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SCOPE OF THIS THESIS

In the general introductery part of thiz thesis (Chapters 1 and 2) a
review of some pertinent literature related to sleep-waking states and opioid
peptides is offered. A glcbal wview of the neurcchemical mechanisms and
theories of functions of sleep, as well as the physiological and possible
clinical consequences of total or selective REM sleep deprivation is given in
Chapter 1. In Chapter 2, which 1is concerned with the role of endogencus
opicid peptides, particular attention ig paid to the possible modulatory role
of endogencusly released opicid peptides in the regulation of some behaviocural
states in physiclogical and pathological conditions.

It i= generally known that exocgenously administered oplates and opieid
peptides c¢an alter sleep pattern and decrease REM sleep. A possible
interaction between sleep-waking states and endogenocus opiold system is
suggested by the report that the episodic release of plasma humoral enderphins
during sleep is associated with the REM sleep phase {Chapter 1, section
1.1.7). In addition, the concentrations of opicid peptides in some brain
nuclei of the rat which are known to be important in sleep-waking regulation,
are highest in the dark (active) phase, during which wakefulness is high and
lowest in the light {rest) phase, when the propensity to sleep is at 1its
highest {(Chapter 1 section 1.3.2). Thus in order to clarify the effect of
endogenously released opiocid peptides in the regulation of sleep-waking
pattern, we studied the effects of phosphoramidon, an iInhibitor of
enkephalinase A on sleep-waking states (Chapter 3). Several clinical studies
suggest that the sleep—waking cycle may modulate the occurence of some types
of epileptic phenomena in human subjects (Chapter 1, section 1.35.2, iii). In
addition, some studies indicate a similarity Dbetween enkephalin induced
gpileptic phenomena and petit mal epilepsy (Chapter 4 discussion)-
Therefore, we studied the effects of different sleep stages on
enkephalin-induced epileptic phenomena using electrophysiclogical parameters
{Chapter 4).

These initial studies (Chapters 3 and 4) suggested an interaction between
sleep-waking states and endogenous opiocid system. The observation that REM
sleep deprivation (REMSD) reduced the pain threshold to noxicus electrical

stimulation {Chapter 1 section 1.5.2d 1) was an indication of the importance



of REM sleep in the regulation of nociception. Therefore in Chapters 5 and 6,
the experiments were designed to explore a direct effect of REMSD on the
analgesic effects of morphine, an enkephalinase inhibitor phosphoramdion and
cold-water-swim.

The profound antagonistic effect of REMSD on opiate/opicid peptide induced
analgesia stimulated further interest to investigate the relationship between
REMSD and other copiate/opioid peptide modulated behavicural phenomenz.
Therefore the following oploid meodulated behaviours were investigated:
akinetic-cataleptic syndrome, spontaneous vertical motor activity,
convulsions, grooming, wet-dog-shakes and morphine withdrawal symptoms
(Chapters 7-9). Additional experiments with nitrous oxide were performed
(Chapter 10) since it is known that this anaesthetic agent can stimulate the
release of endogencus enkephalins and induce opiate-like withdrawal symptoms
{Chapter 2, section 2.5.2, iv).

Finally, the possible clinical consequences of our findings are described

in the relevant chapters.



PART I: GENERAL INTRODUCTION

CHAPTER 1
NEUROBIOLOGY OF SLEEP-WAKING STATES

Sleep iz a heterogenous process organised into rhythmically occurring
cycles of different stages which are characterised by specific behavioural,
electrophysiological, autcnomic and endocrine changes. Broadly, sleep is
divided inte non-rapid-eye-movement (NREM) sleep and rapid-eye-movement (REM)
sleep, also called paradexical sleep (PS) (Aserinsky and Kleitman, 195%3).
REM sleep occupies a large part of neo-natal mammalian sleep (Roffwarg et
al., 1966) suggesting an involvement of REM sleep in brain maturation (Corner
et al. 1980). In adult mammals REM sleep appears to regulate adaptivity and
plasticity of waking behavicur (MeGrath and Cohen, 1578).

1.7 Sleep-wakefulness phencemenclogy

Sleep and wakefulness, like many life processes from heart-beating to
bird migration and hibernation, follow a certain pattern of cscillations,
which are regulated by a strict space-time system as well as body position.
In neccturnal rodents such as rats, sleep occupies 80% of the light phase and
20 % the dark periecd. REM sleep, which occuples 15-20% of the total sleep

time iIn adult rats, shows a glight prepondrance during the light phase
{Borbely, 19832).

1.1.1 Behaviour

Pre-gleep behavioural repertory is characterised by the searching for a
safe niche and preparing the body (grooming) for sleep {(Parmeggianni, 1980;
Cooper, 1979). Behaviourally, sleep onset 1s characterised by the suspension
of active contazct with the environment (Parmeggianni, 1980).

A close relationship between electrographic recordings and behavicur has

been observed in most animals so far studied. However there is a growing



a)

b)

c)

d)

body of evidence that behaviour and the usual electrophysiclicgical correlates

may become dissociated (Sakai, 1985).

1.1.2 Motor functions

Sleep-wakefuluness c¢ycle is accompanied by phasic changes in motor
activity. In general, cquiescience of motor and postural support is a basic
feature of sleep. With the onset of sleep there is a progressive decreage in
electromyogram (EMG). During NREM sleep muscle tonus is present in an
attenuvated form, whereas when the animal enters inte REM sleep, there is
complete loss of the antigravity muscle tonus with consequent failure of
postural support {Ursin, 1968; Timo-Taria et al., 1870). Cther important
phasic motoric phencmena associated with REM sleep include, myoclonic

twitching and burst of rapid eye movements.

1.1.%3 Neuronal activity

The pattern and intensity of neuronal activity in some brain areas 1is
often related to the state of wvigilance. Bioelectric rhythms of the
neccortex, hippocampus, lateral geniculate body, reticular formation and
other brain areas have been studied extensively during sleep-wakefulness
eycle (Steriade gt al., 1977).

1) Neocortex

The neocortical EEG patterns of the rat during different vigilance states
has been well documented (Timo-Iaria et al. 1970; Terrier and Gottesman,
1978}. Based on these reports the EEG of gleep-wakefulness cycle of the rat
can be differentiated into four distinect stages as follows:-
Wakefulness in rat is characterised by desynchronised (fast) waves (30 ~-40 Hz
and 30 zV amplitude).
Light slow wave sleep (LSWS) in the rat consists of spindles (6-12 Hz range,
20-40 msec, 50-300 uV), K-complexes and some delta waves in frontal-pariletal
cortex EBG.
Delta sleep: This stage of NREM sleep consists of predominantly delta waves
(>50%).
REM sleep in the rat is characterised by desynchronised (fast) waves (20 Hz,
40 xV¥V) in the frontal-parietal cortex.

In the cat sleep-wakefulness is differentiated into five stages as



follows: active and guiet wakefulness, 1light slow sleep, deep slow wave
sleep and REM sleep (Ursin, 1968).

ii) Hippocampus and entorhinal cortex

The electrical zctivity of the hippocampus and the entorhinal cortex
undergo distinct oscillations which correlate well with specific vigilance
states in the sleep-wakefulness continuum. During exploratery wakefulness
and REM sleep, the dorsal hippocampal EEG show a regular thetz wave pattern
(4-6 Hz) in both rats and cats (Jouvet et al., 1959; Monmaur et al., T979).
In NREM sleep the hippocampus and the entorhinal cortex present an irregular
EEG pattern consisting of high amplitude sharp waves intermingled with slow
waves (Jouvet et al., 1959). In +the wentral hippocampus spikes waves
{100-300 wV, 50-100 mgec duration) are most frequent during NREM sleep and
are rare during wzkefulness and REM sleep (Jouvet et al., 1959; Hartse et
al., 1879).

iii) Reticular formation and lateral geniculate body

Phasic BEEG spike activity during REM sleep was first demonstrated to
oceur in the cat pontine reticular formaticon by Jouvet and Michel (1959),
lateral geniculate body by Mikiten and co-workers (1961) and in occipital
{visual) cortex by Mouret and co-workers (1%63)}. These spikes have been

designated ponto-geniculo-oceipital {PGD) waves according te the loci from

which they were recorded. PGO0 wavegs have not been demonstrated in rats
(Stern et al., 1974). They have not been unambigucusly demonstrated in human
subjects (Gaillard, 1980). The phasic PGO spike waves occur a few minutes

prior and during REM episode and are generally absent during wakefulness and

NREM sleep (Hartse et al., 1979).

1.1.4 Respiration

Cycli¢ changes in respiration have been observed during the
sleep-wakefulness c¢ycle (Parmegglani, 1980; McGinty and Beahm, 1984).
During NREM sleep breathing is generally slower, shallow and meore regular
than in wakefulness. Only small changes in ventilatory response to carbon
dioxide and mechanoceptive reflex occur during NREM sleep compared with
wakefulness. In both experimental animals and human subjects, the
respiratory rate is irregular, highly variable and may be accompanied by

brief apneas during REM sleep. Arousal thresholds in response to hypoxia and



hypercapnia are increased during REM sleep compared with NREM sleep. In

addition, response to laryngeal stimulation during REM slesp could consist of

apnea instead of the usual coughing.

1.1.5 Cardiovascular system

The heart rate and arterial blcod pressure are decreased in both man and
animals during NREM sleep compared with wakefulness (Snyder et al., 19564).
The largest drop in heart rate and systemic arterial blcod pressure in cat
was observed during REM sleep (CGuazzi and Zanchetti, 1965). However in man

heart rate and blood pressure are increased during REM sleep with respect to

KREM sleep (Snyder et al., 1964).

1.1.6 Thermoregulation

An ultradian rhythm of homeostasis-poikilostasis which correlate with
specific vigilance state has been documented (Parmeggiani, 1980; MeGinty and
Beahm, 1984). During NREM sleep, the core temperature is regulated at a
lower sel point cempared with wakefulness. The decrease in bedy temperature
is prebably due to a combination of the thermoregulateory and passive
processes such as reduction in motor action. In contrast to NREM sleep,
hypothalamic thermoregulatory mechanisms are inactivated during REM sleep.
Physzicleogical and behavioural symptoms such as shivering, thermal
vascdilation, pelypnea, sweating and thermogenesgis in response to either
ambient or hypothalamic temperature changes disappeared during REM sleep.
The lack of shivering during REM sleep may not be related to muscle atonia,
since animals which exhibited REM without atoniz after pontine lesion still

failed to show shivering {(McGinty and Beahm, 1984).

1.1.7 Endocrine and neuropeptide secretions

Sleep-related growth hormone secretion occur during the NREM sleep phase
{Takahashi et al., 1968; Mitsugi and Kimura, 1985). The episodic secretion
of prolactin is triggered by sleep onset (Parker et al., 1980), while the
secretion of cortisel and thyroid-stimulating-hormone are decreased during
zleep compared with wakefulness (Parker et al., 19803 Mitsugli and Kimura,
1985).

Recently it was demonstrated that the episodic release of plasma Thumoral



endorphin is associated with REM sleep (Oksenberg et al., 1980). Thess data
together suggest that sleep processes might play an important role in

regulating the functional reactivity of hormonal and neuropeptide systems.

1.1.8 Genital response

Nocturnal penile tumescence (NPT} during sleep has been shown to occur
during REM sleep in man (Karacan et al., 1966). The female counterpart of
necturnal NPT, clitoral erection and inc¢rease in vaginal pulse pressure are
assoclated with REM sleep (Karacan et al., 19790; Rogers et al., 1685 ). The
highly predictable occursnce of NPT during REM sleep (80-50%) has been used
to distinguish organic from psychogenic impotence. For example in organic
impotency associated with diabetes mellitus the REM sleep related NPT is

greatly diminshed, whereas in psychogenic impotency there is little or no

reduction in NPT {Karacan et al., 1978).

i.1.9 Circadian sleep-wakefulness phenomena

Biological cycles with a period of approximately onme lunar day (24 h},
and that persist in the absence of external environmental cues
{"zeitgebers™), have been termed circadian oscillations {(Aschoff, 1964). In
animals and human  subjects igsolated from external time cues, the
gleep-wakefulness cycle continues to show a clearly defined rhythm whose
peried is only slightly different from 24 h (Greos, 1984). The
sleep-wakefulness c¢y¥ycle is therefore a true circadian rhythm which has been
demonstrated in rats (Borbely., 1982} and in man (Wever, 1979). Circadian
influences on slieep-wakefulness in rats affect phase timing and not the daily
amount of gleep. Lesiern of the suprachiasmatic nucleus abolished the
sleep-wakefulness circadiar rhythm but not the daily amount of sleer (Iduka
and Xawamura, 197%). Recently the hypothalamic paraventricular nucleus was
demonstrated tc be involved in +the maintaince of REM sleep rhythm

(Piepenbrock et al., 1985).

1.2 Neurgl bgsis of sleep-wakefulness

The study of the pathology of viral encephalitis and the associated sleep

disorders led wvon Eeccnome (1929) to differentiate two syndromes, a)



hypersomnia related to lesions of mesencephalic tegementum and posterior
hypothalamus and b} sleeplessness in which the lesion affected basal
forebrain and related striate siructures. These observations led tec the

notion of "neural determinism of sleep-wzking states”™.

1.2.1 XNeural substrates of wakefulness

The demonstration of ocular and EEG signs of sleep after the transection
of the brain stem at the level of the occulcmotor nuclei “gerveau isclé”
{Bremer, 193%), suggested the presence of an arousal center in the anterior
third of the pons. Further lesion studies in the rat by Nauta (1946} placed
the "waking center™ at the mesencephale-hypothalamic junction. Later Moruzzi
and Magoun {1949) described an arcusal system located in the reticular
formation of the rostral ssgments of the pons and the midbrain.

Neural elements rostral to the brain stem reticular formation contributed
to wakefulness mechanism. One such brain area was localised in the postericr
hypothalamus {Moruzzi, 1964). This cbservation is supported by +the finding
that in Tcerveau isolé” preparations in which the locus coerulus and raphe
nuclei were completely iscolated from the forebrain of the animals, an initial

periocd of hypersomnia was followed by tbehaviourzl and EEG patterns of

wakefulness (Hanada and Kawamura, 1981).

1.2.2 Neural mechanism of non-rapid-eye—movement (NREM) sleep

The initial report of Hess {(1827), that electrical stimulation of midline
thalamic nuclel induce behavicurzl and EEG signs of sleep was the first
experimental indication of the existence of an active hypnogenic center.
Other workers have since demonstirated that stimulation of other brain areas
can induce behavioural and electrophysiological signs of sleep (Favale et
al., 1961). Three hypnogenlc brain areas may be differentiated
ponto-bulbar raphe system, hypothalamic and thalamo-cortical.

i) Ponto-bulbar raphe system

The existence of medullary sleep centers was suggested by reports that
medullary anesthesia, or cooling, converted sleep BEEG into an activated,
awake, pattern (Berluecchi et al., 1964). EEG synchronisation and behavioural
gleep were elicited by low frequency stimulation of the n. tractus solitarus

{Favale et al., 1961).



The lesion of raphe complex induced, initially, total inscmnia followed
by partial sleep recovery in cats (Jouvet, 1974). However other workers
failed %o implicate raphe nucléi in sleep regulation. TFor example midbrain
raphe lesions in rats failed to alter sleep-wakefulness {(Bouhuys and van den
Hoofdakker, 1977). Furthermore unit discharge studies, showed +that neurons
in the dorsal raphe fire less during slow wave sleep compared with waking
{McCGinty and Harper, 1976) and that electrical stimulation of the raphe
nucleus resulted in arousal (Jacebs et al., 1973)}. Thus the exact role of
the raphe nuclei in the regulation of sleep and awake vigilance states
remains to be clarified.

ii) Eypothalamic system

The sleep modulating effect of the hypethalamic area was first suggested
by the study of Hess (1944) in which he elicited sleep by stimulating the
preoptic area. Profound Insomnis was demonstrated in rats after inducing a
lesion in the preoptic area (Nauta, 1946).

iii} Thalame-cortical NREM sleep system

Medial thalamic stimulation induce behavicural and EEG signs of sleep
{Akert et al., 1852). Howgver, the complete destruction of the thalamus
eliminated only sleep spindles but not slow waves ({(Naguet et al., 1965).
Sleep has also been elicited by stimulation of the basal forebrain and

crbital cortex (Sterman and Clemente, 1962)

1.2.3 Neural mecharisms of REM sleep

The pontine brain structures are essential for REM sleep generation.
However a large Dbody of evidence indicate that different features of REM
sleep, such as ponto-geniculo-occcipital (PGO} spikes, postural atenia and
neocortical desynchronisation are regulated by different neural substrates
{Sakai, 1985). The pontine-medullary brain nuclei, locus cecerulus and n.
reticularis magnocellularis are essential for pestural atonia during REM
sleep (Sakai, 1685).

PGO generators are located in  the caudal mesencephalic and rostral
pontine tegmental area such as  brachium conjunctivum, rostral n.
parabrachialis lateralis, locus cceruleus and n. latercdorsalis, whereas EEG
activation during REM sleep involves the n. reticularis magnocellularis
(Sakai, 1985).
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1.3 Neurochemical basis of sleep-wokefulnsess

Several endogenous substances, such . as the bicgenic amines
{(noradrenaline, dopamine, serotonin and g-phenylethylamine), acetylcholine,
gamma-aminc-butyric acid and many neuropeptides {enkephalins, endorphins,
delta sleep peptide} have been proposed as regulators of different vigilance

states.
1.%5.1 Biocgenic amines, acetylcholine and GABA

i) Foradrenaline {NA)

Innibition of tyrosine hydroxylase with &-methyl-p-tyrosine {(oM?) or the
blockade of dopamine-g~hydroxylase with disulfiram suppressed REM sleep,
reduced waking and decreased the concentrations of NA in the brain (Jouvet,
1974). These data suggested an involvement of NA in the regulation of waking
and REM sleep. In contrast o-MT enhanced REM sleep in the rat (Hartmann et
al., 1971). However, Xafi and co-workers (1977) have demensirated that only
high doses of o-~MT, which induced an almost total inhibition of NA synthesis,
suppressed REM sleep while lower doses facilitated this sleep stage.

The possible invelvement of NA in regulating the sleep-waking states is
also suggested by the finding that the electrolytic or surgical lesions of
noradrenergic neurons of the locus coerulus vhich decreased brain NA levels
suppressed REM sleep and reduced wakefulness (Jouvet, 1974). In contrast the
presence of REM sleep was demonstrated inspite low brain NA conceéntrations
(Jones et al., 1977).

In summary, inspite of some contradictory data it appears that
transmission in NA =neurons is invelved the modulation of REM sleep and
wakefulness.

ii) Dopamine {DA)

Destruction of the ascending DA-fibers of the wventral mesencephalic
tegmentum decreased behavicural wakefulness but did not alter
glectroencephalographic signs of arousal (Jones et al., 1973).

In rats the administration of spiroperidel, a DA receptor antagonist,
produced a dose-dependent increase in total sleep and a2 decrease of REM sleep

{(Kafi and Caillard, 1976). Apomorphine {Ape) in doses sufficient to
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stimulate post-synaptic DA receptors decreased total sleep and increased
waking, whereas low deses of Apo which stimulate DA autoreceptors increased

REM sleep time (Kafi and Gaillard, 1976). Similarly small doses of DA

enhanced REM gleep (Hartmanmn et al., 1975). In addition, the possidble
involvement of wvarious DA receptorg in the modulation of azlertness has alsc
been suggested [Dzoljie and Godschall, 1578). However, more recent data
suggest that the activation of D-1 receptors induced arousal, while the

stimulation of D-2 receptors was associated with sedation and sleep (Gessa et
al., 1385},

It thus appears that the dopaminergic system is invelved in the
regulation of behavioural wakefulness and REM gleep.

iii) S-Hydroxytryptamine (5-HT, serotonin)

Destruction of the raphe system, which contain the cell-bodies of 5-HT
neurons induced insomnia which was associated with decreased brain 5-HT
levels in cats (Jouvet, 1974). This finding indicated that 5-HT containing
neurong in the rostral part of the raphe system are involved in sleep
mechanisms.

The involvement of sercotonin in NREM sleep induction was also supported
by the finding that para-chlorophenylazlanine (PCPA) which depleted brain SHT
decreased both NREM and REM sleep stages in cats and rats (Jouvet, 1974,
Borbely, 1982%. The sleep suppressant effect of PCPA was reversed by the
administration of 5-HT precursors, tryptephan and S-hydroxytryptophan.

The sergtonin theory of sleep has been c¢hallenged by several reports.
During chronic studies, sleep in raphe~lesion animals tended to return to
pre-lesion baseline even though 5-HT levels remained low (Morgane and Stern,
1974). Brain lesions in rats which reduced brain 5-HT concentrations did net
alter sleep (Bouhuys and van den Hoofdakker, 1977). Similarly PCPA or a
chronic +tryptophan-deficient diet. both of which can reduce brain 5-HT, had
no effects in rats (Rechtschaffen et al., 1873; Clancy et al., 1978). In
addition, serotonin neurecns were most active during wakefulness compared with
any sleep stage {McGinty and Harper, 1976). Similarly, the release of 5-HT
was highest during wakefulness than when the animals were asleep (Puizzillout
et al., 1979). In =zdditiomn, electrical stimulation of 5-HT rich neurons of
the dorsal raphe nucleus reduced both NREM and REM sleep stages (Jaccbs et

al., 1873). Although these data are inconsistent with the general postulate
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that 5-HT is a hypnogenic neurotransmitter, 5-HT neurons may play some role
in the PGO spikes “gating mechanisms™ For example a decreased brain S5HT was
associated with the release of PGO spikes into the NREM and awake states
{(Jouvet, 1974).

Although the role of 5-HT in the regulation of wvigilance states is not
¢glear 1t has been recently proposed that 5-E7T,. released as neurcfransmitter
during waking, might alsc act as a neurcheormone in inducing the synthesis
and/or the liberatien of hypnogenic factor{s). Theses would be stored, and
later influence SWS and PS {Jouvet, 1984).

iv} s-phenylethylamine {PEA}

A-Phenylethylamine is an endogenous  occurring amine present in the
mammalian brain. It is the substrate for monoamine oxidase B (MAO-B). The
structural similarity between PEA and amphetamine (o-methylphenylethylamine)
has led to the suggestion that PEA may act as an endogencus amphetamine
(Sandler and Reynolds, 1976). Increasing the concentrations of PEA in the
brain results in degynchronised EEG pattern and behavieural arcusal in
several mammalian species (Sabelli et al., 1975; bzoljic et al., 1977).
Sleep polygraphic studies also demonstrated that both NREM znd REM sleep
stages were suppressed by inhibitors of MAO-B (Cohen et al., 1982). PEA may
therefore be considered as one of the neuromedulators of wakefulness.

v) Acetyicholine {Ach)

Several experiments in animals and human subjects have demonstrated an
invelvement of acetylcholine {(Ach) in the induction of REM gleep.

Both blockade of Ach receptors and inhibitien of Ach synthesis using
atropine, scopolamine or hemicheolinium is generally accompanled by a decrease
in REM sleep. (Domino et al., 1968; Domino and Stawisk, 1970) and reduced
the frequency of PCO spikes {Henriksen et al., 1872).

The chelinesterase inhibitor, physostigmine and the muscarinic agonist
areccline, facilitated REM sleep at low doses and wakefulness at high
concentrations {Sitaram and CGillin, 1980). In cats, physostigmine prolonged
REM sleep periods with increase in rapid eye movements, PGO spikes and atonia
(Domine et 2l., 1968}.

vi) Camma-zmincbutyric acid (GABA)

GABA and it’s metabolite gamma-hydroxybutyrate (GHB), appear to possess a

sleep enhancing effect in several mammalian species. GHB stimulated REM



sleep-like state in cats (Stock, 1982). A hypnogenic role for GABA, is also
supported by the finding that GHB induced EEG synchronisation (Dzoljic et
al., 1975}. Recently L-cycloserine, a substance which can increase brain
GABA Increased NREM and REM sleep stages. However REM sleep was decreased by
high doses of this substance {(Scherschlicht, 1885).

1.3.2 Neuropeptides and hormones

i) Endogenous opicid peptides

Endogenous opicid peptides appear to play an important role in  the
regulation of sleep-wakefulness c¢ycle in both man and animals. However, many
aspects of the relationship between opioid peptides and sleep have not bhesn
elucidated yet. Many suggestions related to sleep and opioid peptides are
derived from stimulation and/or blockade of opiold receptors with drugs as
morphine and naloxone.

Morphine is an opium alkaloid named by Serturner in 1803 after Morpheus
the Roman god of dreams. Electrophysiological studies indicate that this
name is not appropriate. The intravenous (iv) administration of morphine
produced a dose-dependent increase in wakefulness, and muscular tension,
while delta sleep, REM sleep (dreaming pericd) ané sleep efficiency were
decreagsed in human subjects (Kay et al., 1989 ). Lewis and co-workers
(1970}, demonsztrated that neroin alsc reduced REM sleep, delayed sleep onset
and increased wakefulness. Thus, stimulation of opioid receptors
consistently induced inscmnia in human subjects.

Studies in animals are also supportive of a2 stimulatory role for oploid
peptides. Diurnal variations in enkephalins, A-endorphin and dynorphin in
braln areas important for the regulation of sleep-wakefulness correlate with
the basgic light (rest)-dark (zctive) cycle in rodents. Thus the peak of
methionine-enkephalin concentrations in the anterior, medial basal
hypothalamus, precptic area and stratium occur during the dark period and
decline to lowest levels during the light phase (Kumar et al., 1982; Tang et
al., 1984). S-Endorphin also reached a pealk conceantration in the preoptic
area, ponsg, medulla oblongata, cerebellum and anterior pituitary during the
dark phase (Xerdelhue et al., 1983). 8Similarly immunoreactive dynorphin

concentrations were highest during the dark phase in the hypothalamus and
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pituitary (Przewlocki et al., 1983). The diurnal variation in opioid peptide
concentrations, with peaks during dark pericds, suggest that oploid peptides
might play an important recle in priming animals for wakefulness as the dark
period is known to suppress sleep in rats (Inoue et al., 1984; 1985).

Other animal experiments have demonstrated that stimulation of opioid
receptors with opiloid peptides or opiates 1s accompanied by an increased
wakefulness. Adminigtration of s-endorphin ¢r morphine decreased both NREM
and REM sleep stages and increased wakefulness in rats and cats (Xhazan et
al., 1967; Echols and Jewett, 1972; King et al. 1981; Scherschlicht et
al., 1¢82}. Microinjection of (D—Ala2)-Met5—enkephalinamide (DALA} and
p-endorphin and des-¥Y-endorphin into the ventral tegmental area stimulated
behavicural wakefulness manifested as increased locomotor activity (Broekkamp
and Phillips, 1979; Stinus et al., 1980}. The lack of a clear
gleep-influencing effect after intracerebroventricular administration of met-
or leu- enkephalin (Riou et al., 1982) could be explained by the fact that
these peptides are rapidly metabelised by enkephalinases preszent in the
cerebrogpinal fluid {Dzoljic et al., 1985). Studies with DALA a more
resistant analog of met-enkephalin, have demonstrated an increase in both
behavicural and EEG wakefulness (Tortella et al., 1978; Dzoljic and Crucg,
1979). DALA was feund +to induce biphasic effects, an initial stupor with
high voltage slow waves with eyes open and arousal with activated EEG
pattern.

Collectively these data indicate that endogenous copiocld system 7play an
important rele in  the maintaince of wakefulness in human and animals. The
mechanism of the arousal effects of opiates and oploid peptides is still not
clear. It does not appear to invelve 5-HT or NA, since pretreatment with
S-hydroxytyptophan cor c-methyltyrosine did not alter the arousal effect of
morphine (Echols and Jewett, 1972).

An additienal point of iInterest 1s that diurnal physiclogical sleep
period 1is preceded by intensive greoming which declines prior teo diurnal
arousal phase (Belles, 1950; Cooper, 1681). Following the administration of
merphine or the synthetic enkephalin RX 783030 grooming epilsodes were
extended and sleep reduced. Naloxone however decreased grooming and
increased =sleep (Echols and Jewett, 1972; Cooper, 1981). In contrast,

naloxone failed to alter sleep~wakefulness (King et al., 1981). However,
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besides this and the fact that the mechanism (s} by which opioid/opiates
suppress sleep is not fully understeod, it has been proposed that the
activation of endogencus opicid system impaired the mechanism responsible for
gwitching from grooming to sleep (Cooper, 1581).
ii) Endogencus sleep—waking factors

The concept of sleep factors (hypnotoxing) was initiated by the classical
experiments of Lengendre and Piercn (1910) in which the cerebrespinal fluid
(C8F)} or serum of sleep deprived donor dog induced sleep in non-deprived
recipient dogs. Since then several sleep promoting factors have been
extracted from various tissues and fluids from different animals. Twe Dbasic
approaches have been wutilised in the search for the endogenous sleep
promoting factors:- a} that sleep promoting factor should accumulate during
prolonged waking and D) that sleep promoting factors should be extractable
during spontaneous sleep.

1} Foctor §

Sleep inducing Factor S is derived from CSF and brains of sleep deprived

animals (Pappenheimer et al., 19587). The icv zdministration of Factor S was

able to increase delta sleep in rabbits and rats (Pappenheimer et al., 1967;
Fencl et al., 1871). Recently Krueger (1983) identified Factor S derived
from the urine of sleep deprived subjects as a muramyl peptide. The i1cv

administration of the synthetic analog of muramyl peptide such as muramyl
dipeptide (MDP) induced sleep and fever in rat in a similar fashion to Factor
S (Krueger, 1983). A glight and slow cumulative increase of SWS in rats were
observed only after icv administration of MDP during the dark period (Inoue
et al., 1984). MDP is present in the cell membrane of bacteria found in the
urine. Whether MDP is truely the endogenous sleep factor S or derived from
bacteria floral in the urinary tract remains to be clarified.

2) Sleep—-promoting-substance (SPS)

The accumulation of sleep-promoting-substances (SPS) in the brain stem
from 24 h sleep deprived rats has been well documented (Inoue et al. 1985).
The crude brain stem extracts have been demonstrated consistently to reduce
locometor activity and increase total S¥WS and REM sleep in mice and rats
(Inoue et al., 1985).

Four active compenents have been separated from the original crude

extract SPS. A fraction which appears to be identical to the nuclecside
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uridine, increased both SWS and REM sleep in mice (Kemoda et al., 1983) and
rats (Inoue et al., 1985). An interesting aspect of these studies is that
8PS facilitates sleep during the dark period dbut net in the 1light phase.
This 1s in 1line with the concept that an endegenous zleep substance should
not induce additional sleep when the physiclogical demand for sleep has been
satisfied (Inoue et al., 1983).

3) REM sleep factor

REM sleep deprivation appears te¢ induce the accumulation of REM sleep
factor. The icv administration of CSF from REMSD cats restored REM sleep
during PCPA induced insomnia in cats (Sallanon et al., 7982) and reversed the
REM sleep deficit induced by Bs-adrenergic blockade (Adrien and Dugovic,
1984).

4) Delta sleep-inducing peptide

Delta sleep-inducing peptide (DSIP) is derived from the brain and CSF of
animal kept asleep by electrical stimulation of the intralaminar thalamus
{Monnier et al., 18563). This sleep factor has been identified as nonapeptide
{Schoenenberg and Monnier, 1977). Central administration of DSIP enhanced
both NREM and REM sleep stages (Ursin and Larsen, 198%; Inoue et al., 1984).
However, DSIF injected 1ip was not effective and tended +to increase
wzkefulness (Tobler and Borbely, 1980). The hypnogenic effect of DSIP was
mostly detected at low doses, while high doses were not effective
(Scherschlict et al., 1984). In c¢linical trials DSIF given intravenously
increased REM sleep, SWS, spindle sleep, sleep efficiency and decreased the
frequency of awakening in insomniacs. No sleep rebound was demonstrated
after drug withdrawal {Schnelder-Helmert, 1985). DSIP appear to interact
with opioid receptors since it ¢ould antagonized stress or morphine-induced
ingomnia and the naloxone-precipitated withdrawal 1in dependent animals
(Scherschlicht et al., 1984). It thus appear that the pharmacoclogical action
of DS8IP in Hhuman and animals depends on environmental conditions and the
pathophysiology of the organism.

5) Mesencepholic reticular formotion perfusote

Drucker-Colin {19873) found that the perfusate collected via a push-pull
cannula from the mesencephalic reticular formation {MRF) of a sleeping donor
cat decreased sleep latency and increased SWS, without affecting REM sleep.

Antibodies produced te MFR perfusate peptides collected during REM sleep,
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decreaged REM s=leep 1n cats.

8§) Sleep ond woking factors from cerebrospinal fluid (CSF)

CSF collected from rats during the light period {sleep phase) inhibited
dark time locomotor activity, while CSF obtzined during dark periocd enhanced
locomotor activity in the light phase (Sachs et al., 1976). These findings
are of interest since cpiocid peptides which are possibly neuromodulators cof
wakefulness, reached peak concentrations during the dark phase {Kumar et zl.,
1982: Herdelhue et al., 1983; Tang et al., 1984).

7} Growth hormone {GH)

GH induced a dose-related increase in REM sleep but decreased SWS in both
animals and man {Drucker-Colin et al., 1975a: Mendelson et 2l., 1980).
These data support the suggestion that SWS induced GH release is essential

for REM sleep induction (Stern and Morgane, 1977)-
1.4 Functions of sleep

It is generally known that one night sleep loss 1is followed by very
annoying symptoms such as fatigue and decreased vigilance. Sleep is often
assigned a restorative function. Such simplistic a concept would have been
teneable 1if sleep was monophasic and accompanied by a near halt of zl1
activities. However the discovery that KREM and REM sleep stages were
distinct states was a tacit indication they may serve different functions.
Attempts to formulate the roles of sleep in the life of an organism has given

rise to many theories of the function of sleep.

1.4.1 Omtogenetic funetion

Crne impertant observation during ontogenesis 1s the preponderance of REM
sleep (active sleep) in human neonates, rat pups and kittens (Roffwarg et
al., 1966; Jouvet-Mounier et al., 1970). Thus in human neonates REM sleep
occupies 50 4 of the total time and even higher in premature infants. In rat
pups, kittens and foetal guinea pigs, REM sleep occupy about 60-80 % of the
total +time. These reports indicate that REM sleep may provide the neéessary
endogenclus stimuli for brain maturation and development at the critical time
during which neural elements are being rapidly organised. This line of

reasoning forms the basis for the “ontogenetic theory™ of REM sleep function.
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This hypothesis is supported by the fact that from birth to young adulthood
human NREM sleep was reduced by 25 % while REM sleep was reduced by 75 #
(Roffwarg et al., 1966).

Suppression of active sleep in rat pups with chlorimipramine net only
altered neural growth and DNA content of some brain areas but also induced
increased anxiety level and a deficiency in sexual activity of adult animals
{Corner et al., 1980). Although several reports are supportive of the
ontogenetic theory of REM gleep, the persistence of this sleep state in adult
animals 1is still a puzzle. It has been suggested that REM sleep in adults

may regulate adaptive behaviours (McGrath and Coken, 1878).

1.4.2 Cognitive function

In adult animals and humans REM sleep appear 1o be essential for
learning, memory =nd intellectual functions. A recent comprehensive review
showed 2 consistent positive relationship between learning and an increase in
REM sleep (Smith, 1985). Studies based on REM sleep deprivation alsc suggest
a functional role in unprepared learning (McGrath and Cohen, 1978). The
cognitive theory of function of REM sleep is zlso supported by the clinical
observations that REM sSleep was reduced in mentally retarded patients,

(Petre-Quadens, 1966).

1.4.3 Synthetic function

REM sleep provide a condition for increased polypeptide synthesis
(Drucker-Colin and Valverde-R, 1982). The peptide synthesis function of REM
sleep appear to be related it’'s role in learning and memory. Whilst learning
increases protein synthesis, substances which can decrease protein synthesils
digrupts retrival and memory consolidation {Rogers et al., 1974; Flocod et
al., 1975) and suppress REM sleep (Drucker-Colin and Valverde-R 1882)}. Thus
REM sleep in adult animals might allow the high turnover of proteins

necessary for neural reprogramming.

1.4.4 Restitutive function
Hartmann (1973) and Oswale (1974) proposed a cerebral or brain
restitution function for REM sleep. This view is supported by the findings

that REMSD in human subjects reduced the ability to cope with stressful
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events (Greenberg et al., 1972). Since REMSD is associated with increased
motivational behaviour, such as hypersexuality and aggressiveness, REM sleep
hag also been considered to reduce waking drive behaviours (Vogel, 1979).

The main theory of the function of SWS is that serves bodily restitution
and musculoskeletal recovery {Hartmann, 1873; Oswald, 1974). A
behavicurally active day increased SWS stages without altering sleep length
and REM sleep (Horne and Minard, 1985). In addition GH, which stimulates
uptake of amino acid inte tissue (Kormer, 1965), is released by SWS
(Takahashi et al., 1968).

1.5 Sleep deficiency

1.5.1 Total sleep deprivation (TSD)

ISD in rats aznd man was followed by sleep rebound. An  increase in  SWS
being the most pronounced effect (Borbely, 1982).

Changes in hormones, enzymes, proteins and some neurotransmitters have
been observed after TSD. For example TSD induced an increase in the release
of thyroid stimulating hormone, thyreid hormones, melatonin and tyrosine
hydroxylase activity (Sinha et al., 1973; Parker et al., 1976; Palmbald et
al., 1979). Steriods such asg testosterone, androstenedione,
dihydrotestosterone and estradiol were decreased after T8SD, while the
pituitary hormonez prelactin, feollicle stimulating hormone, 1luteinizing
hormone and the adrenal cortex hormeone, cortisol were not affected
(Cortes-Gallegos et al., 1983).

In rats, TSD increased cerebral GABA levels but decreased glutamic acid,
glycine, alanine and lysine {Godin and Mandel, 1965). Comparing the effects
of TSD and REMSD, Panov (1982) found that TSD increased the RNA contents of
the locus ceoerulus and n. raphe pontis, while REMSD was associated with a
decrease in RNA in these brain areas.

There were nc changes in 5-HT and S-hydroxyindoleacetic acid (5-HIAA)
levels following TSD (Wesemann and Weiner,1982), whereas there was an
increase in 5-HT and 5-HIAA after 1 h sleep recovery {(Borbely et al., 1980).

Preofound hehavioural changes have been demonstrated after TSD. Thus
there a was decrease in speed of performance, alertness, accuracy (IZubin et

al., 1974; Loveland and Williams, 1983), motivation, and induced mocod
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deterioration {Johnson, 1969). Prolonged TSD {60-90 h) induced
depersonalization, hallucination, cognitive disorganisation and loss of
thought train {(Morris et al., 1960).

Sleep deprivation has also been demonstrated to increase epileptic
phenomena {(Pratt et al., 1968). Little is known of +the ©biclogical

consequences of selective SWS deprivation.
1.5.2 REM sleep deprivation (REMSD)

1.5.2a Methodological aspects of REM sleep deprivation

In human REMSD is induced by using the forced arousal technique (Dement,
1960). The same method can be used in animals. In this method animals are
implanted with EEG/EMG electrodes for sleep stage monitoring and subsegquent
arousal with sensory stimulus any time the animal entered intc REM sleep.
Selective REMSD using the forced arousal technique presents very serious
practical problem. Using this technique in rats Morden and co-workers (1967)
found that the number of awakenings from REM sleep, rose rapldly from 135/8 h
cn first day to 350 on the third day. It became practically impessible to
arouse anlmals from REM sleep without curtailing NREM sleep. An  ingenious
method was devised by Jouvet and co-workers (1564} which involves placing a
cat on an imverted “flower pot” gurrounded by a pocl of water. The technigue
1s based on differences in muscle tone during NﬁEM and REM sleep stages.
While sitting on the flower pot (=platform, island or pedestal), +the animal
can obtain NREM sleep since muscle tone is present, but during REM sleep
muscle tone is abolished which causes the animal to wet 1t's mnose or fall
into the water. The “flower pot” technigque was adapted for rats by Cohen and
Dement {1965) and for mice by Fishbein (19870}. REMSD by the flower pot
technigue has obvicus advantages over forced arousal:

a) several animals can be REM sleep deprived at the same time

b) the experimenter is not reguired to monitor the sleep

polygraph

Both of these, help to reduce the over all cost of the experiments. There
are however other practical problems associated with using “flower pot”™ for
REMSD:

a) the extent of REMSD
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b) the technique introduces stress factors such as dampness
and confinement
b) there is the additional problem of cleaning the tank and
animals daily

Several studies have demonstrated that rats on small platforms (4-7 cm
diameter) were more REM sleep deprived than animals on large platforms
{11.5-14 cm diameter) {Mordenm &t al., 1967; Mouret et al., 1968). These
studies revealed that REM sleep was alse reduced in the large platform
animalsg although to less extent. However 1n these studiess, sleep was
menitored for a few hours rather than the for the whole 4-5 day perieod. The
elaborate studies of Mendelson and co-werkers (1973; 1974) in which +they
followed sleep polygraph of rats on platforms continously for 4 days have
clarified this problem. In these reports rat welghing 200-225 g, and
platform with diameters 6.5 c¢m (REMSD} and 11.5 cm {stress group) were used.
Under these conditions, there was neo essential difference in the degree of
REMSD in +the small and large groups during the first 24 h. However in the
fourth 24 h rats on large platforms has no REM or NREM sleep loss, whereas in
the small platform group REM sleep was reduced by 50 % but NREM sleep was not
different from baseline. TPhe work of Mendelson's group sets a good standard
(100 g rat body welght/14.7-15.6 cm? platform area) for using the “flower
pot” technigue %o selectively deprive rats of REM sleep. However rats must
be maintained for at least 48 h on platforms to achieve REMSD selectivity
(Vegel, 19753). A corresgponding stress group (large platform, 100g rat body
welght/ 54-61 cm2 platform area) should be added to the experimental design.
The selectivity of the pedestal techmique for REMSD in rats has also been
recently validated electrophysiclogically (Hilakivi et al., 1984}. The
discrepancies often encountered in studies using the "flower pot”™ technigue
are probably due te the uneritical attitude of some workers in disregarding
the ratio of animal size to platform diameter or area . This problem has
been fully discussed (Hicks et al., 1977).

A second confounding factor in the “flower pot” technique of REMSD is the
stress (dampness and isolation) which is associated with the procedure. It
hags been reported that rats on small platforms lost about 10 % of their
initial body weight compared with control animals in home cages (Dement et

2l., 1867). However, Selye’'s indices of stress (weight loss, adrenal



22

hypertrophy and thymus atrophy)} and stomach ulceration were not significantly
different between small (REMSD) and large platform (stress)} rats (Mendelson
et al., 1974: Levental et al., 1975; Cosnen and van Luijtelaar, 1985). 1In
addition there were no differences in Dbloed counts and lympeid tissue
histology between REMED and stressed animals (Drucker-Colin et al., 1974).
Angther procedure has also been used to control for stress factors associated
with REMSD by 7 flower pot™ technique. In this rats are forced to swim in
water of 18-19 °C, 10 cm deep, for 1-2 h daily and thereafter allowed to have
undisturbed sleep. Adrenal  Thypertrophy and body weight loss were net
different between “swimming”™ rats and animals REM sleep deprived bty the
“flower pot method (Stern et al., 1871; Mendelson et al., 1974). The
Seyle s stress indices were not essentially different in rats REM sleep
deprived by the new pendulum procedure or the classical “flower pot”™
technique (Coenen and van Luijtelaar, 1985).

studies in mice (25 g body weight) also indicate +that these animals
placed on platforms (1-3 cm diameter) were more REM sleep deprived than
animals on large platforms {8-25 cm diameter) (Fisghbein, 1970; Kitahama and
Valatx, 1980).

In conclusion, these data indicate that the “flower pot”™ technique is
still a reliahble procedure for REMSD in rodents. The large platform or
forced swimming are adequate controls for the stress factors asscciated with
the flower pot technique for REMSD. In order to reduce the stress due to
confinement, animals in both small and large platforms should be allowed

dzily free locomotion in home cages.
1.5.2b Biochemical changes after REM sleep deprivation

i) Serotorninergic system

It has been demonstrated that REMSD increased +the rat brain serotonin
(5-HT) turnover (Pujel et al., 1968). VWeiss and co-workers (1968) also
confirmed that REMSD increased S-hydroxyindeleacetic acid (5-HIAA) Dbut
decreased 5-HT in the brains of rats deprived of REM sleep. Following REMSD
there was alse an increase in the formation of [3H]—serotonin from
[3H]—tryptophan in the Yrainstem-mesencephalon in rats (Hery et al., 1970).

In cats there were no alterations in the CSF 5-HIAA levels (Radulovacki,
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1973) after REMSD, but Livrea and co-~workers (1877) demonstrated an increase
in 5-HIAA in the lumbar CBF of human subjects, deprived of REM sleep.
However no changes in 5-HT2 binding sites in the frontal cortex of REM sleep
deprived animals have been demonstrated (Farber et al., 1983). REMSD induced
changes in S5-HT levels in some brain regions. 5-HT concentraticons were
decreased in the locus coerulus and AS but increased in frontal cortex and
ventral tegmentum area without alterations in 5-HIAA concentrations in these
brain areas {(Mattiace et al., 1983).

ii) Dopaminergic system

Bicchemical zmalysis shows that REMSD for 4-10 days Increased striatal
dopamine concentratlions in rats (Chosh et al., 1976}, without altering lumbar
CSF concentraticns of homovanillic acid (HVA) in human subjects (Livrea et
al., 1977). Farber and co-workers (1983) found that REMSD increased the
concentration of dihydroxyphenylacetic acid (DOPAC) in the striatum and
frontal cortex of rats compared with ceontrols but not with the stress group.
There were no changes in the binding of pre- or post-synaptic DA receptors.

i1il) Noradrenergic system

REMSD did not alter noradrenaline (NA) turnover brain of rats (Pujol et
al., 1968Db). However increases in NA turnover after REM sleep rebound was
reported {Pujol et al., 1968b). Changes in KA and it s metabolite,
3-Methoxy-4-hydroxyphenylgliyccl (MHPG), after REMSD *have recently Dbeen
demonstrated (Mattiace et al., 1983 ). It was found +that REMSD induced a
decrease in NA and MHPG levels in A%, and an Iincrease in MHPG levels, without
affecting WA concentrations in the striatum, ventral tegmental area and
dorsal raphe. REMSDI di¢ mnot alter [SH]clonidine (az) binding sites
{(Mogilnicka and Pile, 1981), but decreased 5 receptor binding {Mogilnicka et
al., 1980). However other workers found no changes in A receptor binding in
the brain of REMSD animals (Abel et z2l., 1983).

iv)} Cholinergic system

A decrease in Ach concentration was observed in the telencephalon of
REMSD rats (Tsuchiya et al., 1969). There were nc alterations in striatal
concentration of Ach after 96 hr REMSD, whereas a decrease was observed after
10 days of REMSD {Ghosh et al., 1959).

v) Amino acids

In cats deprived of REM sleep GABA concentrations were increased in the
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reticular formation, thalamus and frontal cortex, while decreases were
chserved in the colliculi and caudate nucleus (Micic et al., 1966; Karadzic
et al., 1971). Whole brain GABA, glutamic acid, glutamine and threonine were
not changed in the brain of REM sleep deprived animals (Himwich et zl.,
1973).

vi) Peptides

Alterations in peptides in some brain areas and the pituitary have deen
observed after REMSD. Thus substance P was reduced in locus coerulus (LC),
central grey area (CG), medial and dorsal raphe (MR, DR}, ventral tegmental
(VIPA), substantia nigra zona compacta (SNC), medial hypothalamus (HMC) and
caudate areas, whereas somatostatin levels were reduced in DR, CG, SNC and
VTA. Increases of these peptides were seen in caudate and preoptic areas
after REMSD (Mattiace et al., 1981). g-Endorphin concentrations were
decreased in the pituitary but increased in the hypothalamus of REM sleep
deprived rats (Przewlocki, 1984).

vii) Nucleic acids and protein metabolism

The neurcnal RNA content of the brain stem nuclei., including the
supraoptic mnueleus, was decreased in REM sleep deprived animals (Demin and
Rubinskya, 1974). Similarly, Panov (1982) found a decrease in RNA
concentrations in the n. raphe dorsalisg, n. raphe pontis and locus coerulus
after REMSD.

Protein synthesis in some bhrain areas, such as the cerebellunm,
telencephalon, cerebrum and brainstem, was inhibited by REMSE in rats

{(Bobillier et al., 1974; Shapiro and Girdwood, 1981}.
1.%5.2¢c Electrophysiolegical changes after REM sleep deprivation

i) Neuronal excitability

Several studies have demonstrated that REMSD lowered seizure thresholds
in both animals and man {Cohen and Dement, 19465; Bergonzi et al., 1973).
Studies of evoked potentials alsce indicate that REMSD can modulate neurcnal
excitability. Thus REMSD facilitated recovery of cortical potentials evoked
by external auditory stimuli {(Dewson et al., 1967). Satinoff and c¢o-workers
{1971) have reported that REMSD increased the paleocertical excitability as

assessed by evoked potentials, but decreased evoked activities in the



25

hindbrain sensory areas induced by stimulation of hindbrain sensory nuclei.
It was <then suggested that REMSD zmplifies cortical responsiveness by
inhibiting internally generated signals (Satineff et al., 1971). In line
with the concept that REMSD increased cortical excitability, Bowersox anéd
Drucker-Colin (1982) demonstrated that the amplitude of entorhinal cortical
evoked potentials, following prepyriform cortex stimulation, was increased by
REMSD. In contrast, photic evecked potentials in the visual cortex was
decreased after REMSD (van Hulzen and Coenen, 1684}. In general REMSD

increased neuronal excitability.

1.5.24 Behavioural ckanges after REM sleep deprivation

i) Neciception

REM sleep appears to be essential for the regulation of nociception.
Thus it has been demonstrated that REMSD reduced the pain thresheld to
noxious electrical stimulation. The decrease inm pain threshold was still
evident 96 hr after the termination of REMSD (Hicks et al., 1878; 197%a).

ii) Waking motor and motivated behaviours

An increase in the number of cage crossings has been demonstrated during
the 10-15 min after REMSD (Albert et al., 1970; wvan Hulzen and Coenen,
1981). REMSD reduced neophobia, increased exploration, ambulation and
rearing (Hicks et al., 1979h; Moore et al., 1979; Mogilnicka et al., 1985).
Shock provoked aggression was facilitated in REM sleep deprived animals
(Hicks et =al., 1979).

Hypersexuality, manifested as compulsive mounting behaviour was proveoked
by chronic REMSD in cats (Dement et al., 1867).

REMSD lowered the threshold and frequency for intracranial self
stimulation {ICS8) =at the medial forebrain bundle site in rat (Steiner and
Ellman, 1972), whereas ICS8S of the lateral hypothalamic area was not altered
(Marti-Nicolovius et al., 1984).

Further support for <the concept that REM sleep is involved in
motivational behaviours, comes from the report that REMSD alsc enhanced feod
competition between male rats (Hicks et al., 1981).

iii) Learring and memory

Several authors have studied the effect of REMSD on learning and memory,
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however most of the results are conflicting (Smith, 1985). TFor example Stern
(1971) reported that REMSD induced a clear learning deficit in one way active
and passive aveidance tests but Albert and co-workers {1970) could not
confirm this observation. S8imilarly, retention of a condition passive
avoidance respense was disrupted by REMSD (Leconte and Bloch, 1570). These
conflicting findings appear to be due to the lack of proper control of rat
body weight to platform size, so that there may have been no great difference
in REMSD between small (REMSD) and large (control) platform animals (Hicks et
al., 1977). However anocother group wusing a different procedure for REMSD
found no alteration in the two way shuttle avoidance response in animals
deprived of REM slgep {(van Hulzen and Coenen, 1979).

Contradictory effects of REMSD on memory in humans have alsc been
reported. REMSD had no effect on memory {(Chernik, 1972) whereas z decrease
in memery was reported after REMSD (Fowler et al., 1673). In another study
REMSD decreased creativity (divergent or flexible thinking) but improved
serial memory task {Lewin and Glaubman, 1975).

Although some inconsistency exist in literature, the weight of evidence
suggests that REMSD may disrupts complex and unprepared forms of learning,

especially those with emotional components (McGrath and Cohen, 1978).
1.5.3 Clinical aspects of REM sleep deprivation

i) Depression

Sleep pattern is generally altered in depressive conditions. The major
disturbance in depression involves shortened REM latency, an extended first
REM pericd, increased REM density/activity and a decrease in deltz sleep
{(Kupfer et al., 1984).

It has been demonstrated that REMSD can improve some forms of endogenous
but not reactive depressions (Vogel et al., 1975; Vogel, 1980). In these
elaberate clinical studies, endogencus depressives that were not improved by
REMSD did net respond te imipramine. Summarizing the recent literature,
Vogel (1983) cutlined evidence for the therapeutic efficacy of REMSD in =z
subtype of endogenous depression:

a) REMSD and imipramine have similar therapeutic efficacies

b) The usefulness of antidepressant was related to their
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ahility to induce substained and large REMSD

c¢) Drugs such as barbiturates, alecchol, diphenylhydantein,
opiates and amphetamines can induce short-lasting REM
sleep reduction. In azddition tolerance to REM sleep
inhibiting properties of these drugs develeps rapidly,
usually within one week or less. These drug posSsess no
antidepressant properties.

d) The behavioural effects of REMSD in animals, such as
increased sexuality and zggressiveness, are opposite o
the behavioural alterations present in human depression.

In addition, wide range of typical and atypical antidepressants, induced
selective REM sleep suppression with little or no alterations in NREM sleep
stage (Scherschlicht et al., 1982).

It has become generally accepted that REMSD can improve some forms of
endogenous depression and may in fact Dbe part of the mechanism by which
antidepressants exert their therapeutic action {Vogel, 1983). The
antidepressant action of REMSD was long lasting up te 21 days.

ii) Schizophrenia

Unlike depression, REMSD did not alter schizephrenic symptoms (Vogel and
Traub, 1868; Gillin et al., 1974). It was also demonstrated that REM sleep
rebound, following REMSD, was exaggerated in schizophrenics. Thus 1t was
suggested that active schizophrenia was associated with a de¢rease in REM
sleep need (Gillin et al., 1974).

1ii) Epilepsy

Sleep disturbances and seizure phenomena often co-exist in human
epileptics. For example, patients with grand mal seizure had reduced REM
sleep, whereags NREM sleep stage 2 was inereazed (Besset, 1882). Sleep
pathology in epileptiecs with cortical or deep tempeoral foci was mainly in the
form of a decrease in NREM stages 3 and 4 (Montplaisir et al., 1982).

In addition t¢ sleep disturbances assoclated with epilepsies, some
seizure activities occur preferentially in sleep while others occur in
wakefulness

The paroxysmal discharges in petit mal epilepsies were facilitated by
slegp onset and awakening. Two subgroups of petit mal seizure exist,

clazsified according to the distribution of epileptic discharges during
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gleep. In one group epileptic discharges cecur during REM sleep, while in
the second group paroxysmal discharges were gsuppressed during REM sleep {Ross
et al., 1966; Billiard, 1982). N

REMSD has been demonstrated consistently to lower the seizure threshold
in experimental animals ({see section 1.5.2¢). In human epileptics, REMSD
facilitated seizure activity during the night after REMSD was stopped
(Bergonzi et al., 1973). In ancther repeort selective SWS deprivation, rather
than REMSD, was more effective in provoking epileptic attacks in pycncleptic
children (Beck et al., 1977).
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CHAPTER 2
ENDOGERQOUS GPIOID PEPTIDES
2.1 Nomenclature and classificoticon

The discovery that elec¢trical stimulation of the periaqueductal gray area
induced morphine-like analgesia {Akil et al., 1972) led to the search for an
endogenous eopiate ligand. Later Hughes and co-werkers (1975; 1975a)
izolated an endogencus compound from the brain with pharmacological
properties similar to that of wmerphine. They termed this endogencus
morphine-like compound enkephalin {from en kephalos, in the head). TFrom the
initial extract named enkephalin two related pentapeptides which differ only
in +the carbeoxyl terminal amino acid were identified {Hughes et zl1., 1975b),
namely methionine-enkephalin (met-enkephalin, met-ENK) and leucine-enkephalin
(leu-enkephalin, leu-ENK). Since the initial discovery of endogenous cpioid
pentapeptides by Hughes and co-workers, several other ligands with opioid
activity have been isclated from various tissuesg in different animals (Hughes
et al., 1980; Bloom, 198%).

Other peptides with opioid activity were found in the pltuitary and
designated BS-endorphin (ILi and Chung, 1976), &, and ¥Y-endorphin (Bradbury et
al., 1976; Ling et al., 1976).

Opicid peptides which are extended leu-ENK sequences have been extracted
from the opituitary. Goldstein and co-workers (1979) isolated and named a
pituitary opiloid peptide as dynorphin1w13. In the same year another opiceid
peptide, a decapeptide described as “"big” leu-ENK was named ec-neo-endorphin
(Kangawa and Matsue, 1979). Qther peptides include dynorphins1_8.
dynorphin1_17 and g-nec-endorphin (Minamino et al., 1980; 1981; GColdstein
et al., 1981}. Several other morphine-like substances have been isolated
from various animal tissues for example, g-casomorphing derived from g-casein

(Brantl et al., 1979) and humeral (H) endorphin (Sarne et al., 1978).
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2.2 Metabolism of endegencus opiovid peptides

At present thres classes of endogenous opilioid peptides have been
described : s-endorphin, enkephalins and dynorphin. There is now sufficient
evidence that these opiold peptides originate from three different precursors
(Hughes et al., 1980}.

2.2.1 Biosynthesis

i) p-endorphin

Biochemical evidence in the literature indicate +that A-endorphin and
other non-opieid peptides such as corticotropin, =38 and
g-melanocyte-stimulating hormone (MSH), ag-lipotropin and adrenocorticotrophie
hormone {ACTH} are formed from a common precursor termed pro-opicmelanocortin
(POMC)(Hughes et al., 1980; Bloom, 1983). The POMC derived peptides are
produced by proteolytic cleavage of the lipotropin.

ii) Enkephalins

Several studies have demonstrated that enkephalins are producsd frem a
riposomally synthesized protein precursor termed pro-enkephalin (Hughes et
al., 198C). This pre-enkephalin contains one copy of 1leu-ENK and six of
met-ENX (Neda et 2l., 1982). Several synthetic analogues of enkephalins have
been produced for example, D—Alaz—mets—enkephalinamide (DALA) and
D-Alaa-D—Leus—enkephalin (DADLE) .

Structures of enkephalins
Met-enkephalin:- Tyr-Gly-Gly-Phe-Met
Leu-enkephalin:- Pyr-Gly-Gly-Phe-Ley

iii) Dynorphin
Dynorphin and o-neo-endorphin are derived from a protein precursor termed

prodynorphin (Xakidani et al., 1982}.
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2.2.2 Biodegradation of enkephalins

Opioid peptides are inactivated by several peptidases present in
mammalian tissues.

i) Soluble zminopeptidases

Aminopeptidases degradate enkephalins by cleavage of the Tyr-Gly peptide
beond. The major metabolite following aminopeptidases hydrolysis of
enkephaling is tyrosine (Hazmbrock et al., 1976). These enzymes can be
inhibited by bestatin.

ii) Enkephalinase A

Enkephalinase A is a dipeptidyl-carboxypeptidases which cleaves Gly-FPhe
peptide bond in enkephalins. Enkephalinase A is sensitive to inhibition by
thiorphan, phosphoramidon and kelatorphan (Hudgin et al., 1981; Waksman et
al., 1985).

iii) Enkephalinase B

Enkephalinase B is a dipeptidyl-aminopeptidase which inactivates
enkephalins by cleavage of Gly-Gly amide bond (Gorenstein and Synder, 1979).
No selective inhibitor of this enzyme has been demonstrated.

iv) Angiotensin-converting-enzyme (ACE)

Similar to enkephalinase A, ACE hydrolyses Gly-Phe amide btond of
enkephaling, but does not appear to play an essential role in in vive
situations {Erdcs et a2l., 1978). Captopril which is an inhibitor of this
enzyme, does not modulate the enkephalinergic system in vive.

Enkephalins are inactivated in vitre by all four énzymes mentioned above.
However, the soluble amino peptidases and enkephalinase A appear to be
involved in the biotranformation of synaptic enkephalins in vivo.

Knowledge of the bislogical mechanisms involved in  the dInactivation of

B-endorphin and dynorphin is still poor.
2.5 Opioid recepters

The existence of specific opilcid receptors in the mammalian brain was
demonstrated simultaneously by three groups (Pert and Snyder, 1973; Simon et
al., 1973; Terenius, 1973). Later studies of Martin and co-workers (1976)
on the effects of opiates 1in spinal dogs indicated the heterogeneity of

opioid receptors. The three different opiates, morphine,
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ethylketocyclazocine (EtKCZ) and N-Allylnorphenazocine (SKF 10047) produced
distinct syndromes. Based on this behavioural study the existence of three
different opioid receptors have been suggested: # (mu) for morphine, x
(kappa) for EtKCZ and o (sigma) for SKF 10047 (Martin et al., 1976).

The concept of multiple opicid receptors was alzo confirmed and extended
in studies utilizing, guinea-pig ileum and mouse vas deferens bioassays and
autoradiography (Lord et =zl., 1977). These authors concluded like Martin and
co-workers that morphine showed preference for u-receptors. However the
enkephalins, especially leu-ENK, interacted mainly with the opioid receptors
designated d-receptors. A-Endorphin was equipotent at ¢ and {-receptors.
More recently two subtypes of u receptor designated #q and by have been
suggested (Pasternak et al., 1983). Enkephalin bind tc sy and § sites, while
morphine bind to both g and sy sites. Dynorphing show preference for
¥-receptors {Garzem et al., 1983). The relative affinities of some opiates

and opicid peptides for opioid receptors are shown in table I.

Taple I: Relotive offinity of ligonds for opioid receptors

(modified after Hughes et cl. 71880, Gorzen et cl., 71883)

Ligands Receptors

i 4 x
met-ENK ++ R +
leu-ENK + [ +
§:§ndorphin Ao P +
morphine +++ + +
dynorphin(i-17) ++ + ot
EtKCZ + + it
Nalexeone +++ + +

Key: +=low, ++=moderate, +++=high
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S8imilarly a heterogeneity of opioid receptors has been demonsfrated in
the human Dbrain (Maurer et al., 1983). The importance of multiple opiocid
receptors for physiological functions of endogencusly released opioid
peptides 1s not yet clear. The copioid receptor types possible invoelved in
the pharmacological effects of opiate and opicid peptides are indicated in

table III

2.%3.1 Opioid receptor distribution in the brain

The idea that the various opioid receptors are differentially distributed
in variocus Dbraln areas is supported by considerable body of evidence (Atweh
and Kuhar, 1983). Recently the distributicn of w and §-opicid receptors in
the rat train was agsayed by using highly selective ligands
[2]—Tyr—D-Ala—Gly—NMet—Phe—Gl—ol {DAGD) for us-receptor and
[3]D-Thr2,Thrs-leu—enkephalin (DTLET) for ©&-receptors (Quirien et =zl.,
1983b}. Table II show the relative preponderance of u« and d-recepteors in
some brain regions.

The distribution of x-receptors in the rat brain is similar +to that of

p~receptors (Quirion et al., 1983a).

2.4 Physiologicol implicotions of regional distribution of epiocid

peptides

2.4.1 Anzalgesia

Opioid peptides are present in high concentraticns in the brain areas
(periagueductal gray area, intralaminal thalamic nuclei and raphe nuclei) and
spinal cord (laminae I and II of dorsal horn) related to pain and analgesia
(Hokfelt et al., 1977; Simantov et al., 1977). Electrical stimulation of
the PAG and pituitary has been demonstrated to induce naloxone reversible
analgesia (Akil et al., 1972; Yanagida et al., 1985) possibly by causing the
release of opiloid peptides. A lesion of the arcuate nucleus, which reduced
g-endorphin levels in the hypothalamus, periventricular area and in the
neurointermediate lobe of the pituitary was reported to decrease pain
threshold (Millan et al., 1980). REMSD decreased the pain threshold teo
noxious electric shock {chapter 1, section 1.5.2b) and the pituitary

B-endorphin concentrations (Przewlocki, 1984). The involvement of
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Table XYI: Relative prepondergnce of opicid receptors in some

brain greas (modified ofter Quirion et gl. 1983b)

Brain region Receptors

u 3
n. accumbens ++++ ++
frontal cortex ++ ++
layers II-IV of cortex +++ -
layers V-IV of cortex + +4
caudate-putamen ++++ +++
olfactory tubercle + bt
septum + _
thalamus ++4 -
amygdala ot _
hypothalamus + -
nippocampus +4 +
habenula +tt +
interpeduncular nucleus +4+ +
central gray +4 +

cerebellum - -

n. tractus solitarius +++ +
locus ceoerulus +++ -
dorsal horn (spinal cord) +oet +

Key: «=absent, +=low, ++=moderate, +++=high, ++++=very high
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endogencusly released opioid peptides in the regulation of nociception is
also supported by other reports. The icv administration of enkephalinase A
inhibitors, thiorphan and phosphoramidon which are known t¢ potentiate the
enkephalinergic system (Hugdin et al., 1981) increased the pain thresholad
(Carenzi et al., 1981; Rupreht et al., 19583). s-Endorphin given c¢entrally
induced analgesia in both animals and human subjects (Lch et al., 1876;

Hosobuchi and Li, 1978).

2.4.2 Locomobor activity

Opiocid peptides are present in high concentrations in caudate nucleus,
putamen, globus pallidus (basal ganglia), amygdala, substantla nigra and in
the ventral tegmental area (Khachaturian et al., 1983). These brain areas
are important in the regulation of skeletzal muscle tone and locomtor
activities {(Chambers st al., 1971). In Parkinsonism a deficiency of ENK in
the pallidum, putamen, substantia nigra and the ventral tegmental area has
been demonstrated (Taquet et al., 1983; Agid and Javoy-Agid, 19835). Opioid
receptors in the substantia nigra and striatum have been implicated in
opiate-induced muscular rigidity and catalepsy {(Turski et al., 1983).

The administration of s-endorphin or met-enkephalin dicv can stimulate
morphine-like c¢atalepsy in rats {Bloom et a2l., '976; <Chang et al., 1976).
Similarly, the administration of an enkephalinase inhibitor, thiorphan also
induced hypotonic immobility in mice (Chaillet et al., 1983). The medial
precptic area, =n. accumbens, periagueductal gréy area, and anterior
hypothalamus are particularly sensitive 1to the cataleptogenic effects of
opiates and opioid peptides {(Tseng et al., 1980; Winkler et al., 1982).
However +the administration of low doses of morphine or opioid peptides icv
stimulated locomotor activity, wet-dog-shakes (WDS) and body scratching in
rats (Wei et al., 1977; Brady and Holtzman, 1981). Micreinjection of
morphine, enkephalins and g-endorphin into ventiral tegmental area or n.
accumbens produced behaviocural changes characterised by sniffing and grooming
interrupted by dbursts of locomotor activity. These stimulant actions of
opiates and opioid peptides were naloxone-reversible (Pert and Sivit, 1977;
Kelly et al., 1980; Stinus et al., 1980). Similarly mnaltrexone-sensitive
wDS, grooming and %body scratching were also observed following icv

administration of the enkephalinase inhibitor phospheoramidon {Rupreht et al.,
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1983).

2.4.3 Temperature

A role for endogenously released opiocid peptides in temperature
regulation 1s suggested by the report that administration of an enkephalinass
inhibitor, thicrphan or met-enkephalinamide could induce a
nalexone-reversible hypothermia. This hypothermia due to endogencusly
released oploild peptides inveolves the preoptic and the anterior hypothalamic
areas (Stanton et al., 1985). Similarly central administration of
A-endorphin induced hyperthermiz in low concentrations and hypothermia in

high doses (Tseng et al., 1980).

2.4.4 Feeding

Endogenously released opicid peptides appear to regulate feeding
(Jalowiee et al., 1981). Systemic or intracerebral administration of
morphine, g-endorphin or enkephalins facilitated food consumption (Grandison
et al., 1977; Jalowiec et al., 1981; Tepperman and Hirst, 1%83). Opiloid
peptides in the hypothalamic brain area are particularly important for the

regulation of feeding behaviours (Przewlockl et al., 1983).

2.4.5 Respiratory and cardiovascular system

Local application of morphine and enkephalins to the dorso-rostral
gsurface of the poms in cats selectively decreased the frequency of
respiration, whilst tidal volume or the response t¢ carbon dioxide were left
unchanged or increased (Hurle et al., 1983). Morphine was less effective
than enkephalin in reducing the freguency of respiration. However, naloxone
can easily reverse morphine-induced regpiratory depression and
hypoventilation (Bowman and Rand, 1980) but not the enkephalin-induced
depressicn of respiration (Pazos and Florez, 198%). It was suggested that
both both x and G-receptors are inveolved in the respiratory depressant
actions of opiocid peptides and opiates.

A decrease Iin bleod pressure after the application of met-enkephalin to
the ventral surface of the brain stem in the cat has been reported (Florez
and Mediavilla, 1977). The microinjection of met- or leu-enkephalin into the

brain produced either hypertension or hypotension, depending on the site of
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injection. It has been suggested that twoe types of opicid receptors exist in
the medulla. A naloxone-resistant receptor which mediate wvasopressor
responses and naloxone-sensitive receptor which mediates vasodepressor
responses (Fuxe et al., 1979).

2.4.6 Sexual behaviour

The possible involvement of endogencus opicid peptides in sexual
behaviour is suggested by several authors. A decrsase in sexual function in
narcotic addicts has been reported (Crowley and Simpson, 1978). Whereag
opiate withdrawal may be associated with premature ejaculatlon, spontanecus
gerection in men and sexual arousal in women (Parr, 1976). Pretreatment of
oplate-dependent rats with enkephalinase inhibiters thiorphan or pheleorphan
stimulated penile-licking during naloxone-precipitated withdrawal {Dzojlic et
al., in preparation). A zimilar actiwvation of penile licking was cbserved
following the administration of ancther enkephalinase inhibitor
phospheoramidon to REMSD animals (unpublished observation). However central
administration of s-endorphin or D—Alaz-mets—enkEphalinamide reduced mounting
behaviour in normal, non-dependent male rats {Meyerson and Terenius, 1977:
Gessa et al., 1979). These inhibitory actions of opioid peptides on sexual
behaviour were ©blocked by naloxone and naltrexone. TFurther studies are
necesgary Tor the clarification of the role of different opicid receptors in

sexual behaviours.

2.4.7 Neurcnal excitability

Accumalating evidence indicate that both copium alkaleoids and opiloid
peptides are capable of exerting an inhibitory or a facilitatory action cn
cerebral excitabiltiy. The administration of large doses of morphine, lev or
systemically, can induce convulsive behaviours in mice and rats (Gilbert and
Martin, 1975; Snead and Bearden, 1982). Pretreatment with subconvulsant
doses of morphine can block the convulsant effect of morphine and enkephaling
(UYrca and Frenk, 1983; Dzecljic, 1982). Similar pretreatment with morphine,
g-endorphin and [D—Alaz-D-Leus]enkephalin {DADLE ) also antagonised
electroshock-induced seizures (Puglishi-Allepra et al., 1984; Berman and
Alder, 1984). This anticonvulsant action of opiates and opioid peptides was

blocked by naloxone {Berman and Alder, 1984). Recent data indicate that the
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G-opioid receptors mediate the eplleptic acticoms of enkephalins, whilst
u-opioid receptors are involved in the anticonvulsant actions of opiecid
peptides (Dzoljic and vd Poel-Heisterkamp, 1982; Frenk, 1983; Haffmans and
Dzlojic, 1583). The target area of this action appear to be in the limbic
area (Henriksen et al., 1978), particularly in the hippocampus (French and
Sigging, 1680: Haffmans et al., 1983; 1984). However in the flucrothyl
seizure test beoth § and g opiold recepter agonists appear to e
anticonvulsants (Tortella et al., 1985). It does appear that exogenously
administered oploid peptides may have both pro- and anti-convulsant actions
depending on the experimental c¢onditions. The role of pro-— and

antl-convulsant opioid systems in human epilepsies is still unknowm.

2-4.8 Tolerance and dependence

Similar to morphine the development of tolerance to oploid peptides has
been reported {Wei and Loh, 1976; Tseng et al., 1977). Interestingly,., in
animals tolerant to the x agonist sufentanyl, a 6-opioid receptor agonist
DADLE was still able to induce analgesia and catatonia {Schulz et al., 1981).
This might indicate the lack of cross-tolerance between & and § receptor
agonists. It also appears that an organism can develop tolerance and
dependence to endogenously released opioid peptides. Namely naloxone

precipitated an opiate-like abstinence syndrome after chronic stress or

enkephalinase inhibition (Christie and Chester, 1982; Bean and Vaught,
1984 ). Social interaction appear to activate endogencus opioid peptides
resulting in an opioid-like Tsocial dependence”. Igelation or sccial

separation provoked symptoms such as vocalisation and irritability. Symptoms
induced by social isolation could be reduced by morphine and potentiated by
naloxone (Panksepp, 1981).

The pessible involvement of changes in endogenous opicid peptides in  the
process of opiate dependence is mnet clear. However, chreonic morphine
treatment increased the activity of a high affinity enkephalinase (Malfroy et
al., 1978). Enkephalinase inhibiton attenuated some symptoms of opiate
withdrawal in morphine dependent animals (Dzoljic et al., in preparation).

An increase in protein synthesis also appears to be involved i1n  the
mechanism of tolerance to opiates. Several drugs with the common abilizty te

inhibit protein synthesis reduce the development of tolerance and dependence
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to morphine (Bowman and Rand, 1980). In addition, it has been reported that
the development of opiate dependence is asscciated with an  increase in the
synthesis of secretory proteins in the pons-medulla and striztum-septum {Retz
and Steele, 1983). These brain areas are functionally involved in opizte
tolerance and dependence (Herz, 1978). The hippocampal CAS area alsc appear
to bte modulate both opioid and opiate-withdrawal WDS (Isaacson and Lanthorn.
1981).

Some pharmaceological actions of opiates or opicid peptides and the
possible brain areas invelved have been described in this section. Table III
summarises some pharmacological actions of opioid peptides/opiates and the

receptor types involved.

2.5 Drugs ond behoviocural stotes offecting endogenous opioid peptides

2.5.1 HNeuropeptidase inhibitors
Potentiation of enkephalinergic activities following +the inhibition of
neuropeptidases have been demonstrated under several experimental conditions.

For example kelatorphan a potent inhibitor of enkephalinase iIncreased

mets—enkephalin (met-ENK) levels in  rat striatum and blocked the

biodegradation of exogenously administered enkephaling (Waksman et al.,
1985). Similarly thiorphan an enkephalinase inhibitor A (Hudgin et al.
1681), given alone, or in combination with bestatin (peptidase inhibitor),
elevated in vivo striatal and midbrain met-ENK levels and induced
naloxone-reversible analgesia (Zhang et al., 1982; Yaksh and Harty, 1982).
Phosphoramidon, ancother potent inhibitor of enkephalinase A (Hudgin et al.,
1981), induced naltrexone-sensitive analgesia (Rupreht et al., 1983) and
insomnia (see chapter 3). Other neuropeptidase inhibitors such as bestatin
and leucinal increased brain met-ENK levels and g-endorphin-stimulated
analgesia (Waksman et al., 1985; Davis et al., 1983). In addition, naloxone
precipitated some behaviours characteristic of the opiate abstinence syndrome
in rats after chronic inhibition of enkephalinase (Bean and Vaught, 1984).
These reports indicate that inhibition of some neuropeptidasez can induce
increases in opioid peptides with concomitant alterations in behaviour. The
effect of peptidase inhibitors on the brain concentrations ¢of other opioids

such ag A-endorphin and dynorphin, still remains to be established.
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2.5.2 Centrally acting drugs

i} Narcotic amalgesics

Morphine elicited a decrease in plasma B-endorphin but elsvated the
concentration of this peptide in whole brain (without the cerebellum) and in
the pituitary (Bruni et al., 1985). The analgesic effect of morphine has
been ascribed, partly, to the release of endogenous opiold peptides (Schlen
and Bentley, 1980). However, prolonged morphine administration (>»1month)}
decreased enkephalin levels in the striatum and pituitary. A gimilar
reduction in B-endorphin contents were demonstrated in the septum, midbrain
and pituitary (Herz et al., 1980a). Plasma concentration of g-endorphin-like
material was reduced in heroin addicts (Ho et al., 1980). 1In contrast, other
studies failed +t¢ demonstrate changes in brain enkephalin concentrations
after acute or chronic morphine treatment or naloxone-precipitated withdrawal
(Fratta et al., 1977; Wesche et al., 1977). Chronic (10 days) treatment
with morphine increased enkephalinase activity and x-opicid receptors in the
striatum (Takashi et al., 1981).

ii} Neuroleptics

Chronic administration of the antipsychotic drugs haloperidel and
chlorpromazine increased the formaticn of ¥Y-endorphin and
des—Tyrﬂ—Y—endorphin in brain slice. Cther central depressants such as
phenobarbital and promethazine did not alter the concentrations of these
opioid peptides (Davis et al., 1984). However, neuroleptic therapy has been
reported to increase plasma- and CSF- endorphin activity in chrenic
schizophrenics (Emrich et al., 1980; Naber et al., 1984).

Met-enkephalin levels in the striatum and nucleus accumbens were elevated
after chronic treatment with +the antipsychotic drugs such as clozapine,
haloperidol and reserpine. The non-cataleptogenic neurcleptic such as
clozapine was less effective in elevating met-ENK levels (Hong et al., 1980).
The clinical relevance of the neuroleptic induced alterations in opicild
peptides is not yet c¢lear.

iii) Antidepressant drugs

Antidepressant drugs suchk as cloimipramine, desimipramine, amitriptyline

5

and iprindele provoked a2 selective increase 1in met -enkephalin-like

immunorezctivity in the striatum and nucleus accumbens (De Felipe et al..
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1985). An increase in g-endorphin contents in the pituitary and hypothalamus
has also been reported after treatment with some antidepressants (Pzewlocki,
1984 ).

Interestingly, antidepressant drugs decreased plasma A-endorphin in
depressive patients in correlation with therapeutic activity {Rapisarda and
Bongiorno, 1982; Genazzani et zl., 1984).

iv} Anaesthetic agents

The analgesia induced by nitrous oxide has been attributed to enhanced
éndorphinergic transmission since it could be attenuated by naloxone and
naltrexone (Yang et al., 1980)- In addition, morphine attenuated whilst
naloxone potentiated nitrous oxide withdrawal convulsions in mice (Manson et
al., 1983). Recently nitrous oxide has been demonstrated to increase met-ENK
levels in the CSF of rats (Quock et al., 1985). Chronic ethanol censumption
decreased the release of enkephalin in the striatum inducing supersensitivity
of {d-opioid receptors, but reduced the affinity of the z-opicid receptors
{(Lucchi et al., 1984)}. The role of endogenous opicid peptides in the
pharmacological actions of anaesthetic agents is not fully understood. There
iz however the idea that the analgesic and eurphoric effects of nitrous oxide
are due partially to release of endogenous opicid peptides.

v) GABA and benzodiazepins

GABA and muscimol were found to decrease potassium-evoked release of
striatal met-ENK. In a parallel in vwvive study, acute administration of
benzodiazepines such as diazepam decreased met-ENK levels in the striatum but
increased them in +the hypothalamus. The drug induced enhancement of
enkephalin was rapid in onset (2-5 min) (Herz et al., 1980b).

vi) Drugs modulating 5-HT system

The seroctonin releaser, fenfluramine increased met-ENK and g-endorphin
contents in the hypothalamus but not in the frontal cortex, hippocampus and
brain stem (Harsing et al., 1982). Conversely, PCPA and 5-7-DHT which
depletes 5-HT 1levels in the brain reduced g-endorphin concentrations in the
hypothalamus, thalamus, and brain stem but not 1in the pituitary. Acute
administration of these substances did not alter brain contents of this
peptide (Harsing et al., 1982).

The clinical significance of changes in opioid peptides induced by drugs

interfering with GABA and 5-HT system is not clear.
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2.5.3 Stress

Abundant evidence suggests that endogenous opioid peptides are modulated
by various stress regimens. Electroshock induced a naloxocne-reverszible
analgesia and motor inhibiton (Nabeshima et al., 1985). A parallel increase
in brain enkephalin levels and the pain threshold has been demonstrated after
electric shock (Madden et al., 1977). Electrocenvulsive shocks, which are
associated with 2 naloxone-reversible postictal analgesia and catalepsy {Urca
et al., 1981), elevated preproenkephalin mRNA and enkephalin concentrations
in the hypothalamus and limbic area (Yoshikawa gt al., 1985). Painful
stimuli, such as arthritis or injecting fermalin into rat paws, increased
enkephalin levels in the brain (Cesselin et al., 1980; Kuraishi et al.,
1981). Immobilisation stress or forced swimming did not alter dynorphin
congentrations in the cortex and hypothalamus, whereas tail-pinch stress
enhanced dynorphin in these brain regions (Morley et al., 1982). The
pituitary gland contains high concentrations of opioid peptides (Przewlocki
et al., 198%; Kerdelhue et al., 19583%; Tang et al., 1984), which are
released during acute stress exposure (Guillemin e% al., 1977}, probably
indicating am involvement of pituitary opiloid peptides. along with ACTH, in

the stress regponse.
2.6 Role of eopioid peptides in psychopathology

Several behavioural acticns of opioid peptides studied in animals
suggested pessible implicatien of endogenous opicid peptides in human
psychopatheology. In addition eopiold peptides are present in the brain stem
and limbic areas where they are well placed to modulated wvigllance,

motivation and emotions.

2.6.1 Opicid peptides and depressive states

In several studies an increase in plasma and CSF g-endorphin  levels 1n
depressive conditions have been demonstrated (Risch, 1982; Genazzani et al.,
1984), while in other reports no changes in the plasma or CSF concentrations
of g-endorphin were found (Naber et al., 1982). Patients with endogenous
depression were also more tolerant to pain than normal volunteers (Davis et

al., 1979). Antidepressant drugs decreased plasma S-endorphin in parallel
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with their therapeutic activity (Rapisarda and Bongiorno, 1982; Genazzani et
al., 1984}. These data iIndicate that excess of opioid peptides may be

involved in the pathogensis of some forms of endogenous depression.

2.6.2 Opioid peptides in gchizophrenia

The ic¢v administration s-endorphin elicited rigid Immobility in rats.
This observation led Bloom and co-workers (1976) to propose that an excess of
central opicid 7peptides might %be involved in the patheophysiclegy of
schizophrenia. In contrast, Jaquet and Mark (1976) propcsed that g-endorphin
may have a neuroleptic-like therapeutic action, since +this peptide induced
extrapyramidal-like ridigity. These gpropositions have given rise to two
schools of thought ie i)} that excess and 11) that a deficiency of opileid
peptides, underlie schizophrenia. Increased A-endorphin levels in CSF of
schizophrenic and manic patients were reported by some workers (Rimon et al.,
1680}, and naloxone appeared t0 reduce psychotic symptoms (Watson et al.,
1978). However other authors could not confirm these filndings (Naber et al.,
1981 7. Direct biochemical evidence that excess opioid peptides are secreted
in schizophrenia or that opiate antageonist helps in this disorders is , at
best tenous. A-Endorphin either slightly accentuated (Germer et al., 1980}
or allevated some symptoms o¢f schizophrenia (Kline et al. 1977).
Des—Tyr1—7—endorph;n (DT¥E) decreased psychotic symptems in schizophrenics
(Verhoeven et al., 1979). In contrast other workers did not find any
therapeutic effects following DTYE (Emrich et al., 1980). However
antipsychotic drugs such as haloperidol and chlorpromazine increased the
formation of ¥-endorphin and des—Tyr1—7—endorphin in vitro in animal brain
glice (Davis et al., 1984). Plasma and CSF jg-endorphins were iInceased in
schizophrenics , although there was no correlation between changes in plasma
opioid peptides and the therapeutic effects of +the antipsychotic drugs
(Emrich et al., 1980; Naber et al., 1984).

Evidently the role of endogenous opioid peptides in the psychotic

diserders needs further clarification.
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 PART II: MUTUAL INIERACTIONS BETWEEN NCRMAL SLEEFP AND ENDOGENOUS OPIOID
SYSTEM

CEAPTER 3

ENDOGENOUS OPIOID PEPTIDES AND SLEEP

ABSTRACT

Intracerebroventricular {i.c.v.) administration of the enkephalinase
inhibitor phosphoramidon (25-100 rg) induced =2 dose-related decrease in
non-rapid eye meevement sleep {NREMS) and rapid eye movement sleep {REMS)
timg, with a correspending increase in wakefulness.

The local application of phosphoramiden (1-2% xg) into the locus coerulus
(LC) or periventricular gray (PVC) substance alsc inhibited both NREMS and
REMS, and increased wakefulness.

Pretreatment with naltrexone (0.1 ng/ ke, i.p. 15 min  prior)
significantly reduced the phosphoramidon-induced insomniza. Similarly, local
application of naltrexone {10 ug/brain area) alsoc decreased the Inscmnia
induced by the administration of phosphoramidon inte the PVG or LC.

These findings indicate that endogencus opicid peptides are important

modulators of wakefulness.

INTRODUCTION

Few studies on this subject with controversal results have besn
performed. It has been found that s-endorphin had an arousal effect in rats
(Havlicek et al., 1978). This was confirmed in cats by i.c.v.
administration of 0.5 uxg s-endorphin (King et al., 1981). However other
authers did net find significant changes in sleep parameters after i.c.v.
injection of either 1 pg g-endorphin, met-enkephalin or leu-enkephalin {Riocu
et al., 1982). The doses, species and way of administration of the
corresponding opiloid peptide might be of crucial importance in the

interpretation of these results. For example, recent data indicate that
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REM sleep stages using the combined EMG, ECcG and hippocampal EEG parameters
(Fig 1). REM sleep episodes were identified by the appearance of low voltage
ECoG fast waves, hippocampal theta pattern and EMG silence. NREM sleep was
characterised by high voltage slow ECoG waves together with low EMG. Awake
stage was identified by high EMG and fast low voltage ECoG.
Drug

Phosphoramidon (Peninsula Lab) disselved in saline was administered
i.c.v. (maximum velume 2 gl, i.c.v. or 1 xl loecal application). Naltrexone
hydrochloride (Endo Lab) was administered intraperitoneally (i.p.) dissclved
in saline.
Stotistics
Statistical analysis was done using paired Student t-test. Statistical

slgnificance was accepted at P-value of 0.05 or less.
RESULTS

Introventriculor odministrotion of enkephalinase inkibitor

The administration of phosphoramidon increased wakefukness whilst it
decreased +the NREM and REM sleep stages in a dose-dependent manner (Fig 2).
The sleep suppressant effect of phosphoramidon wasg associated with
behavioural signs of excitation such as head shakes and body scratching. The
opiate antagonist naltirexone administered in a dose range which did not alter
the sleep-waking pattern in the control animals (0.1-0.5 mg/kg) antagonized
phosphoramidon-induced insomnia (Fig 2).
Microinjection of enkepholinose inhibitor

Locus coerulus

Application of phosphoramidon (1-25 xz) inte the locus cogrulens
decreased NREM 40-50% and REM 20-27% sleep stages in a dose-related manner.
Naltrexcne (10 xg, 5 min prior) decreased the phosphoranidon-induced
ingomnia.

Central graoy substance

Phosphoramidon (1-25 uzg) injected into the periventricular gray (PVG)
substance o¢of the brain induced a significant increase in wakefulness. This
arousal effect of phosphoramiden was decreased by naltrexome (10 wg, 5 nin

prior) (Fig 3).
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DISCUSSION

The results of this study indicate that specific enkephalinase inhibiter
phesphoramidon indueces both NREM and REM sleep suppression. Naltrexone
antagonized the sleep suppressive action of enkephalinaze inhibitor which
suggests that the increased wakefulness induced by phosphoramidon is mediated
by activation of opicid receptors.

The local application of phosphoramidon into specific brain regions
induced naltrexone sensitive insomnia in this study. This is consistent with
the fact that mic¢roinjection of opiates into ‘these brain areas induces
behavioural excitation (Jacquet and Welf, 1981). The above data might
indicate that an endogencus oploid system, particularly the enkephalinergic
system plays an important role in the maintaince of wakefulness.
Furthermore, a number of pathelogical conditions such as stress, anxiety and
other psychie disturbances, 1in which an increase wakefulness is a common
symptom, are known to be associated with increased endorphin levels. It is
therefore conceivable that activaticn of the enkephalinergic system might

constitute the common mechanism underlying various sleep-waking disturbances.
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CHAPTER 4

STAGES OF VIGILANCE AND ENKEPEATLIN-INDUCED SEIZURES

ARSTRACT

The effects of different sleep-wakefulness stages on enkephalin-induced
seizure phenomena were studied in the rat by recording the electrical
activities of the parietc~frental cortex, dorsal hippocampus and
submandibular /nuchal muscle.

Administration of [D-A1a2]-Met-enkephalinamide (DALA, 10 upg/2ul, i.c.v.)
induced electrographic signs of seizure during SW3, REM sleep and
wakefulness. The DALA-induced epileptiform activities in BCoG, EMG and
hippocampus were significantly higher during wakefulness compared with any
sleep stage. REM sleep significantly inhibited DALA-induced ECoG spiking
activity compared with SWS and wakefulness. Similarly SWS decreased the ECoG
spiking activity compared with wakefulness.

It is suggested that an enkephalinergic system may be invelved in the
ethiopathogenesis of epilepsy of the "awaking type™ particularly that with

petit mal characteristics.
INTRODUCTION

The clinical finding that some epileptic attacks occur more frequently
during the day and others at night suggests an influence of the sleep-waking
cycle on the occurence of gpilepsy (Janz, 1962). Altheough some types of
epilepsy occur mainly during sleep, their occurence is not facilitated evenly
by different sleep stages.

Recent data indicate that intracerebroventricular administration of
enkephalin in rats induces electrographic and behavioural epileptic phencmena
(Dzoljic et al., 1979; Urca et al., 1977), and it has Dbeen =suggested that
endogencus opioid peptides play a modulatory role in the pathogensis of
epilepsy (Dzoljic and Peoel-Heisterkamp, 1982).

In order to wunderstand better the relationship between stages of
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vigilance, endopiloids and epilepsy, we studied  the effect of

sleep—wakefulness cycle on enkephalin-induced seizures.
MATERIALS AND METHODS

Adult, mzle Wistar rats welghing 175-200 g were used. For the recording
of the electrocorticogram, silver screw electrodes were threaded intec the
bone overlying the frontal and parietal cortices. The electromyogram (EMG)
was recorded from +the neck and/or submandibular muscles. Hippocampal
glectrical activities were recerded from the CA1 region by means of
bilaterally implanted stainless steel electrodes. A new cannula system
provided +the possidility of intracersbroventricular administration of
[D-Ala®_met]-enkephalinamide (DALA, 10 uwg,/2 1) in unrestrained rat, in any
stage of vigilance, with full external control wupon the rate of flow,
frequency and wvolume of drug injection. All rats were zllowed at least a
7-day recovery period before experiments commenced. Animals were maintained
cnder constant light/dark periods (light phase 06.00-22.00 h) and experiments
were carried out between 12.00-16.00 h to aveid variations due to changes in
the c¢ircadian rhythm. Results were analysed statistieally using palred
Student’s t-test. Statistical significance was accepted at P-value of 0.05

or less.
RESULTS

DALA given during wakefulness induced electrographic signs of seizure
prhenomena such as cortical or hippocampal spikes and myoclonic contractions
in the muscles. However, the same dose of DALA given during slow wave sleep
{SVsS) or rapid eye movement (REM) sleep produced significantly less
electrographic signs of seizure (Fig 1). The REM sleep stage proved more
resistant +to DALA -induced seizure compared tec SWS. However, the inhibitory
effects of SWS and REM sleep on hippocampal spikes and myoclonic contractions
were not significantly different from each other. The most prominent
DALA-induced epileptic phenomenz were observed during the awzke stage.
Behavicural phenomena such as “wet-dog-shakes™ and T“fall down” were

associated with the epileptic burst in the EEG and appeared only if DALA was
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Figure 1: The effect of vigilance states on enkephalin (DALA, 10ug/21,
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given during wakefulness and not during the SWS and REM sleep.
DISCUSSION

It is known that REM slesp deprivation inereases neuronal excitzbility
(Cohen and Dement, 1965). However, the results of this study indicate that
normal REM sleep and to a lesser extent SWS decrease significantly all the
electrographic signs of DALA-induced seizure phencmena in the hippocampus,
cortex and submandibular/neck muscle when compared to wakefulness. The cause
ol the inhibitory effect of sleep on enkephalin-induced seizure is not clear.
However the epileptic properties of enkephalin can be antagonized only by
anti-petit mal and not anti-grand mal drugs (Snead and Bearden, 1880).

Furthermore, petit mal paroxysm oc¢curs mainly during wakefulness or
sleep-waking transition periecd (Janz, 1562). This clinical observation is in
accordance with the inhibitory effects of sleep on enkephalin-induced selzure
demeonstrated in this study. Therefore, a Dpossible involvement of an
endogenous oploid system in the ethiopathogenesis of epilepsy of the "awaking
type”, particularly those with petit mal characteristics should be
considered. In addition, this experimental model can be used as =a reliable
tool in future studies of the relationship between different vigilance states

and drug-modulated neurenal excitability.
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PART I1I: MUTUAL INTERACTIONS EETWEEN DISTUREED SLEEP AND OPIATE/OPIOID
PEPTIDES

CHAPTER 5

REM  SLEEP DEPRIVATION DECREASES TEE  ANTIKOCICEPTIVE PROPERTY oF
ENKEPHALINASE-INHIBITION, MORPEINE AND COLD-WATER-SWIM

ABSTRACT
1} In this study, the effect of REM sleep deprivation (REMSD) or chronic
stress was investigated on three analgesic procedures as follows:
enkephalinase-inhibitien (phosphoramidon), morphine and cold-water-swim
induced antinociceptions.
2) REMSD (96 hr) completely abolished the analgesic effect of phosphoramidon
(250 ug, 4i.c.v.), morphine (20 ug, i.c.v.) and 5 min cold-water-swim (5° C,
cold).
3) Rats exposed to chronic stress regimen did not show any tolerance to the
analgesic effect of phosphoramidon or CWS.
4) These data indicate that REMSD can decrease pain threshold, probably by
altering enkephalinergic and other transmitter systems.
5) It is suggested that pharmacelegical manipulations and/or pathological
conditions which decrease REM sleep might affect the efficacy of opiate and
other analgesic procedures. Additional ¢linical studies are necesgary o

clarify the relationships of REMSD and pain threshold in human.
INTRODUCTION

The inhibitery action of opiates and opioid peptides on REM sleep is well
documented (Khazan et al., 1967 ; King et al., 1981), while the effect of
REM sleep or REM sleep deprivation (REMSD) on opiate activity is less clear.
Howewver, it i1s known +that +the episodic release of humoral endorphin is

associated with REM sleep (Oksenberg et al., 1980} and REM sleep inhibits
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neuronal excitation induced by exogenously administered enkephalins
(Ukponmwan and Dzoljie, 1983). These data suggest that phasic changes during
the sleep-waking cycle can medulate response to opilates and opleid peptides.

In order to clarify further the relaticnship between sleep disturbances
and opiates, the effect of REMSD on the antinociceptive property of morphine
and enkephalinase inhibitor phosphoramidon was investigated. Phogphoramidon
potentiates enkephalinergic activity in the brain by decreasing the
biotransformation of enkephalins (Hudgin et al., 1981). By using
rhosphoramiden and morphine, it was possible to study the effect of REMSD on
analgesic effects induced by endogenous opioid pepides and exogenously
administered opiates.

Since it is known that REMSD can reduce the pain thresheld to noxicus
electrical stimulation (Hicks et al., 1979), we included in this study, the
relationship between REMSD and physically induced antinociception such as

cold-water-swim analgesia.
MATERIALS AND METHODS

All experiments were performed on male adult Wistar rats weighing between 150
and 175 g at implantation.

Surgery

For the intracerebroventricular (i.c.w.) administration of drugs, stainless
steel, guide cannula was stereotaxically directed 1 mm above the lateral
ventricle. The injection cannula protruded 1 mm below the guide cannula inte
the wventricle. At least 5-7 day recovery period was allowed before
experiments were commenced. Throughout this study, all animals were kept in
a constant environment chamber with a light-dark cycle 12 hr (light period
09.00-21.00 h) and a room temperature 22+1°9C. Food and clean drinking water
were available ad libitum.

Three groups of experiments were performed (i) analgesic effect of
phosphoramidon, (ii) the effect of morphine on pain threshold, (iii} the
cold- water-gwim (CWS} analgesia. The animals in each experiment were
divided into +three groups as follows: REM sleep deprived, chronic stressed
and non-stressed {controls) rats. Each group was submitted to CWS procedure

or treated either with phosphoramidon or morphine.
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REM sleep deprivation (REMSD)

REMSP was carried ocut wusing the conventional “flower pot~™ technique
previously described (Mendelson et z2l., 1974). In order to avoid the problem
of unequal REMSD (Eicks et al., 1§77), we used platforms whose arez
corresponded tc the rat body weights (14 cm®: 100 g)- Each rat was REM
sleep deprived for 96 hr continously. In the present set up, the animals had
free assess to food and clean drinking water. Throughout the REMSD, the
water in the tank was changed regularly (11.00-12.00 hr) cnce every 24 hr.
During the period of cleaning the animals were allowed free locomotion in
individual c¢ages, for 1 hr during which rats were kept awzke manually.

Stress

The rats in this group were forced to swim in water 17-18 °C and 7 cm for
2 hr daily (11.00-13.00hr) for 4 days. The animzls were then allowed
spontanesous amount of sleep for the remaining period of the day (22 hr).
Weight leogs in the stress and REMSD groups were not different from each
other.

Centrol

These animals were housed singly and allowed to have sgpontanecus amounts
of sleep.

Cold-water-swim analgesia (CWS)

CWS was produced using the procedure described by Bodnar and Sperber
(1982}, with a slight modification in duration of swimming and water
temperature. The rats were forced to swim for 5 min in water 5 °c. Pain
threshold was determined before and them at 30, 60, 90 and 120 min after CWS.
The measurement of pain thresheld was commenced 30 min after CWS to allow
animals to become completely dry.

Phosphoramidon or morphine anolgsesic

This was induced by intracerebroventricular administration of these
substances
Determination of nociception

Pain gensitivity test was carried out between 13.00 and 16.00 h according
to +the analgesiometric method (Randall and Seltto, 1957). The nociception
was expressed in the form of analgesiometric scores (AMS) g mm’"2 pressure.
The cut off wvalue was maintained at 500 g mm_2 toc avoid damage to the paw.

Resgponse to pain in this study is measured Dy squeak or paw-withdrawal.
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Animals which scored above 150 g mm_2 during control testing were not used
for further experimentation. In all three groups: REMSD, stress or controls
baseline pain thresheld was measured  before saline, morphine or
phospheoramidon was administered. Nociception was then followed for 2 hr
after drug treatment.
Drugs

The following drugs were used in this study, wmorphine hydrochloride
(Merck) and phosphoramidon (Peninsula Lab) were administered disselved in
galine. A maximum of Zux1 was given i.c.v. over a period of 10 sec.
Stotistical analysis

The significance of differences between the analgesic scores obtained
after different treatments was evaluated by Student t-test, once a one way
analysis of variance (ANOVA) had revealed that +the samples represented
different populations (Steel and Torrie, 1980). Statistical significance was

accepted at P-values of 0.05 or less (two talled).
RESULTS

The effect of REMSD en the anolgesia induced by enkephalinase—inhibiticn

The intracerebroventricular (i.c.v.) administration of phosphoramidon
(250xg/61}) in contrel or siressed animals caused an increase in pain
threshold during  the first 30 min after drug treatment.
Phosphoramidon-induced  analgesia in contrel and stressed animals was
accompanied by signs of central excitation such as wet-dog-shakes, excessive
grooming, hypermotility. The antinociceptive action of phosphoramidon was

completely abolished by REMSD (Fig 1)

The effect of RENMSD on morphine analgesig

Morphine (20 ug/2u1, i1.c.v.) induced profound analgesia in both contrel
and stressed animals. The antinociceptive action of morphine was lowered in
stressed group compared with control animals. The increase pain threshold
induced by morphine lasted about 2 hr during which rats remained guiet with
decreased motility (not evaluated). REMSD completely antagonized analgesia
(Fig 2).
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Figure 1: The inhibitory effect of REM sleep deprivation (RENSD) on
phosphoramiden (ph) induced anolgesia. FEaoch point is mean % S.E.N for
control n=26, REMSD n=25 and stress n=13 groups. The numper of aonimels
receiving phosphoramidon in each group cre os fellows:- cortrol + ph=8, REMSD
o ph=6 and stress + ph=6. Note thot phosphoramidon given
introcerebroventricularly induced an increose 1in pain threshold in both
control and stressed animals. This anoclgesic effeet of phosphoramidon wos

completely obolished by REMSD.



93

®——o Control + morphine (mo}
o0— Chronic stress + mo

5004 Ol REMSD + mo
[gmm'z)'
400 ]
w
@&
.
=]
1=
@ 3004
(&)
£
[
£
=
g 200+
o
©
=
o
100 ;__gf—’i
0 r . T r + .
g 15 g 15 30 60 120
Saline, mo 20 ug, icv Time {min)
icv

Figure 2: The inhibitory effect of RENM sleep deprivation (RENSD) on morphine
(mo) analgesia. Each point is mean + S.E_M for control n=26, RENMSD n=25 and
stress n=19. The pumber of animals receiving morphine in each group are as
follows: control + mo=70, RENMSD + mo=70 and stress + mo=8. Note thot
morphine induced long losting inereose in pain threshold wos completely

abolished by REMSD.
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The effect of cold-water-swim (CWS) analgesio
The pain thresheld was significantly higher 1in rats exposed to
cold-water-swim compared to control or stressed animals. This CWS analgesia

was antagonized by REMSD (Fig 3).
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figure 3: The ontagonistic effect of REM sleep deprivation (RENSD) on
celd-water—-swim onolgesiac  (CWS). Each point 1is mean x S.E.N for control
n=26, REMSD n=25 and sStress n=19. The number of animcels submitted Lo CWS in
egch group was n=6. Note thot CWS onolgesia in both control and stress

groups was completely sbolished in REM sleep deprived rats.
DISCUSSION
It is of interest to note that the antinociceptive activity of

enkephalinase-inhibitoer {phesphoramidon} and merphine was completely

abolished in REM sleep deprived rats. The phosphoramidon-induced analgesia
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{Ruprent et al., 1983) is probably due to the known enkephalinase inhibition
and the consequent increase in the enkephalinergic activity {(Hudgin et al.,
18981). In addition it has been demonstrated that the enkephalinase inhibitor
thiorphan alsoc possesses antinociceptive activity (Rogues et al., 1980).

The mechanism by which REMSD antagonizes +the analgesic effect of
phosphoramidon is not clear. However, one possible explanation could be that
animals deprived of REM sleep might have a lowered level in fiumctional
activity of the enkephalinergic system. This possibility is consistent with
the known inhibitory effects of REMSD on peptide synthesis (Shapiro and
Girdwood, 1981). Consequently., the reduced activity of opioid peptides in
the brain may decrease pain threshold. Previous studies have demonstrated
that a decrease in peptide synthesis Qid not alter meorphine analgesia (Loh et
al., 196%9; Tulunay and Takemori, 1974). Hence the decreased antincciceptive
action of morphine cannot be explained by a possible reduction in opioid
peptides.

Therefore, another explanation such as alteration in other
neurctransmitter(s) which are known to modulate neciception should be
considered. For example 1t has %been demonstrated that inerease of
dopaminergic activity and/for decrease serotoninergic and chelinergic
transmission which occur during REMSD (Farber et al., 1983; Mogilnicka et
2l., 1981; Tsuchiya et al., 1969) could antagonize the analgesic activity of
opiates (McGilliard and Takemori, 1979; Gorlitz and Frey, 1972; Tulunay et
al., 1976). These data suggest that changes in biogenic zmines might be an
important factor in the inhibitory action of REMSD on analgesia induced by
exogenous and endogenous opioid peptides.

The physiclogical basis of CWS analgesia is not known, but due te the
lack of cross-tolerance with morphine produced antinocciception, it appears to
be mediated by a non-opioid mechanism (Bodnar et al. 1878) e.g the GABhergic
system which has been shown %o play a role in analgesia in response to
envircenmental stress (Skerritt et al., 1981). Changes in the activity of
GABA system were demongtrated in REMSD animals {(Micic et al., 1967).

Relative to contrels, no change in threshold tc noxious paw pressure was
observed In chronically stressed animals. Thus stress does not appear to
play an important role in the slight decrease in paln threshold observed 1in
rats deprived of REM sleep.
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Finally, although the mechanism by which REMSD decreases Dpain ‘thresheold
ig not certain, some clinical consequences should be conszidered. Namely, it
should be expected <that patholeogical conditions and/or drug +treatments
accompanied with decrease REM sleep could modify the therapeutic
effectiveness of opiates and other analgesic procedures. Additional clinical
studies are regquired to.clarify the significance of REM sleep in maintaince

of normal neciception in human.
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CHAPTER 6

ANALGESIC EFFECT OF ENKEPHALINASE INHIBITION IS MODULATED BY MONQAMINE
OXIDASE B ARD REM SLEEP DEPRIVATION

ABSTRACT

Both the MAO-B inhibitor deprenyl (2.5-10 mg/kg, 1.p., 60 min prior) and
the MAQ-B substrate S-phenylethylamine (PEA, 40 pg, i.c.v.) potentiated the
analgesic action of +the enkephalinase inhibitor phosphoramidon (250 g,
i.c.v.) in animals allowed normal sleep. The enhancing effect of PEA on
phosphoramidon analgesia was further potentiated by deprenyl (5 mg/kg, 1i.p.)
pretreatment. Deprenyl { Smg/kg, i.p.) or PEA (40 xg, i.c.v.) given alcne
did not induce analgesia in animals allowed undisturbed sleep.

REM sleep deprivation (REMSD) decreased the basal pain threshold and
abolished +the analgesic effesct of phosphoramidon. The administration of
deprenyl and/or PEA failed to restore the analgesic effect of phospheoramidon
in REM sleep deprived animals-

The results indicate that excess PEA has a stimulatory effect on the
analgesic activity of endogenously released enkephaling in rats allowed
undisturbed sleep but not in REM sleep deprived animals.

It is suggested that the failure of phosphoramidon to induce analgesia
after REMSD, is probably due to a Tfunctional insufficiency of an

enkephalinergic system.

INTRODUCTION

Two forms of monoamine oxidase (MAC) are present in the mammalian brain,
MAQ-A and MAO-B. Serotonin, dopamine and noradrenaline are preferred
substrates for MAO-A, while MAO-B shows selectivity for s-phenylethylamine
(PEA)} (Yang and Neff, 1874; Garrick and Murphy, 1980). Several lines of
evidence suggested that i1nhibition of MAO activity increased the
pharmacological effects/toxicity of oplates in patients (Taylor, 1962) and

animals (Iwamecto and Ho, 1972; Boden et al., 1984), although thig effect was
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only seen when both MAQ-A and MAO-B were inihibited (Jounela et al., 1977).
Nevertheless some interactions between MAO-B inhibitors and oplates/opicid
peptides have been reported. For example, an inhibition of MAO-B or excess
of PEA {the substrate for MAO-B) potentiated the analgesia induced by
exogencusly administered opiates/opioid peptides (Fuentes et al., 1977;
Garzon et a2l., 1980). In addition. some pharmacological actions of PEA can
be modulated by opioid receptor blockade {Kubotz et al., 1982; Dourish and
Cooper, 1984) suggesting a possible interaction between PEA and opioid
receptors.

Thig study was undertaken to clarify the relationship between MAC-B and
the snalgesic effect of endogencus (synaptic) enkephalins following
administration of an enkephalinase inhibitor to rats allowed undisturbed
sleep and animals subjected To REMSD. In these experiments REM sleep
deprived rats were used because 1t has been shown that both MAC-E inhibitors
and REMSD possess antidepressant activity (Mann and Cershon, 1980; Vogel et
al., 1980) and modulate the analgesic =action of opiates/opioid peptides

{(Garzon et al., 1980: Ukponmwan et al., 1984a).
MATERIALS AND METHGDS

Adult, male Wistar rats weighing 150-17% g were used in this study.
Drugs were injected intracerebroventricularly {i.c.v.), when required, via a
stainless steel cannula implanted in the lateral ventricle. Correct
placement of i.c.v. cannula was verified using the procedure recently
described (Ukponmwan et al., 1985). A 4 day recovery period was allowed
after cannula implantation before the experiments were commenced
REM sleep deprivotion

REMSD{96 h) and the corresponding stress-contrel, were carried out as
previously described (Ukponmwan et al. 1984a) using a medification of the
method of Mendelson {(1574). This method is known to selectively deprive rats
of REM sleep after 96 h (Mendelson et al., 1874). Throughout this study, all
animals were maintained in a constant environment room with an ambient
temperature of 22£1°C and automatically regulated light-dark cycle of 12 h
{(light period 09.00-21.00 h). Food and clean drinking water were available

ad libitum.
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Assessment of nociception

Pain sensitivity to noxious paw pressure was assessed between 13.00-16.00
h using tc the analgesiometric +technique of Randall and Selitto (1957).
Nociception was measured 15, %0, 80 and 120 min after drug administration and
expressed as analgesiometric scores {(AMS) g mm_2 pressure. The cut off wvalue
was measured by a squeak or paw-withdrawal. Animals scoring above 150 g mm'z
during control testing were not used for further experimentation.
Drugs

The fellowing drugs were used in this study: phosphoramideon (Peninsula
Laborateries, San Carlos, CA, USA)}, deprenyl (Chincin, Budapest, Hungary) and
g-phenylethylamine (PEA, Sigma, St. Louis, Mo, USA). Drugs for i.c.v. or
ip. administration were dissolved in physicleogical saline and administered
in volumes of 2ul or 500x1 respectively. Since the half-life of PEA in thke
brain is known +to be very short (Wu and Boulton, 197%), this substance was
given 5 min after phosphoramidon and the pain threshold was measured 10 min
later.
Statistics

The significance of differences between the analgesic scores obtained
after different treatments was evaluated by Duncan’s new multiple range test,
once a one way analysis of variance (ANCVA) had revealed that samples
represented different populations (Steel and Torrie, 1980:; Saxena, 1985).
Statistical significance was accepted at P-values of 0.05 or less (two
tailed}.

RESULTS

A gignificant difference in the analgesic scores acrogss the wvarious
Zroups and time intervals was found after the administration of
phosphoramidon (Fig 1). Similarly the effect of pretreatment with deprenyl
and/or BA-phenylethylamine (PEA) on phosphoramiden induced analgesia was
significant across the treatment groups (Fig 2, p<0.01).

The effects of deprenyl ocnd/or s-phenylethylomine on phospheromidon—- induced
gnolgesia in animals ollowed normal sleep

The administration of the enkephalinase inhibiter phosphoramidon (Hudgin

et al. 1981) {250 ug, i.c.v.) significantly increased the pain threshold to
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Figure 1: The effect of deprenyl on the onolgesic action of the enkephalinagse

inhibiter phosphoromidon in rats allowed undisturbed sleep. Nociception was
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Randall-Selitte test). Eoch point is mean = SENM ot ecch time point. The
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paw pressure. The mest prominent analgesic effect was registered between
15-30 min after drug administration (Fig 1)

Deprenyl the MAO-B inhibitor, (2.5-10 wmg/kg, i.p., 60 min prior)
petentiated the analgesic effect of phosphoramidon in a dose-related manner
(Fig 1). Similarly +the MAC-B substrate, PEA, (40pz, i.c.v., &5 min
post-phosphoramidon) alse enhanced the phosphoramidon-induced analgesia (Fig
2, p ¢<0.05). Pretreatment with deprenyl (5 mg/kg, i.p., 60 min prier)
further increased the potentiating effect of PEA (40 ug, i.c.v.)} on the
analgesic action of phosphoramidon (Fig 2, p<0.05). Neither deprenyl (5
mg/kg, i.p.) {(Fig 2, p>0.05) nor PEA (40 ug, i.c.v., data not shown) induced
analgesia in animals allowed undisturbed sleep.

The effects of depreonyl ond sS-phenylethylomine on phosphoromidon-induced
analgesia in REM sleep deprived onimals

The basal nociceptive threshold in REM sleep deprived rats was slightly,
but sigrnificantly, lower than in animals allowed undisturbed sleep (Fig 2,
p<0.05). Deprenyl (5 mg/kg. i.p.. 60 min pricr)} induced a2 slight increase in
the pain threshold of REMSD animals. A similar effect was observed during
the first 10 min after PEA (40 ug. i.c.v.) administration (data mnot shown).
However, the analgesic scores of REM sgleep deprived rats treated with
deprenyl (5 mg/kg, i.p., Fig 2) or PEA (40 ug, i.¢.v., not shown) were not
different from those of control animals {rats zllowed undisturbed sleep).
Phosphoramidon (250 ug, Li.c.v.) had no analgesic action in animals subjected
to REMSD (Fig 2). The analgesic score of REM sleep deprived rats after
administration of deprenyl (5 mg/kg, 1.p.. 80 min prior) andfeor PEA (40 ug,
i.¢c.v., 5 min post-phosphoramidon) plus phosphoramidon (250 ug, i.c.v.), was

not different from those treated with deprenyl alene (Fig 2, p »0.05).
DISCUSSION

In the animals allowed undisturbed sleep, the antinociceptive effect of
the enkephalinase inihibiter phosphoramidon was potentiazted Dby both PEA
(specific substrate for MAO-B)} and deprenyl (selective inhibitor of this
enyzme ). The analgesic effect of phosphoramidon was prebably due to an
increase in endogenocus enkephalins and the consequent activation of opiold

receptors sensitive to naloxone and naltrexone {Chaillet et al., 1983;
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(241 dev,SAL). Each bor 1is the mean analgesic score + SEM. The npumber of
rats per group is indicoted in porenthesis. Note the following: a) DEP (5
mg/kg,ip) and/or PEA (40 ug. icv) significontly potenticted the onolgesic
effect of PH in animals gllowsed undisturbed sleep; b) REMSD decreased the
basal poin  threshold ond Ph-induced analgesio compored to rots allowed
undisturbed sleep; <¢) DEP ond/or PEA did not clter the blockode of PH-induced

onalgesic by REMSD. The lsvels of significance ore given in the text.
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Rupreht et al., 1883). We suggest that excess of PEA facilitates the
analgesic action of enkephaling at the synaptic sites. This is in accordance
with reports indicating that MAO-B inhibition and/or excess PEA potentiate
the pharmacological effects of exogenously administered opiates /opiecid
peptides (Fuentes et al.; 1977, Garzon et al., 1980; Ukponmwan et al
1983).

-2

The mechanism by which MAC-B inhibition or excess PEA potentiates the
analgesic effect of endogenously released enkephalins is not c¢lear. It is
possible that PEA enhances the interaction between opiates and their
receptors {Fuentes et al., 1977). Thus, the MAO-B system may be an important
regulator of the activity of opioids at the synaptic site in animals allowed
undisturbed sleep.

The described facilitatory action of MAC-B inhibition on enkephalinergic
transmission iIn animals allowed undisturbed sleep might be of relevance not
only in the physiology of nociception, but alse in human disorders in which
the alterations 1in MAC-B have been reported. For example, it has been
demonstrated that endogenous depression is asscociated with a decreaze in
brain PEA levels (Welf and Mosnaim. 1983), whereas an increase in MAC-B
activity is associated with the aging process (Benedetti and Keane, 1980).
In such cases an alteration in MAC-B activity and FEA levels could modify the
analgesic effects of endogéncus opieid peptides.

However, the results of this study indicate that the possible alterations
in the bloavailability of the MAC-B substrate, PBA, may not play an essential
role in the failure of phosphoramidon to Induce analgesia in REM sleep
deprived rats. This statement is based on the fact that deprenyl and/or PEA
did not alter the inhibitory effect of REMSD on phosphoramiden-induced
analgesia.

The basal pain threshold was lowered in rats deprived of REM sleep. This
ig in accordance with a previous study in which, using noxious electric shock
to assess pain sensitivity, it was established that REMSD decreased the pain
threshold (Hicks et al., 1979). The reason for the reduction in the pain
threshold in REM sleep deprived rats is not clear. It might be due teo the
already suggested functional insufficiency of enkephalinergic/endorphinergic
system during REMSD (Ukponmwan and Dzoljic, 1984b; Ukponmwan et al., 1985)

since opioid peptides play an impeortant reole in the regulation of the pain
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threshold (Basbaum and Fields, 1984).

A functional insufficiency of an opioid system during REMSD (Ukponmwan et
al., 1985) might partly explain why REM sleep curtailment is bemeficial in
treating some forms of depression (Vogel et al., 1980), since an increased
opilecid activity and corresponding decrease in pain sensitivity have been
observed in this affective discrder (Risch, 1982; Pickar et al., 1982;
Davis et al., 1979).

Further c¢linical experiments are necessary to clarify the roles of MAO-B
and the enkephalinergic/endorphinergic systems in the regulation of the pain

threshold in human dizeases.
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CEAPTER 7

REM SLEEP DEPRIVATION ANTAGONIZED THE MORPHINE-INDUCED AKINESIA AND CATALEPSY

ABSTRACT

An examinatiecn was made of the effect of REM sleep deprivation (REMSD) on
some forms of altered motor activity, such as zkinesiz and catalepsy, induced
by intraperitoneal {i.p.} or intracerebroventricular (i.c¢.v.) administraticn
¢of morphine in adult, male Wistar rats . Administration of merphine (25
mg/kg i.p.) induced an akinetic-cataleptic syndrome and decreased spontaneous
vertical motor activity (SVMA) in animals allowed undisturbed sleep. REMSD
decreased the morphine-induced akinesia and catalepsy that are known to be
mediated by an inhibitory w-opicid system. The locomotor depressant action
of merphine was converted to excitation (manifested as Iincreased SVMA and
nopping behavieour) by REMSD. Similarly, decreased moter activity following
i.c.v. administration of morphine (25 ug} was replaced by excitation in the
form of jumping behaviour after REMSD. Naltrexone (1 mg/kg,i.p.) blocked the
akinetic and cataleptic effects, but not the excitatory effects of morphine.

It is suggested that REMSD is associated with a functional insufficiency
of an inhibitory w-opieid system, thus unmasking the excitatory morphine
effects. The proposed insufficiency of an endogencus opiocid system might
explain an increase in neurcnal excitation during REMSD and the therapeutic

effect of REM deficiency in some types of depression.
INTRODUCTION

Interactions between sleep and endogenous opioid systems have been
documented. For example, activation of opicid receptor(s) suppresses REM
sleep (1). REM sleep was associated with the episodic release of humoral
endorphin (2) and can decrease the neuronal excitation induced by exogencusly
administered opioid peptides (3).

It has been suggested that alteration in REM sleep and endogenous oploid

system are Involved in some psychosomatic disturbances; for example,
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increased REM sleep dengity and opioid activity are associated with
endogenous depression (4-73. In addition, it has been shown tThat
pharmacological and mechanical REM sleep deprivation can improve some forms
of depressicen (8) and affect an opiate/opioid-induced analgesia (9).
These data taken together suggest a functional interaction between REM sleep
and opioid system in both physiological znd pathological conditions.

To further clarify the role of REM sleep in the regulation of oploid
activity, +the effects of REM sleep deprivation (REMSD) on morphine- induced
behaviours were studied. Particular attention wasg praid To 20me
morphine-induced effects such as akinesia and catalepsy, which are frequently

present in psychopathological conditicns (10).
METHODS

Adult, male Wistar rats weighing 150-200 g were used. Animals were
housed in groups of 3-5 rats per cage (40 x 20 x 15 em) in constant
environment chamber with a light-dark cycle 14:10 h {light phase, 07.00-21.00
h) and ambient room temperature 22:1°¢,

REMSD

Animals were deprived of REM sleep continously for 96 h using the
classical "flower pot”™ technigue previously described (11). In this
procedure, rats were placed on platforms {1420.5 cm2/100 g body weight ) to
avoid +the problem of unmegual REMSD (12). The platform was surrounded by
water 0.5-1.0 ¢m below the island surface. This procedure 1is known to
selectively deprive rats of REM sleep (11). In our experiment, the roof of
the REMSD tank was designed to permit free assess to food and clean drinking
water. The water in the tank was changed once every 24 h, during which time
the animals were subjected to 1-2 min of handling and then allcocwed %o rest in
Lome cages for 45-50 min and Kept awake manually.

Stress contrel

Tc control for the unspecific stress factors associated with “flower pot™
technique for REMSD, rats were 7placed on platforms large enough (57-59
cm2/100 & body weight } for them to curl up and have normal sleep without
falling inte the water. The 1large platform is known to stimulate the

ungpecific stress factors (isclation and dampness) associated with the
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“flower ©pot™ technique of REMSD without affecting REM sleep after 96 h
{(11,13). Otherwise, the stressed group of animals were treated as in REMSD
EZroup.

Control )

Animals in this group were housed in home cages (40x20x15 c¢m) for 96 h.
Like +the REMSD and stressed groups, rats in the control groups were handled
daily for 1-2 mins. All animals had free assess to drinking water and food.
Behavicural observations

Behavioural cbservation and sceoring were carried out in a gquiet room with
a témperature z2x2%. Changes in behaviours were monitored in a transparent
cylinder 18 ¢m in diameter and 27 cm height. The flcoor wag covered with saw
dust. REM =sleep-~deprived rats and sztressed animals were placed in the
recording cage within 5-10 min after discontinuation of these procedures.
REM sleep deprived or stressed animals were first dried using abscrbent
towel, since They were often wet on remeval from platforms. All rats were
observed individually after 30 min habituation <¢ the cage. Morphine-
induced behaviours such as akinesia, catalepsy, or rearing were assessed and
scored as present or absent every 10 min for the first %0 min and every 30
min thereafter for another §0 min.

Akinetie and cotaleptic behgoviours

Akinesia was defined as loss of spontanesous locemotor activity. A rat
was scored as akinetic if it did not move for 5 min after placement at the
corner of the cage.

Catalepsy was determined using the bridge test and/or loss of righting
reflex (14,15}, In this procedure rats were placed gently across a 10 cm
wide bridge and/or on their backs. Animals that maintained this position for
at least 1 min were scored as cataleptic. All cataleptic animals were
akinetic, but not all akinetic rats displayed catalepsy simultaneously; both
phenomena were seperately evaluated. Hopping behaviour was defined as the
sudden jump along a horizontal plane.

Measurement of spontoneous wvertical motor activity (SVMA) using on outomated
method

During preliminary experiments, it was o¢bserved that REMSD converted
morphine-induced locomotor inhibition into excitation, c¢haracterised by

increased rearing. This effect of REMSD was particularly evident 60-120 min
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after morphine treatment. Therefore the SVMA was assessed quantitatively in
both REMSD and control groups. SVMA was recorded by means of a computerized
Varimex (Columbus Instrument, Columbus, Ohio, USA), in which rearing animals
interrupted a magnetic field located between the floor of the cage and a
plane 18 cm above.

On the experimental day, rats were transferred from home cages or
platforms, weighed, and placed in transparent Plexiglas cages (40 x 20 x 15
cm) without sawdust and allowed 30 min habituation. All animals were then
injected with saline (1 ml/kg,i.p.), and motor activity was recorded for an
additional 30 min. Then, morphine {25 mg/kg, i.p.) was administered, and
SVMA was monitored during the 60-120 min period after drug administration.
The effects of morphine on SVMA were studied between 11.00-14.00 h to avoid
known c¢ircadian variation in locomotion (16) and opioid receptor reactivity
(173,

Drug, dose ond route of administration

Morphine hydrochloride (Brocacef, Maarsen, The Netherlands) wag
administered dissolved in physiological saline. The cataleptogenic and
leocomotor inhibitory effects of morphine were studied at a fixed dose of 25
mg/kg, i.p., since it has been shown that 20 mg/kg i.p. induce robust
catalepsy/ridigity in rats (18).

The intracerebroventricular (i.c.v.) administration of morphine ({25
ugfrat) was carried out by means of chronically implanted cannulae. This
dose was selected because i1t is known to induce the inhibitory effects of
opiates {(19)-

Stotisticgl anglysis

Results expressed as percentages were analyzed using a one-tailed Fisher
exact probzhility test. Data presented as counts were analyzed using the
Kruskal Wallis one way analysis of wvariance (ANOVA) followed by a
Mann-Whitney test. Statistical significance was accepted at F-values of 0.05
or less.
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RESULTS

Intraperitoneal (i.p.) administration of morphine

Effect of REMSD on morphine-induced ckinesic. Morphine(25 mg/kg) induced a
gignificant akinetic behaviour in animals allowed undisturbed sleep (control
and stress, Fig. 1, p<0.01). This akinetic effect of morphine in control
and stressed animals reached maximum intensity within first 30-60 min and
disappeared at 120 min after drug administration. Howewver, there was no
significant difference in the akinetic effect of morphine between contrel and
stressed animals.

REMSD significantly decreased morphine-induced akinesia compared with the
control group at 30 min and 60 min (Fig. 1, p<0.05, p<0.905, respectively,
for each time period). TFurthermore, REMSD converted the akinetic effect to
excitation characterised by rearing, body jJjerks, and hopping behaviours.
Saline {1 ml/kg,i.p.) did not induce azkinesia in control, stressed or REMSD

animals.

Effect of REMSD on morphine-induced cctalepsy. The administration of morphine
(25 mg/kg) induced significant catalepsy in animals allowed undisturbed sleep
{(control and stressed rats) 30 and 60 min after drug <treatment (Fig. 2,
p<0.05). The morphine-induced catalepsy was characterised by a profound
state of muscular ridigity (evident in the bridge test)} and loss of righting
reflex, which disappeared at 120 min. The number of rats showing
morphine-induced catalepsy 1in the control group was not significantly
different from stressed groups. A close relationship was observed between
akinesia and catzlepsy, i.e. a significant catalepsy score was registered in
the contrel group only when almost all animals showed akinesia.

Naltrexone (1 mg/kg, 1.p.) completely blocked +the morphine-induced
akinetic-cataleptic syndrome in animals allowed undisturbed sleep (n=10 for
control and stress groups together).

REMSD significantly decreased morphine-induced catalepsy compared with
control animals allowed spontaneous amecunts of sleep (Fig. 2, p<0.02,

p<0.005 for 30 and 60 min, respectively).
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Effect of REMSD on morphine-induced inhibition of SVMA. Kruskal Wallis ANOVA
showed a significant difference across the +treatment groups (Fig. 3,
p<0.001, H=20.39, dF=5).

Morphine (25 mg/kg) decreased SVMA in contrel animals. However, the
morphine-induced inhibition of SVMA in stressed rats was not different from
that in control animals (Fig. 3). 1In the REMSD group, morphinme had the
opposite effect, which was manifested as a significant increase in SVMA (Fig.
3, p<0.02). This morphine~induced increase in SVMA in the REM sleep deprived

group was not altered by pretreatment with naltrexone (1 mg/kg,i.p., not

shown ).

Intracerebroventricular administration of morphine. In animals allowed
undisturbed sleep i.c-v. administration of meorphine (25 ug) induced
decreased locomotion (with associated symptoms such as akinesia and
catalepsy). However, the administration of morphine (25 ug) to animals
deprived of REM sleep proveked exctitatory behaviours such as hopping and
jumping. The intensity of jumping behaviour in the REMSD group (25+9.5
jumps/2h, n=7) was significantly higher than in control {(no jumps in 2 h,

n=5) and stressed animals (1.2%0.8 jumps/2Zh, n=5, p<0.01).
PISCUSSION

The results of this study indicate that the akinetic-cataleptic syndrome
and locomoter guppressant effects of morphine were antagonised by REMSD and
replaced by excitatory behaviours manifested as increased SVMA: heopping and
jumping.

It has been suggested that inhibitory effects of morphine such as
akircesia and catalepsy are due to the activation of a naloxone/naltrexone
sensitive w-opioid receptor (20-22). This idea could be supported by this
study, since a relatively low dose of 4 receptor Dblocking substance
naltrexone decreased the morphine-induced akinetic-cataleptic syndrome.
Therefore, a decrease of morphine-induced akinetic-cataleptic syndrome by
REMSD might suggest an insufficiency of an endogenous opioid system mediating
the innibitory effects of opiates. Similarly, REMSD antagonised the

analgesic effects of opiates (9), which is supposed to be mediated by the
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same type of receptors (23,24}.

Although morphine fails to induce akinetic/cataleptic syndrome in REMSD
animals, changes 1in other transmitter/modulators are probably net involved.
For exawple, the observed decrease in brain concentrations of acetylcholine,
Y-aminobutyric acid {GABA), and somatostatin during REMSD (25-27) cannot
account for the inhibition of morphine-stimulated zkinesia and catalepsy in
REM =leep deprived animals, since blockade of cholinergic and GABAergic
systems cor the administration of scmatostatin did not alter opilate-induced
a2kinetic-cataleptic syndrome (28,29). Similarly, increased serotonin release
facilitated akinesia and catalepsy (30), while an elevated brain turnover of
serotonin was observed during REMSP (31). A number of studies indicate a
functional hyperactivity of dopaminergic system following REMSD (32). It is
known that clinically effective neurcleptics that act as antagonists at
dopamine receptors may induce catalepsy (33). However, opiates do not act as
antagonists of dopamine receptors (34).

A second important finding was that REMSD converted +the depressant
effects of intracerebroventricularly administered morphine teo excitation.
The reason for the conversion of the depressant effects of morphine to
excitation by REMSD is not clear. However, morphine can induce both
inhibitory and excitatory behaviours, which are mediated by two groups of
receptors. Cne 1s the naloxone-sensitive opioild receptor system which
mediates analgesia, akinesia and catalepsy: the other is the
naloxone-insensitive receptor system which mediates excitation (21,3%,36).
Activation or blockade of the u-opioid receptor can inhibit and facilitate,
respectively, the excitatory effect of morphine (36). Thus, the conversion
of the moter inhibitory effects of morphine to excitation during REMSD could
be explained by the suggested deficiency of an inhibitory u-opieid system in
REM sleep deprived animals and a corresponding predominance of the excitatory
opioid receptor system.

Therefore, in conclusion, we suggest that functional insufficiency of "a
u—opicid system during REMSD might be a backgreound to incrsgased nmeuronal
excitability in REM sleep deprived animals. Namely, it dis known that
endeogencus opicids exert an inhibditory influence on the release of excitatory
transmitters (37). This possiblity can be supported by the report that

blockade of opioid receptors with naloxone facilitated epileptogenesis (38).
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The proposed insufficiency of an opiecid system during REMSD might be an
explanation for a therapeutic and diagnostic value of REM sleep curtailment

in some cases of depression (8) and epilepsy (39), respectively.
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CHAPTER &

REM SLEEP DEPRIVATION DECREASES THE GROOMING AND SHAKING BEEAVICUR INDUCED BY
ENKEPHALINASE INEIEITOR OR OPIATE WITEDRAWAL

ABSTRACT
Intraventricular administration of enkephalinase inhivitor,
phosphoramiden (1 x 1078 _ 5.6 % 1077 moles, i.c.v.) induced a behavioural

syndrome consisting of excessive grooming with body scratching as the most
prominent symptom  and  wet-dog-shakes (WDs). The frequency of the
phosphoramidon-induced WDS and Dbody scratching were decreased Dy the
pretreatment with the opioid receptor blocking agent, naltrexone {2.9 x 10_6
moles/kg., i.p.). Both the phosphoramidon-induced WDS in naive rats and
naloxone-precipitated withdrawal WDS were decreased in REM sleep deprived
rats compared with animals allowed normal sleep (control and stress groups).

The results are discussed in light of a possible functional insufficiency
of an endogenous opioid system during REMSD. It has been suggested that this

insufficiency might be a background to the increased neuronal exclitability
during REMSD.

INTRODUCTIOR

Several endogenous substances including opioid peptides have been
demonstrated +to induce grooming and wet-dog-shakes (5,5.9,12). Recently, we
demonstrated +that +the administration of the enekphalinage inhivitor,
phosphoramidon, induced behaviours such as grooming and wet-dog -shakes (WDS}
{28). These behavicural phenomena, which can be irnduced by varicus drugs in
naive animals, are part of the morphine withdrawal syndrome. There are
indicatiens that both grooming and WDS may share a common neural mechanism
(10).

1% has been demonstrated that inhibition of protein synthesis reduced the
severity of opiate withdrawal phenomena (19). In addition it is known that

REM sleep deprivation (REMSD) can decrease protein synthesis (30). REMSD
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alsc inhibited morphine induced analgesia (38). These data suggest that
alterations in REM sleep c¢an modulate both protein synthesis and
pharmacological effects of opiate substances. Therefore, we analyzed the
relationship between REMED and grooming and/or shaking behaviour induced by
enkephalinase inhibitor phospheramidon in naive rats and

naloxone-precipitated withdrawal in the copiate-dependent rats.
METHODS

Adult, male Wistar rats (100~125 g) housed in transparent plastic cages
in a constant environment room with a light-dark cycle 14:10 (light phase
07.00 -21.00 h) were used.

Intracerebroventricular (i.c.v.)} edministration of drug sclutiens

Por i.¢.v. administration of drugs a stainless steel guide cannula was
stereotaxically directed 1 mm above the lateral ventricle. Drug solutions
{maximum volume 2 xl1) were injected inte the lateral ventricle with guage 30
needle, attached to a Hamilton microsyringe by polyethylene (PE) tubing. The
length of the needle was made such that it protruded 1 mm inte the lateral
ventricle. The injection was made over 10 gsec and the needle maintained in
position for an additional 10 sec. Correct wventricular cannulation was
verified %before and after each experiment using a modification of the
technique previously described by Paakkari {24)}. In this procedure a PE
tubing is attached +to the 1inje¢etion needle and filled with artificial
cerebrospinal fluid (CSF) or saline., To test the correct placement of i.c.v.
cannula during sugery, the tubing is raised above the head of the animal on
the stereotaxic apparatus, and a rapid inflow of saline denotes a correct
placement of cannula. The c¢annula was moved only in a downward direction to
avoid the possible false positive effect due to an upward movement of the
canaula after the first unsuccessful cannulation (14).

REM sleep deprivation (REMSD)

REMSD was carried out according to the conventional “flower pot™
technique previously descrived (21). In this procedure, rats were placed on
platforms {14 cm2/100 & rat) surrounded by water, such that the water level
was 0.5-1.0 cm below the platform. Ratis madé morphine-dependent were placed

on platform and deprived of REM sleep from day 7-11 {96 hr) of
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morphinization. During this periocd animals received the normal doses of
morphine for these days.
Forty-five to 60 min after the discontinuation of REMSD +the animals were
injected with the enkephalinase inhibitor phosphoramidon. In this period of
time the animals were kept awake mannually. The ©behavicural changes were
scored during the following 30 min.
Control for the unspecific stress foctors ossocioted with the “flower pot”
technique

In order teo control for the known stress factors {dampness, isolation and
immebilisation) associated with the “flower pot™ technigue rats were placed
on platforms large enough (60 cm2/100 g rat) for them to curl wuwp and have
normal sleep. The large platform can simulate the chronic stress condition
associated with REMSD without affecting REM sleep level after 96 hr {20,21).
Phosphoromidon-induced behaviour

Behavioural observation and scoring were carried out on each individual
rat housed singly in Plexiglas cages (40 x 20 x 15 cm) containing saw dust
Wet-dog-shakes consisting of paraxysmal shudder of the whole body along ‘the
spinal axis were registered and guantified. The body scratching (BS) episode
ig defined as head or body scratches followed immediately by the licking of
the paw used in scratching.
Induction of morphine dependence

Animals were made dependent on morphine according %o the repeated
injection procedure previously described (32). In this method rats were
given two intraperitoneal injections of morphine daily (at 07.30 and 15.30
hr). The deosage schedule was as follows: Days 1 and 2 (7 =x 1072
moles/kg/day; Days 3 and 4 (14 x 19077 moles/kg/day): Days 5 and 6 (28 =x
1077 moles/kg/day) and Days 7-11 (56 x 10°° moles/kg/day).
Precipitation of morphine withdrawal shoking behaviour

Abstinential behavicur in morphine dependent animals was provoked by
injecting =nalxone (3.1 x 10_6 moles/kg 1.p.) three hours after the last
injection of morphine. Prior to receiving naloxone treatment each rat was
allowed 2 habituation period of 30-60 min in the observation area.
Nazloxone-precipitated WDS in morphine-dependent rats and phosphoramidon-
induced Ybehavioural phenomena in naive animals were studied in the following

three groups of rats:- a) Control group:- these rats were housed singly in
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home cages throughout the experimental procedure and allowed spontaneous
amounts of sleep; b) REM sleep deprived group:- these rats were submitted to
96 hr continous REM sleep deprivation; ¢} stressed group:- these animals
were chronically stressed for 96 hr.
Orugs

The following drugs were used: morphine hydrochloride (Merck). naloxone
hydrochloride (Ende Lab) and naltrexome hydrochloride (Endo ILab) were
administered dissolved in physiological saline. Phosphoramiden (Peninsula
Lab) was dissolved in CSF prepared fresh and administered i.c.v.
Data Anglysis

The results were analyzed using the Kruskal-Wallis one-way ANOVA. The
statistical difference between two groups of treatment were carried out using

a two-tailed Mann Whitney U Test, except when indicated in text.
RESULTS

Effects of REMSD on behovioural syndrome induced by enkephalincse inhibiton
The intracerebroventricular administration of the enkephalinase inhibitor

phosphoramiden (1 x 1078 _ 5.6 x 1077

moles i.c.v.) induced za behavicural
syndrome consisting of excessive grooming (as measured by body scratching)
and wet-~dog -shakes (WDS) in all three groups of animals {(contrcl, REMSD and
stressed). These symptoms appeared within 5 min after phosphoramdion
administration and were still observed after 240 min. The Kruskal-Wzllis one
way ANOVA showed a significant difference in the phosphoramdion-indueced WDS
across the  groups (H=106.21, NDF=8  p<0.001). The frequency of
phosphoramidon-induced WDS was dose-related in both contreol {p<0.05) and
stressed (p<0.02) groups of animals (Fig 1). However, the frequency of the
phosphoramiden-induced WDS in stressed rats was not sigaificantly different
from control animals (Fig 1, p»>0.05). REMSD significantly decreased the WIS
induced by three doses of phosphoramidon (Fig 1, p<0.02, p<0.002, p<0.C02
respectively, for increasing deses). The fregquency of BS in the REM sleep
deprived animals was significantly less intensive compared with contrel and
stressed animals (Fig 3, p<0.02). There was no significant difference in the

mean BS between control and stressed animals (Fig 3, p»0.10).

Naltrexone (2.9 x 10'6 moles/kg i.p., 10 min prior) zignificantly
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Figure 1: The phosphoramidon (71 x 7078 _ 5.6 x 707 moles i.¢c.v.}- induced
wot-deg-shakes (WDS). Egch point is meen + S.E.M. The number of rats per
dose of phosphoramiden 1is stated in parentheses. Note that the
phosphoramiden-induced WDS wos significantly lowered im REMSD rots compared

with control or stressed onimaols.
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decreased the phosphoramdion-induced WDS in control {p<0.0G02), REMSD and
stressed animals (p<C.05, Ducan New Multiple range test)(Fig 2). In the
contrel rats the phospheramideon-induced BS were significantly less fregquent
after pretreatment with naltrexone (92.8+23.6, n=11) compared with szaline

pretreated animals 201.8£29, n=12, p<0.05).

|

30

Saltne (Sal) T ut lev
Naltrexone (Nx) 2.9 x 107 moles/kg Ip
Phosphoramidon (Pha} 5.6 x 107 moles icv

30 min

Number of Wel-Dog Shakes

[n:15)
in=14)
9 ===
Sat Nx Pha Nx+Pha Sal Nx
L contron Pt STRESS

Figure 2: Effect of naltrexone (2.9 x 10“6 moles/kg, i.p.) on phosphoromiden
(5.6 x 10‘7 moles i.c¢.v.)-induced wet-dog-shakes (WDS). Eoch bar is/'/mean =
S.E.M. The number of onimols per trectment group Is indicafed in
parentheses. Note that pretrectment with noltrexone significantly &ecreased

phosphoramidon-induced WDS.
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Figure 3: Effect of REMSD on phosphoramidon (5.6 x 10~ moles, i.c.v.)
induced body scratches. Eagch har is mean % S.E.M. The number of rats per
treagtment greup is stoted iIn  porentheses. Note thot the intense body

scatches iInduced by phosphoramidon iIin contrel and stressed animols were

significontly decreased by REMSD.

Effect of REMSD on opiote withdrowol WDS

Naloxone (3.1 x 10_6 mole/kg i.p.) precipitated WDS in morphine-dependent
rats 1in control, REM =sleep deprived and stressed groups of animals. The
Kruskal-Wallis one way ANOVA showed a significant difference in the
withdrawal WDS across ‘the groups (Fig 4, H=16.12, NDF=2, p<0.001). The

frequency of the oprecipitated WDS was significantly more pronounced in
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Figure 4: Effect of RENSD on naloxene (3.7 x 10°° moles/kg i.p.)

~precipitoted withdrowal wet-dog-shokes (wDs). Eoch bor is mean = S.E.N.
The number of rots per group is indicoted in parentheses. Note that the
totol frequency of withdrowol WSS was significantly less in RENSD rats

compared with control (p<0.071) and stressed (p<G.002) gnimgls.
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animals allowed to sleep normally {(control and stressed groups) than in the
REM sleep deprived rats (Fig 4, p<0.002). However, the intensity of such
induced WDE in control or stressed animals were not significantly different
(Fig 4, p»0.2). Body scratchings in naloxone-treated morphine dependent rats
were few and irregular and therefore omitted from further detailed

quantitative evaluation.
DISCUSSICH

The results of this study showed <that WDS and grooming induced by
enkephalinase inhibitor, phosphoramidon, were inhibited by naltrexone, which
might indicate an involvement of opiold receptor{s). This is consistent with
the fact that enkephalinase inhibition can activate opioid recepters by
blocking the biotransformation of endogenously released opicid peptides
(16,25). In  addition, the WDS-induced by i.c.v. administration of
enkephalins were attenuated by opiate antagonists {2,5.5,13)

Grooming behavicur has also been observed after low doses of morphine
(29). Taken together, these data might suggest that WDS and grocming induced
by phosphoramidon or opieid substances share a common mechanism.

The bioclogical significance of WDS and grooming induced by different
chemical compounds 1is not clear. Some data suggest that WDS are indicative
of arcusal (10}, whereas grooming might be a “de-arousing™ homeostatic
mechanism (17). In addition, it has been demonstrated that opioid peptides
facilitate arousal (37) and in higher doses induced an electrophysiological
and behavicural phenomena similar to epilepsy {(7,8). Thus the excessive
grooming observed in our experiment might be a responss to the
phosphoramidon-induced arcusal, manifested ag WDS.

However, the most important aspect of this report is the fact that REMSD
suppressed the WDS and grooming induced by enkephalinase inhibitien in naive
rats. Why REMSD decreased these behaviours in rats is not clear. It could,
however, be suggested that REM sleep deprived animals might have limited
availability of opicid peptides and hence the WDS and grooming precipitated
by phosphoramidon c¢ould be less pronounced. Although there is no direct
biochemical evidence for the insufficiency of +the enkephalinergic system

during REMSD this possibility could be considered since it is known that
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REMSD is associated with the inhibitien of protein synthesis (30). The
concept of a functional ingufficiency inm the enkephalinergic/endorphinergic
system in REM sleep deprived animals receives further support from the fact
that REMSE abolished the antinociceptive effects of morphine and
phosphoramidon (38).

This hypothesis of a functional insufficiency in this opioid system might
explain the increased neuroval excitability during REMSD (4) since it is
known that dpioid peptides exhibit tonic inhibitory effects on the release of
excitatory transmitters (23). However, additionzal experiments are required
to ¢larify whethér this mechanism might be involved in REMSD-precipitated
seizures and the therapeutic effect of REMSD in some types of endogencus
depression.

A second important finding of this study is that REMSD inhibited
abstinential WDS. The mechanism of opiate addiction/withdrawal is complex
and probably involves alteration in several neurotransmitter/neuromocdulator
systems. However, +the kneown changes in c¢lassical transmiiters during REMSD
can not account for the decrease in naloxone-precipitated withdrawal WDS in
REM sleep deprived animals. For example, REMSD increased the functicnal
activity of dopaminergic system (36), but did not alter the adrenergic system
(31). However, substances which block these systems inhibited withdrawal WDS
(18,34} Furthermore, the known changes in brain serotonin metabolism during
REMSE (33) probably play ne role in the inhiditon of abstinential WDS in REM
sieep deprived rats, sinece the alteration of the serotoninergic system had no
ciear effect on WDS induced by morphine withdrawal (1). It is also known
that drugs which stimulate central muscarinic receptors inhibited the shaking
response (39), whereas REMSD decrease the acetylcholine content of the brain
{3.35).

Although some high energy phosphates c¢an antagonize the effects of
morphine, there iz no evidence that the concentrations of AMP, ADP and ATP
are significantly altered by REMSD (11,22).

Therefore, an alternative explanation for the inhibitory effect of REMSD
on morphine withdrawal WDS should be considered. Namely, it is known that
during development of morphine dependence there is an increase of the
synthesis of secretory proteins in +the brain regions (pons-medulla and

stratum ~septum)(27), which are particularly rich in opiocid receptors (26)
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and funectionally invelved in opiate dependence (15). It has alsc been
demonstrated that REMSD decreased protein synthesis in the cerebral and brain
stem fractions (30} and +hat synthesiq can decrease opiate withdrawal
phencmena (15). Thus the decrease of protein synthesis during REMSD might
explain the inhibitory effect of REMSD orn withdrawal WDS.
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CHAPTER 9

ERKEPHALINASE INHIBITION ANTACONIZES THE IKCREASED SUSCEPTIBILITY TO SEIZURE
INDUCED BY REM SLEEP DEPRIVATIONR

ABSTRACT

In order tec elucidate +the relaticnship between REM sleep and the
enkephalinergic system, the effects of REM sleep deprivation (REMSD), stress
and the enkephalinase inhibitor phospheramidon on
handling-induced-convulsions were studied in mice. REMSD, stress and
phosphoramidon (25-500 ug i.c.v.) increased the frequency of handling-induced
convulsions (HIC) in normal mice. However, only in the last two groups were
HIC antagonized by naloxcne (1 mg/kg i.p.). In REMSD mice, phosphoramidon
decreased the frequency of HIC, this effect being aboelished by naloxene. The
increase of neurcnal excitability during REMSD is suggested to be associated

with an insufficiency of an enkephalinergic system.
INTRODUCTION

Rapid-eye-movement {REM) sleep is kmown to medulate neuronal excitability
in man and animals (Drucker-Colin et al., 1977; Passouant et al., 1965).
However, in clinical reports and animal experiments, it has been demonstrated
that REM sleep deprivation (REMSD) increases neuronal excitabilisy and
facilitates seizure activity (Pratt et al., 1969; Cohen and Dement, 196%).
Evidently, the phasic changes in neuronal activities during sleep can
influence the pathophysiology of seizures.

Recently, it has been suggested that the enkephalinergic system plays an
important role 1in epileptogenesis (Frenk et al., 1978; Dzocljic et al.,
1979). It is also known that a-endorphin exerts an inhibiteory influence on
REM sleep (Xing et al., 1981). In additicn, we have demonstrated that REM
sleep has an inhibitory effect on enkephalin-induced seizures (Ukponmwan and
Dzeljic, 19B3). These data might indicate an involvement of the endogenous

cpiold system in mechanisms regulating REM sleep and neuronal excitability.
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In order to eludicate further the relationship between REM sleep and
enkephalins, we studied +the effects of REMSD, stress and the enkephalinase

inhibitor, phosphoramidon on handling-induced convulsiens in mice.

MATERIALS AND METHODS

Animals:

Adult, male mice of B10 A strain {25-30 g) were used (Olac Ltd, Bicester,
England). Intracerebroventricular (i.c.v.) administration of drugs was by
means of a stainless steel cannula gterectaxically implanted in the lateral
ventricle. A minimum of 3-5 days was allowed for recovery before experiments
were commenced.

Animals were then divided into three groups: Group A (control} mice
housed individually in transparent cages and allowed spontanecus amount of
sleep: Group B mice were subjected to 72 h REMSD according to the
conventional “flower pot”™ technique described by Fishbein {1970). Only nmice
which c¢ould habituate te <the platform within 3 h were used for
experimentation. Group C (stress) mice were placed on platforms large enough

(8.0 cm diameter, for 72 h) for the animals to curl up and exhibit REM sleep
without falling into the water.

Hondiing-induced convulsiens (HIC):

HICs in mice were assessed using the criteria previously described for
alcohol withdrawal (Goldstein and Pal, 1971). In this procedure each mouse
was picked up by the tail andfor spun gently through 180°. HIC was
characterised by viclent jerking or twirling, tonic convulsions and
tightening of facial muscle (grimace). Only HICs ccecuring within 6-10 s of
pick-up  were recorded. Scores  were assigned as follows: violent
tonic-clonic convulsions upon pick wup-4, tonic-cloniec convulsions upon
picking up-3, tonic convulsions upon picking up or tenic-clonice convulsions
after gently spinning-2, tonic convulgsions after gentle spinning-1, and
facial grimace after gentle spinning-0.5. The scoring procedure is based
upon the criteria degcribed by Crabbe et al. (1581). HIC was determined at
10 min intervals form 120 min. The intensity of convulsionz is indexed by
total HIC during the first 30 min scoring period. The period was chosen 1o

avoid the possible modifying influence of repeated handling. The observer
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waz "blind” during the evaluation of dose-response curve of the effect of
phesphoramidon in all three groups.
Drugs:

Phogphoramidon (Peninsula Laboratories) and naloxone hydrochloride
{Winthrop Laboratecries) were dissolved in saline. The maximum volume of
phosphoramidon administered i.c.v. over 20 s was 1.5ul. Naloxone was
administered intraperitoneally {(i.p.).

Statistical anclysis of dota:

The Kruskal-Wallis ANOVA was carried out on the mean convulsions score

and across all data in all the experiments. Compariscons between any two

treatment groups were made with the Mann-Whitney U-test (Siegel. 1956).
RESULTS

The Kruskal-Wallis test showed =significant differences in convulsion
scores across the groups ({(H=174.47, p<0.001, XNDF=15). The levels of
significance between two groups using the Mann-Whitney U test are indicated
below.

Control. 1In this study, 164 of control non-treated mice displayed mild signs
of HIC such as grimacing. In treated mice, saline injection (1xl i.e.v.) or
naleoxene alsc induced signs of HIC consisting mainly of grimacing. However,
phosphoramidon {25-500 ug i.c.v.) significantly increased the intensity and
degree of susceptibility to HIC in a dose-related manner (p<0.01}. This
effect was antagonized by naloxone {1 mg/kg. i.p-)(Fig 1A).

RENSD group. Mice subjected to 72 h REMSD demonstrated a significant
ingrease in the incidence and intensity of HIC (p<0.001). This was not
affected by naloxcne (p=o.1) but significantly inhibited by the enkephalinase
inhibitor phosphoramidon {25-500 xg)} administered within 10 min after REMSD
termination (p<0.001, Fig 1B). This effect of phospheramidon was partially
antagonised by naloxone (1 mg/kg i.p. 10 min prior, p<0.001).

Stress group. Stress alsc induced an increase in the intensity and
susceptibility to HIC (p<0.001) but less intensely than in REMSD group. This
effect was further potentiated by phosphoramidon {100 uxg, p<0.001). Naloxone
(1 mgfkg, i.p.) decreased the susceptibility te HIC in stress animals

{p<0.001 Fig 1C).
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Figure 1a-c: The effect of REM sleep deprivation (REMSD, 72 h},
phosphoramiden (ph), noloxone (nal) and stress (72 h) on hondling-induced-—
convulsions (HIC). Each bar is meon intensity = S.E.M of HIC during the

first 30 min. The number of animals per group is stated in perentheses.
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DISCUSSION

Mice subjected to REMSD, stress or phosphoramidon treatment showed an
increase 1in the susceptibility to HIC. However, only in stressed or
phospheramidon-treated animals was the convulsant activity antagonised by
naloxone. This might indicate that the phosphoramidon- and stress-induced
proconvulsant activity is due to activation of an endogenous opioid system.
This agrees with data =showing that concentrations of opiocid peptides are
increased after treatment with enkephalinase inhibitors (Patey et al., 198%1)
and that various stress regimens are associated with +the release of
endogenous opioid peptides {Christie and Chesher, 1982). The evidence that
stress and enkephalinase inhibition increase susceptibility to epileptiferm
activity could be ascribed to the fact that opioid peptides in excess may
induce seizure phenomena. The epileptogenic potential of various opioid
peptides administered exogenously has been demonstrated fregquently (Urca et
al., 1977; Dzoljiec et al., 1879; Snead and Bearden, 1982).

However, the mechanism of epileptiform activiiy of opioid peptides is neot
completely understocd. Recent data suggest that specific oploid receptors of
the delta-subtype mediate the epileptiform effect of +these substances
{(Dzoljic and vd Poel-Heisterkamp, 1982; Haffmans and Dzoljic, 1983; Frenk,
1983). The target area of this action seems to be the limbic system
(Henriksen et al., 1980), particularly the hippocampus {French and Siggins,
1980; Haffmans et al., 1983; 1984). It has been shown that opicid peptides
may excite hippocampal neurons by inhibiting adjacent interneurcns
(Zieglgansberger et al., 1979). Thus, it might be suggested that an
increased susceptibility te HIC in animals, stressed or treated with
phesphoramidon is due to the activation of a particular type of opilold
receptor population in selective brain regions{s). The potentiating effect
of phosphoramidon on stress-induced HIC is probably due to the protection of
the released opicid peptides during the stress procedure.

A second significant aspect of +this study 1is that the enkephalinase
inhibitor phosphoramiden decreased convulsant behaviour in REMSD mice. This
effect of enkephalinase inhibition might suggest that REMSD is associated
with an insufficiency of endogenous opilioid peptides. This possibility is

supported by the fact that REMSD decreases peptide synthesis (Shapire and
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Girdwood, 1981) and affects the levels of scme brain peptides (Mattiace =t
al., 1881). In addition, recent data indicate that nocturnal episcdic
gecretion of humural endorphing occurs during REM sleep (Oksenberg et al.,
1980).

However, the exact mechanism by which an enkephalinase inhibitor
antagonizes REMSD-induced neuronal excitation is not clear. One possible
explanation that should be considered is the fact that enkephalins block GABA
transport across Pplasma membrane (Cupellc and Hyden, 1981), leaving GABA
outside the neuronal membrane in contact with its receptors for a longer
time. Such mechanism might explain enkephalin-induced neuronal inhibitien in
physiclogical circumstances. In the context of these findings, a preoposed
decrease of enkephalinergic activity during REMSD would be associated with a
decrease GABA inhiditory activity and consquent increase in seizure
susceptibilty.

In summary, these results indicate that enkephalinase inhibition may
have, depending on conditions., proconvulsant potentlial {in stress or control
animals) or anticonvulsant {in REMSD animals) action. Similar c¢ontradicteory
data concerning the proconvulsant potential of merphine and endogenous
opioids have been reported. DBoth the pro- and anticonvulsant activity of
these substances have been demonstrated (Gilbert and Martin, 197%; Verdeaux
and Marty, 1954: Cowan et al., 1979; Tortella et zl., 1981; Dzoljie,
1982).

An insufficiency of endogencus opicid peptides in REMBD animals suggested
by this study might be of impertance for <the worsening of seizures or
improvement of depressive disorders during REMSD (Pratt et al., 1968; Vogel
et al., 1980). It is of interest to note that in nacclepsy, the attacks of
REM slieep have been prevented by naloxone, suggesting a possible involvement

of endogencus opioid systems (Pasi et al., 1983).
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CEAPTER 10

REM SLEEP DEPRIVATION INEIRIT THE NITROUS OXIDE WITHDRAWAL CONVULSIONS

ABSTRACT
The effect of REM sleep deprivation (REMSD) was investigated wusing
withdrawal c¢onvulsions in mice following exposure to nitrous oxide (NZO).
REMSD for 72 h significantly decreased the severity of withdrawal convulsions
following acute exposure to Nzo.
The results were interpreted in the light of protein synthesis inhibition
during REMSD. REMSD procedurs might stimulate a new approach te the

treatment of withdrawal neurconal excitability.
INTRODUCTION

It is known that REM sleep deprivation (REMSD) results in a decrease in
protein synthesis (Drucker-Colin and Rojas-Ramirez, 1976) and is often
associated with an increase in neuronal excltability. For example, the
threshold  for electroconvulsive shocks (Cchen and Dement, 1965) and
amygdaloid kindling (Calvo et al., 1982) is greatly reduced following REMSD.

Patients recovering from nitrous oxide anaesthesia are known to exhibit
an increase in excitability (Eckenhoff et al., 1961}. Similarly, mice
exposed to nitrous oxide showed convulslions when picked up by the tail after
removal from the anaesthetic (Harper et al., 1980). This seizure pattern is
known to occur after exposure 1o nitrous oxide, ethylene and c¢yclopropane and
it is considered to be a type of withdrawal convulsions (Smith et al., 1579).

It is of Interest to necte that some types of epileptic attacks are
associated with REM sgleep dysfuncticn {(Passouant, 1976) and also with drug
addicition (Herzlinger et al., 1977; DMendelson and Mello, 1978).

In this study we report on the inhibitory effect of REMSD on nitrous

oxide withdrawal cenvulsions.
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METHODS

Adulst, male mice of the B10A strain weighing 32+0.2 g at the cnset of
experiment were used. Throughout the investigation the animals were houged
under constant light/dark cycle —(light phase 09.00-21.00). The room
temperature was maintained at 242°C. Food and water were available ad
livitum. The number of animals used in each procedure is stated in the
results.

REMSD was carried out according to the conventicnal water tank methed
previcusly deseribed (Fishbein et al., 1971). This method selectively
deprives mice of REM zleep and with slight effect on slow wave sleep. In
this study, each mouse was placed on a platform (3 cm diameter, 1 cm above
the water level) surrounded by water (3 cm deep}. The water was replaced at
least once in 24 h. Only mice which cculd adjust to this experimental
condition within 2 h were used in experiments.

Stress control group for REMSD consisted of mice placed on platform (6 cm
in diameter ) under the same experimental conditions as in REMSD. A second
stress consisted of mice forced to swim in water 3 cm deep at 18°C for two, 1
h sessions daily. These two stress contrel procedures produced comparable
weight loss as in REMSD (10-15%).

Nitrous oxide withdrawal convulsion was induced and assessed according to
the method of Coldstein and Pal (1971). In this procedure mice were exposed
to @ mixture of nitrous oxide and oxygen (80:20) at 1.6 atm for 1 h. Each
mouse was picked up by the tail and spun gently through 180°, Mice showing
vicolent jerking or twirling and/or grimace were quantified as positive. Mice
were tested for the presence or absence of handling-induced convulsions (HIC)
every 10 min after the removal from NEO. until there were no convulsions in
two successive tests. Throughout this study, all testing of HIC was carried
cut between 10.00-14.00 h to avoid circadiarn alterations in seizure
threshold.

Stotisticol anolysis:The number of animals convulsing after N,0 withdrawal in
control, stressed and REMSD groups were compared using the Kx2 method (de
Jong, 196%). Statistical signifcance was accepted at P-values of 0.05 or

less.
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RESULTS

Nitrous oxide withdrowol convulsions (m=20)

Mice exposed to N20 showed withdrawal convulsions lasting about 2 h with
highest 1incidence within 20 min after removal from N20. The mice convulsed
when picked up by the tail following N20 anaesthesia. These handling-induced
convuslions {HIC) consisted of wviclent jerking and twirling {clonic
components} and arching of the back and contractiens of head muscle

{"grimace™, tonic components).

REM sleep deprivation (n=20)

Mice subjected to REMSD for 24.7120 h showed increased susceptibility to
HIC. However, mice subjected to REMSD for 72 h showed a decrease in the
degree of susceptibility to N20 withdrawal convulsions (Fig A1). Stress did
not inhibit NEO withdrawal convuslions (n=10), but instezad exacerbated it.
Combined REMSD and an enkephalinase inhibitor phosphoramidon (Hudgin et al.,
1981) also decreased the frequency of KIC but not to a degree significantly

different from REMSD or phosphoramidon given alone {(Fig A.1)}.
DISCUSSION

Mice exposed to N20 develop very guickly a drug dependence which is
characterized by withdrawal convulsions. This is demonstrated when mice are
picked up by the tail following NZO anaesthesia. This type of convulsions
was conteracted by REM sleep deprivation (REMSD), in spite of the fact that
REMSD could induce neurcnal excitaticn In the normal animals.

The neurcobiological basis of acute N20 tolerance and withdrawal
convulsions 1is still wunclear, it is does not appear to involve changes in
synaptic membrane fatty acid, phospholipid and cholesterol (Koblin et al.,
1979). However the possible involvement of endogenous opioid peptides in N20
tolerance and withdrawal excitation has been demonstrated. Acute exposure to
NEO induced an increase in the cersbrospinal fluid met-enkephalin levels
{(Qock et al., 1685}, whereas the administration of merphine or naloxone can
inhibit and facilitate, respectively, the N20 withdrawal convulsions {(Manson

et al., 1983). This suggests that Nzo stimulates an opioid~like dependence.
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Figure A.1: The effect of REM sleep deprivaotion (REMSD) on nitrous oxide
withdrowal convulsions. Control consists of mice not subjected to any
treastment. {*) denotes statisticol significance ot p < 0.05 level compored
to control or stress. Note that 1) REMSD significantly reduced the fregquency
and duratien of nitrous oxide withdrowol convulsions; 2) phosphoramidon did
not olter the inhibitory octien of REMSD on nitrous oxide withdrowal
convuslions. The effect of the enkephalinose inhibitor phosphramidon was not

considered in this chapter.
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It is known that several drugs with the common ability to inhibit protein
synthesis reduced the development of dependence to opiates {Feinberg and
Cochin, 1972; Bowman and Rand, 1980) and decrease REM sleep (Drucker-Colin
and Rojas-Ramirez, 1976). In addition REMSD has alsc been reported to
decrease protein synthesis in some nuclei of the rat brain stem (Bobillier et

al., 1974; Panov, 1982). The antagonistic effect of REMSD on N0 withdrawal

2
convulsions, might be due to de¢rease in protein synthesis, which 1in turn
blocked the development of tolerance and physical dependence.

Stressed animals showed enhanced susceptibility to NZO withdrawal
convulsions proving that the inhibitory action of REMSD on NZO withdrawal
convulsicns is not related to the unspecific effects (dampness, isolation and
regtriction) of the experimental procedure.

Apart from the uncertainty of the interactions Dbetween REMSD and N20
withdrawal syndrome, the results of this study indicate that REMSD might
prove useful as new approach to the management of withdrawal neuronal

hyperexcitabilitj.
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CONCLUDING REMARKS AND SUMMARY

In chapter 1 a general review of the literature on sleep-waking
mechanisms, functions of sleep, and the biclogical and therapeutical effects
of gleep deprivation was provided. Chapter 2 gave a brief review of the rcle
of the endogenous opioid system in physiological regulation.

In this thesis the role of endogenous opicid peptides in ‘the regulation
of sleep-walting states and the effects of REM sleep on reactivity to
endogencusly released and exogencously administered opiocid peptides, or
opiates, are reported. We explored the possibility +that REM slesp is
involved in regulating the functioning of opiecid peptidergic nesurons in the
central nervous system by studying the effects of REM sleep deprivation
(REMSD) on behavioural responses to endogenously released opioid peptides and
exogenously administered oplates and opioid peptides. The feollowing
opicid/opiate-induced behavioural responses were examined in this thesis
analgesia, akinesia-catalepsy, spontansous vertical motor activity (SVMA},

convulsions, grooming and nitrous oxide and morphine withdrawal symptoms.

Endogenous opioid peptides and woking mechanism (s)

The possible involvement of endogenously released opioid peptides in
waking mechanism (s} is suggested by the diurnal osclllations in enkephalin
and g-endorphin concentrations in brain nuclei, involved in wvigilance state
regulation (chapter 1, sections 1.2, 1.3.21i). Thus, c¢oncentrations of
p-endorphin, enkephalins and dynorphin in the rat brain are highest in the
dark, during which wakefulness is high, and lowest in the light phase, when
propensity to sleeb is at its highest.

In our study we demonstrated that the inhibition of enkephalinase, with
phosphoramidon, induced an increase in wakefulness. Both NREM and REM sleep
stages were suppressed. The increased wakefulness induced by enkephalinase
inhibition was accompanied by excitatory symptoms, such as head shakes,
scratching {chapter 3) and excessive greooming, which nermally precede sleep
in rats {chapters 2, section 1.3.21i and 8). The insomnic action of
phosphoramidon was decreased by naltrexone. These data suggest that opiocid

receptors and endogenous enkephaling play an important role in sleep-waking
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mechanism {chapter 3)}. This idea might be of relevance in some c¢linical
situations. For example, an increase in opicid peptide levels has been
demonstrated during stress, anxiety and psychic disturbances associated with
insomnia. It 1s also conceivable +that this new class of drugs, the
enkephalinase Inhibitors, might be of potential use in the treatment of sleep

disorders characterised by excessive somnoclence.

Sleep~woking states and enkephalin induced neurcnal excitation

The intracerebroventricular {icv) administration of enkephalin was found
to induce epileptiform activity in the hippocampal and cortical EEG and in
the EMG derived from submandibular muscle in freely moving rats (chapters 4).
Sleep, in particular REM sleep, decreased the enkephalin-induced epileptiform
discharges.

These observations indicate that phasic changes during sleep-waking
states can medulate the neuronal excitability regulated by opioid peptides.
This might be of importance for some forms of human epilepsies affected by

the sleep-waking cycle.

REM sleep deprivation and nociception

REMSD decreased the pain threshold and abolished the analgesic effects of
morphine, enkephalinase inhibition and cold-water-swim (CWS) {chapters 5 and
§)}. The pain threshold to noxious electric shock was similarly reduced by
REMSD (chapter 1, section 1.5.2d4, wvii). All these data suggest that REM
sleep is an important factor in the physiolegical regulation of mnociception.

The finding that REMSD can reduce the pain thresheld might be of
relevance for those individuals who suffer from disturbed sleep e.g.
insomnia or people working in shifts. In general it should be expected that
patholegical conditions, and/or drug treatment accompanied with REMSD, could
modify the therapeutic effectiveness of opiates and other analgesic

procedures.

REM sleep deprivation and moncamine-opioid interactiens
There are abundant data showing that cpioid peptides interact with many
other physiclogically active substances. In our study we paid particular

attention to s-phenylethylamine (PEA), a substrate for +the MAO-B enzyme,
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since it 1is known that inhibition of MAQO-B modulates some effects of opicid
peptides (chapter &, introduction). In our study, the inhibition of MAQ-B
{(the enzyme which Dbiodegradates PEA) and excess of PEA (2 substrate for
MAO-B) had a stimulatory effect on the analgesic action of endogenously
released opicid peptides in rats allowed undisturbed sleep, but not in REMSD
animals (chapter 6). .

The described facilitatory action of MAO-B inhibition on enkephalinergic
transmission might be of relevance nct only in the physiolegy of nociception,
but alse in conditions associated with the alterations of MAO-B enzyme and/or

REM sleep (endogenous depression, ageing etc).

REM sleep deprivation induces o functiongl deficiency of 1 opiocid receptor
system

The finding that oplate-induced analgesia, which is due to a preferential
activation of u-opieid recepters, can be blocked by REMSD suggested a
functional insufficiency of a u-receptor system (chapters 5, 6). In order to
test this concept, we studied the effects of REMSD on opiate induced motor
inhibition. In this study we demonstrated that the morphine induced
akinesia/catalepsy syndrome, which is characterised by rigidity and mediated
mainly by the u-opioid receptors, was abelished by REMSD and replaced by
motor excitation, seen as an increase in spontanecus vertical motor activity
(SVMA). Naltrexone blocked the morphine induced akinesia/catalepsy in rats
allowed undisturbed sleep, but not the opiate induced increase in SVMA in
REMSD animals {chapter 7). In addition +to the fact that REMSD blocked
opioid/oplate-~induced analgesia and akinetic-cataleptic syndrome, the
naltrexene sensitive wet-dog-shakes and groeming behaviours stimulated by an
enkephalinase inhibiter were attenuated in REMSD animals (chapter 8).

These data ccllectively indicate that the bleckade of akinesia/catalepsy
syndrome and the reduced effects of enkephalinase inhibition in REMSP animals
are due to a functicnal insufficiency of the us-opioid receptor system,
allowing for an increased expression of the naltrexone resistant excitatery
cpioid receptors responsible for the increased SVMA. It is known for example
that blockade of u-opioid receptors facilitates the excitatory effects of
morphine (chapter 7, discussion). The idea +that REMSD can induce a

functional deficit of an opicid system derives further support from the fact
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that enkephalinase inhibition ©blocked the proconvulsant action of REMSD
(chapter &). This propositien c¢an bhe supported by the known inhibitory
influence of opicid peptides on the release of excitatory transmitters and
that blockade of rs-opioid receptors with naloxone facilitates epileptogenesis
(chapter 7, discussion). The suazgested functional deficiency of an opiocid
system might explain the increase in neuronal excitability in REMSD animals.

Some recent biochemical studies, provide evidence for the concept of
derangement of endogenous opiocid system during REMSD. For example REMSD
decreased the concentrations of g-endorphin in the pituitary but increased it
in the hypothalamus {(chapter 1, secticnm 1.5.2b, vi). We have also observed
that REMSD reduced the ceoncentrations of leu-enkephalin in some Dbrain areas
(Haffmans, Ukponmwan, Dzoljic in preparation}.

The proposed insufficiency of an opioid system during REMSD could account
fer the therapeutic and diagnostic value of REM sleep curtailment in some

cases of depression and epilepsy respectively {chapter 7, discussion).

REM sleep deprivation and opiate dependence

Acute expose to nitrous oxide can lead to the relesase of met-enkephalin
in the CSF and opiate-like dependence phenomena (chapter 2, sectiom 2.5.2,
iv). The withdrawal convulsions in mice following exposure to nitrous oxide
Were reduced by REMSD {chapter 10). S8imilarly, mnaloxone-precipitated
wet-dog-shakes in morphine-dependent rats were attenuwated by REMSD (chapter
8}. It has also been demonstrated that REMSD «can  attenuate
naloxone-precipitated jumping and myoclonic contractions in acute morphine
dependent rats (Dzoljic et al. in preparation). Although the neurcchemiczl
basis of drug dependence is not fully understood, it has been established
that several drugs which can inhibit protein synthesis reduced the severity
of opiate dependence and withdrawal phenomena (chapter 2, section 2.4.8).
REMSD has also been demonstrated to decrease protein synthesis in the rat
brain (chapter 1, section 1.5.2b, vii). It is therefore suggested that the
antagonigtic effect of REMED on eopiate or nitrous oxide withdrawal phenomena
might be due to a decrease in protein synthesis in animals deprived of REM
sleep.

The finding that REMSD can attenuate abstinential symptoms might suggest

the existence of a comwon link between REM sleep deficiency and drug
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dependence. However, the mechanism by which REMSD irhibits zabstinential

syndromes and whether it modulates drug dependence in humans remain to be

clarified.

The following general conclusicns can be made from this thesis:-

1o} Activotion of endogenous opioid peptides increosed wokefulness

1b) Sleep, particularly the REM sleep stoge, decreased the epileptic effects of

2)

3)

4)

5)

§)

7)

enkepholin when compared with the waking state. Stotements To and 1b
indicote thaot there is on interaction betwesn vigilonce and the endogenous
opioid system.

Inhibition of monoomine oxidose B and/or excess of pS-phenylethylamine
facilitated enkephalinergic transmission in rots allowed undisturbed sleep
but not inm REMSD onimols. This finding might be of relevance in scme
clinical situgtions associated with the alterations of MAO-8 and/or REN
sleep (endogencus depression, cgeing, etc).

Stimulation of the endogencus opioid system, with enkepholinase inhibition,
attenucted the proconvulsont agction of REMSD, suggesting an involvement of
opiocid peptides in the regulotion of neuronal excitability.

The analgesic offects of endogencusly relecsed enkephalins and exogenously
odministered opiates, which are mediated mainly by u-opioid receptor, were
agbolished by REMSD. This suggests thot normal REM sleep 1is an  importont
factor for proger regulation of the pain threshoeld.

The akinetic/cotaleptic effect of morphine, also medioted by uy—opioid
receptors, wos replaced by excitotory motor activity in REMSD rats.
Conclusions 4 ond 5 suggest that REM sleep deprivotion may be ossocioted
with o functiongl insufficiency of u-opiocid system.

REM sleep deprivoticn decreased wobstinenticl phenomena, suggesting thot
sleep deprivation could be an attractive tool in the investigotion of drug

dependence.
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SAMENVATTING EN CONCLUSIES

In het eerste hocfdstuk werd gen algemeen literatuuroverzicht gegeven over
slaap-waak mechanismen, de functies van slaap en de bioleogische en
therapeutische effecten wan slaapdeprivatie. In hoofdstuk 2 werden de
fysiologische regulaties hierin toegespitst op de rol van het Fndogene opioid
systeem in de wvorm wvan een korte samenvatting van de literatuur. Dit
proefachrift beschriift een onderzoek naar de rol van endogene opiold peptiden
in de regulatie van slaap-waak stadia en de invleed van REM slaap op de effecten
van endogeen gesecreteerde- en exogeen toegediende opioeid peptiden en opiaten.
Met name is de mogelijke betrokkenheid van de REM slaap bij de functionele
regulatie van cpioid peptiderge neuronen in het centirale zenuwstelsel van de rat
onderzocht, via het bestuderen van de effecten van REM slaap deprivatie (REMSD)
bij bepaalde gerdragsresponsies op endogeen gesecreteerde opioid peptiden en
exogeen toegediende opiaten en oploid peptiden. In dit onderzoek werden de
volgende door opiaat/opioid geinduceerde gedragsresponsies bestudeerd:
analgesie, akinesie-catalepsie, spontane verticale motorische activitelt (SVMA),

convulsies, poetsgedrag en oplaat onthoudingssymptomen opgewekt door lachgas en

morfine.

Endogene opioid peptiden en waok mechaonismeln)

De mogelijke TDbetrokkenheid wan endogene opioid peptiden bij waak
mechanisme{n) zou afgeleid kunnen worden uit de dagfluctuaties in enkefaline en
A-endorfine concentraties in bepaalde hersenkernen die een rol spelen bij
alertheidsregulering (hoofdstuk 1, sectie 1.2, 1.3.21). Dienovereenkomstig zijn
de concentraties van g-endorfine, de enkefalines en dynorfime in rattehersenen
het hoogste in de nacht of in het donker, wanneer de waakzaamheid hoog is, en
zijn ze het laagst gedursnde de dag of in het licht, wanneer de neiging tot
slapen het grootst is. De remming van het enzym enkefalinase deor toediening
van het farmacon fosforamidon bleek een verhoging van de waakzaamheid te
induceren. Zowel de NREM als de REM slaap periodes werden onderdruki. Deze
toegenomen waakzaamheid als gevolg van de remming van enkefalinase werd
vergezeld door symptomen van geprikkeldheid zoals schokbewegingen van de kop,
kravben {(hoofdstuk 3) en overmatig poetsgedrag, dat normaal bij ratten aan het

slapen vooraf gaat (hoofdstuk 2, sectie 1.3.21 en hoofdstuk 8). Het bleek dat
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de opwekkende werking van fosforamidon werd verminderd door de opizat antagonist
naltrexon. Deze gegevens suggereren dat opiloid receptoren en endogene
enkefzlines een belangrijke rol spelen in het slaap-waak mechanisme (hoofdstuk
3). Dit mogelijke wverband zou in bepaalde situaties klinische implicaties
kunnen hebben. ZEr is bij voorbeeld bij de mens een toename in endogene opileid
concentraties aangetoond gedurende stress, angsticestanden en psychische
storingen die samengaan met slapeloosheid. Eet is ock voorstelbaar dat een
nieuw +type van farmaca, de enkefalinage remmers, potentieel van nut zou kunnen

zijn bij de behandeling van patienten die lijden aan excessieve slaperigheid.

Slaap-wook stadic en inductie van neuroncle excitotie door enkefaline

De intracerebroventriculaire (i.c.v.) toediening van enkefaline induceerde
epileptiforme activiteit in de hippocampus en de cortex volgens het EEG en was
ook zichtbaar aan het EMG van de submandibulzire spieren bij vrij bewegende
ratten (hoofdstuk 4). Slaap, en in het bijzonder de REM slaap, kon de door
enkefaline geinduceerde epileptiforme ontlzdingen deen verminderen.

Deze cobservaties geven aan dat fasische verschuivingen in slaap-waak stadiza
het effect van opioid peptiden op de neuronale prikkelbaarheid, kunnen
moduleren. Dit zou bij de mens betekenis kunnen hebben voor bepazlde vormen van

epilepsie, waarop de slaap-waak cyclus een invloed heeft.

REM sloop depriveotie en pijnprikkeling

REMSE verminderde de pijndrempel en antagoniseerde het analgetische effect

van resp. morfine, enkefalinase remming, en in-koud-water-zwemmen
(CWS)(hoofdstukken 5 en 6).
De pijndrempel wvoor een electrische schok kan eveneens verminderd worden door
REMSD (hoofdstuk 1, sectie 1.5.2d.vii). Al deze gegevens dulden erop dat REM
slaap een Dbpelangrijke factor is in de fysiologische regulatie van
pijnprikkeling.

De waarneming dat REMSP de pijndrempel kan verlagen, zou betekenis kunnen
hebben voor die perseonen die zaan een gestoorde slaap lijden zoals bijvoorbeeld
slapeloosheid bij mensen die in ploegendienst werken. In het algemeen =zou men
kunnen  verwachten dat pathologische omstandigheden en/of een bepaalde
behandeling met farmaca die vergezeld gaan met REMSD, de therapeutische

effektiviteit van oplaten en andere analgetische behandelingen Kunnen
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beinvliceden.

REM slaap deprivatie en monoamine—opiocid interckties

Er is een veelheid aan informatie in de literatuur die l1zat =zien dat de
effecten wvan opioid peptiden interfereren met die wvan vele andere fysiologisch
actieve steffen., In dit proefschrift is in dit wverband Dbijzondere aandacht
besteed aan g-fenylethylamine (PEA), een substraat voor het MAO-B enzym, omdat
bekend 1s dat remming van MAQO-B bepaalde effecten wvan opicid peptiden kan
veinviceden (heofdstuk 6: “introduction™}. Remming van MAQ-B (het enzym dat
PEA afbreekt) en een overmaat aan PEA (het substraat voor MAC-B) hadden een
stimulerend effect op de pijnstillende werking van endogeen gesecreteerde opicid
peptiden bij ratten die ongestcord konden slapen, maar niet bi] ratten waarbij
de REM slaap werd onthouden (REMSD){hoofdstuk 6).

Het effect van MAO-B remming op enkefalinerge transmissie, die =zoals
beschreven neurcotransmissie bevorderend is, kar niet alleen van betekenis zijn
veoor het begrip van de fysiologie van pijnprikkeling bij de mens, maar ook voor
die van bepaalde pathologische condities die verband houdern met veranderingen in
de activiteit van het MAC-B enzym of wvan de hoeveelheid REM =slaap =zoals bij

gndogene depressies of »ij het verouderen.

REM slaap deprivatie en de inductie wvan een funktionele deficientie in het
u—opiocid receptor system

De bevinding dat de analgesie die door een opiaat wordt geinduceerd en die
net gevelg is van een stimulering van voornamelijk de u-type opioid receptoren,
geblokkeerd kan worden door REMSD, werd geinterpreteerd als een functionele
insufficientie iIn het u-type receptor systeem {hoofdstukken 5 en §). Om deze
cpvatting te kunnen toetsen, is vervolgens het effect wvan REMSD op de door
opiaten wvercorzaakte motorische activiteltsvermindering bestudeerd. Uit deze
gtudle kwam naar voren dat het door morfine geinduceerde akinesie/katalepsie
syndrocm, dat gekarakteriseerd wordt door een lichaamsstarheid als gevolg van
ecen preferentiele u-receptor stimulering, werd tegengegaan door REMSD en =zelfs
werd vervangen door motorische activiteitsvermeerdering in de vorm van een
toegenomen spontane vertikale motorische activiteit (SVMA). De opioild receptor
antagonist naltrexon blokkeerde de door morfine geinduceerde akinesie/katalepsie

in ratten die ongestcord konden slapen, maar niet de door morfine geinduceserde
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toename in SVMA in dieren met REMSD (hoofdstuk 7). Nazst de hierboven
beschreven waarnemingen dat REMSD de door opioiden en oplaten geinduceerde
analgesie en het akinesie/katalepsie syndroom kan blokkeren, bleek dat in dieren
met REMSD het opioid geinduceerde gedrag, zoals de naltrexon-sensitieve
“wet-dog-shakes™ en het door een enkefalinase remmer geinduceerde poetsgedrag,
gveneens verzwakt werd (hoofdstuk 8).

Uit het geheel van deze waarnemingen zocu Mmen Kunnen c¢cncluderen dat de
blokltering wvan het akineslie/katalepsie syndrcom en de verminderde effecten van
de enkefalinase remming in REMSD dieren worden verocorzaakt door een functionele
insufficientie wvan het w-oplold receptor systeem. De toegenomen SVMA wordt
hierbij toegeschreven aan een zichtbaar geworden expressie {demaskering) van
cpwvekkende opilaat-effecten, middels een ander en naltrexon-resistent opioid
receptor type. Het is bijveorbeeld btekend dat blokkering wvan z-oploid
receptoren de expressie van opwekkende effecten van morfine kan vergemakkelijken
{(hoofdstuk 7: discussie). FEet denkbeeld dat REMSD een functionesl +tekort in
een opioid systeem kan induceren, wordt verder ondersteund door het felt dat
remming van het enzym enkefalinase het proconvulsieve effect van REMSD kan
blokkeren (hoofdstuk 9). Deze bewering wordt ondersteund door het bekende feit
van de remmende werking van opicid peptiden op de afgifte wvan stimulerende
ngurotransmitters, waarbij een blokkering van uy-opicid receptoren met naloxon
het ontstaan wvan epileptische verschijnselen vergemakkelijkt (hocfdstuk 7:
discussie). Het +wveronderstelde functionele tekort in een copieid systeem zou
aldus de toename in normale prikkelbaarheid in REMSD dieren kunnen verklaren.

Enkele recente biochemische studies ondergteunen het concept wvan . een
verstoring van endogene opiocld systemen als gevolg van deprivatie van REM slaap.
REMSD verminderde bijvoorbeeld de concentratie van S-endorfine in de hypofyse,
maar in de hypothalamus nam deze concentratie toe (hoofdstuk 1, sectie 1.5.2b.
vi). In overcenstemming hiermee wvinden wij in bepaalde hersengebieden ook
verminderde concentraties wvan leu-enkefaline als gevolg van REMSD (Haffmans,
Ukponmwan, Dzoljic; in voorbereiding).

De veronderstelde functionele insufficientie van een opicid systeem als
gevolg van  REMSD zou  verantwoordelijk kumnen =zijn voor het gewenste
therapeutische effect en de diagnostische waarde van het beperken van REM slaap
hij respectivelijk bepaalde types depressie en epilepsie (hoofdstuk 7:

discussie).
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REMN sloop deprivatie en lichamelijke ofhankelijkheid van opiaten

Ben acute inhalatie van lachgas kan de afgifte van Met-enkefaline in de
hersenvloeistof wverhogen en aldus opiaat-achtige lichamelijke afhankelijkheids
fenomenen opreepen. De ceoenvulsies als element van de cnthoudingsverschijnselen
bij muizen na lachgas inhalatie waren verminderd in REMSD dieren (hoofdstuk 10).
Hiermee vergelijkbaar was het door naloxon opgeroepen "wet-dog-shakes™ gedrag in
ratten die tevoren morfine afhankelijk gemaakt waren, minder uitgesproken in
REMSD dieren. 0Ock is aangetoond dat REMSD het door naloxon opgercoepen spring
gedrag en de myoclonische contracties bij ratten die acuut morfine-afhankelijk
gemaakt zijn, kan verzwakken (Dzoljic et al., in voorbereiding). Hoewel de
neurochemische basis van afhankelijkheid wvan verdovende middelen en andere
substanties niet bekend is, is wél vastgesteld dat verschillende stoffen die de
eiwitsynthese remmern de mate van opiaat afhankelijheid en van
onthoudingsverschijnselen doen verminderen (hoofdstuk 2. sectie 2.4.8). Het is
aangetoond, dat REMSD de eiwitsynthese in ratte hersenen vermindert (hoofdstuk
1, sectie 1.5.2b, wvii). Om deze reden wordt voorgesteld, dat ket
antagonistische effect van REMSD op opiaat en lachgas onthoudingsverschijnselen
veroorzaakt zou kunnen worden deoor een afname van de eiwitsynthess bij dieren
met REM slaap onthouding.-

De waarneming dat REMSD opiaat onthoudingsverschijnselen kan verzwakken,
veronderstelt het testaan wvan een verband tussen REM slaap fekort en
lichamelijke afhankelijkheid wvan opiaten. HEet mechanisme waardoer REMSD
onthoudingsverschijnselen Xan verzwakken en of REMSD invioed kan ultoefenen op

lichamelijke afhankelijkheid wvan opiaten bij de mens moet echter nader

onderzocht worden.

Uit de resultaten van dit proefschrift kunnen de vwvolgende algemene c¢onclusies

getrokken worden:

Ta) Activering van het endogene opioid systeem doet de wackzaamheid toenemsan,

ib) Slaap, in het bijrender het REM sloop stadium, vermindert de eapileptische
offecten van enkefaline, vergeleken met het waagk-stadium. De stellingen Ta
en 1b geven aon dat er een interactie is tussen de mate van wookzaamheid en
het endogene opiocld systeem.

2) Remming van moncamine oxidose B enfof esen overmaot aan p-fenylethylomine

vergemakkelijkt enkefalinerge transmissie in ratten die ongestoord kunnen
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4)
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slgpen, moar niet in ratten met REM sloap deprivotie. Deze conclusie =zou
veor de mens betekenis kunnpnen hebben in bepaoulde klinische situaties,
woorin vergnderingen in MAO-B enzym activiteit enfof REM slaap een rol
spelen (endogene deopressie, veroudering, enz.).

Stimulering van het endogene opioid systeem wvia remming wvan het enzym
enkefalinase verzwokt de proconvulsieve werking von RENSD, hetgeen een
betrokkenheid wvan opioid peptiden in de regulaotie van neuronale
prikkelboerheid gesuggereert,

De conalgstische werking van endogeen gesecreteerde enkefulines en van de
excgoen toegediende opioten, die voornomelijk het u-oplold receptor type
stimuleren, wordt tegengegoan door REMSD. Hieruit kon men concluderen dot
een normole REM slaap een belangrijke fokter is wvoor een adequate
instelling van de pijrndrempel.

Het ckinetische/katuleptische effect van morfine, dot ook vic de stimulotie
van e-opioid receptors werkt, wordt in REMSD rotten vervangen deoor een
verhoogde motorische cctiviteit.

Uit de conclusies 4 en 5 zou men kunnen ofleiden dot REM sloop deprivatie
geassocieerd is met een functionele insufficientie van het u-opioid
systeom.

REM sloop deprivatie vermindsert opiagt onthoudingsverschijnselen, hetgeen
doet vermoeden dot sloop deprivatie een contrekkelijk hulpmiddel zou kunnen

zijn bij verslevingsonderzoek.
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