od.t.na-tt.on of o.os JJl'f 
125

r ou-ter 
r~ng tabe~ea T s as a func-t~n of mtcrosoma~ pro-tet.n concen-tra-t~n. 
Prod:u.C'ts lJeTe se'fxxr.a-tea by HPLC rJt.-thou-t prt.or hyaro~yst.s. Fract.t.ons of 0.5 
mt.n t.>ere co~~ec-tea: ana coun-ted for raat.oactt.vt.-ty. Mtcrosoma.~ prot;et.n 
concen~ra~i.ons amoun~<! ro 0 (II), 5 (B), 10 (C), 20 (D) or 40 (B) JJ.g/1111., 
Tne ~as-t pane~ shorJs -the e~u-tt.on post.-tt.ons of -the reference compounds I 
(!), 3,3'-T

2
s (2), rr

3
s (3), r

3
s (4) an<! r

4
s (5). =a are ~n from one 

ou-t of three c~se~y agree~ng exper~ents. 

It appears, therefore, that T4S undergoes the following sequence of 

deiodination reactions: 1) IRD to 

2) ORD of rT3S to 3,3'-T2s plus 

liberation of the second l2Sr-(refs. 12 

rT3s (plus 

12sr. 3) 
' 

and 13). 

non-radioactive iodide); 

ORD of 3,3'-T2S with 

The kinetics of the IRD of T4s were studied under initial reaction rate 

conditions, i.e. short reaction times and low enzyme concentrations. 
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Under these conditions further deiodination of rT3S proved to be 

negligible. In the presence of 5 mM DTT the apparent ~ for T4s amounts to 

0.29 + 0.02 pM, with a Vmax of 527 ± 91 pmol rT3s formed/min/mg protein 

(mean ± S.E., n = 5). By comparison with the kinetic parameters of the 

conversion of T4 

appears to be 

the enhancement of ·the IRD of T4 by sulfation 

a 30-fold increase in Vmax together with a 7-fold 

decrease in apparent ~ (Table 1). 

Deiodination of iodothyronines by rat liver deiodinase follows 

ping-pong type reaction kinetics with DTT as the cofactor, and is inhibited 

uncompetitively by PTU. This is demonstrated by the parallel lines in the 

Lineweaver-Burk plot if deiodination of varying iodothyronine 

concentrations is measured in the presence of different concentrations of 

DTT or PTU (15,17-19). There is als~ strong evidence that an essential 

sulfhydryl group of the deiodinase actively participates in the 

deiodination reaction. In consideration of the reactivity of thiouracil 

derivatives towards sulfenyl iodide (-SI) groups, these findings imply that 

in the catalytic cycle an enzyme-S! complex is generated which is 

subsequently reduced by DTT (15,18,19). Figure 3 demonstrates the 

stimulation of the IRD of T4S by increasing DTT concentrations as tested at 

a single (0.5 pM) substrate concentration. 

F£g .3. Effects of vart.ous concen"tra­
t;i.ons DTT or PTU on "the T4S !RD. 0.5 
p.M T4S rJas reacted rJt:th 0.2 Jl9 m'i.cro­
somaL prot;etn at; 37C and pH 7.2 tn 
t;l"le presence of various DTT concen­
"trat;i.ons ( 8) or at. 5 mM DTT lJt"th 
vartous concent;rat.i.ons PTU ( 0). 
Products jrom unLabeLed subst.rat.e 
lJere measured ajt;er hydroLys'i.s by a 
spec'i.f'i.c R!A. The resutt;s are "the 
means of 2 expertment.s. 
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Under these conditions deodination rates approach a maximum at 10 mM DTT. 

In Fig. 3 ~s also demonstrated the dose-dependent inhibition by PTU in 

reaction mixtures with 0.5 pM T4s and 5 mM DTT. Half-maximum inhibition is 

observed at 0.5 pM PTU. Fi.gure 4 shows the parallel displacement of the 

Lineweaver-Burk plot of the IRD of T4S by a decrease in the DTT 

concentration from 5 to 2 mM or by addition of 0.5 pM PTU. The 

Lineweaver-Burk plot of the ORD of rT3S also undergoes a parallel 

displacement by variation of the DTT concentration from 2 to 10 mM as is 

depicted in Fig. 5. The parallel lines of the rT3s ORD are also obtained 

in the presence of the competitive inhibition by 1 pM T4, which is strong 

evidence for true ping-pong type reaction .kinetics (20). Our results 

therefore indicate an identical mechanism for the deiodination of free and 

sulfated iodothyronines by rat liver deiodinase. 

I 10 

" ·;;; 
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. /~ 
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-1 

(pM T 
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or 5 mM ( 0) DTT, or a't 5 mM DTT ion "t11e pre­
sence of 0.5 p.M P1TJ (.A). PrOOll.c'ts frOm unz.a­
~eZ.ed su~s"tra"te ~re measured at'ter 11ydrotys~s 
by a spectJtc RIA. The resuz.-ts are "t11e means 
ot 4 ezpertmen"ts. 

Previous studies have demonstrated that IRD and ORD of non-sulfated 

iodothyronines are catalyzed by a single rat liver enzyme. This was 

evidenced, among other things, by the identical effects on the IRD of T3 
and the ORD of rT3 by a variety of competitive inhibitors (4). In a 

similar experiment the IR: of T4s and the ORD of rT3 were compared. Care 

was taken to avoid photodynamic degradation of substrate especially in the 

case of Rose Bengal by incubation in the dark (21). The results (Fig. 6) 
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show that various substances have equal inhibitury effects on these two 

reactions. The IRD of labeled T4S is also inhibited 90% by 1 ~ rT3 as 

observed by HPLC analysis (not shown). These findings are compatible with 

the hypothesis that iodothyronines and their sulfate conjugates are 

substrates for IRD and ORD by a single liver enzyme (12,13). 

DISCUSSION 

Our findings demonstrate that sulfation prevents the but 

facilitates the IRD of T4 . A similar facilitory effect of sulfation on the 

deiodination of iodothyronines has previously been observed for the IRD of 

T3 and the ORD of 3,3'-T2 (12,13). As concluded from the Vmax/~ ratio's 

for the different reactions, the efficacy of the IRD of T4 and that of T3 
are increased 200- and 40-fold, respectively (Table 1). To our knowledge, 

ORD of rT3 is the most efficient reaction catalyzed by rat liver deiodinase 

(Table 1). The effect of sulfation on the IRD of T4 may be owing to a 

closer approach of the inner ring to the catalytic sulfhydryl group of the 

enzyme in a way that resembles the presentation of the outer ring of rT3• 

In this configuration the outer ring of T4S may then be inaccessible for 

deiodination. For reasons yet unknown, sulfation does not influence the 

ORD of rT3• 

The physiological importance of the effects 

deiodination of T4 depends on the 

equilibrated with 

extent to which 
125 r-labeled In normal rats, 

radioactivity appears in the urine as 125I- and 

of 

T4 

T4, 

50% 

sulfation on the 

is sulfated in vivo. 

about 50% of the 

is excreted with the 

bile mainly as glucuronic acid or sulfate conjugates (10,22). When in such 

rats deiodination is inhibited by administration of PTU or butyl 

4-hydroxy-3,5-diiodobenzoate, there is a striking increase in biliary 

disposal concomitant with the decrease of radioactivity in the urine 

(11,23,24). However, biliary excretion of material with characteristics of 

T4S is increased disproportionately in comparison with that of T4 
glucuronide, i.e. from 10 to 30% of the T4 gluronide excretion, following 

the administration of these inhibitors (11,23). Formation of T4 sulfate 

has also been observed with cultured rat hepatocytes, especially when 

deiodinase activity is saturated or inhibited with PTU (9). It is not 
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clear yet which sulfotransferases are responsible for the sulfation of T4 
(25). 

The present paper is the first report on the use of pure synthetic T4s 
in the investigation of its metabolism. The results indicate that if T4s 
is produced in vivo it would be difficult to detect unless its deiodination 

is blocked, for instance with PTU. The availability of standard T4s 
preparations should facilitate further investigations of the role of 

sulfation in the overall metabolism of T4 . 

In conclusion, sulfation of the phenolic hydroxyl group of T4 leads to 

a dramatic increase in the production of metabolites that are biologically 

inactive. At the same time, the activating pathway to ! 3 is blocked. 

Together with our observation of a rapid degradation of T3s (12,13), these 

results suggest that sulfation is an important step in the te~ination of 

thyroid hormone activity. 
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CHAPTER V 

MODIFICATION OF RAT LIVER IODOTHYRONINE 5'-DEIODINASE ACTIVITY WITH 

DIETHYLPYROCARBONATE AND ROSE BENGAL; EVIDENCE FOR AN ACTIVE SITE 

HISTIDINE RESIDUE 

Jan A. Mol, Roel Docter, George Hennemann and Thea J. Visser 

Department of Internal Medicine III and Clinical Endocrinology, 

Erasmus University Medical School, Rotterdam, The Netherlands 

ABSTRACT. 

Iodothyronine 5'-deiodinase activity of rat liver microsomes was 

rapidly and completely lost by treatment with diethylpyrocarbonate (DEP) 

and by photo-oxidation with Rose Bengal (RB). In both cases inactivation 

followed pseudo first order reaction kinetics. Inactivation by DEP was 

diminished in the presence of substrate or competitive inhibitors, and was 

reversed by hydroxylamine treatment. In addition to photo-oxidation, 

deiodinase activity was also inhibited by RB in the dark. This inhibition 

was reversible and competitive with substrate (Ki 60 nM). These results 

suggest the location of an essential histidine residue at or near the 

active site of rat liver iodothyronine deiodinase. 

Enzymatic 5'-deiodination of thyroxine (T4 ) in ·peripheral tissues is 

the major pathway for the production of the biologically active form of 

thyroid hormone, 3,3',5-triiodothyronine (T3) (1,2). The 5'-deiodinase 

activity of the liver and the kidneys is associated with the microsomal 

fractions of these tissues. It prefers 3,3',5'-triiodothyronine (reverse 

T3 , rT3) as substrate, and requires the reductive equivalents of thiols, 
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e.g. reduced glutathione, mercaptoethanol and dithiothreitol (DTT) (3-6). 

Deiodination is inhibited by sulfhydryl (SH) group-blocking agents such as 

N-ethylmaleimide, p-chloromercuriphenylsulfonic acid and especially 

iodoacetate, suggesting the participation of an enzyme SH group in the 

catalytic process (5). This is substantiated by the findings of potent and 

uncompetitive inhibition of deiodination by thiouracil derivatives, 

compounds known to react with sulfenyl iodide groups (7,8). 

the enzyme SH group acts as an acceptor of the 5'-iodine atom. 

Supposedly, 

The nucleophilicity of catalytically active enzyme SH groups is often 

increased by hydrogen bond formation with the imidazole group of a 

neighbouring histidine (His) residue (9). In this study we investigated 

the possible presence of an essential His residue in the deiodinase of rat 

liver microsomes using two His-selective reagents. At neutral or near 

neutral pH, limited reaction of proteins with diethylpyrocarbonate (DEP) 

leads to the preferential modification of His residues forming the 

Nim_carbethoxy derivative (10). However, especially at alkaline pH DEP may 

also react with lysine and cysteine residues, but only carbethoxylation of 

His is reversible with hydroxylamine (10-15). Another approach to 

modification of His residues is photo-oxidation sensitized by Rose Bengal 

(9,12,15). Compared with other susceptible residues reaction with His is 

favoured by complex formation of the anionic dye with ·the protonated 

imidazole group. The results of the present study, employing both DEP and 

RB, indicate the presence of an essential His residue at or near the active 

site of the iodothyronine deiodinase of rat liver. 

MATERIALS AND METHODS. 

Reverse T3 and 3,3'-diiodothyronine (3,3'-Tz) were obtained from 

Henning, Berlin, FRG; DEP from Aldrich; RB from Kodak-Eastman; iopanoic 

acid (lOP) 

carrier-free 

from Sterling-Winthrop, 

Na 125r from Amersham. 

·Amsterdam, The Netherlands; 

[3' ,5'-125 r]rT3 was prepared 

and 

by 

radioiodination of 3.3'-Tz with the chloramine-! method and purified on 

Sephadex LR-20 (16). All other reagents were of the highest quality 

commercially available. Rat liver microsomes were prepared in 0.15 M 
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sodium phosphate (pH 7.2), 3 mM EDTA and 3 mM DTT, essentially as 

previously described (17). Protein was measured according to Bradford 

using bovine serum albumin as the standard (18,19). 

Enzyme modification ~th DEP. 

DEP was dissolved and diluted to the desired concentrations in absolute 

ethanol. The actual DEP concentration was determined by reaction of 10 ~1 

aliquots with 1 ml 0.1 M His -in 0.1 M sodium phosphate (pH 6.0). From the 

increase in absorbance at 240 nM the DEP concentration was calculated using 
im -1 -1 a molar extinction coefficient for N -carbethoxy-His of 3200 M .em 

(20). Protein modification was carried out by reaction of 10 ~1 DEP in 

ethanol with 140 ~g of microsomal protein in 0.5 ml 50 m.~ sodium phosphate 

(pH 6.5 unless stated otherwise), 1 mM EDTA and 1 mM DTT, at 21C. After 

various times the reaction was stopped by quenching 50 pl aliquots of the 

mixtures in 150 pl 0.1 M His in 0.1 M sodium phosphate (pH 7.2), 3 mM EDTA 

and 3 mM DTT. In control incubations DEP was added to microsomes diluted 

in quench buffer. At the concentration of 2 %, ethanol did not affect 

enzyme activity. Protection against carbethoxylation by substrate or 

competitive inhibitors was investigated by preincubation of microsomes with 

these substances for at least 5 min prior to addition of DEP. 

Reversibility of DEP inhibition was tested by incubation of carbethoxylated 

microsomes for 1 hat 21C with 0.5 l1 NH20H in 0.1 H sodium phosphate (pH 

7.2), 3 mM EDTA and 3 mM DTT. 

Photo-oxidation with RB. 

~crosomal suspensions containing 1.4 mg protein per m1 0.15 M sodium 

phosphate (pH 7.2), 3mM EDTA and 3mM DTT, were irradiated in the presence 

of the indicated concentrations of RB. Irradiation was done for various 

times at 21C in polypropylene tubes placed at 10 em distance from the lens 

of a slide projetor equipped with a 300 W lamp. To correct for reversible, 

competitive inhibition by RB, control incubations were carried out in the 

dark. Irradiation in the absence of RB did not affect enzyme activity. 
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Xodothyronine 5'-deiodination assay. 

Appropriate dilutions of the inactivation mixtures (2-5 ~g microsomal 

protein) were incubated for 10 min at 37C with 0.1 ~Ci 125r-rT3 and 0.5 pM 

unlabeled rT3 in 0.25 ml 0.15 M sodium phosphate (pH 7.2), 3 mM EDTA and 3 

mM DTT. The reaction was stopped ~y addition of 0.25 ml human serum, and 

the tubes were placed on ice. Serum protein-bound iodothyronines, i.e. 

substrate rT3 and product 3,3'-T2 were precipitated with 0-5 m1 10% 

trichloroacetic acid. Production of iodide was calculated from the 

radioactivity measured in 0.5 ml of the supernatant after centrifugation 

for 10 min at 1500 x g. The results were corrected for non-enzymatic 

deiodination as assessed in enzyme-free incubations, and multiplied by two 

to account for the equal distribution of the 125r label among the products 

3,3'-Tz and I-. Identical results were obtained if deiodinase activity was 

measured by quantitation of 3,3'-Tz production from unlabeled rT3 with a 

specific radioimmunoassay (2). 
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RESULTS 

Reaction with DEP. 

Incubation of rat liver microsomes with millimolar concentrations of 

DEP at 21C resulted in a rapid loss of 5'-deiodinase activity. The time 

course of enzyme inactivation by different DEP concentrations at pH 6.5 is 

shown in Fig. 1. Inhibition by DEP followed pseudo first order kinetics 

during the first 6 min of reaction. The rate of inactivation was also 

determined over the pH range 6.5- 8.5 (Fig. 2). Between pH 7.2 and 7.8 

there was a sharp increase in the rate of enzyme inactivation by DEP to 

remain constant thereafter. Plots of inactivation rate constants as a 

function of DEP concentration were lineair (Fig. 3) and yielded second 

order rate constants for the simple bimolecular reaction of DEP with 

enzyme. Values for the second order k amounted to 40 M-1min-1at pH 6.5 and 

530 M-1min-l at pH 8, corroborating the pH profile shown in Fig. 2. 
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Carbethoxylated microsomes were treated with 0.5 M NHzOH to exc·lude the 

possibility that inactivation was due to reaction of DEP with lysine or 

cysteine residues. Table I demonstrates that, especially after limited 

reaction with DEP, NH20R treatment resulted in substantial recovery of 

deiodinase activity. To localize the residue(s) subject to 

carbethoxylation, reaction with DEP was carried out in the presence of 2 pM 

rt3 or IOP or 1 pM RB. The concentration of these compounds carried over 

from the preincubation mixtures were insufficient to affect enzyme activity 

in the subsequent assay. This was substantiated in appropriate control 

experiments. Fig. 4 shows that the substrate and both competitive 

inhibitors provided partial protection against inactivation by DEP. 

Reaction with RB-

Deiodinase activity was also strongly inhibited by photo-oxidation 
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sensitized by low concentrations of RB. Direct addition of RB to the 

deiodinase assay mixtures, incubated in the dark, also resulted in 

inhibition of enzyme activity. This inhibition was reversible by simple 

dilution, and Lineweaver-Burk analysis of the data demonstrated that RB was 

a competitive inhibitor with a~ value of 60 nM (not shown). Care was 

taken, therefore, that following photo-oxidation mixtures were diluted 

sufficiently as to prevent "dark"' inhibition by RB in the deiodinase assay. 

At the concentrations of RB used in the preincubations no effect on enzyme 

activity was observed without irradiation. The semilogarithmic plots of 

the percentage enzyme activity remaining as a function of time of 

irradiation at different RB concentrations were lineair (Fig. 5), showing 

that photo-oxidation follows pseudo first order kinetics. 
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From the lineair replot of the inactivation constants versus RB 

concentration, the second order rate constant was calculated as 125 

mM-1min-1 • To prevent the possible modification of cysteine and methionine 

residues, 3 mM DTT was usually included in the reaction mixtures. It was 

found that 5 mM DTT and 5 mM sodium azide provided only 40-50% protection 
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rapid release of labeled iodide from the outer ring. Destruction of 

substrate did not occur in the dark. This phenomenon interfered with the 

test of the possible protective effect of substrate and other halogenated 

compounds against enzyme inactivation by RB. Only a high concentration of 

IOP gave partial protection, and degradation of IOP in the reaction 

mixtures seems likely. 

b. In the dark controls we observed competitive inhibition of 

deiodinase activity by RB that reflects the structural relationship with 

iodothyronines as is the case with phenolphthalein dyes (24). 

Interestingly, the Ki for RB (0.06 pM) is less than the ~ for rT3 (0.1 

uM), making RB one of the most potent inhibitors of deiodination. 

c. Photo-oxidation reactions can proceed by two distinct mechanisms. 

Type II mechanism is that in which the energy of the sensitizer is 

transferred to molecular oxygen producing singlet oxygen ( 1o2) (25,26). 
1o2 is the reactive species in enzyme inactivation by the type II 

mechanism. As compared to other dyes, RB and the frequently used dye 

methylene blue, give rise to high 1o2 production rates (25), which may be 

quenched by scavengers such as azide and DTT (25,26). Since the present 

experiments were carried out in the presence of DTT, inactivation must have 

taken place by a mechanism other than via production of 1o2• 

d. In the type I mechanism there is a direct reaction of triplet 

sensitizer with susceptible residues in the enzyme, followed by reaction of 

these residues with molecular oxygen. Inactivation by RB was slightly 

faster below pH 7 possibly due to complex formation of the anionic dye with 

a protonated His residue. It is expected that such complex formation is a 

saturable reaction at concentrations above the~ value for RB (60nM). 

Saturation of RB-induced photo-oxidation, however, was not observed. This 

may be caused by the use of high microsomal protein concentrations 

resulting in a lowering of the free RB concentration for interaction with 

the enzyme. 

In conclusion, the present study suggests that there is an essential 

His residue in the active site of rat liver iodothyronine deiodinase. It 

is speculated that this residue forms a hydrogen bond with the 

catalytically important SH group, resulting in an increased nucleophilicity 

of the latter. 
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CHAPTER VI 

INACTIVATION AND AFFINITY-LABELING OF RAT LIVER IODOTllYRONINE 

DEIODINASE WITH N-BROMOACETYL-3,~' ,5-TRIIODOTHYRONINE. 

Jan A- Mol, Reel Docter, Ellen Kaptein, Godfried Jansen, 

George Hennemann and Thee J. Visser. 

Erasmus University Medical School, Rotterdam, The Netherlands. 

ABSTRACT 

The thyroid hormone derivative N-bromoacetyl-3,3',5 -triiodothyronine 

acts as an active site-directed inhibitor of rat liver 

iodothyronine deiodinase. Lineweaver Burk analysis of enzyme kinetic 

measurements showed that BrAcT3 is a competitive inhibitor of the 

5'-deiodination of 3,3',5' -triiodothyronine (rT3) with an apparent K1 
value of 0.1 nM. Preincubations of enzyme with BrAcT3 indicated that 

inhibition by this compound is irreversible. The inactivation rate obeyed 

saturation kinetics with a limiting inactivation rate constant of 0.35 

Substrates and substrate analogs 

Covalent incorporation 

protected against inactivation by 

of 125I-labeled Br~cT3 into 

"substrate-protectable" sites was proportional to the loss of deiodinase 

activity. The results suggest that BrAcT3 is a very useful affinity label 

for rat liver iodothyronine deiodinase. 

Active site-directed reagents have provided information about the 

catalytic mechanism of type I iodothyronine deiodinase that occurs in rat 

liver and kidneys. Enzyme activity is associated with the microsomal 
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fraction of these tissues and catalyzes the 5'-deiodination of thyroxine 

(T4) to the biologically active 3,3',5-triiodothyronine (T3) as well as the 

5-deiodination of T4 to the inactive 3,3',5'-triiodothyronine (reverse T3, 

rT3) (1-4). Both T3 and rT3 are further deiodinated to 

3,3'-diiodothyronine (3,3'-T2) by type I deiodinase. The enzyme requires 

the reductive equivalents of thiols such as dithiothreitol (DTT) (5,6), and 

it exhibits optimal activity in the 5'-deiodination of rT3 (3,7). The 

5-deiodination of T4 and r 3 is greatly facilitated by sulfation of the 

substrates (8,9). 

Studies with iodoacetate and N-ethylmaleimide indicate the presence of 

an essential SH group in the active site of type I deiodinase (10-12). 

Apparently, this SH group acts as an acceptor for the iodinium ion from the 

substrate as evidenced by the uncompetitive inhibition by 

6-propyl-2-thiouracil (PTU), a selective reagent for sulfenyl iodide (SI) 

groups (5,6). Modification with diethylpyrocarbonate or Rose Bengal 

suggests the location of an essential histidine residue at or near the 

active site (13). 

In the present study the use of N-bromoacetyl-T3 (BrAcT3) as an 

affinity label of type I deiodinase is investigated. In contrast with 

reports on the reaction of N-bromoacetyl derivatives of T3 and T4 with the 

rat liver nuclear receptor (14) or with human thyroxine binding globulin 

(15) and human thyroxine binding prealbumin (16), the reaction with the rat 

liver deiodinase is extremely fast, indicating a very close interaction of 

the N-bromoacetyl side chain with a nucleophilic amino acid residue in the 

enzyme. 

MATERIALS AND METHODS. 

T4 , rT3, T3 and 3,3'-T2 were obtained from Henning, Berlin, FRG; 

bromoacetyl chloride and bromoacetic acid from Aldrich; acetyl chloride 

from Merck; bromothymol blue from BDH; 3,5-diiodosalicylic acid and DTT 

from Sigma; 

York, NY). 

[3 ,_125I]T3 
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and iopanoic 

T4 sulfate was 

(> 1200 JlCi/)lg) 

acid from Sterling Winthrop Laboratories (New 

prepared as described elsewhere (9). 

was purchased from Amersham. Rat liver 



microsomes were prepared as described previously (3). Protein was measured 

according to Bradford using bovine serum albumin (BSA) as the standard 

(17). 

Synthesis of N-bromoacecy1-T3• 

BrAcT3 was synthesized as described by Cheng et al, method B (16). In 

short, 100-500 nmol unlabeled plus 125I-labeled T3 were dissolved in 20 ml 

dry ethylacetate. After addition of 10 ~1 (12 pmol) bromo acetylchloride 

the mixture was refluxed for 45 min. The ethylacetate was evaporated under 

reduced pressure and the residue was dissolved in 20% ethanol in 0.1 

N NaOH. The solution was acidified with 1 N HCl and subsequently applied 

to a small 1 ml Sephadex LH-20 column. After washing the column with 

water, BrAcT3 was eluted with 100% ethanol and stored at -20°C. The purity 

was checked by thin layer chromatography according to Cheng (16) or by 

reversed-phase high performance liquid chromatography on a pBondapak Cl8 

column using a mixture of methanol and 20 mM sodium acetate, pH4 

(55/45,v/v), at a solvent flow of 1.5 ml/min. Under these conditions 

BrAcT3 and T3 eluted with retention times of 4.8 and 5.9 min, respectively. 

Yields were typically over 90%. N-acetyl-T3 (AcT3) was synthesized in the 

same way by the use of acetyl chloride. 

Inhibition of enzyme activity with B~cT3 , AcT3 or bromoacetate. 

Deiodinase (0.7 pg microsomal protein) was reacted for 10 min at 37°C 

with 0.1 pM rT3 and increasing concentrations of the inhibitors in 200 pl 

0.2 M sodium phosphate (pH 7.2), 4 mM EDTA and 5 mM DTT. The reaction was 

terminated by the addition of 1 ml 0.06 M barbitone buffer (pH 8.6) 

containing 0.1% (w/v) SDS and 0.1% (w/v) BSA. The amount of 3,3'-T2 
produced was measured in duplicate with a specific radioimmunoassay (3). 

For the dete~ination of the inhibition constant Ki a similar experiment 

was done with varying (0.05-2 pM) rT3 concentrations and a fixed inhibitor 

concentration. The inactivation rate was determined by preincubation of 

micro somes 

(0.1-2 nM) 

(7 ~g protein/ml) at 37°C with several concentrations 

in 100 ~1 0.2 M sodium phosphate (pH 7.2), 4 mM EDTA and 
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DTT. At various times the remaining activity was determined by addition of 

200 ~1 10 pM rT3 in the same buffer and further incubation for 10 min at 

37°C. In control experiments microsomes were added to the mixture of 10 uM 

rT3 and the appropriate dilution of BrAcT3• Protection by substrate or 

analogous compounds against inactivation by BrAcT3 was determined by 

preincubation of microsomes for 5 min at 21°C with 0.2 nM BrAcT3 in the 

absence or presence of 1 ~ test substance. The remaining activity was 

determined at 37°C as described above. 

Binding 0£ [125I]BrAcT3 to microsomes. 

The specific incorporation of BrAcT3 was determined by incubation of 

microsomes (13 pg/ml) with 0.2 D}! 125I-labeled BrAcT3 ·(50.000 cpm) in 400 

ul 0.2 M sodium phosphate (pH 7.2), 4 mM EDTA and 5 mM DTT at 21°C with or 

without 10 pM diiodosalicylic acid. At various times the incubation was 

stopped by the addition of 0.5 ml 1% BSA in 150 mM NaCl immediately 

followed by 2 ml acetone. The difference in precipitated radioactivity 

between reactions in the absence or the presence of diiodosalicylic acid 

was assumed to represent specific incorporation of [125I]BrAcT3 in the 

deiodinase. Under identical circumstances the decrease in enzyme activity 

was determined. 

RESULTS. 

Inhibition of rat liver deiodinase with B~cT3 , AcT3 and bromoacetate. 

Addition of increasing concentrations of BrAcT3, AcT3 or bromoacetate 

resulted in a progressive inhibition of the deiodination of a 

non-saturating concentration of rT3 as assayed at 37°C and pH 7.2 (Fig.l). 

Half-maximum inhibition was obtained at 0.1 nM BrAcT3, 0.1 pM AcT3 and 1 pM 

bromoacetate. Lineweaver-Burk analysis demonstrates that in coincubations 

with substrate both BrAcT3 and AcT3 behave as competitive inhibitors with 

apparent ~ values of 0.1 nM and 0.08 pM, respectively (Fig.2). The Km 

value of 0.09 pM with a Vmax of 830 pmol 3,3'-T2 formed/min/mg protein for 
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rT3 5'-deiodination are in close agreement with values reported earlier 

(3). In Fig.3A the time course of enzyme inactivation is shown when 

microsomes are preincubated with different concentrations BrAcT3• Only 

during the first two min the inactivation of the deiodinase by BrAcT3 
follows pseudo first order kinetics with rate constants that depend on the 

inhibitor concentration. If BrAcT3 is an active site-directed inhibitor, 

it may be assumed that the non-covalent enzyme-inhibitor complex E•I is an 

intermediate in the formation of the covalent complex E-I that is 

irreversible loss of enzyme activity: accompanied by the 

E +I~ E•I ~E-I. According to Kitz and Wilson the kinetics of 

governed by the equation 1/kapp = K1/(k3I) + 1/k3 (18). 

a double-reciprocal plot of kapp versus the BrAcT3 
Obviously, inactivation by BrAcT3 obeys saturation kinetics 

inactivation are 

Figure 2B is 

concentration. 

with values of 0.2 nM for the equilibrium dissociation constant Ki and 0.35 

min-l for the limiting rate constant k3• 
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Figure 4 depicts the pH dependence of the rate of inactivation by 

BrAcT3 over the pH range of 5 to 9. The inactivation is clearly optimal at 

pH 7.25 and rapidly diminishes at increasing pH values. A slower decline 

in the inactivation rate is observed with a decrease in pH. Evidence for 

the reaction of BrAcT3 with an amino acid residue at or near the active 

site was obtained by investigation of the effects of various substrates or 

competitive inhibitors on the inactivation rate (Table I). The compounds 

with the lowest ~ values gave the best protection against BrAcT3-mediated 

enzyme inactivation. 

In order to correlate the time course of enzyme inactivation with the 

covalent incorporation of BrAcT3, microsomes were incubated with 0.2 nM 
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TABLE I 

Protection by various substrates and analogous compounds against 

BrAcT3 mediated deiodinase inactivation.a 

Test agent (1pM) 

T3 17.3b 

T4 2.7b 

T4 sulfate Q.3c 

diiodotyrosine 191.ob 

iopanoic acid 1.8b 

bromothymol blue 1-4d 

diiodosalicylic acid o.3b 

% remaining 
activity 

30 

32 

35 

65 

31 

61 

60 

71 

% protection 

2 

7 

50 

0 

44 

43 

59 

a. Deiodinase was reacted with BrAcT3 as described under ~~terials 
and Methods. The results are the means of 3 experiments each 
performed in duplicate. 

b. ref 22; c. ref 9; d. ref 23. 
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125!-labeled BrAcT3 in the presence or absence of the competitive inhibitor 

diiodosalicylic acid. Figure 5 shows the results of this labeling 

experiment. 

incorporated 

[125I]BrAcT3 

At the concentration used, about 45% of the label is 

into "protectable" sites. The maximal incorporation of 

into "protectable" sites amounted to 2.4 pmol/mg protein as 

revealed by reaction with increasing concentrations BrAcT3 (not shown). 

Analysis of the time course of incorporation showed a rate constant of 0.11 

min-1 which was slightly less than the inactivation rate of 0.135 min-1 

measured under the same conditions. Identical inactivation rates were 

observed with the 5'-deiodination of rT3 as with the 5-deiodination of T4 
sulfate (not shown). 

DISCUSSION. 

The r 3 analog BrAcT3 has been found to be a very potent inhibitor of 

rat liver iodothyronine deiodinase through formation of an irreversible 

enzyme-inhibitor complex. The apparent ~ as revealed by Lineweaver Burk 

analysis amounted to 0.1 nl~ which is extremely low in comparison with the 

~ for T3 deiodination of 6 PM (3). The results with AcT3 indicate that 

only introduction of the non-reactive acetyl group is sufficient to cause a 

decrease in the ~ of T3 to 0.08 ~- This is in keeping with the observed 

decrease in the K1 of other iodothyronines by N-acylation (19). The 

inactivation of the deiodinase with different BrAcT3 concentrations· follows 

only during the first two min pseudo first order kinetics. The observed 

deviation is probably due to exhaustion of BrAcT3 by reaction or hydrofobic 

interaction with microsomal proteins- The value of 0.35 min-1 for the 

limiting inactivation rate constant at 37°C is lower than that for 

iodoacetate-mediated inactivation of the renal deiodinating enzyme, i.e. 

1.56 min-1 at 25°C (12). However, due to the. high affinity of the BrAcT3 
for the enzyme the pseudo bimolecular rate constant (k3/K1) amounts to 

2 109 ~1min-1 compared with 3 105 M-1min-1 for iodoacetate. 

The reported data 

iodoacetate strongly 

for the 

suggest 

modification 

that the 

of type I 

inactivation 

deiodinase 

is caused 

by 

by 

carboxymethylation of a catalytically important SH group. Our study gives 
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no clue as to the identity of the amino acid residue(s) involved in the 

reaction with BrAcT3• The attachment of the bromoacetyl group to the 

alanine side chain makes reaction with the catalytic SH group less probable 

since this SH group is thought to be positioned close to the leaving 

iodinium ion. It is also hazardous to interpret the pH profile of the 

inactivation in terms of the dissociation of a single amino acid residue. 

The protection by various substrates and competitive inhibitors against 

inactivation by BrAcT3 indicate the reaction of BrAcT3 with an amino acid 

residue at or near the active site of the deiodinase. As is also seen in 

the case of iodoacetate-mediated inactivation, there is a good correlation 

Detween inactivation and incorporation of inhibitor into the deiodinase by 

the use of BrAcT3 (12). The finding that the incorporation is somewhat 

slower in comparison with the rate of inactivation may be due to the 

uncertainty of the precise specific activity of the [125I}BrAcT3• SDS-PAGE 

of microsomes labeled with [125I]BrAcT3 shows that the label is mainly 

incorporated into two proteins with a molecular weight of 56 kD and 25 kD, 

respectively. Only incorporation in the latter was inhibited by 10 ~1 rT3 
(not shown). From the published molecular weights between 50-60 kD of 

deiodinase solubilized with chelate or desoxycholate it is suggested that 

the enzyme consists of two subunits (20,21). 

In conclusion, the present paper demonstrates that BrAcT 3 acts as an 

affinity label for type I deiodinase and may provide a valuable tool in the 

purification of the enzyme. 
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CHAPTER VII 

ADVANCES IN THE PURIFICATION OF THE MICROSOMAL RAT LIVER 

IODOTHYRONINE DEIODINASE. 

I. Effect of detergents on solubilization and ion-exchange 

chromatography. 

Jan A. Mol, Tom p. van den Berg and Thea J. Visser 

Department of Internal l1edicine III and Clinical Endocrinology, 

Erasmus University l1edical School, Rotterdam, The Netherlands. 

SUMMARY 

Rat liver microsomal fraction was treated with several non-ionic, 

anionic or zwitter-ionic detergents in order to investigate which is most 

suitable for subsequent purification of the iodothyronine deiodinaSe. 

Criteria for effective solubilization were a non-sedimentable activity by 

centrifugation at 105,000 x g together with the least molecular weight 

possible as determined by Sephacryl S-300 gelfiltration in the prasence of 

detergent. In addition, the inhibitory activity of several detergents on 

the deiodinase activity was investigated. 

The optimal solubilization procedure consisted of treatment of the 

microsomes with cholate and subsequent precipitation with 30% ammonium 

sulfate. In this way the enzyme was stripped of adhering phospholipids and 

was redissolved best with the non-ionic detergents Brij 56 or Emulgen 911 

in the presence of 0.5 M NaCl. This deiodinase preparation with an 

isoelectric point at pH 9.3 was further purified by subsequent 

chromatography on DEAE-Sephacel and CM-Sepharose. Only the 

Emulgen-dispersed enzyme was bound to the CM-Sepharose. Further 
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purification was investigated by chromatofocusing~ This resulted in a 

rapid iriactivation of the Emulgen extract whereas with the Brij 56 extract 

the enzyme was ultimately purified 400 times after DEAE-Sephacel and 

chromatofusing~ 

In rat liver, iodothyronine inner ring and outer ring deiodinating 

activities are intrinsic to a single integral membrane protein (1,2)~ This 

enzyme, called type I deiodinase, is also found in kidney and catalyzes the 

conversion of thyroxine (T4 ) into the biologically active thyroid hormone 

3,3',5-triiodothyronine (T3) or into the inactive 3,3',5'-triiodothyronine 

(reverse T3, rT3) (3,4)~ It is distinct from the type II deiodinase found 

in pituitary, cerebral cortex or brown adipose tissue, which converts T4 
only into T3, as well as from the type III deiodinase found in brain and 

placenta, which converts T4 only into rT3 (5-8). Under euthyroid 

conditions, the type I deiodinase is responsible for most of the 

circulating T3 (9), but this enzyme is most active in the conversion of rT3 
into 3,3'-diiodothyronine (3,3'-Tz) (3,4)~ In order to characterize the 

deiodinase, attempts have been made to solubilize the enzyme (10,11)~ 

Further purification of detergent-dispersed deiodinase, however, has been 

proved to be difficult (11)~ 

The present report concerns a reinvestigation of detergents useful in 

the solubilization and further purification of type I deiodinase. 

MATERIALS AND METHODS 

Materials~ 

3,3' ,5'-Triiodothyronine (rT3) and 3,3'-diiodothyronine (3,3'-Tz) were 

obtained from Henning, Berlin, FRG; taurodeoxycholic acid, cholic acid, 

and dithiothreitol (DTT) from Sigma; 3-[(3-Cholamidopropyl) 

dimethylammonio] !-propane sulfonate (CHAPS); Brij 35, 56 and 58, Myrj 52, 

and Tween 20, 40 and 60 were from Serva; Zwittergent 3-08, 3-10, 3-12 and 
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3-14 were from Calbiochem-Behring. Emulgen 910 and 911 were a generous 

gift from Kao Atlas, Tokyo, and Dobanol 91-8 was a generous gift from 

Shell, The Hague. Sephacryl S-300, DEAE-Sephacel, 01-Sepharose CL-6B, 

Sephadex LH-20, Sephadex G-25, 

Pharmacia, and carrier-free 

and Pharmalyte pH 8-10.5 

Na125r from Amersham. 

were purchased from 

[3',5'-125r]rT3 was 

prepared by radioiodination of 3,3'-T2 with the chloramine-! method and 

purified on Sephadex LH-20. All other reagents were of the highest quality 

commercially available. 

Iodothyronine deiodinase assay. 

Enzyme activity was determined by incubation of appropriate amounts of 

microsomal protein for 10 min at 37°C with 0.1 J>Ci 125I-rT3 and 0.5 flM 
unlabelled rT3 in 0.25 m1 0.2 M sodium phosphate (pH 7.2), 4 mM EDTA and 5 

mM DTT. The reaction was stopped by addition of 0.25 ml human serum. 

Serum protein-bound iodothyronines, i.e. substrate rT3 and product 

were precipitated with 0.5 ml 10% trichloroacetic acid. 

Production of iodide was calculated from the radioactivity in the 

supernatant after centrifugation for 10 min at 1500 x g. The results were 

corrected for non-enzymatic deiodination as assessed in enzyme-free 

incubations, and multiplied by two to account for the equal' distribution of 

the 125r label among the products 3,3'-T2 and I-. 

Preparation of microsomes. 

The liver of male Wistar rats was perfused in situ through the portal 

vein with buffer A, 0.25 M sucrose, 50 mM Tris/RCl (pH 7.4) and 1 mM DTT, 

at 4°C. All further steps were carried out at 0-4°c. The liver was 

excised, minced, washed and homogenized using a Potter-Elvehjem homogenizer 

with Teflon pestle in 3 volumes of buffer A. The homogenate was 

centrifuged for 10 min 

(w/v) polyethyleneglycol 

at 8000 x g. 

(PEG) 6000 

To the supernatant was added a 30% 

solution in water to a final 

concentration of 5% PEG, and after stirring for 10 min, the mixture was 

centrifuged for 10 min at 8000 x g. The pellet was resuspended using the 

Potter-Elvehjem homogenizer in buffer B, 50 mM Tris/HCl (pH 7.2), 3 mM EDTA 
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and 3 mM DTT. The resultant suspension was centrifuged for 1 h at 105,000 

X g. The floating fat layer was carefully removed and the pellet 

resuspended in buffer B. This microsomal fraction was kept at -20°C until 

used for the solubilization experiments. 

Protein was measured according to Bradford (15) with some modifications 

(16) using bovine serum albumin as the standard. 

Solubilization experiments. 

The solubilization of iodothyronine deiodinase activity was 

investigated essentially with two different microsomal preparations. 

Firstly, microsomes (10 mg protein/ml) were treated directly for 1 h at 0°C 

with an equal volume of 1% detergent in buffer B in the absence or presence 

of 0.5 M NaCl. After centrifugation for 1 h at 105,000 x g enzyme activity 

in the supernatant was determined. Secondly, microsomes were solubilized 

with chelate using the above conditions (see also ref-10). To the 

supernatant a solution of saturated ammonium sulfate in water, adjusted to 

pH 7 with diluted NaOH, was added slowly at 4°C under gentle stirring until 

30% saturation was achieved. After 30 min the precipitate was spun down 

for 20 min at 20,000 x g, and the pellet was used for solubilization as 

described for the microsomal fraction. 

Inhibition of the enzymatic deiodination of rT3 by the various 

detergents was tested by addition of 0.01-1.0 % (w/v) detergent to 

deiodinase assay mixtures containing 2-5 pg/ml crude microsomal protein. 

Iodide production was estimated as described above. 

Chromatography. 

Gel filtration was carried out at 4°C with samples concentrated using a 

Minicon B-15 unit (Amicon). Solubilized proteins were 

Sephacryl S-300 column (1.6 x 40 em) equilibrated with 10 mM 

applied to a 

Tris/HCl (pH 

7.2), 3 mM EDTA, 3 mM DTT and 0.01% detergent (w/v). The column was eluted 

at a flow of 0.5 ml/min. The column was calibrated with thyroglobulin, 

ferritine, catalase, aldolase, bovine serum albumin and ovalbumin as 

standards in buffers containing the various detergents. Absorption at 280 
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TABLE I 

Comparison of several detergents on the solubilization and activity of 
iodothyronine deiodinase. 

Detergent CMC a 
% (w/v) 

% inhibition of 
enzyme activity 
at 0.1% (w/v) 

% solubilization b 
(+) or (-) 0.5 M NaCl 

microsomes A.S. 
pellet 

detergent + + 

----------------------------------------------------------------------------
ANIONIC 

Chelate 0.6 30 92 98 10 8 
Taurodeoxycholate 0.2 100 77 77 20 16 

ZWITTERIONIC 

CHAPS 0.3 35 12 115 7 14 

Zwittergent 3-08 large 0 63 1 0 
3-10 1.2 20 54 0 0 

3-12 0.12 100 29c 1 17 

NON-IONIC 

Brij 35 0.008 75 14 41 23 29 
56 0.0001 58 74 198 30 76 
58 0.008 76 44 17 26 

Tween 20 0.006 60 33 59 13 17 

Hyrj 52 2 4 6 
Dobanol 91-8 78 36 123 33 51 
Emulgen 911 10 210 52 82 

----------------------------------------------------------------------------
a Critical micel concentration (Ref. 20, 26, 27). 
b The activity in 105,000 x g supernatants was determined with an 

appropriate dilution in the presence of 0.01% detergent. 
c Activity measured in the presence of 25 ug/ml detergent. 

A.$. pellet= Ammonium sulfate pellet. 
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nm was monitored with a 8300 Uvicord 11 (LKB). Fractions of 2 ml were 

collected and assayed for protein and deiodinase activity. 

Ion-exchange chromatography was mainly carried out with the Brij 56 and 

Emulgen 911 extracts of the ammonium sulfate precipitate. DEAE-Sephacel or 

CM-Sepharose columns (bed volume approximately 20 ml) were equilibrated 

with 10 mM sodium phosphate (pH 7.2), 3 mM EDTA, 3 mM DTT, 20% (v/v) 

glycerol and 0.1% Brij 56 or 0.1% Emulgen 911. Solubilized proteins were 

applied in the same buffer as· used for equilibration, accomplished through 

a buffer change on Sephadex G-25. Desorption from the ion-exchange gels 

was carried out by increasing NaCl concentrations. 

Chromatofocusing experiments were conducted (by fast protein liquid 

chromatography (FPLC)) on a Mono-P column (Pharmacia) using a Model 6000A 

solvent delivery system and monitoring absorbance at 280 nm with a Model 

440 fixed wavelength detector (Waters). The column was equilibrated with 

25 mM triethylamine/Bel (pH 10.5), 10% glycerol and 0.2% detergent. 

Samples were concentrated with a Minicon B-15 unit and brought into elution 

buffer using a PD-10 column (Sephadex 

applied to the column after starting 

G-25, Pharmacia). Protein was 

the pH gradient with 4 m1 of the 

elution buffer. Fractions of 1 ml were collected and analyzed for 

deiodinase activity, protein content and pH. The elution buffer consisted 

of polybuffer 96 diluted 1:20 and ampholine 9-11 diluted 1:200, adjusted 

with HCl to pH 8, 10% glycerol, 1 mM DTT, 10 mM NaCl and 0.2% detergent. 

RESULTS 

Detergent effects on enzyme solubilization and activity. 

A series of anionic, zwitter-ionic or non-ionic detergents were tested 

for their capacity to solubilize the deiodinase from microsomes or the 

ammonium sulfate pellet of the cholate extract as well as for their 

inhibitory activity in the deiodinase assay. As shown in table I the ionic 

detergents were very effective in the solubilization of enzyme activity 

from the microsomal fraction but failed to reactivate the ammonium sulfate 

pellet. In the case of the anionic detergents cholate and 
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taurodeoxycholate no improvement of the solubilization was detected after 

addition of 0.5 M NaCl whereas the zwitter-ionic detergents, especially 

CHAPS, required a high-salt buffer for effective solubilization. The 

zwittergents proved to become strong inhibitors of rT3 5'-deiodination with 

a decrease of the critical micel concentration. In fact, zwittergent 3-14 

and 3-16 completely inhibited enzyme activity at concentrations of 25 ~g/ml 

detergent (w/v). The non-ionic detergents tested solubilized both the 

microsomes and the ammonium sulfate precipitate best in the presence of 0.5 

M NaCl. The solubilization of microsomes with Dobanol 91-8, Brij 56 and 

Emulgen 911 resulted in a stimulation of the deiodinase activity of 1.2, 

2.0 and 2.1 times, respectively. These detergents were also most effective 

in the solubilization of the ammonium sulfate pellet. Figure 1 shows the 

inhibition of the rT3 5'-deiodination by increasing concentrations of 

several detergents in a direct incubation with microsomes. Again a 

stimulation of deiodinase activity is seen with the detergents Emulgen 911 

and Brij 56, although to a lesser extent. At higher concentrations these 

detergents show a dose dependent inhibition of enzyme activity as is also 

shown for the ionic detergents CHAPS and cholate. 
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Of several solubilized protein preparations the molecular weight of the 

deiodinase was determined in the presence of 0.01% detergent (w/v) by 

gelfiltration on Sephacryl S-300. The results are shown in Figure 2. 
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Solubilization of the microsomes with the non-ionic detergents Brij 56 or 

Dobanol 91-8 (Fig. 2A and 2B) yielded deiodinase preparations with 

apparent molecular weights of 320,000 and 240,000, respectively. Although 

the ionic detergents taurodeoxycholate and CHAPS (Fig. 2C and 2D) gave 

rise to deiodinase preparations which were non-sedimentable by 

centrifugation at 105,000 x g, the solubilized complexes eluted in the void 

volume of the column, indicating a molecular weight of over 1,000,000. The 

smallest complexes are obtained by solubilization of the ammonium sulfate 

pellet with the non-ionic detergents Brij 56 or Emulgen 911 (Fig. 2E and 

2F) which yields molecular weights of 170,000 and 190,000, respectively. 

Addition of the various detergents to the mixture of calibration proteins 

did not change their elution positions. From the results of the molecular 

weight estimations it was concluded that for subsequent purification of the 

deiodinase the non-ionic detergents Brij 56, Dobanol 91-8 or Emulgen 911 

were most suitable in substitution for the phospholipids that had been 

removed by ammonium sulfate precipitation. 

Ion-exchange chromatography. 

A. Phospholipid-containing extracts. 

Previous work in our laboratory (12) MS shown tMt direct 

solubilization of microsomes with W-1 ether yields a deiodinase preparation 

with an isoelectric point at approximately pH 6.4 while the enzyme 

recovered with W-1 ether from the ammonium sulfate pellet has a pi of 9.3. 

This increase in pi value is explained by the loss of acidic phospholipids. 

W-1 ether is a mixture of the detergents Brij 56 and Brij 58, and similar 

results have been obtained by preparative isoelectric focusing (IEF) of the 

respective Brij 56 extracts (data not shown). Attempts were made firstly 

to purify direct microsomal extracts in Brij 56, Dobanol or Emulgen further 

by ion-exchange chromatography on DEAE~Sephacel at pH 7.5. Despite an 

overall negative charge on the enzyme-lipid-detergent complex, only weak 

binding to the anion-exchange gel was observed when applied in 15 mM sodium 

phosphate buffer (pH 7.5), containing 1 mM EDTA, 1 mM DTT and 0.1% 

detergent. Between 10 and 30% of the enzyme activity combined with the 

column and could be eluted with 0.5 M NaCl in the same buffer. Most of the 
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remaining activity (40-60%) eluted in the void volume- Since during enzyme 

purification partial removal of acidic phospholipids may occur with a 

change iU isoelectric point (D. Fekkes, personal communication), we 

decided to take the phospholipid depleted ammonium sulfate pellet as a 

starting point for further purification. 

B. Delipidated extracts. 

Ammonium sulfate precipitation of a chelate extract and subsequent 

solubilization with non-ionic detergents led to a 3-fold increase in 

specific enzyme activity. In the following experiments we have compared 

the ion-exchange chromatographies of the delipidated extracts obtained by 

solubilization of the ammonium sulfate pellet with 1% Dobanol 91-8, Brij 56 

or Emulgen 911. After desalting by Sephadex G-25 filtration, the 

chromatography of these extracts on DEAE-Sephacel resulted in elution of 

over 60-80% of enzyme activity in the void volume together with 25-30% of 

applied protein, representing a purification of 2-3 times. Data for the 

Emulgen and Brij preparations are given in Table II but the same results 

were obtained with Dobanol. After elution over DEAE-Sephacel, the Brij 

extract was applied to a CM-Sepharose cation-exchange gel equilibrated in 

buffer B containing 0.05% Brij 56. However, almost all deiodinase activity 

passed through the column in the same buffer without enrichment in specific 

activity. Lowering of the buffer concentration or pH did not improve 

binding of the deiodinase to the CM-Sepharose whereas a decrease in 

detergent concentration resulted in a loss of enzyme recovery probably due 

to precipitation of protein. 

The Dobanol and Emulgen extracts behaved quite differently on the 

cation-exchange gel. These deiodinase preparations bound almost completely 

to the CM-Sepharose and could be eluted with a lineair NaCl gradient. 

After DEAE-Sephacel, binding of the Emulgen preparation was clearly visible 

as a dark brown band on the top of the CM-Sepharose column. Since elution 

with 1 M NaCl gave rise to a broad elution peak, a search was made for 

optimal conditions. Application of the Emulgen extract was optimal in a 

low ionic strenght buffer containing 10 mH Tris/HCl (pH 7.2), 1 mH EDTA, 1 

mM DTT, and supplemented with 20% glycerol (v/v), 0.2% (w/v) Emulgen 911, 

0.05% (w/v) chelate and 15 mM NaCl. Each of the latter additions resulted 
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in an improvement of the CM-Sepharose chromatography by preventing loss of 

deiodinase activity due to protein aggregation, and chromatography under 

these optimal conditions is illustrated in Fig. 3. Addition of glycerol 

to the Dobanol 91-8 preparations did not improve their binding to and 

elution from the CM-Sepharose. Moreover, the deiodinase activity in the 

Dobanol extracts appeared to be unstable when kept for longer time at -20°C 

and, therefore, Dobanol was inferior to the use of Emulgen. The elution of 

the Emulgen extract from the CM-Sepharose was not or only slightly improved 

using a NaCl gradient instead of an immediate change to 1 M NaCl, while the 

latter has the advantage of eluting deiodinase activity as a narrow peak. 

By these ion-exchange chromatographies we obtained a deiodinase preparation 

in Brij 56 with a total activity of 40% of the microsomal fraction and a 

protein content of 5% resulting in a purification of 8 times. The Emulgen 

extract contained after CM-Sepharose chromatography 65% activity together 

with 3% protein leading to a purification of approximately 20 times (Table 

II). 
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Chromatofocusing. 

Due to the difficulties in purification of rat liver deiodinase by 

affinity-chromatography (12) we investigated the possibility of separation 

by means of chromatofocusing. As indicated by preparative isoelectric 

focusing (12) of the Brij 56 extract of the ammonium sulfate pellet, the pi 

of the delipidated enzyme is about 9.3 (not shown). In order to minimize 

deterioration of enzyme activity above this pH, protein was applied to the 

column in elution buffer after starting the pH gradient with one column 

volume of elution buffer (see Haterials and Methods). 

Attempts to purify the CM-Sepharose pool of the Emulgen preparation 

were completely unsuccessful. Apparently the deiodinase was inactivated on 

the chromatofocusing column since no deiodinase activity eluted within the 

formed pH gradient neither by a further decrease of pH or increase in ionic 

strength. Incubation of the Emulgen or Brij extracts for 1 hour at room 

temperature and different pH values followed by measurement of the activity 
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at pH 7.2 showed that the solubilized enzyme is stable between pH 6 and 8 

but especially with Emulgen is rapidly and irreversible inactivated at pH 

9. This may be due to protein aggregation which is often seen close to the 

isoelectric point (pi 9.3). In the case of the Brij 56 extract we were 

more successful. Figure 4 demonstrates a typical purification of a Brij 

extract by chromatofocusing. Optimal resolution with retention of enzyme 

activity was obtained by including 10 mM NaCl in the elution buffer, 

whereas the total activity found after omission of NaCl or by addition of 

2M urea or 10% ethanol (v/v) to prevent hydrophobic interaction was below 

30%. Often the deiodinase eluted in two activity peaks of pi 10.2 and pi 

9.4. The peak at pH 9.4 contained 8.8% of the initial activity of the 

microsomes together with 0.022% protein representing a purification of 400 

times (Table II). 

TABLE II 

Initial purification of rat liver iodothyronine deiodinase. 

Step %protein %aCtivity purification 

L Micro somes 100.0 100.0 1-00 
2. Chelate extract 92.9 90.5 0.98 
3. Emulge.n extract of 28.6 82.0 2.87 

A.S. pellet 
DEAE-Sepharose 8.0 71.4 8.93 
CM-Sepharose 3.2 65.3 20.41 

4. Brij 56 extract of 18.8 70.2 3.73 
A.S. pellet 
DEAE-Sepharose 5.0 40.6 8.12 
Chromatofocusing 0.022 8.8 400.00 

A.S. pellet= ammonium sulfate pellet. 
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DISCUSSION 

The present report concerns an extension of other studies 

solubilization of rat liver or kidney type I deiodinase (10-12). 

was initiated by the disappointing results of purification 

on the 

Our study 

of W-1 

ether-solubilized microsomes by ion-exchange chromatography or by various 

"affinity" gels (11). As summarized in Table I ionic detergents were 

effective in the solubilization of deiodinase activity only from the 

microsomal membranes. The thus obtained detergent-phospholipid-protein 

complexes formed, however, large aggregates as shown by Sephacryl S-300 gel 

filtration. This is in agreement with the findings of Fekkes et al (10) 

and Leonard et al (11) who found also large complexes using chelate or 

deoxycholate, respectively. Only at high detergent concentrations and 0.1 

M NaCl small deiodinase complexes were found in case of chelate (10). Gel 

filtration in the presence of deoxycholate resulted in substantial losses 

of deiodinase activity due to lipid depletion. Addition of phospholipids 

was needed to reactivate the enzyme (11). Attempts to create a small 

detergent-deiodinase complex in the case of CHAPS by addition of 10 mM 

CHAPS, 0.5 M NaCl and 20% glycerol to the gel filtration buffer were 

unsuccessful (not shown). Together with our observation that 

solubilization of phospholipid- depleted enzyme with ionic detergents is 

nearly impossible, this leads to the conclusion that ionic or zwitterionic 

detergents are less useful in the replacement of membrane phospholipids and 

further purification of rat liver iodothyronine deiodinase. Also the 

sedimentation analysis of the renal iodothyronine deiodinase on a sucrose 

gradient with deoxycholate as detergent suggests that very little of the 

ionic detergent binds to the deiodinase (11). 

Solubilization with non-ionic and zwitterionic detergents was optimal 

in the presence of Q.S M NaCl. This is also seen in the solubilization of 

other membrane proteins with non-ionic detergents (17,18), and surp~isingly 

also with the zwitterionic detergent CHAPS in the solubilization of Vitamin 

K-dependent carboxylase (19). This salt effect may be caused by an 

increase in hydrophobic interactions 

tightly bound to the hydrophobic sites 

through which detergents are more 

of the enzyme. In this way 

better in replacing phospholipids in non-ionic detergents seem to be 
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comparison with ionic detergents. 

The inhibition of enzyme activity with the zwittergents 3-08 up to 3-16 

appears to be related to the critical micel concentrations suggesting that 

sequestration of hydrophobic iodothyronines by a detergent micel may take 

place (11). This does not hold in case of the non-ionic detergents which 

possess in general lower critical micel concentrations. The detergent 

effects may, however, be more complicated as seen in the stimulation of 

enzyme activity when the non-ionic detergents Brij 56 and Emulgen 911 are 

used in the direct solubilization of the microsomes. Due to binding to 

functional sites on the deiodinase, hydrophobic detergents may inhibit at 

higher concentrations (see ref. 20). 

Solubilization of the ammonium sulfate pellet with non-ionic detergents 

results in apparent molecular weights for the deiodinase activity of 

170,000 - 190,000 as determined by gel filtration on Sephacryl S-300. The 

higher molecular weights in case of direct solubilization of microsomes are 

probably caused by adhering phospholipids. The apparent molecular weights 

for the deiodinase in non-ionic detergents are in close agreement with 

those found for other microsomal enzymes for instance 230,000 for 

UDP-glucuronyltransferase (21), 280,000 for arylsulfatase (22), 220,000 for 

cAMP phosphodiesterase (23) and 160,000 for cytochrome P-450 (24). In our 

view, these relatively high values in comparison with the molecular weights 

determined by gel electrophoresis in the presence of SDS are caused by the 

micellar form of the protein-detergent complex rather than by formation of 

polymeric protein complexes (21,22). Addition of chelate or CHAPS to the 

solubilization mixture of Emulgen and the ammonium sulfate pellet caused no 

further decrease of the molecular weight of the deiodinase as determined by 

gel filtration. 

The choice of the correct detergent for solubilization and subsequent 

purification, although a critical step, is largely a trial-and-error 

process. This is also shown in the attempts to purify the deiodinase by 

ion-exchange chromatography. The binding of the Brij 56 extract of 

delipidated enzyme on the CM-Sepharose is frequently impaired. This may be 

caused by detergent binding to the carboxymethyl group of the gel or more 

likely binding to functional sites on the deiodinase. Lowering of the 

detergent concentration, especially in low ionic-strength buffers resulted 
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in considerable loss of activity recovered from the column. The presence 

of at least 15 mM NaCl and, in the case of Emulgen, 20% glycerol appeared 

to be essential for protein stability and in the case of Emulgen also 20% 

glycerol. Addition of cholate to the Emulgen buffer clearly improved the 

salt elution of the deiodinase from the CM-Sepharose probably by prevention 

of hydrophobic interaction with the gel matrix. 

In some chromatofocusing experiments deiodinase activity eluted from 

the column at pH 10.2 before the main activity peak at pH 9.3. This may be 

deiodinase which is less tightly bound to the column due to the high 

detergent concentration used or due to the 10 mM NaCl which is added to 

optimize recovery of enzyme activity. Using Brij as detergent activity 

recoveries ranged between 35-50%. It is yet unclear why the solubilized 

enzyme is unstable at high pH in contrast with membrane-associated 

deiodinase. Besides irreversible unfolding close to the isoelectric point, 

the catalytic important SH group is more prone to irreversible oxidation at 

high. pH, and also dissociation of subunits may occur. The excistence of 

subunits has been suggested by affinity-labeling experiments (25). The 

availability of a pure enzyme preparation should give an answer if in 

analytical isoelectric focusing fully delipidated rat liver deiodinase 

shows a microheterogeneity in isoelectric points. 

In conclusion, the iodothyronine deiodinase of rat liver is optimally 

solubilized in a lipid-free form by the non-ionic detergents Brij 56 or 

Emulgen 911. The thus obtained, probably monomeric form can be purified 

some 20 times by ion-exchange chromatography in a mixture of Emulgen and 

cholate. Further purification by chromatofocusing is only possible with 

Brij 56 preparations and results in a purification of about 400 times. The 

recovery of activity is lowered due to deiodinase lability at high pH. The 

enzyme preparations purified by several ion-exchange chromatographies serve 

as a good starting point for subsequent affinity chromatography (28). 
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CHAPTER VIII 

ADVANCES IN THE PURIFICATION OF THE MICROSOMAL RAT LIVER 

IODOTHYRONINE DEIODINASE. 

II. Affinity chromatography 

Jan A. Mol, Tom p. van den Berg and Thea J. Visser. 

Department of Internal medicine III and Clinical Endocrinology, 

Erasmus University Medical School, Rotterdam, The Netherlands. 

ABSTRACT 

The rat liver iodothyronine deiodinase has been solubilized and 

purified approximately 2400 times from liver microsomal fraction of male 

Wistar rats pretreated with thyroxine. The deiodinase was solubilized with 

1% chelate, and stripped of adhering phospholipids by ammonium sulfate 

precipitation followed by solubilization with the non-ionic detergent 

Emulgen 911. The enzyme was further purified by successive ion-exchange 

chromatography on DEAE-Sephacel and Cellex-P, and affinity chromatography 

on a matrix of 3,3',5-triiodothyronine (T3)-Sepharose. At last, the 

iodothyronine deiodinase was further purified by covalent attachment onto a 

column of the mechanis~based inhibitor propylthiouracil (PTU) coupled to 

Sepharose 4B. Binding was achieved only in the presence of substrate which 

is in agreement with the proposed ping-pong mechanism. The covalently 

bound deiodinase was eluted by reduction of the formed enzyme-PTU mixed 

disulfide with 50 ml.f"DTT. The enzyme exhibits a subunit molecular weight 

of 25,000 and is approximately 50% pure as judged by SDS-PAGE. The 

partially purified enzyme preparation is equally enriched in both outer 

ring and inner ring deiodinase activities in keeping with the concept that 
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both activities are intrinsic to a single, type I deiodinase in rat liver 

and perhaps also in kidney. 

Thyroxine (T4), the principal secretory product of the thyroid gland, 

by sequential is mainly metabolized in peripheral tissues 

mono-deiodinations (1,2). 

formation of the active 

Outer ring deiodination of T4 leads to 

thyroid hormone 3,3',5-triiodothyronine 

the 

whereas inner ring deiodination irreversibly inactivates the pro-hormone T4 
to 3,3',5'-triiodothyronine (rT3) (1,2). Both triiodothyronines are 

further metabolized by deiodination mainly to 3,3'-diiodothyronine 

(3,3'-T2). In rat liver and kidney both outer ring and inner ring 

deiodination are catalyzed by a microsomal enzyme (3-5). Using the crude 

microsomes as enzyme source the catalytic mechanism has been studied. The 

deiodinase contains an active site -SH group which can be blocked by 

iodoacetate (6,7). There is probably also an essential histidine residue 

in close proximity of the catalytic center which is modified by 

diethylpyrocarbonate with resultant loss of enzyme activity ($). The 

deiodinase requires the reductive equivalents of thiols for activity, 

dithiothreitol (DTT) and dihydrolipoamide being the most effective in vitro 

(9-11). It has been proposed that the enzyme deiodinates iodothyronines 

v~a a ping-pong mechanism (9,10). During deiodination of an iodothyronine 

molecule an oxidized enzyme intermediate is formed, probably an 

enzyme-sulfenyl iodide (E-SI), which is subsequently reduced by the thiol 

cofactor to regenerate the reduced enzyme. Inhibition of enzyme activity 

by propylthiouracil (PTU) is uncompetitive towards substrate and 

competitive towards cofactor DTT. It is suggested that PTU reacts readily 

with the E-SI under formation of an inactive disulfide complex between PTU 

and deiodinase. Such a reaction mechanism is consistent with the finding 

that covalent binding of labeled PTU to the deiodinase is stimulated by 

substrate (12). In the present report we make use of this property in the 

affinity chromatography on propionylthiouracil (PTU)-Sepharose. 

More knowledge of the contribution of liver and kidney to production 

and elimination of the triiodothyronines is needed for a better 
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understanding of the regulation of their serum concentration in health and 

disease. Purified enzyme preparations would then also enable 

investigations of possible regulatory factors that determine how much T4 is 

converted either to T3 or to rT3 through the action of rat liver 

deiodinase. In the preceeding paper solubilization of rat liver deiodinase 

and its partial purification by ion-exchange chromatographies has been 

described (13). The present paper reports on advances in the purification 

of this enzyme by affinity chromatography. 

MATERIALS AND METHODS 

Materials-

T4 , T3, rT3 and 3,3'-T2 were obtained from Henning, Berlin, FRG; 

cholic acid, N-ethyl-N'-(3-dimethylaminopropyl) carbodiimide hydrochloride 

(EDC) and dithiothreitol 

3-[(3-cholamidopropyl) dimethylammonio}-1 

Serva. Emulgen 911 was a gift from 

(tetraiodofluorescein) was obtained 

(DTT) from Sigma; 

propanesulfonate (CHAPS) from 

Kao Atlas, Tokyo. Erythrosine 

from Eastman Kodak Co., and 

2-thiouracil-6-propionic acid was a generous gift from Drs. D.S. Cooper 

and E.C. Ridgeway, Massachusetts General Hospital and Harvard Medical 

School, Boston, MA, USA. Cellex-P and all chemicals for poly~crylamide gel 

electrophoresis (PAGE) including high molecular weight standards were from 

Bio-Rad. All other chromatography media were products from Pharmacia. 

N-bromo acetyl-3,3',5-triiodothyronine (BrAcT3) was prepared according to 

Cheng, method B (14). Iodothyronine sulfate esters were prepared by a 

recently developed method (15) using chlorosulfonic acid in 

dimethylformamide. All other reagents were of the highest quality 

commercially available. 

Affinity column preparation. 

T3 and T3 sulfate were coupled to activated CH-Sepharose 4B (which 

contains a six-carbon spacer group) or to CNBr-activated Sepharose 4B 
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(without a spacer) in 0.1 M NaHC03 buffer (pH 8.3) as published by 

Pharmacia (16). The 

inclusion of a tracer 

concentrations of coupled 

quantity 125r-labeled T3 

ligand were estimated by 

or T3 sulfate. These 

concentrations amounted to 8-10 pmol T3 or T3 sulfate/ml settled gel for 

activated CH-Sepharose and approximately 6 pmol T3 or T3 sulfate/ml settled 

gel for CNBr-activated Sepharose. 

Erythrosine-Sepharose and PTU-Sepharose were prepared by coupling of 

erythrosine and 2-thiouracil-6-propionic acid, respectively, to 

AH-Sepharose 4B in 50% dioxane using 1-ethyl-3-(3-dimethylaminopropyl) 

carbodiimide hydrochloride (EDC) essentially as described by Tucker et al 

(17). The concentrations of coupled ligand were estimated by measurement 

of the absorbance of the erythrosine or PTU in the wash fluids and amounted 

to approximately 10 pmol/ml settled gel (17,27). 

Before use the affinity gels were mixed with Sepharose 4B until a final 

concentration of approximately 2 pmol ligand/ml gel was obtained. 

So1ubi1ization and purification experiments. 

Male Wistar rats (± 250 g body weight) were made hyperthyroid by daily 

i.p. injections with 10 ~g T4 in 1 m1 0.01 M NaOH in saline. On day 10 

the liver was perfused in situ and subsequently microsomes were prepared as 

described previously (13). All steps were carried out at 0-4°C unless 

stated otherwise. If 

purification steps were 

necessary, complete fractions of the various 

stored at -80°C before they could be applied to the 

next column. Microsomes from 10 pooled livers (10 mg protein/ml) were 

solubilized in buffer B, 50 mM Tris/HCl (pH 7-2), 3 mM EDTA and 3 mM DTT, 

using sodium chelate (1% w/v). Iodothyronine deiodinase activity was 

precipitated through addition of a saturated (NH4 )2so4 solution in water 

until 30% saturation was achieved. The precipitate was spun down by 

centrifugation for 20 min at 20,000 x g and subsequently the pellet was 

solubilized with 1% (w/v) Emulgen 911 in 50 mM Tris/HCl, 3 mM EDTA, 3 mM 

DTT, 0.5 M NaCl and 2C glycerol in an equal volume as the original 

microsomal fraction (appro: ately 4 mg protein/ml). After centrifugation 

for 1 h at 105,000 x g, a buffer change and desalting was obtained by gel 

filtration on a Sephadex G-25 column (2.6 x 30 em) equilibrated with buffer 
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C: 10 mM sodium phosphate (pH 7.2 at 4°C), 3 mM EDTA, 1 mM DTT, 15 mM 

NaCl, 20% glycerol, 0.2 % (w/v) Emulgen 91t and 0.05% (w/v) sodium cholate 

at a solvent flow of 2 ml/min. Subsequently solubilized proteins were 

applied to a DEAE-Sephacel column (1.6 x 25 em), equilibrated in buffer C, 

at a flow rate of 1 ml/min. The deiodinase activity did not bind to this 

column. Fractions of 10 ml were collected until the absorbance at 280 nm 

returned to the baseline of buffer C as monitored by a 8300 Uvicord 11 

(LKB). Retained proteins were eluted with 1 M NaCl in buffer C. The 

fractions containing deiodinase activity were pooled and applied to an in 

buffer C equilibrated Cellex-P column (2.6 x 10 em) which is a 

cation-exchange gel on cellulose basis containing phosphate groups 

(Bio-Rad). The column was washed with buffer C until the absorbance at 280 

nm was low. Elution of protein was achieved by a change to 1 M NaCl in 

buffer c. Fractions of 10 ml were collected and assayed for deiodinase 

activity. After desalting on Sephadex G-25 this material was used as 

starting material for the affinity chromatographies. 

Affinity chromatographies were investigated on 10 m1 bed volume columns 

(1.6 x 5 em) at flow rates of approximately 0.5 ml/min in buffer C. Only 

binding to PTU-Sepharose was performed batchwise. The exact circumstances 

of buffers used for elution are reported under Results. 

Assays. 

Aliqouts of fractions obtained after the different purification steps 

were kept at -80°C until they were assayed for deiodinase activity and 

protein in a single run. Outer ring deiodinase activity was assayed 

essentially as described previously by quantitatio~ of 125r- released from 

0.1 pCi 125r-rT3 in the presence of unlabeled rT 3 and 5 mM DTT at pH 7.2 

and 37°C (preceeding paper) or by measurement of the production of 3,3'-Tz 

from unlabeled rT3 under the same standard assay conditions with a specific 

radioimmunoassay (18). Therefore, 50 pl of enzyme diluted in buffer C was 

incubated with 200 pl 0.2 M phosphate (pH 7.2) containing 3 mM EDTA, 5 mM 

DTT and 5 pM rT3• In this way identical detergent concentrations were 

obtained in all assays. The reactions were linear with respect to an 

incubation time of 20 min. One unit of activity corresponds to the amount 
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Table 

Purification of rat liver iodothyronine deiodinase from rat liver microsomes. 

Purification step 

Micros ames 

Cho 1 ate ext>-act 

Emulgen extract of 
(NH4)2so4 precipitate 

OEAE-Sephacel 

Ce 11 ex-P 

T3-Sepharose 

PTU-Sepharose 

Total protein 
(mg) 

1310 

1074 

375 

104 

55 

7,45 

~ 0,026 

\ Specific activity 
(units/mg) 

6.7 

7.4 

19.4 

61.1 

113.0 

514.0 

"'16 ,074. 0 

Total activity 
(units) 

8,856 

7,894 

7,265 

6,352 

6,215 

3,827 

434 

Yield 
{%) 

100 

89 

82 

72 

70 

43 

4.9 

Puri fica t ion 

I 

I.! 

2.9 

9.0 

16.7 

76 

~2400 



of deiodinase which produces 1 nmol 3,3'-T2/min from 5 pM rT3 under 

standard conditions. Inner ring deiodinase activity was determined equally 

using 5 pM T4 sulfate as substrate. Production of 

determined after hydrolysis of the reaction mixtures for 

rT3 sulfate was 

1 h at 80°C in 1 N 

HCl, ~th a specific radioimmunoassay for rT3 as_published (19). 

Protein concentrations were measured by the method of Bradford (20) as 

modified (21), using bovine serum albumin as the standard. When samples 

were too diluted or the detergent concentration was too high, causing high 

blank values, protein was precipitated with 10% TCA or ~th acetone (80% 

v/v). The precipitated protein was dissolved in 0.1 M NaOH before protein 

determination. 

PAGE in the presence of SDS was performed on protein samples after 

precipitation with acetone and subsequent boiling in sample buffer 

containing 0.2% 2-mercaptoethanol according to Weber and Osborn (21). 

Electrophoresis of the proteins was performed on 8 em gel rods of 7.5% 

acrylamide at 3 mA/tube for 6 h. Afterwards the gels were fixed and 

stained with 0.25% Coomassie brilliant blue R250 according to Weber and 

Osborn (21) and subsequently scanned at 595 nm. In addition, microsomal 

protein was labeled by reaction with 125I-BrAcT3 in the absence or presence 

of 10 ~ rT3• In this way, BrAcT3 serves as an affinity label as ~s shown 

by Mol et al (23) and can be used to localize the deiodinase after gel 

electrophoresis. For this purpose gel rods were cut in 2 mm slices and 

counted for radioactivity using a Nuclear Enterprise NE 1600 gamma 

spectrometer. 

RESULTS 

Initial purification. 

Following treatment of male Wistar rats with T4 for 10 days, there was 

a marked induction of rat liver iodothyronine deiodinase as has been 

demonstrated previously (24). The 

5'-deiodination of increased 

apparent 

from 0.88 

Vmax value 

to 2.35 nmol 

of the 

3,3'-T2 
produced/min/mg microsomal protein as measured under standard conditions at 
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pH 7.2 and 37°C in the absence of detergent (not shown). Dilution of the 

microsomal fraction in buffer C resulted in a dramatical change of enzyme 

activity as is shown in Fig. 1. The apparent Vmax increased almost 3 

times to 6.76 nmol 3,3'-Tz produced/min/mg protein with a concomitant 

increase of the apparent ~from 0.17 to 1.67 pM. The purification of the 

hepatic iodothyronine d~iodinase from the microsomal fraction of animals 

pretreated with T4 is shown in Table I. 
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~g.l. L~neueaver-Burk ana~ys~s of ~he de~~~~n ra~ of rT ~n~ 
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Dy rat Lt.ver mt.crosomes dt.Z.ut.ed t.n buffer C t.n t.he absence 7 .A) or 
presence (e) of 0.04* .emu.z.gen a.na 0.01% cho~ate. The mt.crosomes t.>ere 
prepared :from z.t.vers of t.hyro"to:tc ant.maLs. Shot.m are "the means of ~tJO 
expertmen"ts each performed tn ~rt.pz.t.cate. 

Microsomes were solubilized with 1% (w/v) sodium chelate and 

delipidated by precipitation with ammonium sulfate at 30% saturation (13). 

The resulting pellet was again solubilized with 1% (w/v) Emulgen 911 under 

the conditions described under Materials and Methods. This del~pidated 

extract in non-ionic detergent was enriched almost three times in specific 

activity with a recovery of 82% (Table I). After ultracentrifugation and 

desalting on Sephadex G-25, the clear extract was applied to a column of 

DEAE-Sepharose. The deiodinase eluted without binding to the column and 
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was further purified approximately 3 times- Subsequently, the enzyme was 

bound to a Cellex-P cation exchange gel instead of the CM-Sepharose used 

previously. The advantage of the Cellex-P cation exchange gel is its 

greater capacity and a markedly sharper elution of enzyme activity from the 

column. The latter was achieved with 1 M NaCl in buffer c. After 

Cellex-P, deiodinase activity was enriched 17 times in comparison with the 

activity found in microsomes determined in the presence of detergent. 

After desalting on Sephadex G-25 it served as starting material for the 

affinity chromatography. 

Affinity chromatography. 

Deiodinase activity was fully retained by hydrophobic interaction 

chromatography on both octyl-Sepharose and phenyl-Sepharose when applied in 

buffer c. As much as 80% of the applied protein was adsorbed to the 

column. Enzyme activity could only be eluted by reduction of the 

hydrophobic interaction with a high detergent concentration of 2-5% Emulgen 

in buffer c. Application of larger volumes of the Cellex-P fraction (i.e. 

50 mg protein in 40 ml buffer C) to the octyl-Sepharose column equilibrated 

in buffer C without detergent showed an initial visible binding of protein 

limited to the top of the column. Further application of protein resulted 

in the slow migration of the protein band over the column, probably due to 

saturation of the matrix with detergent. Elution of protein with high 

detergent concentrations gives rise to considerable tailing of eluted 

deiodinase activity. The recovery of enzyme activity amounted to 85% in 

the case of octyl-Sepharose with a minor increase in specific activity. 

Less than 40% of the enzyme activity that was bound to phenyl-Sepharose 

could be eluted by high detergent, indicating a stronger interaction with 

this matrix. Again, hardly a change in specific activity was obtained. 

The possibility was tested to purify the type I deiodinase by affinity 

chromatography using immobilized substrates or substrate analogues. For 

this purpose affinity matrices were tested having T3, T3 sulfate or the 

competitive inhibitor erythrosine coupled covalently to 

Chromatography on erythrosine-Sepharose was conducted in the 

Sepharose. 

dark since 

erythrosine may give rise to photo-oxidation reactions (25) which lead to 
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the destruction of enzyme activity as has also been observed with the 

analogous dye Rose Bengal (8). Erythrosine is a potent inhibitor of 

deiodinase activity with 50% inhibition at a concentration of 10 nM (J.A. 

Mol and T.J. Visser, unpublished results). The erythrosine-Sepharose 

column fully retained both protein and deiodinase activity. The activity 

could not be eluted from the column with 2% Emulgen or a high detergent 

concentration in the presence of 1 M NaCl. When the column was 

equilibrated with 2% Emulgen prior to the application of the Cellex 

fraction, binding of protein and enzyme activity was completely prevented, 

probably due to encapsulation of the dye molecules by detergent. 

In order to prevent hydrophobic interaction on the column as much as 

possible, the water-soluble T3 sulfate which is a suitable substrate for 

the deiodinase (26), was coupled to AH-Sepharose 4B. After equilibration 

with buffer C almost all deiodinase activity of the Cellex pool was 

retained on the T3 sulfate-Sepharose column. However, as much as 70% of 

applied protein was bound as well by this column, indicating a low degree 

of specificity. Enzyme activity could not be eluted with a high Emulgen 

concentration or 1 M NaCl in buffer c. Only a combination of Emulgen and l 

M NaCl afforded the elution of the deiodinase which emerged in a broad peak 

with only a twofold increase in specific activity at best. Hydrophobic 

interaction was further minimized by omission of the six-carbon spacer 

between the Sepharose and the T3 sulfate. This was achieved by coupling of 

T3 sulfate via its amino group to cyanogen 

This affinity gel retained over 80% of 

bromide-activated Sepharose. 

the deiodinase activity. The 

omission of the six-carbon spacer resulted also in a sharper elution of the 

deiodinase with 2% Emulgen and 1 M of the chaotropic salt KSCN in buffer C. 

However, in spite of the reduced hydrophobic interaction, the degree of 

enzyme purification remained disappointing and varied between 2 to 3 times. 

In subsequent experiments we compared the purification on T3-sulfate 

Sepharose with an affinity column of T3 coupled, without a hydrophobic 

spacer, directly to CNBr-activated Sepharose. As expected and already 

shown by Fekkes et al (27), the deiodinase was strongly bound to the 

T3-Sepharose column. In this case it was possible to elute protein, which 

was bound on the basis of hydrophobic interaction with, a high detergent 

concentration. This was optimal with 2% (w/v) of the zwitterionic 
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detergent CRAPS in buffer c. This was not possible for the proteins 

retained by the T3 sulfate-Sepharose. Deiodinase retained by T3-Sepharose 

was eluted with 2% Emulgen and 1 M KSCN. A typical purification on T3 
Sepharose is shown in Fig. 2. This fraction was purified some 4.5-fold 

with respect to the Cellex-P fraction and about 75-fold with regard to the 

microsomal fraction. 
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tractt.on (33 m.g protet.n t.n 22 ml. buffer C) rJaS app1..£ed to the 1"3-Sepharose 
after desatt£ng on Sephade= G-25. Protet.ns bound due to hydrophobtc 
t.nteractt.on ~ere removed by el.ut'£.on ~t.th 1% CHAPS tn butter c. The 
de~tnattng acttvtty ~ el.uted ~t.th li Emul.gen and 1 M KSCN £n.'bufter C. 
Fractt.ons ot 5 ml. ~ere col.l.ected and assayed tor det.odtnase acttvtty (0) 
and protetn concentratt.on ( 8) . Sho~n ts a representattve chromatogram. 

PTU-Sepbarose chromatography. 

PTU acts as a mechanism-based inhibitor of the deiodinase. It will 

only react with the deiodinase when the enzyme is converted by substrate 

into the E-SI form. Preliminary experiments concerning binding of the 

deiodinase by column chromatography onto PTU-Sepharose in the presence of 

rT3 as the substrate in buffer C were disappointing. Very little 

deiodinase was retained by the column. Repetition of the same experiment 

without addition of rT3 showed that the native deiodinase has no affinity 
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for the PTU column since all enzyme activity appeared in the void volume in 

contrast with a third of the applied protein which tightly bound to the 

PTU-Sepharose. Table II shows the result of this experiment. After column 

chromatograPhy of the T3-S~pharose fraction on PTU-Sepharose without the 

addition of substrate (rT3), the subsequent attachment of the deiodinase in 

the presence of 5 pM rT3 was greatly improved (Table II). The fraction 

obtained after column chromatography in the absence of substrate was 

diluted 1 : 1 with buffer C containing 10 pM rT3 and 5 ml settled 

PTU-Sepharose without detergent. The final detergent concentrations of 

0.1% (w/v) Emulgen and 0.025% (w/v) cholate inhibited the deiodinase 

activity for less than 10% (13,26). Coupling to the PTU-Sepharose was 

maximal when the gel was protected against oxidation by storing the gel in 

the presence of 50 mM DTT at 4 °c. Omission of these steps resulted in low 

binding to the gel. For optimal contact between deiodinase and 

PTU-Sepharose these experiments were performed batchwise under continious 

stirring for 1 hr at room temperature. The PTU-Sepharose was then 

extensively washed with buffer C to remove non-bound protein and rT3, and 

covalently bound deiodinase was subsequently desorbed by batchwise 

Table II 

Purification of rat liver iodothyronine deiodinase on PTU-Sepharose. 

Chromatography step Total protein Total activity Specific activity 
(1119) (units) 

r 3-Sepharose 9.0 4680 520 

PTU-Sepharose 
!. without rT3. 

fraction 
non-bound 5.9 3260 550 

2. incubation with 5 ~M 
rT3~ non-bound fraction 

5.06 1063 210 

3. elution with 50 mM OTT ....J 0.039 530 .-..,./ 13.600 
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incubation with 50 mM DTT in buffer C at room temperature for 1 hr. This 

fraction contained approximately 11% of the activity of the T3-Sepharose 

fraction, as determined directly after elution with DTT, and 0.4% of the 

protein. At this 

suffering a 50% loss 

stage, deiodinase activity appeared to be labile, 

by freezing at -20°C and subsequent thawing. In this 

way a deiodinase preparation was obtained which was enriched approximately 

2400 times in 5'-deiodinase activity in comparison with the activity of the 

microsomal fraction. At the same time the 5-deiodinating activity of this 

fraction was determined using T4 sulfate as the substrate. The increase in 

specific activity was also over 2000 times increased (not shown). 

E1ectrophoresis. 

Figure 3 shows the electrophoretic patterns of the fractions obtained 

after the various purification steps in 7.5% polyacrylamide gels in the 

presen~e of SDS (21). Panel B shows the relative incorporation of the 

affinity label 125I-BrAcT3 in the absence or presence of 10 pM rT3• 

Substrate-protectable incorporation of radioactive BrAcT3 is found at a 

relative migration of 0.73, corresponding to a molecular weight of 25,000, 

which is indicated by the shaded area in Fig. 3. The final enzyme 

preparation is still contaminated with proteins having a relative migration 

of about 0.5. 

DISCUSSION 

Solubilization of the rat liver iodothyronine deiodinase results in a 

marked change in kinetic parameters. The augmentation in Vmax has also 

been observed after solubilization of other membrane proteins (28-30). The 

degree of activation varies between 3-10 times. If this effect is not 

taken into consideration, falsly high purification factors are obtained 

(31). The cause of this increase remains obscure although removal of 

inhibiting phospholipids has been suggested to play a role (27). In 

addition, enzyme may exist in a latent form with the active site on the 

luminal surface of the vesicles which becomes available after dysruption of 
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the vesicle structure by detergents. The change in ~ may be partially 

caused by inhibition of enzyme activity with detergent, either directly or 

by sequestration of the hydrophobic substrate. The ~ remained constant 

during further purification suggesting that the enzyme-detergent complex 

did not undergo major alterations by the chromatographic procedures. The 

results of the purification steps by ion-exchange chromatography were very 

similar to those reported previously and yielded an average purification of 

17 times. This preparation was used for subsequent affinity 

chromatography. 

The chromatographies on octyl-Sepharose or phenyl-Sepharose showed that 

the majority of membrane proteins bind strongly to these matrices, 

especially to the phenyl group. Proteins retained by the octyl sepharose 

could be eluted at high Emulgen concentrations although without enrichment. 

The affinity chromatogrphy on erythrosine-Sepharose was not specific since 

all protein was retained possibly through strong hydrophobic interaction • 

. When the column was saturated with detergent no binding occurd. The 

addition of an anionic detergent such as deoxycholate in the buffer used as 

suggested by Robinson et al (32) for affinity chromatography in non-ionic 

detergent solutions did no improve the deiodinase binding at high Emulgen 

concentrations. 

The major part of applied proteins did also bind to the more 

hydrophilic T3 sulfate-Sepharose. Omission of the hydrophobic six-carbon 

spacer resulted in some improvement of the ultimate purification factor on 

this column. Removal of protein that was bound by non-specific hydrophobic 

interaction with 2% of the zwitterionic detergent CRAPS was not possible in 

contrast with the chromatography on the more hydrophobic T3-Sepharose. It 

is conceivable that by the use of T3 sulfate-Sepharose proteins are also 

bound by ion-pair formation involving the dissociated sulfate group. The 

advantage of the non-dissociated phenolic hydroxyl group in T3 is that when 

proteins are non-specifically bound only by hydrophobic interaction, they 

may be eluted with high detergent concentrations. The purification by 

chromatography on T3-Sepharose remains, however, still meager for an 

affinity column. 

It is possible that also drug metabolizing enzymes have affinity for T3 
as appeared from the labeling experiments with l25r-BrAcT3 • The 
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electrophoresis experiments show that also a 56,000 dalton protein is 

labeled with a high capacity, which is not inhibited by 10 uM rT3• The 

major peak in the electrophoretic profile of the T3-Sepharose eluate is 

also a 56,000 dalton protein. Worth mentioning is the induction by T3 
pretreatment of the microsomal UDP-glucuronyltransferase activity for 

4-nitrophenol by 400% (33) which may be active in the glucuronidation of T3 
(34). 

The purification of the deiodinase was also investigated by covalent 

binding of the deiodinase to PTU-Sepharose after rT3-induced conversion of 

the enzyme into the E-SI form. In order to improve the binding of the 

deiodinase to the column, interfering proteins were removed by a 

chromatography step on PTU-Sepharose without addition of rT3• Some reports 

mention the generation of radicals by non-ionic detergents (35) which will 

be quenched by DTT (36). These radicals may lead to oxidation of the 

catalytically important SH group arid result in the irreversible loss of 

deiodinase activity. Therefore, a DTT concentration of 1 mM is necessary 

to keep the deiodinase SH in a reduced form (37). Also the irreversible 

oxidation of the PTU coupled to Sepharose is prevented by inclusion of DTT. 

In spite of the high PTU concentration on the gel, binding of deiodinase 

was slow and far from complete. Reasons for this may be that during 

synthesis of this affinity gel oxidation of PTU has occurred which 

diminiShed the actual concentration on. the gel. Furthermore, steric 

hindrance of the carbon spacer which connects the PTU to the gel may 

interfere with a close interaction of PTU with the essential SH group of 

the deiodinase. The purified fraction of the PTU-Sepharose is still 

contaminated with proteins with molecular weights of approximately 55,000 

dalton. Further research leading to the ultimate purification of rat liver 

iodothyronine deiodinase is necessary. 

In conclusion, a useful strategy has been developed for the 

purification of rat liver iodothyronine deiodinase which appears to be only 

a minor component of the rat liver microsomal fraction as judged by 

SDS-PAGE and affinity labeling with BrACT3 (23). Also calculations based 

on the specific incorporation of iodo[ 3H]acetate into renal microsomes with 

roughly equal specific deiodinase activity shows that the deiodinase is 

only about 0.013% of the total renal membrane protein. This was based on 
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the assumption of an equimolar incorporation of the iodoacetate and a 

molecular weight of 50,000 for the deiodinase (7). In that case only one 

subunit of 25,000 should react with the affinity label BrAcT3• The equal 

enrichment of both 5'-deiodinase and 5-deiodinase activities as measured by 

rT3 and T4 sulfate conversion, respectively, in the PTU-Sepharose fraction 

supports the hypothesis of a single liver enzyme which is able to catalyze 

both deiodinations. This is in contrast with the specific 5'-deiodinase 

activities found in pituitary and cerebral cortex and the specific 

5-deiodinase activities of cerebral cortex and placenta of the rat (38-40). 

The exact underlying catalytic mechanism of the liver enzyme has yet to be 

elucidated. 
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SU~Y 

Thyroid hormone plays an essential role in the maintenance of a basal 

metabolic rate and promotion 

effects of thyroid hormone 

3,3' ,5-triiodothyronine (T3) 

of growth 

are mediated 

which is 

and development. The ultimate 

by the biologically active 

produced mainly by enzymatic 

deiodination of thyroxine (T4) in extrathyroidal tissues. The liver and 

kidneys are thought to be essential for maintaining plasma T3 levels and 

thereby regulate all metabolic processes in tissues that depend 

predominantly on plasma T3 • The aim of this thesis is to contribute to the 

knowledge about the thyroid hormone deiodinating enzyme of rat liver in 

order to get more insight in the processes that are involved with changes 

in the plasma thyroid hormone levels. 

Chapter I provides a general introduction to synthesis and metabolic 

pathways of thyroid hormone. Under physiological conditions T4 is 

converted at roughly equal proportions either by. 5'-deiodination to T3 or 

by 5-deiodination to 3,3',5'-triiodothyronine (rT3). Although deiodination 

is the major pathway for T4, some 20% is metabolized by conjugation, ether 

link cleavage or oxidative deamination. 

In chapter II recent literature on the metabolism of iodothyronines by 

the liver is reviewed. Increasing evidence becomes available indicating a 

regulatory role for the plasma membrane in the cellular uptake of 

iodothyronines. Nowadays consensus is achieved that a single rat liver 

enzyme converts iodothyronines by either 5'- or 5-deiodination- This 

enzyme is a normal constituent of the endoplasmic reticulum and needs the 

reductive equivalents of thiol-containing compounds for catalytic activity. 

It is concluded from kinetic measurements that the enzymatic deiodination 

follows a ping-pong mechanism with an essential sulfhydryl group in the 

enzyme as the acceptor of the leaving iodine atom. The liver enzyme, 

called type I deiodinase, is distinct from the type II deiodinase and the 

type III deiodinase, a specific 5'-deiodinase and a 5-deiodinase, 

respectively. At last, factors that may control the deiodinase activity in 

vivo are discussed. 

Chapter III deals with the chemical synthesis of sulfate esters and 

sulfamates of iodothyronines. A convenient method is developed for both 
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sulfation and purification. The conjugates are further characterized by 

'R-NMR, HPLC and hydrolysis by acid or sulfatase activity. The sulfate 

esters exhibited low cross-rectivities in the radioimmunoassays for the 

native· compounds. The so obtained pure sulfate esters are more prone to 

deiodination than the native iodothyronines as is described in chapter IV 

for rT3 and T4 sulfate. The efficiency of the 5-deiodination of T4 sulfate 

is increased 200-fold whereas 5'-deiodination is undetectable. Evidence is 

presented that T4 sulfate is deiodinated by the same type I deiodinase that 

mediates the deiodination of native iodothyronines. 

In chapter V the presence of an active site histidine residue is 

described using chemical modification of the deiodinase with 

diethylpyrocarbonate or rose bengal. This histidine residue nay be 

important in the substrate binding or may increase the nucleophilicity of 

the catalitically important sulfhydryl group by hydrogen bond formation. 

Derivatization of T3 by introduction of a bromoacetyl group in the 

alanine side chain yields an affinity label that binds to the active site 

of the enzyme as described in chapter VI. Analysis of l25I-BrAcT3 labeled 

microsomes by gel electrophoresis strongly suggests that the deiodinase is 

composed of two subunits with a molecular weight of approximately 25,000 

dalton. 

Finally, chapter VII and VIII contain studies to the solubilization and 

purification of rat liver iodothyronine deiodinase. Using solubilization 

with cholate, delipidation by ammonium sulfate precipitation, renewed 

solubilization with Emulgen, and subsequent ion-exchange chromatography on 

DEAE-Sephacel and Cellex-P, followed by affinity chromatography on 

and PTU-Sepharose, a 2400 times purified deiodinase 

preparation is obtained. This preparation, which is approximately 50% 

pure, is both enriched in 5'- and 5-deiodinating activity, providing 

further evidence for a single rat liver iodothyronine deiodinase. 

In conclusion, progress is made in the purification of rat liver 

iodothyronine deiodinase which is an enzyme that is capable to activate the 

prohormone T4 to T3, but is also involved in degradative pathways of 

thyroid hormone. Especially sulfation increases the formation of 

iodothyronines that are biologically inactive. The ultimate answer how one 

enzyme is capable to deiodinate T4 alternately to T3 or rT3 awaits the 
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final purification of the enzyme and more information on substrate binding 

to the enzyme. 
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SAMENVATTING (VOOR NIET INGEWIJDEN) 

Dit hoofdstuk is bedoeld voor hen die zich niet dagelijks met 

schildklierhormoon bezighouden, en wil inzicht verschaffen in het doel en 

de resultaten van het onderzoek zeals dat in dit proefschrift te vinden is. 

Allereerst zal er worden ingegaan op de vraag wat schildklierhormoon is. 

Daarna zal het verband worden gelegd tussen de schildklier en het 

dejoderende ~ uit de rattelever, gevolgd door het beoogde doel van het 

onderzoek. Vervolgens zullen eigen waarnemingen wat betreft de samenhang 

tussen conjugatie en dejodering van schildklierhormoon besproken worden. 

Tot besluit zal de werking van het dejoderende enzym en de zuivering ervan 

worden samengevat. 

Schi1dklierhormoon 

Ret schildklierhormoon speelt een essentiele rol in de handhaving van 

een basis niveau in de stofwisseling en de stimulering van groei en 

ontwikkeling. Vrijwel alle effekten worden gemedieerd door de biologisch 

aktieve vorm, het 3,3',5-triiodothyronine of kortweg T3• Ongeveer 20% van 

het in het plasma voorkomende T3 komt direkt uit de schildklier. De 

resterende 80% van het circulerende r 3 is afkomstig van een enzymatische 

dejoderings stap van het prohormoon thyroxine, kortweg T4 genoemd, dat 

alleen door de schildklier wordt gemaakt. T4 is een molekuul dat 

gekenmerkt wordt door een dubbele ring structuur die vier jodium atomen 

bevat (zie figuur). Afsplitsing van een jodium atoom uit de "buiten" ring 

geeft het biologisch aktieve T3, terwijl dejodering van de "binnen" ring 

het om.gekeerde of "reverse" T3 oplevert. 
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Bet schildklierhormoon dejoderende enzym uit de rattelever 

Op_vele plaatsen in het lichaam kan de omzetting van T4 naar T3 

plaatsvinden. Gezien echter de hoge 

de lever en nieren worden deze organen 

concentratie van dejoderend ~ in 

verantwoordelijk geacht voor een 

groot deel van de produktie van het plasma T3• Daarbij is de lever een van 

de grootste organen uit het menselijk lichaam en is verantwoordelijk voor 

tal van stofwisselings processen. Hiertoe behoort bet uit het bloed 

opnemen van slecht in water oplosbare stoffen en de omzetting ervan in meer 

~ater oplosbare~ beter uit te scheiden verbindingen door middel van o.a. 

sulfatering, glucuronidering of hydroxylering. Voor dit doel beschikt de 

lever over een uitgebreid "biotransformatie" systeem van katalytisch 

aktieve eiwitten (enzymen) die zich voor een deel in membranen binnenin de 

eel bevinden. Hiertussen bevindt zich ook het enzym dat T4 kan omzetten in 

zowel T3 als reverse r 3• Uit onderzoek is gebleken dat de rattelever een 

enzym bevat met gelijke karakteristieken als het dejoderend enzym uit de 

humane lever. Hierdoor lijkt de rat een goed model te zijn om de 

enzymatische omzetting van T4 te bestuderen. 

Doel van bet onderzoek 

Uit vooronderzoek was gebleken dat de rattelever een enzym bevat dat T4 
zowel kan aktiveren (T3) als inaktiveren (reverse T3). Dit onderzoek werd 

geentameerd om de manier waarop het enzym werkt verder te bestuderen en om 

door scheiding van het dejoderend enzym van andere eiwitten te komen tot 

een gezuiverd enzym preparaat. Hiervoor is steeds gebruik gemaakt van een 

gedeeltelijk gezuiverde membranen fraktie die werd gewonnen uit 

fijngemaakte ratte levers- Deze ruwe fraktie is gebruikt voor het 

onderzoek naar de relatie tussen sulfatering en dejodering, beschrijving 

van het enzym door chemisch het enzym te veranderen en diende tevens als 

uitgangsmateriaal voor de zuivering. 

Conjugatie en dejodering van schildklierhormoon 

Via onderzoek is aangetoond dat sulfatering van r 3 of van 3,3'-Tz de 
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molekulen op zo'n manier veranderde dat deze opeens veel beter gedejodeerd 

werden. Voor verder onderzoek hebben we een chemische methode ontwikkeld 

om grote hoeveelheden zuiver gesulfateerd schildklierhormoon te 

vervaardigen. Met geavanceerde chemische technieken zijn deze verbindingen 

nader gekarakteriseerd. Bet synthetische T3 sulfaat is gelijk aan het door 

levercellen in vitro gevormde T3 sulfaat. Ret bleek dat deze sulfaat 

verbindingen niet storend werken in de bepaling van schildklierhormoon 

zoals dat routinematig in vele laboratoria plaatsvindt. 

Dejoderings experimenten met synthetisch T4 sulfaat lieten zien dat ook 

hier sulfatering stimulerend werkt op de snelheid van dejodering in de 

binnenring. Tegelijkertijd werd echter de dejoderings snelheid van de 

buitenring vertraagd tot niet waar te nemen omzettingen. Duidelijk werd 

dat in dit geval door sulfatering de dejoderings reactie specifiek is 

gew.orden. Gepostuleerd is dat deze specificiteit wordt veroorzaakt door 

een veranderde binding aan het enzym waardoor de ene reaktie wordt 

bevoordeeld ten koste van de andere. Bet gevormde reverse T3 sulfaat bleek 

een even goed substraat voor buitenring dejodering te zijn als het niet 

geconjugeerde reverse T3• 

Beschrijvi.ng van het dejoderend enzym 

Door middel van specifieke chemische veranderingen in het enzym is 

onderzoek gedaan naar aminozuren die van belang kunnen zijn voor de binding 

van schildklierhormoon aan het enzym, of betrokken zijn bij de katalyse van 

het dejoderings proces. Zo is gebleken dat het aminozuur histidine een 

essentiele rol speelt in dit enzym. Uit ander onderzoek was aangetoond dat 

het enzym tevens een uiterst belangrijke sulfhydryl groep bevat. Met 

gegevens uit de literatuur over enzym mechanismen is voorgesteld dat dit 

histidine residu het overnemen van een jodium atoom van het hormoon 

molekuul door de sulfhydrylgroep van het enZym kan bevorderen. 

Door het T3 molekuul in de zijketen met een reaktieve broomacetylgroep 

te verbinden, werd een stof gesynthetiseerd die tijdens incubatie met enzym 

hiermee een niet los te maken complex vormde. Hierdoor werd de aktiviteit 

van het enzym volledig geremd. Omdat een van de jodium atomen van het T3 
door een radioaktief jodium atoom was vervangen, kon de plaats van het 
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dejoderend enzym gedurende zuiverings experimenten worden vervolgd. Ret 

is daardoor gebleken dat het dejoderende enzym uit ten minste 2 kleinere 

eiwitten is opgebouwd. 

Zuivering van bet dejodase 

Bet dejodase is ingebed met tal van andere enzymen in de membranen van 

het endoplasmatisch reticulum. Om het dejodase te kunnen scheiden van 

andere enzymen moet het eerst uit deze membranen worden gehaald met 

speciale detergenten. Onderzocht is welk detergent het meest geschikt is 

voor deze extractie. Ret enzym dat zich door de solubilisatie niet meer in 

zijn natuurlijke omgeving bevindt kan daardoor nogal instabiel worden. Uit 

onderzoek zijn de juiste omstandigheden gevonden om het dejodase aktief te 

houden. Het detergent Emulgen (vgl. emulge~en) is hiervoor het meest 

geschikt- Met behulp van meer en minder specifieke zuiverings methodieken 

is het dejodase tot een redelijke mate van zuiverheid gebracht. De voor 

ongeveer 50% zuivere fraktie was nag steeds in Staat om zowel buitenring 

als binnenring dejoderingen te katalyseren. Verder onderzoek zal moeten 

leren of selektieve manipulatie van deze dejoderingen tot de mogelijkheid 

zal kunnen behoren. 
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VERKLARENDE WOORDENLIJST 

Aminozuur 

Conjugat.ie 

Dejodase 

Detergent 

Endoplasmatisch reticulum 

Enzym 

Membraan 

Stofwisseling 

Solubilisatie 

Element waaruit een eiwit is opgebouwd 

Bet door enzymatische omzetting beter 

water oplosbaar maken van verbindingen 

Enzym dat de afsplitsing van een 

jodium atoom versneld 

Stof die de oppervlaktespanning 

verlaagt; zeep 

Netvormig stelsel van membranen 

binnenin de eel 

Een eiwit dat ervoor zorgt dat een 

chemische reaktie die uit zichzelf 

traag verloopt, versneld wordt 

Vlies van vettige stoffen die o.a. de 

eel omsluit, maar ook binnenin de eel 

afgesloten compartimenten vormt 

Omzetting van voedingsmiddelen in voor 

het lichaam bruikbare verbindingcn 

waarbij tevens warmte vrijkomt 

Het in oplossing brengen van het enzym 
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CURRICULUM VITAE 

De auteur van dit proefschrift is geboren op 16 april 1954 te 

Dordrecht. Na aan het Develstein College te Zwijndrecht bet diploma 

HBS-B te hebben behaald werd de studie Werktuigbouwkunde aan de 

Technische Hogeschool te Delft aangevangen. De studie werd in 1975 

vervolgd in de richting Moleculaire Wetenschappen aan de Landbouw 

Hogeschool te Wageningen, waar juni 1981 het ingenieurs examen 

werd afgelegd met als hoofdrichtingen de Biochemie en de Toxicologie 

gecombineerd met een stage aan het Nederlands Kanker Instituut te 

Amsterdam en een bijvak in de Dierfysiologie. Van juli 1981 tot juli 

1984 was de auteur in dienst van de Nederlandse Organisatie voor 

Zuiver-Wetenschappelijk Onderzoek via een door FUNGO gesubsidieerd 

onderzoek dat werd verricht op de afdeling Interne Geneeskunde III 

van het Academisch Ziekenhuis te Rotterdam. Sinds november 1984 is 

hij verbonden aan de Kliniek voor Kleine Huisdieren van de fakulteit 

Diergeneeskunde van de Rijksuniversiteit Utrecht. 
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NAWOORD 

Graag wil ik tot besluit de vele personen bedanken die betrokken zijn 

geweest bij de tot standkoming van dit proefschrift. 

Allereerst dank ik mijn ouders voor de stimulans en mogelijkheid 

die zij mij geboden hebben om een academische opleiding te volgen. Ret 

feit dat vader de slotfase van het promotie onderzoek niet meer in 

zo'n goede gezondheid kon meemaken, wordt door mij als een gemis ervaren. 

Niet zonder reden heb ik dit proefschrift aan mijn beide ouders opgedragen. 

Lieve Ellen, jouw bijdrage was als van "een hulp die bij mij past". 

Op onnavolgbare wijze ben jij een stimulans geweest voor mij. Jou be­

danken hoeft zich gelukkig niet te beperken tot het nawoord van het 

proefschrift. 

Bijzondere dank ben ik verschuldigd aan mijn promotor Jorg Hennemann, 

die met grote belangstelling de ontwikkeling van het onderzoek heeft 

gevolgd. Aan de vele "vrijdagochtend" besprekingen onder zijn leiding 

bewaar ik fijne herinneringen. 

Theo Visser heeft door zijn enthousiaste en kundige begeleiding van 

het onderzoek en de korrektie van het manuscript bijzonder inspirerend 

op mij gewerkt. Deze woorden kunnen slechts vaag aanduiden hoeveel 

dank ik hem verschuldigd ben. 

De aandacht van Roel Docter en de opvang bij de afwezigheid van 

Theo gedurende de eerste periode van het onderzoek zijn door mij zeer 

gewaardeerd. 

Een speciale vermelding verdient Tom van den Berg, die ~ons" projekt 

op uitstekende wijze analytisch heeft ondersteund. Bier wil ik het 

accuraat uitvoeren van de talloze zuiverings experimenten en de nauw­

keurige verslaggeving memoreren. 

Zeer erkentelijk ben ik Yvonne van Dodewaard die mij heeft ingewijd 

in het gebruik van de tekstverwerker en·veel van het typewerk voor haar 

rekening heeft genomen. 

De medewerkers van het laboratorium hebben alle door het scheppen 

van een prettig werkklimaat hun bijdrage geleverd aan de voortgang van 

het onderzoek. Een woord van dank gaat uit naar Ellen Kaptein en 
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stagiaire Godfried Janssen die daadwerkelijke steun hebben verleend 

aan de experimenten. 

Het "uptake werk" van Eric Krenning was de basis voor het vervaar­

digen van een monoklonaal antilichaam tegen het opname eiwit in de 

hepatocyt. Alhoewel dit onderzoek niet is opgenomen in het proefschrift 

was het mij een genoegen om met hem samen te werken. Onmisbaar hierbij 

was de analytische hulp van Bert Bernard, en de hybridoma experts 

Jan Rozing en Len Vaessen van Interne Geneeskunge I. 

Tenslotte wil ik al diegenen bedanken die op welke wijze dan ook 

anderszins hun bijdrage hebben geleverd. Hierbij denk ik aan de 

collegiale samenwerking met Marten Otten en Huib Pols, de vele kopjes 

koffie van de balansafdeling, de steun van Marco Roede en Henk van Beek 

bij de tekstverwerking en de medewerkers van de audiovisuele dienst voor 

bet tekenen en reproduceren van de figuren. 
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