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SCOPE OF THIS THESIS 

In the general introductory part of this thesis (Chapters and 2) a 

review of some pertinent literature related to sleep-waking states and opioid 

peptides is offered. A global view of the neurochemical mechanisms and 

theories of functions of sleep, as well as the physiological and possible 

clinical consequences of total or selective REM sleep deprivation is given in 

Chapter 1. In Chapter 2, which is concerned with the role of endogenous 

opioid peptides, particular attention is paid to the possible modulatory role 

of endogenously released opioid peptides in the regulation of some behavioural 

states in physiological and pathological conditions. 

It is generally known that exogenously administered opiates and opioid 

A possible peptides can alter sleep pattern and decrease REM sleep. 

interaction between sleep-waking states and endogenous opioid system is 

suggested by the report that the episodic release of plasma humoral endorphins 

during sleep is associated with the REM sleep phase (Chapter 1, section 

1.1 .7). In addition, the concentrations of opioid peptides in some brain 

nuclei of the rat which are known to be important in sleep-waking regulation, 

are highest in the dark (active) phase, during which wakefulness is high and 

lowest in the light (rest) phase, when the propensity to sleep is at its 

highest (Chapter section 1 .3.2). Thus in order to clarify the effect of 

endogenously released opioid peptides in the regulation of sleep-waking 

pattern, we studied the effects of phosphoramidon, an inhibitor of 

enkephalinase A on sleep-waking states (Chapter 3). Several clinical studies 

suggest that the sleep-waking cycle may modulate the occurence of some types 

of epileptic phenomena in human subjects (Chapter 1, section 1 .5.2, iii). In 

addition, some studies indicate a similarity between enkephalin induced 

epileptic 

Therefore, 

phenomena and 

we studied 

petit 

the 

mal epilepsy 

effects of 

(Chapter 4 discussion). 

different sleep stages on 

enkephalin-induced epileptic phenomena using electrophysiological parameters 

(Chapter 4). 

These initial studies (Chapters 3 and 4) suggested an interaction between 

sleep-waking states and endogenous opioid system. The observation that REM 

sleep deprivation (REMSD) reduced the pain threshold to noxious electrical 

stimulation (Chapter 1 section 1 .5.2d i) was an indication of the importance 
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of REM sleep in the regulation of nociception. Therefore in Chapters 5 and 6, 

the experiments were designed to explore a direct effect of REMSD on the 

analgesic effects of morphine, an enkephalinase inhibitor phosphoramdion and 

cold-water-swim. 

The profound antagonistic effect of REMSD on opiate/opioid peptide induced 

analgesia stimulated further interest to investigate the relationship between 

REMSD and other opiate/opioid peptide modulated behavioural phenomena. 

Therefore the following opioid modulated behaviours were investigated: 

akinetic-cataleptic syndrome, spontaneous vertical motor activity, 

convulsions, 

(Chapters 7-9). 

(Chapter 10) 

grooming, wet-dog-shakes and morphine withdrawal symptoms 

Additional experiments with nitrous oxide were performed 

since it is known that this anaesthetic agent can stimulate the 

release of endogenous enkephalins and induce opiate-like withdrawal symptoms 

(Chapter 2, section 2.5.2, iv). 

Finally, the possible clinical consequences of our findings are described 

in the relevant chapters. 
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PART I: GENERAL INTRODUCTION 

CHAPTER 1 

NEUROBIOLOGY OF SLEEP-WAKING STATES 

Sleep is a heterogenous process organised into rhythmically occurring 

cycles of different stages which are characterised by specific behavioural, 

electrophysiological, autonomic and endocrine changes. Broadly, sleep is 

divided into non-rapid-eye-movement (NREM) sleep and rapid-eye-movement (REM) 

sleep, also called paradoxical sleep (PS) (Aserinsky and Kleitman, 1953). 

REM sleep occupies a large part of neo-natal mammalian sleep (Roffwarg et 

al., 1966) suggesting an involvement of REM sleep in brain maturation (Corner 

et al. 1980). In adult mammals REM sleep appears to regulate adaptivity and 

plasticity of waking behaviour (McGrath and Cohen, 1978). 

1.1 Sleep-wakefulness phenomenology 

Sleep and wakefulness, like many life processes from heart-beating to 

bird migration and hibernation, follow a certain pattern of oscillations, 

which are regulated by a strict space-time system as well as body position. 

In nocturnal rodents such as rats, sleep occupies 80% of the light phase and 

20 %the dark period. REM sleep, which occupies 15-20% of the total sleep 

time in adult rats, shows a slight prepondrance during the light phase 

(Borbely, 1982). 

1.1.1 Behaviour 

Pre-sleep behavioural repertory is characterised by the searching for a 

safe niche and preparing the body (grooming) for sleep (Parmeggianni, 1980; 

Cooper, 1979). Behaviourally, sleep onset is characterised by the suspension 

of active contact with the environment (Parmeggianni, 1980). 

A close relationship between electrographic recordings and behaviour has 

been observed in most animals so far studied. However there is a growing 
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body of evidence that behaviour and the usual electrophysiological correlates 

may become dissociated (Sakai, 1985). 

1 .1.2 Motor functions 

Sleep-wakefulness cycle is accompanied by phasic changes in motor 

activity. In general, quiescience of motor and postural support is a basic 

feature of sleep. With the onset of sleep there is a progressive decrease in 

electromyogram (EMG). During NREM sleep muscle tonus is present in an 

attenuated form, whereas when the animal enters into REM sleep, there is 

complete loss of the antigravity muscle tonus with consequent failure of 

postural support (Ursin, 1968; Timo-Iaria et al., 1970). Other important 

phasic motoric phenomena associated with REM sleep include, myoclonic 

twitching and burst of rapid eye movements. 

1.1.3 Neuronal activity 

The pattern and intensity of neuronal activity in some brain areas is 

often related to the state of vigilance. Bioelectric rhythms of the 

neocortex, hippocampus, lateral geniculate body, reticular formation and 

other brain areas have been studied extensively during sleep-wakefulness 

cycle (Steriade et al., 1977). 

i) Neocortex 

The neocortical EEG patterns of the rat during different vigilance states 

has been well documented (Timo-Iaria et al. 1970; Terrier and Gottesman, 

1978). Based on these reports the EEG of sleep-wakefulness cycle of the rat 

can be differentiated into four distinct stages as follows:-

a) Wakefulness in rat is characterised by desynchronised (fast) waves (30 -40 Hz 

and 30 ~v amplitude). 

b) Light slow wave sleep (LSWS) in the rat consists of spindles (6-12 Hz range, 

20-40 msec. 50-300 ~V), K-complexes and some delta waves in frontal-parietal 

cortex EEG. 

c) Delta sleep: This stage of NREM sleep consists of predominantly delta waves 

(>50%). 

d) REM sleep in the rat is characterised by desynchronised (fast) waves (20 Hz, 

40 ~V) in the frontal-parietal cortex. 

In the cat sleep-wakefulness is differentiated into five stages as 
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follows: active and quiet wakefulness, light slow sleep, deep slow wave 

sleep and REM sleep (Ursin, 1968). 

ii) Hippocampus and entorhinal cortex 

The electrical activity of the hippocampus and the entorhinal cortex 

undergo distinct oscillations which correlate well with specific vigilance 

states in the sleep-wakefulness continuum. During exploratory wakefulness 

and REM sleep, the dorsal hippocampal EEG show a regular theta wave pattern 

(4-6Hz) in both rats and cats (Jouvet et al., 1959; Monmaur et al., 1979). 

In NREM sleep the hippocampus and the entorhinal cortex present an irregular 

EEG pattern consisting of high amplitude sharp waves intermingled with slow 

waves (Jouvet et al .• 1959). In the ventral hippocampus spikes waves 

(100-300 #V, 50-100 msec duration) are most frequent during NREM sleep and 

are rare during wakefulness and REM sleep (Jouvet et al., 1959; Hartse et 

al.. 1979). 

iii) Reticular formation and lateral geniculate bo~ 

Phasic EEG spike activity during REM sleep was first demonstrated to 

occur in the cat pontine reticular formation by Jouvet and Michel (1959). 

lateral geniculate body by Mikiten and co-workers (1961) and in occipital 

(visual) cortex by Mouret and co-workers (1963). These spikes have been 

designated ponto-geniculo-occipital {PGO) waves according to the loci from 

which they were recorded. PGO waves have not been demonstrated in rats 

(Stern et al., 1974). They have not been unambiguously demonstrated in human 

subjects (Gaillard, 1980). The phasic PGO spike waves occur a few minutes 

prior and during REM episode and are generally absent during wakefulness and 

NREM sleep (Hartse et al., 1979). 

1.1.4 Respiration 

Cyclic changes in respiration have 

sleep-wakefulness cycle (Parmeggiani, 1980; 

been observed during the 

McGinty and Beahm, 1 984). 

During NREM sleep breathing is generally slower, shallow and more regular 

than in wakefulness. Only small changes in ventilatory response to carbon 

dioxide and mechanoceptive reflex occur during NREM sleep compared with 

wakefulness. In both experimental animals and human subjects, the 

respiratory rate is irregular, highly variable and may be accompanied by 

brief apneas during REM sleep. Arousal thresholds in response to hypoxia and 
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hypercapnia are increased during REM sleep compared vith NREM sleep. In 

addition, response to laryngeal stimulation during REM sleep could consist of 

apnea instead of the usual coughing. 

1 .1.5 Cardiovascular system 

The heart rate and arterial blood pressure are decreased in both man and 

animals during NREM sleep compared with wakefulness (Snyder et al., 1964). 

The largest drop in heart rate and systemic arterial blood pressure in cat 

was observed during REM sleep (Guazzi and Zanchetti, 1965). However in man 

heart rate and blood pressure are increased during REM sleep with respect to 

NREM sleep (Snyder et al., 1964). 

1.1.6 Thermoregulation 

An ultradian rhythm of homeostasis-poikilostasis which correlate with 

specific vigilance state has been documented (Parmeggiani, 1980; McGinty and 

Beahm, 1984). During NREM sleep, the core temperature is regulated at a 

lower set point compared with wakefulness. The decrease in body temperature 

is probably due to a combination of the thermoregulatory and passive 

processes such as reduction in motor action. In contrast to NREM sleep, 

hypothalamic thermoregulatory mechanisms are inactivated during REM sleep. 

Physiological and behavioural symptoms such as shivering, thermal 

vasodilation, polypnea, sweating and thermogenesis in response to either 

ambient or hypothalamic temperature changes disappeared during REM sleep. 

The lack of shivering during REM sleep may not be related to muscle atonia, 

since animals which exhibited REM without atonia after pontine lesion still 

failed to show shivering (McGinty and Beahm, 1984). 

1.1.7 Endocrine and neuropeptide secretions 

Sleep-related growth hormone secretion occur during the NREM sleep phase 

(Takahashi et al., 1968; Mitsugi and Kimura, 1985). The episodic secretion 

of prolactin is triggered by sleep onset (Parker et al., 1980), while the 

secretion of cortisol and thyroid-stimulating-hormone are decreased during 

sleep compared with wakefulness (Parker et al., 1980; Mitsugi and Kimura, 

1985). 

Recently it was demonstrated that the episodic release of plasma humoral 
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endorphin is associated with REM sleep (Oksenberg et al., 1980). These data 

together suggest that sleep processes might play an important role in 

regulating the functional reactivity of hormonal and neuropeptide systems. 

1.1.8 Genital response 

Nocturnal penile tumescence (NPT) during sleep has been shown to occur 

during REM sleep in man (Karacan et al., 1966). The female counterpart of 

nocturnal NPT, clitoral erection and increase in vaginal pulse pressure are 

associated with REM sleep (Karacan et al., 1970; Rogers et al., 1985 ). The 

highly predictable occurence of NPT during REM sleep (80-90%) has been used 

to distinguish organic from psychogenic impotence. For example in organic 

impotency associated with diabetes mellitus the REM sleep related NPT is 

greatly diminshed, whereas in psychogenic impotency there is little or no 

reduction in NPT (Karacan et al., 1978). 

1.1.9 Circadian sleep-wakefulness phenomena 

Biological cycles with a period of approximately one lunar day (24 h), 

and that persist in the absence of external environmental cues 

(-zeitgebers-). have been termed circadian oscillations (Aschoff, 1964). In 

animals and human subjects isolated from external time cues, the 

sleep-wakefulness cycle continues to show 

period is only slightly different 

a clearly defined 

from 24 h (Groos, 

rhythm whose 

1984). The 

sleep-wakefulness cycle is therefore a true circadian rhythm which has been 

demonstrated in rats (Borbely, 1982) and in man (Wever, 19?9). Circadian 

influences on sleep-wakefulness in rats affect phase timing and not the daily 

amount of sleep. Lesior. of the suprachiasmatic nucleus abolished the 

sleep-wakefulness circadiar. rhythm but not the daily amount of sleep (Ibuka 

and Kawamura, 1975). Recently the hypothalamic paraventricular nucleus was 

demonstrated to be involved in the maintaince of REM 

(Piepenbrock et al., 1985). 

1 .2 Neural basis oF sleep-wakefulness 

sleep rhythm 

The study of the pathology of viral encephalitis and the associated sleep 

disorders led von Economo (1929) to differentiate two syndromes, a) 
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hypersomnia related to lesions of mesencephalic tegementum and posterior 

hypothalamus and b) sleeplessness in which the lesion affected basal 

forebrain and related striate structures. These observations led to the 

notion of -neural determinism of sleep-waking states-. 

1 .2.1 Neural substrates of wakefulness 

The demonstration of ocular and EEG signs of sleep after the transection 

of the brain stem at the level of the occulomotor nuclei -cerveau isole­

(Bremer, 1935), suggested the presence of an arousal center in the anterior 

third of the pons. Further lesion studies in the rat by Nauta (1946) placed 

the -waking center- at the mesencephalo-hypothalamic junction. Later Moruzzi 

and Magoun (1949) described an arousal system located in the reticular 

formation of the rostral segments of the pons and the midbrain. 

Neural elements rostral to the brain stem reticular formation contributed 

to wakefulness mechanism. One such brain area was localised in the posterior 

hypothalamus (Moruzzi, 1964). This observation is supported by the finding 

that in cerveau isole- preparations in which the locus coerulus and raphe 

nuclei were completely isolated from the forebrair. of the animals, an initial 

period of hypersomnia was followed by behavioural and EEG patterns of 

wakefulness (Hanada and Kawamura, 1981 ). 

1.2.2 Neural mechanism of non-rapid-eye-movement (NREM} sleep 

The initial report of Hess (1927), that electrical stimulation of midline 

thalamic nuclei induce behavioural and EEG signs of sleep was the first 

experimental indication of the existence of an active hypnogenic center. 

Other workers have since demonstrated that stimulation of other brain areas 

can induce behavioural and electrophysiological signs 

al., 1961 ) . Three hypnogenic brain areas may 

of 

be 

sleep (Favale et 

differentiated 

ponte-bulbar raphe system, hypothalamic and thalamo-cortical. 

i) Ponte-bulbar raphe system 

The existence of medullary sleep centers was suggested by reports that 

medullary anesthesia, or cooling, converted sleep EEG into an activated, 

awake, pattern (Berlucchi et al., 1964). EEG synchronisation and behavioural 

sleep were elicited by low frequency stimulation of then. tractus solitarus 

(Favale et al., 1961 ). 
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The lesion o~ raphe complex induced, initially, total insomnia followed 

by partial sleep recovery in cats (Jouvet, 1974). However other workers 

failed to implicate raphe nuclei in sleep regulation. For example midbrain 

raphe lesions in rats failed to alter sleep-wakefulness (Bouhuys and van den 

Hoofdakker, 1977). Further~ore unit discharge studies, showed that neurons 

in the dorsal raphe fire less during slow wave sleep compared with waking 

(McGinty and Harper, 1976) and that electrical stimulation of the raphe 

nucleus resulted in arousal (Jacobs et al., 1973). Thus the exact role of 

the raphe nuclei in the regulation of sleep and awake vigilance states 

remains to be clarified. 

ii) Hypothalamic system 

The sleep modulating effect of the hypothalamic area was first suggested 

by the study of Hess (1944) in which he elicited sleep by stimulating the 

preoptic area. Profound insomnia was demonstrated in rats after inducing a 

lesion in the preoptic area (Nauta, 1946). 

iii) Thalamo-cortical NREM sleep system 

Medial thalamic stimulation induce behavioural and EEG signs of sleep 

(Akert et al., 1952). However, the complete destruction of the thalamus 

eliminated only sleep spindles but not slow waves (Naquet et al., 1965). 

Sleep has also been elicited by stimulation of the basal forebrain and 

orbital cortex (Sterman and Clemente, 1962) 

1.2-3 Neural mechanisms of REM sleep 

The pontine brain structures are essential for REM sleep generation. 

However a large body of evidence indicate that different features of REM 

sleep, such as ponto-geniculo-occipital (PGO) spikes, postural atonia and 

neocortical desynchronisation are regulated by different neural substrates 

(Sakai, 1985). The pontine-medullary brain nuclei, locus coerulus and n. 

reticularis magnocellularis are essential for postural atonia during REM 

sleep (Sakai, 1985). 

PGO generators are located in the caudal mesencephalic and rostral 

pontine tegmental area such as brachium 

parabrachialis lateralis, locus coeruleus and n. 

conjunctivum, rostral n. 

laterodorsalis, whereas EEG 

activation during REM sleep involves the n. reticularis magnocellularis 

(Sakai, 1985). 
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1.3 Neurochemical basis oT sleep-wakefulness 

Several endogenous substances, such as the biogenic amines 

(noradrenaline, dopamine, serotonin and $-phenylethylamine), acetylcholine, 

gamma-amino-butyric acid and many neuropeptides (enkephalins, endorphins, 

delta sleep peptide) have been proposed as regulators o~ different vigilance 

states. 

1.3.1 Biogenic amines. acetylcholine and GABA 

i) Noradrenaline (NA) 

Inhibition of tyrosine hydroxylase with a-methyl-p-tyrosine (dMT) or the 

blockade of dopamine-~-hydroxylase with disulfiram suppressed REM sleep, 

reduced waking and decreased the concentrations of NA in the brain (Jouvet, 

1974). These data suggested an involvement of NA in the regulation of waking 

and REM sleep. In contrast ~-MT enhanced REM sleep in the rat (Hartmann et 

al., 1971 ). However, Kafi and co-workers (1977) have demonstrated that only 

high doses of ~-MT, which induced an almost total inhibition of NA synthesis, 

suppressed REM sleep while lower doses facilitated this sleep stage. 

The possible involvement of NA in regulating the sleep-waking states is 

also suggested by the finding that the electrolytic or surgical lesions of 

noradrenergic neurons of the locus coerulus which decreased brain NA levels 

suppressed REM sleep and reduced wakefulness (Jouvet, 1974). In contrast the 

presence of REM sleep was demonstrated inspite low brain NA concentrations 

(Jones et al., 1977). 

In summary, inspite of some contradictory data it appears that 

transmission in NA neurons is involved the modulation of REM sleep and 

wakefulness. 

ii) Dopamine (DA) 

Destruction of the ascending DA-fibers of the ventral mesencephalic 

tegmentum decreased behavioural wakefulness did not alter 

electroencephalographic signs of arousal (Jones et al., 1973). 

In rats the administration of spiroperidol, a DA receptor antagonist, 

produced a dose-dependent increase in total sleep and a decrease of REM sleep 

(Kafi and Gaillard, 1976). Apomorphine (Apo) in doses sufficient to 
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stimulate post-synaptic DA receptors decreased total sleep and increased 

waking, whereas low doses of Ape which stimulate DA autoreceptors increased 

REM sleep time (Kafi and Gaillard, 1976). Similarly small doses of DA 

enhanced REM sleep (Hartmann et al., 1975). In addition, the possible 

involvement of various DA receptors in the modulation of alertness has also 

been suggested (Dzoljic and Godschalk, 1978). However. more recent data 

suggest that the activation of D-1 receptors induced arousal, while the 

stimulation of D-2 receptors was associated with sedation and sleep (Gessa et 

al.. 1985). 

It thus appears that the dopaminergic system is involved in the 

regulation of behavioural wakefulness and REM sleep. 

iii) 5-Hydroxytryptamine (5-HT, serotonin) 

Destruction of the raphe system, which contain the cell-bodies of 5-HT 

neurons induced insomnia which was associated with decreased brain 5-HT 

levels in cats (Jouvet, 1974). This finding indicated that 5-HT containing 

neurons in the rostral part of the raphe system are involved in sleep 

mechanisms. 

The involvement of serotonin in NREM sleep induction was also supported 

by the finding that para-chlorophenylalanine (PCPA) which depleted brain 5HT 

decreased both NREM and REM sleep stages in cats and rats (Jouvet, 1974, 

Borbely, 1982). The sleep suppressant effect of PCPA was reversed by the 

administration of 5-HT precursors, tryptophan and 5-hydroxytryptophan. 

The serotonin theory of sleep has been challenged by several reports. 

During chronic studies, sleep in raphe-lesion animals tended to return to 

pre-lesion baseline even though 5-HT levels remained low (Morgane and Stern, 

1974). Brain lesions in rats which reduced brain 5-HT concentrations did not 

alter sleep (Bouhuys and van den Hoofdakker, 1977). Similarly PCPA or a 

chronic tryptophan-deficient diet. both of which can reduce brain 5-HT, had 

no effects in rats (Rechtschaffen et al., 1973; Clancy et al., 1978). In 

addition, serotonin neurons were most active during wakefulness compared with 

any sleep stage (McGinty and Harper, 1976). Similarly, the release of 5-HT 

was highest during wakefulness than when the animals were asleep (Puizzillout 

et al .• 1979). In addition, electrical stimulation of 5-HT rich neurons of 

the dorsal raphe nucleus reduced both NREM and REM sleep stages (Jacobs et 

al., 1973). Although these data are inconsistent with the general postulate 
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that 5-HT is a hypnogenic neurotransmitter, 5-HT neurons may play some role 

in the PGO spikes -gating mechanisms- For example a decreased brain 5HT vas 

associated with the release of PGO spikes into the NREM and awake states 

(Jouvet, 1974). 

Although the role of 5-HT in the regulation of vigilance states is not 

clear it has been recently proposed that 5-HT, released as neurotransmitter 

during waking, might also act as a neurohormone in inducing the synthesis 

and/or the liberation of hypnogenic factor(s). These would be stored, and 

later influence SWS and PS (Jouvet, 1984). 

iv) p-phenylethylamine (PEA} 

P-Phenylethylamine is an endogenous _occurring amine present in the 

mammalian brain. It is the substrate for monoamine oxidase B (MAO-B). The 

structural similarity between PEA and amphetamine (a-methylphenylethylamine) 

has led to the suggestion that PEA may act as an endogenous amphetamine 

(Sandler and Reynolds, 1976). Increasing the concentrations of PEA in the 

brain results in desynchronised EEG pattern and behavioural arousal in 

several mammalian species (Sabelli et al., 1975; Dzoljic et al., 1977). 

Sleep polygraphic studies also demonstrated that both NREM and REM sleep 

stages were suppressed by inhibitors of MAO-B (Cohen et al., 1982). PEA may 

therefore be considered as one of the neuromodulators of wakefulness. 

v) Acetylcholine {Ach) 

Several experiments in animals and human subjects have demonstrated an 

involvement of acetylcholine (Ach) in the induction of REM sleep. 

Both blockade of Ach receptors and inhibition of Ach synthesis using 

atropine, scopolamine or hemicholinium is generally accompanied by a decrease 

in REM sleep. (Domino et al., 1968; Domino and Stawisk, 1970) and reduced 

the frequency of PGO spikes {Henriksen et al., 1972). 

The cholinesterase inhibitor, physostigmine and the muscarinic agonist 

arecoline, facilitated REM sleep at low doses and wakefulness at high 

concentrations (Sitaram and Gillin, 1980). In cats, physostigmine prolonged 

REM sleep periods with increase in rapid eye movements, PGO spikes and atonia 

(Domino et al., 1968). 

vi) Gamma-aminobutyric acid (GABA) 

GABA and it's metabolite gamma-hydroxybutyrate (GHB), appear to possess a 

sleep enhancing effect in several mammalian species. GHB stimulated REM 
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sleep-like state in cats (Stock, 1982). A hypnogenic role for GABA, is also 

supported by the finding that GHB induced EEG synchronisation (Dzoljic et 

al., 1975). Recently L-cycloserine, a substance which can increase brain 

GABA increased NREM and REM sleep stages. However REM sleep was decreased by 

high doses of this substance (Scherschlicht, 1985). 

1.3.2 Neuropeptides and hormones 

i) Endogenous opioid peptides 

Endogenous opioid peptides appear to play an important role in the 

regulation of sleep-wakefulness cycle in both man and animals. However, many 

aspects of the relationship between opioid peptides and sleep have not been 

elucidated yet. Many suggestions related to sleep and opioid peptides are 

derived from stimulation ~~d/or blockade of opioid receptors with drugs as 

morphine and naloxone. 

Morphine is an opium alkaloid named by Serturner in 1803 after Morpheus 

the Roman god of dreams. Electrophysiological studies indicate that this 

name is not appropriate. The intravenous (iv) administration of morphine 

produced a dose-dependent increase in wakefulness, and muscular tension, 

while delta sleep, REM sleep (dreaming period) and sleep efficiency were 

decreased in human subjects (Kay et al., 1969 ). Lewis and co-workers 

(1970), demonstrated that heroin also reduced REM sleep, delayed sleep onset 

increased wakefulness. Thus, stimulation of opioid receptors 

consistently induced insomnia in human subjects. 

Studies in animals are also supportive of a stimulatory role for opioid 

peptides. Diurnal variations in enkephalins, ~-endorphin and dynorphin in 

brain areas important for the regulation of sleep-wakefulness correlate with 

the basic light (rest)-dark (active) cycle in rodents. Thus the peak of 

methionine-enkephalin concentrations in the anterior, medial basal 

hypothalamus, preoptic area and stratium occur during the dark period and 

decline to lowest levels during the light phase (Kumar et al., 1982; Tang et 

al., 1984). ~-Endorphin also reached a peak concentration in the preoptic 

area, pons, medulla oblongata, cerebellum and anterior pituitary during the 

dark phase (Kerdelhue et al., 1983). Similarly immunoreactive dynorphin 

concentrations were highest during the dark phase in the hypothalamus and 
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pituitary (Przewlocki et al., 1983). The diurnal variation in opioid peptide 

concentrations, with peaks during dark periods, suggest that opioid peptides 

might play an important role in priming animals for wakefulness as the dark 

period is kno~ to suppress sleep in rats (Inoue et al., 1984; 1985). 

Other animal experiments have demonstrated that stimulation of opioid 

receptors with opioid peptides or opiates is accompanied by an increased 

wakefulness. Administration of $-endorphin or morphine decreased both NREM 

and REM sleep stages and increased wakefulness in rats and cats (Khazan et 

al., 1967; Echols and Jewett, 1972; King et al. 1981; Scherschlicht et 

al., 1982). Microinjection of (D-Ala2 )-Met5-enkephalinamide (DALA) and 

$-endorphin and des-Y-endorphin into the ventral tegmental area stimulated 

behavioural wakefulness manifested as increased locomotor activity (Broekkamp 

and Phillips, 1979; Stinus et al., 1 980). The lack of a clear 

sleep-influencing effect after intracerebroventricular administration of met­

or leu- enkephalin (Riou et al., 1982) could be explained by the fact that 

these peptides are rapidly metabolised by enkephalinases present in the 

cerebrospinal fluid (Dzoljic et al., 1985). S~udies with DALA a more 

resistant analog of met-enkephalin, have demonstrated an increase in both 

behavioural and EEG wakefulness (Tortella et al., 1978; Dzoljic and Crucq, 

1 979). DALA was found to induce biphasic effects, an initial stupor with 

high voltage slow waves with eyes open and arousal with activated EEG 

pattern. 

Collectively these data indicate that endogenous opioid system play an 

important role in the maintaince of wakefulness in human and animals. The 

mechanism of the arousal effects of opiates and opioid peptides is still not 

clear. It does not appear to involve 5-HT or NA, since pretreatment with 

5-hydroxytyptophan or ~-methyl tyrosine did not alter the arousal effect of 

morphine (Echols and Jewett, 1972). 

An additional point of interest is that diurnal physiological sleep 

period is preceded by intensive grooming which declines prior to diurnal 

arousal phase (Bolles, 1960; Cooper, 1981 ). Following the administration of 

morphine or the synthetic enkephalin RX 783030 grooming episodes were 

extended and sleep reduced. Naloxone however decreased grooming and 

increased sleep (Echols and Jewett, 1972; Cooper, 1981 ) . In contrast, 

naloxone failed to alter sleep-wakefulness (King et al., 1981 ). However, 
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besides this and the fact 

suppress sleep is not fully 

that the mechanism (s) by which opioid/opiates 

understood, it has been proposed that the 

activation of endogenous opioid system impaired the mechanism responsible for 

switching from grooming to sleep (Cooper, 1981 ). 

ii) Endogenous sleep-waking factors 

The concept of sleep factors (hypnotoxins) was initiated by the classical 

experiments of Lengendre and Pieron (1910) in which the cerebrospinal fluid 

{CSF) or serum of sleep deprived donor dog induced sleep in non-deprived 

recipient dogs. Since then several sleep promoting factors have been 

extracted from various tissues and fluids from different animals. Two basic 

approaches have been utilised in the search for the endogenous sleep 

promoting factors:- a) that sleep promoting factor should accumulate during 

prolonged waking and b) that sleep promoting factors should be extractable 

during spontaneous sleep. 

1) Foetor S 

Sleep inducing Factor S is derived from CSF and brains of sleep deprived 

animals (Pappenheimer et al .• 1967). The icv administration of FactorS was 

able to increase delta sleep in rabbits and rats (Pappenheimer et al .• 1967; 

Fencl et al .• 1971 ). Recently Krueger (1983) identified FactorS derived 

from the urine of sleep deprived subjects as a muramyl peptide. The icv 

administration of the synthetic analog of muramyl peptide such as muramyl 

dipeptide (MDP) induced s:eep and fever in rat in a similar fashion to Factor 

S (Krueger. 1983). A slight and slow cumulative increase of SWS in rats were 

observed only after icv administration of MDP during the dark period (Inoue 

et al .• 198~). MDP is present in the cell membrane of bacteria found in the 

urine. Whether MDP is truely the endogenous sleep factor S or derived from 

bacteria floral in the urinary tract remains to be clarified. 

2) Sleep-promoting-substance (SPS) 

The accumulation of sleep-promoting-substances (SPS) in the brain stem 

from 24 h sleep deprived rats has been well documented (Inoue et al. 1985). 

The crude brain stem extracts have been demonstrated consistently to reduce 

locomotor activity and increase total SWS and REM sleep in mice and rats 

(Inoue et al .• 1985). 

Four active components have been separated from the original crude 

extract SPS. A fraction which appears to be identical to the nucleoside 
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uridine, increased both SWS and REM sleep in mice (Komoda et al., 1983) and 

rats (Inoue et al., 1985). An interesting aspect o~ these studies is that 

SPS £acilitates sleep during the dark period but not in the light phase. 

This is in line with the concept that an endogenous sleep substance should 

not induce additional sleep when the physiological demand for sleep has been 

satisfied (Inoue et al., 1985). 

3) REM sleep factor 

REM sleep deprivation appears to induce the accumulation of REM sleep 

factor. The icv administration of CSF from REMSD cats restored REM sleep 

during PCPA induced insomnia in cats (Sallanon et al., 1982) and reversed the 

REM sleep deficit induced by ~-adrenergic blockade (Adrien and Dugovic, 

1984). 

4) Delta sleep-inducing peptide 

Delta sleep-inducing peptide (DSIP) is derived from the brain and GSF of 

animal kept asleep by electrical stimulation of the intralaminar thalamus 

(Monnier et al., 1963). This sleep factor has been identified as nonapeptide 

(Schoenenberg and Monnier, 1977). Central administration of DSIP enhanced 

both NREM and REM sleep stages (Ursin and Larsen, 1983; Inoue et al., 1984). 

However, DSIP injected ip was not effective and tended to increase 

wakefulness (Tobler and Borbely, 1980). The hypnogenic effect of DSIP was 

mostly detected at low doses, while high doses were not effective 

( Scherschlict et al., 1984). In clinical trials :)SIP given intravenously 

increased REM sleep, SWS, spindle sleep, sleep efficiency and decreased the 

frequency of awakening in insomniacs. No sleep rebound was demonstrated 

after drug withdrawal (Schneider-Helmert, 1985). DSIP appear to interact 

with opioid receptors since it could antagonized stress or morphine-induced 

insomnia and the naloxone-precipitated withdrawal in dependent animals 

(Scherschlicht et al., 1984). It thus appear that the pharmacological action 

of DSIP in human and animals depends on environmental conditions and the 

pathophysiology of the organism. 

5) Mesencephalic reticular formation perfusate 

Drucker-Colin (1973) found that the perfusate collected via a push-pull 

cannula from the mesencephalic reticular formation (MRF) of a sleeping donor 

cat decreased sleep latency and increased SWS, without affecting REM sleep. 

Antibodies produced to MFR perfusate peptides collected during REM sleep, 
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decreased REM sleep in cats. 

6) Sleep and waking factors from cerebrospinal fluid (CSF) 

CSF collected from rats during the light period (sleep phase) inhibited 

dark time locomotor activity, while CSF obtained during dark period enhanced 

locomotor activity in the light phase (Sachs et al., 1976). These findings 

are of interest since opioid peptides which are possibly neuromodulators of 

wakefulness, reached peak concentrations during the dark phase (Kumar et al., 

1982; Kerdelhue et al., 1983; Tang et al., 1984). 

7) Growth hormone (GH) 

GH induced a dose-related increase in REM sleep but decreased SWS in both 

animals and man (Drucker-Colin et al., 1975a; Mendelson et al., 1980). 

These data support the suggestion that SWS induced GH release is essential 

for REM sleep induction (Stern and Morgane, 1977). 

1.4 Functions of sleep 

It is generally known that one night sleep loss is followed by very 

annoying symptoms such as fatigue and decreased vigilance. Sleep is often 

assigned a restorative function. Such simplistic a concept would have been 

teneable if sleep was monophasic and accompanied by a near halt of all 

activities. However the discovery that NREM and REM sleep stages were 

distinct states was a tacit indication they may serve different functions. 

Attempts to formulate the roles of sleep in the life of an organism has given 

rise to many theories of the function of sleep. 

1.4.1 Ontogenetic function 

One important observation during ontogenesis is the preponderance of REM 

sleep (active sleep) in human neonates, rat pups and kittens (Roffwarg et 

al., 1966; Jouvet-Mounier et al., 1970). Thus in human neonates REM sleep 

occupies 50 % of the total time and even higher in premature infants. In rat 

pups, kittens and foetal guinea pigs, REM sleep occupy about 60-80 % of the 

total time. These reports indicate that REM sleep may provide the necessary 

endogenous stimuli for brain maturation and development at the critical time 

during which neural elements are being rapidly organised. This line of 

reasoning forms the basis for the -ontogenetic theory" of REM sleep function. 
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This hypothesis is supported by the £act that £rom birth to young adulthood 

human NREM sleep was reduced by 25 % while REM sleep was reduced by 75 % 

(Roffwarg et al., 1966). 

Suppression of active sleep in rat pups with chlorimipramine not only 

altered neural growth and DNA content of some brain areas but also induced 

increased anxiety level and a deficiency in sexual activity of adult animals 

(Corner et al., 1980). Although several reports are supportive of the 

ontogenetic theory of REM sleep, the persistence of this sleep state in adult 

animals is still a puzzle. It has been suggested that REM sleep in adults 

may regulate adaptive behaviours (McGrath and Cohen, 1978). 

1 .4.2 Cognitive function 

In adult animals and humans REM sleep appear to be essential for 

learning, memory and intellectual functions. A recent comprehensive review 

showed a consistent positive relationship between learning and an increase in 

REM sleep (Smith, 1985). Studies based on REM sleep deprivation also suggest 

a functional ~ole in unprepared learning (McGrath and Cohen, 1978). The 

cognitive theory of function of REM sleep is also supported by the clinical 

observations that REM sleep was reduced in mentally retarded patients, 

(Petre-Quadens, 1966). 

1.4.3 Synthetic function 

REM sleep provide a condition for increased polypeptide synthesis 

(Drucker-Colin and Valverde-R, 1982). The peptide synthesis function of REM 

sleep appear to be related it's role in learning and memory. Whilst learning 

increases protein synthesis, substances which can decrease protein synthesis 

disrupts retrival and memory consolidation (Rogers et al., 1974; Flood et 

al., 1975) and suppress REM sleep (Drucker-Colin and Valverde-R 1982). Thus 

REM sleep in adult animals might allow the high turnover of proteins 

necessary for neural reprogramming. 

1.4.4 Restitutive function 

Hartmann (1973) and Oswald (1974) proposed a cerebral or brain 

restitution function for REM sleep. This view is supported by the findings 

that REMSD in human subjects reduced the ability to cope with stressful 
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events (Greenberg et al., 1972). Since REMSD is associated with increased 

motivational behaviour, such as hypersexuality and aggressiveness, REM sleep 

has also been considered to reduce waking drive behaviours (Vogel, 1979). 

The main theory of the function of SWS is that serves bodily restitution 

and musculoskeletal recovery (Hartmann, 1973; Oswald, 1974). A 

behaviourally active day increased SWS stages without altering sleep length 

and REM sleep (Horne and Minard, 1985). In addition GH, which stimulates 

uptake of amino acid into tissue (Korner, 1965), is released by SWS 

(Takahashi et al., 1968). 

1.5 Sleep deficiency 

1.5.1 Total sleep deprivation (TSD) 

TSD in rats and man was followed by sleep rebound. An increase in SWS 

being the most pronounced effect {Borbely, 1982). 

Changes in hormones, enzymes, proteins and some neurotransmitters have 

been observed after TSD. For example TSD induced an increase in the release 

of thyroid stimulating hormone, thyroid 

hydroxylase activity {Sinha et al .• 1973: 

al., 1979). Steriods such as 

hormones, melatonin and tyrosine 

Parker et al •. 1976; Palmbald et 

testosterone, androstenedione, 

dihydrotestosterone and estradiol were decreased after TSD, while the 

pituitary hormones prolactin, follicle stimulating hormone, 

hormone and the adrenal cortex hormone, cortisol were 

{Cortes-Gallegos et al., 1983). 

luteinizing 

not affected 

In rats, TSD increased cerebral GABA levels but decreased glutamic acid, 

glycine, alanine and lysine (Godin and Mandel, 1965). Comparing the effects 

of TSD and REMSD, Panov (1982) found that TSD increased the RNA contents of 

the locus coerulus and n. raphe pontis, while REMSD was associated with a 

decrease in RNA in these brain areas. 

There were no changes in 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) 

levels following TSD (Wesemann and Weiner,1982), whereas there was an 

increase in 5-HT and 5-HIAA after 1 h sleep recovery (Borbely et al., 1980). 

Profound behavioural changes have been demonstrated after TSD. Thus 

there a was decrease in speed of performance, alertness, accuracy (Lubin et 

al., 1974; Loveland and Williams. 1963), motivation, and induced mood 
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deterioration (Johnson, 1969). Prolonged TSD (60-90 h) induced 

depersonalization, hallucination, cognitive disorganisation and loss of 

thought train (Morris et al., 1960). 

Sleep deprivation has also been demonstrated to increase epileptic 

phenomena (Pratt et al., 1968). Little is known of the biological 

consequences of selective SWS deprivation. 

1.5.2 REM sleep deprivation (REMSD) 

1.5.2a Methodological aspects of REM sleep deprivation 

In human REMSD is induced by using the forced arousal technique (Dement, 

1960). The same method can be used in animals. In this method animals are 

implanted with EEG/EMG electrodes for sleep stage monitoring and subsequent 

arousal with sensory stimulus any time the animal entered into REM sleep. 

Selective REMSD using the forced arousal technique presents very serious 

practical problem. Using this technique in rats Morden and co-workers (1967) 

found that the number of awakenings from REM sleep, rose rapidly from 135/8 h 

on first day to 350 on the third day. It became practically impossible to 

arouse animals from REM sleep without curtailing NREM sleep. An ingenious 

method was devised by Jouvet and co-workers (1964) which involves placing a 

cat on an inverted -flower pot- surrounded by a pool of water. The technique 

is based on differences in muscle tone during NREM and REM sleep stages. 

While sitting on the flower pot (=platform, island or pedestal), the animal 

can obtain NREM sleep since muscle tone is present, but during REM sleep 

muscle tone is abolished which causes the animal to wet it's nose or fall 

into the water. The -flower pot- technique was adapted for rats by Cohen and 

Dement (1965) and for mice by Fishbein (1970). REMSD by the flower pot 

technique has obvious advantages over forced arousal: 

a) several animals can be REM sleep deprived at the same time 

b) the experimenter is not required to monitor the sleep 

polygraph 

Both of these. help to reduce the over all cost of the experiments. There 

are however other practical problems associated with using -flower pot- for 

REMSD: 

a) the extent of REMSD 
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b) the technique introduces stress factors such as dampness 

and confinement 

b) there is the additional problem of cleaning the tank and 

animals daily 

Several studies have demonstrated that rats on small platforms (4-7 em 

diameter) were more REM sleep deprived than animals on large platforms 

(11.5-14 em diameter) (Morden et al., 1967; Mouret et al., 1969). These 

studies revealed that REM sleep was also reduced in the large platform 

animals although to less extent. However in these studies, sleep was 

monitored for a few hours rather than the for the whole 4-5 day period. The 

elaborate studies of Mendelson and co-workers (1973; 1974) in which they 

followed sleep polygraph of rats on platforms continously for 4 days have 

clarified this problem. In these reports rat weighing 200-225 g, and 

platform with diameters 6.5 em (REMSD) and 11.5 em (stress group) were used. 

Under these conditions, there was no essential difference in the degree of 

REMSD in the small and large groups during the first 24 h. However in the 

fourth 24 h rats on large platforms has no REM or NREM sleep loss, whereas in 

the small platform group REM sleep was reduced by 50 ~ but NREM sleep was not 

different from baseline. The work of Mendelson's group sets a good standard 

(100 g rat body weight/14.7-15.6 cm2 platform area) for using the -flower 

pot- technique to selectively deprive rats of REM sleep. However rats must 

be maintained for at least 48 h on platforms to achieve REMSD selectivity 

(Vogel, 1975). A corresponding stress group (large platform. 100g rat body 

weight/ 54-61 cm2 platform area) should be added to the experimental design. 

The selectivity of the pedestal technique for REMSD in rats has also been 

recently validated electrophysiologically (Hilakivi et al., 1984). The 

discrepancies often encountered in studies using the -flower pot- technique 

are probably due to the uncritical attitude of some workers in disregarding 

the ratio of animal size to platform diameter or area This problem has 

been fully discussed (Hicks et al., 1977). 

A second confounding factor in the -flower pot- technique of REMSD is the 

stress (dampness and isolation) which is associated with the procedure. It 

has been reported that rats on small platforms lost about 10 ~ of their 

initial body weight compared with control animals in home cages (Dement et 

al., 1967). However, Selye·s indices of stress (weight loss, adrenal 
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hypertrophy and thymus atrophy) and stomach ulceration were not signi~icantly 

different between small (REMSD) and large platform (stress) rats (Mendelson 

et al., 1 974; Levental et al. , 1975; Coenen and van Luij telaar, 1 985). In 

addition there were no differences in blood counts and lympoid tissue 

histology between REMSD and stressed animals (Drucker-Galin et al., 1974). 

Another procedure has also been used to control for stress factors associated 

with REMSD by - flower pot- technique. In this rats are forced to swim in 

water of 18-19 °C, 10 em deep. for 1-2 h daily and thereafter allowed to have 

undisturbed sleep. Adrenal hypertrophy and body weight loss were not 

different between -swimming- rats and animals REM sleep deprived by the 

-flower pot method (Stern et al., 1971; Mendelson et al., 1974). The 

Seyle's stress indices were not essentially different in rats REM sleep 

deprived by the new pendulum procedure or the classical -flower pot­

technique (Coenen and van Luijtelaar, 1985). 

Studies in mice (25 g body weight) also indicate that these animals 

placed on platforms (1-3 em diameter) were more REM sleep deprived than 

animals on large platforms (8-25 em diameter) (Fishbein, 1970; Kitahama and 

Valatx, 1 980). 

In conclusion, these data indicate that the -flower pot- technique is 

still a reliable procedure for REMSD in rodents. The large platform or 

forced swimming are adequate controls for the stress factors associated with 

the flower pot technique for REMSD. In order to reduce the str_ess due to 

confinement, animals in both small and large platforms should be allowed 

daily free locomotion in home cages. 

1.5.2b Biochemical changes after REM sleep deprivation 

i) Serotoninergic system 

It has been demonstrated that REMSD increased the rat brain serotonin 

(5-HT) turnover (Pujol et al., 1968). Weiss and co-workers (1968) also 

confirmed that REMSD increased 5-hydroxyindoleacetic acid (5-HIAA) but 

decreased 5-HT in the brains of rats deprived of REM sleep. Following REMSD 

there was also an increase in the formation of [3H]-serotonin from 

[ 3H]-tryptophan in the brainstem-mesencephalon in rats (Hery et al., 1970). 

In cats there were no alterations in the CSF 5-HIAA levels (Radulovacki, 
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1973) a£ter REMSD, but Livrea and co-workers (1977) demonstrated an increase 

in 5-HIAA in the lumbar CSF of human subjects, deprived of REM sleep. 

However no changes in 5-HT2 binding sites in the frontal cortex of REM sleep 

deprived animals have been demonstrated (Farber et al., 1983). REMSD induced 

changes in 5-HT levels in some brain regions. 5-HT concentrations were 

decreased in the locus coerulus and A5 but increased in frontal cortex and 

ventral tegmentum area without alterations in 5-HIAA concentrations in these 

brain areas (Mattiace et al., 1983). 

ii) Dopaminergic system 

Biochemical analysis shows that REMSD for 4-10 days increased striatal 

dopamine concentrations in rats (Ghosh et al., 1976). without altering lumbar 

CSF concentrations of homovanillic acid (HVA) in human subjects (Livrea et 

al., 1977). Farber and co-workers (1983) found that REMSD increased the 

concentration of dihydroxyphenylacetic acid (DDPAC) in the striatum and 

frontal cortex of rats compared with controls but not with the stress group. 

There were no changes in the binding of pre- or post-synaptic DA receptors. 

iii) Noradrenergic system 

REMSD did not alter noradrenaline (NA) turnover brain of rats (Pujol et 

al., 1968b). However increases in NA turnover after REM sleep rebound was 

reported (Pujol et al., 1968b). Changes in NA and it's metabolite, 

3-Methoxy-4-hydroxyphenylglycol (MHPG), after REMSD have recently been 

demonstrated (Mattiace et al., 1983 ). It was found that REMSD induced a 

decrease in NA and MHPG levels in A5~ and an increase in MHPG levels, without 

affecting NA concentrations in 

dorsal raphe. REMSD did 

the 

not 

striatum, ventral 

alter [ 3H]clonidine 

tegmental area and 

( o:2 ) bin ding sites 

(Mogilnicka and Pile, 1981 ), but decreased$ receptor binding (Mogilnicka et 

al., 1980). However other workers found no changes in$ receptor binding in 

the brain of REMSD animals (Abel et al., 1983). 

iv) Cholinergic system 

A decrease in Ach concentration was observed in the telencephalon of 

REMSD rats (Tsuchiya et al., 1969). There were no alterations in striatal 

concentration of Ach after 96 hr REMSD, whereas a decrease was observed after 

10 days of REMSD (Ghosh et al .• 1969). 

v) Amino acids 

In cats deprived of REM sleep GABA concentrations were increased in the 
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reticular ~ormation, thalamus and frontal cortex, while decreases were 

observed in the colliculi and caudate nucleus (Micic et al., 1969; Karadzic 

et al., 1971 ). Whole brain GABA, glutamic acid, glutamine and threonine were 

not changed in the brain of REM sleep deprived animals (Himwich et al., 

1973). 

vi) Peptides 

Alterations in peptides in some brain areas and the pituitary have been 

observed after REMSD. Thus substance P was reduced in locus coerulus (LC), 

central grey area (CG), medial and dorsal raphe (MR, DR). ventral tegmental 

(VTA), substantia nigra zona compacta (SNC), medial hypothalamus (HMC) and 

caudate areas, whereas somatostatin levels were reduced in DR, CG, SNC and 

VTA. Increases of these peptides were seen in caudate and preoptic areas 

after REMSD (Mattiace et al., 1981 ). $-Endorphin concentrations were 

decreased in the pituitary but increased in the hypothalamus of REM sleep 

deprived rats (Przewlocki, 1984). 

vii) Nucleic acids and protein metabolism 

The neuronal RNA content of the brain stem nuclei, including the 

supraoptic nucleus, was decreased in REM sleep deprived animals (Demin and 

Rubinskya, 1974). Similarly, Panov (1982) found a decrease in RNA 

concentrations in then. raphe dorsalis, n. raphe pontis and locus coerulus 

after REMSD. 

Protein synthesis in some brain areas, such as 

telencephalon, cerebrum and brainstem, was inhibited 

{Bobillier et al., 1974; Shapiro and Girdwood, 1981 ). 

the cerebellum, 

by REMSD in rats 

1.5.2c Electrophysiological changes after REM sleep deprivation 

i) Neuronal excitability 

Several studies have demonstrated that REMSD lowered seizure thresholds 

in both animals and man (Cohen and Dement, 1965; Bergonzi et al., 1973). 

Studies of evoked potentials also indicate that REMSD can modulate neuronal 

excitability. Thus REMSD facilitated recovery of cortical potentials evoked 

by external auditory stimuli (Dewson et al., 1967). Satinoff and co-workers 

(1971) have reported that REMSD increased the paleocortical excitability as 

assessed by evoked potentials, but decreased evoked activities in the 
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hindbrain sensory areas induced by stimulation of hindbrain sensory nuclei. 

It was then suggested that REMSD amplifies cortical responsiveness by 

inhibiting internally generated signals (Satinoff et al., 1971 ). In line 

with the concept that REMSD increased cortical excitability, Bowersox and 

Drucker-Galin (1982) demonstrated that the amplitude of entorhinal cortical 

evoked potentials, following prepyriform cortex stimulation, was increased by 

REMSD. In contrast, photic evoked potentials in the visual cortex was 

decreased after REMSD (van Hulzen and Coenen, 1984). 

increased neuronal excitability. 

In general REMSD 

1.5.2d Behavioural changes after REM sleep deprivation 

i) Nociception 

REM sleep appears to be essential for the regulation of nociception. 

Thus it has been demonstrated that REMSD reduced the pain threshold to 

noxious electrical stimulation. The decrease in pain threshold 

evident 96 hr after the termination of REMSD (Hicks et al., 1978; 

ii) Waking motor and motivated behaviours 

was still 

1979a). 

An increase in the number of cage crossings has been demonstrated during 

the 10-15 min after REMSD (Albert et al., 1970; van Hulzen and Coenen, 

1981 ). REMSD reduced neophobia, increased exploration, ambulation and 

rearing (Hicks et al., 1979b; Moore et al., 1979; Mogilnicka et al., 1985). 

Shock provoked aggression was facilitated in REM sleep deprived animals 

(Hicks et al., 1979). 

Hypersexuality, manifes~ed as compulsive mounting behaviour was provoked 

by chronic REMSD in cats (Dement et al., 1967). 

REMSD lowered the threshold and frequency for intracranial self 

stimulation (ICSS) at the medial forebrain bundle site in rat (Steiner and 

Ellman, 1972), whereas ICSS of the lateral hypothalamic area was not altered 

(Marti-Nicolovius et al., 1984). 

Further support for the concept that REM sleep is involved in 

motivational behaviours, comes from the report that REMSD also enhanced food 

competition between male rats (Hicks et al., 1981 ). 

iii) Learning and memory 

Several authors have studied the effect of REMSD on learning and memory, 
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however most of the results are conflicting (Smith, 1985). For example Stern 

(1971) reported that REMSD induced a clear learning deficit in one way active 

and passive avoidance tests but Albert and co-workers (1970) could not 

confirm this observation. Similarly, retention of a condition passive 

avoidance response was disrupted by REMSD (Leconte and Bloch, 1970). These 

conflicting findings appear to be due to the lack of proper control of rat 

body weight to platform size, so that there may have been no great difference 

in REMSD between small (REMSD) and large (control) platform animals (Hicks et 

al., 1977). However another group using a different procedure for REMSD 

found no alteration in the two way shuttle avoidance response in animals 

deprived of REM sleep (van Hulzen and Coenen, 1979). 

Contradictory effects of REMSD on memory in humans have also been 

reported. REMSD had no effect on memory (Chernik, 1972) whereas a decrease 

in memory was reported after REMSD (Fowler et al., 1973). In another study 

REMSD decreased creativity (divergent or flexible thinking) but improved 

serial memory task (Lewin and Glaubman, 1975). 

Although some inconsistency exist in literature, the weight of evidence 

suggests that REMSD may disrupts complex and unprepared forms of learning, 

especially those with emotional components (McGrath and Cohen, 1978). 

1.5.3 Clinical aspects of REM sleep deprivation 

i) Depression 

Sleep pattern is generally altered in depressive conditions. The major 

disturbance in depression involves shortened REM latency, an extended first 

REM period, increased REM density/activity and a decrease in delta sleep 

(Kupfer et al., 1984). 

It has been demonstrated that REMSD can improve some forms of endogenous 

but not reactive depressions (Vogel et al., 1975; Vogel, 1980). In these 

elaborate clinical studies, endogenous depressives that were not improved by 

REMSD did not respond to imipramine. Summarizing the recent literature, 

Vogel (1983) outlined evidence for the therapeutic efficacy of REMSD in a 

subtype of endogenous depression: 

a) REMSD and imipramine have similar therapeutic efficacies 

b) The usefulness of antidepressant was related to their 
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ability to induce substained and large REMSD 

c) Drugs such as barbiturates, alcohol, diphenylhydantoin, 

opiates and amphetamines can induce short-lasting REM 

sleep reduction. In addition tolerance to REM sleep 

inhibiting properties of these drugs develops rapidly, 

usually within one week or less. These drug possess no 

antidepressant properties. 

d) The behavioural effects of REMSD in animals, such as 

increased sexuality and aggressiveness, are opposite to 

the behavioural alterations present in human depression. 

In addition, wide range of typical and atypical antidepressants, induced 

selective REM sleep suppression with little or no alterations in NREM sleep 

stage (Scherschlicht et al., 1982). 

It has become generally accepted that REMSD can improve some forms of 

endogenous depression and may in fact be part of the mechanism by which 

antidepressants exert their therapeutic action (Vogel, 1983). The 

antidepressant action of REMSD was long lasting up to 21 days. 

ii) Schizophrenia 

Unlike depression, REMSD did not alter schizophrenic symptoms (Vogel and 

Traub, 1968; Gillin et al., 1974). It was also demonstrated that REM sleep 

rebound, following REMSD, was exaggerated in schizophrenics. Thus it was 

suggested that active schizophrenia was associated with a decrease in REM 

sleep need (Gillin et al., 1974). 

iii) Epilepsy 

Sleep disturbances and seizure phenomena often co-exist in human 

epileptics. For example, patients with grand mal seizure had reduced REM 

sleep, whereas NREM sleep stage 2 was increased (Besset, 1982). Sleep 

pathology in epileptics with cortical or deep temporal foci was mainly in the 

form of a decrease in NREM stages 3 and 4 (Montplaisir et al., 1982). 

In addition to sleep disturbances associated with epilepsies, some 

seizure activities occur preferentially in sleep while others occur in 

wakefulness 

The paroxysmal discharges in petit mal epilepsies were facilitated by 

sleep onset and awakening. Two subgroups of petit mal seizure exist, 

classified according to the distribution of epileptic discharges during 
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sleep. In one group epileptic discharges occur during REM sleep. while in 

the second group paroxysmal discharges were suppressed during REM sleep (Ross 

et al., 1966; Billiard, 1982). 

REMSD has been demonstrated consistently to lower the seizure threshold 

in experimental animals (see section 1 .5.2c). In human epileptics, REMSD 

facilitated seizure activity during the night after REMSD was stopped 

(Bergonzi et al., 1973). In another report selective SWS deprivation, rather 

than REMSD, was more effective in provoking epileptic attacks in pycnoleptic 

children (Becket al., 1977). 
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CHAPTER 2 

ENDOGENOUS OPIOID PEPTIDES 

2.1 Nomenclature and classification 

The discovery that electrical stimulation of the periaqueductal gray area 

induced morphine-like analgesia (Akil et al., 1972) led to the search for an 

endogenous opiate ligand. Later Hughes and co-workers (1975; 1975a) 

isolated an endogenous compound from the brain with pharmacological 

properties similar to that of morphine. They termed this endogenous 

morphine-like compound enkephalin (from en kephalos, in the head). From the 

initial extract named enkephalin two related pentapeptides which differ only 

in the carboxyl terminal amino acid were identified (Hughes et al., 1975b), 

namely methionine-enkephalin (met-enkephalin, met-ENK) and leucine-enkephalin 

(leu-enkephalin, leu-ENK). Since the initial discovery of endogenous opioid 

pentapeptides by Hughes and co-workers, several other ligands with opioid 

activity have been isolated from various tissues in different animals (Hughes 

et al., 1980; Bloom, 1983). 

Other peptides with opioid activity were found in the pituitary and 

designated ~-endorphin (Li and Chung, 1976), ~. andY-endorphin (Bradbury et 

al., 1976; Ling et al., 1976). 

Opioid peptides which are extended leu-ENK sequences have been extracted 

from the pituitary. Goldstein and co-workers (1979) isolated and named a 

pituitary opioid peptide as dynorphin1_
13

. In the same year another opioid 

peptide, a decapeptide described as -big- leu-ENK was named ~-nee-endorphin 

(Kangawa and Matsuo, 1979). Other peptides include dynorphins 1_
8

, 

dynorphin 1_17 and ~-nee-endorphin (Minamino et al., 1980; 1981; Goldstein 

et al., 1981 ). Several other morphine-like substances have been isolated 

from various animal tissues for example, ~-casomorphins derived from £-casein 

(Brantl et al., 1979) and humoral (H) endorphin (Sarne et al., 1978). 
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2.2 Metabolism of endogenous opioid peptides 

At present three classes of endogenous opioid peptides have been 

described : ~-endorphin, enkephalins and dynorphin. There is now sufficient 

evidence that these opioid peptides originate from three different precursors 

(Hughes et al., 1980). 

2.2.1 Biosynthesis 

i) ~-endorphin 

Biochemical evidence in the literature indicate that $-endorphin and 

other non-opioid such as corticotropin, 

$-melanocyte-stimulating hormone (MSH), p-lipotropin and adrenocorticotrophic 

hormone (ACTH) are formed from a common precursor termed pro-opiomelanocortin 

(POMC)(Hughes et al., 1980; Bloom, 1983). The POMC derived peptides are 

produced by proteolytic cleavage of the lipotropin. 

ii) Enkephalins 

Several studies have demonstrated that enkephalins are produced from a 

ribosomally synthesized protein precursor termed pro-enkephalin (Hughes et 

al., 1980). This pro-enkephalin contains one copy of leu-ENK and six of 

met-ENK (Noda et al., 1982). Several synthetic analogues of enkephalins have 

been produced for example, D-Ala2 -met5-enkephalinamide (DALA) and 

D-Ala2-D-Leu5-enkephalin (DADLE). 

Structures of enkephalins 

Met-enkephalin:- Tyr-Gly-Gly-Phe-Met 

Leu-enkephalin:- Tyr-Gly-Gly-Phe-Leu 

iii) Dynorphin 

Dynorphin and ~-nee-endorphin are derived from a protein precursor termed 

prodynorphin (Kakidani et al., 1982). 



48 

2.2.2 Biodegradation of enkephalins 

Opioid peptides are inactivated by several peptidases present in 

mammalian tissues. 

i) Soluble aminopeptidases 

Aminopeptidases degradate enkephalins by cleavage of the Tyr-Gly peptide 

bond. The major metabolite following aminopeptidases hydrolysis of 

enkephalins is tyrosine (Hambrook et al., 1976). These enzymes can be 

inhibited by bestatin. 

ii) Enkephalinase A 

Enkephalinase A is a dipeptidyl-carboxypeptidases which cleaves Gly-Phe 

peptide bond in enkephalins. Enkephalinase A is sensitive to inhibition by 

thiorphan, phosphoramidon and kelatorphan (Hudgin et al., 1981; Waksman et 

al., 1985). 

iii) Enkephalinase B 

Enkephalinase B is a dipeptidyl~aminopeptidase which inactivates 

enkephalins by cleavage of Gly-Gly amide bond (Gorenstein and Synder, 1979). 

No selective inhibitor of this enzyme has been demonstrated. 

iv) Angiotensin-converting-enzyme (ACE) 

Similar to enkephalinase A, ACE hydrolyses Gly-Phe amide bond of 

enkephalins, but does not appear to play an essential role in in vivo 

situations (Erdos et al., 1978). Captopril which is an inhibitor of this 

enzyme, does not modulate the enkephalinergic system in vivo. 

Enkephalins are inactivated in vitro by all four enzymes mentioned above. 

However, the soluble amino peptidases and enkephalinase A appear to be 

involved in the biotranformation of synaptic enkephalins in vivo. 

Knowledge of the biological mechanisms involved in the inactivation of 

$-endorphin and dynorphin is still poor. 

2.3 Opioid receptors 

The existence of specific opioid receptors in the mammalian brain was 

demonstrated simultaneously by three groups (Pert and Snyder, 1973; Simon et 

al .. 1973; Terenius, 1973). Later studies of Martin and co-workers (1976) 

on the effects of opiates in spinal dogs indicated the heterogeneity of 

opioid receptors. The three different opiates, morphine, 
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ethylketocyclazocine (EtKGZ) and N-Allylnorphenazocine (SKF 10047) produced 

distinct syndromes. Based on this behavioural study the existence of three 

different opioid receptors have been suggested: ~ (mu) for morphine, x 

(kappa) for EtKCZ and o (sigma) for SKF 10047 (Martinet al., 1976). 

The concept of multiple opioid receptors was also confirmed and extended 

in studies utilizing, guinea-pig ileum and mouse vas deferens bioassays and 

autoradiography (Lord et al., 1977). These authors concluded like Martin and 

co-workers that morphine showed preference for ~-receptors. However the 

enkephalins, especially leu-ENK, interacted mainly with the opioid receptors 

designated 6-receptors. £-Endorphin was equipotent at ~ and 6-receptors. 

More recently two subtypes of ~ receptor designated ~, and ~2 have been 

suggested (Pasternak et al., 1983). Enkephalin bind to ~, and 6 sites, while 

morphine bind to both ~, and ~2 sites. Dynorphins show preference for 

x-receptors (Garzon et al., 1983). The relative affinities of some opiates 

and opioid peptides for opioid receptors are shown in table I. 

Table I: Relative affinity oT ligands Tor opioid receptors 

(modified oTter Hughes et al. 1980, Garzon et al., 1983) 

Ligands Receptors 

" 6 ' 
met-ENK ++ +++ + 

leu-ENK + +++ + 

~-endorphin +++ +++ + 

mer hine +++ + + 

dynoruhin(1-17) ++ + +++ 

EtKCZ + + +++ 

Naloxone +++ + + 

Key: +=low, ++=moderate, +++=high 
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Similarly a heterogeneity of opioid receptors has been demonstrated in 

the human brain (Maurer et al .• 1983)- The importance of multiple opioid 

receptors for physiological functions of endogenously released opioid 

peptides is not yet clear. The opioid receptor types possible involved in 

the pharmacological effects of opiate and opioid peptides are indicated in 

table III 

2.3.1 Opioid receptor distribution in the brain 

The idea that the various opioid receptors are differentially distributed 

in various brain areas is supported by considerable body of evidence (Atweh 

and Kuhar. 1983)- Recently the distribution of~ and o-opioid receptors in 

the rat brain was assayed 

[2 ]-Tyr-D-Ala-Gly-NMet-Phe-Gl-ol 

by using 

(DAGO) 

highly 

for 

selective ligands 

#-receptor and 

(DTLET) for 6-receptors (Quirion et al., 

1983b). Table II show the relative preponderance of ~ and 6-receptors in 

some brain regions. 

The distribution of x-receptors in the rat brain is similar to that of 

#-receptors (Quirion et al., 1983a). 

2.4 Physiological implications 

peptides 

2.4.1 Analgesia 

of regional distribution of opioid 

Opioid peptides are present in high concentrations in the brain areas 

(periaqueductal gray area, intralaminal thalamic nuclei and raphe nuclei) and 

spinal cord (laminae I and II of dorsal horn) related to pain and analgesia 

(Hokfelt et al., 1977; Simantov et al., 1977). Electrical stimulation of 

the PAG and pituitary has been demonstrated to induce naloxone reversible 

analgesia (Akil et al., 1972; Yanagida et al., 1985) possibly by causing the 

release of opioid peptides. A lesion of the arcuate nucleus, which reduced 

8-endorphin levels in the hypothalamus, periventricular area and in the 

neurointermediate lobe of the pituitary was reported to decrease pain 

threshold (Millan et al., 1980). REMSD decreased the pain threshold to 

noxious electric shock (chapter 1, section 1 .5.2b) and the pituitary 

8-endorphin concentrations (Przewlocki. 1984). The involvement of 
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Table II: Relative preponderance oT opioid receptors in some 

brain areas (modified after Quirion et al. 1983b) 

Brain region Receptors 

n. accumbens ++++ ++ 

frontal cortex ++ ++ 

layers II IV of cortex +++ 

layers V IV of cortex + +++ 

caudate putamen ++++ +++ 

olfactory tubercle + +++ 

se tum + 

thalamus +++ 

am dala +++ 

h othalamus + 

hi us ++ + 

habenula ++++ + 

interpeduncular nucleus +++ + 

central r ++ + 

cerebellum 

n. tractus solitarius +++ + 

locus coerulus +++ 

dorsal horn (suinal cord) +++ + 

Key: -=absent, +=low, ++=moderate, +++=high, ++++=very high 
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endogenously released opioid peptides in the regulation of nociception is 

also supported by other reports. The icv administration of enkephalinase A 

inhibitors, thiorphan and phosphoramidon which are known to potentiate the 

enkephalinergic system (Hugdin et al., 1981) increased the pain threshold 

(Carenzi et al., 1981; Rupreht et al., 1983). ~-Endorphin given centrally 

induced analgesia in both animals and human subjects (Loh et al., 1976; 

Hosobuchi and Li, 1978). 

2.4.2 Locomotor activity 

Opioid peptides are present in high concentrations in caudate nucleus, 

putamen, globus pallidus (basal ganglia), amygdala, substantia nigra and in 

the ventral tegmental area (Khachaturian et al., 1983). These brain areas 

are important in the regulation of skeletal muscle tone and locomtor 

activities (Chambers et al., 1971 ). In Parkinsonism a deficiency of ENK in 

the pallidum, putamen, substantia nigra and the ventral tegmental area has 

Agid and Javoy-Agid, 1985). Opioid been demonstrated (Taquet et al., 1983; 

receptors in the substantia nigra and striatum have been implicated in 

opiate-induced muscular rigidity and catalepsy (Turski et al., 1983). 

The administration of $-endorphin or met-enkephalin icv can stimulate 

morphine-like catalepsy in rats (Bloom et al., 1976; Chang et al., 1976). 

Similarly, the administration of an enkephalinase inhibitor. thiorphan also 

induced hypotonic immobility in mice (Chaillet et al., 1983). The medial 

preoptic area, n. accumbens, periaqueductal gray area, and anterior 

hypothalamus are particularly sensitive to the cataleptogenic effects of 

opiates and opioid peptides (Tseng et al., 1980; Winkler et al., 1982). 

However the administration of low doses of morphine or opioid peptides icv 

stimulated locomotor activity, wet-dog-shakes (WDS) and body scratching in 

rats (Wei et al., 1977; Brady and Holtzman, 1981 ). Microinjection of 

morphine, enkephalins and ~-endorphin into ventral tegmental area or n. 

accumbens produced behavioural changes characterised by sniffing and grooming 

interrupted by bursts of locomotor activity. These stimulant actions of 

opiates and opioid peptides were naloxone-reversible (Pert and Sivit, 1977; 

Kelly et al., 1980; Stinus et al., 1980). Similarly naltrexone-sensitive 

WDS, grooming and body scratching were also observed following icv 

administration of the enkephalinase inhibitor phosphoramidon (Rupreht et al., 
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1983). 

2.4.3 Temperature 

A role ~or endogenously released opioid peptides in temperature 

regulation is suggested by the report that administration of an enkephalinase 

inhibitor, thiorphan or met-enkephalinamide could induce a 

naloxone-reversible hypothermia. This hypothermia due to endogenously 

released opioid peptides involves the preoptic and the anterior hypothalamic 

areas (Stanton et al., 1985). Similarly central administration of 

~-endorphin induced hyperthermia in low concentrations and hypothermia in 

high doses (Tseng et al., 1980). 

2.4.4 Feeding 

Endogenously released opioid peptides appear to 

(Jalowiec et al., 1981 ). Systemic or intracerebral 

regulate feeding 

administration of 

morphine, ~-endorphin or enkephalins facilitated food consumption (Grandison 

et al., 1977; Jalowiec et al., 1981; Tepperman and Hirst, 1983). Opioid 

peptides in the hypothalamic brain area are particularly important for the 

regulation of feeding behaviours (Przewlocki et al., 1983). 

2.4.5 Respiratory and cardiovascular system 

Local application of morphine and enkephalins to the dorsa-rostral 

surface of the pons in cats selectively decreased the frequency of 

respiration, whilst tidal volume or the response to carbon dioxide were left 

unchanged or increased (Hurle et al., 1983). Morphine was less effective 

than enkephalin in reducing the frequency of respiration. However, naloxone 

can easily reverse 

hypoventilation (Bowman 

morphine-induced respiratory depression nnd 

depression 0~ 

nnd 

r~spiration 

Rand, 1980) but not the enkephalin-induced 

(Pazos and Florez, 1983). It was suggested that 

both both ~ and 6-receptors are involved in the respiratory depressant 

actions of opioid peptides and opiates. 

A decrease in blood pressure after the application of met-enkephalin to 

the ventral surface of the brain stem in the cat has been reported (Florez 

and Mediavilla, 1977). The microinjection of met- or leu-enkephalin into the 

brain produced either hypertension or hypotension, depending on the site of 
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injection. It has been suggested that t~o types of opioid receptors exist in 

the medulla. A naloxone-resistant receptor which mediate vasopressor 

responses and naloxone-sensitive receptor which mediates 

responses (Fuxe et al., 1979). 

vasodepressor 

2.4.6 Sexual behaviour 

The possible involvement of endogenous opioid peptides in sexual 

behaviour is suggested by several authors. A decrease in sexual function in 

narcotic addicts has been reported (Crowley and Simpson, 1978). Whereas 

opiate withdrawal may be associated with premature ejaculation, spontaneous 

erection in men and sexual arousal in women (Parr, 1976). Pretreatment of 

opiate-dependent rats with enkephalinase inhibitors thiorphan or phelorphan 

stimulated penile-licking during naloxone-precipitated withdrawal (Dzojlic et 

al .• in preparation). A similar activation of penile licking was observed 

following the administration of another enkephalinase inhibitor 

phosphoramidon to REMSD animals (unpublished observation). However central 

administration of ~-endorphin or D-Ala2 -met5-enkephalinamide reduced mounting 

behaviour in normal, non-dependent male rats (Meyerson and Terenius, 1977; 

Gessa et al .• 1979). These inhibitory actions of opioid peptides on sexual 

behaviour were blocked by naloxone and naltrexone. Further studies are 

necessary for the clarification of the role of different opioid receptors in 

sexual behaviours. 

2.4.7 Neuronal excitability 

Accumulating evidence indicate that both opium alkaloids and opioid 

peptides are capable of exerting an inhibitory or a facilitatory action on 

cerebral excitabiltiy. The administration of large doses of morphine, icv or 

systemically. can induce convulsive behaviours in mice and rats (Gilbert and 

Martin, 1975; Snead and Bearden, 1982). Pretreatment with subconvulsant 

doses of morphine can block the convulsant effect of morphine and enkephalins 

(Urea and Frenk, 1983; Dzoljic, 1982). Similar pretreatment with morphine, 

$-endorphin and [D-Ala2-D-Leu5]enkephalin (DADLE) also antagonised 

electroshock-induced seizures (Puglishi-Allepra et al., 1984; Berman and 

Alder, 1984). This anticonvulsant action of opiates and opioid peptides was 

blocked by naloxone (Berman and Alder. 1984). Recent data indicate that the 
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6-opioid receptors mediate the epileptic actions of enkephalins, whilst 

~-opioid receptors are involved in the anticonvulsant actions of opioid 

peptides (Dzoljic and vd Poel-Heisterkamp, 1982; Frenk. 1983; Haffmans and 

Dzlojic, 1983). The target area of this action appear to be in the limbic 

area (Henriksen et al., 1978), particularly in the hippocampus (French and 

Siggins, 1980; Haffmans et al., 1983; 1984). However in the fluorothyl 

seizure test both 6 and ~ opioid receptor agonists appear to be 

anticonvulsants (Tortella et al., 1985). It does appear that exogenously 

administered opioid peptides may have both pro- and anti-convulsant actions 

depending on the experimental conditions. The role of pro- and 

anti-convulsant opioid systems in human epilepsies is still unknown. 

2-4-8 Tolerance and dependence 

Similar to morphine the development of tolerance to opioid peptides has 

been reported (Wei and Loh, 1976; Tseng et al., 1977). Interestingly, in 

animals tolerant to the ~agonist sufentanyl, a 6-opioid receptor agonist 

DADLE was still able to induce analgesia and catatonia (Schulz et al., 1981 ). 

This might indicate the lack of cross-tolerance between ~ and 6 receptor 

agonists. It also appears that an organism can develop tolerance and 

dependence to endogenously released opioid peptides. Namely naloxone 

precipitated an opiate-like abstinence syndrome after chronic stress or 

Chester, 1 982; Bean and Vaught, enkephalinase inhibition (Christie and 

1984). Social interaction appear to activate endogenous opioid peptides 

resulting in an opioid-like -social dependence-. Isolation or social 

separation provoked symptoms such as vocalisation and irritability. Symptoms 

induced by social isolation could be reduced by morphine and potentiated by 

naloxone (Panksepp, 1981 ). 

The possible involvement of changes in endogenous opioid peptides in the 

process of opiate dependence is not clear. However, chronic morphine 

treatment increased the activity of a high affinity enkephalinase (Malfroy et 

al., 1978). Enkephalinase inhibiton attenuated some symptoms of opiate 

withdrawal in morphine dependent animals (Dzoljic et al., in preparation). 

An increase in protein synthesis also appears to be involved in the 

mechanism of tolerance to opiates. Several drugs with the common ability to 

inhibit protein synthesis reduce the development of tolerance and dependence 
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to morphine (Bowman and Rand, 1980). In addition, it has been reported that 

the development of opiate dependence is associated with an increase in the 

synthesis of secretory proteins in the pons-medulla and striatum-septum (Retz 

and Steele, 1983). These brain areas are functionally involved in opiate 

tolerance and dependence (Herz. 1978). The hippocampal CA~ area also appear 

to be modulate both opioid and opiate-withdrawal WDS (Isaacson and Lanthorn. 

1981). 

Some pharmacological actions of opiates or opioid peptides and the 

possible brain areas involved have been described in this section. Table III 

summarises some pharmacological actions of opioid peptides/opiates and the 

receptor types involved. 

2.5 Drugs and behavioural states affecting endogenous opioid peptides 

2.5.1 Neuropeptidase inhibitors 

Potentiation of enkephalinergic activities following the inhibition of 

neuropeptidases have been demonstrated under several experimental conditions. 

For example kelatorphan a potent inhibitor of enkephalinase increased 

met5-enkephalin (met-ENK) levels in rat striatum and blocked the 

biodegradation of exogenously administered enkephalins (Waksman et al., 

1985). Similarly thiorphan an enkephalinase inhibitor A (Hudgin et al. 

1981 ), given alone, or in combination with bestatin (peptidase inhibitor), 

elevated in vivo striatal and midbrain met-ENK levels and induced 

naloxone-reversible analgesia (Zhang et al., 1982; Yaksh and Harty, 1982). 

Phosphoramidon, another potent inhibitor of enkephalinase A (Hudgin et al., 

1981 ), induced naltrexone-sensitive analgesia (Rupreht et al., 1983) and 

insomnia (see chapter 3). Other neuropeptidase inhibitors such as bestatin 

and leucinal increased brain met-ENK levels and ~-endorphin-stimulated 

analgesia (Waksman et al., 1985; Davis et al., 1983). In addition, naloxone 

precipitated some behaviours characteristic of the opiate abstinence syndrome 

in rats after chronic inhibition of enkephalinase (Bean and Vaught, 1984). 

These reports indicate that inhibition of some neuropeptidases can induce 

increases in opioid peptides with concomitant alterations in behaviour. The 

effect of peptidase inhibitors on the brain concentrations of other opioids 

such as ~-endorphin and dynorphin, still remains to be established. 
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Table III: Pharmacological effects of opiates and receptor subtypes 

involved (modified after Trends in Pharmacol. Sci., vol 6 

centre'fold) 

Pharmacological actions Rece12tors 

" 0 X "1 0 

SU:Qras:Qinal analgesia 

stress-induced analgesia .. 
eu haria .. ? ? 

d s haria ? ? 

sedation ? 

catale s 

increased locomotion •• ? ? 

decreased locomotion ? 

tolerance .. 
withdrawal signs .. 
ictal EEG S:Qiking ? ? 

anticonvulsant .. .. ? 

h erthermia 

h othermia 

res:Qirator;y de:Qression 

Key: **"'direct involvement, *=possible involvement, ?=not 

established -=not involved 
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2.5.2 Centrally acting drugs 

i) Narcotic analgesics 

Morphine elicited a decrease in plasma ~-endorphin but elevated the 

concentration of this peptide in whole brain (without the cerebellum) and in 

the pituitary (Bruni et al., 1985). The analgesic effect of morphine has 

been ascribed, partly, to the release of endogenous opioid peptides (Schlen 

and Bentley, 1980). However, prolonged morphine administration (>1month) 

decreased enkephalin levels in the striatum and pituitary. A similar 

reduction in ~-endorphin contents were demonstrated in the septum, midbrain 

and pituitary (Herz et al., 1980a). Plasma concentration of 8-endorphin-like 

material was reduced in heroin addicts (Ho et al., 1980). In contrast, other 

studies failed to demonstrate changes in brain enkephalin concentrations 

after acute or chronic morphine treatment or naloxone-precipitated withdrawal 

(Fratta et al., 1977; Wesche et al., 1977). Chronic (10 days) treatment 

with morphine increased enkephalinase activity and ~-opioid receptors in the 

striatum (Takashi et al., 1981 ). 

ii) Neuroleptics 

Chronic administration of the antipsychotic drugs haloperidol and 

chlorpromazine increased the formation of Y-endorphin 

des-Tyr 1-Y-endorphin in brain slice. Other central depressants such as 

phenobarbital and promethazine did not alter the concentrations of these 

opioid peptides (Davis et al., 1984). However, neuroleptic therapy has been 

reported to increase plasma- and CSF- endorphin activity in chronic 

schizophrenics (Emrich et al., 1980; Naber et al., 1984). 

Met-enkephalin levels in the striatum and nucleus accumbens were elevated 

after chronic treatment with the antipsychotic drugs such as clozapine, 

haloperidol and reserpine. The non-cataleptogenic neuroleptic such as 

clozapine was less effective in elevating met-ENK levels (Hong et al., 1980). 

The clinical relevance of the neuroleptic induced alterations in opioid 

peptides is not yet clear. 

iii) Antidepressant drugs 

Antidepressant drugs such 

iprindole provoked a 

as cloimipramine, desimipramine, amitriptyline 

selective increase in met5-enkephalin-like 

immunoreactivity in the striatum and nucleus accumbens (De Felipe et al., 
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1985). An increase in ~-endorphin contents in the pituitary and hypothalamus 

has also been reported after treatment with some antidepressants (Pzewlocki, 

1984). 

Interestingly, antidepressant drugs decreased plasma ~-endorphin in 

depressive patients in correlation with therapeutic activity (Rapisarda and 

Bongiorno, 1982; Genazzani et al., 1984). 

iv) Anaesthetic agents 

The analgesia induced by nitrous oxide has been attributed to enhanced 

endorphinergic transmission since it could be attenuated by naloxone and 

naltrexone (Yang et al., 1980). In addition, morphine attenuated whilst 

naloxone potentiated nitrous oxide withdrawal convulsions in mice {Manson et 

al., 1983). Recently nitrous oxide has been demonstrated to increase met-ENK 

levels in the CSF o~ rats (Quack et al., 1985). Chronic ethanol consumption 

decreased the release o~ enkephalin in the striatum inducing supersensitivity 

o~ 6-opioid receptors, but reduced the af~inity o~ the ~-opioid receptors 

(Lucchi et al., 1984). The role of endogenous opioid peptides in the 

pharmacological actions of anaesthetic agents is not fully understood. There 

is however the idea that the analgesic and eurphoric effects of nitrous oxide 

are due partially to release o~ endogenous opioid peptides. 

v) GABA and benzodiazepins 

GABA and muscimol were found to decrease potassium-evoked release of 

striatal met-ENK. In a parallel in vivo study, acute administration of 

benzodiazepines such as diazepam decreased met-ENK levels in the striatum but 

increased them in the hypothalamus. The drug induced enhancement of 

enkephalin was rapid in onset (2-5 min) (Herz et al., 1980b). 

vi) Drugs modulating 5-HT system 

The serotonin releaser, ~en~luramine increased met-ENK and B-endorphin 

contents in the hypothalamus but not in the ~rontal cortex, hippocampus and 

brain stem (Harsing et al., 1982). Conversely, PCPA and 5-7-DHT which 

depletes 5-HT levels in the brain reduced B-endorphin concentrations in the 

hypothalamus, thalamus, and brain stem but not 

administration of these substances did not 

peptide (Harsing et al., 1982). 

in the pituitary. Acute 

alter brain contents of this 

The clinical signi£icance o~ changes in opioid peptides induced by drugs 

interfering with GABA and 5-HT system is not clear. 
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2.5.3 Stress 

Abundant evidence suggests that endogenous opioid peptides are modulated 

by various stress regimens. Electroshock induced a naloxone-reversible 

analgesia and motor inhibiton (Nabeshima et al., 1985). A parallel increase 

in brain enkephalin levels and the pain threshold has been demonstrated after 

electric shock (Madden et al., 1977). Electroconvulsive shocks, ~hich are 

associated with a naloxone-reversible postictal analgesia and catalepsy (Urea 

et al., 1981 ), elevated preproenkephalin mRNA and enkephalin concentrations 

in the hypothalamus and limbic area (Yoshikawa et al., 1985). Painful 

stimuli, such as arthritis or injecting formalin into rat paws, increased 

enkephalin levels in the brain (Cesselin et al., 1980; Kuraishi et al., 

1981 ). Immobilisation stress or forced s~imming did not alter dynorphin 

concentrations in the cortex and hypothalamus, whereas tail-pinch stress 

enhanced dynorphin in these brain regions (Morley et al., 1982). The 

pituitary gland contains high concentrations of opioid peptides (Prze~locki 

et al., 1983; Kerdelhue et al., 1983; Tang et al., 1984), which are 

released during acute stress exposure (Guillemin et al., 1977), probably 

indicating an involvement of pituitary opioid peptides. along ~ith ACTH, in 

the stress response. 

2.6 Role of opioid peptides in psychopathology 

Several behavioural actions of opioid peptides studied in animals 

suggested possible implication of endogenous opioid peptides in human 

psychopathology. 

and limbic areas 

In addition opioid peptides are present in the 

where they are well placed to modulated 

motivation and emotions. 

2.6.1 Opioid peptides and depressive states 

brain stem 

vigilance, 

In several studies an increase in plasma and CSF $-endorphin levels in 

depressive conditions have been demonstrated (Risch, 1982; Genazzani et al., 

1984), while in other reports no changes in the plasma or CSF concentrations 

of $-endorphin were found (Naber et al., 1982). Patients with endogenous 

depression were also more tolerant to pain than normal volunteers (Davis et 

~-. 1979). Antidepressant drugs decreased plasma $-endorphin in parallel 
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with their therapeutic activity (Rapisarda and Bongiorno, 1982; Genazzani et 

al.. 1984). These data indicate that excess of opioid peptides may be 

involved in the pathogensis of some forms of endogenous depression. 

2.6.2 Opioid peptides in schizophrenia 

The icv administration ~-endorphin elicited rigid immobility in rats. 

This observation led Bloom and co-workers (1976) to propose that an excess of 

central opioid peptides might be involved in the pathophysiology of 

schizophrenia. In contrast, Jaquet and Mark (1976) proposed that ~-endorphin 

may have a neuroleptic-like therapeutic action, since this peptide induced 

extrapyramidal-like ridigity. These propositions have given rise to two 

schools of thought ie i) that excess and ii) that a de~iciency o~ opioid 

peptides, underlie schizophrenia. Increased ~-endorphin levels in CSF of 

schizophrenic and manic patients were reported by some workers (Rimon et al., 

1980), and naloxone appeared to reduce psychotic symptoms (Watson et al., 

1978). However other authors could not con~irm these findings (Naber et al., 

1981 ). Direct biochemical evidence that excess opioid peptides are secreted 

in schizophrenia or that opiate antagonist helps in this disorders is at 

best tenous. ~-Endorphin either slightly accentuated (Gerner et al., 1980) 

or allevated some symptoms of schizophrenia (Kline et aL 1977)-

Des-Tyr1-Y-endorphin (DTYE) decreased psychotic symptoms in schizophrenics 

(Verhoeven et al., 1979). In contrast other workers did not ~ind any 

therapeutic effects following DTYE (Emrich et al., 1980). However 

antipsychotic drugs such as haloperidol and chlorpromazine increased the 

formation of Y-endorphin and des-Tyr 1-Y-endorphin in vitro in animal brain 

slice (Davis et al., 1984). Plasma and CSF ~-endorphins were inceased in 

schizophrenics , although there was no correlation between changes in plasma 

opioid peptides and the therapeutic e~~ects of the antipsychotic drugs 

(Emrich et al., 1980; Naber et al., 1984). 

Evidently the role of endogenous opioid peptides in the psychotic 

disorders needs further clarification. 
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,PART II: MUTUAL INTERACTIONS BETWEEN NORMAL SLEEP AND ENDOGENOUS OPIOID 

SYSTEM 

CHAPTER :S 

ENDOGENOUS OPIOID PEPTIDES AND SLEEP 

ABSTRACT 

Intracerebroventricular (i.c.v.) administration of the enkephalinase 

inhibitor phosphoramidon {25-100 ~g) induced a dose-related decrease in 

non-rapid eye moevement sleep (NREMS) and rapid eye movement sleep (REMS) 

time, with a corresponding increase in wakefulness. 

The local application of phosphoramidon (1-25 ~g) into the locus coerulus 

(LC) or periventricular gray (PVG) substance also inhibited both NREMS and 

REMS, and increased wakefulness. 

Pretreatment with naltrexone (0.1 mg/kg, i.p. 15 min prior) 

significantly reduced the phosphoramidon-induced insomnia. Similarly, local 

application of naltrexone (10 #g/brain area) also decreased the insomnia 

induced by the administration of phosphoramidon into the PVG or LC. 

These findings indicate that endogenous opioid peptides are important 

modulators of wakefulness. 

INTRODUCTION 

Few studies on this subject with controversal results have been 

performed. It has been found that ~-endorphin had an arousal effect in rats 

(Havlicek et al., 1978). This was confirmed in cats by i.c.v. 

administration of 0.5 #g B-endorphin (King et al., 1981 ). However other 

authors did not find significant changes in sleep parameters after i.c.v. 

injection of either #g B-endorphin, met-enkephalin or leu-enkephalin (Riou 

et al., 1982). The doses, species and way of administration of the 

corresponding opioid peptide might be of crucial importance in the 

interpretation of these results. For example, recent data indicate that 
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REM sleep stages using the combined EMG, ECoG and hippocampal EEG parameters 

(Fig 1 ). REM sleep episodes were identified by the appearance of low voltage 

ECoG fast waves, hippocampal theta pattern and EMG silence. NREM sleep was 

characterised by high voltage slow ECoG waves together with low EMG. Awake 

stage was identified by high EMG and fast low voltage ECoG. 

Drug 

Phosphoramidon (Peninsula Lab) dissolved in saline was administered 

i.c.v. (maximum volume 2 ~1. i.c.v. or 1 ~1 local application). Naltrexone 

hydrochloride (Endo Lab) was administered intraperitoneally (i.p.) dissolved 

in saline. 

Statistics 

Statistical analysis was done using paired Student t-test. 

significance was accepted at P-value of 0.05 or less. 

RESULTS 

Intraventricular administration of enkephalinase inhibitor 

Statistical 

The administration of phosphoramidon increased wakefukness whilst it 

decreased the NREM and REM sleep stages in a dose-dependent manner (Fig 2). 

The sleep suppressant effect of phosphoramidon was associated with 

behavioural signs of excitation such as head shakes and body scratching. The 

opiate antagonist naltrexone administered in a dose range which did not alter 

the sleep-waking pattern in the control animals (0.1-0.5 mg/kg) antagonized 

phosphoramidon-induced insomnia (Fig 2). 

Nicroinjection of enkepholinase inhibitor 

Locus coerulus 

of phosphoramidon (1-25 ~g) into the locus coeruleus Application 

decreased NREM 

Naltrexone (10 

insomnia. 

40-50% and REM 20-27% sleep stages in a dose-related manner. 

~g. 5 min prior) decreased the phosphoramidon-induced 

Central gray substance 

Phosphoramidon (1-25 ~g) injected into the periventricular gray (PVG) 

substance of the brain induced a significant increase in wakefulness. This 

arousal effect of phosphoramidon was decreased by naltrexone (10 ~g. 5 min 

prior) (Fig 3). 
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DISCUSSION 

The results o~ this study indicate that specific enkephalinase inhibitor 

phosphoramidon induces both NREM and REM sleep suppression. Naltrexone 

antagonized the sleep suppressive action of enkephalinase inhibitor which 

suggests that the increased wakefulness induced by phosphoramidon is mediated 

by activation of opioid receptors. 

The local application of phosphoramidon into specific brain regions 

induced naltrexone sensitive insomnia in this study. This is consistent with 

the fact that microinjection of opiates into these brain areas induces 

behavioural excitation (Jacquet and Wolf, 1981 ). The above data might 

indicate that an endogenous opioid system, particularly the 

system plays an important role in the maintaince 

enkephalinergic 

of wakefulness. 

Furthermore, a number of pathological conditions such as stress, anxiety and 

other psychic disturbances, in which an increase wakefulness is a common 

symptom, are known to be associated with increased endorphin levels. It is 

therefore conceivable that activation of the enkephalinergic system might 

constitute the common mechanism underlying various sleep-waking disturbances. 
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CHAPTER 4 

STAGES OF VIGILANCE AND ENKEPHALIN-INDUCED SEIZURES 

ABSTRACT 

The effects of different sleep-wakefulness stages on enkephalin-induced 

seizure phenomena were studied in the rat by recording the electrical 

activities of the pari etc-frontal cortex, dorsal hippocampus and 

submandibular/nuchal muscle. 

Administration of [D-Ala2 ]-Met-enkephalinamide (DALA, 10 ~g/2~1. i.c.v.) 

induced electrographic signs of seizure during SWS, REM sleep and 

wakefulness. The DALA-induced epileptiform activities in ECoG, EMG and 

hippocampus were significantly higher during wakefulness compared with any 

sleep stage. REM sleep significantly inhibited DALA-induced ECoG spiking 

activity compared with SWS and wakefulness. Similarly SWS decreased the ECoG 

spiking activity compared with wakefulness. 

It is suggested that an enkephalinergic system may be involved in the 

ethiopathogenesis of epilepsy of the -awaking type- particularly that with 

petit mal characteristics. 

INTRODUCTION 

The clinical finding that some epileptic attacks occur more frequently 

during the day and others at night suggests an influence of the sleep-waking 

cycle on the occurence of epilepsy (Janz, 1962). Although some types of 

epilepsy occur mainly during sleep, their occurence is not facilitated evenly 

by different sleep stages. 

Recent data indicate that intracerebroventricular administration of 

enkephalin in rats induces electrographic and behavioural epileptic phenomena 

(Dzoljic et al., 1979; Urea et al., 1977), and it has been suggested that 

endogenous opioid peptides play a modulatory role in the pathogensis of 

epilepsy (Dzoljic and Poel-Heisterkamp, 1982). 

In order to understand better the relationship between stages of 
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vigilance, endopioids epilepsy, we studied the effect of 

sleep-wakefulness cycle on enkephalin-induced seizures. 

MATERIALS AND METHODS 

Adult, male Wistar rats weighing 175-200 g were used. For the recording 

of the electrocorticogram, silver screw electrodes were threaded into the 

bone overlying the frontal and parietal cortices. The electromyogram (EMG) 

was recorded from the neck and/or submandibular muscles. Hippocampal 

electrical activities were recorded from the CA1 region by means of 

bilaterally implanted stainless steel electrodes. A new cannula system 

intracerebroventricular administration of provided the possibility of 

[D-Ala2-met]-enkephalinamide (DALA, 10 ~g./2 ~1) in unrestrained rat, in any 

stage of vigilance, with full external control upon the rate of flow, 

frequency and volume of drug injection. All rats were allowed at least a 

7-day recovery period before experiments commenced. Animals were maintained 

-~~d~r constant light/dark periods (light phase 06.00-22.00 h) and experiments 

were carried out between 12.00-16.00 h to avoid variations due to changes in 

the circadian rhythm. Results were analysed statistically using paired 

Student's t-test. Statistical significance was accepted at P-value of 0.05 

or less. 

RESULTS 

DALA given during wakefulness induced electrographic signs of seizure 

phenomena such as cortical or hippocampal spikes and myoclonic contractions 

in the muscles. However, the same dose of DALA given during slow wave sleep 

(SWS) or rapid eye movement (REM) sleep produced significantly less 

electrographic signs of seizure (Fig 1 ). The REM sleep stage proved more 

resistant to DALA -induced seizure compared to SWS. However, the inhibitory 

effects of SWS and REM sleep on hippocampal spikes and myoclonic contractions 

were not significantly different from each other. The most prominent 

DALA-induced epileptic phenomena were observed during the awake stage. 

Behavioural phenomena such as -wet-dog-shakes- and -fall down- were 

associated with the epileptic burst in the EEG and appeared only if DALA was 
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Figure 1: The effect of vigilance states on enkephalin (DALA, 

introcerebrovenrticularly)-induced seizure phenomena during the 4 time 

periods after drug administration. Only spikes up to 200 and 4DO~V in the 

ENG and ECoG. respectively were counted. Each vertical bar is mean±S.E 

spikes for 7 rats. Note that sleep, particularly REM sleep significantly 

reduced the intensity of the electrographically registered epileptic 

phenomena in the cortex, hippocampus(hipp) and the submandibular muslces 

(sub.m.). 
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given during wakefulness and not during the SWS and REM sleep. 

DISCUSSION 

It is known that REM sleep deprivation increases neuronal excitability 

(Cohen and Dement, 1965). However, the results of this study indicate that 

normal REM sleep and to a lesser extent SWS decrease significantly all the 

electrographic signs of DALA-induced seizure phenomena in the hippocampus. 

cortex and submandibular/neck muscle when compared to wakefulness. The cause 

of the inhibitory effect of sleep on enkephalin-induced seizure is not clear. 

However the epileptic properties of enkephalin can be antagonized only by 

anti-petit mal and not anti-grand mal drugs (Snead and Bearden, 1980). 

Furthermore, petit mal paroxysm occurs mainly during wakefulness or 

sleep-waking transition period (Janz, 1962). This clinical observation is in 

accordance with the inhibitory effects of sleep on enkephalin-induced seizure 

demonstrated in this study. Therefore, a possible involvement of an 

endogenous opioid system in the ethiopathogenesis of epilepsy of the -awaking 

type-, particularly those with petit mal characteristics should be 

considered. In addition, this experimental model can be used as a reliable 

tool in future studies of the relationship between different vigilance states 

and drug-modulated neuronal excitability. 
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PART III: MUTUAL INTERACTIONS BETWEEN DISTURBED SLEEP AND OPIATE/OPIOID 

PEPTIDES 

CHAPTER 5 

REM SLEEP DEPRIVATION DECREASES THE ANTINOCICEPTIVE PROPERTY OF 

ENKEPRALINASE-INHIBITION, MORPHINE AND COLD-WATER-SWIM 

ABSTRACT 

1) In this study, the e~£ect of REM sleep deprivation (REMSD) or chronic 

stress was investigated on three analgesic procedures as follows: 

enkephalinase-inhibition (phosphoramidon), morphine 

induced antinociceptions. 

and cold-water-swim 

2) REMSD (96 hr) completely abolished the analgesic effect of phosphoramidon 

(250 ~g. i.c.v.), morphine (20 ~g. i.c.v.) and 5 min cold-water-swim (5° C, 

cold). 

3) Rats exposed to chronic stress regimen did not show any tolerance to the 

analgesic effect of phosphoramidon or CWS. 

4) These data indicate that REMSD can decrease pain threshold, probably by 

altering enkephalinergic and other transmitter systems. 

5) It is suggested that pharmacological manipulations and/or pathological 

conditions which decrease REM sleep might affect the efficacy of opiate and 

other analgesic procedures. Additional clinical studies are necessary to 

clarify the relationships of REMSD and pain threshold in human. 

INTRODUCTION 

The inhibitory action of opiates and opioid peptides on REM sleep is well 

documented (Khazan et al., 1967 King et al., 1981 ), while the effect of 

REM sleep or REM sleep deprivation (REMSD) on opiate activity is less clear. 

However, it is kno~ that the episodic release of humoral endorphin is 

associated with REM sleep (Oksenberg et al., 1980) and REM sleep inhib~ts 
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neuronal excitation induced by exogenously administered enkephalins 

(Ukponmwan and Dzoljic, 1983). These data suggest that phasic changes during 

the sleep-waking cycle can modulate response to opiates and opioid peptides. 

In order to clarify further the relationship between sleep disturbances 

and opiates, the effect of REMSD on the antinociceptive property of morphine 

and enkephalinase inhibitor phosphoramidon was investigated. Phosphor amidon 

potentiates enkephalinergic activity in the brain 

biotransformation of enkephalins (Hudgin et al., 

by decreasing the 

1981). By using 

phosphoramidon and morphine, it was possible to study the effect of REMSD on 

analgesic effects induced by endogenous opioid pepides and exogenously 

administered opiates. 

Since it is known that REMSD can reduce the pain threshold to noxious 

electrical stimulation (Hicks et al., 1979), we included in this study, the 

relationship between REMSD and physically induced antinociception such as 

cold-water-swim analgesia. 

MATERIALS AND METHODS 

All experiments were performed on male adult Wistar rats weighing between 150 

and 175 gat implantation. 

Surgery 

For the intracerebroventricular (i.c.v.) administration of drugs. stainless 

steel, guide cannula was stereotaxically directed 1 mm above the lateral 

ventricle. The injection cannula protruded 1 mm below the guide cannula into 

the ventricle. At least 5-7 day recovery period was allowed before 

experiments were commenced. Throughout this study, all animals were kept in 

a constant environment chamber with a light-dark cycle 12 hr (light period 

09.00-21.00 h) and a room temperature 22±1°C. Food and clean drinking water 

were available ad libitum. 

Three groups of experiments 

phosphoramidon, (ii) the effect 

cold- water-swim (CWS) analgesia. 

were performed (i) analgesic effect of 

of morphine on pain threshold, (iii) the 

The animals in each experiment were 

divided into three groups as follows: REM sleep deprived, chronic stressed 

and non-stressed (controls) rats. Each group was submitted to CWS procedure 

or treated either with phosphoramidon or morphine. 
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REM sl&ep deprivation (RENSD) 

REMSD was carried out using the conventional -flower pot- technique 

previously described (Mendelson et al., 1974). In order to avoid the problem 

of unequal REMSD {Hicks et al., 1977), we used platforms whose area 

corresponded to the rat body weights (14 cm2 : 100 g). Each rat was REM 

sleep deprived for 96 hr continously. In the present set up, the animals had 

free assess to food and clean drinking water. Throughout the REMSD, the 

water in the tank was changed regularly (11 .00-12.00 hr) once every 24 hr. 

During the period of cleaning the animals were allowed free locomotion in 

individual cages, for 1 hr during which rats were kept awake manually. 

Stress 

The rats in this group were forced to swim in water 17-18 °C and 7 em for 

2 hr daily (11 .00-13.00hr) for 4 days. The animals were then allowed 

spontaneous amount of sleep for the remaining period of the day (22 hr). 

Weight loss in the stress and REMSD groups were not different from each 

other. 

Control 

These animals were housed singly and allowed to have spontaneous amounts 

of sleep. 

Cold-water-swim analgesia (CWS) 

CWS was produced using the procedure described by Bodnar and Sperber 

(1982), with a slight modification in duration of swimming and water 

temperature. The rats were forced to swim for 5 min in water 5 °C. Pain 

threshold was determined before and then at 30, 60, 90 and 120 min after CWS. 

The measurement of pain threshold was commenced 30 min after CWS to allow 

animals to become completely dry. 

Phosphoramidon or morphine analgesia 

This was induced by intracerebroventricular administration of these 

substances 

Determination oT nociception 

Pain sensitivity test was carried out between 13.00 and 16.00 h according 

to the analgesiometric method (Randall and Seltto, 1957). The nociception 

was expressed in the form of analgesiometric scores (AMS) g mm- 2 pressure. 

The cut off value was maintained at 500 g mm- 2 to avoid damage to the paw. 

Response to pain in this study is measured by squeak or paw-withdrawal. 
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Animals which scored above 150 g mm-2 during control testing were not used 

for further experimentation. In all three groups: REMSD, stress or controls 

baseline pain threshold vas 

phosphoramidon was administered. 

af~er drug treatment. 

Drugs 

measured before 

Nociception was then 

saline, morphine 

followed for 2 

or 

hr 

The following drugs were used in this study, morphine hydrochloride 

(Merck) and phosphoramidon (Peninsula Lab) were administered dissolved in 

saline. A maximum of 2~1 was given i.c.v. over a period of 10 sec. 

Statistical analysis 

The significance of differences between the analgesic scores obtained 

after different treatments was evaluated by Student t-test. once a one way 

analysis of variance (ANOVA) had revealed that the samples represented 

different populations (Steel and Terrie, 1980). Statistical significance was 

accepted at P-values of 0.05 or less (two tailed). 

RESULTS 

The effect of REMSD on the analgesia induced by enkephalinase-inhibition 

The intracerebroventricular (i.c.v.) administration of phosphoramidon 

(250~g/~l) in control or stressed animals caused an increase in pain 

threshold during the first 30 min after drug treatment. 

Phosphoramidon-induced analgesia in control and stressed animals was 

accompanied by signs of central excitation such as wet-dog-shakes, excessive 

grooming, hypermotility. The antinociceptive action of phosphoramidon was 

ccmpletely abolished by REMSD (Fig 1) 

The effect of REMSD on morphine analgesia 

Morphine (20 ~g/2~1. i.c.v.) induced profound analgesia in both control 

and stressed animals. The antinociceptive action of morphine was lowered in 

stressed group compared with control animals. The increase pain threshold 

induced by morphine lasted about 2 hr during which rats remained quiet with 

decreased motility (not evaluated). REMSD completely antagonized analgesia 

(Fig 2). 
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e---.11 Control + phosphoramidon (ph) 
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Figure 7: The inhibitory effect of REM sleep deprivation (R£MSD) on 

phosphoramidon (ph) induced analgesia. Each point is mean± S.£.M for 

control n=26, REMSD n=25 and stress n=19 groups. The number of animals 

receiving phosphoramidon in each group are as follows:- control+ ph=8, REMSD 

+ and stress + Note that phosphoramidon given 

intracerebroventricularly induced an increase in pain threshold in both 

control and stressed animals. This analgesic effect of phosphoramidon was 

completely abolished by REMSD. 
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o----e Control + morphine ( mo) 

o---o Chronic stress + mo 

o----c REMSD + mo 

60 120 

Time {min) 

Figure 2: The inhibitory effect of REM sleep deprivation (REMSD) on morphine 

(mo) analgesia. Each point is mean ± S.E.M for control n=26, REMSD n=25 and 

stress n=19. The number of animals receiving morphine in each group are as 

follows: control + mo=10, REMSD + mo=10 and stress+ mo=B. Note that 

morphine induced long lasting increase in pain threshold was completely 

abolished by REMSD. 
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The effect of cold-water-swim (CWS) analgesia 

The pain threshold was significantly higher in rats exposed to 

cold-water-swim compared to control or stressed animals. This CWS analgesia 

was antagonized by REMSD (Fig 3). 
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Figure 3: The antagonistic effect of REM sleep deprivation (REMSD) on 

cold-water-swim analgesia (CWS). Each point is mean± S.E.M for control 

n~26, RENSD n=25 and stress n~19. The number of animals submitted to CWS in 

each group was n=6. Note that CWS analgesia in both control and stress 

groups was completely abolished in REM sleep deprived rats. 

DISCUSSION 

It is of interest to note that the antinociceptive activity of 

enkephalinase-inhibitor (phosphoramidon) and morphine was completely 

abolished in REM sleep deprived rats. The phosphoramidon-induced analgesia 
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(Rupreht et al., 1983) is probably due to the known enkephalinase inhibition 

and the consequent increase in the enkephalinergic activity (Hudgin et al., 

1981 ). In addition it has been demonstrated that the enkephalinase inhibitor 

thiorphan also possesses antinociceptive activity (Roques et al .• 1980). 

The mechanism by which REMSD antagonizes the analgesic effect of 

phosphoramidon is not clear. However, one possible explanation could be that 

animals deprived of REM sleep might have a lowered level in functional 

activity of the enkephalinergic system. This possibility is consistent with 

the known inhibitory effects of REMSD on peptide synthesis (Shapiro and 

Girdwood, 1981 ). Consequently, the reduced activity of opioid peptides in 

the brain may decrease pain threshold. Previous studies have demonstrated 

that a decrease in peptide synthesis did not alter morphine analgesia (Loh et 

al., 1969; Tulunay and Takemori, 1974). Hence the decreased antinociceptive 

action of morphine cannot be explained by a possible reduction in opioid 

peptides. 

Therefore, another explanation such as alteration in other 

neurotransmitter(s) which are known to modulate nociception should be 

considered. For example it has been demonstrated that increase of 

dopaminergic activity and/or decrease serotoninergic and cholinergic 

transmission which occur during REMSD (Farber et al., 1983; Mogilnicka et 

al., 1981; Tsuchiya et al., 1969) could antagonize the analgesic activity of 

opiates (McGilliard and Takemori, 1979; Garlitz and Frey, 1972; Tulunay et 

al., 1976). These data suggest that changes in biogenic amines might be an 

important factor in the inhibitory action of REMSD on analgesia induced by 

exogenous and endogenous opioid peptides. 

The physiological basis of CWS analgesia is not known, but due to the 

lack of cross-tolerance with morphine produced antinociception, it appears to 

be mediated by a non-opioid mechanism (Bodnar et al. 1978) e.g the GABAergic 

system which has been shown to play a role in analgesia in response to 

environmental stress (Skerritt et al., 1981 ). Changes in the activity of 

GABA system were demonstrated in REMSD animals (Micic et al., 1967). 

Relative to controls, no change in threshold to noxious paw pressure was 

observed in chronically stressed animals. Thus stress does not appear to 

play an important role in the slight decrease in pain threshold observed in 

rats deprived of REM sleep. 
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Finally, although the mechanism by vhich REMSD decreases pain threshold 

is not certain, some clinical consequences should be considered. Namely, it 

should be expected that pathological conditions and/or drug treatments 

accompanied with decrease REM sleep could modify the therapeutic 

effectiveness of opiates and other analgesic procedures. Additional clinical 

studies are required to clarify the significance of REM sleep in maintaince 

of normal nociception in human. 
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CHAPTER 6 

ANALGESIC EFFECT OF ENKEPHALINASE INHIBITION IS MODULATED BY MONOAMINE 

OXIDASE B AND REM SLEEP DEPRIVATION 

ABSTRACT 

Both the MAO-B inhibitor deprenyl (2.5-10 mg/kg, i.p., 60 min prior) and 

the MAO-B substrate E-phenylethylamine (PEA, 40 ~g. i.c.v.) potentiated the 

analgesic action of the enkephalinase inhibitor phosphoramidon (250 ~g. 

i.c.v.) in animals allowed normal sleep. The enhancing effect of PEA on 

phosphoramidon analgesia was further potentiated by deprenyl (5 mgjkg, i.p.) 

pretreatment. Deprenyl 5mg/kg, i.p.) or PEA (40 ~g. i.c.v.) given alone 

did not induce analgesia in animals allowed undisturbed sleep. 

REM sleep deprivation (REMSD) decreased the basal pain threshold and 

abolished the analgesic effect of phosphoramidon. The administration of 

deprenyl and/or PEA failed to restore the analgesic effect of phosphoramidon 

in REM sleep deprived animals. 

The results indicate that excess PEA has a stimulatory effect on the 

analgesic activity of endogenously released enkephalins in rats allowed 

undisturbed sleep but not in REM sleep deprived animals. 

It is suggested that the failure of phosphoramidon to induce analgesia 

after REMSD, is probably due to a functional insufficiency of an 

enkephalinergic system. 

INTRODUCTION 

Two forms of monoamine oxidase (MAO) are present in the mammalian brain, 

MAO-A and MAO-B. Serotonin, dopamine and noradrenaline are preferred 

substrates for MAO-A, while MAO-B shows selectivity for E-phenylethylamine 

(PEA) (Yang and Neff, 1974; Garrick and Murphy, 1980). Several lines of 

evidence suggested that inhibition of MAO activity increased the 

pharmacological effects/toxicity of opiates in patients (Taylor, 1962) and 

animals (Iwamoto and Ho, 1972; Boden et al., 1984), although this effect was 
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only seen when both MAO-A and MAO-B were inihibited (Jounela et al., 1977). 

Nevertheless some interactions between MAD-E inhibitors and opiates/opioid 

peptides have been reported. For example, an inhibition of MAO-B or excess 

of PEA (the substrate for MAD-B) potentiated the analgesia induced by 

exogenously administered opiates/opioid peptides (Fuentes et al., 1977; 

Garzon et al., 1980). In addition, some pharmacological actions of PEA can 

be modulated by opioid receptor blockade (Kubota et al., 1982; Dourish and 

Cooper, 1984) suggesting a possible interaction between PEA and opioid 

receptors. 

This study was undertaken to clarify the relationship between MAO-B and 

the analgesic effect of endogenous (synaptic) enkephalins following 

administration of an enkephalinase inhibitor to rats allowed undisturbed 

sleep and animals subjected to REMSD. In these experiments REM sleep 

deprived rats were used because it has been shown that both MAO-B inhibitors 

and REMSD possess antidepressant activity (Mann and Gershon, 1980; Vogel et 

al., 1980) and modulate the analgesic action of opiates/opioid peptides 

(Garzon et al., 1980; Ukponmwan et al., 1984a). 

MATERIALS AND METHODS 

Adult, male Wistar rats weighing 150-175 g were used in this study. 

Drugs were injected intracerebroventricularly (i.c.v.), when required, via a 

stainless steel cannula implanted in the lateral ventricle. Correct 

placement of i.c.v. cannula was verified using the procedure recently 

described (Ukponmwan et al., 1985). A 4 day recovery period was allowed 

after cannula implantation before the experiments were commenced 

REM sleep deprivation 

REMSD(96 h) and the corresponding stress-control, were carried out as 

~reviously described (Ukponmwan et al. 1984a) using a modification of the 

method of Mendelson (1974). This method is known to selectively deprive rats 

of REM sleep after 96 h (Mendelson et al., 1974). Throughout this study, all 

animals were maintained in a constant environment room with an ambient 

temperature of 22±1°C and automatically regulated light-dark cycle of 12 h 

(light period 09.00-21.00 h). Food and clean drinking water were available 

ad libitum. 
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Assessment oT nociception 

Pain sensitivity to noxious paw pressure was assessed between 13.00-16.00 

h using to the analgesiometric technique of Randall and Selitto (1957). 

Nociception was measured 15, 30, 60 and 120 min after drug administration and 

expressed as analgesiometric scores (AMS) g mm-2 pressure. The cut off value 

was measured by a squeak or paw-withdrawal. Animals scoring above 150 g mm-2 

during control testing were not used for further experimentation. 

Drugs 

The following drugs were used in this study: phosphoramidon (Peninsula 

Laboratories, San Carlos, CA. USA), deprenyl (Chinoin, Budapest, Hungary) and 

B-phenylethylamine (PEA, Sigma, St. Louis, Mo, USA). Drugs for i.c.v. or 

i.p. administration were dissolved in physiological saline and administered 

in volumes of 2~1 or 500~1 respectively. Since the half-life of PEA in tr.e 

brain is known to be very short (Wu and Boulton, 1975), this substance was 

given 5 min after phosphoramidon and the pain threshold was measured 10 min 

later. 

Statistics 

The significance of differences between the analgesic scores obtained 

after different treatments was evaluated by Duncan's new multiple range test, 

once a one way analysis of variance (ANOVA) had revealed that samples 

represented different populations (Steel and Terrie, 1980; Saxena, 1985). 

Statistical significance was accepted at P-values of 0.05 or less (two 

tailed). 

RESULTS 

A significant difference in the analgesic scores across the various 

groups and time intervals was found after the administration of 

phosphoramidon (Fig 1 ). Similarly the effect of pretreatment with deprenyl 

and/or E-phenylethylamine (PEA) on phosphoramidon induced analgesia was 

significant across the treatment groups (Fig 2, p<0.01 ). 

The eFFects oF deprenyl and(or E-phenylethylamine on phosphoramidon- induced 

analgesia in animals allowed normal sleep 

The administration of the enkephalinase inhibitor phosphoramidon (Hudgi~ 

et al. 1981) (250 ~g. i.c.v.) significantly increased the pain threshold to 
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Figure 1: The effect of d&pronyl on the analgesic action of the enkephalinase 

inhibitor phosphoramidon in rots allowed undisturbed sleep. Nociception was 

determined by withdrawal of hind paw from pressure stimulation (modified 

Randall-Selitto test). Each point is mean ± SEm at each time point. The 

number of animals per treatment group is indicated in parenthesis. Note that 

deprenyl (2.5-10mg/kg,ip, 60 min prior) potentiated the analgesic effect of 

phosphoramidon (250~ icv) in a dose-related manner. (*) indicate significant 

difference from saline pretreated group (p<O.OS). 
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paw pressure. The most prominent analgesic effect was registered between 

15-30 min after drug administration (Fig 1) 

Deprenyl the MAO-B inhibitor, (2.5-10 mg/kg, i.p., 60 min prior) 

potentiated the analgesic effect of phosphoramidon in a dose-related manner 

(Fig 1 ). Similarly the MAO-B substrate, PEA, (40~g. i.c.v., 5 min 

post-phosphoramidon) also enhanced the phosphoramidon-induced analgesia (Fig 

2. p <0.05). Pretreatment with deprenyl (5 mg/kg, i.p., 60 min prior) 

further increased the potentiating effect of PEA (40 ~g. i.c.v.) on the 

analgesic action of phosphoramidon (Fig 2, p<0.05). Neither deprenyl (5 

mg/kg, i.p.) (Fig 2, p>0.05) nor PEA (40 #g, i.c.v., data not shown) induced 

analgesia in animals allowed undisturbed sleep. 

The effects of deprenyl and P-phenylethylamine on phosphoramidon-induced 

analgesia in REM sleep deprived animals 

The basal nociceptive threshold in REM sleep deprived rats was slightly, 

but significantly, lower tha~ in animals allowed undisturbed sleep (Fig 2, 

p<0.05). Deprenyl (5 mg/kg. i.p .. 60 min prior) induced a slight increase in 

the pain threshold of REMSD animals. A similar effect was observed during 

the first 10 min after PEA (40 ~g. i.c.v.) administration (data not shown). 

However, the analgesic scores of REM sleep deprived rats treated with 

deprenyl (5 mg/kg, i.p., Fig 2) or PEA (40 Mg. i.c.v., not shown) were not 

different from those of control animals (rats allowed undisturbed sleep). 

Phosphoramidon (250 Mg, i.c.v.) had no analgesic action in animals subjected 

to REMSD (Fig 2). The analgesic score of REM sleep deprived rats after 

administration of deprenyl (5 mg/kg, i.p., 60 min prior) and/or PEA (40 Mg, 

i.c.v., 5 min post-phosphoramidon) plus phosphoramidon (250 Mg, i.c.v.), was 

not different from those treated with deprenyl alone (Fig 2, p >0.05). 

DISCUSSION 

In the animals allowed undisturbed sleep, the antinociceptive effect of 

the enkephalinase inihibitor phosphoramidon was potentiated by both PEA 

(specific substrate for MAO-B) and 

enyzme). The analgesic effect 

deprenyl (selective inhibitor of this 

of phosphoramidon was probably due to an 

increase in endogenous enkephalins and the consequent activation of opioid 

receptors sensitive to naloxone and naltrexone (Chaillet et al., 1983; 
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Figure 2: The effects of deprenyl (D£P), REM sleep deprivation (REMSD) and 

e-phenylethylamine (PEA) on the analgesic effect of the enkephalinase 

inhibitor phosphoramidon (PH). Nociception was determined by withdrawal of 

hind paw from pressure stimulation (modified Randall-Selitto test). The 

analgesic score was measured 60 min after DEP and 15 min after PH or saline 

(2;.d icv,SAL). Each bar is the mean analgesic score ± SEM. The number of 

rats per group is indicated in parenthesis. Note the following: a) D£P (5 

mg/kg,ip) and/or PEA (40 ~g. icv) significantly potentiated the analgesic 

effect of PH in animals allowed undisturbed sleep; b) R£MSD decreased the 

basal pain threshold and Ph-induced analgesia compared to rats allowed 

undisturbed sleep; c) D£P and/or P£A did not alter the blockade of PH-induced 

analgesia by R£MSD. Tho levels of significance are given in the text. 
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Rupreht et al., 1983). We suggest that excess of PEA facilitates the 

analgesic action of enkephalins at the synaptic sites. This is in accordance 

with reports indicating that MAO-B inhibition and/or excess PEA potentiate 

the pharmacological effects of exogenously administered opiates /opioid 

peptides (Fuentes et al.; 1977, Garzon et al., 1980; 

1983). 

Ukporunwan et al., 

The mechanism by which MAO-B inhibition or excess PEA potentiates the 

analgesic effect of endogenously released enkephalins is not clear. It is 

possible that PEA enhances the interaction between opiates and their 

receptors (Fuentes et al., 1977). Thus. the MAO-B system may be an important 

regulator of the activity of opioids at the synaptic site in animal~ allowed 

undisturbed sleep. 

The described facilitatory action of MAO-B inhibition on enkephalinergic 

transmission in animals allowed undisturbed sleep might be of relevance not 

only in the physiology of nociception, but also in human disorders in which 

the alterations in MAO-B have been reported. For example, it has been 

demonstrated that endogenous depression is associated with a decrease in 

brain PEA levels (Wolf and Mosnaim, 1983), whereas an increase in MAO-B 

activity is associated with the aging process (Benedetti and Keane, 1980). 

In such cases an alteration in MAO-B activity and PEA levels could modify the 

analgesic effects of endogenous opioid peptides. 

However, the results of this study indicate that the possible alterations 

in the bioavailability of the MAO-B substrate, PEA, may not play an essential 

role in the failure of phosphoramidon to induce analgesia in REM sleep 

deprived rats. This statement is based on the fact that deprenyl and/or PEA 

did not alter the inhibitory effect of REMSD on phosphoramidon-induced 

analgesia. 

The basal pain threshold was lowered in rats deprived of REM sleep. TCis 

is in accordance with a previous study in which, using noxious electric shock 

to assess pain sensitivity, it was established that REMSD decreased the pain 

threshold (Hicks et al., 1979). The reason for the reduction in the pain 

threshold in REM sleep deprived rats is not clear. It might be due to the 

already suggested functional insufficiency of enkephalinergic/endorphinergic 

system during REMSD (Ukponmwan and Dzoljic, 1984b; Ukponmwan et al., 1985) 

since opioid peptides play an important role in the regulation of the pain 
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threshold (Basbaum and Fields. 1984). 

A functional insufficiency of an opioid system during REMSD (Ukponmwan et 

al., 1985) might partly explain why REM sleep curtailment is beneficial in 

treating some forms of depression (Vogel et al., 1980), since an increased 

opioid activity and corresponding decrease in pain sensitivity have been 

observed in this affective disorder (Risch, 1982; Pickar et al., 1982; 

Davis et al., 1979). 

Further clinical experiments are necessary to clarify the roles of MAO-B 

and the enkephalinergic/endorphinergic systems in the regulation of the pain 

threshold in human diseases. 
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CHAPTER 7 

REM SLEEP DEPRIVATION ANTAGONIZED THE MORPHINE-INDUCED AKINESIA AND CATALEPSY 

ABSTRACT 

An examination was made o£ the effect of REM sleep deprivation (REMSD) on 

some forms of altered motor activity, such as akinesia and catalepsy, induced 

by intraperitoneal (i.p.) or intracerebroventricular (i.c.v.) administration 

of morphine in adult, male Wistar rats . Administration of morphine (25 

mgjkg i.p.) induced an akinetic-cataleptic syndrome and decreased spontaneous 

vertical motor activity {SVMA) in animals allowed undisturbed sleep. REMSD 

decreased the morphine-induced akinesia and catalepsy that are known to be 

mediated by an inhibitory ~-opioid system. The locomotor depressant action 

of morphine was converted to excitation (manifested as increased SVMA and 

hopping behaviour) by REMSD. Similarly, decreased motor activity following 

i.c.v. administration of morphine (25 ~g) was replaced by excitation in the 

form of jumping behaviour after REMSD. Naltrexone (1 mg/kg,i.p.) blocked the 

akinetic and cataleptic effects, but not the excitatory effects of morphine. 

It is suggested that REMSD is associated with a functional insufficiency 

of an inhibitory ~-opioid system, thus unmasking the excitatory morphine 

effects. The proposed insufficiency of an endogenous opioid system might 

explain an increase in neuronal excitation during REMSD and the therapeutic 

effect of REM deficiency in some types of depression. 

INTRODUCTION 

Interactions between sleep and endogenous opioid systems have been 

documented. For example, activation of opioid receptor(s) .suppresses REM 

sleep (1 ). REM sleep was associated with the episodic release of humoral 

endorphin (2) and can decrease the neuronal excitation induced by exogenously 

administered opioid peptides (3). 

It has been suggested that alteration in REM sleep and endogenous opioid 

system are involved in some psychosomatic disturbances; for example, 
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increased REM sleep density and opioid activity are associated with 

endogenous depression (4-7). In addition, it has been shown that 

pharmacological and mechanical REM sleep deprivation can improve some ~arms 

of depression (8) and affect an opiate/opioid-induced analgesia (9). 

These data taken together suggest a functional interaction between REM sleep 

and opioid system in both physiological and pathological conditions. 

To further clarify the role of REM sleep in the regulation of opioid 

activity, the effects of REM sleep deprivation (REMSD) on morphine- induced 

behaviours were studied. Particular attention was paid to some 

morphine-induced effects such as akinesia and catalepsy, which are frequently 

present in psychopathological conditions (10). 

METHODS 

Adult, male Wistar rats weighing 1 50-200 

housed in groups of 3-5 rats per cage 

g 

(40 

were used. Animals were 

X 20 x 15 em) in constant 

environment chamber with a light-dark cycle 14:10 h (light phase, 07.00-21.00 

h) and ambient room temperature 22±1°C. 

REMSD 

Animals were deprived of REM sleep continously for 96 h using the 

classical -flower pot- technique previously 

procedure, rats were placed on platforms (14±0.5 

described ( 11). In 

cm2 /100 g body weight 

this 

to 

avoid the problem of unequal REMSD (12). The platform was surrounded by 

water 0.5-1.0 em below the island surface. This procedure is known to 

selectively deprive rats of REM sleep (11 ). In our experiment, the roof of 

the REMSD tank was designed to permit free assess to food and clean drinking 

water. The water in the tank was changed once every 24 h, during which time 

the animals were subjected to 1-2 min of handling and then allowed to rest in 

r.ome cages for 45-60 min and kept awake manually. 

Stress control 

To control for the unspecific stress factors associated with -flower pot­

technique for REMSD, rats were placed on platforms large enough (57-59 

cm2 /100 g body weight ) for them to curl up and have normal sleep without 

falling into the water. The large platform is known to stimulate the 

unspecific stress factors (isolation and dampness) associated with the 
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Nflower pot- technique of REMSD without affecting REM sleep after 96 h 

(11 ,1)). Otherwise, the stressed group of animals were treated as in REMSD 

group. 

Control 

Animals in this group were housed in home cages (40x20x15 em) for 96 h. 

Like the REMSD and stressed groups, rats in the control groups were handled 

daily for 1-2 mins. All animals had free assess to drinking water and food. 

Behavioural observations 

Behavioural observation and scoring were carried out in a quiet room with 

a temperature 22±2°C. Changes in behaviours were monitored in a transparent 

cylinder 18 em in diameter and 27 em height. The floor was covered with saw 

dust. REM sleep-deprived rats and stressed animals were placed in the 

recording cage within 5-10 min after discontinuation of these procedures. 

REM sleep deprived or stressed animals were first dried using absorbent 

towel, since they were often wet on removal from platforms. All rats were 

observed individually after 30 min habituation to the cage. Morphine­

induced behaviours such as akinesia. catalepsy, or rearing were assessed and 

scored as present or absent every 10 min for the first 30 min and every 30 

min thereafter for another 90 min. 

Akinetic and cataleptic behaviours 

Akinesia was defined as loss of spontaneous locomotor activity. A rat 

was scored as akinetic if it did not move for 5 min after placement at the 

corner of the cage. 

Catalepsy was determined using the bridge test and/or loss of righting 

reflex (14,15). In this procedure rats were placed gently across a 10 em 

wide bridge and/or on their backs. Animals that maintained this position for 

at least min were scored as cataleptic. All cataleptic animals were 

akinetic, but not all akinetic rats displayed catalepsy simultaneously; both 

phenomena were seperately evaluated. Hopping behaviour was defined as the 

sudden jump along a horizontal plane. 

~easurement of spontaneous vertical motor activity (SVMA) using an automated 

method 

During preliminary experiments, it was observed that REMSD converted 

morphine-induced locomotor inhibition into excitation, characterised by 

increased rearing. This effect of REMSD was particularly evident 60-120 min 
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after morphine treatment. Therefore the SVMA was assessed quantitatively in 

both REMSD and control groups. SVMA was recorded by means of a computerized 

Varimex (Columbus Instrument, Columbus, Ohio, USA), in which rearing animals 

interrupted a magnetic field located between the floor of the cage and a 

plane 18 em above. 

On the experimental day, rats were transferred from home cages or 

platforms, weighed, and placed in transparent Plexiglas cages (40 x 20 x 15 

em) without sawdust and allowed 30 min habituation. All animals were then 

injected with saline (1 ml/kg,i.p. ), and motor activity was recorded for an 

additional 30 min. Then, morphine (25 mg/kg, i.p.) was administered, and 

SVMA was monitored during the 60-120 min period after drug administration. 

The effects of morphine on SVMA vere studied between 11.00-14.00 h to avoid 

known circadian variation in locomotion (16) and opioid receptor reactivity 

(17). 

Drug, dose and route of administration 

Morphine hydrochloride (Brocacef, Maar sen, The Netherlands) was 

administered dissolved in physiological saline. The cataleptogenic and 

locomotor inhibitory effects of morphine vere studied at a fixed dose of 25 

mg/kg, i.p., since it has been shown that 20 mg/kg i.p. induce robust 

catalepsy/ridigity in rats (18). 

The intracerebroventricular (i.c.v.) administration of morphine (25 

~g/rat) was carried out by means of chronically implanted cannulae. This 

dose vas selected because it is known to induce the inhibitory effects of 

opiates (19). 

Statistical analysis 

Results expressed as percentages were analyzed using a one-tailed Fisher 

exact probability test. Data presented as counts were analyzed using the 

Kruskal Wallis one way analysis of variance (ANOVA) followed by a 

Mann-Whitney test. Statistical significance vas accepted at P-values of 0.05 

or less. 
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RESULTS 

Intraperitoneal (i.p.) administration of morphine 

Effect of REMSD on morphine-induced akinesia. Morphine(25 mg/kg) induced a 

significant akinetic behaviour in animal~ allowed undisturbed sleep (control 

and stress, Fig. 1, p<0.01 ). This akinetic effect of morphine in control 

and stressed animals reached maximum intensity within first 30-60 min and 

disappeared at 120 min after drug administration. However, there was no 

significant difference in the akinetic effect of morphine between control and 

stressed animals. 

REMSD significantly decreased morphine-induced akinesia compared with the 

control group at 30 min and 60 min (Fig. 1, p<0.05, p<0.005, respectively, 

for each time period). Furthermore, REMSD converted the akinetic e££ect to 

excitation characterised by rearing, body jerks, and hopping behaviours. 

Saline (1 ml/kg,i.p.) did not induce akinesia in control, stressed or REMSD 

animals. 

Effect of REMSD on morphine-induced catalepsy. The administration of morphine 

(25 mg/kg) induced signi£icant catalepsy in animals allo~ed undisturbed sleep 

(control and stressed rats) 30 and 60 min after drug treatment (Fig. 2, 

p<0.05). The morphine-induced catalepsy ~as characterised by a profound 

state o£ muscular ridigity (evident in the bridge test) and loss of righting 

re£lex, ~hich disappeared at 120 min. The number of rats sho~ing 

morphine-induced catalepsy in the control group ~as not significantly 

di££erent from stressed groups. A close relationship ~as observed bet~een 

akinesia and catalepsy, i.e. a signi£icant catalepsy score ~as registered in 

the control group only ~hen almost all animals sho~ed akinesia. 

Naltrexone (1 mg/kg, i.p.) completely blocked the morphine-induced 

akinetic-cataleptic syndrome in animals allo~ed undisturbed sleep (n~10 for 

control and stress groups together). 

REMSD signi£icantly decreased morphine-induced 

control animals allo~ed spontaneous amounts o£ 

p<0.005 for 30 and 60 min, respectively). 

catalepsy compared ~ith 

sleep (Fig. 2, p<0.02, 
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Effect of REMSD on morphine-induced inhibition of SVMA. Kruskal Wallis ANOVA 

showed a significant difference across the treatment groups (Fig. 3, 

p<0.001, H=20.39, df=5). 

Morphine (25 mg/kg) decreased SVMA in control animals. However, the 

morphine-induced inhibition of SVMA in stressed rats was not different from 

that in control animals (Fig. 3). In the REMSD group, morphine had the 

opposite effect. which was manifested as a significant increase in SVMA (Fig. 

3, p<0.02). This morphine-induc-ed increase in SVMA in the REM sleep deprived 

group was not altered by pretreatment with naltrexone (1 mg/kg,i.p., not 

shown). 

Intracerebroventricular administration of morphine. In animals allowed 

undisturbed sleep i.c.v. administration of morphine (25 ~g) induced 

decreased locomotion (with associated symptoms such as akinesia and 

catalepsy). However, the administration of morphine (25 ~g) to animals 

deprived of REM sleep provoked exctitatory behaviours such as hopping and 

jumping. The intensity of jumping behaviour in the REMSD group (25±9.5 

jumps/2h, n~7) was significantly higher than in control (no jumps in 2 h, 

n=5) and stressed animals (1.2±0.8 jumps/2h, n=5, p<0.01 ). 

DISCUSSION 

The results of this study indicate that the akinetic-cataleptic syndrome 

and locomotor suppressant effects of morphine were antagonised by REMSD and 

replaced by excitatory behaviours manifested as increased SVMA: hopping and 

jumping. 

It has been suggested that inhibitory effects of morphine such as 

akinesia and catalepsy are due to the activation of a naloxone/naltrexone 

sensitive ~-opioid receptor (20-22). This idea could be supported by this 

study, since a relatively low dose of ~ receptor blocking substance 

naltrexone decreased the morphine-induced akinetic-cataleptic syndrome. 

Therefore, a decrease of morphine-induced akinetic-cataleptic syndrome by 

REMSD might sugge~t an insufficiency of an endogenous opioid system mediating 

the inhibitory effects of opiates. Similarly, REMSD antagonised the 

analgesic effects of opiates (9), which is supposed to be mediated by the 
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same type of receptors (23,24). 

Although morphine fails to induce akinetic/cataleptic syndrome in REMSD 

animals. changes in other transmitter/modulators are probably not involved. 

For example, the observed decrease in brain concentrations of acetylcholine, 

Y-aminobutyric acid (GABA), and somatostatin during REMSD (25-27) cannot 

account for the inhibition of morphine-stimulated akinesia and catalepsy in 

REM sleep deprived animals, since blockade of cholinergic and GABAergic 

systems or the administration of somatostatin did not alter opiate-induced 

akinetic-cataleptic syndrome (28,29). Similarly, increased serotonin release 

facilitated akinesia and catalepsy (30), while an elevated brain turnover of 

serotonin was observed during REMSD (31). A number of studies indicate a 

functional hyperactivity of dopaminergic system following REMSD (32). It is 

known that clinically effective neuroleptics that act as antagonists at 

dopamine receptors may induce catalepsy (33). However, opiates do not act as 

antagonists of dopamine receptors (34). 

A second important finding was that REMSD converted the depressant 

effects of intracerebroventricularly administered morphine to excitation. 

The reason for the conversion of the depressant effects of morphine to 

excitation by REMSD is not clear. However, morphine can induce both 

inhibitory and excitatory behaviours. which are mediated by two groups of 

receptors. 

mediates 

One is the naloxone-sensitive opioid receptor system which 

analgesia, akinesia and catalepsy: the other is the 

naloxone-insensitive receptor system which mediates excitation (21 ,35,36). 

Activation or blockade of the ~~opioid receptor can inhibit and facilitate, 

respectively, the excitatory effect of morphine (36). Thus. the conversion 

of the motor inhibitory effects of morphine to excitation during REMSD could 

be explained by the suggested deficiency of an inhibitory ~-opioid system in 

REM sleep deprived animals and a corresponding predominance of the excitatory 

opioid receptor system. 

Therefore, in conclusion, we suggest that functional insufficiency of ·a 

~-opioid system during REMSD might be a background to increased neuronal 

excitability in REM sleep deprived animals. Namely, it is known that 

endogenous opioids exert an inhibitory influence on the release of excitatory 

transmitters (37). This possiblity can be supported by the report that 

blockade of opioid receptors with naloxone facilitated epileptogenesis (38). 
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The proposed insufficiency of an opioid system during REMSD might be an 

explanation for a therapeutic and diagnostic value of REM sleep curtailmen~ 

in some cases of depression (8) and epilepsy (39), respectively. 
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CHAPTER 8 

REM SLEEP DEPRIVATION DECREASES THE GROOMING AND SHAKING BEHAVIOUR INDUCED BY 

ENKEPHALINASE INHIBITOR OR OPIATE WITHDRAWAL 

ABSTRACT 

Intraventricular administration of enkephalinase inhibitor, 

phosphoramidon (1 X 10-S- 5.6 x 10-7 moles, i.c.v.) induced a behavioural 

syndrome consisting of excessive grooming with body scratching as the most 

prominent symptom and wet-dog-shakes (WDS). The frequency of the 

phosphoramidon-induced WDS and bo~ scratching were decreased by the 

pretreatment with the opioid receptor blocking agent, naltrexone (2.9 x 10-6 

moles/kg, i.p.). Both the phosphoramidon-induced WDS in naive rats and 

naloxone-precipitated withdrawal WDS were decreased in REM sleep deprived 

rats compared with animals allowed normal sleep (control and stress groups). 

The results are discussed in light of a possible functional insufficiency 

of an endogenous opioid system during REMSD. It has been suggested that this 

insufficiency might be a background to the increased neuronal excitability 

during REMSD. 

INTRODUCTION 

Several endogenous substances including opioid peptides have been 

demonstrated to induce grooming and wet-dog-shakes (5,6.9,12). Recently, we 

demonstrated that the administration of the enekphalinase inhibitor, 

phosphoramidon, induced behaviours such as grooming and wet-dog -shakes (WDS) 

{28). These behavioural phenomena. which can be induced by various drugs in 

naive animals, are part ol the morphine withdrawal syndrome. There are 

indications that both groom~ng and WDS may share a common neural mechanism 

( 1 0) . 

It has been demonstrated that inhibition ol protein synthesis reduced the 

severity of opiate withdrawal phenomena (19). In addition it is known that 

REM sleep deprivation (REMSD) can decrease protein synthesis (30). REMSD 



122 

also inhibited morphine induced analgesia (38). These data suggest that 

alterations in REM sleep can modulate both protein synthesis 

pharmacological effects of opiate substances. Therefore, we analyzed the 

relationship between REMSD and grooming and/or shaking behaviour induced by 

enkephalinase inhibitor phosphoramidon in naive rats 

naloxone-precipitated withdrawal in the opiate-dependent rats. 

METHODS 

Adult, male Wistar rats (100-125 g) housed in transparent plastic cages 

in a constant environment room with a light-dark cycle 14:10 (light phase 

07.00 -21.00 h) were used. 

Intracerebroventricular (i.c.v.) administration of drug solutions 

For i.c.v. administration of drugs a stainless steel guide cannula was 

stereotaxically directed mm above the lateral ventricle. Drug solutions 

(maximum volume 2 ~1) were injected into the lateral ventricle with guage 30 

needle, attached to a Hamilton microsyringe by polyethylene (PE) tubing. The 

length of the needle was made such that it protruded 1 mm into the lateral 

ventricle. The injection was made over 10 sec and the needle maintained in 

position for an additional 10 sec. Correct ventricular cannulation was 

verified before and after each experiment using a modification of the 

technique previously described by Paakkari (24). In this procedure a PE 

tubing is attached to the injection needle and filled with artificial 

cerebrospinal fluid (CSF) or saline. To test the correct placement of i.c.v. 

cannula during sugery, the tubing is raised above the head of the animal on 

the stereotaxic apparatus, and a rapid inflow of saline denotes a correct 

placement of cannula. The cannula was moved only in a downward direction to 

avoid the possible false positive effect due to an upward movement of the 

cannula after the first unsuccessful cannulation (14). 

REM sle&p deprivation (REMSD) 

REMSD was carried out according to the conventional -flower pot­

technique previously described (21). In this procedure, rats were placed on 

platforms (14 cm2/100 g rat) surrounded by water, such that the water level 

was 0.5-1.0 em below the platform. Rats made morphine-dependent were placed 

on platform and deprived of REM sleep from day 7-11 (96 hr) of 
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morphinization. During this period animals received the normal doses of 

morphine for these days. 

Forty-five to 60 min after the discontinuation of REMSD the animals were 

injected with the enkephalinase inhibitor phosphoramidon. In this period of 

time the animals were kept awake mannually. 

scored during the following 30 min. 

The behavioural changes were 

Control for the unspecific stress factors associated with the -flower pot-

technique 

In order to control for the known stress factors (dampness, isolation and 

immobilisation) associated with the -flower pot- technique rats were placed 

on platforms large enough (60 cm2 /100 g rat) for them to curl up and have 

normal sleep. The large platform can simulate the chronic stress condition 

associated with REMSD without affecting REM sleep level after 96 hr (20,21). 

Phosphoramidon-induced behaviour 

Behavioural observation and scoring were carried out on each individual 

rat housed singly in Plexiglas cages (40 x 20 x 15 em) containing saw dust . 

Wet-dog-shakes consisting of paraxysmal shudder of the whole body along the 

spinal axis were registered and quantified. The body scratching (BS) episode 

is defined as head or body scratches followed immediately by the licking of 

the paw used in scratching. 

Induction of morphine dependence 

Animals were made dependent on morphine according to the repeated 

injection procedure previously described (32). In this method rats were 

given two intraperitoneal injections of morphine daily (at 07.30 and 15.30 

hr). The dosage schedule was as follows: Days and 2 (7 X 10-5 

moles/kg/day; Days 3 and 4 ( 14 X , o- 5 moles/kg/day); Days 5 and 6 (28 X 

10-5 moles/kg/day) and Days 7-11 (56 X 10-5 moles/kg/day). 

Precipitation of morphine withdrawal shaking behaviour 

Abstinential behaviour in morphine dependent animals was provoked by 

injecting nalxone (3.1 x 10-6 moles/kg i.p.) three hours after the last 

injection of morphine. Prior to receiving naloxone treatment each rat was 

allowed a habituation period of 30-60 min in the observation area. 

Naloxone-precipitated WDS in morphine-dependent rats and phosphoramidon­

induced behavioural phenomena in naive animals were studied in the following 

three groups of rats:- a) Control group:- these rats were housed singly in 
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home cages throughout the experimental procedure and allowed spontaneous 

amounts o~ sleep; b) REM sleep deprived group:- these rats were submitted to 

96 hr continous REM sleep deprivation; c) stressed group:- these animals 

were chronically stressed for 96 hr. 

Drugs 

The following drugs were used: morphine hydrochloride (Merck). naloxone 

hydrochloride (Endo Lab) and naltrexone hydrochloride (Endo Lab) were 

administered dissolved in physiological saline. Phosphoramidon (Peninsula 

Lab) was dissolved in CSF prepared fresh and administered i.c.v. 

Data Analysis 

The results were analyzed using the Kruskal-Wallis one-way ANOVA. The 

statistical difference between two groups of treatment were carried out using 

a two-tailed Mann Whitney U test. except vhen indicated in text. 

RESULTS 

Effects of REMSD on behavioural syndrome induced by enkephalinase inhibiton 

The intracerebroventricular administration of the enkephalinase inhibitor 

phosphoramidon (1 x 10-8 - 5.6 x 10-7 moles i.c.v.) induced a behavioural 

syndrome consisting of excessive grooming (as measured by body scratching) 

and vet-dog -shakes (WDS) in all three groups of animals (control, REMSD and 

stressed). These symptoms appeared vithin 5 min after phosphoramdion 

administration and vere still observed after 240 min. The Kruskal-Wallis one 

vay ANOVA shoved a significant difference in the phosphoramdion-induced WDS 

across the groups (H=1 06.21, NDF:8 p<0.001). The frequency of 

phosphoramidon-induced WDS vas dose-related in both control (p<0.05) and 

stressed (p<0.02) groups of animals (Fig 1 ). Hovever, the frequency of the 

phosphoramidon-induced WDS in stressed rats was not significantly different 

from control animals (Fig 1. p>0.05). REMSD significantly decreased the WDS 

induced by three doses of phosphoramidon (Fig 1, p<0.02, p<0.002, p<0.002 

respectively, for increasing doses). The frequency of BS in the REM sleep 

deprived animals vas significantly less intensive compared with control and 

stressed animals (Fig 3, p<0.02). There vas no significant difference in the 

mean BS between control and stressed animals (Fig 3, p>0.10). 

Naltrexone (2.9 x 10-6 moles/kg i.p .• 10 min prior) significantly 



125 

" 
(n=l2) 

35 

30 (n=9) 

0 
.E (n,6) 

~ 

25 STRESS 

~ 
~ 
iii 
:, 

20 0 
0 

;; 
[ n · 5) ( n '5) 

~ ( n o9) 
'o 15 
' • D 
E 
0 
z 

1 0 ( n =5) 

( n "5) REM SO 
( n =9) 

. 8. 5 7. 5 - 5. 5 

log dose of phosphor;Jmidon (moles icv) 

Figure 1: The phosphoramidon (1 x 10-B- 5.5 x 10-7 moles i.c.v.)- induced 

wet-dog-shakes (WDS). Each point is mean ± S.E.M. The number of rats per 

dose of phosphoramidon is stated in parentheses. Note that the 

phosphoramidon-induced WDS was significantly lowered in REMSD rats compared 

with control or stressed animals. 
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decreased the phosphoramdion-induced ~S in control (p<0.002), REMSD and 

stressed animals (p<0.05, Ducan Ne~ Multiple range test)(Fig 2). In the 

control rats the phosphoramidon-induced BS were signi~icantly less frequent 

after pretreatment with naltrexone (92.8±23.6. n=11) compared with saline 

pretreated animals 201 .8±29, n=12, p<0.05). 
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Figure 2: Effect oF naltrexone (2.9 x 10-6 moles(kg, i.p.) on phosphoramidon 

(5.6 x 10-7 moles i.c.v.)-induced wet-dog-shakes (WDS). Each bar is/mean± 

S.£./ff. The number of animals per treatment group is indicated in 

parentheses. Note that pretreatment ~ith naltrexone significantly decreased 

phosphoramidon-induced WDS. 
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Figure 3: Effect oF REMSD on phosphoramidon (5.6 x 10-7 moles, i.c.v.) 

induced body scratches. Each bar is mean± S.E.M. The number of rats per 

treatment group is stated in parentheses. Note that the intense body 

scotches induced by phosphoramidon in control and stressed animals were 

significantly decreased by REMSD. 

Effect of REMSD on opiate withdrawal WDS 

Naloxone (3.1 x 10-6 mole/kg i.p.) precipitated WDS in morphine-dependent 

rats in control. REM sleep deprived and stressed groups of animals. The 

Kruskal-Wallis one way ANOVA showed a significant difference in the 

withdrawal WDS across the groups (Fig 4, H=16.12, NDF=2. p<0.001 ). The 

frequency of the precipitated WDS was significantly more pronounced in 
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-precipitated withdrawal wet-dog-shakes (WDS). Each bar is mean ± S.E.M. 

The number oT rots per group is indicated in parentheses. Note that the 

total frequency of withdrawal WDS was significantly less in REMSD rats 

compared with control (p<0.01) and stressed (p<0.002) animals. 



129 

animals allowed to sleep normally (control and stressed groups) than in the 

REM sleep deprived rats (Fig 4, p<0.002). However, the intensity of such 

induced WDS in control or stressed animals were not significantly different 

(Fig 4, p>0.2). 

were few 

Body scratchings in naloxone-treated morphine dependent rats 

irregular and therefore omitted from further detailed 

quantitative evaluation. 

DISCUSSION 

The results of this study showed that WDS and grooming induced by 

enkephalinase inhibitor, phosphoramidon, were inhibited by naltrexone, which 

might indicate an involvement of opioid receptor(s). This is consistent with 

the fact that enkephalinase inhibition can activate opioid receptors by 

blocking the 

(16,25). 

biotransformation 

In addition, the 

of endogenously 

WDS-induced by 

released opioid peptides 

i.c.v. administration of 

enkephalins were attenuated by opiate antagonists (2,5,6,13) 

Grooming behaviour has also been observed after low doses of morphine 

(29). Taken together, these data might suggest that WDS and grooming induced 

by phosphoramidon or opioid substances share a common mechanism. 

The biological significance of WDS and grooming induced by different 

chemical compounds is not clear. Some data suggest that WDS are indicative 

of arousal (10), whereas grooming might be a -de-arousing- homeostatic 

mechanism (17). In addition, it has been demonstrated that opioid peptides 

facilitate arousal (37) and in higher doses induced an electrophysiological 

and behavioural phenomena similar to epilepsy (7,8). Thus the excessive 

grooming observed in our experiment might be a response to the 

phosphoramidon-induced arousal, manifested as WDS. 

However, the most important aspect of this report is the fact that REMSD 

suppressed the WDS and grooming induced by enkephalinase inhibition in naive 

rats. Why REMSD decreased these behaviours in rats is not clear. It could, 

however, be suggested that REM sleep deprived animals might have limited 

availability of opioid peptides and hence the WDS and grooming precipitated 

by phosphoramidon could be less pronounced. Although there is no direct 

biochemical evidence for the insufficiency of the enkephalinergic system 

during REMSD this possibility could be considered since it is known that 
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REMSD is associated with the inhibition of protein synthesis (30). The 

concept of a functional insufficiency in the enkephalinergic/endorphinergic 

system in REM sleep deprived animals receives further support from the fact 

that REMSD abolished the antinociceptive effects of morphine and 

phosphoramidon (38). 

This hypothesis of a functional insufficiency in this opioid system might 

explain the increased neuronal excitability during REMSD (4) since it is 

known that oPioid peptides exhibit tonic inhibitory effects on the release of 

excitatory transmitters (23). However, additional experiments are required 

to clarify whether this mechanism might be involved in REMSD-precipitated 

seizures and the therapeutic effect of REMSD in some types of endogenous 

depression. 

A second important finding of this study is that REMSD inhibited 

abstinential WDS. The mechanism of opiate addiction/withdrawal is complex 

and probably involves alteration in several neurotransmitter/neuromodulator 

systems. However, the known changes in classical transmitters during REMSD 

can not account for the decrease in naloxone-precipitated withdrawal WDS in 

REM sleep deprived animals. For example, REMSD increased the functional 

activity of dopaminergic system (36), but did not alter the adrenergic system 

(31 ). However, substances which block these systems inhibited withdrawal WDS 

(18,34) Furthermore, the known changes in brain serotonin metabolism during 

REMSD (33} probably play no role in the inhibiton of abstinential WDS in REM 

sleep deprived rats, since the alteration of the serotoninergic system had no 

clear effect on WDS induced by morphine withdrawal (1 ). It is also known 

that drugs which stimulate central muscarinic receptors inhibited the shaking 

response (39), whereas REMSD decrease the acetylcholine content of the brain 

(3.35). 

Although some high energy phosphates can antagonize the effects of 

morphine, there is no evidence that the concentrations of AMP, ADP and ATP 

are significantly altered by REMSD (11 ,22). 

Therefore, an alternative explanation for the inhibitory effect of REMSD 

on morphine withdrawal WDS should be considered. Namely, it is known that 

during development of morphine dependence there is an increase of the 

synthesis of secretory proteins in the brain regions (pons-medulla and 

stratum -septum)(27), which are particularly rich in opioid receptors (26) 
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and functionally involved in opiate dependence (15). It has also been 

demonstrated that REMSD decreased protein synthesis in the cerebral and brain 

stem fractions (30) and that synthesis can decrease opiate withdrawal 

phenomena (19). Thus the decrease of protein synthesis during REMSD might 

explain the inhibitory effect of REMSD on withdrawal WDS. 
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CHAPTER 9 

ENKEPHALINASE INHIBITION ANTAGONIZES THE INCREASED SUSCEPTIBILITY TO SEIZURE 

INDUCED BY REM SLEEP DEPRIVATION 

ABSTRACT 

In order to elucidate the relationship between REM sleep and the 

enkephalinergic system, the effects of REM sleep deprivation (REMSD), stress 

and the enkephalinase inhibitor phosphoramidon on 

handling-induced-convulsions were studied in mice. REMSD, stress and 

phosphoramidon (25-500 ~g i.c.v.) increased the frequency of handling-induced 

convulsions (HIC) in normal mice. However, only in the last two groups were 

RIC antagonized by naloxone (1 mg/kg i.p.). In REMSD mice, phosphoramidon 

decreased the frequency of HIC, this effect being abolished by naloxone. The 

increase of neuronal excitability during REMSD is suggested to be associated 

with an insufficiency of an enkephalinergic system. 

INTRODUCTION 

Rapid-eye-movement (REM) sleep is known to modulate neuronal excitability 

in man and animals (Drucker-Colin et al., 1977; Passouant et al., 1965). 

However, in clinical reports and animal experiments, it has been demonstrated 

that REM sleep deprivation (REMSD) increases 

facilitates seizure activity (Pratt et al .• 1969; 

neuronal excitability and 

Cohen and Dement, 1965). 

Evidently. the phasic changes in neuronal activities during sleep can 

influence the pathophysiology of seizures. 

Recently, it has been suggested that the enkephalinergic system plays an 

important role in epileptogenesis (Frenk et al .• 1978; Dzoljic et al., 

1979). It is also known that ~-endorphin exerts an inhibitory influence on 

REM sleep (King et al., 1981 ). In addition, we have demonstrated that REM 

sleep has an inhibitory effect on enkephalin-induced seizures (Ukponmwan and 

Dzoljic, 1983). These data might indicate an involvement of the endogenous 

opioid system in mechanisms regulating REM sleep and neuronal excitability. 
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In order to eludicate further the relationship between REM sleep and 

enkephalins, we studied the effects of REMSD, stress and the enkephalinase 

inhibitor, phosphoramidon on handling-induced convulsions in mice. 

MATERIALS AND METHODS 

Animals: 

Adult, male mice of B10 A strain (25-30 g) were used (Dlac Ltd, Bicester, 

England). Intracerebroventricular (i.c.v.) administration of drugs was by 

means of a stainless steel cannula stereotaxically implanted in the lateral 

ventricle. A minimum of 3-5 days was allowed for recovery before experiments 

were commenced. 

Animals were then divided into three groups: Group A (control) mice 

housed individually in transparent cages and allowed spontaneous amount of 

sleep; Group B mice were subjected to 72 h REMSD according to the 

conventional -flower pot- technique described by Fishbein {1970). Only mice 

which could habituate to the platform within 3 h were used for 

experimentation. Group C (stress) mice were placed on platforms large enough 

(8.0 em diameter, for 72 h) for the animals to curl up and exhibit REM sleep 

without falling into the water. 

Handling-induced convulsions (HIC): 

HICs in mice were assessed using the criteria previously described for 

alcohol withdrawal (Goldstein and Pal, 1971 ). In this procedure each mouse 

was picked up 

characterised 

by 

by 

the tail 

violent 

and/or 

jerking 

spun gently through 180°. HIC was 

or twirling, tonic convulsions 

tightening of facial muscle (grimace). Only HICs occuring within 6-10 s of 

pick-up were recorded. Scores were assigned as follows: violent 

tonic-clonic convulsions upon pick up-4, tonic-clonic convulsions upon 

picking up-3, tonic convulsions upon picking up or tonic-clonic convulsions 

after gently spinning-2, tonic convulsions after gentle spinning-1. and 

facial grimace after gentle spinning-0.5. The scoring procedure is based 

upon the criteria described by Crabbe et al. (1981 ). RIC was determined at 

10 min intervals form 120 min. The intensity of convulsions is indexed by 

total HIC during the first 30 min scoring period. The period was chosen to 

avoid the possible modifying influence of repeated handling. The observer 
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was -blind- during the evaluation of dose-response curve of the effect of 

phosphoramidon in all three groups. 

Drugs: 

Phosphoramidon (Peninsula Laboratories) and naloxone hydrochloride 

(Winthrop Laboratories) were dissolved in saline. The maximum volume of 

phosphoramidon administered i.c.v. over 20 s was 1 .5~1. 

administered intraperitoneally (i.p.). 

Statistical analysis oF data: 

Naloxone was 

The Kruskal-Wallis ANOVA was carried out on the mean convulsions score 

and across all data in all the experiments. Comparisons between any two 

treatment groups were made with the Mann-Whitney U-test (Siegel, 1956). 

RESULTS 

The Kruskal-Wallis test showed significant differences in convulsion 

scores across the groups (H=174.47, p<0.001, NDF=15). The levels of 

significance between two groups using the Mann-Whitney U test are indicated 

below. 

Control. In this study, 16% of control non-treated mice displayed mild signs 

of HIC such as grimacing. In treated mice, saline injection (1~1 i.c.v.) or 

naloxone also induced signs of HIC consisting mainly of grimacing. However, 

phosphoramidon (25-500 ~g i.c.v.) significantly increased the intensity and 

degree of susceptibility to HIC in a dose-related manner (p<0.01 ). This 

effect was antagonized by naloxone (1 mg/kg. i.p.)(Fig 1A). 

R£MSD group. Mice subjected to 72 h REMSD demonstrated a significant 

increase in the incidence and intensity of HIC (p<0.001 ). This was not 

affected by naloxone (p=o.1) but significantly inhibited by the enkephalinase 

inhibitor phosphoramidon (25-500 ~g) administered within 10 min after REMSD 

termination (p<0.001, Fig 1B). This effect of phosphoramidon was partially 

antagonised by naloxone (1 mg/kg i.p. 10 min prior, p<0.001 ). 

Stress group. Stress also induced an increase in the intensity and 

susceptibility to RIC (p<0.001) but less intensely than in REMSD group. This 

effect was further potentiated by phosphoramidon (100 ~g. p<0.001 ). Naloxone 

(1 mg/kg, i.p.) decreased the susceptibility to HIC in stress animals 

(p<0.001 Fig 1C). 
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Figure 1a-c: The erTect of REM sleep deprivation (REI'ISD, 72 h). 

phosphoramidon (ph), naloxone (nal) and stress (72 h) on handling-induced­

convulsions (HIC). Each bar is mean intensity± S.E.M of HIC during the 

first 30 min. The number of animals per group is stated in parentheses. 
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DISCUSSION 

Mice subjected to REMSD, stress or 

increase in the susceptibility to 

phosphor amidon 

HIC. HoYever, 

treatment showed an 

only in stressed or 

phosphoramidon-treated animals was the convulsant activity antagonised by 

naloxone. This might indicate that the phosphoramidon- and stress-induced 

proconvulsant activity is due to activation o£ an endogenous opioid system. 

This agrees with data -showing that concentrations of opioid peptides are 

increased after treatment with enkephalinase inhibitors (Patey et al., 1981) 

and that various stress regimens are associated with the release of 

endogenous opioid peptides (Christie and Chesher, 1982). The evidence that 

stress and enkephalinase inhibition increase susceptibility to epileptiform 

activity could be ascribed to the fact that opioid peptides in excess may 

induce seizure phenomena. The epileptogenic potential of various opioid 

peptides administered exogenously has been demonstrated frequently (Urea et 

al., 1977; Dzoljic et al., 1979; Snead and Bearden, 1982). 

However, the mechanism of epileptiform activity of opioid peptides is not 

completely understood. Recent data suggest that specific opioid receptors of 

the delta-subtype mediate the epileptiform effect of these substances 

(Dzoljic and vd Poel-Heisterkamp, 1982; Haffmans and Dzoljic, 1983; Frenk, 

1983). The target area of this action seems to be the limbic system 

(Henriksen et al., 1980), particularly the hippocampus (French and Siggins, 

1980; Haffmans et al., 1983; 1984). It has been shown that opioid peptides 

may excite hippocampal neurons by inhibiting adjacent interneurons 

(Zieglgansberger et al., 1979). Thus, it might be suggested that an 

increased susceptibility to HIC in animals, stressed or treated with 

phosphoramidon is due to the a~tivation of a particular type of opioid 

receptor population in selective brain regions(s). The potentiating effect 

of phosphoramidon on stress-induced HIC is probably due to the protection of 

the released opioid peptides during the stress procedure. 

A second significant aspect of this study is that the enkephalinase 

inhibitor phosphoramidon decreased convulsant behaviour in REMSD mice. This 

effect of enkephalinase inhibition might suggest that REMSD is associated 

with an insufficiency of endogenous opioid peptides. This possibility is 

supported by the fact that REMSD decreases peptide synthesis (Shapiro and 
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Girdwood, 1981) and affects the levels of some brain peptides (Mattiace et 

al., 1981 ). In addition, recent data indicate that nocturnal episodic 

secretion of humural endorphins occurs during REM sleep (Oksenberg et al., 

1980). 

However, the exact mechanism by which an enkephalinase inhibitor 

antagonizes REMSD-induced neuronal excitation is not clear. One possible 

explanation that should be considered is the fact that enkephalins block GABA 

transport across plasma membrane (Cupello and Hyden, 1981 ), leaving GABA 

outside the neuronal membrane in contact with its receptors for a longer 

time. Such mechanism might explain enkephalin-induced neuronal inhibition in 

physiological circumstances. In the context of these findings, a proposed 

decrease o£ enkephalinergic ac~ivi~y during REMSD would be associated with a 

decrease GABA inhibitory activity and consquent increase 

susceptibil ty. 

in seizure 

In summary, these results indicate that enkephalinase inhibition may 

have, depending on conditions. proconvulsant potential (in stress or control 

animals) or anticonvulsant (in REMSD animals) action. Similar contradictory 

data concerning the proconvulsant potential o£ morphine and endogenous 

opioids have been reported. Both the pro- and anticonvulsant activity o£ 

these substances have been demonstrated (Gilbert and Martin, 1975; Verdeaux 

and Marty, 1954: Cowan et al., 1979; Tortella et al., 1981; Dzoljic, 

1982). 

An insu£~iciency of endogenous opioid peptides in REMSD animals suggested 

by this study might be of importance £or the worsening o£ seizures or 

improvement o£ depressive disorders during REMSD (Pratt et al., 1968; Vogel 

et al., 1980). It is of interes~ to note that in nacolepsy, the attacks of 

REM sleep have been prevented by naloxone, suggesting a possible involvement 

o£ endogenous opioid systems (Pasi et al., 1983). 
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CHAPTER 10 

REM SLEEP DEPRIVATION INHIBIT THE NITROUS OXIDE WITHDRAWAL CONVULSIONS 

ABSTRACT 

The e£fect of REM sleep deprivation (REMSD) ~as investigated using 

withdrawal convulsions in mice following exposure to nitrous oxide (N
2

D). 

REMSD for 72 h significantly decreased the severity of withdrawal convulsions 

following acute exposure to N20. 

The results were interpreted in the light of protein synthesis inhibition 

during REMSD. REMSD procedure might stimulate a new approach to the 

treatment of withdrawal neuronal excitability. 

INTRODUCTION 

It is known that REM sleep deprivation (REMSD) results in a decrease in 

protein synthesis (Drucker-Galin and Rojas-Ramirez, 1976) and is often 

associated with an increase in neuronal excitability. For example, the 

threshold ~or electroconvulsive shocks (Cohen and Dement, 1965) and 

amygdaloid kindling (Calvo et al., 1982) is greatly reduced following REMSD. 

Patients recovering from nitrous oxide anaesthesia are known to exhibit 

an increase in excitability (Eckenhoff et al., 1961 ). Similarly, mice 

exposed to nitrous oxide showed convulsions when picked up by the tail after 

removal from the anaesthetic (Harper et al., 1980). This seizure pattern is 

known to occur after exposure to nitrous oxide, ethylene and cyclopropane and 

it is considered to be a type of withdrawal convulsions (Smith et al., 1979). 

It is of interest to note that some types of epileptic attacks are 

associated with REM sleep dysfunction (Passouant, 1976) and also with drug 

addicition (Herzlinger et al .• 1977; Mendelson and Mello, 1978). 

In this study we report on the inhibitory effect of REMSD on nitrous 

oxide withdrawal convulsions. 
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METHODS 

Adult, male mice o£ the B10A strain weighing 32±0.2 g at the onset of 

experiment were used. Throughout the investigation the animals were housed 

under constant light/dark cycle (light phase 09.00-21 .00). The room 

temperature was maintained at 24±°C. Food and water were available ad 

libitum. The number of animals used in each procedure is stated in the 

results. 

REMSD was carried out according to the conventional water tank method 

previously described (Fishbein et al., 1971 ). This method selectively 

deprives mice of REM sleep and with slight effect on slow wave sleep. In 

this study, each mouse was placed on a platform (3 em diameter, 1 em above 

the water le~el) surrounded by water (3 em deep). The water was replaced at 

least once in 24 h. Only mice which could adjust to this experimental 

condition within 2 h were used in experiments. 

Stress control group for REMSD consisted of mice placed on platform (6 em 

in diameter ) under the same experimental conditions as in REMSD. A second 

stress consisted of mice forced to swim in water 3 em deep at 18°C for two, 1 

h sessions daily. These two stress control procedures produced comparable 

weight loss as in REMSD (10-15%). 

Nitrous oxide withdrawal convulsion was induced and assessed according to 

the method of Goldstein and Pal (1971 ). In this procedure mice were exposed 

to a mixture of nitrous oxide and oxygen (80:20) at 1.6 atm for h. Each 

mouse was picked up by the tail and spun gently through 180°. Mice showing 

violent jerking or twirling and/or grimace were quantified as positive. Mice 

were tested for the presence or absence of handling-induced convulsions (HIC) 

every 10 min after the removal from N20, until there were no convulsions in 

two successive tests. Throughout this study, all testing of HIG was carried 

out between 10.00-14.00 h to avoid circadian alterations in 

threshold. 

seizure 

Statistical analysis:The number of animals convulsing after N2D withdrawal ~n 

control, stressed and REMSD groups were compared using the Kx2 method (de 

Jong, 1963). Statistical signifcance was accepted at P-values of 0.05 or 

less. 
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RESULTS 

Nitrous oxide withdrawal convulsions (n~2D) 

Mice exposed to N20 showed withdrawal convulsions lasting about 2 h with 

highest incidence within 20 min after removal from N2o. The mice convulsed 

when picked up by the tail following 

convuslions (HIC) consisted of 

N2 0 anaesthesia. 

violent jerking 

These handling-induced 

and twirling (clonic 

components) and arching of the back and contractions of head muscle 

(-grimace-, tonic components). 

REM sleep deprivation (n=20) 

Mice subjected to REMSD for 24-120 h showed increased susceptibility to 

HIC. However. mice subjected to REMSD for 72 h showed a decrease in the 

degree of susceptibility to N20 withdrawal convulsions (Fig A1 ). Stress did 

not inhibit N2o withdrawal convuslions (n=10), but instead exacerbated it. 

Combined REMSD and an enkephalinase inhibitor phosphoramidon (Hudgin et al., 

1981) also decreased the frequency of HIC but not to a degree significantly 

different from REMSD or phosphoramidon given alone (Fig A.1 ). 

DISCUSSION 

Mice exposed to N2 o develop very quickly a drug dependence which is 

characterized by withdrawal convulsions. This is demonstrated when mice are 

picked up by the tail following N20 anaesthesia. This type of convulsions 

was conteracted by REM sleep deprivation (REMSD), in spite of the fact that 

REMSD could induce neuronal excitation in the normal animals. 

The neurobiological basis of acute N2 o tolerance withdrawal 

convulsions is still unclear, it is does not appear to involve changes in 

synaptic membrane fatty acid, phospholipid and cholesterol (Koblin et al., 

1979). However the possible involvement of endogenous opioid peptides in N2 o 

tolerance and withdrawal excitation has been demonstrated. Acute exposure to 

N2 o induced an increase in the cerebrospinal fluid met-enkephalin levels 

(Qock et al., 1985), whereas the administration of morphine or naloxone can 

inhibit and facilitate, respectively, the N2o withdrawal convulsions (Manson 

et al., 1983). This suggests that N2 o stimulates an opioid-like dependence. 
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Figure A.1: The effect of R£~ sleep deprivation (REMSD) on nitrous oxide 

withdrawal convulsions. Control consists of mice not subjected to any 

treatment. (*)denotes statistical significance at p < 0.05 level compared 

to control or stress. Note that 1) REMSD significantly reduced the frequency 

and duration of nitrous oxide withdrawal convulsions; 2) phosphoramidon did 

not alter the inhibitory action of REMSD on nitrous oxide withdrawal 

convuslions. The effect of the enkephalinase inhibitor phosphramidon was not 

considered in this chapter. 
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It is known that several drugs with the common ability to inhibit protein 

synthesis reduced the development of dependence to opiates (Feinberg and 

Cochin, 1 972; Bowman and Rand, 1980) and decrease REM sleep (Drucker-Colin 

and Rojas-Ramirez, 1976). In addition REMSD has also been reported to 

decrease protein synthesis in some nuclei of the rat brain stem (Bobillier et 

al., 1974; Panov, 1982). The antagonistic effect of REMSD on N2 D withdrawal 

convulsions, might be due to decrease in protein synthesis, which in turn 

blocked the development of tolerance and physical dependence. 

Stressed animals showed enhanced susceptibility to N2o withdra"W"al 

convulsions proving that the inhibitory action of REMSD on N20 withdrawal 

convulsions is not related to the unspecific effects (dampness, isolation and 

restriction) of the experimental procedure. 

Apart from the uncertainty of the interactions between REMSD and N2o 

withdrawal syndrome, the results of this study indicate that REMSD might 

prove useful as new approach to the management of withdrawal neuronal 

hyperexcitability. 
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CONCLUDING REMARKS AND S1JMMARY 

In chapter a general review of the literature on sleep-waking 

mechanisms, functions of sleep, and the biological and therapeutical effects 

of sleep deprivation was provided. Chapter 2 gave a brief review of the role 

of the endogenous opioid system in physiological regulation. 

In this thesis the role of endogenous opioid peptides in the regulation 

of sleep-waking states and the effects of REM sleep on reactivity to 

endogenously released and exogenously administered opioid peptides. or 

opiates, are reported. We explored the possibility that REM sleep is 

involved in regulating the functioning of opioid peptidergic neurons in the 

central nervous system by studying the effects of REM sleep deprivation 

(REMSD) on behavioural responses to endogenously released opioid peptides and 

exogenously administered opiates and opioid peptides. The following 

opioid/opiate-induced behavioural responses were examined in this thesis 

analgesia, akinesia-catalepsy, spontaneous vertical motor activity (SVMA), 

convulsions, grooming and nitrous oxide and morphine withdrawal symptoms. 

Endogenous opioid peptides and waking mechanism (s) 

The possible involvement of endogenously released opioid peptides in 

waking mechanism (s) is suggested by the diurnal oscillations in enkephalin 

and ~-endorphin concentrations in brain nuclei, involved in vigilance state 

regulation (chapter 1, sections 1.2, 1.3.2i). Thus, concentrations of 

~-endorphin, enkephalins and dynorphin in the rat brain are highest in the 

dark, during which wakefulness is high, and lowest in the light phase, when 

propensity to sleep is at its highest. 

In our study we demonstrated that the inhibition of enkephalinase, with 

phosphoramidon, induced an increase in wakefulness. Both NREM and REM sleep 

stages were suppressed. The increased wakefulness induced by enkephalinase 

inhibition was accompanied by excitatory symptoms, such as head shakes, 

scratching (chapter 3) and excessive grooming, which normally precede sleep 

in rats (chapters 2, section 1 .3.2i and 8). The insomnic action of 

phosphoramidon was decreased by naltrexone. These data suggest that opioid 

receptors and endogenous enkephalins play an important role in sleep-waking 
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mechanism (chapter 3). This idea might be o~ relevance in some clinical 

situations. For example, an increase in opioid peptide levels has been 

demonstrated during stress, anxiety and psychic disturbances associated with 

insomnia. It is also conceivable that this new class of drugs, the 

enkephalinase inhibitors, might be of potential use in the treatment of sleep 

disorders characterised by excessive somnolence. 

Sleep-waking states and enkephalin induced neuronal excitation 

The intracerebroventricular (icv) administration of enkephalin was found 

to induce epileptiform activity in the hippocampal and cortical EEG and in 

the EMG derived from submandibular muscle in freely moving rats (chapters 4). 

Sleep, in particular REM sleep, decreased the enkephalin-induced epileptiform 

discharges. 

These observations indicate that phasic changes during sleep-waking 

states can modulate the neuronal excitability regulated by opioid peptides. 

This might be of importance for some forms of human epilepsies affected by 

the sleep-waking cycle. 

RE~ sleep deprivation and nociception 

REMSD decreased the pain threshold and abolished the analgesic effects of 

morphine. enkephalinase inhibition and cold-water-swim (CWS) (chapters 5 and 

6). The pain threshold to noxious electric shock was similarly reduced by 

REMSD (chapter 1, section 1 .5.2d, vii). All these data suggest that REM 

sleep is an important factor in the physiological regulation of 

The finding that REMSD can reduce the pain threshold 

nociception. 

might be of 

relevance for those individuals who suffer from disturbed sleep e.g. 

insomnia or people working in shifts. In general it should be expected that 

pathological conditions. and/or drug treatment accompanied with REMSD, could 

modify the therapeutic effectiveness of opiates and other analgesic 

procedures. 

REM sleep deprivation and monoamine-opioid interactions 

There are abundant data showing that opioid peptides interact with many 

other physiologically active substances. In our study we paid particular 

attention to ~-phenylethylamine (PEA), a substrate for the MAO-B enzyme, 
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since it is known that inhibition of MAO-B modulates some effects of opioid 

peptides (chapter 6, introduction). In our study, the inhibition of MAO-B 

(the enzyme which biodegradates PEA) and excess of PEA (a substrate for 

MAO-B) had a stimulatory effect on the analgesic action of endogenously 

released opioid peptides in rats allowed undisturbed sleep, but not in REMSD 

animals (chapter 6). 

The described facilitatory action of MAO-B inhibition on enkephalinergic 

transmission might be of relevance not only in the physiology of nociception, 

but also in conditions associated with the alterations of MAO-B enzyme and/or 

REM sleep (endogenous depression, ageing etc). 

REM sleep deprivation induces a Functional deFiciency oT ~ opioid receptor 

system 

The finding that opiate-induced analgesia, which is due to a preferential 

activation of ~-opioid receptors, can be blocked by REMSD suggested a 

functional insufficiency of a ~-receptor system (chapters 5, 6). In order to 

test this concept. we studied the effects of REMSD on opiate induced motor 

inhibition. In this study we demonstrated that the morphine induced 

akinesia/catalepsy syndrome, which is characterised by rigidity and mediated 

mainly by the ~-opioid receptors. was abolished by REMSD and replaced by 

motor excitation, seen as an increase in spontaneous vertical motor activity 

(SVMA). Naltrexone blocked the morphine induced akinesia/catalepsy in rats 

allowed undisturbed sleep, but not the opiate induced increase in SVMA in 

REMSD animals (chapter 7). In addition to the fact that REMSD blocked 

opioid/opiate-induced analgesia akinetic-cataleptic syndrome, the 

naltrexone sensitive wet-dog-shakes and grooming behaviours stimulated by an 

enkephalinase inhibitor were attenuated in REMSD animals (chapter 8). 

These data collectively indicate that the blockade of akinesia/catalepsy 

syndrome and the reduced effects of enkephalinase inhibition in REMSD animals 

are due to a functional insufficiency of the ~-opioid receptor system, 

allowing for an increased expression of the naltrexone resistant excitatory 

opioid receptors responsible for the increased SVMA. It is known for example 

that blockade of 

morphine (chapter 

~-opioid receptors facilitates the excitatory effects of 

7, discussion). The idea that REMSD can induce a 

functional deficit of an opioid system derives further support from the fact 
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that enkephalinase inhibition blocked the proconvulsant action o~ REMSD 

(chapter 9). This proposition can be supported by the known inhibitory 

influence of opioid peptides on the release of excitatory transmitters and 

that blockade of ~-opioid receptors vith naloxone facilitates epileptogenesis 

(chapter 7. discussion). The suggested functional deficiency of an opioid 

system might explain the increase in neuronal excitability in REMSD animals. 

Some recent biochemical studies. provide evidence for the concept of 

derangement of endogenous opioid system during REMSD. For example REMSD 

decreased the concentrations of ~-endorphin in the pituitary but increased it 

in the hypothalamus (chapter 1, section 1 .5.2b, vi). We have also observed 

that REMSD reduced the concentrations o~ leu-enkephalin in some brain areas 

(Haf~mans, Ukponmwan, Dzoljic in preparation). 

The proposed insuf~iciency o~ an opioid system during REMSD could account 

~or the therapeutic and diagnostic value o~ REM sleep curtailment in some 

cases o~ depression and epilepsy respectively (chapter 7, discussion). 

REM sleep deprivation and opiate dependence 

Acute expose to nitrous oxide can lead to the release o~ met-enkephalin 

in the CSF and opiate-like dependence phenomena (chapter 2, section 2.5.2, 

iv). The withdrawal convulsions in mice following exposure to nitrous oxide 

were reduced by REMSD (chapter 10). Similarly, naloxone-precipitated 

wet-dog-shakes in morphine-dependent rats were attenuated by REMSD (chapter 

8). It has also been demonstrated that REMSD attenuate 

naloxone-precipitated jumping and myoclonic contractions in acute morphine 

dependent rats (Dzoljic et al. in preparation). Although the neurochemical 

basis of drug dependence is not fully understood, it has been established 

that several drugs which can inhibit protein synthesis reduced the severity 

o~ opiate dependence and withdrawal phenomena (chapter 2, section 2.4.8). 

REMSD has also been demonstrated to decrease protein synthesis in the rat 

brain (chapter 1, section 1 .5.2b, vii). It is therefore suggested that the 

antagonistic e~~ect of REMSD on opiate or nitrous oxide withdrawal phenomena 

might be due to a decrease in protein synthesis in animals deprived of REM 

sleep. 

The ~inding that REMSD can attenuate abstinential symptoms might suggest 

the existence of a common link between REM sleep de~iciency and drug 
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dependence. However, the mechanism by which REMSD inhibits abstinential 

syndromes and whether it modulates drug dependence in humans remain to be 

clarified. 

The following general conclusions can be made from this thesis:-

7o) Activation of endogenous opioid peptides increased wakeFulness 

1b) Sleep, particularly the REM sleep stage, decreased the epileptic effects of 

enkephalin when compared with the waking state. Statements 1a and 1b 

indicate that there is an interaction between vigilance and the endogenous 

opioid system. 

2) Inhibition of monoamine oxidase B and/or excess of ~-phenylethylamine 

facilitated enkephalinergic transmission in rats allowed undisturbed sleep 

but not in RE~SD animals. This finding might be of relevance in some 

clinical situations associated with the alterations of MAO-B and/or REM 

sleep (endogenous depression, ageing, etc). 

3) Stimulation of the endogenous opioid system, with enkephalinase inhibition, 

attenuated the proconvulsant action of REMSD, suggesting an involvement of 

opioid peptides in the regulation of neuronal excitability. 

4) The analgesic effects of endogenously released enkephalins and exogenously 

administered opiates, which are mediated mainly by #-opioid receptor, were 

abolished by REMSD. This suggests that normal REM sleep is an important 

factor for proper regulation of the pain threshold. 

5) The akinetic/cataleptic effect of morphine, also mediated by #-opioid 

receptors, was replaced by excitatory motor activity in REMSD rats. 

6) Conclusions 4 and 5 suggest that REM sleep deprivation may be associated 

with a functional insufficiency of #-opioid system. 

7) REM sleep deprivation decreased abstinential phenomena, suggesting that 

sleep deprivation could be an attractive tool in the investigation of drug 

dependence. 
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SAMENVATTING EN CONCLUSIES 

In het eerste hoofdstuk werd een algemeen literatuuroverzicht gegeven over 

slaap-waak mechanismen, de functies van slaap en de biologische en 

therapeutische effecten van slaapdeprivatie. In hoofdstuk 2 werden de 

fysiologische regulaties 

systeem in de vorm van 

hierin 

een 

toegespitst op de rol van het endogene opioid 

korte samenvatting van de literatuur. Dit 

proefschrift beschrijft een onderzoek naar de rol van endogene opioid peptiden 

in de regulatie van slaap-waak stadia en de invloed van REM slaap op de effecten 

van endogeen gesecreteerde- en exogeen toegediende opioid peptiden en opiaten. 

Met name is de mogelijke betrokkenheid van de REM slaap bij de functionele 

regulatie van opioid peptiderge neuronen in het centrale zenuwstelsel van de rat 

onderzocht, via het bestuderen van de e~~ecten van REM slaap deprivatie (REMSD) 

bij bepaalde ge~ragsresponsies op endogeen gesecreteerde opioid peptiden en 

exogeen toegediende opiaten en opioid peptiden. In dit onderzoek werden de 

volgende door opiaat/opioid geinduceerde gedragsresponsies bestudeerd: 

analgesie, akinesie-catalepsie, spontane verticale motorische activiteit (SVMA), 

convulsies, poetsgedrag en opiaat onthoudingssymptomen opgewekt door lachgas en 

morfine. 

Endogene opioid peptiden en waak mechanisme(n) 

De mogelijke betrokkenheid van endogene opioid peptiden bij waak 

mechanisme(n) zou afgeleid kunnen worden uit de dag~luctuaties in enkefaline en 

E-endorfine concentraties in bepaalde hersenkernen die een rol spelen bij 

alertheidsregulering (hoofdstuk 1, sectie 1 .2, 1 .3.2i). Dienovereenkomstig zijn 

de concentraties van E-endorfine, de enkefalines en dynorfine in rattehersenen 

het hoogste in de nacht of in het danker, wanneer de waakzaamheid hoog is, en 

zijn ze het laagst gedurende de dag of in het licht, wanneer de neiging tot 

slapen het grootst is. De remming van het enzym enkefalinase door toediening 

van het farmacon fosforamidon bleek een verhoging van de waakzaamheid te 

induceren. Zowel de NREM als de REM slaap periodes werden onderdrukt. Deze 

toegenomen waakzaamheid als gevolg van de remming van enkefalinase werd 

vergezeld door symptomen van geprikkeldheid zeals schokbewegingen van de kop, 

krabben (hoofdstuk 3) en overmatig poetsgedrag, dat normaal bij ratten aan het 

slapen vooraf gaat (hoofdstuk 2, sectie 1 .3.21 en hoofdstuk 8). Het bleek dat 
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de opwekkende Werking van fosforamidon werd verminderd door de opiaat antagonist 

naltrexon. Deze gegevens suggereren dat opioid receptoren en endogene 

enkefalines een belangrijke rol spelen in het slaap-waak mechanisme (hoofdstuk 

3). Dit mogelijke verband zou in bepaalde situaties klinische implicaties 

kunnen hebben. 

concentraties 

Er is bij voorbeeld bij de mens een toename in 

aangetoond gedurende stress. angsttoestanden 

endogene opioid 

storingen die samengaan met slapeloosheid. Het is ook 

en 

voorstelbaar 

psychische 

dat een 

nieuw type van farmaca, de enkefalinase remmers, potentieel van nut zou kunnen 

zijn bij de behandeling van patienten die lijden aan excessieve slaperigheid. 

Slaap-waak stadia en inductie van neuronal& excitatie door enkefaline 

De intracerebroventriculaire (i.c.v.) toediening van enke~aline induceerde 

epilepti~orme activiteit in de hippocampus en de cortex volgens het EEG en was 

ook zichtbaar aan het EMG van de submandibulaire spieren bij vrij bewegende 

ratten (hoofdstuk 4). Slaap, en in het bijzonder de REM slaap, kon de door 

enkefaline geinduceerde epilepti~orme ontladingen doen verminderen. 

Deze observaties geven aan dat fasische verschuivingen in slaap-waak stadia 

het ef~ect van opioid peptiden op de neuronale prikkelbaarheid, kunnen 

moduleren. Dit zou bij de mens betekenis kunnen hebben voor bepaalde vormen van 

epilepsie, waarop de slaap-waak cyclus een invloed heeft. 

REM slaap deprivoti& en pijnprikkeling 

REMSD verminderde de pijndrempel en antagoniseerde het analgetische e~~ect 

resp. mor~ine, enkefalinase remming, en in-koud-water-zwemmen 

(CWS)(hoofdstukken 5 en 6). 

De pijndrempel veer een electrische schok kan eveneens verminderd worden door 

REMSD (hoofdstuk 1, sectie 1.5.2d.vii). Al deze gegevens duiden erop dat REM 

slaap een belangrijke ~actor is in de ~ysiologische regulatie van 

pijnprikkeling. 

De waarneming dat REMSD de pijndrempel kan verlagen, zou betekenis kunnen 

hebben voor die personen die aan een gestoorde slaap lijden zeals bijvoorbeeld 

slapeloosheid bij mensen die in ploegendienst werken. In het algemeen zou men 

kunnen verwachten dat pathologische omstandigheden en/o~ een bepaalde 

behandeling met farmaca die vergezeld gaan met REMSD, de therapeutische 

effektiviteit opiaten en andere analgetische behandelingen kunnen 
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beinvloeden. 

REM sloop deprivatie en monoamine-opioid interakties 

Er is een veelheid aan in~ormatie in de literatuur die laat zien dat de 

effecten van opioid peptiden interfereren met die van vele andere fysiologisch 

actieve stoffen. In dit proefschrift is in dit verband bijzondere aandacht 

besteed aan t-fenylethylamine (PEA), een substraat voor het MAO-B enzym, omdat 

bekend is dat remming van MAO-B bepaalde effecten van opioid peptiden kan 

beinvloeden (hoofdstuk 6: -introduction-). Remming van MAO-B (het enzym dat 

PEA afbreekt) en een overmaat aan PEA (het substraat voor MAO-B) hadden een 

stimulerend effect op de pijnstillende ~erking van endogeen gesecreteerde opioid 

peptiden bij ratten die ongestoord konden slapen, maar niet bij ratten waarbij 

de REM slaap werd onthouden (REMSD)(hoofdstuk 6). 

Het effect van MAO-B remming op enkefalinerge transmissie, die zoals 

beschreven neurotransmissie bevorderend is, kan niet alleen van betekenis zijn 

voor het begrip van de fysiologie van pijnprikkeling bij de mens, maar oak voor 

die van bepaalde pathologische condities die verband houden met veranderingen in 

de activiteit van het MAO-B enzym of van de hoeveelheid REM slaap zoals bij 

endogene depressies of bij het verouderen. 

REM slaap deprivatie en de inductie van een funktionele deficientie in het 

~-opioid receptor system 

De bevinding dat de analgesie die door een opiaat wordt geinduceerd en die 

het gevolg is van een stimulering van voornamelijk de ~-type opioid receptoren. 

geblokkeerd kan worden door REMSD, werd geinterpreteerd als een functionele 

insufficientie in het ~-type receptor systeem (hoofdstukken 5 en 6). Om deze 

opvatting te kunnen toetsen, is vervolgens het effect van REMSD op de door 

opiaten veroorzaakte motorische activiteitsvermindering bestudeerd. Uit deze 

studie kwam naar voren dat het door morfine geinduceerde akinesiejkatalepsie 

syndroom, dat gekarakteriseerd wordt door een lichaamsstarheid als gevolg van 

een preferentiele ~-receptor stimulering, werd tegengegaan door REMSD en zelfs 

werd vervangen door motorische activiteitsvermeerdering in de vorm van een 

toegenomen spontane vertikale motorische activiteit (SVMA). De opioid receptor 

antagonist naltrexon blokkeerde de door morfine geinduceerde akinesiejkatalepsie 

in ratten die ongestoord konden slapen, maar niet de door morfine geinduceerde 
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toename in SVMA in dieren met REMSD (hoofdstuk 7). Naast de hierboven 

beschreven waarnemingen dat REMSD de door opioiden en opiaten geinduceerde 

analgesie en het akinesie/katalepsie syndroom kan blokkeren, bleek dat in dieren 

met REMSD het opioid geinduceerde gedrag, zeals de naltrexon-sensitieve 

-wet-dog-shakes- en het door een enkefalinase remmer geinduceerde poetsgedrag, 

eveneens verzwakt werd (hoofdstuk 8). 

Uit het geheel van deze waarnemingen zou men kunnen concluderen dat de 

blokkering van het akinesie/katalepsie syndroom en de verminderde effecten van 

de enkefalinase remming in REMSD dieren worden veroorzaakt door een functionele 

insufficientie van het ~-opioid receptor systeem. De toegenomen SVMA wordt 

hierbij toegeschreven aan een zichtbaar geworden expressie (demaskering) van 

opwekkende opiaat-effecten, middels een ander 

receptor type. Het is bijvoorbeeld bekend 

en naltrexon-resistent opioid 

dat blokkering van ~-opioid 

receptoren de expressie van opwekkende effecten van morfine kan vergemakkelijken 

(hoofdstuk 7: discussie). Het denkbeeld dat REMSD een functioneel tekort in 

een opioid systeem kan induceren, wordt verder ondersteund door het feit dat 

remming van het enzym enkefalinase het proconvulsieve effect van REMSD kan 

blokkeren (hoofdstuk 9). Deze bewering wordt ondersteund door het bekende feit 

van de remmende werking van opioid peptiden op de afgifte van stimulerende 

neurotransmitters, waarbij een blokkering van ~-opioid receptoren met naloxon 

het ontstaan van epileptische verschijnselen vergemakkelijkt (hoofdstuk 7: 

discussie). Het veronderstelde functionele tekort in een opioid systeem zou 

aldus de toename in normale prikkelbaarheid in REMSD dieren kunnen verklaren. 

Enkele recente biochemische studies ondersteunen het concept van een 

verstoring van endogene opioid systemen als gevolg van deprivatie van REM slaap. 

REMSD verminderde bijvoorbeeld de concentratie van E-endorfine in de hypofyse. 

maar in de hypothalamus nam deze concentratie toe (hoofdstuk 1, sectie 1 .5.2b. 

vi). In overeenstemming hiermee vinden wij in bepaalde hersengebieden ook 

verminderde concentraties van leu-enkefaline als gevolg van REMSD (Haffmans, 

Ukponmwan, Dzoljic; in voorbereiding). 

De veronderstelde functionele insufficientie van een opioid systeem als 

gevolg REMSD zou verantwoordelijk kunnen zijn voor het gewenste 

therapeutische effect en de diagnostische waarde van het beperken van REM slaap 

bij respectivelijk bepaalde types depressie en epilepsie (hoofdstuk 7: 

discussie). 
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REM slaap deprivatie en lichamelijke afhankelijkheid van opiaten 

Een acute inhalatie van lachgas kan de afgifte van Met-enkefaline in de 

hersenvloeistof verhogen en aldus opiaat-achtige lichamelijke afhankelijkheids 

fenomenen oproepen. De convulsies als element van de onthoudingsverschijnselen 

bij muizen na lachgas inhalatie waren verminderd in REMSD dieren (hoofdstuk 10). 

Hiermee vergelijkbaar was het door naloxon opgeroepen -wet-dog-shakes- gedrag in 

ratten die tevoren morfine afhankelijk gemaakt waren, minder uitgesproken in 

REMSD dieren. Oak i~ aangetoond dat REMSD het door naloxon opgeroepen spring 

gedrag en de myoclonische contracties bij ratten die acuut morfine-afhankelijk 

gemaakt zijn, kan verzwakken (Dzoljic et al., 

neurochemische basis van afhankelijkheid van 

in voorbereiding). Hoewel de 

verdovende middelen en andere 

substanties niet bekend is, is wel vastgesteld dat verschillende stoffen die de 

eiwitsynthese remmen de mate van opiaat afhankelijheid en van 

onthoudingsverschijnselen doen verminderen (hoofdstuk 2. sectie 2.4.8). Het is 

aangetoond, dat REMSD de eiwitsynthese in ratte hersenen vermindert (hoofdstuk 

1. sectie 1 .5.2b, vii). Om deze reden wordt voorgesteld, dat het 

antagonistische effect van REMSD op opiaat en lachgas onthoudingsverschijnselen 

veroorzaakt zou kunnen worden door een afname van de eiwitsynthese bij dieren 

met REM slaap onthouding. 

De waarneming dat REMSD opiaat onthoudingsverschijnselen kan verzwakken, 

veronderstelt 

lichamelijke 

het bestaan 

afhankelijkheid 

onthoudingsverschijnselen kan 

lichamelijke afhankelijkheid 

onderzocht worden. 

een verband tussen REM slaap tekort en 

opiaten. Het mechanisme waardoor REMSD 

verzwakken en of REMSD invloed kan uitoefenen op 

van opiaten bij de mens meet echter nader 

Uit de resultaten van dit proefschrift kunnen de volgende algemene conclusies 

getrokken worden: 

1a) Activering van het endogene opioid systeem doet de waakzaamheid toenemen. 

1b) Slaap, in het bijzonder het REM slaap stadium, vermindert de epileptische 

effecten van enkefaline. vergeleken met het waak-stadium. De stellingen 1a 

en 1b geven aan dot er een interactie is tussen de mate van waakzaamheid en 

het endogene opioid systeem. 

2) Remming van monoamine oxidase 8 en/of een overmaat aan ~-fenylethylamine 

vergemakkelijkt enkefalinerge transmissie in rotten die ongestoord kunnen 
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slapen, maar niet in rotten met REM sloop deprivatie. Daze conclusie zou 

voor de mens betekenis kunnen hebben in bepaalde klinische situaties, 

waarin veranderingen in MA0-8 enzym activiteit en/of REM sloop een rol 

spelen (endogene depressie, veroudering, enz.). 

3) Stimulering van het endogene opioid systeem via ramming van het enzym 

enkefalinase verzwakt de proconvulsieve werking van REM$0, hetgeen een 

betrokkenheid van opioid peptiden in de regulatie van neuronale 

prikkelbaorheid gesuggereert. 

4) De analgetische werking van endogeen gesecreteerde enkefalines en van de 

exogeen toegediende opiaten, die voornamelijk het ~-opioid receptor type 

stimuleren, vordt tegengegaan door REMSD. Hieruit kan men concluderen dat 

een normale REM slaap een belangrijke Taktor is voor een adequate 

installing van de pijndrempel. 

5) Het akinetische/kataleptische effect van morfine, dat ook via de stimulatie 

van ~-opioid receptors werkt, wordt in REMSD rotten vervangen door een 

verhoogde motorische activiteit. 

6) Uit de conclusies 4 en 5 zou men kunnen afleiden dat REM slaap deprivatie 

geassocieerd is met een functionele insufficientie van het ~-opioid 

systeem. 

7) REM slaap deprivatie vermindert opiaat onthoudingsverschijnselen, hetgeen 

doet vermoeden dot slaap deprivatie een aantrekkelijk hulpmiddel zou kunnen 

zijn bij verslavingsonderzoek. 
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