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Abbreviations

AA	 arachidonic acid

ATL	 ascending thin limb

CaOx	 calcium oxalate

CCD	 cortical collecting duct

CD	 collecting duct

CLSM	 confocal laser scanning microscopy

CNT	 connecting tubule

COM	 calcium oxalate monohydrate

COX	 cyclo-oxygenase

Da	 Dalton

DCT	 distal convoluted tubule

DMEM	 Dulbecco’s modified minimal essential medium

dpm	 disintegrations per minute

DT	 distal tubule

DTL	 descending thin limb

EDTA	 ethylenediaminetetraacetic acid

EG	 ethylene glycol

EMA	 epithelial membrane antigen

ESWL	 extracorporal shock-wave lithotripsy

FCS	 fetal calf serum

G	 glomerulus

γ-GT	 γ-glutamyltranspeptidase

GAGs	 glycosaminoglycans

GLcUA	 glucuronic acid

GLcNAc	 N-acetylglucosamine

HA	 hyaluronan

HAS	 hyaluronan synthase

[3H] GlcNAc	 [3H] glucosamine

IM	 inner medulla

IMCD	 inner medullary collecting duct

ISOM	 inner stripe of the outer medulla

LAP	 leucine amino peptidase

MD	 macula densa

MDCK	 Madin Darby canine kidney

MEM	 α-minimal essential medium

Mr	 molecular weight
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NSAIDs	 non-steroidal anti-inflammatory drugs

OMCD	 outer medulla collecting duct

OPN	 osteopontin

OSOM	 outer stripe of the outer medulla

PBS	 phosphate-buffered saline

PCMs	 pericellular matrices

PCNA	 proliferating cell nuclear antigen

PCNL	 percutaneous nephrolitholapaxy

PCT	 proximal convoluted tubule

PAS	 periodic acid-Schiff

PGE2	 prostaglandin E2

PST	 proximal straight tubule

PT	 proximal tubule

RT-PCR	 reverse transcriptase-polymerase chain reaction

TAL	 thick ascending limb

TER	 transepithelial electrical resistance

TLH	 thin limb of Henle

URS	 ureterorenoscopy
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General introduction

In part derived from Curr Opin Urol. 2002;12:271-276. Crystal-cell interaction in the 
pathogenesis of kidney stone disease. M. Asselman and C.F. Verkoelen
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1.1 Kidney stones

Renal stone disease is a widespread problem afflicting more and more people throughout the 

world. Epidemiological studies show an increase in incidence and prevalence rates. In North 

America and Europe the yearly incidence is estimated to be about 0.5% 1, 2. The prevalence 

of kidney stones in the USA has risen in two decades from 3.2% to 5.2% 3. The lifetime risk 

is about 10-15% in the developed world, but can be as high as 20-25% in the middle east 1, 

2. Kidney stone disease often presents as an episode of acute renal colic with characteristic 

severe intermittent pain in the flank or lower abdomen, vomiting and haematuria caused by 

a calculus obstructing the ureter 4. Renal stone disease has a substantial impact on the health 

care system. For example, the total annual cost for urolithiasis in the United States in 1995 

was estimated to be $1.83 billion 5. Nephrolithiasis is likely to recur and recurrence rates are 

reported to be 50% in 10 years and 75% in 20 years 1. Apparently the development of minimal 

invasive techniques for stone removal, such as extracorporal shock-wave lithotripsy (ESWL), 

ureterorenoscopy (URS) and percutaneous nephrolitholapaxy (PCNL) together with current 

standards to avoid stone recurrence such as general measures and metabolic therapy have 

not resolved the increasing problem of (recurrent) stone formation 4, 6, 7. Therefore scientific 

research is warranted to better understand the etiology of stone disease aimed at preventing 

kidney stone formation in healthy people or stone recurrence in patients.

Kidney stones are composed of innumerable small crystals cemented together with organic 

material (stone matrix). Kidney stone formers can be categorized on the basis of the composi-

tion of their stones in two groups, namely calcium stone formers and non-calcium stone form-

ers 4. The most common are the first group of calcium stone formers accounting for 75-80% 1, 8, 

9. Calcium stones are composed of mixtures of calcium oxalate (calcium oxalate monohydrate 

and/or calium oxalate dihydrate) and calcium phosphate (including apatite or brushite), only 

calcium oxalate or rarely calcium phosphate 4. Non-calcium stones include uric acid / urate 

stones (uric acid / ammonium urate and sodium urate), infection stones (struvite, i.e. mag-

nesium ammonium phosphate and carbonate apatite), cystine stones 1, 4 and miscellaneous 

types of highly uncommon stones associated with xanthine, 2,8-dihydroxyadenine, protein 

matrix, and drugs (for example indinavir and triamterene) 1. Data on the pathophysiology 

of kidney stone formation have been acquired via population-based epidemiology, human 

metabolic studies, and basic science experiments 1.

1.2 Epidemiological studies

Epidemiological investigations show that the disease is 2-3 times more common in males than 

in females. The modern western lifestyle and diet increases the risk of stone formation. Global 
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epidemiological studies show that the incidence of upper urinary tract calculi increases with 

prosperity 10. Recent studies show a correlation between nephrolithiasis and cardiovascular 

risk factors such as being overweight/obesity 11, 12, hypercholesterolemia and hypertension 
13. The association of nephrolithiasis and the socioeconomic status is also apparent from the 

fact that in Europe an almost explosive increase in stone prevalence occurred in the two 

so-called stone waves which followed World Wars I and II in the affected countries 10. Stone 

disease predominantly affects middle-aged white males, but from metabolic studies it was 

shown that ethnicity seems to be of less importance than dietary and other environmental 

factors 14 and also worldwide the diversity is likely to be due to nutritional-environmental and 

socio-political-economic factors 15. About 2-5% of the population in Asia, 8-15% in Europe and 

North America, and 20-25% in the middle east develop renal stones in their lifetime 2. There 

are only a few geographical areas in which stone disease is rare, e.g. in Greenland and in the 

coastal areas of Japan 7.

1.3 Human metabolic studies

Several metabolic risk factors have been identified such as low urine volume, hypercalciuria, 

hypocitraturia, hyperoxaluria, low urine pH or hyperuricosuria, cystinuria and urinary tract 

infection. These risk factors encompass several pathophysiologic conditions in diseases 

(including genetic disorders) that are associated with an increased risk of stone formation, 

such as absorptive hypercalciuria, mutation in the renal chloride transporter gene CLC-5 in 

Dent’s disease and primary and secondary hyperparathyroidism (hypercalciuria), acidosis 

or acid retention in distal renal tubular acidosis, metabolic acidosis and a consumption of a 

diet rich in meat (hypocitraturia), excess of oxalate in diet, bowel pathology or primary and 

secondary hyperoxaluria (hyperoxaluria), high purine intake, myeoloproliferative diseases, 

enzymatic defects, uricosuric drugs, genetic primary renal leak, i.e. renal transport defects and 

the metabolic syndrome of gouty diathesis (hyperuricosuria), congenital mutations of dibasic 

aminoacid transporter SLC3A1 gene (cystinuria) and urea-splitting organisms (urinary tract 

infections) 1, 2. Amongst these and other diseases associated with stone formation (hyper-

parathyroidism, renal tubular acidosis, cystinuria, primary hyperoxaluria, jejunoileal bypass, 

Crohn’s disease, intestinal resection, malabsorptive conditions, sarcoidosis and hyperthyroid-

ism) other risk factors for recurrent stone formation include strong family history of stone 

formation, medication associated with stone formation (calcium supplements, vitamin D sup-

plements, acetazolamide, ascorbic acid in megadoses (>4 g/day), sulphonamides, triamterene 

and indinavir), anatomical abnormalities associated with stone formation (tubular ectasia in 

medullary sponge kidney, pelvo-ureteral junction obstruction, caliceal diverticulum, caliceal 

cyst, ureteral stricture, vesico-ureteral reflux, horseshoe kidney and ureterocele) 4 and dietary 

factors (reduced fluid intake and dehydration, high animal protein intake, high oxalate intake, 
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reduced intake of potassium-rich citrus fruits, high sodium intake) 16. To discuss all of these 

individual conditions is beyond the scope of this thesis. It should be noted however that these 

conditions do not apply to the vast majority of stone forming patients which are categorized 

as idiopathic stone formers.

1.4 Basic science experiments

There are two topics that are involved in the earliest events of kidney stone formation and 

have been studied extensively; (A) crystal formation (supersaturation, crystal nucleation, crys-

tal growth and aggregation), and (B) crystal retention in the kidney.

Before discussing crystal formation a description of the functional anatomy of the nephron, 

the basic structural and functional unit of the kidney, and collecting duct system is given in 

figure 1.1. The human kidney consists of more than 1.2 million of nephrons. The nephron con-

sists of segments with different cell populations each with their own specific functions. These 

segments are the glomerulus, proximal tubule, loop of Henle and distal tubule. The collecting 

ducts are formed through the joining of on average eleven nephrons and fuse with each other 

(on average eight) to form a papillary duct that drains into the calyces via the ducts of Bellini.

The initial step in urine formation is the filtration of plasma. Each minute a liter of blood flows 

into the glomerular capillaries. About 150 to 250 liters of ultrafiltrate is formed per day provid-

ing an efficient mechanism for excretion of the continuously produced nitrogenous waste 

metabolites. The kidney has also a homeostatic role in regulating the volume and composi-

tion of body fluids that is the net result of discrete transport processes that occur in series 

along the length of individual nephrons and results in either diluted or concentrated urine. 

The composition of final urine encompasses three processes; glomerular filtration, tubular 

reabsorption and tubular secretion 17.

(A) Crystal formation (supersaturation, crystal nucleation, crystal growth and aggregation) 18-20.
As a direct result of the renal function of water preservation, urine becomes supersaturated 

with slightly soluble salts like calcium oxalate and –phosphates 21. Supersaturation is a thermo-

dynamically unstable state and occurs when the amount in solution of these salts exceeds the 

solubility 19. Supersaturation for calcium phosphate is first achieved in the loop of Henle, while 

that for calcium oxalate occurs in the distal tubules. Calcium phosphate dissolves again in 

later nephron segments as the fluid is acidified there and these dissolving calcium phosphate 

crystals act as heterogenous nucleator for calcium oxalate crystals formed in the distal tubule 
19. Crystal nucleation is a thermodynamically more stable state and depends on the supersatu-

ration level and the stability of the first nuclei 19. Thus, when supersaturation is high enough 

and lasts long enough or promoters are present, crystals nucleate in the urine and are excreted 

as crystalluria. Both types of nuclei may increase in size by growth and/or aggregation 20, 21.
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Figure 1.1
Functional anatomy of the nephron and the collecting duct system. The kidney comprises a large number of functional units called 

nephrons. They form two major anatomical regions: the outer region or cortex and the inner region or medulla. In the medulla an outer and 

inner zone can be distinguished of which the former can be subdivided in an outer stripe and an inner stripe, based on the different segments 

of the nephron present in each zone and subzone. The components of the nephron are depicted in the figure. Starting at the glomerulus (G), the 

proximal tubule consists of an initial convoluted part (PCT) (S1 and S2 segment) followed by a straight part (PST) (S3 segment). The transition 

from the proximal tubule to the thin descending limb is abrupt. After a hairpin loop, the thin descending limb continues in a thin ascending limb 

and, with an abrupt transition also, in a thick ascending limb (TAL). The latter, which is the straight part of the distal tubule, extends upwards 

into outer medulla and cortex towards the glomerulus of the same nephron. The following segment of the nephron, the distal convoluted tubule 

(DCT) extends into the connecting tubule (CNT), which is the transition region to the collecting duct (CD). The straight part of the proximal 

tubule, the thin limb and the straight part of the distal tubule form the “loop of Henle”. The figure shows one superficial, short-looped, nephron 

and one deep (or juxtamedullary), long-looped, nephron.

Adapted with permission from: Kriz & Bankir: Pflugers Arch, Volume 411(1).Jan 1988.113-120.
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Urine contains several compounds that have been investigated on their role on each of these 

processes of supersaturation, nucleation, crystal growth and aggregation, acting as either 

promoters or inhibitors of crystallization. For example, stone salts are at much higher con-

centrations soluble in urine than in water due to chelation (complexation) of calcium (eg, 

citrate) or oxalate (eg, magnesium) 19.Three groups of modulators of crystal formation in 

urine have been recognized; low molecular weight compounds like citrate, magnesium and 

pyrophosphate, high molecular weight compounds like glycosaminoglycans and proteins 

(Tamm-Horsfall protein, nephrocalcin, Inter-α-Inhibitor, osteopontin, urinary prothrombin 

fragment-1, etc) and lipids or cellular membranes 21. It is postulated that an imbalance be-

tween promoter and inhibitor activity could act as a causative mechanism in stone formation, 

but despite extensive studies none of the known urinary inhibitors, except for citrate 22, have 

been definitively proven to play a key role in calcium stone formation, or to have any clinical 

and therapeutic application 23.

(B) Crystal retention (‘free particle’ versus ‘fixed particle’ theory)
Kidney stones cannot be formed as long as crystals are washed away with the urine down-

stream the urinary tract. However, when crystals are retained in the kidney it becomes possible 

that crystals aggregate and become large enough to form a stone. Crystalluria is a physio

logical phenomenon in mammals whereas kidney stone formation is not 18, 19, 21, 24-26. Despite 

the fact that healthy people continuously form crystals in their kidneys, they do not develop 

stones. Robertson measured that up to 7,200 crystals/ml of urine, or approximately 1.1 x 107 

crystals/day, are being excreted 18, 26, 27. Apparently, additional mechanisms are required to 

initiate the stone-forming process. Crystal retention could result from crystal aggregates 

that became too large in size to freely pass the renal tubules (‘free particle’ theory), or from 

crystal binding to renal tubular epithelial cells (‘fixed particle’ theory) 28, 29. The likelihood of 

individual crystals growing large enough to be trapped within the measured urine transit 

time through the nephron of 3-4 minutes is very small 30. By 1978, Finlayson and Reid 28 had 

already proposed that some form of fixation is required for the accumulation of crystals in the 

kidney. This concept is in agreement with an earlier histological observation in renal tissue 

of a hyperoxaluric patient, which showed the attachment of relatively small calcium oxalate 

crystals to the renal tubular epithelium 31. Cell-culture studies have been performed to obtain 

insights into the susceptibility of the cell surface to crystal attachment, and to uncover cell-

surface crystal-binding molecules 32.
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1.5 Crystal-cell interaction in the pathogenesis of kidney stone 
disease

Khan et al. 33 were among the first to study crystal-cell interaction in animals. In the early 

1990s, both Wiessner et al. 34 and Lieske et al. 35 had started to study this topic in cell culture. 

Their studies, and those of others, have contributed considerably to the concept that the 

interaction between crystals and renal tubular cells plays a role in the pathophysiology of 

nephrolithiasis and that, under pathological conditions, renal tubular cells express cell-surface 

molecules that have an affinity for crystals (“crystal-binding molecules”) 32. These observations 

inspired several investigators to unmask the nature of these molecules. In the next section, 

the experiments that have led to the proposal of substances as crystal-binding molecule are 

described.

1.6 Crystal-binding molecules

Mandel’s group 34, 36 investigated the possible role of plasma-membrane phospholipids in the 

attachment of calcium oxalate monohydrate crystals to primary cultures of rat inner medul-

lary collecting duct (IMCD) cells and continuous cultures of IMCD (cIMCD) cells. Bigelow et al. 
37 induced alteration of the membrane-lipid composition of inner medullary collecting duct 

cells, by both exogenous addition of phospholipid liposome suspensions and by exposure to 

a calcium ionophore (A23187). Both methods revealed that the expression of phosphatidyl-

serine at the cell surface greatly enhanced crystal binding. The anionic phospholipid phos-

phatidylserine normally occurs exclusively in the inner leaflet of the lipid bilayer of the plasma 

membrane as a result of its inwardly directed transport, catalyzed by an energy-dependent 

aminophospholipid translocase. The levels of crystal binding were again low after treatment of 

phosphatidylserine-expressing cells with a phosphatidylserine-specific ligand (annexin V). On 

the basis of these observations, the authors proposed that crystal retention might be caused 

by the appearance, under pathological conditions, of phosphatidylserine at the surfaces of 

epithelial cells lining the collecting ducts. Recently, the group of Scheid 38 demonstrated that 

the same effects on phosphatidylserine exposure and crystal binding were observed after 

exposing wild-type Madin-Darby canine kidney (MDCK) cells to toxic oxalate concentrations.

In 1996, Lieske et al. 39 described the adherence of calcium oxalate monohydrate crystals to 

African green monkey renal epithelial (BSC-1) cells and wild-type MDCK cells. Crystal binding 

was reduced after preincubation of the cells with positively charged compounds, suggesting 

that crystals adhere to negatively charged cell surface components 39. Pretreatment of the 

crystals with these cationic compounds did not influence crystal binding, indicating that they 

affected the cell surface rather than the crystal surface. Since most of the cell-surface negative 
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charge is attributable to terminal sialic acid residues, these investigators subsequently studied 

the effect of sialidase (neuraminidase) on crystal binding. This treatment significantly reduced 

the binding of crystals. Pretreatment of the cells with sialic acid-specific lectins could also 

reduce crystal binding. Therefore, these authors proposed that crystals can bind to sialic acid. 

Next, the authors launched the concept that two populations of (poly)anions, one anchored 

to the apical plasma membrane and the other free in tubular fluid (e.g. proteins, glycosamino-

glycans, citrate), can be viewed as competitors for the crystal surface. Alterations in the quality 

and quantity of either population of anions could alter this competitive balance and thereby 

determine whether or not crystals bind to the renal tubular cell surface. Recently, Lieske 

demonstrated that neuraminidase and protease treatment of African green monkey renal 

epithelial (BSC-1) cells and cIMCD cells induced freshly nucleated calcium oxalate dihydrate 

crystals to adhere to the cell surface via the (100) face rather than the (001) face 40. From these 

observations, it was speculated that sialic-acid-containing cell surface glycoconjugates are 

critical determinants of face-specific crystal nucleation upon the renal cell surface. According 

to these authors, the spatial three-dimensional organization of these anionic sugar residues, 

rather than the amount of sialic acid, may enable their interaction with complementary atomic 

arrays on the crystal surface.

A number of investigators have focused on extracellular matrix molecules as potential crystal-

binding substances. Kohri et al. 41 observed that calcium oxalate crystals adhered to collagen 

type IV-positive cell clumps in primary cultures of rat IMCD cells, and that collagen IV-positive 

mucous threads with an affinity for crystals were present in urine sediments from patients with 

stones. These observations prompted Kohri et al. 41 to speculate that renal tubular basement 

membrane collagen IV is a potential crystal-binding molecule. Yamate et al. 42 explored the 

role of osteopontin in calcium oxalate monohydrate crystal binding to wild-type MDCK cells. 

The addition of osteopontin to MDCK cells resulted in increased crystal deposition on the cell 

surfaces. The fluorescence intensity of osteopontin at the cell surface could be reduced by 

osteopontin antibodies, thrombin, cyclic Arg-Gly-Asp (RGD) peptides and tunicamycin, and 

these compounds also reduced crystal binding. From these observations, it was proposed 

that osteopontin might serve as a crystal-binding molecule 42.

Besides sialic acid, glycosaminoglycans make a substantial contribution to the overall nega-

tive charge of the cell surface. These molecules have therefore frequently been postulated 

as potential crystal-binding molecules. Glycosaminoglycans such as chondroitin sulfate and 

heparan sulfate are the polysaccharide side-chains of cell-surface-associated glycoconjugates 

(e.g. proteoglycans and glycolipids). Crystal-binding studies by our group with MDCK strain I 

cells, a clone of wild-type MDCK cells, showed that calcium oxalate monohydrate crystal bind-

ing is much higher to proliferating cells in subconfluent cultures than to growth-arrested cells 

populating confluent monolayers 43. During the process of cell proliferation, crystal binding can 
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be reduced by chondroitinase ABC or testicular hyaluronidase, but not by heparinase III. There-

fore, chondroitin sulfate and/or hyaluronan, in contrast to heparan sulfate, could be involved 

in crystal binding. Since chondroitinase ABC and testicular hyaluronidase degrade chondroitin 

sulfate as well as hyaluronan, these studies were repeated with Streptomyces hyaluronidase, an 

enzyme that specifically digests hyaluronan. The results obtained were identical, which favored 

the view that hyaluronan is a crystal-binding molecule 43. Studies with purified hyaluronan pro-

vided evidence that calcium oxalate monohydrate crystals can actually bind to this polymer. 

Next, metabolic labeling studies revealed that the surface of subconfluent MDCK-I cultures 

contained much higher amounts of Streptomyces hyaluronidase-cleavable material than did 

confluent monolayers. In addition, hyaluronidase treatment significantly reduced crystal bind-

ing to subconfluent cultures, whereas it did not further affect the already low levels of binding 

to intact monolayers. Finally, confocal laser scanning microscopy revealed that hyaluronan is 

indeed expressed by crystal-attracting cells in subconfluent cultures but not by non-adherent 

confluent cells. After scrape-damage of intact monolayers, calcium oxalate monohydrate 

crystals selectively adhered to hyaluronan-expressing migrating and proliferating cells in the 

wound 44. These studies indisputably identified hyaluronan as a binding molecule for crystals 

at the surfaces of MDCK-I cells in locomotion (figure 1.2 and 1.3).

Figure 1.2
Pericellular matrices surrounding MDCK-I cells. In our confocal laser scanning microscopy images, hyaluronan is usually represented as a 

relatively thin line covering the cell surface. It should be noted, however, that the staining method requires cell fixation, and that during this 

process the pericellular matrix is dehydrated and collapses onto the cell surface. To visualize the pericellular matrix, we adopted the ‘particle 

exclusion assay’, described by Knudson et al., in which fixed red blood cells are added to living coat-bearing cells. This method is based on the 

inability of these particles to penetrate the viscous cell coats. This method gives a true impression of the size of these (otherwise invisible) cell 

coats viewed under a phase-contrast microscope.

From: Asselman & Verkoelen: Curr Opin Urol, Volume 12(4).July 2002.271-276.
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A recent study by Sorokina et al. 45 confirmed that intact, quiescent monolayers of well-differ-

entiated cultures of IMCD cells have little affinity for calcium oxalate monohydrate cultures, 

whereas proliferating cells populating subconfluent cultures or migrating cells in scraping 

areas of mature monolayers have a high affinity for crystal binding. Previously these authors 

isolated and identified a membrane glycoprotein related to nucleolin, designated nucleolin-

related protein (NRP), from rat IMCD cells as crystal binding molecule 46. The polarized distri-

bution and expression of NRP and cell differentiation was associated with crystal binding 45.

In MDCK-I cells another apical membrane glycoprotein with affinity for calcium oxalate 

monohydrate crystals was recently isolated and identified, namely annexin-II 47. Crystal bind-

ing could be decreased significantly by incubation with antibodies against annexin-II as well 

calcium oxalate crystal

hyaluronan enriched pericellular matrix

extracellular matrix, containing collagen IV 
and osteopontin

PSPSPS PS

SA

SA SA SA
SA

tubular fluid

terminal sialic acid residues (SA)

phosphatidylserine (PS)

Figure 1.3
Schematic representation of the relative size and localization of candidate crystal-binding molecules in relation to the sizes 
of the crystals and the diameter of the lumen of the distal tubule/collecting duct. The distal tubules/collecting ducts are the sites in 

the nephron where, considering the levels of calcium oxalate supersaturation, crystals are to be expected. According to the calculations made 

by Kok and Khan 29, the diameter of the lumen of the distal tubule/collecting duct is 20-60 µm. Spontaneous nucleated calcium oxalate crystals 

are depicted with an average size of 1-2 µm. This size could be underestimated, since crystals frequently form aggregated clumps interspersed 

with organic material. Although the sizes of the cells lining the renal tubules vary, an average height of approximately 10 µm is certainly not 

unrealistic. This illustration clearly shows the microscopic scale of sialic acid residues (SA) and phospholipids, such as phosphatidylserine (PS), in 

comparison to the crystal size and especially with respect to pericellular and extracellular matrix molecules.

From: Asselman & Verkoelen: Curr Opin Urol, Volume 12(4).July 2002.271-276.
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as nucleolin. The authors concluded that annexin-II expressed at the apical membrane of 

MDCK-I cells could serve as crystal-binding molecule, but they also suggested that multiple 

cell surface molecules mediate crystal adhesion since neither of these antibodies completely 

abolished crystal adhesion 47. Also in mouse IMCD-3 cells an increase in annexin A2 expression 

at the plasma membrane resulted in an increased crystal-binding capacity, which could be 

reduced by pretreatment with anti-annexin A2 antibodies 48.

1.7 Scope of the thesis

In summary, two major conclusions could be drawn from cell crystal-cell interaction experi-

ments that were performed by the group of Verkoelen et al.

1) It was found that MDCK-I cells in intact monolayers with high levels of transepithelial resis-

tance have no affinity for calcium oxalate crystals and crystals do not bind to their cell surface. 

In contrast, proliferating cells in subconfluent cultures and migrating/regenerating cells at the 

border of the wound of scrape-damaged cultures with low levels of transepithelial resistance 

have a high affinity for calciumoxalate crystals and crystals bind to the cell surface of these 

cells 44.

Hence, a different phenotype of mature, fully differentiated distal tubular cells as opposed to 

proliferating/regenerating dedifferentiating cells is accompanied by a different affinity of the 

cell surface for calcium oxalate crystals.

2) Next, it was found in MDCK-I cells in culture that the high molecular mass polysaccharide 

hyaluronan serves as crystal binding substance based on the following results: (a) crystals 

bind to hyaluronan-expressing cells at subconfluence but not to cells in confluent cultures 

that do no longer express hyaluronan; (b) metabolic labeling studies showed that the surface 

of proliferating cells contains substantially higher levels of radiolabeled hyaluronan; (c) crystal 

binding could be decreased by Streptomyces hyaluronidase, an enzyme that specifically di-

gests hyaluronan; and (d) during wound healing, hyaluronan-binding protein binds to migrat-

ing and proliferating flattened cells in damaged areas but not to cells in intact monolayers 43.

Subsequently the validity of these results was confirmed in primary cultures of human renal 

cells 49. Studies were repeated in primary cultures of human proximal (PTC) and distal tubular/

collecting duct cells (DTC) 49. Cells were susceptible to crystal binding during the first days 

post-seeding but lost this affinity when cultures developed into confluent monolayers with 

functional tight junctions. The transmembrane receptor protein CD44 and its ligands os-

teopontin and hyaluronan were expressed at the apical membrane of proliferating tubular 

cells, whereas at confluence, CD44 was expressed at the basolateral membrane and OPN and 
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hyaluronan were no longer detectable. In addition, a particle exclusion technique revealed 

that proliferating cells were surrounded by hyaluronan-rich pericellular matrices or “cell coats” 

extending several microns from the cell surface. Disintegration of these coats with hyaluroni-

dase significantly decreased the cell surface affinity for crystals. These results suggested (1) 

that the intact distal tubular epithelium of the human kidney does not bind crystals, and (2) 

that crystal retention in the human kidney may depend on the expression of CD44-, osteo-

pontin-, and hyaluronan rich cell coats by damaged distal tubular epithelium 49.

General aims of the present study were;

1.	To further explore hyaluronan biology in renal distal tubular epithelial cells in vitro.

2.	To study whether the conclusions drawn from these in vitro studies also apply to the in vivo 

situation (rat and human).

3.	To evaluate whether crystal binding to hyaluronan-expressing cells could be modulated.

Since studies with renal tubular cells in culture indicate that hyaluronan and osteopontin and 

their mutual cell surface receptor CD44 play an important role in calcium oxalate crystal bind-

ing during wound healing, this concept was investigated in vivo by treating rats for 1, 4, and 

8 days with ethylene glycol (0.5 and 0.75%) in their drinking water to induce renal tubular cell 

damage and calcium oxalate crystalluria (Chapter 2).

In Chapter 3 hyaluronan biology in renal epithelial cells was further studied to determine the 

polarized distribution of hyaluronan and its cell-surface receptor CD44 by MDCK-I cells.

All of these cell culture and rat studies indicate that crystal retention in the distal nephron is 

limited to proliferating/regenerating tubular cells expressing hyaluronan and osteopontin at 

their luminal surface. Fetal and transplant kidneys contain proliferating and/or regenerating 

cells since nephrogenesis is not completed until 36 weeks of gestation, while ischemia and 

nephrotoxic immunosuppressants may lead to injury and repair in renal transplants. In Chap-

ter 4 the expression of hyaluronan and osteopontin and the appearance of tubular calcifica-

tions in both human fetal/preterm and transplanted kidneys are described.

In Chapter 5 the effect of nonsteroidal anti-inflammatory drugs on calcium oxalate crystal 

binding by hyaluronan-expressing proliferating/regenerating renal tubular epithelial cells 

in culture was studied based on the hypothesis that hyaluronan synthesis is regulated by 

cyclooxygenase-induced prostaglandin E2 (PGE2) production.

In the general discussion (Chapter 6) the clinical relevance of these results will be discussed 

as well as treatment strategies and future studies and perspectives.



Chapter 1

24

1.8 References

	 1.	Moe OW. Kidney stones: Pathophysiology and medical management. Lancet. 2006;367:333-344
	 2.	Pak CY. Kidney stones. Lancet. 1998;351:1797-1801
	 3.	Stamatelou KK, Francis ME, Jones CA, Nyberg LM, Curhan GC. Time trends in reported prevalence of 

kidney stones in the united states: 1976-1994. Kidney Int. 2003;63:1817-1823
	 4.	Tiselius HG, Ackermann D, Alken P, Buck C, Conort P, Gallucci M, Knoll T. Guidelines on urolithiasis. 

European Association of Urology. Update June 2005:1-79
	 5.	Clark JY, Thompson IM, Optenberg SA. Economic impact of urolithiasis in the united states. J Urol. 

1995;154:2020-2024
	 6.	Straub M, Hautmann RE. Developments in stone prevention. Curr Opin Urol. 2005;15:119-126
	 7.	Tiselius HG. Epidemiology and medical management of stone disease. BJU Int. 2003;91:758-767
	 8.	Bihl G, Meyers A. Recurrent renal stone disease-advances in pathogenesis and clinical management. 

Lancet. 2001;358:651-656
	 9.	Pak CY, Poindexter JR, Adams-Huet B, Pearle MS. Predictive value of kidney stone composition in the 

detection of metabolic abnormalities. Am J Med. 2003;115:26-32
	 10.	Ansari MS, Gupta NP. Impact of socioeconomic status in etiology and management of urinary stone 

disease. Urol Int. 2003;70:255-261
	 11.	Maalouf NM, Sakhaee K, Parks JH, Coe FL, Adams-Huet B, Pak CY. Association of urinary ph with body 

weight in nephrolithiasis. Kidney Int. 2004;65:1422-1425
	 12.	Siener R, Glatz S, Nicolay C, Hesse A. The role of overweight and obesity in calcium oxalate stone 

formation. Obes Res. 2004;12:106-113
	 13.	Ramey SL, Franke WD, Shelley MC, 2nd. Relationship among risk factors for nephrolithiasis, cardiovas-

cular disease, and ethnicity: Focus on a law enforcement cohort. Aaohn J. 2004;52:116-121
	 14.	Maloney ME, Springhart WP, Ekeruo WO, Young MD, Enemchukwu CU, Preminger GM. Ethnic back-

ground has minimal impact on the etiology of nephrolithiasis. J Urol. 2005;173:2001-2004
	 15.	Pak CY, Resnick MI, Preminger GM. Ethnic and geographic diversity of stone disease. Urology. 

1997;50:504-507
	 16.	Pak CY. Medical management of urinary stone disease. Nephron Clin Pract. 2004;98:c49-53
	 17.	Masssry SG, Glassock RJ. Massry & glassock’s textbook of nephrology. 2001.
	 18.	Hess B, Kok DJ. Chapter 1: Nucleation, growth, and aggregation of stone-forming crystals. Kidney 

stones: Medical and surgical management, edited by f.L. Coe, m.J. Favus, c.Y.C. Pak, j.H. Park and g.M. 
Preminger. 1996.

	 19.	Kok DJ. Clinical implications of physicochemistry of stone formation. Endocrinol Metab Clin North Am. 
2002;31:855-867

	 20.	Kok DJ. Crystallization and stone formation inside the nephron. Scanning Microsc. 1996;10:471-484; 
discussion 484-476

	 21.	Khan SR, Kok DJ. Modulators of urinary stone formation. Front Biosci. 2004;9:1450-1482
	 22.	Kok DJ, Papapoulos SE, Bijvoet OL. Excessive crystal agglomeration with low citrate excretion in 

recurrent stone-formers. Lancet. 1986;1:1056-1058
	 23.	Marangella M, Bagnis C, Bruno M, Vitale C, Petrarulo M, Ramello A. Crystallization inhibitors in the 

pathophysiology and treatment of nephrolithiasis. Urol Int. 2004;72 Suppl 1:6-10
	 24.	Wesson JA, Ward MD. Role of crystal surface adhesion in kidney stone disease. Curr Opin Nephrol 

Hypertens. 2006;15:386-393
	 25.	Hess B, Ryall RL, Kavanagh JP, Khan SR, Kok DJ, Rodgers AL, Tiselius HG. Methods for measuring crys-

tallization in urolithiasis research: Why, how and when? Eur Urol. 2001;40:220-230
	 26.	Robertson WG, Peacock M, Nordin BE. Calcium crystalluria in recurrent renal-stone formers. Lancet. 

1969;2:21-24
	 27.	Robertson WG. A method for measuring calcium crystalluria. Clin Chim Acta. 1969;26:105-110



General introduction

25

	 28.	Finlayson B, Reid F. The expectation of free and fixed particles in urinary stone disease. Invest Urol. 
1978;15:442-448

	 29.	Kok DJ, Khan SR. Calcium oxalate nephrolithiasis, a free or fixed particle disease. Kidney Int. 
1994;46:847-854

	 30.	Robertson WG. Kidney models of calcium oxalate stone formation. Nephron Physiol. 2004;98:p21-30
	 31.	Morgenroth K, Jr., Backmann R, Blaschke R. [on the forms of calcium oxalate deposits in the human 

kidney in oxalosis] uber die formen der calciumoxalatablagerungen in der menschlichen niere bei 
oxalose. Beitr Pathol Anat. 1968;136:454-463

	 32.	Asselman M, Verkoelen CF. Crystal-cell interaction in the pathogenesis of kidney stone disease. Curr 
Opin Urol. 2002;12:271-276

	 33.	Khan SR, Finlayson B, Hackett RL. Experimental calcium oxalate nephrolithiasis in the rat. Role of the 
renal papilla. Am J Pathol. 1982;107:59-69

	 34.	Wiessner JH, Kleinman JG, Blumenthal SS, Garancis JC, Mandel GS, Mandel NS. Calcium oxalate crys-
tal interaction with rat renal inner papillary collecting tubule cells. J Urol. 1987;138:640-643

	 35.	Lieske JC, Walsh-Reitz MM, Toback FG. Calcium oxalate monohydrate crystals are endocytosed by 
renal epithelial cells and induce proliferation. Am J Physiol. 1992;262:F622-630

	 36.	Wiessner JH, Hasegawa AT, Hung LY, Mandel GS, Mandel NS. Mechanisms of calcium oxalate crystal 
attachment to injured renal collecting duct cells. Kidney Int. 2001;59:637-644

	 37.	Bigelow MW, Wiessner JH, Kleinman JG, Mandel NS. Surface exposure of phosphatidylserine increases 
calcium oxalate crystal attachment to imcd cells. Am J Physiol. 1997;272:F55-62

	 38.	Cao LC, Jonassen J, Honeyman TW, Scheid C. Oxalate-induced redistribution of phosphatidylserine in 
renal epithelial cells: Implications for kidney stone disease. Am J Nephrol. 2001;21:69-77

	 39.	Lieske JC, Leonard R, Swift H, Toback FG. Adhesion of calcium oxalate monohydrate crystals to an-
ionic sites on the surface of renal epithelial cells. Am J Physiol. 1996;270:F192-199

	 40.	Lieske JC, Toback FG, Deganello S. Sialic acid-containing glycoproteins on renal cells determine 
nucleation of calcium oxalate dihydrate crystals. Kidney Int. 2001;60:1784-1791

	 41.	Kohri K, Kodama M, Ishikawa Y, Katayama Y, Matsuda H, Imanishi M, Takada M, Katoh Y, Kataoka K, 
Akiyama T, et al. Immunofluorescent study on the interaction between collagen and calcium oxalate 
crystals in the renal tubules. Eur Urol. 1991;19:249-252

	 42.	Yamate T, Kohri K, Umekawa T, Konya E, Ishikawa Y, Iguchi M, Kurita T. Interaction between osteopon-
tin on madin darby canine kidney cell membrane and calcium oxalate crystal. Urol Int. 1999;62:81-86

	 43.	Verkoelen CF, Van Der Boom BG, Romijn JC. Identification of hyaluronan as a crystal-binding molecule 
at the surface of migrating and proliferating mdck cells. Kidney Int. 2000;58:1045-1054

	 44.	Verkoelen CF, van der Boom BG, Houtsmuller AB, Schroder FH, Romijn JC. Increased calcium ox-
alate monohydrate crystal binding to injured renal tubular epithelial cells in culture. Am J Physiol. 
1998;274:F958-965

	 45.	Sorokina EA, Wesson JA, Kleinman JG. An acidic peptide sequence of nucleolin-related protein can 
mediate the attachment of calcium oxalate to renal tubule cells. J Am Soc Nephrol. 2004;15:2057-
2065

	 46.	Sorokina EA, Kleinman JG. Cloning and preliminary characterization of a calcium-binding protein 
closely related to nucleolin on the apical surface of inner medullary collecting duct cells. J Biol Chem. 
1999;274:27491-27496

	 47.	Kumar V, Farell G, Deganello S, Lieske JC. Annexin ii is present on renal epithelial cells and binds 
calcium oxalate monohydrate crystals. J Am Soc Nephrol. 2003;14:289-297

	 48.	Carr G, Simmons NL, Sayer JA. Disruption of clc-5 leads to a redistribution of annexin a2 and promotes 
calcium crystal agglomeration in collecting duct epithelial cells. Cell Mol Life Sci. 2006;63:367-377

	 49.	Verhulst A, Asselman M, Persy VP, Schepers MS, Helbert MF, Verkoelen CF, De Broe ME. Crystal reten-
tion capacity of cells in the human nephron: Involvement of cd44 and its ligands hyaluronic acid and 
osteopontin in the transition of a crystal binding- into a nonadherent epithelium. J Am Soc Nephrol. 
2003;14:107-115





Chapter 2 

Calcium oxalate adherence to hyaluronan-, 
osteopontin-, and CD44-expressing injured/
regenerating tubular epithelial cells in rat kidneys

M. Asselman1, A. Verhulst2, M.E. de Broe2, and C.F. Verkoelen1

1. Department of Urology, Erasmus Medical Center Rotterdam, the Netherlands
2. Department of Nephrology-Hypertension, University of Antwerp, Belgium

Published in J Am Soc Nephrol. 2003;14:3155-3166



Chapter 2 

28

Abstract

Background
Retention of crystals in the kidney is an essential early step in renal stone formation. Studies 

with renal tubular cells in culture indicate that hyaluronan (HA) and osteopontin (OPN) and 

their mutual cell surface receptor CD44 play an important role in calcium oxalate (CaOx) crys-

tal binding during wound healing.

Methods
This concept was investigated in vivo by treating rats for 1, 4, and 8 d with ethylene glycol 

(0.5 and 0.75%) in their drinking water to induce renal tubular cell damage and CaOx crystal-

luria. Tubular injury was morphologically scored on periodic acid-Schiff–stained renal tissue 

sections and tissue repair assessed by immunohistochemical staining for proliferating cell 

nuclear antigen. CaOx crystals were visualized in periodic acid-Schiff–stained sections by po-

larized light microscopy, and renal calcium deposits were quantified with von Kossa staining. 

HA was visualized with HA-binding protein and OPN and CD44 immunohistochemically with 

specific antibodies and quantified with an image analyzer system.

Results
Already after 1 d of treatment, both concentrations of ethylene glycol induced hyperoxaluria 

and CaOx crystalluria. At this point, there was neither tubular injury nor crystal retention in 

the kidney, and expression of HA, OPN, and CD44 was comparable to untreated controls. After 

4 and 8 d of ethylene glycol, however, intratubular crystals were found adhered to injured/

regenerating (proliferating cell nuclear antigen positive) tubular epithelial cells, expressing 

HA, OPN, and CD44 at their luminal membrane.

Conclusion
In conclusion, the expression of HA, OPN, and CD44 by injured/regenerating tubular cells 

seems to play a role in retention of crystals in the rat kidney.
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Introduction

The development of kidney stones requires formation of crystals followed by their retention 

in the kidney 1. Crystal retention could be caused by adherence of crystals to the epithelial 

cells lining the renal tubules 2. Although many investigators recognized a role for renal tubu-

lar injury in the pathophysiology of nephrolithiasis, definite proof for this concept and the 

mechanisms involved are not yet available 3-7.

Most kidney stones are predominantly composed of precipitated calcium salts, the most com-

mon of which is calcium oxalate monohydrate 5. Studies with renal tubular epithelial cells in 

culture showed that confluent monolayers of distal tubule/collecting duct–like MDCK-I cells 

are nonadherent to calcium oxalate monohydrate crystals 8. In contrast, crystals bind to cells 

in subconfluent cultures and in confluent monolayers recovering from mechanical injury 9. 

The glycosaminoglycan hyaluronan (HA) was identified as a major crystal-binding molecule at 

the surface of MDCK-I cells 10 and of human renal tubular cells in primary culture 11. In addition, 

it was found that crystal-binding cells not only expressed HA at their apical surface but also 

osteopontin (OPN) and CD44 11.

HA is a high molecular mass polysaccharide (>106 Da), composed of linear polymers of a re-

peating disaccharide structure of alternating glucuronic acid and N-acetylglucosamine. In the 

kidney, HA is hardly detectable in the cortex but is abundantly present as the main component 

of the renal inner medullary interstitium 12. HA in the kidney is upregulated during various in-

flammatory disease states 13-17. OPN is a glycoprotein and is widely spread throughout organs 

and tissues, including the kidney. In the healthy kidney, OPN is confined to the distal parts of 

a subset of nephrons. During various types of inflammation, however, renal OPN is severely 

upregulated in most segments of the nephron 13, 14, 18-20. The transmembrane protein CD44 is a 

cell surface receptor for both HA and OPN 21, 22 and also is upregulated during inflammation in 

the kidney 13, 14. The present study was conducted to investigate whether in vivo renal tubular 

injury and HA, OPN, and CD44 expression are involved in crystal retention.

Materials and methods

Experimental Design
Male Wistar rats (300 to 350 g) were obtained from the Central Animal Breeding Center (Har-

lan, Zeist, the Netherlands) and divided into three groups (n = 9 each) receiving drinking water 

supplemented with 0, 0.5, or 0.75% (vol/vol) ethylene glycol (EG) for 1, 4, and 8 d. All animals 

had free access to standard chow. Twenty-four hours before the indicated times, rats were 

housed individually in metabolic cages to collect 24-h urine samples and to monitor fluid 
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intake. Urine samples were divided into portions of 5 ml, one portion of which was acidified 

with 100 µl of 1 M hydrochloric acid and stored at -20°C until analysis. Animals were sedated 

and killed; kidneys were extracted and decapsulated; and sagittal slices were immediately 

fixed in either methacarn (60% methanol, 30% chloroform, 10% acetic acid) or Dubosq-Brasil 

fixative (47% ethanol, 11.7% H2O, 23.5% formaldehyde, 17.6% acetic acid, and 4 mM picric 

acid) for 4 h, rinsed with 70% ethanol, and embedded in low-melting-point paraffin (52°C; 

BDH Laboratory Supplies, Poole, UK). Serum specimens were collected and frozen at -20°C 

until biochemical analysis. The experiments were approved by the local University Animal 

Committee and carried out in accordance with the Netherlands Experiments on Animals Act 

(1977) and the European Convention for the Protection of Vertebrate Animals Used for Experi-

mental Purposes (Strasbourg, March 18, 1986).

Urine and Serum Biochemistry
Urinary oxalate was determined in acidified urine portions with a quantitative enzymatic 

colorimetric assay (Sigma Diagnostics, Dei- senhofen, Germany). For determination of urinary 

citrate, the ultraviolet method with the test combination of Boehringer Mannheim (Darm-

stadt, Germany) was used. The concentrations of calcium in urine and bicarbonate, calcium, 

and creatinine in serum were determined on a routine autoanalyzer system (Vitros 750 XRC). 

Urine samples were centrifuged at 5000 x g, and sediments were inspected by optical and 

polarized light microscopy (Zeiss Axioplan microscope, Oberkochen, Germany).

Tubular Morphology
Methacarn-fixed, paraffin-embedded renal tissue sections (4 µm) were stained with periodic 

acid-Schiff (PAS), and nuclei were counterstained with methyl green. Histologic damage was 

evaluated with a morphologic scoring system (table 2.1) in proximal tubules (PT), thin limbs 

of Henle (TLH), distal tubules (DT; including thick ascending limbs [TAL]) and collecting ducts 

(CD). Tubules were morphologically inspected by a reproducible procedure, which comprised 

a random selection of the first tubular cross-section, followed by shifting the microscopic field 

over fixed distances according to a standardized pattern (x300 magnification). The cortex, 

outer stripe of the outer medulla (OSOM), inner stripe of the outer medulla (ISOM), and inner 

Table 2.1
Scoring system for the evaluation of tubular morphology of PT, TLH, DT (including TAL), and CD*.

Score PT TLH DT (TAL)/CD

0 Intact tubule with normal 
appearance

Intact tubule with normal 
appearance

Intact tubule with normal 
appearance

1 Tubule with luminal cell debris Tubule with luminal cell debris Tubule with luminal cell debris

2 Tubule with loss of brush border – Dilated tubule

3 Tubule with flattened cells – Tubule with flattened cells

*PT, proximal tubules; TLH, thin limbs of Henle; DT, distal tubules; TAL, thick ascending limbs; CD, collecting ducts.
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medulla of each kidney section were evaluated. In the cortex, PT (S1–S2) and DT were evalu-

ated (n = 50 and 25, respectively); in the OSOM, PT (S3) and DT (TAL) were evaluated (n = 50 

and 25, respectively); in the ISOM, TLH and DT (TAL) were evaluated (n = 25 each); and in the 

inner medulla, TLH and CD were evaluated (n = 25 each). PT and DT could be distinguished 

according to at least one of the following morphologic criteria: topographical localization, tu-

bular size and form, cytoplasmic density and position of the nuclei, and presence or absence 

of brush border and basolateral cell aspect. Tubules in the cortex and OSOM were scored as 

PT only when a brush border could be identified; if not, then they were scored as DT. In the 

ISOM and inner medulla, TLH could be distinguished from DT (TAL) and CD by tubular size and 

position of the nuclei.

Proliferation was determined by immunohistochemical staining for proliferating cell nuclear 

antigen (PCNA) using the PC10 mAb (DAKO, Glostrup, Denmark) as described previously 23. 

Routinely, sections were counterstained with PAS and nuclei were stained with methyl green. 

In a number of sections, PAS staining was omitted, allowing optimal visualization of crystals. 

Expression of PCNA was quantified morphometrically with an image analyzer system (KS-400 

V2.0 image analysis software) in the cortex + OSOM and ISOM + inner medulla, by measuring 

positive signals in 25 and 15 randomly chosen microscopic fields, respectively (x250 magnifi-

cation). Measurements were expressed as fractional positive area of the tissue section.

Crystal Retention
During the evaluation of tubular morphology, each tubule was additionally inspected by po-

larized light microscopy for the presence of crystals. In this way, crystal retention was assessed 

and sites of crystal location were correlated with tubular morphology.

Calcium deposits were also visualized by von Kossa staining. Deparaffinized Dubosq-Brasil–

fixed 4-µm tissue sections were incubated in 5% silver nitrate for 45 min. Slides were rinsed in 

water, incubated in 1% pyrogallic acid for 3 min, rinsed in water, fixed in 5% sodium thiosul-

fate for 1 min, and counterstained with hematoxylin and eosin. In each sagittal kidney section, 

calcium deposits were quantified by counting the total number of positive stained crystals in 

the cortex + OSOM and ISOM + inner medulla.

HA, OPN, and CD44 Expression
Renal tissue sections were stained for HA, OPN, and CD44 as described previously 11. Briefly, 

methacarn-fixed tissue sections were blocked with 1% BSA for HA and with normal horse 

serum for OPN and CD44 staining and incubated with primary labels (biotinylated HA-binding 

protein, Seikagaku, Falmouth, MD; goat anti-human OPN antibody, OP189, C.M. Giachelli, 

University of Washington; or mouse anti-human CD44 antibody, Bender MedSystems, Vienna, 

Austria). For OPN and CD44, sections were subsequently incubated with secondary labels, 
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biotinylated horse anti-goat and horse anti-mouse antibodies (Vector Laboratories, Burl-

ingame, CA), respectively. Finally, avidin-biotin peroxidase complex (Vector) and diaminoben-

zidine were used to detect HA, OPN, and CD44. Sections were counterstained with methyl 

green. No staining was observed when primary labels were omitted.

Expression of HA, OPN, and CD44 was quantified morphometrically with KS-400 V2.0 image 

analysis software in the cortex and OSOM, by measuring positive signals in 10 and six randomly 

chosen microscopic fields, respectively (x200 magnification). Measurements were expressed 

as fractional positive area of the tissue section. OPN and CD44 were also quantified in the re-

maining part of the medulla, by analyzing six randomly chosen microscopic fields of the ISOM 

and inner medulla. HA was not quantified in this region, because the well known abundant 

amount of HA in the interstitium of the inner medulla stains nearly the entire tissue 12.

Statistical Analyses
Data are expressed as mean ± SEM. P < 0.05 was considered to be significant, using t test. 

Correlation analysis between total tubular PCNA expression per sagittal kidney section and 

the total amount of positive von Kossa renal calcium deposits per sagittal kidney section in 

individual rats was performed by the nonparametric Spearman’s rank order test. P < 0.01 was 

considered significant (two-tailed). Computations were performed using SPSS version 10.

Results

Urine and Serum Biochemistry
In the control group, the average urinary oxalate and calcium excretion was 0.95 ± 0.05 and 

3.24 ± 0.79 mg/24 h, respectively (figure 2.1), and the urinary sediment did not contain crys-

tals (figure 2.2 A). Administration of 0.5 and 0.75% EG to the drinking water induced within 24 

h a significant concentration-dependent hyperoxaluria (4.37 ± 1.71 and 7.78 ± 4.46 mg/24 h, 

respectively). In the 0.5% EG group, oxalate gradually increased further to reach its maximum 

level at day 8, whereas in the 0.75% EG group, urinary oxalate reached its maximum level al-

ready at day 4. Urinary calcium was decreased at day 1 and was undetectable at day 4 and day 

8 (figure 2.1). At day 1, calcium oxalate crystals were observed in urinary sediments of both 

EG groups (figure 2.2 B). Oxalate was determined in acidified urine portions, which dissolves 

crystals and therefore represents the total amount of oxalate, including oxalate precipitated 

with calcium. Because calcium was determined in urine that was not acidified, it represents 

the amount of free calcium ions. Thus, the decreased amounts of urinary calcium apparently 

resulted from the formation of CaOx crystals.
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In the 0.5% EG group at day 8 and in the 0.75% EG group at days 4 and 8, increased diuresis 

and fluid intake were observed compared with controls. Thus, the addition of EG led to polyu-

ria, which may be secondary to the osmotic effect of EG excreted in the urine unchanged 24 

or simply because these rats drank more water (figure 2.1). There was no increase in serum 
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Figure 2.1
Urine- and serum biochemical analysis, urine production, and fluid intake. Statistical analysis by t test. *Significantly different 

compared with controls at the same point in time (P < 0.05).
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creatinine, except for a slight increase in the low-dose EG at day 8, indicating that renal 

function was preserved in these rats. These biochemistry data are in accordance with earlier 

observations in rats treated with EG 25.

EG caused a metabolic acidosis, as can be derived from the concentration-dependent de-

crease in urinary citrate after 4 d. This metabolic acidosis was relatively mild, however, as 

serum bicarbonate and calcium were not affected and a compensatory homeostatic response 

seemed to normalize urinary citrate after continued EG challenge (figure 2.1).

Tubular Morphology
The relatively low concentrations of EG in the present study did not result in frank necrosis 

but in mild changes in tubular morphology. At day 1, tubular morphology was comparable to 

controls, but at days 4 and 8, different degrees of injury/regeneration were found in tubules 

(figure 2.3). PT of the OSOM (S3) and, to a lesser extent, PT in the cortex (S1–S2) suffered the 

most morphologic damage, for the most part with loss of brush border (score 2). Tubules with 

flattened cells (score 3) were also observed, predominantly in DT (TAL) of the OSOM. Because 

a tubule with flattened cells was scored only as PT if there was still brush border recognizable, 

the number of PT with score 3 could actually have been higher. In TLH and CD at days 4 and 

8, increased amounts of luminal cell debris (score 1) were observed, but the majority of these 

tubules had a normal morphology (score 0). Importantly, cell debris in the tubular lumen in 

the distal nephron could also have been derived from an “upstream” section of the nephron, 

and the tubule concerned could actually have been completely healthy.

At day 1, PCNA staining was comparable to control kidneys, in which tubular expression of 

this protein was sparse (figure 2.4 A), whereas at days 4 and 8, PCNA staining was clearly 

upregulated in tubules in rats that received EG (figure 2.4 B).

 

A B

Figure 2.2
Urinary sediment inspected by polarized light microscopy of a control rat (A) and a 0.5% ethylene glycol (EG)-treated rat (B) after 
1 d. (A) Some debris was observed, but no urinary crystalline material. (B) Numerous urinary calcium oxalate crystals in the EG-treated rat are 

clearly visible. Magnification, x400.
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Crystal Retention
No crystals were found in control rat kidneys (figure 2.5). After 1 d of 0.5 and 0.75% EG, no 

crystals were observed by polarized light microscopy, consistent with a marginal amount of 

 

 

 

 

Figure 2.3
Evaluation of tubular morphology with the scoring system of table 2.1 in proximal tubules (PT), thin limbs of Henle (TLH), distal 
tubules (DT; including thick ascending limbs [TAL]), and collecting ducts (CD 0 = intact tubule with normal appearance, 1 = tubule with 

luminal cell debris, 2 = PT: tubule with loss of brush border/DT (TAL) and CD: dilated tubule, 3 = tubule with flattened cells).
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positive von Kossa signals. At days 4 and 8, however, an increasing number of crystals were 

found attached to the luminal membrane of tubular epithelial cells, corresponding with a 

markedly increased number of positive von Kossa signals (figure 2.5). Crystals were smaller in 

size than the tubular lumen and not seen intracellularly or in the interstitium.

 

A B

C D

Figure 2.4
Proliferating cell nuclear antigen (PCNA) staining in a kidney of a control rat (A) and of a rat that received 0.75% EG for 8 d (B 
through D). In D, periodic acid-Schiff (PAS) counterstaining was omitted. (A) Sparse PCNA staining, mainly present in the interstitium and 

glomeruli in a control rat. (B) Strongly upregulated PCNA in the tubules of an EG-treated rat. (C and D) Crystals associated with PCNA-positive, 

flattened cells. Magnifications: x400 in A, x200 in B, x630 in C and D. Color image: see appendix page 147.

 

Figure 2.5
Quantification of renal calcium deposits on von Kossa–stained tissue sections.



Crystal retention in injured rat kidneys

37

In figure 2.6, retention of crystals and tubular morphology is plotted in a graph. In PT, DT (TAL), 

and CD, crystals were not observed in histologic normal tubules (score 0) or tubules with lu-

minal cell debris (score 1). Crystals were found adhered to tubular cells in PT with loss of brush 

border and DT (TAL) and CD with dilation of the tubular lumen (score 2), and in tubules with 

flattened cells (score 3). Crystals were not observed in TLH (data not shown). Figure 2.7 shows 

a DT with small crystals at the luminal membrane of flattened tubular epithelial cells (score 3). 

Furthermore, these flattened cells were PCNA positive, proliferating cells (figure 2.4, C and D). 

Approximately 93% of the observed crystals in PCNA-stained renal tissue sections were found 

to be adhered to PCNA-positive cells.

Correlation analysis was performed between the total amount of tubular PCNA expression and 

the amount of positive von Kossa calcium deposits in sagittal kidney sections of individual rats 

 

Figure 2.6
Retention of crystals in relation to tubular morphology. In PT, DT (including TAL), and CD, crystals were not observed in tubules with score 

0 (normal appearance) or score 1 (luminal cell debris). Crystals were exclusively retained at the luminal surface of tubular cells in PT, DT, and CD 

with score 2 (loss of brush border in PT and dilated tubules in DT and CD) and score 3 (tubules with flattened cells).

 

A B

Figure 2.7
PAS and methyl green–stained renal tissue section of a rat treated with 0.75% EG for 4 d by optical (A) or polarized (B) light 
microscopy. (A) A dilated DT is shown with flattened epithelial cells (score 3). (B) In the lumen of this DT, crystals that are smaller than the 

tubular lumen are clearly visible and located at the luminal side of the injured/regenerating flattened epithelium. Magnification, x1000.  Color 

image: see appendix page 147.
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(figure 2.8). Tubular cell regeneration was associated with crystal adhesion/retention (Spear-

man’s Rho = 0.819; P < 0.0001).

HA, OPN, and CD44 Expression
HA in the cortex and OSOM of control rats was scarcely observed in the interstitium and 

around a few glomerular capsules. After 1 d, HA expression in EG-treated rats was compa-

rable to controls (figure 2.9). After 4 and 8 d, however, HA was upregulated in a focal pattern 

throughout the cortex and OSOM of EG-treated rats (figure 2.9), primarily in the interstitium 

but also at the luminal membrane of tubular cells (figure 2.10 A). Strikingly, in the majority of 

cases, crystals were found at the luminal surface of HA-expressing cells (figure 2.10 A).

OPN was expressed in a limited number of distal tubular epithelial cells of control rats. After 1 d 

of EG, OPN expression was not different from controls, except for a small increase in the OSOM 

of the moderate-dose EG group (figure 2.9). At days 4 and 8, however, OPN was significantly 

upregulated in the kidneys of EG-treated rats (figure 2.9). Both PT and DT showed a rise in OPN 

immunostaining (figure 2.10, B and C). The classical OPN expression pattern was observed, with 

Golgi apparatus immunostaining in PT and at the apical membrane in DT, allowing differentia-

tion between PT and DT (previously described after renal ischemia/reperfusion) 19, 26. Crystals 

were retained in apical OPN-expressing DT. Crystals were positive for OPN, which was evident by 

comparison between optical and polarized light microscopy (figure 2.10, B and C).

CD44 was hardly expressed in the rat kidney, except for some interstitial cells and glomeruli. 

After 1 d of EG, CD44 expression was not significantly different from controls (figure 2.9). After 

4 and 8 d of EG, however, CD44 in the cortex, OSOM, and medulla was markedly upregulated 

(figure 2.9). CD44 expression was prominent in a focal pattern along basolateral and apical 

 
Figure 2.8
Correlation analysis was performed between the total amount of tubular PCNA expression and the amount of positive von Kossa 
calcium deposits in sagittal kidney sections of individual rats (Spearman’s Rho = 0.819, P < 0.0001).
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tubular cell membranes (figure 2.10 D). Crystals were observed frequently closely at sites 

where cells expressed CD44 at their luminal membrane (figure 2.10 D).

Discussion

In the present study, we investigated the role of HA, OPN, and CD44 in retention of crystals 

in renal tubules damaged by EG. The EG model is extremely suitable for this purpose since 

this agent not only is toxic to the nephron but also generates urinary CaOx crystals 25, 27-30. For 

investigating the earliest events involved in crystal retention, these studies were performed 

shortly (1, 4, and 8 d) after the addition of EG to the drinking water and at relatively low con-

centrations to avoid massive tissue damage. One of the major findings was that there is no 

Figure 2.9
Quantification of renal hyaluronan (HA) expression using computerized image analysis software (KS400). Data are expressed as 

fractional positive area (%). Statistical analysis by t test. *Significantly increased compared with controls at the same point in time (P < 0.05).
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Figure 2.9
Quantification of renal osteopontin (OPN) expression using computerized image analysis software (KS400). Data are expressed as 

fractional positive area (%). Statistical analysis by t test. *Significantly increased compared with controls at the same point in time (P < 0.05).
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Figure 2.9
Quantification of renal CD44 expression using computerized image analysis software (KS400). Data are expressed as fractional 

positive area (%). Statistical analysis by t test. *Significantly increased compared with controls at the same point in time (P < 0.05).
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crystal retention in the absence of tubular injury/regeneration but that crystals are retained 

as soon as renal tubules are injured/regenerating. Crystals were found adhered to the luminal 

surface of HA-, OPN-, and CD44-expressing injured/regenerating cells. The results of this study 

therefore strongly suggest that crystal retention in the kidney requires tubular epithelial in-

jury accompanied by luminal expression of HA, OPN, and CD44.

EG, which itself is not nephrotoxic, is metabolized in the liver to several intermediates, including 

glycoaldehyde, glycolate, glyoxylate, and oxalate 27. It is still a matter of debate which of these 

metabolites are responsible for the damage to renal tubular cells 28, 29. Oxalate precipitates as 

CaOx in the primary urine as a result of its poor solubility. The nephrotoxic effect of EG has also 

been attributed to these crystals 25, 31. However, autopsy and renal biopsy studies in humans 

  

  

A

C

B

D
 

Figure 2.10
(A) The outer stripe of the outer medulla (OSOM) stained for HA of a rat with 0.75% EG in the drinking water for 8 d. HA is 

upregulated in the interstitium as well as at the apical membrane of tubular epithelial cells. A crystal is shown close to cells that express HA 

at their luminal membrane. (B and C) The OSOM stained for OPN after 8 d of 0.75% EG, showing increased typical Golgi apparatus 

immunostaining in PT and at the apical cell membrane in DT. (C) Crystals visualized with polarized light microscopy. Retained crystals stained for 

OPN are smaller than the tubular lumen and closely associated with apical OPN-expressing epithelium. (D) The cortex stained for CD44 after 
8 d of 0.75% EG. CD44 is upregulated at basolateral and apical tubular cell membranes. Polarized light microscopy shows birefringent crystals 

in the lumen of a tubule closely associated with the surface of flattened cells positive for CD44. Magnification, x1000. Color image: see appendix 

page 148.
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did not support the concept that crystals are the primary cause of EG toxicity 27. Considering 

this controversy, it is impossible in the present study to distinguish between crystals binding 

to injured/regenerating cells and the alternative explanation that crystal deposition causes 

cell injury (and consequently cells bind crystals). Crystals did not seem to be retained because 

of their size, because no crystal aggregates occluding the tubular lumen were observed, but 

crystals were generally smaller (figures 2.4, C and D, 2.7, A and B, and 2.10, A, B, C, and D).

In urolithiasis research, animals are usually treated with relatively high concentrations of EG 

for several weeks 25, 30, 31. Also in these studies, crystals are retained in tubules that are clearly 

injured 25, 31, 32. In the present study, the short period of treatment (1 to 8 d) with relatively low 

concentrations of EG did not result in frank necrosis or cast formation but in a mild form of in-

jury/regeneration. Renal tubular injury was morphologically scored (see table 2.1), and PCNA 

was used to assess cell proliferation. PCNA is an auxiliary protein for DNA polymerase δ and 

required for both DNA replication and DNA repair. In proliferating cells, it is upregulated in 

cell nuclei mainly during the S-phase (DNA synthesis phase) of the cell cycle 33. Consequently, 

it is widely used as a marker for proliferating cells. Immunohistochemical PCNA staining is a 

validated method for evaluating epithelial regeneration of the kidney after renal damage 23. 

It is well known that in the kidney, tubular cell injury and regeneration occur concurrently 23. 

Hence, the flattened, PCNA-positive tubular cells after 4 and 8 d of EG treatment (figure 2.4 B) 

are dedifferentiated proliferating cells.

HA is a high molecular mass polysaccharide found in many tissues, where it performs a great 

range of biologic functions 34, 35. In the kidney, HA is normally not expressed at the luminal 

surface of tubular cells and is present only in the medullary interstitium, where it provides 

structural stability to the tubules and contributes to concentrating the urine 12. HA expression 

in the renal cortex is upregulated in renal inflammatory diseases such as interstitial nephritis 
13, acute ischemic injury 14, 17, autoimmune renal injury 15, and acutely rejecting human kidney 

grafts 16. HA accumulates in wounded tissue shortly after injury to form loose hydrated matri-

ces that allow cell division and migration 36, 37. During recent years, we searched extensively 

for crystal-binding molecules at the surface of renal tubular cells in culture 10, 11, 38, 39. HA was 

identified as major crystal-binding substance, based on the following results: (1) crystals bind 

to HA-expressing cells at subconfluence but not to cells in confluent cultures that do no lon-

ger express HA; (2) metabolic labeling studies showed that the surface of proliferating cells 

contains substantially higher levels of radiolabeled HA; (3) crystal binding could be decreased 

by Streptomyces hyaluronidase, an enzyme that specifically digests HA; and (4) during wound 

healing, HA-binding protein binds to migrating and proliferating flattened cells in damaged 

areas but not to cells in intact monolayers 10. The co-localization of intraluminal CaOx crystals 

with HA-expressing tubular cells in the present study suggests for the first time, to our knowl-

edge, a role for HA in crystal retention in vivo.
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The glycoprotein OPN is widely distributed in the body and has been implicated in several 

physiologic and pathologic processes, including cell adhesion, migration, signaling, inflam-

mation, and biomineralization 18, 40, 41. In the kidney, the expression of OPN is upregulated dur-

ing renal injury 18, 19, 42, including induced by EG 31. The role of OPN under these circumstances 

is unclear, but OPN seems to be involved in mediating macrophage accumulation and inter-

stitial fibrosis 18, 43. The role of OPN in urolithiasis is controversial. OPN has been proposed as 

an inhibitor of crystal formation and retention but also as a promoter of crystal retention 44-46. 

Recently, crystal retention was studied in OPN knockout and wild-type mice treated with EG 
44. Noticeably, after 4 wk of treatment with 1% EG, no crystals were retained in wild-type mice, 

whereas some crystal retention was observed in the kidneys of OPN knockouts (14.3 ± 3 von 

Kossa signals per sagittal kidney section). From these observations, the authors concluded 

that OPN protects the kidney from crystal formation and retention. However, the crystal reten-

tion inhibitor function of OPN seems to be ineffective in the present study, because crystals 

covered with OPN but smaller in size than the tubular lumen became firmly associated with 

the cell surface (figure 2.10, B and C). This is in agreement with a previous study, in which it 

was demonstrated that urinary inhibitors of crystallization were unable to prevent the attach-

ment of crystals to regenerating renal tubular cells 47. Consequently, possibly because of the 

differences in species and study designs between the present study and the one performed 

by Wesson et al. 44, the role of OPN remains controversial.

CD44 is a ubiquitous transmembrane glycoprotein that is involved in many processes includ-

ing inflammation 48. CD44 serves as cell surface receptor for both HA and OPN 21, 22. In fact, the 

biologic activity of HA and OPN predominantly depends on their interaction with CD44 49-51. In 

the kidney, the expression of CD44 is highly upregulated during various renal disease states 
13, 14. Hence, it is not surprising that an upregulated expression of CD44 in the renal tubules is 

accompanied by an increased expression of its ligands HA and OPN. Reports of the role of CD44 

in renal stone formation are scarce. In cell culture, it was found that CD44 is expressed at the 

luminal surface of crystal-binding renal tubular cells but not on that of cells without affinity for 

crystals 11. In the present study, crystals were also retained at sites where cells expressed CD44. 

In our opinion, crystals are not likely to become associated with CD44 but rather with HA and/

or OPN.

The present study supports in vivo for the first time the concept that crystal retention is as-

sociated with HA expressed at the luminal surface of injured/regenerating cells. However, 

we cannot rule out the importance of other crystal-binding molecules, including sialic acid–

containing glycoproteins 52, phosphatidyl serine 53, collagen 54, and nucleolin-related protein 
55. Furthermore, several other macromolecules have been implicated in CaOx crystallization 

and retention 56, including inter-α inhibitor–related proteins 32 such as bikunin 57 and pro-

thrombin fragment 1 58. Although in the present study we focused on HA, OPN, and CD44, 



Crystal retention in injured rat kidneys

45

the interrelationship between these and other molecules as part of complex cell biologic 

pathways in the pathophysiology of kidney stone disease remains to be determined 2.

Although the expression of HA, OPN, and CD44 by injured/regenerating tubular epithelial cells 

most likely is aimed to reestablishment of the epithelial barrier integrity and restoration of renal 

 
Figure 2.11
Paradigm of crystal retention. A schematic representation of a cross-section of a distal tubule is shown. (A) Under normal conditions, crystals 

do not bind to renal tubular epithelial cells and are harmlessly excreted in the urine. (B) Crystal retention is preceded by a stressor injuring 

the epithelium. (C) During the process of tubular epithelial regeneration and repair, flattened epithelial cells express HA, OPN, and CD44 at 

their apical membrane. HA is a cell surface crystal-binding molecule. Because these regenerating dedifferentiated tubular epithelial cells are 

susceptible to crystal binding, crystal retention may ensue.
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function, a negative side effect could be that it turns a non–crystal-binding epithelium into a 

crystal-binding one, thereby setting the stage for crystal retention (figure 2.11). The clinical rel-

evance of this concept was recently reinforced by observations in kidneys of preterm neonates, 

in which the development of nephrocalcinosis is common, showing that HA and OPN are abun-

dantly expressed at the luminal membrane of proliferating tubular cells (unpublished results).

Conclusion

In conclusion, the results obtained in this study support the concept that the expression of 

HA, OPN, and CD44 by injured/regenerating tubular cells is a prerequisite for retention of 

crystals in the kidney.

References

	 1.	Finlayson B, Reid F. The expectation of free and fixed particles in urinary stone disease. Invest Urol. 
1978;15:442-448

	 2.	Asselman M, Verkoelen CF. Crystal-cell interaction in the pathogenesis of kidney stone disease. Curr 
Opin Urol. 2002;12:271-276

	 3.	King JS, Jr. Etiologic factors involved in urolithiasis: a review of recent research. J Urol. 1967;97:583-
591

	 4.	Khan SR, Shevock PN, Hackett RL. Acute hyperoxaluria, renal injury and calcium oxalate urolithiasis. J 
Urol. 1992;147:226-230

	 5.	Mandel N. Mechanism of stone formation. Semin Nephrol. 1996;16:364-374
	 6.	Baggio B, Gambaro G, Ossi E, Favaro S, Borsatti A. Increased urinary excretion of renal enzymes in 

idiopathic calcium oxalate nephrolithiasis. J Urol. 1983;129:1161-1162
	 7.	Kumar S, Sigmon D, Miller T, Carpenter B, Khan S, Malhotra R, Scheid C, Menon M. A new model of 

nephrolithiasis involving tubular dysfunction/injury. J Urol. 1991;146:1384-1389
	 8.	Verkoelen CF, van der Boom BG, Kok DJ, Houtsmuller AB, Visser P, Schroder FH, Romijn JC. Cell 

type-specific acquired protection from crystal adherence by renal tubule cells in culture. Kidney Int. 
1999;55:1426-1433

	 9.	Verkoelen CF, van der Boom BG, Houtsmuller AB, Schroder FH, Romijn JC. Increased calcium ox-
alate monohydrate crystal binding to injured renal tubular epithelial cells in culture. Am J Physiol. 
1998;274:F958-965

	 10.	Verkoelen CF, Van Der Boom BG, Romijn JC. Identification of hyaluronan as a crystal-binding molecule 
at the surface of migrating and proliferating MDCK cells. Kidney Int. 2000;58:1045-1054

	 11.	Verhulst A, Asselman M, Persy VP, Schepers MS, Helbert MF, Verkoelen CF, De Broe ME. Crystal reten-
tion capacity of cells in the human nephron: involvement of CD44 and its ligands hyaluronic acid and 
osteopontin in the transition of a crystal binding- into a nonadherent epithelium. J Am Soc Nephrol. 
2003;14:107-115

	 12.	Knepper MA, Saidel GM, Hascall VC, Dwyer T. Concentration of solutes in the renal inner medulla: 
interstitial hyaluronan as a mechano-osmotic transducer. Am J Physiol Renal Physiol. 2003;284:F433-
446

	 13.	Sibalic V, Fan X, Loffing J, Wuthrich RP. Upregulated renal tubular CD44, hyaluronan, and osteopontin 
in kdkd mice with interstitial nephritis. Nephrol Dial Transplant. 1997;12:1344-1353



Crystal retention in injured rat kidneys

47

	 14.	Lewington AJ, Padanilam BJ, Martin DR, Hammerman MR. Expression of CD44 in kidney after acute 
ischemic injury in rats. Am J Physiol Regul Integr Comp Physiol. 2000;278:R247-254

	 15.	Feusi E, Sun L, Sibalic A, Beck-Schimmer B, Oertli B, Wuthrich RP. Enhanced hyaluronan synthesis in 
the MRL-Fas(lpr) kidney: role of cytokines. Nephron. 1999;83:66-73

	 16.	Wells A, Larsson E, Hanas E, Laurent T, Hallgren R, Tufveson G. Increased hyaluronan in acutely reject-
ing human kidney grafts. Transplantation. 1993;55:1346-1349

	 17.	Johnsson C, Tufveson G, Wahlberg J, Hallgren R. Experimentally-induced warm renal ischemia in-
duces cortical accumulation of hyaluronan in the kidney. Kidney Int. 1996;50:1224-1229

	 18.	Xie Y, Sakatsume M, Nishi S, Narita I, Arakawa M, Gejyo F. Expression, roles, receptors, and regulation 
of osteopontin in the kidney. Kidney Int. 2001;60:1645-1657

	 19.	Persy VP, Verstrepen WA, Ysebaert DK, De Greef KE, De Broe ME. Differences in osteopontin up-regu-
lation between proximal and distal tubules after renal ischemia/reperfusion. Kidney Int. 1999;56:601-
611

	 20.	Xie Y, Nishi S, Iguchi S, Imai N, Sakatsume M, Saito A, Ikegame M, Iino N, Shimada H, Ueno M, Ka-
washima H, Arakawa M, Gejyo F. Expression of osteopontin in gentamicin-induced acute tubular 
necrosis and its recovery process. Kidney Int. 2001;59:959-974

	 21.	Aruffo A, Stamenkovic I, Melnick M, Underhill CB, Seed B. CD44 is the principal cell surface receptor 
for hyaluronate. Cell. 1990;61:1303-1313

	 22.	Weber GF, Ashkar S, Glimcher MJ, Cantor H. Receptor-ligand interaction between CD44 and osteo-
pontin (Eta-1). Science. 1996;271:509-512

	 23.	Nouwen EJ, Verstrepen WA, Buyssens N, Zhu MQ, De Broe ME. Hyperplasia, hypertrophy, and phe-
notypic alterations in the distal nephron after acute proximal tubular injury in the rat. Lab Invest. 
1994;70:479-493

	 24.	Hewlett TP, Jacobsen D, Collins TD, McMartin KE. Ethylene glycol and glycolate kinetics in rats and 
dogs. Vet Hum Toxicol. 1989;31:116-120

	 25.	Khan SR. Animal model of calcium oxalate nephrolithiasis. In: Khan SR, ed. Calcium oxalate in biologi-
cal systems. Boca Raton, FL: CRC Press; 1995:343-359.

	 26.	Verhulst A, Persy VP, Van Rompay AR, Verstrepen WA, Helbert MF, De Broe ME. Osteopontin synthesis 
and localization along the human nephron. J Am Soc Nephrol. 2002;13:1210-1218

	 27.	Schrier RW. Ethylene glycol toxicity. In: Diseases of the Kidney and Urinary Tract. 2001:pp 1316-1326
	 28.	Poldelski V, Johnson A, Wright S, Rosa VD, Zager RA. Ethylene glycol-mediated tubular injury: identi-

fication of critical metabolites and injury pathways. Am J Kidney Dis. 2001;38:339-348
	 29.	Roberts JA, Seibold HR. Ethylene glycol toxicity in the monkey. Toxicol Appl Pharmacol. 1969;15:624-

631
	 30.	Lyon ES, Borden TA, Vermeulen CW. Experimental oxalate lithiasis produced with ethylene glycol. 

Invest Urol. 1966;4:143-151
	 31.	Khan SR, Johnson JM, Peck AB, Cornelius JG, Glenton PA. Expression of osteopontin in rat kidneys: in-

duction during ethylene glycol induced calcium oxalate nephrolithiasis. J Urol. 2002;168:1173-1181
	 32.	Moriyama MT, Glenton PA, Khan SR. Expression of inter-alpha inhibitor related proteins in kidneys 

and urine of hyperoxaluric rats. J Urol. 2001;165:1687-1692
	 33.	Kelman Z. PCNA: structure, functions and interactions. Oncogene. 1997;14:629-640
	 34.	Tammi MI, Day AJ, Turley EA. Hyaluronan and homeostasis: a balancing act. J Biol Chem. 2002;277:4581-

4584
	 35.	Toole BP, Wight TN, Tammi MI. Hyaluronan-cell interactions in cancer and vascular disease. J Biol 

Chem. 2002;277:4593-4596
	 36.	Noble PW. Hyaluronan and its catabolic products in tissue injury and repair. Matrix Biol. 2002;21:25-

29
	 37.	Chen WY, Grant ME, Schor AM, Schor SL. Differences between adult and foetal fibroblasts in the regu-

lation of hyaluronate synthesis: correlation with migratory activity. J Cell Sci. 1989;94 (Pt 3):577-584



Chapter 2 

48

	 38.	Verkoelen CF, Van Der Boom BG, Kok DJ, Schroder FH, Romijn JC. Attachment sites for particles in the 
urinary tract. J Am Soc Nephrol. 1999;10 Suppl 14:S430-435

	 39.	Verkoelen CF, van der Boom BG, Kok DJ, Romijn JC. Sialic acid and crystal binding. Kidney Int. 
2000;57:1072-1082

	 40.	Hudkins KL, Giachelli CM, Cui Y, Couser WG, Johnson RJ, Alpers CE. Osteopontin expression in fetal 
and mature human kidney. J Am Soc Nephrol. 1999;10:444-457

	 41.	Mazzali M, Kipari T, Ophascharoensuk V, Wesson JA, Johnson R, Hughes J. Osteopontin--a molecule 
for all seasons. Qjm. 2002;95:3-13

	 42.	Denhardt DT, Noda M, O’Regan AW, Pavlin D, Berman JS. Osteopontin as a means to cope with en-
vironmental insults: regulation of inflammation, tissue remodeling, and cell survival. J Clin Invest. 
2001;107:1055-1061

	 43.	Persy VP, Verhulst A, Ysebaert DK, De Greef KE, De Broe ME. Reduced postischemic macrophage infil-
tration and interstitial fibrosis in osteopontin knockout mice. Kidney Int. 2003;63:543-553

	 44.	Wesson JA, Johnson RJ, Mazzali M, Beshensky AM, Stietz S, Giachelli C, Liaw L, Alpers CE, Couser WG, 
Kleinman JG, Hughes J. Osteopontin is a critical inhibitor of calcium oxalate crystal formation and 
retention in renal tubules. J Am Soc Nephrol. 2003;14:139-147

	 45.	Yamate T, Kohri K, Umekawa T, Iguchi M, Kurita T. Osteopontin antisense oligonucleotide inhibits 
adhesion of calcium oxalate crystals in Madin-Darby canine kidney cell. J Urol. 1998;160:1506-1512

	 46.	Lieske JC, Hammes MS, Hoyer JR, Toback FG. Renal cell osteopontin production is stimulated by 
calcium oxalate monohydrate crystals. Kidney Int. 1997;51:679-686

	 47.	Schepers MS, van der Boom BG, Romijn JC, Schroder FH, Verkoelen CF. Urinary crystallization inhibi-
tors do not prevent crystal binding. J Urol. 2002;167:1844-1847

	 48.	Pure E, Cuff CA. A crucial role for CD44 in inflammation. Trends Mol Med. 2001;7:213-221
	 49.	Lesley J, Hyman R, English N, Catterall JB, Turner GA. CD44 in inflammation and metastasis. Glycoconj 

J. 1997;14:611-622
	 50.	Lesley J, English NM, Gal I, Mikecz K, Day AJ, Hyman R. Hyaluronan binding properties of a CD44 

chimera containing the link module of TSG-6. J Biol Chem. 2002;277:26600-26608
	 51.	Zohar R, Suzuki N, Suzuki K, Arora P, Glogauer M, McCulloch CA, Sodek J. Intracellular osteopon-

tin is an integral component of the CD44-ERM complex involved in cell migration. J Cell Physiol. 
2000;184:118-130

	 52.	Lieske JC, Leonard R, Swift H, Toback FG. Adhesion of calcium oxalate monohydrate crystals to an-
ionic sites on the surface of renal epithelial cells. Am J Physiol. 1996;270:F192-199

	 53.	Wiessner JH, Hasegawa AT, Hung LY, Mandel NS. Oxalate-induced exposure of phosphatidylserine on 
the surface of renal epithelial cells in culture. J Am Soc Nephrol. 1999;10 Suppl 14:S441-445

	 54.	Kohri K, Kodama M, Ishikawa Y, Katayama Y, Matsuda H, Imanishi M, Takada M, Katoh Y, Kataoka K, 
Akiyama T, et al. Immunofluorescent study on the interaction between collagen and calcium oxalate 
crystals in the renal tubules. Eur Urol. 1991;19:249-252

	 55.	Sorokina EA, Kleinman JG. Cloning and preliminary characterization of a calcium-binding protein 
closely related to nucleolin on the apical surface of inner medullary collecting duct cells. J Biol Chem. 
1999;274:27491-27496

	 56.	Wesson JA, Worcester EM, Wiessner JH, Mandel NS, Kleinman JG. Control of calcium oxalate crystal 
structure and cell adherence by urinary macromolecules. Kidney Int. 1998;53:952-957

	 57.	 Iida S, Peck AB, Byer KJ, Khan SR. Expression of bikunin mRNA in renal epithelial cells after oxalate 
exposure. J Urol. 1999;162:1480-1486

	 58.	Nishio S, Hatanaka M, Takeda H, Iseda T, Iwata H, Yokoyama M. Analysis of urinary concentrations 
of calcium phosphate crystal-associated proteins: alpha2-HS-glycoprotein, prothrombin F1, and 
osteopontin. J Am Soc Nephrol. 1999;10 Suppl 14:S394-396



Chapter 3 

Hyaluronan is Apically Secreted and Expressed by 
Proliferating or Regenerating Renal Tubular Cells

M. Asselman1, A. Verhulst2, E.S. van Ballegooijen1, C.H. Bangma1, 
C.F. Verkoelen1, and M.E. de Broe2

1. Department of Urology, Erasmus Medical Center Rotterdam, the Netherlands
2. Department of Nephrology-Hypertension, University of Antwerp, Belgium

Published in Kidney Int. 2005;68:71-83



Chapter 3 

50

Abstract

Background
Hyaluronan has diverse biologic functions in the body, varying from structural tasks to cell 

stress-induced CD44-mediated activation of intracellular signaling pathways. Hyaluronan 

biology is relatively unexplored in the kidney. Previously, we identified hyaluronan as binding 

molecule for crystals in the renal tubules. Crystal retention is a crucial early event in the etiol-

ogy of kidney stones. The present study was performed to determine the polarized distribu-

tion of hyaluronan and CD44 by renal tubular cells.

Methods
Madin-Darby canine kidney (MDCK) strain I and primary cultures of hu man renal tubular 

cells were grown on permeable supports in a two-compartment culture system. Studies were 

performed during growth and after scrape-injury. Metabolic labeling studies and an enzyme-

linked hyaluronan -binding assay were used to measure the molecular mass and the amount 

of secreted hyaluronan in apical and basal medium. Confocal microscopy was applied to 

detect membrane hyaluronan and CD44. Hyaluronan synthase (HAS) mRNA expression was 

studied with reverse transcriptase-polymerase chain reaction (RT-PCR). The in vitro expression 

profile of hyaluronan was compared with that in biopsies of transplanted human kidneys with 

acute tubular necrosis.

Results
Proliferating cells produced more hyaluronan (Mr > 106 Da) than growth-inhibited cells in intact 

monolayers and up to 85% was targeted to the apical compartment, which was accompanied 

by increase d HAS2 mRNA expression and slightly decreased HAS3 mRNA, while HAS1 mRNA 

remained undetectable. Hyaluronan and CD44 were exclusively expressed at the apical sur-

face of proliferating/regenerating cells. After (re)establishment of tight junctions, hyaluronan 

was no longer detectable while CD44 was targeted to basolateral membrane domains. In vivo 

in inflamed human kidneys hyaluronan was abundantly expressed in the cortical tubulointer-

stitial space as well as at the luminal surface of regenerating renal tubular cells.

Conclusion
These results demonstrate that the production of hyaluronan by renal tubular cells is activated 

during proliferation and in response to mechanical injury and that hyaluronan and CD44 ex-

pression is highly polarized. The targeted delivery of hyaluronan to the apical compartment 

suggests that hyaluronan produced by renal tubular cells supports proliferation/rege neration 

in the renal tubules, but that it does not contribute to hyaluronan accumulation in the renal 

interstitium. These data further support the concept that mitogen/stress-induced hyaluronan 

deposition in the renal tubules increases the risk for crystal retention and stone formation.
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Introduction

A kidney stone is composed of many small crystals interspersed with organic material. Crystal-

lization is the unavoidable physicochemical consequence of the urinary concentration pro-

cess in the kidney and can not lead to stone formation as long as precipitated stone salts are 

efficiently excreted with the urine. Renal stone formation requires crystal retention. Previous 

studies indicate that hyaluronan plays a key role in this process 1, 2. Studies with renal tubular 

epithelial cells in culture showed that confluent monolayers of distal tubule/collecting duct-

like Madin-Darby canine kidney strain I (MDCK-I) cells are nonadherent to calcium oxalate 

monohydrate crystals 3. In contrast, crystals bind to cells in subconfluent cultures and in con-

fluent monolayers recovering from mechanical injury 4. The glycosam inoglycan hyaluronan 

was identified as a major crystal-binding molecule at the surface of MDCK-I cells 1 and of hu-

man renal tubular cells in primary culture 5. In addition, it was found that in vivo in rats that 

there is no crystal retention in the absence of tubular injury/regeneration, but that crystals 

are retained as soon as renal tubules are injured/regenerating. Crystals were found adhered 

to the luminal surface of hyaluronan-expressing injured/regenerating cells, therefore strongly 

suggesting that crystal retention in the kidney requires tubular epithelial injury accompanied 

by luminal expression of hyaluronan 2.

Hyaluronan (hyaluronic acid) is a glycosaminoglycan (GAG) composed of repeating disac-

charide units of glucuronic acid and N-acetylglucosamine 6. The biosynthesis of hyaluronan 

is unique, since most GAGs are synthesized in the Golgi network and linked to a core protein 

to form proteoglycans, while hyaluronan is synthesized at the plasma membrane as a free 

GAG. Hyaluronan synthases (HAS) are localized at the inner face of the plasma membrane 

and assemble a growing polymer of hyaluronan which is extruded through the membrane to 

the outside of the cell 7. In mammalian cells three different HAS genes have been identified, 

encoding for three different HAS proteins, HAS1, HAS2, and HAS3. HAS1 drives the synthesis 

of high Mr hyaluronan and has been proposed as a “housekeeping” HAS. HAS2 also produces 

high Mr hyaluronan and is activated during embryonic development and inflammation. HAS3 

drives the synthesis of short proinflammatory hyaluronan chains. Hyaluronan plays important 

roles in morphogenesis, tissue remodeling, inflammation, and cancer 6. In many cell types 

hyaluronan binds to the extracellular domain of specifi c cell surface receptors such as CD44 

to form cell coats or pericellular matrices (PCMs). CD44-hyaluronan interaction also directly 

activates intracellular signaling pathways 8-10.

In healthy kidneys, hyaluronan is hardly expressed in the cortex, but abundantly present in 

the medullary interstitium where it is involved in diluting/concentrating the urine 11, 12. The 

expression of hyaluronan is strongly up-regulated in the cortex during various inflammatory 

renal disease states, such as immune-mediated renal tissue injury 13 allograft rejection 14, and 

ethylene glycol intoxication 2. Increased hyaluronan expression is predominantly reported in 
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the cortical interstitium, but in ethylene glycol–treated rats hyaluronan not only accumulated 

in the renal interstitium, but also at the luminal membrane of tubular epithelial cells 2.

MDCK-I and primary cultures of human renal tubular cells express hyaluronan at subconflu-

ence, but not at confluence 1, 5, 15. Since crystal retention depends on the expression of hyaluro-

nan at the apical surface and not on the basolateral plasma membrane, we here studied the 

polarized distribution of hyaluronan and CD44 in MDCK-I and primary cultures of human renal 

tubular cells during various growth stages and in response to mechanical damage. Cells were 

cultured on permeable supports in a two-compartment culture system to have free access to 

both apical and basal culture medium. The results show that mitogen/stress-activated cells 

are triggered to synthesize increased levels of high Mr hyaluronan which is predominantly 

secreted into the apical medium compartment. Activated cells express hyaluronan and CD44 

at the apical but not at the basolateral membrane, while at confluence or after wound healing 

hyaluronan is not detectable and CD44 directed to the basal membrane. Increased hyaluronan 

biosynthesis is accompanied by increased levels of HAS2 mRNA expression, while the expres-

sion of HAS3 mRNA is slightly down-regulated. Our cells did not express HAS1 mRNA. During 

acute renal failure in humans, hyaluronan accumulated in the renal corticointerstitium but 

was also observed at the luminal surface of renal tubular cells. These results indicate that the 

increased production of high Mr hyaluronan by mitogen/stress-activated renal tubular cells 

is destined for the apical surface and that the expression of hyaluronan and CD44 is highly 

polarized under these conditions. This suggests that the increased synthesis of hyaluronan 

by activated renal tubular cells during inflammatory disease states does not contribute to 

the up-regulated expression of hyaluronan in the renal interstitium. These data further sup-

port the concept that the elimination of precipitated stone salts for the kidney is impeded by 

mitogen/stress-induced hyaluronan expression in the renal tubules.

Methods

Cell culture
MDCK-I cells were kindly provided by Prof. Dr. G. van Meer, Department of Cell Biology and 

Histology, Academic Medical Center, University of Amsterdam, The Netherlands. This strain 

is isolated from the original American Type Culture Collection MDCK cell line and resembles 

cortical collecting ducts segments 16. The cells were routinely grown in plastic tissue culture 

flasks (Corning Costar Corporation, Badhoevedorp, The Netherlands) at 37°C in a humidi-

fied atmosphere of 5% CO2 in air. Subculturing was performed weekly by releasing the cells 

from the culture flasks by incubation with 0.05% (wt/vol) trypsin and 0.02% (wt/vol) ethyl-

enediaminetetraacetic acid (EDTA) (Bio Whittaker, Verviers, Belgium). The cells were cultured 

in Dulbecco’s modified minimal essential medium (DMEM) (Gibco, Grand Island, NY, USA) 
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supplemented with 10% fetal calf serum (FCS) (PAA Labs, Linz, Austria), 2 mmol/L L-glutamine, 

100 μg/mL streptomycin, and 100 IU/mL penicillin.

Primary cultures of human renal cortical tubular cells were used as previously described 17, 

18. Briefly, cells were obtained from tumor nephrectomy specimens, which was permitted 

by the Ethical Committee of the University of Antwerp. Macroscopically normal tissue was 

decapsulated. Cortex and outer stripe of outer medulla were dissected, cut into pieces of 

±1 mm3 and digested in collagenase D solution (Roche, Ottweiler, Germany), supplemented 

with DNAse (Sigma Chemical Co., St Louis, MO, USA). The suspension was shaken vigorously 

for 2 hours at 37°C and sieved through a 120 μm sieve. The resulting cell suspension was 

loaded on top of a discontinuous Percoll (Amersham Pharmacia Biotech, Uppsala, Sweden) 

gradient with densities 1.04 and 1.07 g/mL. After centrifugation, cells from the intersection 

were carefully aspirated, washed and brought into culture in α-minimal essential medium 

(MEM) (Life Technologies, Rockville, MD, USA) modified according to Gibson d’Ambrosio et al 
19 supplemented with 10% FCS. In mixed cultures proximal and distal tubular cells are recog-

nized with segment-specific membrane markers. Leucine amino peptidase (LAP) was used for 

proximal tubular cells and epithelial membrane antigen (EMA) for distal tubular cells. Initially, 

subconfluent cultures of primary human tubular cells contain equally as much proximal as 

distal tubular cells. Interestingly, confluent mixed cultures appeared to consist almost entirely 

of EMA-positive cells that are no longer susceptible to crystal binding 5. Thus primary cultures 

of human renal cortical tubular cells become enriched with distal tubular during their devel-

opment into intact monolayers.

The cells used in these experiments were checked to be free from mycoplasma 

contamination.

Growth studies
Cells were cultured on permeable polycarbonate Transwell filter inserts (insert growth a rea 

4.7 cm2, 0.4 μm pore size) (Costar®) (Corning Costar Corporation). MDCK-I and primary cultures 

of renal tubular cells were seeded at a plating density of 1.0 x 106 cells/insert and cultured on 

these permeable supports in a two-chamber system. The total amount of cells/insert was de-

termined at time intervals of 2 days by counting the cells in a hemocytometer. To monitor the 

assembly of tight junctions, transepithelial electrical resistances (TERs) were measured with 

an Epithelial Tissue Volt-ohm-meter connected to an Endohm-24 tissue resistance measure-

ment chamber (World Precision Instruments; Sarasota, FL, USA). Since cells are seeded at a 

high density, both subconfluent and confluent cultures morphologically appear as a continu-

ous row of cells. Cell cultures were considered confluent when the total number of cells/insert 

did not further increase and maximal TER values had developed.
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Wound healing studies
Cells were grown to confluence and subsequently injured by scraping off 100 to 150 mm2 

(approximately one third of the total filter area) with the tip of a sterile 10 mL tissue culture 

pipette. Subsequently, the filters were washed with phosphate-buffered saline (PBS), fresh 

medium was added to the cells, and the process of wound healing monitored morphologi-

cally by light microscopy and functionally by measuring TERs.

Metabolic labeling studies
The production of high Mr hyaluronan was determined in subconfluent (1 day postseeding) 

and in confluent (7 days postseeding) MDCK-I cultures by a metabolic labeling protocol using r 

adiolabeled [3H] glucosamine (D-1-[3H] GlcNAc hydrochloride) (Amersham Pharmacia Biotech, 

Roosendaal, The Netherlands) in combination with enzymatic digestion and Sephacryl S-1000 

size exclusion chromatography. Cells in culture flasks were cultured overnight in modified 

DMEM with a reduced glucose content (1 mg/mL), after which they were trypsinized, seeded 

at a concentration of 1 x 106/insert, cultured for 1 day, and metabolically labeled for 24 hours 

with 2 μCi/mL [3H] GlcNAc (subconfluence). Cells were also seeded at a concentration of 1 

x 106/insert, cultured for 6 days in DMEM 10% FCS, incubated overnight in modified DMEM 

with a reduced glucose content (1 mg/mL), and than metabolically labeled for 24 hours with 

2 μCi/mL [3H] GlcNAc (confluence). One and 7 days postseeding, the average cell density 

subsequently was 0.9 x 106 and 4 x 106 cells/insert. After metabolic labeling, the apical and 

basolateral medium fractions (1500 and 2600 μL) were divided in three portions of 500 μL. 

To distinguish between hyaluronan and other secreted glycoconjugates, we subjected these 

portions of the apical and basolateral medium to differential enzyme digestion. One portion 

was left untreated (control) to assess total glycoconjugate production. The second portion 

was incubated with papain overnight to digest proteins in the sample and not the papain-

resistant polysaccharide hyaluronan. Papain (E.C. 3.4.22.2) (Sigma-Aldrich Chemie, Zwijn-

drecht, The Netherlands) was used at a final concentration of 5 U/mL at 60°C, pH 6.0. To check 

if the papain-resistant fraction indeed consisted of hyaluronan, the third portion was treated 

with papain as described above, followed by additional treatment with 5 U/mL Streptomyces 

hyaluronidase for 1 hour at 37°C. Of the various fractions, 150 μL was subsequently applied to 

a 13 x 60 mm Sephacryl S-1000 column (Amersham Biosciences) and eluted with 0.05 mol/L 

Tris, 0.15 mol/L NaCl (pH 10), with 250 μL fraction volumes. The elution pattern showed two 

major peaks, the first consisting of high Mr [
3H] GlcNAc–labeled molecules (>106 Da), and the 

second with smaller molecules (<106 Da). High Mr molecules were run-through in the early 

fractions 6 to 12, whereas smaller molecules were retarded by the column to be collected later 

in fractions 13 to 30. Accordingly, free precursor [3H] GlcNAc was entirely recovered in these 

late fractions.

Cell surface-associated [3H] GlcNAc-labeled hyaluronan was determined by measuring the 

release of radiolabel during 5 minutes of incubation of the cells wit h fresh serum-free DMEM 
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with or without Streptomyces hyaluronidase. Additional release of [3H] GlcNAc by the enzyme-

treated cells, compared to the spontaneous release by cells incubated without enzyme, was 

considered to represent cell surface-associated hyaluronan.

Reverse transcriptase-polymerase chain reaction (RT-PCR) studies
Primer pairs were designed to selectively amplify either HAS1, HAS2, or HAS3 based on pub-

lished species-conserved sequences (Amersham Pharmacia Biotech Inc.). Primer sequences 

are listed below (figure 3.1). Total RNA and genomic DNA were isolated from subconfluent 

and confluent MDCK-I cells using, respectively, RNA-Bee RNA Isolation Solvent (Tel-Test Inc., 

Friendswood, TX, USA) and PurGene genomic isolation kit (BioPlastics, Landgraaf, The Neth-

erlands) following the manufacturer’s protocol. RNA was reverse transcribed using Maloney-

murine leukemia virus (M-MLV) Reverse Transcriptase (Invitrogen, Breda, The Netherlands) 

and poly-T priming. Thirty cycles of PCR were performed using isoform-specific primers for 

HAS2 and POLR2A (RNA Polymerase II, large subunit) using either cDNA, genomic DNA as 

a positive control, or nonreverse transcribed mRNA as a negative control. HAS1 and HAS3 

primers needed 35 cycles of PCR to detect an appropriate amount of DNA. In the case of HAS1 

RT-PCR, mouse cDNA served as a second positive control. PCR products were visualized under 

ultraviolet light after gel electrophoresis in 2% agarose containing ethidium bromide.

Confocal laser scanning microscopy (CLSM)
Cells were fixed in formaldehyde/glutaraldehyde (3.7%/0.1%, vol/vol) for 10 minutes. Subse-

quently, cells were incubated for 60 minutes with 3% (wt/vol) low-fat dry milk in PBS/0.1% 

Tween-20 to block nonspecific binding. Cells were washed and incubated overnight at 4°C 

with 2% biotinylated hyaluronan-binding protein (bHABP) (Seikagaku Inc., Tokyo, Japan), rat 

anticanine CD44 (Serotec, Oxford, UK) or purified antimouse CD44 (IM7) (Becton Dickinson 

Biosciences Pharmingen, Woerden, The Netherlands) fo llowed by the appropriate secondary 

labels, respectively, fluorescein isothiocyanate (FITC)-conjugated avidin (fluorescein avidin 

D) (Vector Laboratories Inc., Burlingame, VT, USA), FITC- or TRITC-conjugated rabbit antirat 

IgG (H + L) (Southern Biotechnology Associates Inc., Birmingham, AL, USA), or FITC- or TRITC-

conjugated rabbit antimouse IgG (Dako, Glostrup, Denmark). Occasionally, the stainings 

 

Primer Sequence ( 5' to 3' ) Position*

HAS-1 F CAC TGT GTA TCC TGC ATC AG 936-956
HAS-1 R CTT GGT AGC ATA ACC CAT GC 1080-1100
HAS-2 F CTC AGT GTT ATA CAT GTC GAG TTT ACT TC 1852-1880
HAS-2 R ACT GAT ACT GGA ATG AGT CCT ATG AA 1958-1983
HAS-3 F ACT CTG CAT CGC TGC CTA CC 324-344
HAS-3 R TAC ATG ACC TCA CGC TTG CC 634-692
POLR2A F CGG ATG AAC TGA AGC GAA TG 469-488
POLR2A R TTG TTA GAG TCC ACA AGC AG 735-754
*The position of the oligonucleotide primers are based on human mRNA sequences 

 

Primer Sequence ( 5' to 3' ) Position*

HAS-1 F CAC TGT GTA TCC TGC ATC AG 936-956
HAS-1 R CTT GGT AGC ATA ACC CAT GC 1080-1100
HAS-2 F CTC AGT GTT ATA CAT GTC GAG TTT ACT TC 1852-1880
HAS-2 R ACT GAT ACT GGA ATG AGT CCT ATG AA 1958-1983
HAS-3 F ACT CTG CAT CGC TGC CTA CC 324-344
HAS-3 R TAC ATG ACC TCA CGC TTG CC 634-692
POLR2A F CGG ATG AAC TGA AGC GAA TG 469-488
POLR2A R TTG TTA GAG TCC ACA AGC AG 735-754
*The position of the oligonucleotide primers are based on human mRNA sequences 

Figure 3.1
The position of the oligonucleotide primers are based on human mRNA sequences.
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were combined with a propidium iodide counterstaining to localize cell nuclei. Filters were 

mounted in vectashield and analyzed with a Zeiss LSM 410 CLSM (Zeiss, Oberkochen, Ger-

many). A 488 nm Ar-laser was used to excitate FITC and a 543 nm laser to excitate TRITC or 

propidium iodide.

5-bromo-2’-deoxyuridine (BrdU) staining
To incorporate BrdU during wound healing, the cells were incubated for 2 hours with 30 μg/

mL BrdU (Sigma Chemical Co.) in culture medium 10% FCS at 37°C in a humidified incuba-

tor 5% CO2 in air. The inserts were washed with physiologic saline and fixed in 70% ethanol. 

The cells were subsequently incubated overnight with primary mouse monoclonal BrdU 

antibody IIB5 (1:20) (Euro-Diagnostica B.V., Arnhem, The Netherlands) at 4°C after which they 

were incubated with biotinylated secondary antibody (1:400) (Dako) at room temparature for 

1 hour. Immunoreactivity was visualized by staining with streptavidin-peroxidase complex 

(1:50) (BioGenex, San Ramon, CA, USA) and 3,3-diaminobenzidine (DAB) (Dako) and cells were 

counterstained with hematoxylin.

Quantitation of hyaluronan production
The concentration of hyaluronan in culture medium was determined with a commercial quan-

titative kit, which is based on the specific binding of HABP with hyaluronan (Corgenix HA Test 

Kit, Denver, CO, USA). Medium of both the apical and basal compartment were collected after 

the indicated periods of time during growth and wound healing studies. This assay method 

measures all hyaluronan in the sample and does not discriminate between long or short hy-

aluronan chains.

Hyaluronan staining of human renal tissue
Renal biopsy tissue specimens of patients suffering from posttransplantation acute tubular 

necrosis were stained for hyaluronan as described previously 2. Briefly, tissue was fixed in form-

aldehyde 4% and paraffin embedded. Sections were blocked with 1% bovine serum albumin 

(BSA) for hyaluronan staining and incubated with bHABP. Avidin-biotin peroxidase complex 

(Vector Laboratories) and DAB were used to detect hyaluronan. Nuclei were counterstained 

with methyl green. No staining was observed when bHABP was omitted.

RESULTS

Hyaluronan biosynthesis analyzed in metabolic labeling studies
Subconfluent and confluent MDCK-I cultures were metabolically labeled overnight with [3H] 

GlcNAc after which culture medium in the apical and basal compartment was collected to 

assess the relative amount of [3H] GlcNAc incorporated in macromolecular glycoconjugates. 
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Subconfluent cultures secreted relatively large amounts of radioactively labeled high Mr 

molecules into the apical compartment, whereas much smaller amounts were secreted into 

the basal compartment (figure 3.2). The production of high Mr glycoconjugates by confluent 

monolayers was ~20-fold lower and delivered into the apical medium. Only a relatively small 

amount of high Mr glycoconjugates produced by subconfluent cultures could be degraded 

with papain, whereas practically the remaining high Mr molecules could be digested by 
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Figure 3.2
Production of high Mr glycoconjugates by Madin-Darby canine kidney strain I (MDCK-I) cells cultured on permeable supports 
in a two-compartment culture system, and analyzed by metabolic labeling studies using [3H] glucosamine in combination 
with specific enzyme digestion and Sephacryl S-1000 size exclusion chromatography. Proliferating cells in subconfluent cultures 

deliver relatively large amounts of high Mr [
3H] glucosamine-labeled glycoconjugates into the apical compartment of which the far majority 

is hyaluronidase-digestible (A), whereas at this point in epithelial development much smaller amounts of hyaluronidase-digestible 

macromolecules are delivered into the basal medium (B). Growth-inhibited cells in confluent cultures deliver only samll amounts of 

hyaluronidase- and papain-digestible macromolecules into the apical compartment (C), while confluent monolayers no longer secrete molecules 

>106 Da into the basal compartment (D). Symbols are: (□), untreated; (△), papain-treated; (○), papain pretreated + hyaluronidase treated.
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Streptomyces hyaluronidase. Thus, proliferating MDCK-I cells produced high Mr glycoconju-

gates of which the majority consisted of hyaluronan. Considering their size, most papain-

sensitive glycoconjugates consist of proteoglycans. Although relatively small differences were 

observed in the secretion of papain-sensitive molecules (ratio apical basal medium 2:1), most 

hyaluronidase-digestable glycoconjugates were delivered almost exclusively into the apical 

compartment (ratio apical basal medium 7:1) (figure 3.2).

To assess the amount of cell surface-associated [3H] GlcNAc-labeled glycoconjugates meta-

bolically labeled MDCK-I cells in subconfluent and in confluent cultures were treated with 

hyaluronidase. Hyaluronidase was more effective in releasing radiolabel from subconfluent 

cultures (figure 3.3).

Quantitation of hyaluronan production
An enzyme-linked HABP assay was applied to measure the amount of hyaluronan in the apical 

and basal medium bathing MDCK-I cells during the healing of wounds made in confluent 

monolayers. Confluent monolayers of MDCK-I cells synthesized relatively low amounts of hy-

aluronan (figure 3.4). After scrape-damaging intact monolayers the production of hyaluronan 

was strongly up-regulated. During regeneration, most of the de novo produced hyaluronan, 

was targeted to the apica l compartment (figure 3.4). The apical versus basal ratios however 

were lower than those in the metabolic labeling studies suggesting that a considerable part 

of hyaluronan measured with the quantitative assay method consisted of shorter hyaluronan 

 

Figure 3.3
Streptomyces hyaluronidase (■)-cleavable [3H] glucosamine incorporated in cell surface gylcoconjugates of subconfluent 
and confluent Madin-Darby canine kidney strain I (MDCK-I) cells grown on culture system compared to spontaneous release of 
[3H]-glucosamine in DMEM alone.
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chains. The synthesis of hyaluronan normalized to the levels in undamaged controls as soon 

as the wound were healed and monolayers reestablished high TERs.

Four days after the initiation of primary cultures of human renal tubular cells, culture medium 

of the apical and basal compartment was collected every 48 hours and replaced with fresh 

medium. The highest amount of hyaluronan was measured at subconfluence (i.e., the second 

time that medium was replaced) (figure 3.5). Also in primary cultures most synthesized hy-

aluronan was secreted into the apical compartment (figure 3.5).

RT-PCR studies
Expression of HAS1, HAS2, and HAS3 mRNA in subconfluent and confluent MDCK-I cultures 

was assessed with RT-PCR using specific primers designed to amplify species-conserved 

HAS1, HAS2, and HAS3 sequences. Primers were designed for POLR2A for the normalization 

of RNA levels. Using HAS2 primers, a prominent product of the expected size from both cDNA 

and genomic DNA was evident after 30 cycles of PCR (and not noted in the negative control). 

A

 

B

C

 

D

Figure 3.4
Quantitative determination of hyaluronan by an enzyme-linked binding protein assay in the apical and basal compartment 
of intact Madin-Darby canine kidney strain I (MDCK-I) monolayers (A) and during the healing of wounds made in confluent 
monolayers (B), grown on permeable supports in a two-compartment culture system. Hyaluronan was measured in daily 

replaced Dulbecco’s modified Eage’s medium (DMEM) supplemented with 10% fetal calf serum (FCS) on 1, 2, 3, and 4 days postconfluence or 

postinjury (A and B) and without replacing the culture medium (C). Wound closure was monitored by transepithelial electrical resistance (TER) 

measurements (D).
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Sequence analysis of the product confirmed the expression of HAS2 mRNA (figure 3.6). Ac-

cording to these results, HAS2 is clearly up-regulated in subconfluent MDCK-I cells. The de-

signed HAS3 primers were also able to ampl ify the expected DNA fragment sizes from cDNA 

and genomic DNA, but this time 35 cycles of PCR were required to detect an appropriate 

amount of DNA. HAS3 sequences were detected in these DNA fragments by sequence analy-

sis. According to these data there is a slight downregulation of HAS3 in subconfluent MDCK-I 

cells (figure 3.6). Both sequences of the HAS2 and HAS3 PCR products are shown aligned with 

the published human sequence in figure 3.7. The homology of the canine HAS2 and HAS3 

sequences to published sequences from other species (including human, rat, mouse, and bull) 

is >92%. HAS1-specific primers were unable to amplify any HAS1 product from MDCK-I cDNA 

but did amplify HAS1 from genomic DNA, although this fragment contains an intron sequence. 

 

A					B    

Figure 3.5
Determination of hyaluronan by enzyme-linked binding protein assay (B) in the apical and basal compartment of primary 
cultures of human renal tubular cells during their growth to confluence (A) on permeable supports in a two-compartment 
culture system.
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Figure 3.6
Hyaluronan synthase (HAS) mRNA expression in subconfluent and confluent cultures of Madin-Darby canine kidney strain I 
(MDCK-I) cells. Reverse transcription-polymerase chain reaction (RT-PCR) analysis was performed using HAS2 and HAS3 gene-specific primers 

as described in the Methods section. Gene-specific primers for the large subunit of RNA polymerase II (POLR2A) were used for the normalization 

of RNA levels.
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Also an amplification of HAS1 product was obtained with mouse and human cDNA. All of the 

DNA fragments had the expected sizes. Sequence analysis of the DNA fragments of MDCK-I 

genomic DNA and mo use cDNA confirmed the presence of HAS1 DNA sequences. From these 

findings it was concluded that HAS1 is hardly expressed in MDCK-I cells (not shown).

CLSM
Two days postseeding, when monolayers still have low TERs (~200 Ω cm2), bHABP bound 

to the entire apical cell surface, but not at basolateral domains. This apical staining was less 

prominent after 4 days when cultures approached confluence and were actively assembling 

tight junctions (TER ~3000 Ω cm2). After 6 days the TERs were maximal high (>5000 Ω cm2) and 

bHABP did not bind to the cell surface (figure 3.8).
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canine  CCAGCGCATCGCCTTCCCCGACCTCAAGGTGGTCATGGTGGTGGATGGCAATCGCCAGGA 
 
human   GGACGCCTACATGCTGGACATCTTCCACGAGGTGCTGGGCGGCACCGAGCAGGCCGGCTT 503 
        |||||||||||||||||||||||||||||||||||| || ||||| ||||| || ||||| 
canine  GGACGCCTACATGCTGGACATCTTCCACGAGGTGCTAGGTGGCACTGAGCAAGCTGGCTT 
 
human   CTTTGTGTGGCGCAGCAACTTCCATGAGGCAGGCGAGGGTGAGACGGAGGCCAGCCTGCA 563 
        |||||||||||||||||||||||||||||| || |||||||||||||||||||||||||| 
canine  CTTTGTGTGGCGCAGCAACTTCCATGAGGCGGGGGAGGGTGAGACGGAGGCCAGCCTGCA 
 
human   GGAGGGCATGGACCGTGTGCGGGATGTGGTGCGGGCCAGCACCTTCTCGTGCATCAT 620 
        |||||||||||||||||||||||||||||||||  |||||||||| || |||||||  
canine  GGAGGGCATGGACCGTGTGCGGGATGTGGTGCGAACCAGCACCTTTTCATGCATCAG 

 

Figure 3.7
Sequences of polymerase chain reaction (PCR) products from hyaluronan synthase 2 (HAS2) and HAS3 reverse transcriptase 
(RT)-PCR (canine) are shown aligned with the human sequences. The canine HAS1 PCR product was not detectable and could not be 

sequenced. Underlined segments indicate the sites of primer annealing. (A) Sequence of PCR product for HAS2. (B) Sequence of PCR product 

from HAS3.
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Confluent MDCK-I monolayers did not express hyaluronan. After scrape injury, however, mi-

grating cells at the border of the wound became flattened and again expressed hyaluronan at 

their membrane (figure 3.9, A and B), while cells in undamaged areas did not express hyaluro-

nan. After the wounds were healed and tight junctions were reestablished hyaluronan again 

disappeared from the cell surface.

Two days postseeding CD44 was expressed exclusively at the apical surface of cells (TERs ~200 

Ω cm2). Four days postseeding (TERs ~3000 Ω cm2) CD44 was predominantly found in the 

lateral space between the cells. Six days postseeding (maximal high TERs >5000 Ω cm2), the 

membrane expression of CD44 was restricted to the basal side of the monolayers. Thus, in 

MDCK-I cells during their growth to confluence CD44 expression is polarized, at first at the 

apical surface, subsequently at lateral sites, and finally at the basal plasma membrane when 

tight junction formation is fully established (figure 3.8). Double-staining of CD44 (red) and 
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Figure 3.8
Confocal microscopy images of the membrane localization of hyaluronan [biotinylated hyaluronan binding protein (bHABP)-
fluorescein isothiocyanate (FITC) + propidium iodide] (A) and C44 (IM7-FITC) (B) during the development of Madin-Darby canine 
kidney strain I (MDCK-I) cultures into confluent monolayers with functional tight junctions (C). TER is transepithelial electrical 
resistance. Color image: see appendix page 148.
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hyaluronan (green) showed a clear colocalization at the apical surface of proliferating MDCK-I 

cells populating subconfluent cultures (figure 3.10).

In confluent monolayers, the expression of CD44 was restricted to basal membranes. After 

scrape injury, migrating cells at the border of the wounds began to express CD44 at their 

apical membrane (figure 3.9, C and D). After the wounds were healed and TERs were reestab-

lished, CD44 expression was again selectively targeted to the basal membrane.

A C

B D

E
Figure 3.9
Confocal microscopic images of hyaluron [biotinylated hyaluron binding protein (bHABP)-fluorescein isothiocyanate (FITC)] (A 
and B) and CD44 (IM7-FITC) (C and D) expressed by flattened cells at the border of the wound. B and D are scans made perpendicular 

to the cultures (xz scans) showing flattened cells infiltrating the denuded areas. (E) Light microscopic image of 5-bromo-2’-deoxyuridine 
(BrdU)-stained cells during wound healing showing few BrdU-positive cells at the leading edge of the wound and abundant 
staining in areas somewhat distant from the wound. This BrdU staining indicates that the falttened cells at the border of the wound are 

migrating cells rather than proliferating cells. Color image: see appendix page 149.
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BrdU staining
To reveal if the cells at the border of a scrape wound are proliferating, 1 day postinjury me-

chanically damaged cultures were incubated with the proliferation marker BrdU. This study 

showed that the cells stained positively for BrdU somewhat distal from the wound, but that 

BrdU staining was hardly observed in the infiltrating flattened cells at the border of the wound, 

indicating that these are migrating rather than proliferating cells (figure 3.9 E).

Hyaluronan staining in human renal tissue
Acute tubular necrosis is a pathologic condition that is characterized by massive damage and 

regeneration of tubular epithelial cells, processes which are known to take place concurrently 

in the kidney 20. Hyaluronan staining in renal tissue biopsy specimens not only showed an 

up-regulated expression in the cortex but also that regenerating tubular cells in vivo express 

hyaluronan at their apical membrane (figure 3.11).

  A

  B
Figure 3.10
Confocal microscopy xy and xz images showing the colocalization of hyaluronan [biotinylated hyaluron binding protein 
(bHABP)-fluorescein isothiocyanate (FITC) (green) and its major cell surface receptor CD44 [IM7-TRITC] (red) at the apical plasma 
membrane of subconfluent cultures of Madin-Darby canine kidney strain I (MDCK-I) cells grown on a permeable support in a 
two-compartment culture system. Color image: see appendix page 150.
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Discussion

This study shows that subconfluent cultures formed by MDCK-I cells and primary cultures of 

human renal tubu lar cells synthesize higher amounts of hyaluronan than confluent cultures. 

The increased production of hyaluronan by proliferating cells is accompanied by increased 

expression of HAS2 mRNA, while HAS3 is slightly down-regulated and HAS1 remains unde-

tectable. The increased hyaluronan production is polarized since in both cell types, hyaluro-

nan is secreted predominantly into the apical medium compartment. During wound healing, 

regenerating renal tubular cells also secreted increased amounts of hyaluronan into the apical 

compartment. Hyaluronan is expressed at the apical, but not the basolateral membrane of 

proliferating or regenerating cells, indicating that the membrane expression of hyaluronan is 

polarized as well. The apical expression of hyaluronan was invariably accompanied with the 

apical expression of CD44. At confluence or after wound healing, hyaluronan as well as CD44 

is no longer detectable at the apical surface. Hyaluronan entirely disappeared, while CD44 

was targe ted to basal domains of the plasma membrane.

To our knowledge there is only one other report dealing with the polarized secretion of 

hyaluronan by epithelial cells 21. The secretion of hyaluronan by confluent retinal epithelial 

cells in primary culture grown on permeable supports is also highly polarized, with 82% to 

95% of the hyaluronan delivered into the apical medium. Apparently, retinal pigment cells 

constitutively express and deliver hyaluronan from the apical surface to support the inter-

photoreceptor matrix of the eye 21. The polarized expression and secretion of hyaluronan by 

renal tubular cells is not constitutive, but restricted to proliferating and regenerating cells, 

indicating that remodeling/regenerating renal tubular cells require hyaluronan at the luminal 

side of the epithelium, while terminally differentiated cells do not. From our study it is unclear 

whether the relatively small amount of hyaluronan in the basal compartment was secreted 

Figure 3.11
Hyaluronan staining in the cortex of a renal tissue biopsy specimen of a patient suffering from acute tubular necrosis, showing 
expression of hyaluronan at the luminal membrane of tubular cells and also in the cortical interstitium. Arrows indicate hyaluronan 

expressed at the luminal cell membrane (×1000 magnification).  Color image: see appendix page 150.
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from the basal membrane or derived from transepithelial leakage. The fact that hyaluronan 

did not accumulate under the monolayers and that hyaluronan staining was found at the 

apical cell surface and not between cells indicates that the porous growth substrate was no 

barrier for hyaluronan and that hyaluronan indeed is predominantly secreted from the api-

cal membrane. Soon antibodies directed against HASs will be available which will elucidate 

the epithelial development-dependent subcellular localization of the various HAS proteins. 

Remarkably, the secretion/expression of hyaluronan and the expression of CD44 is polarized 

at times when the tight junctions are not yet fully assembled. Although many membrane 

proteins and lipids require functional tight junctions as a diffusion barrier in the plane of 

the lipid bilayer, for other membrane components cell-substratum and/or cell-cell contact 

is sufficient to induce and maintain epithelial cell surface segregation 22. Apparently, tight 

junction formation is not an absolute requirement for HAS and CD44 to be targeted to the api-

cal plasma membrane. The polarized distribution of CD44 by MDCK cells was demonstrated 

earlier, but in these studies CD44 did not entirely reach the basal membrane 23, 24. Most likely, 

our cells obtained higher levels of terminal differentiation because the confluent monolayers 

were kept in culture for a longer period of time.

The interaction of hyaluronan with cell surface receptors such as CD44 and receptor for 

hyaluronan-mediated motility (RHAMM) activates intracellular signaling pathways during 

cell migration/proliferation 25. Hyaluronan receptor binding also plays a role in anchoring 

hyaluronan coats to the cell surface 26. Also in our study apical CD44 invariably colocalizes 

with hyaluronan, suggesting receptor-ligand interaction 27. The interaction between CD44 

and hyaluronan was studied earlier in proliferating SV40-transformed mouse cortical tubular 

(MCT) cells 28. CD44 was randomly expressed over the membrane and the cells constitutively 

bound exogenously added hyaluronan. CD44-hyaluronan binding could be modulated with 

CD44 antibodies, suggesting that CD44 indeed served as a hyaluronan receptor. The polarized 

membrane distribution of CD44 was not further addressed and it was not reported if MCT 

cells were capable to synthesize and express endogenous hyaluronan.

In an impressive series of recent publications Philips et al 29 revealed several aspects of renal 

hyaluronan biology using immortalized human proximal tubule human kidney 2 (HK-2) cells 

and human primary cultures of proximal tubular cells. In agreement with our studies, scrape-

damaging HK-2 monolayers led to an increased hyaluronan production, which in HK-2 cells 

appeared to be mediated by the extracellular signal-regulated kinase (ERK) pathway. HK-2 cell 

migration during wound healing was increased by exogenous hyaluronan. In human proxi-

mal tubulular cells, HAS2 mRNA expression and hyaluronan secretion could be stimulated 

with interleukin (IL)-1β and high levels of glucose, but not by transforming growth factor-β 

(TGF-β) or other growth factors. In this study, HAS2 mRNA expression was inducible, whereas 

HAS3 was consitutively expressed and HAS1 was undetectable. This HAS expression pattern 

is identical to that found by us in activated MDCK-I cells. The activated transcription of HAS2 

in activated proximal tubular cells was coupled to the transcription factor nuclear factor-κB 
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(NF-κB) 30. IL-1β and high glucose also influenced the functional behavior of cell surface CD44 

leading to increased hyaluronan binding and uptake 31. The hyaluronan production and ex-

pression by confluent HK-2 cells was also stimulated by bone morphogenic protein-7 (BMP-7). 

Among other things, this type of stimulation increased the amount of HAS2-mediated cell 

surface hyaluronan, decreased the expression of hyaluronidases and increased the binding of 

monocytes to the cell surface 32. In HK-2 cells, the synthesis of extracellular matrix molecules 

collagen III and IV were activated with TGF-β, which could be blocked with CD44 antibodies, 

mitogen-activated protein (MAP) kinase inhibitors or hyaluronan 33. CD44- hyaluronan also 

decreased TGF- β1–dependent proximal tubular cell functions 34. Collectively, these results 

suggest that hyaluronan performs various functions during inflammatory renal disease 

states.

There are some important differences between the studies performed by Philips et al and 

our studies. HK-2 cells constitutively express hyaluronan, while our cells express hyaluronan 

only after some form of activation. Since hyaluronan is not expressed by renal tubular cells 

in healthy kidneys, this suggests that HK-2 cells are continuously activated, a phenomenon 

typical for immortalized cells or cancer cells. While we culture our cells on porous supports 

in a two compartment culture system, the HK-2 cells are cultured on conventional solid 

growth substrates. This makes it difficult to appreciate if the various agonists and extracel-

lular and pericellular matrix molecules exerted their effects at the apical or basolateral plasma 

membrane. In agreement with activated HK-2 cells, stimulation of MDCK-I cells leads to an 

increased production of (high Mr) hyaluronan and increased levels of HAS2 mRNA.

The expression of hyaluronan is up-regulated in the cortical interstitium during various in-

flammatory renal disease states 2, 13, 14. It was only recently reported that the expression of 

hyaluronan in kidneys of ethylene glycol treated rats was not only increased in the renal 

interstitium, but that hyaluronan also appeared at the luminal surface of the epithelial cells 

lining the renal tubules 2. This expression of hyaluronan by renal tubular cells could be over-

looked in the past due to the overwhelming hyaluronan expression in the interstitium, or by 

the removal of cell surface hyaluronan by fixation and washing procedures 35. Here, it is shown 

that in mildly fixed and washed renal biopsy specimens of patients with acute tubular necrosis, 

the expression of hyaluronan is not only up-regulated in the cortical interstitium, but also at 

the luminal surface of renal tubular cells (figure 3.10). Since acute tubular necrosis is accom-

panied by tubular damage and regeneration 20, this suggests that also in the human kidney, 

hyaluronan is expressed by regenerating renal tubular cells. The source of hyaluronan in the 

cortical interstitium remains unclear. Although we cannot entirely exclude some apical-to-

basal hyaluronan leakage our results suggest that renal tubular cells are not the main source 

for hyaluronan in the renal interstitium. Perhaps interstitial fibroblasts account for most of 

the newly formed hyaluronan during acute renal inflammation. The engagement of CD44 

and hyaluronan in the renal tubules may communicate with and thereby activate interstitial 

cells through signal transduction pathways, or interstitial fibroblasts are triggered by low Mr 
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hyaluronan secreted from the basolateral membrane of stress-activated renal tubular cells. 

It has been demonstrated that normal rat cortical and medullary fibroblasts in culture are 

capable to synthesize hyaluronan 36. Another possibility is that during inflammation tubular 

epithelial cells become fibroblasts via epithelial to mesenchymal transdifferentiation 37. This 

is entirely speculative, however, and additional studies are required using appropriate model 

systems to investigate this issue more in detail.

Our interest in hyaluronan production and expression by renal tubular cells came from in-

vestigations into the possible involvement of renal tubular cells in the pathophysiology of 

nephrolithiasis. Renal stones can only form when crystals somehow are retained in the kidney. 

It was found that (calcium oxalate) crystals bind to renal tubular cells in subconfluent, but not 

in confluent cultures 1, 4. Hyaluronan was identified as crystal binding molecule 1. Recently, we 

studied this concept in rats treated with ethylene glycol, a nephrotoxic and (calcium oxalate) 

crystal-inducing agent 2. Although ethylene glycol almost immediately resulted in crystalluria, 

several days were required for the renal tubular epithelium to become damaged/regener-

ate and crystals to be retained. In agreement with our in vitro data, crystals deposited in the 

tubules were closely associated with regenerating cells that expressed hyaluronan and CD44 

at their luminal surface. Studies are underway in which we will explore possibilities to inhibit 

the proliferation/stress-induced expression of hyaluronan by renal tubular cells in culture and 

in rats, aimed at limiting or preventing accumulation of crystals in the kidney.

Conclusion

The results of the present study show that hyaluronan biosynthesis is activated during pro-

liferation and in response to mechanical injury and that the membrane distribution of hy-

aluronan and CD44 is highly polarized despite the absence of functional tight junctions. The 

targeted delivery of hyaluronan to the apical medium compartment suggests that hyaluronan 

supports cell growth and remodeling in the renal tubules. These data further support the 

concept that mitogen/stress-induced hyaluronan deposition in the renal tubules increases 

the risk for crystal retention.

References

	 1.	Verkoelen CF, Van Der Boom BG, Romijn JC. Identification of hyaluronan as a crystal-binding molecule 
at the surface of migrating and proliferating MDCK cells. Kidney Int. 2000;58:1045-1054

	 2.	Asselman M, Verhulst A, De Broe ME, Verkoelen CF. Calcium oxalate crystal adherence to hyaluronan-, 
osteopontin-, and CD44-expressing injured/regenerating tubular epithelial cells in rat kidneys. J Am 
Soc Nephrol. 2003;14:3155-3166



Hyaluronan synthesis and expression by renal tubular cells

69

	 3.	Verkoelen CF, van der Boom BG, Kok DJ, Houtsmuller AB, Visser P, Schroder FH, Romijn JC. Cell 
type-specific acquired protection from crystal adherence by renal tubule cells in culture. Kidney Int. 
1999;55:1426-1433

	 4.	Verkoelen CF, van der Boom BG, Houtsmuller AB, Schroder FH, Romijn JC. Increased calcium ox-
alate monohydrate crystal binding to injured renal tubular epithelial cells in culture. Am J Physiol. 
1998;274:F958-965

	 5.	Verhulst A, Asselman M, Persy VP, Schepers MS, Helbert MF, Verkoelen CF, De Broe ME. Crystal reten-
tion capacity of cells in the human nephron: involvement of CD44 and its ligands hyaluronic acid and 
osteopontin in the transition of a crystal binding- into a nonadherent epithelium. J Am Soc Nephrol. 
2003;14:107-115

	 6.	Toole BP. Hyaluronan in morphogenesis. Semin Cell Dev Biol. 2001;12:79-87
	 7.	Weigel PH, Hascall VC, Tammi M. Hyaluronan synthases. J Biol Chem. 1997;272:13997-14000
	 8.	Lee GM, Johnstone B, Jacobson K, Caterson B. The dynamic structure of the pericellular matrix on 

living cells. J Cell Biol. 1993;123:1899-1907
	 9.	Knudson CB, Knudson W. Hyaluronan-binding proteins in development, tissue homeostasis, and 

disease. Faseb J. 1993;7:1233-1241
	 10.	Aruffo A, Stamenkovic I, Melnick M, Underhill CB, Seed B. CD44 is the principal cell surface receptor 

for hyaluronate. Cell. 1990;61:1303-1313
	 11.	Hansell P, Goransson V, Odlind C, Gerdin B, Hallgren R. Hyaluronan content in the kidney in different 

states of body hydration. Kidney Int. 2000;58:2061-2068
	 12.	Knepper MA, Saidel GM, Hascall VC, Dwyer T. Concentration of solutes in the renal inner medulla: 

interstitial hyaluronan as a mechano-osmotic transducer. Am J Physiol Renal Physiol. 2003;284:F433-
446

	 13.	Feusi E, Sun L, Sibalic A, Beck-Schimmer B, Oertli B, Wuthrich RP. Enhanced hyaluronan synthesis in 
the MRL-Fas(lpr) kidney: role of cytokines. Nephron. 1999;83:66-73

	 14.	Wells A, Larsson E, Hanas E, Laurent T, Hallgren R, Tufveson G. Increased hyaluronan in acutely reject-
ing human kidney grafts. Transplantation. 1993;55:1346-1349

	 15.	Schepers MS, Asselman M, Duim RA, Romijn JC, Schroder FH, Verkoelen CF. Pericellular matrix forma-
tion by renal tubule epithelial cells in relation to crystal binding. Nephron Exp Nephrol. 2003;94:e103-
112

	 16.	Richardson JC, Scalera V, Simmons NL. Identification of two strains of MDCK cells which resemble 
separate nephron tubule segments. Biochim Biophys Acta. 1981;673:26-36

	 17.	Helbert MJ, Dauwe S, De Broe ME. Flow cytometric immunodissection of the human nephron in vivo 
and in vitro. Exp Nephrol. 1999;7:360-376

	 18.	Helbert MJ, Dauwe SE, De Broe ME. Flow cytometric immunodissection of the human distal tubule 
and cortical collecting duct system. Kidney Int. 2001;59:554-564

	 19.	Gibson-D’Ambrosio RE, Samuel M, Chang CC, Trosko JE, D’Ambrosio SM. Characteristics of long-
term human epithelial cell cultures derived from normal human fetal kidney. In Vitro Cell Dev Biol. 
1987;23:279-287

	 20.	Thadhani R, Pascual M, Bonventre JV. Acute renal failure. N Engl J Med. 1996;334:1448-1460
	 21.	De Senanayake P, Calabro A, Nishiyama K, Hu JG, Bok D, Hollyfield JG. Glycosaminoglycan synthesis 

and secretion by the retinal pigment epithelium: polarized delivery of hyaluronan from the apical 
surface. J Cell Sci. 2001;114:199-205

	 22.	Vega-Salas DE, Salas PJ, Gundersen D, Rodriguez-Boulan E. Formation of the apical pole of epithelial 
(Madin-Darby canine kidney) cells: polarity of an apical protein is independent of tight junctions 
while segregation of a basolateral marker requires cell-cell interactions. J Cell Biol. 1987;104:905-916

	 23.	Neame SJ, Isacke CM. The cytoplasmic tail of CD44 is required for basolateral localization in epithelial 
MDCK cells but does not mediate association with the detergent-insoluble cytoskeleton of fibro-
blasts. J Cell Biol. 1993;121:1299-1310



Chapter 4 

70

	 24.	Sheikh H, Isacke CM. A di-hydrophobic Leu-Val motif regulates the basolateral localization of CD44 in 
polarized Madin-Darby canine kidney epithelial cells. J Biol Chem. 1996;271:12185-12190

	 25.	Turley EA, Noble PW, Bourguignon LY. Signaling properties of hyaluronan receptors. J Biol Chem. 
2002;277:4589-4592

	 26.	Knudson W, Aguiar DJ, Hua Q, Knudson CB. CD44-anchored hyaluronan-rich pericellular matrices: an 
ultrastructural and biochemical analysis. Exp Cell Res. 1996;228:216-228

	 27.	Toole BP. Hyaluronan and its binding proteins, the hyaladherins. Curr Opin Cell Biol. 1990;2:839-844
	 28.	Oertli B, Fan X, Wuthrich RP. Characterization of CD44-mediated hyaluronan binding by renal tubular 

epithelial cells. Nephrol Dial Transplant. 1998;13:271-278
	 29.	 Ito T, Williams JD, Al-Assaf S, Phillips GO, Phillips AO. Hyaluronan and proximal tubular cell migration. 

Kidney Int. 2004;65:823-833
	 30.	Jones S, Phillips AO. Regulation of renal proximal tubular epithelial cell hyaluronan generation: impli-

cations for diabetic nephropathy. Kidney Int. 2001;59:1739-1749
	 31.	Jones SG, Ito T, Phillips AO. Regulation of proximal tubular epithelial cell CD44-mediated binding and 

internalisation of hyaluronan. Int J Biochem Cell Biol. 2003;35:1361-1377
	 32.	Selbi W, de la Motte C, Hascall V, Phillips A. BMP-7 modulates hyaluronan-mediated proximal tubular 

cell-monocyte interaction. J Am Soc Nephrol. 2004;15:1199-1211
	 33.	 Ito T, Williams JD, Fraser D, Phillips AO. Hyaluronan attenuates transforming growth factor-beta1-

mediated signaling in renal proximal tubular epithelial cells. Am J Pathol. 2004;164:1979-1988
	 34.	 Ito T, Williams JD, Fraser DJ, Phillips AO. Hyaluronan regulates transforming growth factor-beta1 

receptor compartmentalization. J Biol Chem. 2004;279:25326-25332
	 35.	Lewington AJ, Padanilam BJ, Martin DR, Hammerman MR. Expression of CD44 in kidney after acute 

ischemic injury in rats. Am J Physiol Regul Integr Comp Physiol. 2000;278:R247-254
	 36.	Pedagogos E, Hewitson TD, Nicholls KM, Becker GJ. Hyaluronan and rat renal fibroblasts: in vitro stud-

ies. Nephron. 2001;88:347-353
	 37.	Rastaldi MP, Ferrario F, Giardino L, Dell’Antonio G, Grillo C, Grillo P, Strutz F, Muller GA, Colasanti G, 

D’Amico G. Epithelial-mesenchymal transition of tubular epithelial cells in human renal biopsies. 
Kidney Int. 2002;62:137-146



Chapter 4 

Preconditioning of the Distal Tubular Epithelium of 
the Human Kidney Precedes Nephrocalcinosis

A. Verhulst1, M. Asselman2, S. de Naeyer1, B.A. Vervaet1, M. Mengel3, 
W. Gwinner4, P.C. d’Haese1, C.F. Verkoelen2, and M.E. de Broe1

1. Department of Nephrology-Hypertension, University of Antwerp, Belgium
2. Department of Urology, Erasmus Medical Center Rotterdam, the Netherlands
3. Department of Pathology, Hannover Medical School, Germany
4. Department of Nephrology, Hannover Medical School, Germany

Published in Kidney Int. 2005;68:1643-1647



Chapter 4 

72

Abstract

Background
Preterm neonates and renal transplant patients frequently develop nephrocalcinosis. Experi-

mental studies revealed that crystal retention in the distal nephron, a process that may lead to 

nephrocalcinosis, is limited to proliferating/regenerating tubular cells expressing hyaluronan 

and osteopontin at their luminal surface. Fetal and transplant kidneys contain proliferating 

and/or regenerating cells since nephrogenesis is not completed until 36 weeks of gestation, 

while ischemia and nephrotoxic immunosuppressants may lead to injury and repair in renal 

transplants. This prompted us to investigate the expression of hyaluronan and osteopontin 

and to correlate this to the appearance of tubular calcifications both in fetal/preterm and 

transplanted kidneys.

Methods
Sections of fetal/preterm kidneys and protocol biopsies of transplanted kidneys (12 and 24 

weeks posttransplantation from the same patients) were stained for osteopontin, hyaluronan, 

and calcifications (von Kossa).

Results
Hyaluronan and osteopontin were expressed at the luminal surface of the epithelial cells lin-

ing the distal tubules of all fetal kidneys at birth and in all kidney graft protocol biopsies 12 

and 24 weeks posttransplantation. In 7 out of 18 surviving (at least 4 days) preterm neonates 

crystal retention developed. In renal allografts a striking increase (from 2/10 to 6/10) in tubu-

lar crystal retention between 12 and 24 weeks posttransplantation was observed. In addition, 

crystals were selectively retained in distal renal tubules containing cells with hyaluronan and 

osteopontin at their luminal surface.

Conclusion
The results of this study show that luminal expression of hyaluronan and osteopontin preced-

ed renal distal tubular retention of crystals in preterm neonates and renal transplant patients. 

We propose that the presence of this crystal binding phenotype may play a general role in 

renal calcification processes.
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Introduction

Nephrocalcinosis, recently defined 1 as increased calcium content of the kidney, is observed in 

specific patient populations, including renal transplant patients and preterm neonates. Renal 

calcifications in preterm neonates, detected by roentgenograms or ultrasonography, were 

first described in 1982 2. Varying incidences (17% to 64%) have been reported since then 3. 

Nephrocalcinosis in preterm neonates is the cause of later complications such as urinary tract 

obstruction and infection resulting in decreased renal function on the longer term 4, 5. Increas-

es in urinary stone salts saturation because of the calcium and vitaminD–rich diet, low urinary 

citrate concentration, and long-term furosemide treatment are all factors that have been 

previously considered to explain the enhanced crystal formation in tubules of preterms 3, 6, 7. 

Recently, intratubular microcalcifications have been described in 13% of transplanted kidneys 

26 weeks posttransplantation 8 and in 42% 1 year posttransplantation 9. Importantly, these 

intratubular calcifications have been associated with poor long-term graft survival 10. As in 

other individuals, a protein-rich diet may result in high urinary calcium and oxalate concentra-

tions and hence intratubular crystallization 6, 11.

The exact mechanisms leading to nephrocalcinosis in these two patient groups, however, 

are unclear. The localization of renal calcifications in preterm neonates is unknown, while in 

transplanted kidneys nephrocalcinosis clearly presents as intratubular microcalcifications 9, 10. 

Recent investigation has shown involvement of hyaluronan, osteopontin, CD44, nucleolin-

related-protein, annexin II, and Tamm-Horsfal-protein in the processes of tubular crystal for-

mation and/or retention 12-16. An important step in the development of nephrocalcinosis is the 

retention/trapping of passing crystals to the luminal surface of cells in the distal nephron. Our 

own studies, both in vitro and in vivo, have demonstrated that calcium crystals do not adhere 

to an intact epithelium but solely to a proliferating/regenerating epithelium with dedifferenti-

ated cells expressing hyaluronan, osteopontin, and their receptor CD44 at the luminal surface 
12, 16. Luminal hyaluronan and osteopontin expression is absent/sparse in normal renal epithe-

lium but extensively up-regulated following renal damage and the subsequent proliferation/

regeneration 12, 17-22. During nephrogenesis, hyaluronan may play a role during branching 

morphogenesis 23 and osteopontin has been proposed to be involved in tubulogenesis 24. 

In proliferating renal tubular cell cultures, hyaluronan is identified as a major crystal-binding 

molecule since hyaluronidase treatment diminished crystal adhesion 16, 25. Although contro-

versial, osteopontin is also considered to be a crystal-binding molecule, it is found associated 

with hyaluronan and their mutual receptor CD44 on a crystal-binding epithelium, and there-

fore may play a role in crystal retention 12, 16, 26, 27.

In an attempt to extend our experimental results showing the important role of the epithelial 

phenotype in crystal retention, in a human clinical setting, we investigated two patient popu-

lations presenting with a high incidence of nephrocalcinosis (i.e., preterm born infants and 

renal transplant patients) 3, 9. Kidneys of both populations contain proliferating/regenerating 
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nephrons since nephrogenesis is not completed until 36 weeks of gestation and posttrans-

plant kidneys are damaged and regenerate because of ischemia, nephrotoxic drugs (e.g., 

cyclosporine) and chronic graft rejection.

Methods

Patients
Renal tissue from 52 human fetuses with gestational age 15 to 40 weeks was available (arch ive 

Antwerp University Hospital, Professor Dr. Van Marck). These preterm neonates died soon af-

ter birth (<1 day) and expression of hyaluronan and osteopontin during nephrogenesis could 

be studied, in the absence of any influence from diet and fluid intake. Consequently, these 

kidneys did not contain crystals. Therefore, tubular crystal localization and colocalization with 

luminal osteopontin and hyaluronan was studied in 18 preterm neonates who lived for at 

least 4 days (Dr. R. De Krijger, Department of Pathology, Erasmus Medical Center, Rotterdam, 

The Netherlands) and hence received a diet known to promote urinary crystallization for at 

least 4 days. Two kidney biopsies, 12 and 24 weeks posttransplantation, were available from 

10 transplant-patients (Transplant Center, Medical School Hannover, Hannover, Germany). 

The protocol biopsy program at the Hannover Medical School is part of the routine medi-

cal care following transplantation and had been approved by the local ethi cal committee. 

Patients were informed well about the program before transplantation. Written consent was 

obtained and participation in the program was not a requirement for transplantation. The use 

of archive material for research is permitted by local ethical committees on the understanding 

of anonymity.

Hyaluronan and osteopontin staining
For hyaluronan staining, sections were incubated 20 minutes with 0.1% bovine serum albu-

min (BSA), 4 hours with biotinylated hyaluronan-binding-protein (Seikagaku, Tokyo, Japan) 

(1/10000), 1 hour with avidin-biotinylated-peroxidase-complex (Vector Laboratories, Burl-

ingame, CA, USA) and finally with peroxidase substrate [diaminobenzidine (DAB)]. Nuclei were 

methyl green counterstained.

Osteopontin was stained with LF123, a polyclonal rabbit-antihuman osteopontin antibody 

(provided by Dr. Fisher, National Institutes of Health, Bethesda, MD, USA ). Sections were 

incubated 20 minutes with normal goat serum, overnight with LF123, and subsequently 30 

minutes with biotinylated goat-antirabbit antibody (Vector Laboratories). Avidin-biotinylat-

ed-peroxidase-complex (Vector Laboratories) and peroxidase substrate [DAB or aminoethyl 

carbazole (AEC)] were used for detection. Nuclei were methyl green counterstained.
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von Kossa staining
Calcium deposits were visualized by von Kossa staining. Sections were incubated 45 minutes 

in 5% silver nitrate, 3 minutes with 1% pyrogallic acid, and 1 minute fixed in 5% sodium thio-

sulfate. Sections were hematoxylin and eosin counterstained.

Tubular crystals
Renal tissue from preterm neonates that lived at least 4 days and from von Kossa–positive 

transplant patients was used. Three sequential sections, stained for von Kossa, hyaluronan 

and osteopontin were used to evaluate the expression pattern of hyaluronan and osteopontin 

in tubules with von Kossa–positive deposits.

Results

Hyaluronan and osteopontin

Developing kidneys

Hyaluronan expression was present in the interstitium of fetal kidneys during the whole period 

of nephrogenesis studied (week 15 to 40). However, the amount of interstitial hyaluronon dimin-

ished along with the decrease in interstitial volume resulting from tubular growth. Besides the 

interstitium, hyaluronan was found at the luminal surface of the tubules. This tubular localiza-

tion was observed, both in cortex and medulla, from week 15 to 40. During later nephrogenesis 

(from around week 27), luminal hyaluronan was especially evident in newly formed, immature 

tubules of the medulla and outer layer of the cortex. Tubular osteopontin expression was pres-

ent during nephrogenesis (week 15 to 40) both in cortex and medulla. Between week 15 and 21, 

however, expression was minimal and only intracellular. Luminal osteopontin expression was 

clearly present from week 24 on and persisted until week 40. Since it is not possible to allow 

proximal and distal nephron identification in immature kidneys, hyaluronan and osteopontin 

expression could not be attributed to specific parts of the nephron (figure 4.1, A to F).

Transplanted kidneys

Twelve and 24 weeks posttransplantation all biopsies showed the presence of hyaluronan and 

osteopontin at the luminal surface of distal tubules (figure 4.1, G and H).

Tubular crystals

Developing kidneys

Seven out of 18 von Kossa–stained sections from preterm neonates that lived for at least 4 

days showed intratubular calcium-containing inclusions in distal tubules. This was in contrast 
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Figure 4.1
Hyaluronan and osteopontin staining on fetal (A to F) and transplanted (G and H) kidneys. Fetal kidneys of 18 weeks show widespread 

interstitial hyaluron staining in both cortex (A) and medulla (C), while at 27 weeks this staining becomes much less extensive together with 

the cortical interstial volume (B). Luminal staining in the tubules is present in cortex and medulla (A and C, arrows). At 28 weeks hyaluronon is 

mainly present in the immature, developing tubules of the outer cortex (D). Osteopontin staining is clearly present in many tubules of both cortex 

(E) and medulla (F) of a 27-week-old fetus (arrows). Both hyaluronon (G) and osteopontin (H) are expressed at the luminal surface (arrows) of 

the tubules in a kidney 24 weeks after transplantation (200×). Color image: see appendix page 151.
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to sections from preterm neonates who lived less than 1 day since none of those showed any 

von Kossa–positive staining (figure 4.2). By means of von Kossa, hyaluronan-stained and os-

teopontin-stained serial sections, it was shown that crystal containing tubules also expressed 

luminal hyaluronan or osteopontin. Interstitial calcifications were not present.

Transplanted kidneys

Analyzing biopsies, obtained in the same patients (N = 10), 12 and 24 weeks posttransplan-

tation, luminal expression of hyaluronan and osteopontin was observed to precede the re-

tention of crystals in the tubules (figure 4.2 and 4.3). Indeed, 12 weeks posttransplantation 

there was extensive hyaluronan and osteopontin staining at the luminal membrane of distal 

tubules in all biopsies, whereas only two out of ten patients showed tubular crystals (von 

Kossa–positive tubules). At 24 weeks after transplantation, however, in six biopsies out of ten, 

calcium containing crystals were found attached to distal tubular cells expressing hyaluronan 

and osteopontin. As in preterm neonates, in the transplanted kidneys interstitial calcifications 

were never observed, in the transplanted kidneys.

Discussion

The extensive expression of hyaluronan and osteopontin during nephrogenesis is in agree-

ment with the important role of these molecules described during kidney development 23, 24, 

while in transplanted kidneys the up-regulated expression probably occurs in response to 

ischemic renal damage and cyclosporine toxicity 17, 21, 28-30.

It can be concluded from this study that nephrocalcinosis in preterm neonates, like in trans-

planted kidneys, arises from intratubular calcifications. Furthermore, this study corroborates 

our observation in ethylene glycol (induces both crystalluria and tubular damage)–treated 

rats that crystal retention is associated with tubular regeneration and luminal expression of 

hyaluronan and osteopontin 12. From these rat experiments, however, it could not be con-

cluded whether the retained crystals themselves induced epithelial damage/regeneration 

and luminal expression of hyaluronan and osteopontin, or whether crystals were retained 

because of an already existing (ethylene glycol-metabolites induced 31-33) tubular damage/

regeneration and hence hyaluronan and osteopontin up-regulation. The current study shows 

that luminal hyaluronan and osteopontin expression in distal tubules precedes crystal reten-

tion. Hyaluronan and osteopontin are expressed in all fetal kidneys in view of their immaturity, 

which may result in nephrocalcinosis after preterm birth because of subsequent crystalluria 

resulting from diet and/or medication. In transplanted patients, ischemia/reperfusion dam-

age during transplantations followed by the exposure to nephrotoxic drugs and on the 

longer-term chronic allograft rejection may be responsible for acute and sustained expres-

sion of hyaluronan and osteopontin, respectively. Exposing these kidneys to a protein-rich/
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Figure 4.2
Serial sections from preterm and transplanted kidneys stained for von Kossa and hyaluronan or osteopontin. The von 

Kossa–positive tubules are clearly positive for hyaluronan or osteopontin (320×, except second row 640×). Color image: see appendix page 152.
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crystalluria-inducing diet can result in nephrocalcinosis. This is in agreement with the recent 

study of Pinheiro et al 10 who associated acute tubular necrosis after transplantation with a 

predisposition to the deposition of tubular crystals.

Conclusion

Expression of crystal-binding molecules (hyaluronan and osteopontin) at the luminal surface 

of the proliferating/regenerating distal tubular cells precedes crystal retention to the distal 

nephron epithelium, the first step of nephrocalcinosis.
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Abstract

Background
Previously, we reported in vitro and in vivo studies indicating that expression of the gly-

cosaminoglycan hyaluronan at the luminal cell membrane of regenerating tubular cells leads 

to nephrocalcinosis (retention of calcium oxalate crystals inside the tubular lumen of the 

nephron). Here, we investigated in cell culture if this process can be inhibited by non-steroidal 

anti-inflammatory drugs (NSAIDs).

Methods
[14C] Calcium oxalate monohydrate (COM) crystal binding was studied in scrape-damaged 

monolayers of MDCK-I cells, a cell line that resembles the renal collecting duct. During the 

repair process cells were treated with the non-selective cyclooxygenase (COX) inhibitor in-

domethacin (1-100 μM) or COX-2 selective inhibitors nimesulide and meloxicam (50-100 μM). 

An enzyme-linked immunoassay and an enzyme-linked hyaluronan-binding assay were used 

to measure in culture medium the amount of prostaglandin E2 and hyaluronan production, 

respectively.

Results
Transepithelial electrical resistance (TER) measurements demonstrated that wound healing 

required approximately four days to restore high TERs, which was slightly inhibited by the 

highest concentration of indomethacin and nimesulide, and not by meloxicam. Regenerat-

ing cells at the borders of the wound expressed hyaluronan at their apical cell membrane, 

secreted increased amounts of PGE2 and high molecular weight hyaluronan, and bound more 

COM crystals. The highest peak level of PGE2 secretion occurred one day after scrape injury, 

and of hyaluronan two days after scrape injury. The highest level of COM crystal binding to 

hyaluronan-expressing regenerating tubular cells occurred two days post-injury. NSAIDs 

concentration-dependently inhibited the secretion of PGE2 and hyaluronan, the cell surface 

expression of hyaluronan and hyaluronan-dependent COM crystal binding.

Conclusion
Collectively, these results indicate that the suppression of PGE2 by cyclooxygenase inhibitors 

leads to a decrease in the production and expression of hyaluronan by regenerating MDCK-I 

cells. Hyaluronan-dependent crystal binding to regenerating MDCK-I cells is COX-2 mediated 

and can be inhibited by NSAIDs.
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Introduction

Nephrocalcinosis and nephrolithiasis results from the retention of crystals in the kidney 1-3. 

Previously, we identified hyaluronan (HA) as major binding molecule for calcium oxalate 

monohydrate (COM) crystals at the apical surface of mitogen/stress activated renal tubular 

cells in culture 4, 5. Also in vivo in the kidneys of ethylene glycol-treated rats 6, preterm neonates 

and kidney transplantation patients 7, crystals were selectively found attached to the luminal 

surface of HA-expressing tubular cells.

Mitogen/stress conditions activate various cellular signal transduction systems including the 

eicosanoid pathway. After the release of arachidonic acid (AA) from membrane phospholipids 

by cytosolic phospholipase A2, AA is converted by cyclooxygenase (COX) isoenzymes (COX-1 

and COX-2) to eicosanoids such as prostaglandin E2 (PGE2). PGE2 is the most prevalent AA 

metabolite in the kidney particularly in the collecting ducts 8. Whereas COX-1 is constitutively 

expressed in most regions of the kidney, COX-2 is considered the inducible isoform upregu-

lated for instance during inflammation 9-12. The effects of COX inhibitors, commercially known 

as non-steroidal anti-inflammatory drugs (NSAIDs), in the kidney reflects different points of 

the drug action along the nephron where COX isoforms are expressed 13.

In many cell systems HA synthesis is linked to the eicosanoid pathway. Little is known about 

HA biosynthesis by renal tubular cells. PGE2 stimulates hyaluronan synthase (HAS) enzyme 

activity in rabbit pericardial cells 14, lung fibroblasts 15 and rat mesangial cells 16. Low molecular 

weight HA activates COX in glomeruli 17 and renal tubular cells 18, suggesting that HA plays 

an active role in its own production. NSAIDs can have opposing effects on HA biosynthesis. 

Indomethacin and mefenamic acid inhibited the synthesis of HA in murine Swiss 3T3 fibro-

blasts 19, whereas celecoxib stimulated HA synthesis in cartilage 20 and SC-236 and rofecoxib 

in the iris 21. In renal proximal tubular cells, indomethacin did not affect the production of 

HA that was elevated by high glucose or cytokines (IL-β) 22. In the renal inner medulla, HA 

plays an important role in concentrating and diluting the urine 23. During acute water loading 

the content of HA increases in the papillary interstitium, while the opposite occurs during 

water deprivation. This increase in HA during excess water intake antagonizes medullary in-

terstitial water reabsorption by changing the matrix properties of the interstitium resulting 

in resistance to water flow 24, 25. NSAIDs prevented the accumulation of HA in the medullary 

interstitium of water-loaded rats, indicating that the synthesis of HA in the renal medulla is 

mediated by eicosanoids 26.

In the present study, we investigated in MDCK-I cells in culture in a scrape-wound model 

the effect of the COX-1/COX-2 inhibitor indomethacin and the highly selective COX-2 in-

hibitors nimesulide and meloxicam on COM crystal binding, PGE2 secretion, HA secretion, 
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HA expression, LDH release and recovery of transepithelial resistance (TER). The results in-

dicate that crystal binding depends on COX-2 mediated cell surface HA expression which is 

significantly inhibited by non-steroidal anti-inflammatory drugs at doses that do not affect 

cell viability or the regeneration capacity of the cells to restore epithelial barrier integrity. The 

clinical implication of this finding should be evaluated in an experimental in vivo model of 

calcium oxalate crystal retention in the kidney.

Methods

Cell culture
MDCK-I cells were kindly provided by Prof. G. van Meer (Laboratory for Cell Biology and Histol-

ogy, Amsterdam Medical Center, The Netherlands 27. Routinely, cells were grown in Dulbecco’s 

modified Eagle’s Medium (GIBCO, Grand Island, NY, USA) supplemented with 10% fetal calf 

serum (Hyclone, Perbio Science, Etten-Leur, The Netherlands) and weekly replated. To main-

tain the cell line, cells are cultured at intermediate densities in polystyrene tissue culture 

treated 75 cm2 flasks (Falcon, BD Biosciences, Bedford, USA) and the culture medium refreshed 

three times a week. For experiments cells are trypsinized and seeded at high density (1 x 106 

cells) on polycarbonate permeable supports (Transwells), 24 mm diameter inserts with 4.7 

cm2 surface area provided with pores of 0.4 µm pore size (Corning Costar, Badhoevedorp, The 

Netherlands). Within 6-7 days the cells develop into confluent monolayers with a cell density 

of on average 4-6 x 106 cells. One day post-seeding there is already cell-cell contact and the 

cultures seem confluent under light microscopy. In time, however, the cells become much 

more closely packed and taller and begin to assemble tight junctions after 4-5 days. Tight 

junction formation is assessed by transepithelial electrical resistance (TER) measurements. 

Monolayers are considered confluent as soon as the highest TERs are reached. Routinely, PCR 

analyses are performed on DNA isolated from cell culture conditioned medium for the pres-

ence of mycoplasma. Cells used in this study were not contaminated with mycoplasma.

Wound healing studies
For the wound healing studies, cells were grown to confluence and subsequently injured by 

scraping off 100-150 mm2 (approximately one third of the total insert area) with the tip of a 

sterile 10 ml tissue culture pipette as previously described 4, 28, 29. The inserts were washed with 

PBS, fresh medium without fetal calf serum was added and the process of wound healing 

monitored morphologically by light microscopy and functionally by measuring TERs.

Non-steroidal anti-inflammatory drugs
The non-selective COX-1/COX-2 inhibitor indomethacin and the highly selective COX-2 in-

hibitors nimesulide (Sigma-Aldrich Chemie BV, Zwijndrecht, The Netherlands) and meloxicam 
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(Sigma-Aldrich Chemie BV, Zwijndrecht, The Netherlands) were used. Indomethacin and 

nimesulide were dissolved in ethanol (EtOH) and meloxicam in DMSO and added to healing 

cultures at concentrations ranging from 1-100 µM. Cultures that received EtOH or DMSO alone 

served as controls.

[14C] calcium oxalate monohydrate crystal binding
Radiolabeled calcium oxalate monohydrate (COM) crystals were prepared as previously de-

scribed 28. Briefly, a solution of sodium oxalate was prepared by adding 1 ml 0.37 MBq/ml [14C] 

oxalic acid (Amersham Int.plc, Buckinghamshire, UK) to 0.25 ml 200 mM sodium oxalate. A 

calcium chloride solution was prepared by adding 0.25 ml 200 mM calcium chloride to 9.5 ml 

distilled water. Mixing the two solutions at room temperature (final concentration of 5 mM 

for both oxalate and calcium) immediately resulted in the precipitation of radiolabeled COM 

crystals. After settling for three days, crystals were washed three times with and resuspended 

in CaOx-saturated H2O in a final volume of 5 ml (1.46 mg CaOx crystals/ml). At the indicated 

periods of time, cells were washed with PBS to be replaced by buffer A (140 mM NaCl, 5 mM 

KCl, 1.5 mM CaCl2, 0.5 mM MgCl2, 50 mM urea, pH 6.6, 310 to 320 mOsm/kg H20) in the apical 

compartment and buffer B (124 mM NaCl, 25 mM NaHCO3, 2 mM Na2HPO4, 5 mM KCl, 1.5 mM 

CaCl2, 0.5 mM MgCl2, 8.3 mM D-glucose, 4 mM L-alanine, 5 mM Na acetate, 6 mM urea and 10 

mg/ml bovine serum albumin, pH 7.4, 310 to 320 mOsm/kg H2O) in the basal compartment. 

Subsequently 50 µl of the radiolabeled crystal suspension (16 µg/cm2) was added to the apical 

compartment and incubated for 60 minutes at 37°C. Filters were rinsed extensively to remove 

all non-adhered crystals, cut-out and transferred to a scintillation vial. After the addition of 0.5 

ml 1 M perchloric acid radioactivity was quantified in a scintillation counter. The amount of 

cell-associated crystals is expressed in µg/cm2.

Prostaglandin E2 secretion
During wound healing, culture medium was collected from the apical fluid compartment at 

the indicated time points. PGE2 was measured by a switch enzyme-linked immunoassay (EIA) 

Kit (Cayman Biochemicals, USA). This assay is based on the competition between PGE2 and a 

PGE2-acetylcholinestrase (AchE) conjugate (as tracer) for a limited amount of PGE2 monoclonal 

antibody. Because the concentration of the PGE2 tracer is held constant while the concen-

tration of PGE2 varies, the amount of PGE2 tracer that is able to bind to the PGE2 antibody 

is inversely proportional to the concentration of PGE2 in the well. PGE2 standard curves are 

prepared by diluting 10 mg/mL PGE2 in EIA buffer to produce a concentration range of 0-1000 

µg PGE2/mL. Each plate or set of strips contained a blank-, a non-specific binding-, a maximum 

binding and a total activity control. Standard curve samples (50 µl), controls and experimental 

samples were added to the wells. Each well received 50 µl tracer except the total activity and 

the blank wells. The wells subsequently received 50 µl PGE2 monoclonal antibody except the 

total activity well, the non-specific binding well, and the blank well. The plate was covered 
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with plastic film and incubated for 18 hours at 4oC. The wells are rinsed extensively with wash 

buffer after which 200 µL Ellman’s Reagent was added to each well and 5 µl tracer to the total 

activity well. The plate was then covered with plastic film and developed in the dark on an 

orbital shaker. When the blank absorbance was between 0.3-0.8 units, the plate was read at 

405-420 nm wavelengths.

Hyaluronan production
During wound healing, culture medium was collected from the apical fluid compartment at 

the indicated time points. The total amount of HA was determined in a sandwich protein-

binding assay in microplates according to the manufactures instructions (Corgenix). The assay 

uses microwells coated with a highly specific HA binding protein (HABP) from bovine cartilage 

to capture HA and an enzyme-conjugated version of HABP to detect and measure HA in the 

samples. Reference HA solutions were used to calculate test results in ng/ml. In short, samples 

and HA reference solutions were incubated for 1 hour in HABP-coated wells, subsequently 

the wells were washed and HABP conjugated with horseradish peroxidase (HRP) was added 

to form complexes with bound HA. Following a second washing step, a chromogenic sub-

strate (TMB/H2O2) was added to develop a colored reaction. Stopping solution was added 

and the intensity of the color measured in a spectrophotometer at 450 nm. HA concentra-

tions were calculated by comparing the absorbance of the sample against a reference curve 

prepared from the reagent blank and five HA reference solutions (50, 100, 200, 500, and 800 

ng/ml). Linear regression was used to calculate the results. This assay measures HA molecules 

larger than 9 kDa (i.e. more than 20 repeating dimers of β-(1-4)-glucoronic acid and β-(1-3)-

N-acetylglucosamine).

Hyaluronan expression
Cells were fixed in formaldehyde/glutaraldehyde (3.7%/0.1%, v/v) for 10 minutes. Subse-

quently, cells were incubated for 60 minutes with 3% (w/v) low-fat dry milk in PBS/0,1% Tween 

20 to block non-specific binding. Cells were washed and incubated overnight at 4°C with 2% 

biotinylated HA-binding protein (bHABP; Seikagaku Inc., Tokyo, Japan) followed by the FITC-

conjugated avidin (fluorescein avidin D; Vector Laboratories Inc., Burlingame, USA). Stainings 

were combined with a propidiumiodide counterstaining to localize cell nuclei. Filters were 

mounted in vectashield and analyzed with a Zeiss LSM 410 confocal laser scanning miscros-

copy (CLSM; Zeiss, Oberkochen, Germany). A 488 nm Ar-laser was used to excitate FITC and a 

543 nm laser to excitate propidiumiodide.

Lactate dehydrogenase release
LDH (EC 1.1.1.27) was measured in the luminal compartment with pyruvate as substrate using 

a standard autoanalyzer.
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Transepithelial resistance
TER is measured in ohms (Ω) after placing the insert in an Endohm 24 connected to a Voltohm 

meter (World Precision Instruments, Sarasota, USA) and expressed as Ω*cm2.

Statistical analysis
The results are presented as means ±SD of three independent inserts. Statistical analysis on 

NSAID concentration-dependent effects was performed with one-way analysis of variance 

(ANOVA) and the effect of 25 μM indomethacin on COM crystal binding, PGE2- and HA-pro-

duction with Student t test. Differences were considered significant at P < 0.05.

Results

Indomethacin during wound healing

[14C] calcium oxalate monohydrate crystal binding

We investigated whether the non-selective COX-inhibitor indomethacin affected the suscep-

tibility of the cell surface for COM crystal binding during wound healing. MDCK-I cells do no 

longer express the crystal-binding molecule HA and practically loose their affinity for COM 

crystals as soon as cells are fully differentiated and have formed confluent monolayers with 

tight junctions (high levels of TER). Scrape-damage results in increased crystal binding to HA-

expressing regenerating cells at the border of the wound. Crystal binding to healing cultures 

compared to undamaged cultures reaches its maximum level 2 days post-injury to gradually 

decline to control levels as the epithelial barrier is restored 4 days post-injury 4. [14C] COM crys-

tal binding was measured on day 1, 2, 3 and 4 after scrape-damaging confluent monolayers 

and addition of 25 μM indomethacin or vehicle alone (EtOH) to the culture medium. Crystal 

binding to undamaged confluent control cultures was relatively low (0.80 ± 0.14 µg/cm2). Two 

days post-injury crystal binding reached its maximum level (4.05 ± 1.17 µg/cm2) and at this 

point in time 25 μM indomethacin resulted in a significant decrease of crystal binding (figure 

5.1 A).

Prostaglandin E2 secretion

The secretion of PGE2 in the apical medium compartment was measured on day 1, 2, 3 and 

4 post-injury in daily-replaced Dulbecco’s modified Eagle’s medium. PGE2 secretion reaches 

its highest level already after 1 day post-injury to gradually decline thereafter (figure 5.1 B). 

PGE2 production was significantly reduced at all time points by 25 μM indomethacin. From 

measurements in culture medium that was not replaced it is also apparent that the high-

est production of PGE2 is reached at the first day post-injury and indomethacin significantly 

reduced these high levels at all indicated points in time (figure 5.1 C).
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Hyaluronan production

The delivery of HA in the apical compartment was also measured after scrape-damaging 

confluent monolayers. Previously we have shown that scrape damage results in increased 

levels of HAS2 mRNA expression and high molecular weight (Mr) HA production which is pre-

dominantly targeted to the apical medium compartment 29. Scrape-injury induced increased 

levels of HA production, with peak levels 2 days post-injury (figure 5.1 D). Thus, while peak 

levels PGE2 were secreted 1 day post-injury (figure 5.1 B), peak HA levels were secreted 2 days 

post-injury (figure 5.1 D). The increased production of HA in response to tissue damage was 

significantly reduced by 25 µM indomethacin (figure 5.1 D). From measurements in culture 

medium that was not replaced it is also clear that the highest production of HA is reached 

two days post-injury and indomethacin significantly reduced these high levels at all indicated 

points in time (figure 5.1 E).

Indomethacin during wound healing, two days post-injury

[14C] calcium oxalate monohydrate crystal binding

Since [14C] COM crystal binding reached its maximum level 2 days post-injury, we investigated 

at this point in time crystal binding at increasing doses of the non-selective COX-inhibitor in-

domethacin (0, 1, 10, 25 and 100 μM). It was found that COM crystal binding was significantly 

decreased already at the lowest dose of 1 μM indomethacin compared to scrape-damaged cul-

tures treated with vehicle alone (= 0 μM indomethacin). Crystal binding decreased even more 

to the lowest levels at concentrations of 25 and 100 μM indomethacin, which were equivalent 

to low crystal binding levels in undamaged control confluent cultures (figure 5.2 A).

Prostaglandin E2 secretion.

Two days post-injury culture medium was collected and the amount of PGE2 measured. Intact 

monolayers secreted relatively low amounts of PGE2 (623 ± 112 pg/24h) in culture medium 

that was aspirated after 2 days. Scrape-injury resulted in an increased production of PGE2. 

The increased secretion of PGE2 was concentration-dependently inhibited by indomethacin 

(1-100 µM). Already at 1 μM indomethacin, PGE2 concentrations were significantly reduced 

and were even much lower than in undamaged control confluent cultures (figure 5.2 B).

Hyaluronan production

Previously we have shown that during proliferation or in response to mechanical injury pro-

liferating or regenerating MDCK-I cells express HA at their apical membrane and high Mr HA 

production is increased which is targeted to the apical medium compartment 29. The increased 

HA production in healing cultures was concentration-dependently inhibited by indomethacin 

(1-100 µM) (figure 5.2 C). The amount of in hyaluronan in apical medium that was collected 
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after two days showed a gradual decline and was significantly reduced compared to vehicle 

alone at concentrations of 25 μM and 100 μM indomethacin (figure 5.2 C).

Hyaluronan expression

HA was previously identified as major binding molecule for crystals at the apical membrane of 

flattened, migrating tubular epithelial cells closing wounds made in confluent monolayers 4. 

Since indomethacin reduced COM crystal binding it was investigated whether indomethacin 

treatment also resulted in decreased HA expression. HA was stained with biotinylated hyaluro-

nan binding protein (bHABP) in healing cultures treated or not treated with indomethacin. 

These studies demonstrated that HA is abundantly expressed at the border of the wound in 
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Figure 5.1
The effect of the non-selective COX-inhibitor indomethacin on [14C] COM crystal binding (A), PGE2 production (B-C) and HA 
production (D-E) during the process of wound healing in scrape-injured cultures of MDCK-I cells.
*Significantly lower compared to scrape-injured cultures with vehicle alone; **Significantly higher compared to undamaged control confluent 

cultures.
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cultures treated with vehicle alone one day post-injury, but 10 µM indomethacin reduced this 

expression and at concentrations of 25 µM indomethacin (figure 5.5 B) or higher, hyaluronan 

was nearly not detectable.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A

B

C

Figure 5.2
Dose-dependent effects of the non-selective COX-inhibitor indomethacin on [14C] COM crystal binding (A), PGE2 (B) and HA 
production (C), 2 days post-injury in a scrape-wound model of MDCK-I cells in culture.
*Significantly lower compared to scrape-injured cultures with vehicle alone; **Significantly higher compared to undamaged control confluent 

cultures.
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Nimesulide and meloxicam during wound healing, two days post-injury

[14C] calcium oxalate monohydrate crystal binding

The effect of the highly selective COX-2 inhibitors nimesulide and meloxicam (0, 50 and 100 

μM) on crystal binding at 2 days post-injury was investigated. Crystal binding was significantly 

decreased by 50 μM nimesulide, and decreased even more to low levels comparable to un-

damaged controls by 100 μM nimesulide (figure 5.3 A). The same pattern of decreasing levels 

of COM crystal binding was observed in meloxicam-treated cultures (figure 5.4 A).

Prostaglandin E2 secretion

Both nimesulide and meloxicam (50 and 100 µM) effectively inhibited the increased secretion 

of PGE2 during wound healing (figure 5.3 B and 5.4 B).

Hyaluronan production

The increased HA production in healing cultures was concentration-dependently inhibited 

by nimesulide and meloxicam. HA production was significantly reduced by both 50 and 100 

µM Nimesulide compared to increased HA production in scrape-damaged cultures treated 

with vehicle alone (figure 5.3 C). Meloxicam showed a similar pattern with increasing reduced 

levels of hyaluronan in the apical medium compartment (figure 5.4 C).

Hyaluronan expression

HA expression at the surface of flattened, migrating cells at the border of the wounds was 

strongly reduced by 50 µM nimesulide and was merely absent at 100 µM (figure 5.5 C). The 

observations in healing cultures treated with increasing doses of meloxicam were similar. HA 

was scarcely observed at the highest dose of 100 µM meloxicam (figure 5.5 D).

Lactate dehydrogenase release
LDH release was measured in healing cultures treated with increasing doses of indomethacin, 

nimesulide or meloxicam. Treatment with either NSAID did not increase LDH release compared 

to scrape-injured cultures treated with vehicle alone (table 5.1). Hence, the concentrations of 

Table 5.1
The effects of the non-selective COX-inhibitor indomethacin (A) and the selective COX-2 inhibitors nimesulide (B) and meloxicam 
(C) on LDH release in the apical medium compartment 2 days post-injury in a scrape-wound model of MDCK-I cells in culture.

LDH (U/l)

Indomethacin (μM)
0 1 10 25 100

2.7±1.8 4.0±0.5 2.9±1.8 2.9±2.5 3.6±1.6

Nimesulide (μM)
0 50 100

5.9±2.3 6.4±0.6 3.3±0.6

Meloxicam (μM)
0 50 100

8.2±0.4 8.4±2.0 3.1±1.6
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NSAIDs that were used were not cytotoxic. The trypan blue exclusion test was also used to 

assess toxicity of NSAIDs and also showed that the concentrations of NSAIDs that were used 

in these studies were not injurious to cells (not shown).
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Figure 5.3
Dose-dependent effects of the selective COX-2 inhibitor nimesulide on [14C] COM crystal binding (A), PGE2 (B) and HA production 
(C), 2 days post-injury in a scrape-wound model of MDCK-I cells in culture.
*Significantly lower compared to scrape-injured cultures with vehicle alone; **Significantly higher compared to undamaged control confluent 

cultures.
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Transepithelial electrical resistance
Previously we have shown with TER measurements, phase-contrast and confocal microscopy 

that after scraping-off approximately 30% of a confluent monolayer, approximately 4 days 
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Figure 5.4
Dose-dependent effects of the selective COX-2 inhibitor meloxicam on [14C] COM crystal binding (A), PGE2 (B) and HA production 
(C), 2 days post-injury in a scrape-wound model of MDCK-I cells in culture.
*Significantly lower compared to scrape-injured cultures with vehicle alone; **Significantly higher compared to undamaged control confluent 

cultures.
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are required for the cultures to fully re-establish the epithelial barrier integrity 28. Whereas 

TERs are around 5000 Ω*cm2 in confluent cultures grown in 10% FCS, they drop to values of 

1000 - 2000 Ω*cm2 in the absence of serum. TER is reduced to zero after scraping 30% of the 

monolayers. NSAIDs did not abolish tight junction formation since re-establishment of TER 

(with increasing levels of TER) were measured in all healing cultures treated with indometha-

cin, nimesulide or meloxicam at day 1, 2 3 and 4 post-injury (figure 5.6).

TER measurements in indomethacin treated cultures of 1 and 10 µM were comparable to con-

trols. TER was lower compared to healing cultures treated with vehicle alone at the highest 

dose of 100 µM indomethacin. TER was also less high with 25 µM indomethacin at day 1, 2 and 

3 post-injury but was not significantly different from control cultures 4 days post-injury (figure 
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Figure 5.5
Confocal laser scanning microscopy studies. Color image: see appendix page 153.
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5.6 A). The highest dose of 100 µM nimesulide resulted in less high levels of TER compared 

to controls, whereas TER was not significantly different from controls with 50 µM nimesulide 

(figure 5.6 B). Both concentrations of meloxicam that were used showed increasing levels of 

TER similar to control scrape-injured cultures (figure 5.6 C).
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Figure 5.6
Dose-dependent effects of the non-selective COX-inhibitor indomethacin (A) and the selective COX-2 inhibitors nimesulide (B) 
and meloxicam (C) on recovery of transepithelial electrical resistance (TER) in a scrape-wound model of MDCK-I cells in culture.
*Significantly lower compared to scrape-injured cultures with vehicle alone.
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Discussion

Crystal retention is indispensable for the development of nephrocalcinosis and nephrolithia-

sis. There is mounting evidence that stone formers are predisposed to retain crystals in their 

kidneys. Crystallization is the physiological result from the urinary concentration process 

along the nephron. Cells lining the urinary tract are non-adherent to crystals in nephron seg-

ments where levels of supersaturation are high and crystals are being formed. Thus, calcium 

oxalate crystals do not bind to renal distal tubule/collecting duct cells, whereas they unre-

strictedly adhere to proximal tubular cells 30. It is not entirely clear how in the kidneys of stone 

forming patients the non-adherent crystal binding capacity of the cell surface is transformed 

into a crystal binding phenotype. Earlier studies have demonstrated that the crystal binding 

phenotype is characterized by the luminal expression of HA, OPN and CD44 by dedifferentiat-

ing/regenerating activated tubular epithelial cells 5, 6. Although the relative contribution in 

crystal retention of these and perhaps other membrane molecules, including sialic acid 31, 

OPN 32, nucleolin-like protein 33, phosphatidylserine 34, extracellular matrix (ECM) proteins 35 

and annexin II 36 remains to be determined, the results of the present study reinforce a major 

role for HA in crystal retention.

HA is a very large polysaccharide (>106 Da) composed of multiple units of glucuronic acid (Gl-

cUA) and N-acetylglucosamine (GlcNAc) dissacharides. Besides structural functions, HA also 

directly influences cell behaviour. HA mediates immune cell adhesion at sites of inflamma-

tion and HA-receptor binding triggers signal transduction events that, in concert with other 

ECM and cytoskeletal components, can direct cell trafficking under physiological and patho-

logical conditions. HA also is the main component of pericellular matrices (PCMs) providing 

a microenvironment required for the movement of the cells during dynamic morphogenetic 

events such as embryonic tissue development, tissue regeneration and tumorigenesis 37-40. 

HA is not expressed in normal, healthy nephrons. Its expression by renal tubular cells requires 

some form of stress activation 5, 6. Inflammation also triggered colonic and aortic smooth 

muscle cells to assemble HA-rich PCMs which resulted in the retention of leukocytes at the 

sites of inflammation 41. Once expressed, HA forms entangled molecular networks through 

steric interactions between individual HA molecules and aggregated HA binding proteins 42. 

Previously, we have demonstrated that in cell culture this glycocalyx serves as binding sub-

stance for calcium oxalate crystals 4, 43.

Arachidonic acid (AA) and its eicosanoid metabolites play critical roles in modulating inflam-

matory responses in the kidney. The synthesis of PGE2 is catalyzed by cyclooxygenase (COX) 

enzyme activity and COX inhibitors (NSAIDs) are powerful drugs in controlling the inflam-

matory process. The present study was undertaken to reveal if regeneration-induced crystal 

binding is inhibited by NSAIDs. The effect of the non-specific COX inhibitor indomethacin and 
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the COX-2 selective inhibitors nimesulide and meloxicam were studied on COM crystal bind-

ing to MDCK-I cells during the repair from scrape-wounds made in confluent monolayers. 

Scrape injury leads to a burst of cell proliferation distal from the wound and cell migration 

at the wound border, with a critical role for HA in the subsequent repair process 4, 44. Our re-

sults show that the secretion of PGE2 (figure 5.1, B and C) as well as that of HA (Figure 5.1, D 

and E) increased in response to injury, to gradually decline during the subsequent healing 

process. Peak levels of PGE2 were measured one day post-injury, while those for HA were 

measured two days post-injury suggesting that -if interrelated- HA biosynthesis is activated 

down-stream the eicosanoid pathway. Mechanical stress-induced PGE2 and HA secretion were 

dose-dependently decreased by indomethacin (1-100 µM), nimesulide or meloxicam (50-100 

µM). Since nimesulide and meloxicam are COX-2 selective, the results suggest that activation 

of PGE2 and HA depends on COX-2 rather than COX-1 enzyme activity45.

Previously we have shown that proliferating MDCK-I cells produced more high Mr hyaluronan 

(Mr > 106 Da) than growth-inhibited cells in intact monolayers and up to 85% was targeted 

to the apical compartment, which was accompanied by increased HAS2 mRNA expression 

and slightly decreased HAS3 mRNA, while HAS1 mRNA remained undetectable 29. These 

proliferating cells express HA at their apical membrane and avidly bind COM crystals. Also 

regenerating MDCK-I cells at the border of the wound of scrape-damaged monolayers express 

the crystal-binding molecule HA and secrete increased amounts of HA in the apical medium 

compartment. In the present study it is shown that NSAID treatment resulted in decreased 

levels of COM crystal binding, decreased HA secretion in the apical medium compartment 

and decreased HA expression at the apical cell membrane. These results strongly suggest that 

the crystal-binding capacity of these cells was decreased by reduced expression of the crystal-

binding molecule HA. Figure 5.7 supports this conclusion. Indomethacin treated cultures were 

subsequently treated with Streptomyces hyaluronidase, an enzyme that specifically digests 

hyaluronan from the cell surface. COM crystal binding in cultures that were treated with 0 or 

1 µM indomethacin could be further decreased with Streptomyces hyaluronidase to low levels 

comparable to undamaged control cultures, whereas at higher concentrations of indometha-

cin hyaluronidase treatment did not further decrease the already low levels of crystal binding. 

Together with the results of TER recovery during wound healing (figure 5.6 A), LDH release and 

trypan blue exclusion, this suggests that indomethacin reduced the hyaluronan-dependent 

crystal binding capacity of regenerating cells at concentrations that did not affect cell viability 

or tight junction formation.

The remarkable new finding in the present study is that NSAIDs effectively inhibit crystal 

binding. In contrast, Lieske et al. found that crystal binding to MDCK cells is increased by 

COX inhibitors 46. However, this study was performed with the heterogeneous parental MDCK 

cells that may respond differently to blocking the eicosanoid pathway. In addition, it is not 
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clear if these cells –which were cultured on plastic wells instead of permeable supports- re-

tained HA biosynthesis in culture. Earlier we have shown that not all renal tubular cell lines 

are capable to produce and express HA 43. HA biosynthesis depends on multiple mediators, 

effectors, enzymes, receptors and cellular signal transduction pathways and failure of only 

one of them could be sufficient to abrogate its expression at the cell surface. Our recent rat 

study showed that in vivo practically all activated renal tubular cells expressed HA at their 

luminal membrane 6. Cells in culture have the tendency to lose apparently vital properties. It is 

known, for example, that LLC-PK1 cells have defective COX activity 47 and it is thus no surprise 

that these cells are unable to synthesize HA 43. There are probably more stress conditions to 

activate HA biosynthesis in renal tubular cells. For example, HAS2 mRNA and HA biosynthesis 

were activated in renal proximal tubular cells by cytokines (IL-1β), high glucose 22 and bone 

morphogenic protein-7 (BMP-7) 48. It should be emphasized, however, that HA biosynthesis 

regulation may differ in renal tubular cells derived from different parts of the nephron. Inter-

estingly, Farell and Lieske recently studied COM crystal binding also in MDCK-I cells and found 

that PGE2 addition to proliferating or healing cultures decreased crystal binding whereas 

NSAIDs increased crystal binding. The authors therefore hypothesized that intrarenal PGE2 

could serve a protective function by preventing adhesion of crystals to regenerating cells 49. 

The authors also recommend future studies to elucidate the relative role of crystal-binding 

molecules that are present on the surface of injured and/or regenerating cells and the effect 

that PGE2 has on their expression. The present study suggest that increased PGE2 expression 

by regenerating MDCK-I cells stimulates the expression of the crystal-binding molecule HA, 

Figure 5.7
The effect of Streptomyces hyaluronidase treatment on [14C] COM crystal binding by MDCK-I cells 2 days post-injury treated with 
increasing doses of indomethacin.
*Significantly lower compared to injured cultures that were not treated with Streptomyces hyaluronidase.
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since NSAIDs decreased PGE2 and HA-depedent COM crystal binding. Addition of PGE2 neither 

abolished the effect of NSAIDs on COM crystal binding, nor increased COM crystal binding 

in confluent monolayers (data not shown). The conclusions from the present study and the 

study performed by Farell and Lieske therefore seem to be contradictionary to each other. 

It would be a logic step to study the effect of NSAIDs in an in vivo rat model of crystal reten-

tion to elucidate this issue and study the effects on crystal retention, HA expression and PGE2 

production. In 1983 Buck et al. induced nephrocalcinosis in rats by intraperitoneal injections 

of calcium gluconate, and studied the effect of prostaglandin inhibition by NSAIDs 50. It was 

found that calcium gluconate injections caused calcium deposits in the tubular lumen, which 

were absent in rats treated with indomethacin or flurbiprofen 50. These results are in coher-

ence with the present in vitro study.

Previously, we have studied calcium oxalate crystal retention in the kidneys of ethylene glycol 

treated rats. It was shown that ethylene glycol almost immediately induced calcium oxalate 

crystalluria, whereas mild tubular injury/regeneration was observed at a later point in time. 

Crystals were not retained in normal kidneys, but they were found at the luminal membrane 

of tubular epithelial cells as soon as cells were injured/regenerating and expressed HA at their 

luminal membrane. The association of retained crystals with HA-expressing cells strongly 

suggested that HA served as crystal-binding molecule in vivo 6. These results showed that 

the induction of the crystal binding phenotype in the rat kidney is accompanied by crystal 

deposition. In coherence with our cell culture data this suggests a causal link. Since HA is 

expressed only by stress activated renal tubular cells, crystal retention in the kidney could be 

an inflammation-mediated process 4-6, 51.

In the meantime, we disclosed several clinical conditions during which crystals are found in hu-

man nephrons (nephrocalcinosis) associated with cell surface expression of HA (and OPN). In 

these clinical settings the expression of HA seems to be induced by the long term use of neph-

rotoxic agents such as cyclosporin in renal transplant patients and developmentally regulated 

in the renal tubules of preterm infants 7. It is much more difficult, however, to obtain renal 

tissue from idiopathic recurrent stone formers or primary hyperoxaluria patients. Although 

we expect that HA also plays a role in crystal retention in the kidneys of these patients, direct 

evidence for this assumption has not yet been provided and the offending stimuli activating 

HA biosynthesis in these patients are unknown. It is unlikely that recurrent renal stone disease 

is initiated by mechanical injury. Our tissue damages studies should therefore be regarded as 

experimental models illustrating that non-adherent cells without luminal expression of HA 

could be transformed into HA expressing crystal-binding cells.

In general, eukaryotic cells respond in a reasonable standardized fashion to stressful conditions 
52, such as activation of the mitogen-activated protein kinase (MAP kinase) pathway 52, 53 and 
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an enhanced production of HA seems to be a typical cell stress response 41, 54. There are three 

major MAP kinase cascades: ERK, JNK and p38. ERK1/2 has been implicated in mitogenesis and 

cell differentiation, while JNK and p38 are activated by cell stress 52, 53. Scrape-damaging HK-2 

monolayers leads to MAPK kinase (MEK)-mediated ERK activation and increased HA secre-

tion. Both p38 MAPK and HAS are activated in synoviocytes from rheumatic arthritis patients 
55. Interestingly, oxalate and calcium oxalate crystals stimulated p38 MAPK in renal proximal 

tubular cells 56 and it is conceivable that MAPK also activates HA biosynthesis under these 

conditions. Future studies will shed more light on stimuli that can induce HA-mediated crystal 

retention in recurrent renal stone disease.

The present study suggests that NSAIDs could be applied to prevent crystal retention in renal 

stone formers. However, the therapeutic use of non-selective COX inhibitors is limited due to 

gastrointestinal and renal side-effects 13, 57. Although the gastrointestinal complications are 

reduced with COX-2 selective inhibitors, it is not entirely clear if they also improve renal safety 
12. The potential relationship between MAPK and HA opens the possibility to inhibit stress-

induced HA-mediated crystal binding with MAPK inhibitors such as cytokine-suppressive 

anti-inflammatory drugs (CSAIDs), drugs that could spare normal prostaglandin-dependent 

renal physiology.

Conclusion

Taken together, our results show that NSAIDs inhibit crystal binding to HA at the surface of 

regenerating MDCK-I cells by a process that depends on COX-2 mediated HAS2 activation.
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6.1 Introduction

Calcium salts (and other poorly soluble waste salts) often precipitate as crystals in the urine 

when the concentration of urine increases along the kidney tubules. These crystals are nor-

mally washed away and excreted with the urine during micturition, which is a physiological 

phenomenon called crystalluria. Patients that suffer from kidney stones (so-called stone form-

ers) differ from non-stone formers by the fact that in stone formers crystals are not being 

washed away but are retained and accumulate in their kidneys (crystal retention) to ultimately 

become cemented together with organic material into a kidney stone 1. Almost 30 years ago 

leading investigators emphasized that crystal retention should be considered a crucial requi-

site for kidney stone formation and postulated that this process could take place inside the 

tubular lumen when crystals are retained at the luminal membrane of epithelial cells lining 

the renal tubules 2. This concept inspired several researchers throughout the world to search 

for so-called “crystal binding molecules”, i.e. molecules that are expressed by tubular epithelial 

cells that have affinity for crystals and could thereby play a role in the retention of crystals in 

the kidney 3, 4. The hypothesis was formulated that these molecules are exclusively expressed 

by tubular cells of stone formers.

6.2 Previous work

Dr Carl Verkoelen and co-workers from the department of Urology of the Erasmus Medical 

Center Rotterdam started to work on the subject of crystal-cell interaction in the mid-nineties 
5. In vitro studies were performed with MDCK-I cells 6-8. These cells are derived from a kidney of 

a normal Cocker Spaniel in 1958 9, 10. Their location of origin is assumed to be the distal renal 

tubules/collecting ducts 10-13. The surface of these cells exists of two plasma membrane do-

mains separated by junctional complexes. The apical membrane facing the tubular lumen has 

a protein and lipid composition different from the basolateral membrane which is in contact 

with the internal milieu, facing the mesenchymal space and the blood supply 14. Cells were 

cultured on porous supports in a two-compartment system mimicking the in vivo situation 

and the use of these permeable supports has been shown to allow cells to develop into higher 

levels of morphological and functional differentiation compared to cells cultured on solid 

substrates 7. Well-differentiated polarized monolayers have retained most characteristics of 

distal tubule/collecting duct cells with high levels of transepithelial electrical resistance and 

low levels of brush border enzyme activity (γ-GT and alkaline phosphatase). Phenotypically 

these cells form a tight layer of cells columnar in shape with short, stubby microvilli at their 

apical membrane 7, 14, 15.
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Crystal-cell interaction studies were performed with these MDCK-I cells in culture, since the 

formation of crystals along the nephron is to be expected not earlier than the distal tubules 

and collecting ducts unless oxalate plasma concentrations are raised to unphysiologically 

high levels in rare cases such as ethylene glycol poisoning or severe primary hyperoxaluria 16. 

Calcium oxalate monohydrate (COM) crystals were prepared by adding calcium chloride with 

sodium oxalate. To obtain radiolabeled crystals a small amount of [14C] oxalate was added dur-

ing the precipitation step. It was found that COM crystals do not adhere to fully differentiated 

cells populating confluent monolayers with high levels of transepithelial electrical resistance. 

In contrast, crystals avidly adhere to proliferating cells populating developing subconfluent 

cultures and to migrating cells at the border of scrape-damaged cultures with low levels of 

transepithelial electrical resistance 6. Subsequently it was shown that the difference between 

the crystal binding phenotype of confluent cultures and subconfluent or scrape-damaged 

cultures could be explained by the fact that hyaluronan is expressed at the apical membrane 

of proliferating and regenerating cells and serves as crystal binding molecule whereas fully 

differentiated cells do not express hyaluronan 8.

Hyaluronan is an extremely large (Mr >106 Da) linear glycosaminoglycan composed of thou-

sands repeating units of glucuronic acid (GlcUA) and N-acetylglucosamine (GlcNAc) dissac-

charides. Hyaluronan chains form entangled networks providing a microenvironment condu-

cive to proliferation and migration during processes like growth, development, regeneration 

and cancer 17. We found that the pericellular matrices (PCMs) formed by hyaluronan extended 

several microns from the cell surface and that these coats disappeared at the cell surface 

when cells had developed into confluent monolayers 18. Hyaluronan is an excellent binding 

molecule for crystals because it is negatively charged due to the carboxyl (COO-) group of 

GlcUA, while the crystals are positively charged due to the calcium ions (Ca2+) protruding from 

the crystal lattice.

The validity of these results was confirmed in primary cultures of human renal cells. As in 

MDCK-I cells, crystal adhesion declined and hyaluronan was no longer detectable as cells 

reached confluency and had established tight junctions 19. It can therefore be concluded that 

the MDCK-I cell line provides a relevant and functional tool to study hyaluronan biology in 

epithelial cells lining the distal tubule/collecting duct.

We hypothesized from the results of these cell culture studies that the risk for crystal retention in 

the human kidney is increased when cells in the renal tubules express hyaluronan at their luminal 

cell membrane 4, 8, 20.
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6.3 The present thesis

One of the main aims of the present thesis was to test this hypothesis, and to assess its clinical 

relevance. Therefore studies were performed in an in vivo experimental model of nephrolithia-

sis with rats, and in human renal tissue. Other aims of our studies were to further explore 

hyaluronan biology in relation to crystal binding in renal distal tubular epithelial cells in vitro, 

and to assess if crystal binding to hyaluronan-expressing regenerating cells could be modu-

lated by cyclo-oxygenase inhibitors (NSAIDs).

In Chapter 2 rats were treated for 1, 4 and 8 days with ethylene glycol (0.5% and 0.75%) in 

their drinking water to induce renal tubular cell damage and calcium oxalate crystalluria. 

There was no crystal retention in the absence of tubular injury/regeneration but crystals were 

retained as soon as renal tubules were injured/regenerating. Crystals were found adhered to 

the luminal surface of hyaluronan-, osteopontin- and CD44-expressing injured/regenerating 

cells. These results supported for the first time in vivo the concept that crystal retention is 

associated with hyaluronan expressed at the luminal surface of injured/regenerating cells 21.

In Chapter 3 we showed that hyaluronan production by distal tubular epithelial cells is in-

creased during proliferation and in response to mechanical injury during regeneration, which 

depends on increased hyluronan synthase 2 (HAS2) mRNA expression. The expression and 

secretion of hyaluronan and the membrane expression of its cell-surface receptor CD44 are 

highly polarized during proliferation and regeneration 22.

In Chapter 4 we selected two patient populations (preterm neonates and kidney transplant 

patients) which commonly retain crystals in their renal tubules (nephrocalcinosis). Time-lapse 

studies of human renal tissue in these patients provided evidence that the expression of 

hyaluronan and osteopontin at the luminal cell membrane of the epithelium preceded the 

retention of crystals in both patient groups. From these results the clinical relevance of our 

work became more apparent and we proposed that this crystal binding mechanism may play 

a general role in the development of nephrocalcinosis.

In Chapter 5 it was demonstrated in regenerating MDCK-I cells that the suppression in prosta-

glandin E2 (PGE2) production by non-selective cyclo-oxygenase inhibitiors (COX-1 and COX-2) 

as well as by COX-2 specific NSAIDs leads to reduced production and expression of hyaluronan 

and more importantly also in decreased levels of crystal binding.

In summary, our studies suggest that healthy tubular epithelium in the distal nephron – where 

crystals are to be expected- has no affinity for crystals, and that under normal conditions the 

kidney seems protected from crystal retention inside the renal tubules. However, the luminal 
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membranes of proliferating cells during development as well as regenerating/(re)differentiat-

ing cells during injury and repair have a high affinity for calcium oxalate crystals. This dif-

ferent crystal binding phenotype is explained by differences in expression of molecules at 

the apical cell membrane (CD44, hyaluronan and osteopontin) of which hyaluronan seems 

to be the most important crystal binding molecule through the formation of pericellular 

matrices. Hyaluronan is involved during nephrogenesis in kidney development and during 

tubular regeneration in epithelial repair. It plays a key role in (re)establishment of the epithe-

lial barrier integrity and restoration of renal function, but as a negative side-effect it turns a 

non-crystal binding epithelium into a crystal-binding one due to its unique crystal binding 

properties 3, 6, 8, 18-23.

6.4 Crystal retention in the renal tubules

From this conclusion the question arises whether crystals and such hyaluronan-expressing 

tubular cells are found in the kidneys of (recurrent) stone formers. Since the hypothesis was 

launched 30 years ago that crystal retention could start in the renal tubules, extremely little 

evidence has been provided that crystals are present in the renal tubules of idiopathic kidney 

stone formers. The theory is that the risk of kidney stone formation increases if crystals are 

(transiently) hindered as they pass through the nephron as a result of crystal-cell interaction, 

but this has never been proven. On the other hand this is not surprising since a study design 

to evaluate this process in humans is practically impossible, because it is extremely difficult 

to obtain renal tissue specimens from stone forming patients to inspect renal tubules during 

the first initial steps of kidney stone formation. In 2003 Evan et al. forced a breakthrough by 

performing intraoperative renal biopsies obtained during percutaneous nephrolithotomy 

procedures to remove kidney stones in idiopathic calcium stone formers 24. Strikingly, no 

intratubular crystals or tubular injury were noted. These patients had interstitial apatite crys-

tal deposits beginning in the basement membranes of the thin limbs of the loops of Henle 

extending into the interstitium surrounding the collecting ducts and downwards towards the 

papillae just beneath the urothelium 25. These suburothelial deposits called Randall’s plaque 

are thought to serve as sites for stone attachment when they erode into the urinary space of 

the calyces 26. Since no intratubular crystals or tubular injury were noted, does this mean that 

our work has been meaningless or irrelevant? We do not think so. The number of patients 

studied was relatively small (n=15) and it is unclear whether the selected patients represent 

the whole group of idiopathic stone formers. Furthermore it cannot be excluded that crystals 

were dissolved and/or washed by tissue processing steps 27. However, we have to admit that 

their results at least undermine the concept that in idiopathic stone formers crystal retention 

already starts inside the tubular lumen of the nephron.



General discussion

113

Our studies demonstrated that the expression of hyaluronan, CD44 and osteopontin at the 

luminal membrane of renal tubular cells in the distal nephron leads to a form of renal calci-

fication better known as nephrocalcinosis. It has been postulated that nephrocalcinosis and 

nephrolithiasis (kidney stones) are interrelated, but the finding that crystals were absent in the 

tubular lumen of idiopathic stone formers suggest that these are two independent entities. In-

terestingly, there are diseases in which nephrocalcinosis occurs together with nephrolithiasis 

such as cystic fibrosis, Dent’s disease, distal renal tubular acidosis and primary hyperoxaluria 

type 1 and 2. Studies in these groups of patients might reveal the possible interrelationship 

–if any- between nephrocalcinosis and nephrolithiasis 28. Further studies are clearly warranted 

to definitely answer these questions.

6.5 Nephrolithiasis and nephrocalcinosis

What exactly do we mean with renal stone disease? Based on the arguments listed above, 

renal stone disease can be classified into two major categories: nephrolithiasis and nephro-

calcinosis. While there is no discussion on the definition of nephrolithiasis (kidney stones), the 

description of nephrocalcinosis is less clear. The term nephrocalcinosis often refers to diffuse 

renal parenchymal calcification demonstrable by radiology imaging techniques 29, but there are 

also other definitions varying from increased calcium content of the kidney (eMedicine), to a 

kidney disorder involving deposition of calcium and oxalate or phosphate in the renal tubules 

and interstitium (Medical Encyclopedia), to a condition characterized by precipitation of calcium 

phosphate in the tubules of the kidney, with resultant renal insuffiency (WrongDiagnosis) and re-

nal lithiasis in which calcium deposits form in the renal parenchyma and result in reduced kidney 

function and blood in the urine (Thesaurus). The definition seems to depend on the detection 

method used and it usually refers to a typical image during ultrasonography of the kidney in 

which diffuse scattering of hyperechogenic miniscule lesions are observed in the cortex and/

or medulla 30. The routine use of ultrasonography has revealed many conditions reported to 

be associated with nephrocalcinosis 31. Ultrasonography and other radiological imaging tech-

niques have their limitations, however, because they are unable to depict the exact location of 

the deposits in the kidney and are not sensitive enough to detect limited forms of early stages 

of nephrocalcinosis. Nephrocalcinosis should be subdivided on the basis of the location where 

calcium deposits are retained at a microscopic level into interstitial nephrocalcinosis (deposi-

tion of crystals in the renal medullary interstitium) and tubular nephrocalcinosis (retention of 

crystals in the renal tubules) (figure 6.1) 27.
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6.6 Interstital nephrocalcinosis

Interstitial nephrocalcinosis is defined as calcium phosphate deposits in the renal medullary 

interstitium. Its incidence rises with age 32. This form of nephrocalcinosis is probably rela-

tively benign until it erodes into the wall of the renal pelvis to become a Randall’s plaque. 

These plaques could be the nidus for stone attachment in at least a subset of kidney stones, 

since calcium oxalate stones have been found attached these plaques 33. Although calcium, 

phosphate and oxalate concentrations are extremely high in the renal medullary interstitium, 

only a minority of individuals form Randall’s plaques. Randall’s plaques are common in idio-

pathic calcium oxalate stone patients and suggests an alteration in the solubility of calcium 

phosphate in the renal interstitium 33. In theory, the concentration of calcium phosphate in 

the interstitium could be increased in stone formers compared to normal individuals, or the 

inhibitors of crystallization could be less effective.

Figure 6.1
Kidney anatomy and the localization of the different manifestations of renal stone disease.
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6.7 Tubular nephrocalcinosis

Tubular nephrocalcinosis is defined as calcium deposits inside the renal tubules and occurs 

if crystals are retained inside the nephron 20. Our studies have contributed significantly to 

the understanding that crystals are retained when renal tubular cells are triggered to express 

hyaluronan at their luminal membrane 23. In preterm infants proliferating/differentiating 

tubular cells express hyaluronan, because these kidneys have not yet fully developed and 

nephrogenesis is uncomplete. In renal transplants injured/regenerating tubular cells during 

injury/repair express hyaluronan, because these kidneys suffer from ischemia/reperfusion 

injury. In addition, these patients are treated with nephrotoxic immunosuppressive agents 

again leading to cell damage, regeneration and up-regulated hyaluronan biosynthesis and 

expression. Besides in preterm neonates 34 and kidney transplants 35, tubular nephrocalcinosis 

also occurs in sarcoidosis 36, primary hyperoxaluria 37, Dent’s disease 38, 39, distal renal tubu-

lar acidosis 40-42, carbonic anhydrase deficiency 43, Bartter’s syndrome 44, 45, cystic fibrosis 46, 47, 

Sjögren’s syndrome 48, intestinal bypass surgery patients 49, Crohn’s disease 33, 50, acute phos-

phate nephropathy 51 and brushite stone formers 4, 20, 28, 52.

At this point in time we do not know if or why the kidney contains regenerating cells under 

these other various conditions. One of the first steps for further research could be that renal 

biopsies in these aforementioned other groups of patients are also stained for hyaluronan and 

examined for the presence of intratubular crystals. In the meantime this has been performed 

in part by Vervaet et al. At the 5th eULIS Symposium 2007 (12th European Symposium on Uro-

lithiasis) data was presented and awarded with the best poster prize that indeed in Dent’s 

disease, sarcoidosis, primary hyperoxaluria and acute phosphate nephropathy the same 

association of crystals with hyaluronan expressing tubular epithelial cells was observed 53. 

Recently, Evan et al. have shown both intratubular crystals and hyaluronan staining in biopsies 

from the kidneys of patients who had hyperoxaluria as the result of intestinal bypass surgery 

for obesity 82.

6.8 Clinical relevance

The most important reason to continue further research and expand our findings is the clini-

cal relevance of crystal retention in patients. Tubular nephrocalcinosis usually does not lead to 

acute renal failure, except for example in ethylene glycol poisoning 54. However, the long term 

effects of calcium deposits in the tubules are unknown because data on long term follow-up 

of patients with nephrocalcinosis are limited in the literature.
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Only 26 years ago nephrocalcinosis was reported for the first time in preterm neonates by Huf-

nagle et al. in 1982 55. The intratubular deposits in these patients are predominantly calcium 

oxalate but also calcium phosphate crystals (observations in kidneys of neonatal autopsies) 
56. The incidence of tubular nephrocalcinosis has been reported to be as high as 83% in ex-

tremely preterm infants (gestation between 24 and 28 weeks) 57. Nephrocalcinosis commonly 

disappears later in life, but Schell-Feith et al. showed in their large group of 83 patients with 

nephrocalcinosis that it persisted in 15% of patients after 30 months follow-up 34, 58. These 

authors prospectively studied a large group of 201 preterm infants who developed nephro-

calcinosis in 41% and recently published a paper of the largest follow-up up to date at a mean 

age of 7.5 ± 1 years old of 42 patients with nephrocalcinosis at term and 32 patients without 

nephrocalcinosis 59. Significantly more ex-preterm infants with nephrocalcinosis developed 

(mild) chronic renal insufficiency (15%) than expected in healthy children, in contrast to ex-

preterm infants without nephrocalcinosis (6%) 59. Prematurity per se is associated with high 

blood pressure and distal tubular dysfunction (low plasma bicarbonate and early-morning 

urine osmolality) but nephrocalcinosis seems to have an additional risk on compromising 

renal function later in life 59. In our opinion this could very likely be attributed to crystal re-

tention which could eventually lead to irreversible damage of nephrons as a result of large 

crystal aggregates obstructing the tubular lumen. We have shown in preterm neonates that 

hyaluronan and osteopontin is expressed at the luminal membrane of proliferating distal 

tubular cells during nephrogenesis, which is in agreement with the important role that has 

been attributed to these molecules during kidney development 60, 61. In preterm neonates 

supersaturation of calcium salts is increased because of a calcium and vitamin D rich diet, low 

urinary citrate and long-term furosemide treatment resulting in crystalluria 34, 62, 63. We have 

shown that hyaluronan and osteopontin expressed at the luminal membrane of proliferating 

distal tubular cells precedes nephrocalcinosis in these infants, which strongly suggests that 

this increased crystal binding phenotype played a role in crystal retention 23. The subsequent 

decline of kidney function in 15% of preterm infants with persistent nephrocalcinosis after 30 

months follow-up described by Schell-Feith et al. therefore rather seems to be the result than 

the cause of crystal retention 58, 59.

Another condition in which nephrocalcinosis unmistakably plays a role is chronic allograft 

nephropathy in kidney transplants. The incidence of nephrocalcinosis after kidney trans-

plantation and its relation with renal function and graft survival are not entirely clear. It has 

only recently been shown that in these patients nephrocalcinosis occurs and is associated 

with long-term graft survival 4, 23, 35, 64, 65. Merneo et al. examined 40 allograft nephrectomies 

in patients with transplant kidney failure between 2 days and 11 years after transplantation 

who had neither primary or secondary hyperoxaluria as the cause of initial end-stage renal 

disease, nor a history of kidney stones. These authors showed that calcium oxalate crystal 

retention in the renal tubules is frequently observed in failing renal grafts, because in 88% of 
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allograft nephrectomies birefringent calcium oxalate crystals were observed which appeared 

to involve mainly the lumina of distal tubules and were located on the tubular lining epithe-

lium 64. Serum oxalate concentrations increase during chronic renal failure and accumulates 

in the body during dialysis. Within the first few days after transplantation oxalate is mobilized 

and excreted with the urine, and therefore it was proposed that the recipient’s chronic renal 

failure was related to early calcium oxalate deposition in the renal tubules 64. In another study, 

nephrocalcinosis in allograft biopsies was found in 76% of patients with post-transplantation 

acute tubular necrosis (ATN), whereas nephrocalcinosis was not observed in patients with 

normal renal function after transplantation 66.

In 213 patients with 586 protocol biopsies obtained 6 weeks, 3 and 6 months after transplanta-

tion, nephrocalcinosis increased from 6 to 18%. Although three months after transplantation 

some crystals were found in the interstitium, the majority was located inside the renal tubules 
67. In our own experience we noticed that crystals can be displaced during tissue sectioning 

. Our study of protocol renal allograft biopsies taken 3 and 6 months post-transplantation 

showed an increase in nephrocalcinosis from 20% to 60% 23. In general, biopsies obtained 

from dysfunctional renal allografts more often contain crystals in the renal tubules than those 

from functional allografts. It should be noticed, however, that this does not establish the cause 

and effect relationship between poor renal graft function and nephrocalcinosis. Pinheiro et al. 

performed percutaneous renal transplant biopsies in 97 patients within three months post-

transplantation and reanalyzed them after ten years. An overall incidence of calcium oxalate 

deposits of 53% was observed from which 86% of the patients the calcium oxalate deposits 

were already found in the first biopsy, which –as the authors themselves state- was higher than 

expected. The calcium oxalate deposits were only observed in the tubular lumen 65. Chronic 

allograft nephropathy is the result of cumulative and incremental damage to nephrons as 

a result of ischemic injury and chronic stress by nephrotoxic immunosuppressive agents in 

which impaired tubular repair/regeneration eventually leads to fibrosis and loss of function 35. 

Pinheiro et al. not only found a higher incidence of calcium oxalate deposits in patients with 

tubular dysfunction and acute tubular necrosis (ATN) in early post-transplantation biopsies 

but there was also an independent association between calcium oxalate deposition and a 

poorer allograft survival, because ATN-free patients with nephrocalcinosis had a worse graft 

survival than ATN-free patients without nephrocalcinosis 65. The observation that patients 

with early nephrocalcinosis had a four-fold higher risk of losing the graft than those without 

nephrocalcinosis again indicates that renal dysfunction is the consequence rather than the 

cause of nephrocalcinosis. The authors themselves concluded that a high incidence of post-

transplantation nephrocalcinosis may have a negative impact on graft survival 65.

It should be emphasized that all of the above mentioned studies were performed with re-

nal tissue specimens prepared for routine histology. We 27 and others 68 have demonstrated, 
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however, that a substantial part of crystals in renal tubules are lost during routine tissue 

preparation. It is therefore not unlikely that the incidence and severity of nephrocalcinosis 

could even be underestimated.

We have shown in transplant kidneys that expression of hyaluronan and osteopontin is 

upregulated, which probably occurs in response to ischemic/reperfusion renal damage, cy-

closporine toxicity and chronic allograft rejection. Subsequent biopsies of transplant kidneys 

showed an increase in crystal retention in time, which again suggests that this increased 

crystal binding phenotype played a role in crystal retention 23. These results also indicate that 

crystals themselves were not injurious to tubular cells because tubular injury preceded crystal 

retention. These in vivo results are in correspondence with cell culture studies, which showed 

that calcium oxalate crystals are not injurious to distal tubular epithelial / collecting duct 

cells 69. We propose that calcium oxalate crystals are not the primary cause of decline of renal 

function in kidney transplants of patients with nephrocalcinosis but crystal retention could 

eventually lead to irreversible damage to nephrons as a result of large crystal aggregates 

obstructing the tubular lumen.

Nephrocalcinosis also occurs in primary hyperoxaluria type 1, a genetic metabolic disorder 

of oxalate metabolism. This rare autosomal recessive inborn error of glyoxylate metabolism 

is characterized by a functional defect of the liver specific enzyme alanine glyoxylate amin-

otransferase (AGT) leading to hyperoxaluria and hyperglycolic aciduria 37. In 57 primary hyper-

oxaluria type 1 patients in the Netherlands progression to renal insufficiency was statistically 

associated with the presence of nephrocalcinosis, detected by ultrasound and response to 

pyridoxine therapy also predicted outcome of renal function but progression to renal insuf-

ficiency was not associated with the level of urinary oxalate or with AGT activity 70. In another 

paper it was shown that all patients with cortical nephrocalcinosis in primary hyperoxaluria 

developed end-stage renal disease 71.

6.9 Treatment strategies

Tubular nephrocalcinosis is the result of the combination of crystal formation and crystal 

retention. The risk of crystal formation is significantly higher when concentrations of citrate 

in the urine is low and concentrations of calcium and/or oxalate are high 72. Efforts should 

therefore be made to keep urinary calcium and oxalate levels low and citrate concentrations 

high. Hyperoxaluria was found in 35% of kidney transplant recipients and hypocitraturia in 

69% 73. High urinary oxalate probably results from the release of oxalate that was accumulated 

during the dialysis period in body stores like bone and tissue 74. Renal tubular acidosis (RTA) is 

common in preterm infants 63 and renal transplant patients 75. RTA leads to hypercalciuria and 
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hypocitraturia 76. To avoid crystal formation, these patients should be treated with potassium 

citrate. Potassium citrate treatment has several beneficial effects. It increases urinary pH to the 

physiological range which prevents further release of calcium carbonate from the bone and it 

leads to increased urinary citrate that binds calcium and thereby prevents calcium oxalate and 

calcium phosphate crystal formation. Crystal formation can also be influenced by adjustments 

in the diet. To avoid crystal formation as much as possible, it is recommended to avoid obesity 

and maintain an ideal body weight, drink at least 2 L water/day, limit sodium chloride (salt) 

intake, limit protein intake, consume normal amounts of dairy products (30 mmol calcium per 

day) and consume fruits and vegetables, except spinach and rhubarb 62, 77.

It is more difficult to prevent crystal retention by influencing the crystal binding phenotype of 

the distal tubular epithelium. Previously, it was found that prostaglandin E2 (PGE2) increases 

hyaluronan synthesis in renal glomerular cells and that this could be inhibited by the cy-

clooxygenase (COX) inhibitor (NSAID) indomethacin 78. This prompted us to study the effect 

of NSAIDs on hyaluronan-mediated crystal binding to regenerating MDCK-I cells (Chapter 5). 

These in vitro studies showed that hyaluronan-dependent calcium oxalate crystal binding 

to regenerating dedifferentiating tubular cells is COX-2 mediated and can be modulated by 

NSAIDs which suggests that COX inhibitors could be used to reduce the risk for nephrocalci-

nosis in patients. This does not mean, however, that we propagate the use of NSAIDs for the 

prevention of nephrocalcinosis, because NSAIDs have important adverse effects on the func-

tion of the kidney due to the role of COX-2 in renin release, regulation of sodium excretion, 

and maintenance of renal blood flow 79. The most important conclusion is that it is not impos-

sible to lower the expression of hyaluronan at the surface of renal tubular cells temporarily, 

and thereby reducing the risk for nephrocalcinosis, but strategies should be developed that 

are safe to the kidney.

6.10 Future studies and perspectives

It is interesting to look again at earlier reports and interpret data following the line of thoughts 

that tubular crystal retention is the result from increased expression of hyaluronan at the lu-

minal membrane of distal tubular epithelial cells during injury/regeneration. In the Lancet 

in 1994, for example, extracorporal shock-wave lithotripsy (ESWL) treatment of a calyceal 

stone in a reported case of a twenty-six years old patient with primary hyperoxaluria resulted 

in fatal renal failure within one month 80. Since the age of three this patient had recurrent 

nephrolithiasis. One month after treatment haemodialysis was necessary and within three 

months symptoms of oxalosis became apparent: peripheral neuritis and cardiac rhythm ab-

normalities as a result of systemic deposition of calcium oxalate. Within two years a kidney 

transplantation failed due to oxalosis of the transplant and rejection, and she died of sepsis 
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after a cerebrovascular accident. The authors emphasized the fact that ESWL treatment causes 

renal damage in 63-85% and an immediate decline in total effective renal plasma flow 80, 81. Ap-

parently the combination of hyperoxaluria and renal damage led to this catastrophic series of 

events resulting in renal failure, but the authors did not recognize the fact that renal damage 

might have caused an increased risk of crystal retention. In this patient subsequent kidney 

transplantation again failed as a result of widespread deposition of calcium oxalate crystals 

(oxalosis). It is plausible that injury in the transplant kidney due to ischemia/reperfusion and 

nephrotoxic drugs in combination with calcium oxalate crystalluria resulted in obstructive 

tubulopathy and graft failure in this patient.

The concept that crystal retention in the kidney leads to renal calcification disorders is indis-

putable. Interstitial nephrocalcinosis (Randall’s plaques) result from the deposition of crystals 

in the renomedullary interstitium and there are strong indications that hyaluronan in the in-

ner medullary interstitium plays a role in this process 20. Tubular nephrocalcinosis is caused 

by the attachment of crystals to renal tubular cells. Each form of tubular nephrocalcinosis 

probably has its own specific mitogen/stress conditions leading to the expression of regener-

ating crystal binding cells in the renal tubules. The initial site of crystal retention in idiopathic 

stone formers remains an open question. Studying the mechanisms of retention of crystals 

inside the lumen of the renal tubules is needed because it is obvious that prevention of kid-

ney stone disease is better than only treating symptomatic kidney stone disease. Another 

particularly relevant reason to extend these studies is the fact that tubular nephrocalcinosis 

could eventually lead to irreversible damage of nephrons since nephrocalcinosis has been 

found to be associated with decline of renal function in preterm neonates and patients with 

kidney transplants.

To explore these concepts future studies should include histological studies of snap frozen 

human renal tissue specimens of different kidney stone formers, and of other specific patient 

groups associated with nephrocalcinosis like Dent’s disease and primary hyperoxaluria. Human 

renal tissue specimens are difficult to obtain whereas urine samples are not. Therefore, urine 

samples of well-defined patient populations should be collected and determined whether 

molecules can be detected in the urine which could have a relation with hyaluronan biosyn-

thesis by renal tubular epithelial cells. The concentration of hyaluronan itself and its molecular 

size, for example, can be detected in the urine and quantified with an ELISA (Enzyme-Linked 

Immuno Sorbant Assay). The aim of such studies is to reveal whether there are urinary markers 

that can identify patients with tubular injury/regeneration and an increased risk for crystal 

retention. Urine samples of patients before and after ESWL-treatment for example could be 

used, since ESWL is known to temporarily cause renal damage. More interesting are urine 

samples during follow-up of post-transplantion patients, preterm neonates and primary hy-

peroxaluria patients. In vitro studies of renal distal tubular epithelial cells in culture should be 
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extended in order to determine which hyaluronan-binding proteins are involved in pericellular 

matrix formation and -degradation, because identification of such proteins could eventually 

give reason to test their presence in urine of patients and evaluate whether or not they could 

also be used as urinary markers of tubular injury/regeneration. The aim of such studies is to 

extend our knowledge of the mechanisms of retention and accumulation of crystals in the 

kidney, in order to ultimately design new strategies for the prevention and treatment of both 

nephrocalcinosis and nephrolithiasis in patients.

6.11 References

	 1.	Mandel N. Mechanism of stone formation. Semin Nephrol. 1996;16:364-374
	 2.	Finlayson B, Reid F. The expectation of free and fixed particles in urinary stone disease. Invest Urol. 

1978;15:442-448
	 3.	Asselman M, Verkoelen CF. Crystal-cell interaction in the pathogenesis of kidney stone disease. Curr 

Opin Urol. 2002;12:271-276
	 4.	Verkoelen CF, Verhulst A. Proposed mechanisms in renal tubular crystal retention. Kidney Int. 

2007;72:13-18
	 5.	Verkoelen CF, Romijn JC, De Bruijn WC, Boevé ER, Cao LC, Schröder FH. Association of calcium oxalate 

monohydrate crystals with MDCK cells. Kidney Int. 1995;48:129-138
	 6.	Verkoelen CF, van der Boom BG, Houtsmuller AB, Schroder FH, Romijn JC. Increased calcium ox-

alate monohydrate crystal binding to injured renal tubular epithelial cells in culture. Am J Physiol. 
1998;274:F958-965

	 7.	Verkoelen CF, van der Boom BG, Kok DJ, Houtsmuller AB, Visser P, Schroder FH, Romijn JC. Cell 
type-specific acquired protection from crystal adherence by renal tubule cells in culture. Kidney Int. 
1999;55:1426-1433

	 8.	Verkoelen CF, Van Der Boom BG, Romijn JC. Identification of hyaluronan as a crystal-binding molecule 
at the surface of migrating and proliferating MDCK cells. Kidney Int. 2000;58:1045-1054

	 9.	Gaush CR, Hard WL, Smith TF. Characterization of an established line of canine kidney cells (MDCK). 
Proc Soc Exp Biol Med. 1966;122:931-935

	 10.	Richardson JC, Scalera V, Simmons NL. Identification of two strains of MDCK cells which resemble 
separate nephron tubule segments. Biochim Biophys Acta. 1981;673:26-36

	 11.	Devuyst O, Beauwens R, Denef JF, Crabbe J, Abramow M. Subtypes of Madin-Darby canine kidney 
(MDCK) cells defined by immunocytochemistry: further evidence for properties of renal collecting 
duct cells. Cell Tissue Res. 1994;277:231-237

	 12.	Gekle M, Wunsch S, Oberleithner H, Silbernagl S. Characterization of two MDCK-cell subtypes as a 
model system to study principal cell and intercalated cell properties. Pflugers Arch. 1994;428:157-
162

	 13.	Pfaller W, Gstraunthaler G, Kersting U, Oberleithner H. Carbonic anhydrase activity in Madin Darby 
canine kidney cells. Evidence for intercalated cell properties. Ren Physiol Biochem. 1989;12:328-337

	 14.	Hansson GC, Simons K, van Meer G. Two strains of the Madin-Darby canine kidney (MDCK) cell line 
have distinct glycosphingolipid compositions. Embo J. 1986;5:483-489

	 15.	Svennevig K, Prydz K, Kolset SO. Proteoglycans in polarized epithelial Madin-Darby canine kidney 
cells. Biochem J. 1995;311 (Pt 3):881-888

	 16.	Kok DJ. Clinical implications of physicochemistry of stone formation. Endocrinol Metab Clin North Am. 
2002;31:855-867



Chapter 6

122

	 17.	Toole BP. Hyaluronan in Morphogenesis and Tissue Remodeling. Glycoforum website ‘The Science of 
Hyaluronan Today’. 1998;Chaper 8:1-14

	 18.	Schepers MS, Asselman M, Duim RA, Romijn JC, Schroder FH, Verkoelen CF. Pericellular matrix forma-
tion by renal tubule epithelial cells in relation to crystal binding. Nephron Exp Nephrol. 2003;94:e103-
112

	 19.	Verhulst A, Asselman M, Persy VP, Schepers MS, Helbert MF, Verkoelen CF, De Broe ME. Crystal reten-
tion capacity of cells in the human nephron: involvement of CD44 and its ligands hyaluronic acid and 
osteopontin in the transition of a crystal binding- into a nonadherent epithelium. J Am Soc Nephrol. 
2003;14:107-115

	 20.	Verkoelen CF. Crystal retention in renal stone disease: a crucial role for the glycosaminoglycan hy-
aluronan? J Am Soc Nephrol. 2006;17:1673-1687

	 21.	Asselman M, Verhulst A, De Broe ME, Verkoelen CF. Calcium oxalate crystal adherence to hyaluronan-, 
osteopontin-, and CD44-expressing injured/regenerating tubular epithelial cells in rat kidneys. J Am 
Soc Nephrol. 2003;14:3155-3166

	 22.	Asselman M, Verhulst A, Van Ballegooijen ES, Bangma CH, Verkoelen CF, De Broe ME. Hyaluronan 
is apically secreted and expressed by proliferating or regenerating renal tubular cells. Kidney Int. 
2005;68:71-83

	 23.	Verhulst A, Asselman M, De Naeyer S, Vervaet BA, Mengel M, Gwinner W, D’Haese PC, Verkoelen CF, 
De Broe ME. Preconditioning of the distal tubular epithelium of the human kidney precedes nephro-
calcinosis. Kidney Int. 2005;68:1643-1647

	 24.	Evan AP, Lingeman JE, Coe FL, Parks JH, Bledsoe SB, Shao Y, Sommer AJ, Paterson RF, Kuo RL, Grynpas 
M. Randall’s plaque of patients with nephrolithiasis begins in basement membranes of thin loops of 
Henle. J Clin Invest. 2003;111:607-616

	 25.	Bushinsky DA. Nephrolithiasis: site of the initial solid phase. J Clin Invest. 2003;111:607-616
	 26.	Randall A. The origin and growth of renal calculi. Ann Surg. 1937;105:1009-1027
	 27.	Kummeling MT, de Jong BW, Laffeber C, Kok DJ, Verhagen PC, van Leenders GJ, van Schaik RH, van 

Woerden CS, Verhulst A, Verkoelen CF. Tubular and Interstitial Nephrocalcinosis. J Urol. 2007
	 28.	Sayer JA, Carr G, Simmons NL. Nephrocalcinosis: molecular insights into calcium precipitation within 

the kidney. Clin Sci (Lond). 2004;106:549-561
	 29.	Schepens D, Verswijvel G, Kuypers D, Vanrenterghem Y. Images in Nephrology. Renal cortical nephro-

calcinosis. Nephrol Dial Transplant. 2000;15:1080-1082
	 30.	Dick PT, Shuckett BM, Tang B, Daneman A, Kooh SW. Observer reliability in grading nephrocalcinosis 

on ultrasound examinations in children. Pediatr Radiol. 1999;29:68-72
	 31.	Alon US. Nephrocalcinosis. Curr Opin Pediatr. 1997;9:160-165
	 32.	Beer E. Lime deposits especially the so-called “kalkmetastasen”, in the kidney. J Path and Bact. 

1904;9:225-233
	 33.	Evan AP, Coe FL, Lingeman JE, Worcester E. Insights on the pathology of kidney stone formation. Urol 

Res. 2005;33:383-389
	 34.	Schell-Feith EA, Kist-van Holthe JE, Conneman N, van Zwieten PH, Holscher HC, Zonderland HM, 

Brand R, van der Heijden BJ. Etiology of nephrocalcinosis in preterm neonates: association of nutri-
tional intake and urinary parameters. Kidney Int. 2000;58:2102-2110

	 35.	Nankivell BJ, Borrows RJ, Fung CL, O’Connell PJ, Allen RD, Chapman JR. The natural history of chronic 
allograft nephropathy. N Engl J Med. 2003;349:2326-2333

	 36.	Gobel U, Kettritz R, Schneider W, Luft F. The protean face of renal sarcoidosis. J Am Soc Nephrol. 
2001;12:616-623

	 37.	Milliner DS, Wilson DM, Smith LH. Phenotypic expression of primary hyperoxaluria: comparative 
features of types I and II. Kidney Int. 2001;59:31-36

	 38.	Cebotaru V, Kaul S, Devuyst O, Cai H, Racusen L, Guggino WB, Guggino SE. High citrate diet delays 
progression of renal insufficiency in the ClC-5 knockout mouse model of Dent’s disease. Kidney Int. 
2005;68:642-652



General discussion

123

	 39.	Wrong OM, Norden AG, Feest TG. Dent’s disease; a familial proximal renal tubular syndrome with low-
molecular-weight proteinuria, hypercalciuria, nephrocalcinosis, metabolic bone disease, progressive 
renal failure and a marked male predominance. Qjm. 1994;87:473-493

	 40.	Boettger T, Hubner CA, Maier H, Rust MB, Beck FX, Jentsch TJ. Deafness and renal tubular acidosis in 
mice lacking the K-Cl co-transporter Kcc4. Nature. 2002;416:874-878

	 41.	Bruce LJ, Cope DL, Jones GK, Schofield AE, Burley M, Povey S, Unwin RJ, Wrong O, Tanner MJ. Familial 
distal renal tubular acidosis is associated with mutations in the red cell anion exchanger (Band 3, 
AE1) gene. J Clin Invest. 1997;100:1693-1707

	 42.	Nicoletta JA, Schwartz GJ. Distal renal tubular acidosis. Curr Opin Pediatr. 2004;16:194-198
	 43.	Borthwick KJ, Kandemir N, Topaloglu R, Kornak U, Bakkaloglu A, Yordam N, Ozen S, Mocan H, Shah 

GN, Sly WS, Karet FE. A phenocopy of CAII deficiency: a novel genetic explanation for inherited infan-
tile osteopetrosis with distal renal tubular acidosis. J Med Genet. 2003;40:115-121

	 44.	Sayer JA, Pearce SH. Diagnosis and clinical biochemistry of inherited tubulopathies. Ann Clin Biochem. 
2001;38:459-470

	 45.	Shaer AJ. Inherited primary renal tubular hypokalemic alkalosis: a review of Gitelman and Bartter 
syndromes. Am J Med Sci. 2001;322:316-332

	 46.	Katz SM, Krueger LJ, Falkner B. Microscopic nephrocalcinosis in cystic fibrosis. N Engl J Med. 
1988;319:263-266

	 47.	Soleimani M, Burnham CE. Physiologic and molecular aspects of the Na+:HCO3- cotransporter in 
health and disease processes. Kidney Int. 2000;57:371-384

	 48.	Moutsopoulos HM, Cledes J, Skopouli FN, Elisaf M, Youinou P. Nephrocalcinosis in Sjogren’s syndrome: 
a late sequela of renal tubular acidosis. J Intern Med. 1991;230:187-191

	 49.	Mole DR, Tomson CR, Mortensen N, Winearls CG. Renal complications of jejuno-ileal bypass for obe-
sity. Qjm. 2001;94:69-77

	 50.	Worcester EM, Chuang M, Laven B, Orvieto M, Coe FL, Evan AP, Gerber GS. A new animal model of 
hyperoxaluria and nephrolithiasis in rats with small bowel resection. Urol Res. 2005;33:380-382

	 51.	Markovich D, Aronson PS. Specificity and Regulation of Renal Sulfate Transporters. Annu Rev Physiol. 
2007;69:361-375

	 52.	Evan AP, Lingeman JE, Coe FL, Shao Y, Parks JH, Bledsoe SB, Phillips CL, Bonsib S, Worcester EM, Som-
mer AJ, Kim SC, Tinmouth WW, Grynpas M. Crystal-associated nephropathy in patients with brushite 
nephrolithiasis. Kidney Int. 2005;67:576-591

	 53.	Vervaet BA, Verhulst A, Markowitz GS, Jouret F, Devuyst O, Verkoelen CF, De Broe ME, D’Haese PC. 
Intratubular nephrocalcinosis is associated with hyaluronan- and osteopontin-expressing tubular 
epithelia in several clinical settings. European Urology Meetings. 2007;2

	 54.	Schrier RW. Ethylene glycol toxicity. In: Diseases of the Kidney and Urinary Tract. 2001:pp 1316-1326
	 55.	Hufnagle KG, Khan SN, Penn D, Cacciarelli A, Williams P. Renal calcifications: a complication of long-

term furosemide therapy in preterm infants. Pediatrics. 1982;70:360-363
	 56.	McCormick FC, Brady K, Keen CE. Oxalate nephrocalcinosis: a study in autopsied infants and neo-

nates. Pediatr Pathol Lab Med. 1996;16:479-488
	 57.	Cranefield DJ, Odd DE, Harding JE, Teele RL. High incidence of nephrocalcinosis in extremely preterm 

infants treated with dexamethasone. Pediatr Radiol. 2004;34:138-142
	 58.	Schell-Feith EA, Kist-van Holthe JE, Van Zwieten PH, Zonderland HM, Holscher HC, D.W. S, Brand R, 

Berger HM, Van der Heijden BJ. Preterm neonates with nephrocalcinosis: natural course and renal 
function. Pediatr Nephrol. 2003;18:1102-1108

	 59.	Kist-van Holthe JE, van Zwieten PH, Schell-Feith EA, Zonderland HM, Holscher HC, Wolterbeek R, Veen 
S, Frolich M, van der Heijden BJ. Is nephrocalcinosis in preterm neonates harmful for long-term blood 
pressure and renal function? Pediatrics. 2007;119:468-475

	 60.	Pohl M, Sakurai H, Stuart RO, Nigam SK. Role of hyaluronan and CD44 in in vitro branching morpho-
genesis of ureteric bud cells. Develop Biol. 2000;224:312-325



Chapter 6

124

	 61.	Rogers SA, Padanilam BJ, Hruska KA. Metanephric osteopontin regulates nephrogenesis in vitro. Am 
J Physiol. 1997;272:F469-476

	 62.	Borghi L, Schianchi T, Meschi T, Guerra A, Allegri F, Maggiore U, Novarini A. Comparison of two diets 
for the prevention of recurrent stones in idiopathic hypercalciuria. N Engl J Med. 2002;346:77-84

	 63.	Sikora P, Roth B, Kribs A. Hypocitraturia is one of the major risk factors for nephrocalcinosis in very 
low birth weight (VLBW) infants. Kidney Int. 2003;63:2194-2199

	 64.	Memeo L, Pecorella I, Ciarda A, Salvati G, De Nuccio I, Di Tondo U, Cortesini R. Calcium oxalate mi-
crodeposition in failing kidney grafts. Transplant Proc. 2001;33:1262-1265

	 65.	Pinheiro HS, Camara NO, Osaki KS, De Moura LA, Pacheco-Silva A. Early presence of calcium oxalate 
deposition in kidney graft biopsies is associated with poor long-term graft survival. Am J Transplant. 
2005;5:323-329

	 66.	Olsen S, Burdick JF, Keown PA, Wallace AC, Racusen LC, Solez K. Primary acute renal failure (“acute 
tubular necrosis”) in the transplanted kidney: morphology and pathogenesis. Medicine (Baltimore). 
1989;68:173-187

	 67.	Gwinner W, Suppa S, Mengel M, Hoy L, Kreipe HH, Haller H, Schwarz A. Early calcification of renal al-
lografts detected by protocol biopsies: causes and clinical implications. Am J Transplant. 2005;5:1934-
1941

	 68.	Marengo SR, Chen DH, Evan AP, Sommer AJ, Stowe NT, Ferguson DG, Resnick MI, MacLennan GT. 
Continuous infusion of oxalate by minipumps induces calcium oxalate nephrocalcinosis. Urol Res. 
2006;34:200-210

	 69.	Schepers MS, van Ballegooijen ES, Bangma CH, Verkoelen CF. Crystals cause acute necrotic cell death 
in renal proximal tubule cells, but not in collecting tubule cells. Kidney Int. 2005;68:1543-1553

	 70.	van Woerden CS, Groothoff JW, Wanders RJ, Davin JC, Wijburg FA. Primary hyperoxaluria type 1 in The 
Netherlands: prevalence and outcome. Nephrol Dial Transplant. 2003;18:273-279

	 71.	Diallo O, Janssens F, Hall M, Avni EF. Type 1 primary hyperoxaluria in pediatric patients: renal sono-
graphic patterns. AJR Am J Roentgenol. 2004;183:1767-1770

	 72.	Pak CY. Etiology and treatment of urolithiasis. Am J Kidney Dis. 1991;18:624-637
	 73.	Stapenhorst L, Sassen R, Beck B, Laube N, Hesse A, Hoppe B. Hypocitraturia as a risk factor for neph-

rocalcinosis after kidney transplantation. Pediatr Nephrol. 2005;20:652-656
	 74.	Hoppe B, Kemper MJ, Bokenkamp A, Portale AA, Cohn RA, Langman CB. Plasma calcium oxalate 

supersaturation in children with primary hyperoxaluria and end-stage renal failure. Kidney Int. 
1999;56:268-274

	 75.	Schwarz C, Benesch T, Kodras K, Oberbauer R, Haas M. Complete renal tubular acidosis late after 
kidney transplantation. Nephrol Dial Transplant. 2006;21:2615-2620

	 76.	Alpern RJ. Trade-offs in the adaptation to acidosis. Kidney Int. 1995;47:1205-1215
	 77.	Borghi L, Meschi T, Maggiore U, Prati B. Dietary therapy in idiopathic nephrolithiasis. Nutr Rev. 

2006;64:301-312
	 78.	Mahadevan P, Larkins RG, Fraser JR, Dunlop ME. Effect of prostaglandin E2 and hyaluronan on mesan-

gial cell proliferation. A potential contribution to glomerular hypercellularity in diabetes. Diabetes. 
1996;45:44-50

	 79.	Harris RC, Breyer MD. Update on cyclooxygenase-2 inhibitors. Clin J Am Soc Nephrol. 2006;1:236-245
	 80.	Tan IL, Zonderland HM, Boeve ER. Oxalosis provoked by extracorporeal shock wave lithotripsy. Lan-

cet. 1994;344:757-758
	 81.	Baumgartner BR, Dickey KW, Ambrose SS, Walton KN, Nelson RC, Bernardino ME. Kidney changes 

after extracorporeal shock wave lithotripsy: appearance on MR imaging. Radiology. 1987;163:531-
534

	 82.	Evan AP, Coe FL, Gillen D, Lingeman JE, Bledsoe S, Worcester EM. Renal intratubular crystals and hy-
aluronan staining occur in stone formers with bypass surgery but not with idiopathic calcium oxalate 
stones. Anat Rec (Hoboken). 2008;291:325-334



Summary





Summary

127

The incidence of renal stone disease has increased during the last decades. In North America 

and Europe the yearly incidence is estimated to be about 0.5%. The lifetime risk in white males 

and females to develop a kidney stone is 15% and 6%, respectively 1-3. Patients who develop 

kidney stones (or so-called stone formers) can be categorized on the basis of the composition 

of their stone. The most common are calcium stones, which contain calcium oxalate and/or 

calcium phosphate. A kidney stone can cause flank pain and hematuria. When a stone migrates 

downwards from the kidney through the ureter towards the bladder it can cause excruciating 

flank pain, which is a typical phenomenon called renal colic. Small stone fragments usually 

can pass spontaneously whereas treatment is often required for bigger stones.

The treatment of kidney stones has changed dramatically after the introduction of ESWL (“ex-

tracorporeal shock wave lithotripsy”) in the eighties and at this moment ESWL is frequently 

the first choice of treatment for kidney stone disease. The development of minimal invasive 

techniques with endoscopic equipment also has had an important role in the treatment of 

stones of the urinary tract (percutaneous nephrolitholapaxy, ureterorenoscopy, laser litho-

tripsy etc.). Open stone surgery therefore (practically) belongs to the past.

The techniques to remove kidney stones definitively have improved during the last decades. 

However, this did not cause a decline in the incidence of stone disease 4-6. In fact, treatment 

is aimed at resolving symptoms by removing the stone and not at preventing kidney stone 

formation. The recurrence risk in a person to develop a second stone is 50% in 10 years. This 

thesis deals with the question how to prevent stone formation in the urinary tract. Therefore 

we need to extend our knowledge on the etiology of kidney stone disease, which at present 

is rather limited. Recurrent stone formers should be analyzed to evaluate whether a meta-

bolic disorder causes an increased risk to develop stones, like for example hypercalciuria or 

hypocitraturia. In these patients specific dietary advice and medication can help to prevent 

recurrent stone disease 1, 2. In a subset of patients however no metabolic disorder is found 

and these patients are therefore called idiopathic recurrent stone formers. Especially these 

patients indicate that we need to further investigate the etiology of renal stone disease 5.

Kidney stones are composed of innumerable small crystals and organic material. Historically 

kidney stone research focused on compounds in the urine which increase the risk of crystal 

formation and agglomeration. Different compounds in the urine act as promotors or inhibitors 

of crystal formation and agglomeration. From all of the known urinary promotors or inhibitors 

none of them (except for citrate) have been definitively proven to play a key role in calcium 

stone formation, or to have any clinical and therapeutic application 7, 8.

The presence of a kidney stone indicates that crystals must have been retained in the kid-

ney. The formation of crystals along the nephron is to be expected not earlier than the distal 
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nephron. Crystals are being transported with the urine downwards the urinary tract and are 

excreted with the urine during micturition. The presence of crystals in the urine is a physiologi-

cal phenomenon and occurs in both stone formers and non-stone formers. It has therefore 

been postulated that crystal retention has a crucial role in the development of kidney stones 9. 

In the eighties this hypothesis led to studies of the tubular epithelium lining the lumen of the 

distal nephron. The aim was to identify molecules at the surface of tubular epithelial cells that 

bind crystals and could therefore play a role in the retention of crystals in the kidney 9.

The research group from Dr. Carl Verkoelen in Rotterdam has been performing cell culture 

studies to answer this question. It was shown that crystals do not bind to MDCK-I cells in 

culture that have developed into confluent monolayers in which tight junctions have been 

formed. In contrast, crystals avidly bind to proliferating cells during growth and regenerating 

cells during wound healing. Apparently this different crystal binding phenotype is explained 

by differences in expression of molecules at the apical cell membrane 10. In 2000 Verkoelen 

et al. showed that hyaluronan is expressed at the apical membrane of proliferating and re-

generating cells and serves as calcium oxalate crystal binding molecule 11. Hyaluronan is a 

high molecular weight (Mr) polysaccharide and the main component of pericellular matrices 

(PCMs), and has excellent crystal binding properties because of its negative charge due to the 

carboxyl (COO-) group of glucuronic acid (GlcUA) 12, 13. PCMs are expressed by proliferating and 

migrating cells during growth, regenerating cells during wound healing and tumor cells 14. 

These experiments have been repeated in primary cultures of human tubular cells by Verhulst 

et al. in which these results were confirmed 15. Human tubular crystal-binding cells did not 

only express hyaluronan at the apical cell membrane, but also the receptor for hyaluronan, the 

transmembrane protein CD44 and another ligand of CD44, osteopontin (OPN) 16, 17. Verhulst 

et al. also investigated expression of hyaluronan in renal tissue. Hyaluronan is normally hardly 

expressed in the renal cortex. During various inflammatory renal disease states however an 

increased expression of hyaluronan in the renal cortex has been reported, but this has been 

described in the renal cortical interstitium and not inside the renal tubules 18-22. Verhulst et al. 

reported for the first time that hyaluronan is also expressed in the kidney at the luminal cell 

membrane of tubuli in a damaged human kidney by post-renal obstruction and in rat kidneys 

which were damaged by ischemia/reperfusion 15.

From these results we hypothesized that the risk for crystal retention in the human kidney 

is increased when tubular epithelial cells of the distal nephron express hyaluronan at their 

luminal membrane.

To test this hypothesis in vivo we performed an experiment in rats (Chapter 2). We needed 

a model in which both calcium oxalate crystalluria could be induced as well as damage to 

the tubular epithelium. We performed an experiment in which rats received ethylene glycol 
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added to their drinking water and compared these to rats which received normal drinking 

water. Ethylene glycol is a precursor of oxalate and therefore causes hyperoxaluria and subse-

quent calcium oxalate crystalluria. Ethylene glycol is also nephrotoxic which probably should 

be attributed to the ethylene glycol metabolites glycoaldehyde and glyoxylate 23. Ethylene 

glycol almost immediately caused calcium oxalate crystalluria. Calcium oxalate crystals were 

not retained as long as there were no signs of tubular injury. Crystals were retained in the 

kidney as soon as ethylene glycol had caused mild damage and injured/regenerating tubular 

cells were observed. Calcium oxalate crystals were found at the luminal cell membrane of 

injured/regenerating tubular cells that expressed hyaluronan, CD44 and OPN at the luminal 

cell membrane 24. It was shown for the first time in vivo that the retention of crystals in the kid-

ney is associated with the expression of hyaluronan at the luminal cell membrane of injured/

regenerating tubular epithelium 24.

Hyaluronan expression in the cortex of the kidney is strongly up-regulated during various 

inflammatory disease states, but mainly has been described in the cortical interstitium 21, 22, 24. 

Because in ethylene glycol treated rats hyaluronan not only accumulated in the renal cortical 

renal interstitium but was also expressed at the luminal cell membrane of tubular epithelial 

cells, we decided to investigate in cell culture the possible role of tubular cells in this process. 

We therefore performed experiments in MDCK-I cells and primary cultures of human tubular 

epithelial cells during growth and wound healing. Cells were cultured on semipermeable 

filter inserts in a two-chamber system (Chapter 3) 25. In this culture system the apical medium 

compartment can be analyzed separately from the basolateral medium compartment. It was 

shown that hyaluronan and CD44 are expressed at the apical cell membrane of proliferat-

ing cells together with increased HAS2 mRNA expression and slightly down-regulated HAS3 

mRNA expression. As soon as confluent monolayers had developed with formation of tight 

junctions, hyaluronan was no longer expressed, and CD44 at the basolateral membrane. Dur-

ing wound healing CD44 and hyaluronan were also expressed at the apical cell membrane 

of regenerating cells at the border of the wounds. The secretion of high Mr hyaluronan is 

also increased during proliferation and regeneration and highly polarized and targeted to 

the apical medium compartment 25. Since the increased production of high Mr hyaluronan by 

mitogen/stress-activated renal tubular cells is destined for the apical surface and the expres-

sion of hyaluronan and CD44 is highly polarized under these conditions, it was concluded that 

the increased synthesis of hyaluronan by activated renal tubular cells during inflammatory 

disease states most likely does not contribute to the up-regulated expression of hyaluronan in 

the renal interstitium but merely supports cell growth and remodeling in the tubules 25.

From these in vitro and in vivo experiments it was concluded that crystals in the lumen of the 

distal nephron only bind to proliferating or regenerating cells that express hyaluronan, OPN 

and CD44 at their luminal cell membrane. To evaluate the clinical relevance of this finding we 
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studied two different patient groups in which retention of crystals inside the tubular lumen 

has been described (Chapter 4) 26. This condition is called tubular nephrocalcinosis and oc-

curs in kidneys of preterm neonates 27 and renal transplant patients 28. Kidneys of both patient 

groups contain proliferating or regenerating cells because nephrogenesis is not completed 

until 36 weeks of gestation and posttransplant kidneys are damaged and regenerate because 

of ischemia, nephrotoxic drugs and chronic graft rejection. In renal tissue of preterm neonates 

from gestational ages 15 to 40 weeks hyaluronan and OPN expression was shown at the lu-

minal cell membrane of developing tubules 26. In renal transplants in consecutive biopsies 12 

and 24 weeks posttransplantation hyaluronan and OPN expression was also shown at the lu-

minal cell membrane of distal tubuli 26. In kidney tissue from both preterm neonates that lived 

for at least 4 days as well as posttransplantation patients calcium containing crystals were 

observed inside the tubular lumen by von Kossa staining and these crystals were associated 

with tubules in which hyaluronan and OPN were expressed at the luminal cell membrane. 

The number of patients posttransplantation in which crystals were identified increased from 

20% after 12 weeks to 60% after 24 weeks. These findings in both patient groups suggest that 

the retention of crystals inside the tubular lumen is preceded by the expression of the crystal 

binding molecules hyaluronan and OPN 26.

Finally we asked ourselves whether it would be possible to inhibit the binding of crystals to 

hyaluronan at the surface of tubular epithelial cells. In different cell types hyaluronan synthe-

sis during inflammation is stimulated by prostaglandin E2 (PGE2) 29-31. Cyclooxygenase (COX) 

isoenzymes stimulate the production of PGE2. COX-1 is constitutively expressed in the kidney, 

whereas COX-2 is the inducible isoform upregulated for instance during inflammation 32-35. 

We therefore studied the effect of COX-inhibitors, or so-called NSAIDs (non-steroidal anti-

inflammatory drugs), on calcium oxalate monohydrate (COM) crystal binding, PGE2 secretion, 

hyaluronan secretion, hyaluronan expression, lactate dehydrogenase (LDH) secretion and 

recovery of transepithelial resistance (Chapter 5). It was found that both the non-selective 

COX-1/COX-2 inhibitor indomethacin as well as the selective COX-2 inhibitors nimesulide and 

meloxicam decreased the binding of COM crystals to the surface of regenerating MDCK-I cells 

at the border of wounds in scrape-damaged monolayers, already at doses in which recovery 

of transepithelial resistance was unaffected. Inhibition of PGE2 production by COX-inhibitors 

causes a decrease in hyaluronan production and expression and a decrease in hyaluronan-

dependent COM crystal binding to the apical cell membrane of regenerating MDCK-I cells. 

Subsequently this finding should be tested in an experimental in vivo model of crystal reten-

tion in the kidney.

In the general discussion of this thesis (Chapter 6) the possible role of crystal retention in 

the tubular lumen in kidney stone disease is discussed. The main reasons to expand our find-

ings and continue further research are described by emphasizing on the clinical relevance of 
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retention of crystals in tubular nephrocalcinosis, because there are indications that tubular 

nephrocalcinosis could cause irreversible damage to nephrons. A number of suggestions for 

future research are being given.
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Vorming van nierstenen is de afgelopen decennia toegenomen. In Noord-Amerika en Europa 

wordt het aantal nieuwe gevallen per jaar geschat op ongeveer 0.5%. Het risico voor blanke 

mannen en vrouwen om in hun leven een steen te krijgen is respectievelijk 15 en 6% 1-3. 

Patiënten die nierstenen vormen (zogenaamde niersteenvormers) kunnen worden onder-

verdeeld op basis van de samenstelling van hun steen. De meest voorkomende stenen zijn 

calciumhoudende stenen die bestaan uit calciumoxalaat en/of calciumfosfaat. Een niersteen 

kan flankpijn en bloed in de urine (hematurie) veroorzaken. Wanneer een steen vanuit de nier 

door een urineleider naar de blaas migreert kan dit gepaard gaan met helse pijn in de flank 

uitstralend naar de onderbuik, een karakteristiek ziektebeeld dat een niersteenkoliek wordt 

genoemd. Kleine steentjes worden doorgaans spontaan geloosd maar voor grotere fragmen-

ten zijn vaak interventies nodig.

In de behandeling van nierstenen is de introductie van ESWL (“extracorporeal shock wave 

lithotripsy”) begin jaren ’80 een doorbraak geweest en op dit moment is ESWL doorgaans de 

eerste keus van behandeling voor nierstenen. Daarnaast heeft de ontwikkeling van minimaal 

invasieve technieken met behulp van endoscopisch instrumentarium een grote rol gespeeld 

in de behandeling van stenen in de urinewegen (percutane nefrolitholapaxie, ureteroreno

scopie, laserlithotripsie etc.). Hierdoor behoort open steenchirurgie (vrijwel) tot het verleden.

De technieken om stenen te behandelen zijn in de afgelopen decennia dus duidelijk verbe-

terd. Dit heeft echter niet geleid tot een afname van het ontstaan van nierstenen 4-6. Feitelijk 

is behandeling ook gericht op bestrijding van symptomen doordat stenen worden verwijderd 

en niet gericht op preventie van steenvorming. Het risico dat een persoon in zijn of haar leven 

opnieuw een steen vormt is ca. 50% in 10 jaar. Dit proefschrift handelt over de vraag hoe 

steenvorming in de urinewegen voorkomen zou kunnen worden. Hiervoor is kennis over het 

ontstaan van stenen nodig en die is nog vrij beperkt. Recidiverende steenvormers behoren 

geanalyseerd te worden of er bij hen een metabole oorzaak ten grondslag ligt aan een ver-

hoogd risico op de vorming van stenen zoals hypercalciurie (een verhoogde calciumuitschei-

ding in de urine) of hypocitraturie (een verlaagde concentratie citraat in de urine). Dit kan 

leiden tot specifieke dieetadviezen en medicatie om de recidiefkans te verkleinen 1, 2. In een 

deel van de patiënten wordt er echter geen metabole oorzaak gevonden en deze patiënten 

worden daarom zogenaamde idiopathische recidiverende steenvormers genoemd. Het feit 

dat er patiënten zijn die herhaaldelijk stenen maken waarvoor geen oorzaak wordt gevonden 

onderschrijft dus het gebrek aan kennis hierover en het nut van verder onderzoek hiernaar 5.

Nierstenen zijn samengesteld uit ontelbaar veel kristallen en organisch materiaal. Het on-

derzoek naar de vorming van nierstenen was historisch vooral gericht op factoren die de 

samenstelling van de urine beïnvloeden, waardoor er een verhoogde kans is op de vorming 

en agglomeratie van kristallen in de urine. Er zijn factoren die de vorming en agglomeratie 
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van kristallen in de urine bevorderen (“promoters”) of remmen (“inhibitors”). Van alle urine-

bestanddelen die zijn onderzocht is er (behalve van citraat) van geen enkele duidelijk bewijs 

geleverd dat zij een overtuigende of klinisch toepasbare rol te spelen in de vorming van 

nierstenen 7, 8.

Wanneer er een niersteen is ontstaan zijn er blijkbaar kristallen achtergebleven in de nier 

om deze steen te vormen. Kristallen worden in het distale nephron (figuur 1.1) gevormd en 

worden meegevoerd naar het verzamelsysteem en met de urine tijdens het plassen geloosd. 

Vanwege het feit dat de aanwezigheid van kristallen in de urine een normaal fysiologisch 

fenomeen is en voorkomt bij zowel steenvormers als niet-steenvormers, is geopperd dat het 

achterblijven van kristallen in de nier (“crystal retention”) een cruciale rol zou moeten spelen 

bij het ontstaan van nierstenen 9. Deze hypothese heeft sinds de jaren ’80 geleid tot onder-

zoek van het tubulusepitheel dat de luminale zijde van het distale nephron bekleedt. Het 

doel was om moleculen aan het oppervlak van tubulusepitheelcellen te identificeren waaraan 

kristallen binden en hierdoor een rol zouden kunnen spelen in het achterblijven van kristallen 

in de nier 9.

De Rotterdamse onderzoeksgroep onder leiding van Dr. Carl Verkoelen heeft sinds de jaren 

’90 celkweekexperimenten uitgevoerd om deze vraag te beantwoorden. Het bleek dat er geen 

kristallen binden aan het oppervlak van MDCK-I cellen in celkweek als zij zijn uitgegroeid tot 

confluente monolagen waarin tight junctions zijn gevormd. Aan prolifererende cellen in kweek 

tijdens groei en aan regenererende cellen tijdens wondheling daarentegen binden kristallen 

zeer sterk. Het celoppervlak van deze geactiveerde cellen was blijkbaar anders, waardoor de 

verhoogde affiniteit om kristallen te binden ten opzichte van cellen in confluente monolagen 

werd verklaard 10. In 2000 werd door Verkoelen et al. aangetoond dat calciumoxalaatkristallen 

binden aan deze cellen omdat zij hyaluronzuur tot expressie brengen 11. Hyaluronzuur is een 

hoog moleculair gewicht polysacharide die het hoofdbestanddeel is van pericellulaire matri-

ces (PCMs) en heeft uitstekende kristalbindende eigenschappen door zijn negatieve lading 

door de carboxyl(COO-)groep van glucuronzuur (GlcUA) 12, 13. PCMs komen onder andere tot 

expressie bij prolifererende en migrerende cellen tijdens groei en embryogenese, regenere-

rende cellen tijdens wondheling en bij kankercellen 14. Vervolgens zijn deze experimenten 

herhaald in primaire celkweken van humane tubulusepitheelcellen door Verhulst et al. en deze 

bevestigden deze resultaten 15. Humane tubulusepitheelcellen die calciumoxalaatkristallen 

binden brengen niet alleen hyaluronanzuur tot expressie aan de apicale celmembraan, maar 

ook de receptor voor hyaluronzuur, het transmembraan eiwit CD44 en een andere ligand van 

CD44, namelijk osteopontin (OPN) 16, 17. In het artikel door Verhulst et al. is tevens expressie 

van hyaluronzuur in nierweefsel onderzocht. Hyaluronzuur komt onder normale omstandig-

heden nauwelijks tot expressie in de cortex. Tijdens verschillende inflammatoire nierziektes 

daarentegen is er in de cortex een verhoogde expressie van hyaluronzuur aangetoond, maar 



Samenvatting

137

dit wordt beschreven in het interstitium en niet in de niertubuli 18-22. Verhulst et al. hebben 

voor het eerst aangetoond dat hyaluronzuur in de nier ook tot expressie komt aan de luminale 

celmembraan in renale tubuli in een door postrenale obstructie beschadigde humane nier en 

in een rattennier die beschadigd was als gevolg van ischemie 15.

Naar aanleiding van deze bevindingen werd de hypothese geformuleerd dat het risico dat 

kristallen achterblijven in de nier verhoogd is wanneer tubulusepitheelcellen in het distale 

nephron hyaluronzuur tot expressie brengen.

Om deze hypothese in vivo te toetsen werd een rattenexperiment uitgevoerd (Hoofdstuk 2). 

Hiervoor was er een model nodig waarin zowel de vorming van calciumoxalaatkristallen in 

de urine werd geïnduceerd als schade aan de niertubuli. Er werd een experiment uitgevoerd 

waarin ratten ethyleenglycol kregen toegevoegd aan het drinkwater en deze werden vergele-

ken met ratten die gewoon drinkwater kregen. Ethyleenglycol is een precursor van oxaalzuur 

en veroorzaakt daardoor een verhoogde concentratie oxaalzuur in de urine (hyperoxalurie) 

waardoor calciumoxalaatkristallen in de urine worden gevormd. Daarnaast is ethyleenglycol 

schadelijk voor de nier, wat waarschijnlijk toegeschreven moet worden aan de ethyleen-

glycol metabolieten glycoaldehyde and glyoxylate 23. Het bleek dat ethyleenglycol vrijwel 

direct calciumoxalaatkristalvorming in de urine veroorzaakt. Calciumoxalaatkristallen bleven 

echter niet in de nier achter op het moment dat er (nog) geen tekenen waren van tubulaire 

schade/regeneratie. Vanaf het moment dat ethyleenglycol milde schade had veroorzaakt en 

er beschadigde, regenererende tubulusepitheelcellen werden vastgesteld, bleven kristallen 

achter in de nier. Calciumoxalaatkristallen in de nier werden aangetroffen aan de luminale 

celmembraan van beschadigde/regenererende tubulusepitheelcellen die hyaluronzuur, OPN 

en CD44 aan de luminale celmembraan tot expressie brengen 24. Dit experiment toonde voor 

de eerste keer in vivo aan dat het achterblijven van kristallen in de nier geassocieerd is met 

de expressie van hyaluronzuur aan de luminale celmembraan van beschadigd/regenererend 

tubulusepitheel 24.

Hyaluronzuurexpressie in de cortex van de nier is sterk verhoogd tijdens verschillende inflam-

matoire nierziekten, maar wordt voornamelijk geobserveerd in het corticale interstitium 21, 22, 24. 

Omdat in het ethyleenglycol rattenexperiment hyaluronzuur niet alleen verhoogd tot expres-

sie komt in het interstitium van de cortex maar ook aan de luminale celmembraan van het 

tubulusepitheel, werd in celkweek onderzocht wat de rol van tubulusepitheelcellen hierin 

zou kunnen zijn. Hiervoor werden experimenten uitgevoerd met MDCK-I cellen en primaire 

celkweken van humane tubulusepitheelcellen tijdens proliferatie en wondheling. Cellen 

werden gekweekt op semipermeabele filters in een 2-compartiment systeem (Hoofdstuk 3) 
25. In dit model kan het bovenste kweekmedium aan de apicale zijde van de cellen (het api-

cale mediumcompartiment) en het kweekmedium onder de cellen (het basolaterale medium 
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compartiment) afzonderlijk worden geanalyseerd. Het bleek dat tijdens groei hyaluronzuur 

en CD44 selectief tot expressie komen aan de apicale celmembraan van prolifererende cel-

len, wat gepaard ging met een verhoogde expressie van HAS2 mRNA en een licht verlaagde 

expressie van HAS3 mRNA. Zodra cellen uitgegroeid waren tot confluente monolagen waarin 

tight junctions waren gevormd kwam hyaluronzuur niet meer tot expressie, en CD44 aan de 

basolaterale celmembraan. Tijdens wondheling komen CD44 en hyaluronzuur ook tot expres-

sie aan de apicale celmembraan van regenerende cellen aan wondranden. De secretie van 

hoog moleculair gewicht hyaluronzuur is eveneens verhoogd tijdens proliferatie en regene-

ratie en sterk gepolariseerd en gericht naar het apicale mediumcompartiment 25. Op basis 

van de bevindingen dat tijdens groei en wondheling hoog moleculair gewicht hyaluronzuur 

selectief naar het apicale mediumcompartiment wordt gesecreteerd en aan de apicale cel-

membraan tot expressie komt, werd uit deze resultaten geconcludeerd dat het waarschijnlijk 

is dat tijdens inflammatoire aandoeningen van de nier de verhoogde synthese van hyaluron-

zuur door geactiveerde tubulusepitheelcellen niet bijdraagt aan de verhoogde expressie van 

hyaluronzuur in het interstitium van de cortex, maar een rol speelt tijdens celgroei en herstel 

in de niertubuli 25.

Uit deze in vitro en in vivo experimenten werd geconcludeerd dat kristallen in het lumen van 

het distale nephron alleen binden aan prolifererende of regenererende tubulusepitheelcellen 

die hyaluronzuur, CD44 en OPN aan de luminale celmembraan tot expressie brengen. Om 

de klinische relevantie van deze bevinding te evalueren werden twee patiëntenpopulaties 

onderzocht waarvan bekend is dat er kristallen worden gevormd en achterblijven in de tubuli 

(Hoofdstuk 4) 26. Deze klinische conditie heet tubulaire nephrocalcinosis en wordt geobser-

veerd in nieren van tevroeggeborenen 27 en van niertransplantatiepatiënten 28. Nieren van 

beide patiëntenpopulaties bevatten prolifererende of regenererende tubulusepitheelcellen, 

omdat de nier in ontwikkeling is tot week 36 van de zwangerschap en in transplantaatnieren 

schade/regeneratie optreedt als gevolg van ischemie, nefrotoxische medicatie en chronische 

rejectie. In nierweefsel van tevroeggeborenen werd tijdens de ontwikkeling van de nier van 

week 15 tot en met week 40 hyaluronzuur en OPN expressie aangetoond aan de luminale 

celmembraan in tubuli van zich ontwikkelende nephronen 26. In transplantatienieren werd 

in opeenvolgende biopsieën 12 en 24 weken na transplantatie eveneens expressie van hya-

luronzuur en OPN aan de luminale celmembraan van distale tubuli waargenomen 26. In zowel 

nierweefsel van tevroeggeborenen die langer dan vier dagen leefden als van niertransplanta-

tiepatiënten werden met behulp van von Kossa-kleuring calciumhoudende kristallen aange-

toond in de tubuli en deze waren geassocieerd met tubuli waarin hyaluronzuur en OPN aan 

de luminale celmembraan tot expressie kwam. Het aantal patiënten na transplantatie waarin 

kristallen in het lumen van tubuli werden aangetoond steeg van 20% na 12 weken naar 60% 

na 24 weken. De waarnemingen in beide patiëntengroepen suggereren dat het achterblij-
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ven van kristallen in de tubuli wordt voorafgegaan aan de expressie van de kristalbindende 

moleculen hyaluronzuur en OPN 26.

Ten slotte stelden we ons de vraag of er mogelijkheden zouden kunnen zijn om de binding 

van kristallen aan hyaluronzuur aan het oppervlak van tubulusepitheelcellen te remmen. Er 

zijn aanwijzingen in verschillende celtypes dat hyaluronzuur synthese tijdens inflammatie 

gestimuleerd wordt door prostaglandine E2 (PGE2) 29-31. Cyclooxygenase (COX) isoenzymen 

stimuleren de vorming van PGE2. COX-1 komt constitutief tot expressie in de nier, COX-2 daar-

entegen is de induceerbare isovorm die opgereguleerd is tijdens onder andere inflammatie 
32-35. Daarom hebben we in MDCK-I cellen in kweek het effect onderzocht van COX inhibitors, 

of zogenaamde NSAIDs (non-steroidal anti-inflammatory drugs), op calciumoxalaat mono-

hydraat (COM) kristal binding, PGE2 secretie, hyaluronzuur secretie, hyaluronzuur expressie, 

lactaat dehydrogenase (LDH) secretie en herstel van transpitheliale weerstand (Hoofdstuk 5). 

Het bleek dat zowel de niet-selectieve COX-1/COX-2 inhibitor indomethacine als de selectieve 

COX-2 inhibitors nimesulide en meloxicam de binding van COM kristallen aan het oppervlak 

van regenererende MDCK-I cellen aan de wondranden van een door een kras beschadigde 

monolaag remmen, al bij lage doses die geen invloed hadden op het herstel van de transe-

pitheliale weerstand tijdens wondheling van de cellagen. Remming van PGE2 productie door 

COX-inhibitors leidde tot verminderde expressie en productie van hyaluronzuur en vermin-

derde hyaluronzuurafhankelijke binding van COM kristallen aan de apicale celmembraan van 

regenererende MDCK-I cellen. Deze bevinding zou vervolgens getest moeten worden in een 

experimenteel diermodel.

In de algemene discussie van dit proefschrift (Hoofdstuk 6) wordt nader ingegaan op welke 

rol het achterblijven van kristallen in de niertubuli zou kunnen spelen in niersteenziekte. De 

belangrijkste redenen om het onderhavige onderzoek te continueren worden benadrukt 

door in te gaan op de klinische relevantie van het achterblijven van kristallen in tubulaire 

nephrocalcinosis, omdat er aanwijzingen zijn dat tubulaire nephrocalcinosis schadelijk is voor 

nephronen. Er worden tevens suggesties gedaan voor vervolgstudies.
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Dankwoord

Aan de totstandkoming van dit proefschrift hebben velen meegewerkt. Een aantal van hen 

wil ik specifiek noemen.

Als hoofd van de onderzoekgroep naar de vorming van stenen in de urinewegen was Dr. Carl 

F. Verkoelen mijn directe begeleider. Ik heb hem leren kennen als een bevlogen onderzoeker, 

met wie ik zeer intensief heb samengewerkt. Helaas is hij op 23 oktober 2007 onverwacht 

overleden. Esther, ik stel het op prijs dat je bij de verdediging van mijn proefschrift aanwezig 

wilt zijn. Zonder Carl was dit proefschrift er niet gekomen. In het laatste gesprek dat ik kort 

voor zijn overlijden met hem heb gehad, vertelde hij naar aanleiding van de vorderingen van 

mijn proefschrift dat we nu zover waren dat hij ondertussen wel zin had gekregen in een 

feestje. Ik vind het erg verdrietig dat hij deze dag niet kan meemaken.

Daarnaast mijn dank aan de andere medewerkers van deze onderzoekgroep voor hun aan-

deel in de ontwikkeling van de geproduceerde artikelen; Eddy van Ballegooijen, Ronald Duim, 

Dik Kok, Hans Romijn, Marieke Schepers-Kok en Paul Verhagen.

Alle andere collega’s in het JNI waarmee ik op enigerlei wijze te maken heb gehad wil ik be-

danken voor hun grote mate van behulpzaamheid en interesse.

Prof.dr. F.H. Schröder wil ik bedanken voor het in mij gestelde vertouwen en voor de financiële 

ondersteuning van de SUWO waardoor ik met het onderzoek kon beginnen. Uiteindelijk is het 

onderzoek wat door mij is verricht gefinancierd door de Oxalosis & Hyperoxaluria Foundation 

(OHF).

The OHF is a voluntary, not-for-profit health organization founded in 1989 to promote re-

search to find a cure for oxalosis, primary hyperoxaluria and related stone disease. I greatly 

thank the OHF for their financial support.

Prof.dr. C.H. Bangma, beste Chris, toen duidelijk werd dat jij het nieuwe hoofd van de afde-

ling urologie zou worden was voor mij ook duidelijk wie mijn promotor zou zijn. Vooral in de 

eindfase heb je een duidelijke rol gespeeld waarvoor ik je wil bedanken.

Prof.dr. M.E. de Broe, ik herinner mij nog goed de eerste keer dat we bij u in Antwerpen waren 

uitgenodigd om van gedachten te wisselen over een mogelijke samenwerking. Hierna zijn er 

nog talloze bijeenkomsten geweest en heeft deze samenwerking geleid tot een aantal waar-

devolle publicaties. Ik kijk met veel plezier terug op levendige discussies waarbij er op een 

constructieve en effectieve manier data werden geëvalueerd en nieuwe plannen en afspraken 

werden gemaakt. Ik deel volledig uw visie dat samenwerking tussen artsen en onderzoekers 

essentieel is om vragen die vanuit de kliniek worden gesteld in het laboratorium te onderzoe-

ken en vice versa. 
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Dr. Anja Verhulst, ook voor jou geldt dat je een belangrijke bijdrage hebt geleverd aan dit 

proefschrift waarvoor ik je wil bedanken. Regelmatig kwam jij naar Rotterdam of ging ik naar 

Antwerpen. Jouw proefschrift is ondertussen al lang achter de rug en ik ben trots je nu het 

mijne te kunnen geven.

Verder wil ik alle andere medewerkers van het laboratorium van de dienst Nefrologie-Hyper

tensie van de Universiteit Antwerpen bedanken voor de bijdrage die zij hebben geleverd 

aan de onderhavige papers. Dank ook voor de altijd gastvrije ontvangst wanneer ik jullie 

bezocht. Heerlijk, zo’n stokbroodje gezond met mayonaise, maar is dat niet een contradictio 

in terminis?

Prof.dr. A.J. van der Heijden, bedankt voor het zitting nemen in de kleine promotiecommissie 

en voor de beoordeling van het manuscript, evenals de overige leden Dr. J.W. Groothoff, Prof.

dr. J.N.M. IJzermans en Prof.dr. A.A.B. Lycklama à Nijeholt.

Dan zijn er nog een heleboel mensen die misschien niet zozeer een direct aantoonbare bij-

drage hebben geleverd, maar wel een rol spelen in mijn dagelijks leven.

Ondermeer de collega’s van de afdeling urologie van het Erasmus MC Rotterdam. Ik wil vooral 

de AIOS/AGNIOS bedanken, voor het feit dat jullie mij zo nu en dan de ruimte hebben gegeven 

om aan dit proefschrift te kunnen werken. Tevens alle dierbare vrienden, (schoon)familieleden 

en kennissen, ik verheug me er op om jullie mijn proefschrift te kunnen geven. Gerrit Jan de 

Borst en Willem Hueting, bedankt dat jullie naast mij willen staan op 3 september a.s.

Beste ouders, lieve mama en papa, zie hier het resultaat waaraan ik jaren heb gewerkt! Lieve 

Sacha, ik hoop dat jij dit jaar je eigen mijlpaal bereikt.

Ineke Noyons, lieve Pien, ik bof enorm met een vrouw zoals jij aan mijn zijde. Vanaf het begin 

dat ik met dit project startte, heb je vertrouwen gehad in een goede afloop. Na drie beval-

lingen van jou en deze van mij is het nu echt klaar! Ik hou ontzettend veel van je en zie de 

toekomst met jou rooskleurig tegemoet.

Lieve Sarah, Michiel en Alexander, jullie zijn nu nog te klein om het te beseffen wat dit proef-

schrift voor mij betekent, maar toen papa dit dankwoord schreef realiseerde hij zich voor de 

zoveelste keer dat hij zich ontzettend gelukkig voelt met jullie.
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Appendix: Color images

Chapter 2
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C D

Figure 2.4
Proliferating cell nuclear antigen (PCNA) staining in a kidney of a control rat (A) and of a rat that received 0.75% EG for 8 d (B 
through D).

 

A B

Figure 2.7
PAS and methyl green–stained renal tissue section of a rat treated with 0.75% EG for 4 d by optical (A) or polarized (B) light 
microscopy. 
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Figure 2.10
(A) The outer stripe of the outer medulla (OSOM) stained for HA of a rat with 0.75% EG in the drinking water for 8 d. (B and C) The 
OSOM stained for OPN after 8 d of 0.75% EG. (D) The cortex stained for CD44 after 8 d of 0.75% EG. 
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Figure 3.8
Confocal microscopy images of the membrane localization of hyaluronan [biotinylated hyaluronan binding protein (bHABP)-
fluorescein isothiocyanate (FITC) + propidium iodide] (A) and C44 (IM7-FITC) (B) during the development of Madin-Darby canine 
kidney strain I (MDCK-I) cultures into confluent monolayers with functional tight junctions.
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B D

E
Figure 3.9
Confocal microscopic images of hyaluron [biotinylated hyaluron binding protein (bHABP)-fluorescein isothiocyanate (FITC)] (A 
and B) and CD44 (IM7-FITC) (C and D) expressed by flattened cells at the border of the wound. (E) Light microscopic image of 
5-bromo-2’-deoxyuridine (BrdU)-stained cells during wound healing showing few BrdU-positive cells at the leading edge of the 
wound and abundant staining in areas somewhat distant from the wound.
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Figure 3.10
Confocal microscopy xy and xz images showing the colocalization of hyaluronan [biotinylated hyaluron binding protein 
(bHABP)-fluorescein isothiocyanate (FITC) (green) and its major cell surface receptor CD44 [IM7-TRITC] (red) at the apical plasma 
membrane of subconfluent cultures of Madin-Darby canine kidney strain I (MDCK-I) cells grown on a permeable support in a 
two-compartment culture system. .

  
Figure 3.11
Hyaluronan staining in the cortex of a renal tissue biopsy specimen of a patient suffering from acute tubular necrosis, showing 
expression of hyaluronan at the luminal membrane of tubular cells and also in the cortical interstitium.
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Chapter 4

Figure 4.1
Hyaluronan and osteopontin staining on fetal (A to F) and transplanted (G and H) kidneys. 
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Figure 4.2
Serial sections from preterm and transplanted kidneys stained for von Kossa and hyaluronan or osteopontin. 
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Figure 5.5
Confocal laser scanning microscopy studies.
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