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l)VEHICLE ROUTING WITH UNCERTAIN DEMAND

In distribution networks a supplier transports goods from a distribution center to
customers by means of vehicles with limited capacity. Drivers will drive routes on which
they visit multiple customers to make deliveries. Typically, deliveries are made regularly
and a fixed schedule is maintained. A fixed schedule is beneficial for many operational
purposes, as it for instance allows for easy planning of the packing of the vehicles at the
distribution center, or it allows the customer to roster the delivery handling personnel. A
fixed schedule is often reused to make weekly deliveries for a period of a year or longer.

However, at the moment of designing a schedule, the demand of the customers is
usually unknown. Moreover, in most cases, demand of a customer will be different for
each delivery. Therefore, it will be necessary to construct or adapt vehicle routes for each
day of delivery, without deviating too much from the fixed schedule.

In this thesis several different views on a fixed schedule are explored. It addresses the
need from practice to incorporate the uncertainty of demand in transportation models to
increase the efficiency of transport. Innovative vehicle routing models are presented
taking uncertain or varying demand into account. New algorithms using state-of-the-art
methods are presented based on these models, to construct fixed schedules and vehicle
routes. The algorithms make use of recent scientific advances in mathematical
programming, specifically in the domain of vehicle routing.
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Chapter 1

Introduction

1.1 The vehicle routing problem

The vehicle routing problem, VRP, is the problem of designing minimum cost routes

for vehicles with limited capacity, to transport goods from a distribution center to a set

of customers. Since its introduction in the scientific literature by Dantzig and Ramzer

(1959), this problem has become one of the classic combinatorial optimization problems.

Solving the vehicle routing problem has been the research topic for many researchers ever

since, see among others Baldacci et al. (2012) and Laporte (2009) for recent advances in

algorithms to solve this problem.

In practice, this problem plays an important role in many distribution networks. For

instance, many retail organizations store goods at a central depot and transport these to

the retailers on a weekly or sometimes even daily basis. Hence, having an efficient delivery

schedule is important for achieving low transportation costs.

Moreover, not only the delivery schedule itself is important for transport operations,

even the method of designing a delivery schedule is crucial. For instance, package delivery

companies often have very limited time in between the moment a customer places an

order and the moment a package has to be picked up or delivered. In this case, a delivery

schedule has to be made in a couple of hours, sometimes even minutes or seconds. Clearly,

constructing efficient delivery schedules in such a short amount of time requires the aid

of sophisticated algorithms and significant computing power.
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1.2 Constructing delivery schedules

In practice, many delivery schedules are currently still constructed manually by expe-

rienced schedulers. They are often the product of small modifications to an existing

delivery schedule over time. Only recently are more and more companies using com-

mercial software to aid in the scheduling process. This is made possible by the increase

in available computing power and by the development of algorithms to construct good

delivery schedules in limited computation time.

Algorithms that solve the VRP to construct a delivery schedule can be divided into

two categories: exact algorithms and heuristic algorithms. Exact algorithms are able to

solve the VRP to optimality. The most successful exact algorithms in the current scien-

tific literature are branch-and-cut and branch-price-and-cut algorithms, see also Baldacci

et al. (2012), Laporte (2009) and Toth and Vigo (2002). Much research has been de-

voted to finding strong formulations of the vehicle routing problem and separating valid

inequalities. These exact algorithms are used to solve instances of the VRP with tens of

customers and specific instances of over a hundred customers, in reasonable computation

time, see for instance Baldacci et al. (2004).

Industrial scale instances of the VRP may consist of hundreds or thousands of cus-

tomers and have many additional side constraints such as time window constraints or

driver assignment constraints, see for instance Groër et al. (2009). Therefore, many re-

searchers have also devoted their studies to designing heuristic algorithms to find good

solutions for large VRP instances in limited computation time. For an overview of such

algorithms see for instance Laporte (2009), Bräysy and Gendreau (2005a,b) and Toth and

Vigo (2002).

1.3 Fixed schedules

In distribution networks where deliveries are made regularly to the same customers, a

fixed delivery schedule is usually maintained. Such a schedule allows the packing of the

vehicles at the distribution center to be planned easily, and it allows the customer to

roster the delivery handling personnel. Also, inventory control and sales management

benefit greatly from knowing the delivery schedule in advance. Furthermore, it is often

even beneficial for business to have the same driver visit a customer. For instance, Groër

et al. (2009) indicate that because drivers at UPS form a real bond with customers, they

generate additional sales with a volume of over 60 million packages per year.
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As many business processes in a distribution network are dependent on the delivery

schedule, deviating from this schedule can lead to significant cost increases. In a study by

Drop (2011), the effects on retailers of deviating from a delivery schedule were investigated

for four large Dutch retail chains, each having a distribution network consisting of between

175 and 600 retailers. These retailers indicated that for each hour by which a delivery is

late, on average an additional 5.5 man-hours are required. This is caused by the delivery

handling crew being idle at the moment that the delivery was scheduled, and having to

work overtime when the delivery arrives. Moreover, the retailers indicate that secondary

costs such as lost sales, loss of goodwill from the customers and waste as a result of

perishable goods not being sold in time, have an even more negative influence on the

performance.

A ‘fixed schedule’ can refer to different things; in this thesis the following three types

of fixed schedules are considered. First of all, one can simply stick to a delivery schedule

as much as possible, i.e. always have the same driver visit the same customers in the same

order. A second view is the following. A customer will usually care most about receiving

a delivery during a given time window. In such a situation one may choose not to have

a fixed delivery schedule, but rather to have fixed time windows for each customer. This

way, the time at which a customer receives a delivery is fixed but the routes driven by the

vehicles may change all the time. Thirdly, there are situations where the time at which a

delivery is made does not matter, but business benefits from having the same driver visit

a customer. Now, a fixed schedule is in fact a fixed assignment of customers to drivers.

Also in this case the routes driven by the vehicles may change all the time, as long as

customers are always visited by the same driver.

1.4 Uncertain demand

A fixed schedule can be reused to make weekly deliveries for a period of a year or longer.

Travel time between two locations and the demand of customers might still be uncertain

at the moment of scheduling. In the study by Drop (2011) several practitioners stated in

interviews that although travel time is usually perceived as uncertain, travel times can be

reasonably well foreseen. Almost all significant fluctuations in travel times are caused by

traffic jams, and they are quite consistent over the days. Therefore, travel time is time

dependent rather than uncertain, and is typically taken into account effectively in a fixed

schedule. Contrarily, practitioners state that uncertainty of demand is the main cause of

having to deviate from a fixed schedule.
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The demand of each customer for each delivery is typically not known at the moment of

scheduling. Moreover, demand of one customer is usually not the same for every delivery.

Furthermore, in retail chains, the variations in demand are often highly correlated among

retailers. This is because of shared advertisement campaigns, similar seasonal effects, and

general homogeneity of the customers of the retailers.

In the case of a fixed delivery schedule, when demand becomes known it is often

necessary to alter the delivery schedule, i.e. to reschedule. High demand might render

the original delivery schedule infeasible due to limited capacity of the vehicles, while low

demand might offer a possibility to save on transportation costs by using less vehicles.

Finally, note that in retail, demand is usually communicated to the distribution center

one day before delivery, leaving little time to adjust the delivery schedule if necessary.

The expected costs of a fixed schedule is determined by the rescheduling procedure

used to construct a delivery schedule when demand becomes known. Constructing a fixed

schedule when facing uncertain demand has only been considered in a limited number

of studies. The rescheduling procedures used in these studies are typically not very

sophisticated and may lead to inefficient delivery schedules in certain applications, but

usually present computational advantages.

Among the most popular ways of rescheduling in the scientific literature is the strategy

suggested by Dror et al. (1989). When rescheduling, the original delivery route is followed

until the load of the truck is depleted, and is resumed after a visit to the distribution center

to restock. An advantage of this rescheduling procedure is that the expected costs of a

vehicle route can be computed efficiently. Studies on this model with uncertain demand

include the work by Laporte et al. (2002) who find the fixed delivery schedule with

minimum expected transportation costs using an integer L-shaped method and Novoa

and Storer (2009) who develop an approximate dynamic programming approach for the

single vehicle variant. In cases where demand is known before vehicles are dispatched,

more efficient delivery schedules can be constructed than with the rescheduling procedure

described above.

1.5 Contribution

In this thesis several different views on a fixed schedule are explored. It addresses the

need in practice to incorporate the uncertainty of demand that is experienced in reality in

transportation models to increase the efficiency of transport. Innovative vehicle routing

models are presented taking uncertain or varying demand into account. New algorithms

using state-of-the-art methods are presented, based on these models, to construct fixed
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schedules and vehicle routes. The algorithms make use of recent scientific advances in

mathematical programming, specifically in the domain of vehicle routing. Next we will

list the contributions in more detail.

A new advanced rescheduling procedure is introduced that can be used when a fixed

delivery schedule is given. In this procedure penalties are incurred when deviations are

made from the fixed delivery schedule. An exact algorithm is used to solve the rescheduling

problem to optimality. Also a fast heuristic is proposed to find good solutions to the

rescheduling problem.

Furthermore, the problem of assigning time windows to customers as a fixed schedule,

before demand of the customers is known, is investigated. In this case, rescheduling means

constructing a delivery schedule in which the time window constraints are satisfied such

that the transportation costs are minimized. Only limited research has been done so far

on assigning time windows in this setting. State-of-the-art exact algorithms are presented

in this thesis to find time window assignments yielding minimal expected transportation

costs.

Also, the problem of assigning customers to drivers before demand is known is intro-

duced. Here, customers need to be visited by the driver to which they are assigned, which

has to be taken into account in the rescheduling procedure. A fast heuristic is presented

to find driver assignments yielding low expected transportation costs.

1.6 Thesis outline

In this thesis, several different types of fixed schedules are investigated for making frequent

deliveries with uncertain and varying demand. In Chapter 2 the case is considered where a

fixed delivery schedule is given. Also, the demand of each customer is known. Depending

on the demand, rescheduling might be desired when the fixed delivery schedule is very

inefficient, or necessary when the fixed delivery schedule is infeasible. In this chapter, a

model is proposed in which a penalty is suffered when the new schedule deviates from the

master schedule. The vehicle rescheduling problem is the problem of rescheduling such

that the total transportation and penalty costs are minimized. This problem is solved

to optimality using a branch-and-cut algorithm. Moreover, a fast two-phase heuristic

is presented and its performance is analyzed. This chapter is based on joint work with

Adriana F. Gabor and Rommert Dekker.

In many distribution networks, the supplier and customer agree on a time window

in which the customer receives its delivery. In Chapter 3 the problem of assigning time

windows to customers before demand is known is introduced, such that the expected
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transportation costs are minimized. In this problem, each customer has a wide exogenous

time window, for instance the opening hours of a store, in which a small time window has

to be selected. A branch-price-and-cut algorithm is developed to solve this problem to

optimality. In this chapter, the costs of assigning time windows using a delivery schedule

based on average demand, as is typically done in practice, are compared with the costs of

the optimal time window assignment. This chapter is based on joint work with Adriana

F. Gabor.

The time window assignment problem is extended in Chapter 4. In the problem intro-

duced in this chapter, a time window is not selected from a wide exogenous time window,

instead a time window is selected for each customer from a discrete set of candidate time

windows. In practice, only a limited number of time windows are sensible. For exam-

ple, delivery handling shifts might be blocks of two hours starting on the hour. Having a

discrete set of time windows also enables the development of a more sophisticated branch-

price-and-cut algorithm. The costs of assigning time windows using a delivery schedule

based on average demand are also in this chapter compared with the costs of the optimal

time window assignment. This chapter is based on joint work with Guy Desaulniers.

Finally, in Chapter 5 the case is considered in which a customer always needs to be

visited by the same driver. A model is introduced in which customers are assigned to a

driver before demand is known, and when demand is known a delivery schedule has to be

constructed such that for every driver at least a fraction α of the customers assigned to

that driver are visited by it. This problem is particularly relevant in the case where the

drivers are also responsible for placing the delivered goods in the storage facility, and as

such require a key or password and needs to know exactly how to place the goods in the

storage facility. A cluster first-route second heuristic is proposed to find a solution to this

problem and it is used to study the additional costs of adhering to the driver assignments

as opposed to not adhering to the driver assignments. This chapter is based on joint work

with Rommert Dekker.

Chapters 2 to 5 can be read individually. As a consequence there is some overlap in

the introduction of each of these chapters. In Chapter 6 a summary and conclusion is

provided.



Chapter 2

The Vehicle Rescheduling Problem

2.1 Introduction

Scheduling and rescheduling

The capacitated vehicle routing problem (CVRP) is a classical problem in operations

research. Consider a depot where goods are stored and a set of customers that have

nonnegative demand for these goods. A set of homogeneous vehicles of finite capacity is

available to transport the goods from the depot to the customers. The vehicles start and

end their routes at the depot. Costs are incurred for traveling from one location to another.

The CVRP is to find a routing schedule that describes the sequence of locations visited

by every vehicle that minimizes the total traveling costs, while the capacity constraints

are satisfied. The CVRP is known to be an NP-hard problem.

Many solution methods can be found in the scientific literature for the CVRP. The

branch-and-cut scheme of Baldacci et al. (2004) seems presently to be one of the most

successful at solving CVRP instances of up to 100 customer locations. For larger problem

instances, many heuristic algorithms have also been developed that are able to find good

solutions with greater speed. An overview of exact and heuristic algorithms can be found

in Fisher (1995), Toth and Vigo (2002), Laporte (1992) and (2007) and Laporte et al.

(2000) amongst others.

In the classical CVRP, demand is deterministic and known. A situation that often

occurs in practice is that demand only becomes apparent at a late moment. For example,

in the retail industry it is very common that the orders of the individual stores are placed

only a few days, sometimes even just one day, before delivery. In these situations it is

beneficial for operational processes to determine the delivery schedule before the orders
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are placed. It is for instance very costly, if at all possible, to make a roster for delivery

handling personnel shortly before they are needed. A common solution to this problem

is to determine a long term schedule, henceforward master schedule, that serves as a

guiding schedule over a certain period of time in which multiple deliveries are made. For

example, such a master schedule would describe the weekly or even daily deliveries for

a period of six months. In practice, master schedules are usually constructed by solving

deterministic CVRP instances based on average customer demand as predicted for the

upcoming period. In this chapter we assume that such a master schedule is given.

A master schedule is thus made before demand realizations become apparent. As a

result, when the demand becomes known, the master schedule may not be optimal due

to inefficient use of the vehicles, or may even be infeasible due to violation of the capacity

constraints. In such cases the master schedule needs to be deviated from. This is often

necessary in practice, for example when demand of customers is highly correlated, as

typically is the case in a retail chain. The construction of a new schedule when demand

realizations become known, will be referred to as rescheduling.

Effects of rescheduling

After rescheduling, the new schedule will typically deviate from the master schedule. This

can have negative effects on a distribution network. Locations are visited in a different

order, by different trucks or by different truck drivers than initially planned. This may

cause confusion among drivers and negatively affect the regularization and personalization

of service, as is also recognized by Bertsimas and Simchi-Levi (1996) and Li et al. (2007)

and (2009). Furthermore, consider the situation where personnel is hired only for handling

deliveries and deliveries do not arrive at the agreed upon moment due to a deviation in the

schedule. Here, labor costs increase due to the fact that personnel has to work overtime or

has to be hired for another shift. When rescheduling is done by constructing a completely

new schedule, many deviations may occur resulting in high additional costs.

Our experience with Dutch retail companies has shown that currently rescheduling is

often done manually. Dispatchers typically operate under the notion that when a route

needs to be deviated from, costs are lower when the first deviation occurs at a later stage

in the route. There are several arguments that support this notion. Firstly, when devi-

ating at a late stage in each route large portions of the master schedule remain intact,

diminishing the above mentioned negative effects of rescheduling. Secondly, the changes

made in this manner are easily communicated through the distribution network. Finally,

when changing the first locations of a route, the dispatching times of the truck will be
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altered. However, changing the working hours of a driver at a late moment is very expen-

sive and often practically infeasible.

The vehicle rescheduling problem

In this chapter, we propose a rescheduling model in which the negative effects of deviating

from the master schedule are incorporated. We introduce deviation costs, which are

incurred for each route that deviates from the master schedule. Furthermore, the height

of the deviation cost per route is dependent on the customer at which the first deviation

occurs and the position in the route it has. In this way, we are able to model the above

described notion of dispatchers that deviations early in a route are more costly than

deviations late in a route.

Given a master schedule and a demand realization, the goal is to find a new schedule

that minimizes the total traveling and deviation costs, while satisfying the capacity con-

straints. This problem will be referred to as the vehicle rescheduling problem (VRSP).

This model is of particular interest to for instance retail chains that control both the

supply chain and the stores, as they not only incur the transportation costs, but also

both the deviation costs at the supply side and at the customer side.

Rescheduling in current literature

In the literature, rescheduling is mainly considered in conjunction with designing a master

schedule. Given a rescheduling method, the master schedule is designed before demand

is known such that the expected costs incurred after rescheduling are minimized. The

rescheduling method proposed by Bertsimas (1992) is maybe the most popular method

in the literature. In this method, the master schedule is used until a vehicle arrives

at a location where its cargo is depleted. After it has returned to the depot to refill,

the vehicle resumes the master schedule from the location where it left off. Under this

rescheduling protocol, for specific demand distributions the expected costs of a master

schedule can easily be calculated. For this reason, the rescheduling method proposed by

Bertsimas has been incorporated in models used to design a master schedule with minimal

expected costs. Examples of solution methods to solve these models are the L-Shaped

integer method to find the optimal master schedule by Laporte et al. (2002), a tabu

search heuristic by Gendreau et al. (1996), a rollout algorithm by Secomandi (2001) and

an evolutionary algorithm by Tan et al. (2007).
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In a study by Groër et al. (2009) they propose to reschedule in such a way that

each customer is always visited by the same driver and within the same time window.

They apply this to a setting encountered in the small-package shipping industry in which

a customer does not require service on all delivery days. In their paper they focus on

generating a master schedule for large instances and do this using a local search heuristic.

Similarly, Chen et al. (2009) consider an arc-routing model for small-package delivery in

which arcs that do not need service are skipped.

To the best of our knowledge, the literature on rescheduling strategies that take into

account deviation costs is scarce. Li et al. (2007) and (2009) consider the problem of

reassigning vehicles to trips, when one of the vehicles breaks down. In their model, costs

are incurred when trips are delayed. The main application of this model is in passenger

transportation, for situations where traveling costs and capacity constraints do not play

an important role.

Contribution

In this chapter, we introduce a novel model for the rescheduling problem which can be

applied where demand is known shortly before vehicles are dispatched. We provide a

mixed integer programming formulation based on a formulation of the CVRP by Baldacci

et al. (2004). Using this formulation, the VRSP of moderate size can be solved by general

purpose optimization software or slight modifications of existing algorithms for solving

the CVRP.

Furthermore, we design a solution approach based on first removing the last locations

of routes and rescheduling them. We will refer to this approach as the two-phase heuristic.

We analyze the performance of this heuristic and derive sufficiency conditions on the value

of the deviation costs for which the two-phase heuristic is guaranteed to give the optimal

solution to the VRSP. Moreover, numerical experiments indicate that, in general, for low

deviation costs the two-phase heuristic often provides optimal or near optimal solutions.

Finally, we describe this algorithm in such a way that it can be implemented directly in

existing commercial CVRP software available to many dispatchers in large distribution

networks.
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Outline

In the following section, the VRSP is described in detail and a mixed integer linear pro-

gramming formulation is presented. In Section 2.3, the two-phase heuristic is presented.

It is accompanied by an analysis of its behavior with respect to the deviation costs. Fi-

nally, in Section 2.4 the sensitivity of the solution to the VRSP with respect to the value

of the deviation costs is investigated and the performance of the two-phase heuristic is

studied by comparing its solutions with the optimal solutions of the VRSP.

2.2 The vehicle rescheduling problem

In this section, first the vehicle rescheduling problem is defined. This is followed by a

mixed integer programming formulation based on an existing model developed by Bal-

dacci et al. (2004). In Section 2.4, we will use this MIP formulation in computational

experiments.

2.2.1 Problem definition

Consider an undirected complete graph G = (V,E). The set of nodes V = {0, 1, ..., n+1}
corresponds to a starting depot 0, an ending depot n + 1 and the set of customers V ′ =

{1, ..., n}. For every edge (i, j) ∈ E, traveling costs cij ≥ 0 are given that satisfy the

triangle inequality. We suppose that an unlimited number of vehicles of capacity Q are

available for supplying goods to the customers. Furthermore, for every location i ∈ V ′

the demand qi is given and satisfies 0 < qi ≤ Q.

A route r ⊂ E is defined as a path in G including the depot. With every route

r = {(0, i1), ..., (ik, n+1)} we associate the ordered set of vertices {i1, ..., ik}. Throughout
this chapter we will use these representations interchangeably. It will be clear from the

context whether the edge or the vertex representation is meant. A route r is called feasible

when the total demand of the locations on r is less than or equal to the capacity of a

vehicle, i.e.,
∑

i∈r qi ≤ Q.

A routing schedule S is a collection of edge-disjoint routes such that all customers are

included in exactly one route. Hence, S =
⋃m

i=1 ri, where for the routes r1, ..., rm it holds

that ri
⋂

rj = ∅ for i �= j. A schedule S is called feasible when all routes in S are feasible.

The set of all feasible schedules will be denoted by S.

The classical CVRP, a closely related problem to the VRSP, can now be defined as

finding a feasible schedule that minimizes the total traveling costs and can be formulated

as:
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(CVRP) min
S∈S

∑
(i,j)∈S

cij.

Next we define the VRSP. Assume that a master schedule SM is available. Note

that this master schedule need not be feasible for all demand realizations, as capacity

restrictions might be violated. The VRSP is to create a new feasible schedule S∗ that

minimizes both the traveling costs and the costs of deviating from the master schedule.

Next we formally define a deviation and the accompanying deviation costs.

Consider a route rM = {i1, ..., ij, ..., ik} in the master schedule SM . When for a new

schedule S there is a route r ∈ S such that the first locations are {i1, ..., ij−1} and the

following location, if any, is not ij, then r deviates from location ij onwards in schedule

S. In other words, route r originates from route rM and it has remained the same up to

location ij. Whenever a route deviates from location i ∈ V ′ onwards, costs ui ≥ 0 are

incurred. These costs are in practice often dependent not only on the location at which

the master schedule is deviated from, but also on the position of that location in the

route in the master schedule. However, as the master schedule is given and the position

of each location in the route in the master schedule is fixed, introducing deviation costs

per location is sufficient for our purposes. Thus, for a master schedule SM and a schedule

S, the deviation costs for a route from location i onwards are defined as:

U(SM , S, i) =

{
ui, if a routes deviates from location i onwards in S with respect to SM ;

0, otherwise.

Throughout this chapter we will assume that for each route in the master schedule

that the deviation costs associated with the locations on that route are decreasing in the

positions on that route.

For rM = {i1, ...ij, ..., ik} in the master schedule, if a route r deviates from location ij

onwards, we will refer to any iv in route rM for j ≤ v as a rescheduled location.

It is now possible to fully define the VRSP as finding a feasible schedule S∗ such that

it minimizes the total traveling and deviation costs for a given master schedule SM :

(VRSP) min
S∈S

[
∑

(i,j)∈S
cij +

∑
i∈V ′

U(SM , S, i)]

Note that if in the VRSP ui = 0 ∀i ∈ V ′ one obtains the classical CVRP. As the latter

is NP-hard, the VRSP is also NP-hard.
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2.2.2 Mixed integer programming formulation

Next we provide a mixed integer programming formulation of the VRSP which is a mod-

ification of an existing formulation of the CVRP. As stated in Laporte (2007), one of the

most successfully used formulations of the CVRP is the two commodity flow formulation

introduced by Baldacci et al. (2004). Due to the polynomial number of constraints and

variables, a direct implementation of this formulation in general purpose mixed integer

programming software is sufficient to find a solution to the CVRP for moderately sized in-

stances. Moreover, any cutting-plane designed for the CVRP, like for instance generalized

capacity constraints (2004), can be applied here as well.

Next, we briefly discuss the parts inherited from the CVRP model of Baldacci et al.

and refer the interested reader to their paper for more details. Furthermore, we elaborate

on the addition of deviation costs.

For all (i, j) ∈ E, let ξij indicate whether edge (i, j) is included in the new schedule.

Next, let the variables xij ∈ R+, for i, j ∈ V , be flow variables. When traveling from i to

j, xij might be interpreted as the load of a vehicle and xji the remaining capacity.

To model the deviation costs, the variable yi is introduced for each location i ∈ V ′,

which indicates whether a route is deviating from location i onwards. Observe that for

any route r,
∑

j∈r ujyj =
∑

j∈r U(SM , S, j).

In the following formulation we will use j� to denote the set containing j and all

locations which are visited prior to j on the same route in the master schedule. For a

given master schedule SM , the mixed integer programming formulation of the VRSP is:
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(CF) min
∑

(i,j)∈E
cijξij +

∑
i∈V ′

uiyi (2.1)

∑
j∈V

(xji − xij) = 2qi ∀i ∈ V ′ (2.2)

∑
i∈V ′

x0i =
∑
i∈V ′

qi (2.3)

∑
i∈V ′

xi0 = Q
∑
i∈V ′

ξ0i −
∑
i∈V ′

qi (2.4)

∑
i∈V ′

xn+1i = Q
∑
i∈V ′

ξ0i (2.5)

xij + xji = Qξij ∀(i, j) ∈ E (2.6)∑
j∈V,i<j

ξij +
∑

j∈V,i>j

ξji = 2 ∀i ∈ V ′ (2.7)

1− ξij ≤
∑
k∈j�

yk ∀(i, j) ∈ SM , i < j, j ∈ V ′ (2.8)

1− ξij ≤
∑
k∈i�

yk ∀(j, i) ∈ SM , i < j, j ∈ V ′ (2.9)

ξij ∈ {0, 1} ∀(i, j) ∈ E (2.10)

xij ∈ R+ ∀i, j ∈ V ′ (2.11)

yi ∈ {0, 1} ∀i ∈ V ′ (2.12)

The set of constraints (2.2)-(2.5) and (2.11) ensure that x provides a correct flow

pattern between the depots 0 and n + 1. By constraints (2.2) the difference between

inflow and outflow at a customer location of both the vehicle load and the remaining

vehicle capacity is equal to the demand. Constraint (2.3) ensures that the outflow of the

starting depot is equal to the total demand of all customer locations and constraint (2.5)

ensures that the inflow at the ending depot, is the total capacity of the used trucks. Note

that
∑

j∈V ′ ξ0j represents the number of vehicles that are used. Constraint (2.4) sets the

remaining capacity of trucks leaving the depot.

Constraints (2.6) ensure that there is either no flow through edge (i, j) when this edge

does not belong to any route or that the total load and empty space defined for this edge

is exactly Q otherwise. Constraints (2.7) ensure that exactly two edges incident to any

customer are used. The objective function
∑

(i,j)∈E cijξij together with constraints (2.2)-

(2.7) and (2.10)-(2.11), give a correct formulation of the CVRP, as indicated by Baldacci

et al. (2004).
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Finally, the VRSP formulation is completed as (2.8), (2.9) and (2.12) force yi to take

value 1 whenever a route deviates from location i onward. Moreover, note that as ui ≥ 0

for all i ∈ V ′ and the formulation describes a minimization problem, for each route at

most one location will have value yi = 1.

Note that when using the above formulation, an optimal solution may exist including

paths from 0 to 0 and from n+ 1 to n+ 1. The solution can in this case be transformed

into a solution solely with paths from 0 to n+ 1, without an increase in costs. For paths

from 0 to 0 or from n+1 to n+1 the corresponding flow variables x can not be interpreted

as the load of a vehicle or remaining capacity at an edge.

Note that the integrality of y can be relaxed without compromising the validity of the

two commodity flow formulation.

2.3 Two-phase rescheduling heuristic

In this section we propose and analyze a two-phase heuristic. The main idea behind the

two-phase heuristic is to start with the possibly infeasible master schedule SM and modify

it to make it feasible, resulting in a new schedule STP . In the first phase of the heuristic,

a specific set of edges is removed from the master schedule and in the second phase new

edges are added such that the obtained schedule is feasible and has low deviation costs.

Next we describe the two phases in more detail.

2.3.1 Phase 1: Removing edges

When choosing the edges that will be removed from SM , the main criterion is to limit

the total deviation costs that are incurred in the resulting schedule STP . For any route

r ∈ SM , the final edge is removed. Next, for each route the last edge is removed and

this is repeated iteratively until the total demand of the remaining locations in r does not

exceed Q. Denote by V̂ the set of resulting isolated locations, these will be the rescheduled

locations in STP .

The result of Phase 1 is a rooted tree S1 with root node 0 and vertex set V ′\V̂ ,

representing the set of incomplete routes. The total demand of the locations on any path

from the root to a leaf is at most Q.

Figure 2.1 shows an example with a network of a single depot and several customers.

The solid and dashed lines combined show the original schedule. The numbers next to

the customers correspond to a realization of demand. The vehicles have a capacity of 10
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units of demand. The dashed lines correspond to edges that are removed during the first

phase.

Figure 2.1: Example phase 1: removed edges from the master schedule

2.3.2 Phase 2: Adding edges

In this phase, edges are added to the incomplete schedule S1 such that it becomes a

feasible schedule STP . This is done at minimal additional traveling costs. The problem

that needs to be solved can therefore be defined as:

STP = arg min
S∈S|S1⊂S

∑
(i,j)∈S

cij (2.13)

This is an instance of the CVRP in which certain edges are fixed. In some standard

CVRP software, it may not be possible to prescribe the use of certain edges in the gener-

ated solution. In these cases, (2.13) can be reformulated as a CVRP without fixing edges

by using artificial customer locations as follows. Contract each path in S1 from root to a

leaf into a node. Let VCR be the set of these contracted nodes. The costs of using edges

connecting any two vertices in V̂
⋃{0, n + 1} remain unchanged. For i ∈ VCR let c0i be

equal to the costs of traversing the edge starting at the depot and ending at the first

location on the path contracted into i. Similarly, for j ∈ V̂
⋃{0} let cij be the costs of

traversing the edge starting at the last location on the path contracted into i and ending

at location j. Furthermore, for i �= 0 and j ∈ VCR let cij =∞.
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For each i ∈ VCR, let qi be the total demand of the locations on the path contracted

into i. Clearly, after the first phase of the heuristic, the demand qi for i ∈ VCR does not

exceed the vehicle capacity Q. The demand for the locations in V̂ does not change.

Consider a solution to the CVRP problem defined on the complete graph with the set

of customer locations VCR

⋃
V̂ with demand and costs as defined above. As the costs of

using an edge between any location in V̂ and any vertex in VCR is infinite, in an optimal

schedule any node in VCR will be preceded only by the depot. A feasible schedule to the

VRSP is now found by expanding back all the contracted nodes.

The problem that has to be solved in the second phase of the heuristic is obviously

an NP-hard problem as the CVRP can be reduced to it. Fortunately, in most practical

cases, the size of this CVRP is small. This is due to the fact that the number of nodes is

equal to the number of routes in the master schedule (these are the artificial nodes) plus

the number of isolated nodes, which is relatively low.

Next we present some properties of the solution obtained by the two phase heuristic.

2.3.3 Properties of the two-phase heuristic

Consider the problem of finding a feasible schedule that minimizes the total deviation

costs when a master schedule SM is given:

U∗ = min
S∈S

∑
i∈V ′

U(SM , S, i) (2.14)

In the next proposition it is shown that when the deviation costs are non-increasing

on each route, i.e. ui ≥ uj for (i, j) ∈ SM , the deviation costs of the schedule obtained by

the two-phase heuristic are equal to U∗ and that the number of rescheduled locations in

this schedule is minimal.

Proposition 2.1. If the deviation costs are decreasing on each route, the two-phase

heuristic produces a feasible schedule STP such that the number of rescheduled locations

and the total deviation costs are minimized.

Proof. For a feasible schedule S, denote by VS the set of rescheduled locations. We

will next show that the minimum number of rescheduled locations is |V̂ |, by proving

that V̂ ⊆ VS for any feasible schedule S. Consider a location j ∈ V̂ and the route

r = {i1, ..., ij, ..., ik} in S. If ij �∈ VS, none of the locations i1, ..., ij are rescheduled and

it must hold that
∑j

l=1 qil ≤ Q. However, this contradicts the construction of V̂ , hence
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V̂ ⊆ VS. As V̂ is the set of rescheduled locations in STP , |V̂ | is the minimum number of

rescheduled locations.

Since V̂ ⊆ VS, any schedule S deviates from the same locations onward as the schedule

STP or from earlier locations. As the deviation costs are decreasing on each route, the

two-phase heuristic provides a schedule such that the deviation costs are minimized.

Note that that in order to determine the minimum number of rescheduled locations

and the minimum deviation costs, one can apply the procedure described in the first phase

of the heuristic, which does not require the construction of a schedule.

For certain values of the parameters, the schedule that minimizes the total deviation

costs achieves the optimal value for the VRSP. This is in particular the case when the costs

of deviating are very large relative to the traveling costs. In such a case the two-phase

heuristic produces the optimal schedule for the VRSP, as stated in the next proposition.

For notational convenience, let un+1 = 0 and uδ
i = ui − uj for all (i, j) in the master

schedule.

Proposition 2.2. Let umin = mini∈V ′ uδ
i , cmin = min(i,j)∈E cij and let STP be the schedule

produced by the two-phase heuristic. If

umin ≥
∑
i∈V ′

[c0i + ci,n+1]− (n+ �
∑

i∈V ′ qi

Q
�)cmin,

then the schedule STP is optimal.

Proof. For any schedule S that is a feasible solution to the VRSP, let ZS =
∑

(i,j)∈S cij
denote the traveling costs and US =

∑
i∈V ′ U(SM , S, i) the deviation costs.

Note that ZSTP ≤∑
i∈V ′ [c0i + ci,n+1]. Since �

∑
i∈V ′ qi
Q

� is a lower bound on the number

of vehicles that are needed, for every feasible solution S to the VRSP it holds that

ZS ≥ (n+ �
∑

i∈V ′ qi
Q

�)cmin. Therefore,

ZSTP ≤ ZS +
∑
i∈V ′

[c0i + ci,n+1]− (n+ �
∑

i∈V ′ qi

Q
�)cmin.

Furthermore, USTP = U∗. If S has at least one more rescheduled location than V̂ ,

then U∗+umin ≤ US. Hence, for umin ≥
∑

i∈V ′ [c0i+ci,n+1]− (n+�
∑

i∈V ′ qi
Q

�)cmin, it follows

that

ZSTP + U∗ ≤ ZS + US. (2.15)
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If S and STP deviate from the same locations onward, (2.15) is always satisfied. This

proves the optimality of STP for all instances with umin ≥
∑

i∈V ′ [c0i + ci,n+1] − (n +

�
∑

i∈V ′ qi
Q

�)cmin.

Tight Example:

To show that the bound on umin cannot be improved, consider the following example. Let

V = {0, 1, 2} and cij = c, for all i, j ∈ V . The master schedule SM consists of a return trip

to location 1 and a separate return trip to location 2. The demand realizations are such

that q1+ q2 ≤ Q and therefore the two routes might feasibly be merged. Furthermore, let

u1 = u2 = umin. There are only three feasible solutions to this VRSP. The master schedule

can be used as a solution to the rescheduling problem and yields a total cost of 4c. The

other two solutions visit nodes 1 and 2 on one route and both have costs 3c+ umin. The

two-phase heuristic will produce SM . The resulting schedule will be optimal if and only

if umin ≥ c =
∑

i∈V ′ [c0i + ci,n+1]− (n+ �
∑

i∈V ′ qi
Q

�)cmin.

For specific problem instances the relative difference between the traveling and the

deviation costs need not be high for the two-phase heuristic to produce the optimal

solution. However, we are not able to provide a general guarantee for small relative

differences. In section 2.4, we analyze the impact of the numerical values of the deviation

costs on the optimality of the solution obtained by the two-phase heuristic.

In the next proposition a worst case bound is provided on the ratio of the solution

value of the solution provided by the two-phase heuristic and the optimum.

Proposition 2.3. The costs of using the routing schedule STP produced by the two-phase

heuristic is at most min{ Q
qmin

, 2Qcmax

(Q+q̄)cmin
+ 1} times the costs of the optimal schedule S∗

for the VRSP, where qmin = minj∈V ′ qj, q̄ =
∑

i∈V ′ qi
n

, cmax = max(i,j)∈E cij and cmin =

min(i,j)∈E cij.

Proof. Let the traveling costs and deviation costs of STP be given by ZSTP and U∗ re-

spectively. Similarly, let the traveling and deviation costs of S∗ be given by ZS∗ and US∗ .

Furthermore let Z∗ = minS∈S
∑

(i,j)∈S cij. To prove the theorem, it is first shown that
Z
STP +U∗

ZS∗+US∗ ≤ Q
qmin

and secondly that
Z
STP +U∗

ZS∗+US∗ ≤ 2Qcmax

(Q+q̄)cmin
+ 1. For ease of notation, assume

c0i = c0,n+1.

In Simchi-Levi et al. (2005, page 220) it is proven that for the CVRP it holds that

2
∑

j∈V ′ c0jqj ≤ QZ∗. Now observe that:
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ZSTP ≤ 2
∑
i∈V ′

c0i ≤ 2

qmin

∑
i∈V ′

c0iqi ≤ Q

qmin

Z∗,

which implies that:

ZSTP + U∗

ZS∗ + US∗
≤

Q
qmin

(Z∗ + U∗)

Z∗ + U∗
≤ Q

qmin

.

Next, as �
∑

i∈V ′ qi
Q

� is a lower bound on the number of vehicles that are used, it follows

that:

ZSTP + U∗

ZS∗ + US∗
≤ ZSTP + U∗

Z∗ + U∗
<

2ncmax

(n+ �
∑

i∈V ′ qi
Q

�)cmin

+1 ≤ 2ncmax

(n+
∑

i∈V ′ qi
Q

)cmin

+1 =
2Qcmax

(Q+ q̄)cmin

+1

Here the strict inequality follows from a+b
c+b

< a
c
+ 1 for a, b, c > 0. This concludes the

proof.

Tight Example:

In this example we show that the bound provided in Proposition 2.3 can not be improved

upon. Consider a problem instance of n locations and let an arbitrary master schedule

be given. Now let demand be given by qi = Q for all i ∈ V ′. Obviously there is only one

feasible schedule, hence
Z
STP +U∗

ZS∗+US∗ = 1 = Q
qmin

= min{ Q
qmin

, 2Qcmax

(Q+q̄)cmin
+ 1}.

2.4 Computational results

In this section, results of numerical experiments are presented to provide insight into the

sensitivity of the model with respect to different values of the deviation costs. Further-

more, the performance of the two-phase heuristic is evaluated empirically by applying it

to several test cases.

The following settings are used for the generation of individual problem instances:

• n customer locations are randomly generated according to a uniform distribution

over a square with sides of length 20 units. The depot is situated in the center of

the square.

• The traveling costs between two locations are equal to the Euclidean distance be-

tween them.
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• All vehicles have a capacity of 60 units.

• Presumed demand is normally distributed with mean 5 and standard deviation 1.5,

truncated from below to 1 and from above to 60.

• Actual demand per location is normally distributed with standard deviation 1.5 and

the demand average equal to 1.5 times the realization of the presumed demand, also

truncated from below to 1 and from above to 60

For each experiment, we indicate the corresponding deviation costs. For every problem

instance, first a master schedule SM is generated by solving a CVRP using presumed

demand. This is done either exactly or heuristically depending on the experiment at

hand. Next a demand realization is generated to represent actual demand. The deviation

costs will be specified for every individual experiment. As actual demand will typically be

higher than presumed demand in our experiments, deviations from the master schedule

will most often be necessary. These instances are inspired by a practical case in a retail

chain with recurrent sales actions.

We have implemented the branch-and-cut algorithm by Baldacci et al. (2004) to solve

the CVRP to optimality. It uses their two-commodity flow formulation to find lower

bounds. These are strengthened by separating capacity cuts using a greedy randomized

algorithm. This algorithm is used to generate the master schedule in some instances and

to solve the CVRP in the second phase of the two-phase heuristic. We use the same

algorithm to solve the VRSP to optimality by adding constraints (2.8), (2.9) and (2.12)

to the formulation. For the instances where the master schedule is found by solving a

CVRP heuristically, we use the savings algorithm by Clarke and Wright (1964).

All experiments are performed on an Pentium(R) Dual-Core CPU, E5800, 3.2GHz

with 4.00GB of RAM. The branch-and-cut algorithm makes use of ILOG CPLEX 12.3 to

solve the linear programming relaxations.

2.4.1 Impact of deviation costs

Recall that, by Proposition 2.2, for large values of umin with respect to the traveling costs,

the two-phase heuristic gives the optimal solution. It is, thus, interesting to study whether

optimality is also obtained for lower values of umin. We will refer to the lowest value of

umin for which the two-phase heuristic produces the optimal schedule as the critical level

and we will denote it by ucritical.

Next we will argue that in order to analyze ucritical it is sufficient to look at the number

of rescheduled locations in an optimal schedule. Note that the minimal number of resched-
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uled locations can easily be determined by applying the first phase of the rescheduling

heuristic and, by Proposition 2.1, the solution of the two phase heuristic has the minimal

number of rescheduled locations.

If an optimal solution has a minimal number of rescheduled locations, the locations

that deviate in both the optimal solution and the solution provided by the two-phase

heuristic are identical. Since the two-phase heuristic inserts the deviating locations such

that the traveling costs are minimized, the schedule produced by the two-phase heuristic

must be optimal. Hence, in order to assess the optimality of the schedule generated by

the two-phase heuristic, it is sufficient to look at the number of deviations in the optimal

schedule.

For the numerical experiments in this paragraph we use the following deviation costs.

For each route r in the master schedule and costs u, we assign deviation costs (|r|+1−i)u

to the ith location on r, where |r| indicates the number of locations visited by r. Hence,

umin = u. We generate an instance with u = 0 and solve it. Next, we repeatedly modify

the deviation costs by increasing the value of u by 0.125, and solve the modified instance.

We repeat this until the two-phase heuristic provides the optimal solution for a modified

instance.

Let us first look at the value of ucritical for an example. Consider a single randomly

generated instance of 25 customer locations. For this example, the upper bound on ucritical

given in Proposition 2.2 is equal to 349.65. As remarked in Section 2.3.3, the minimum

number of rescheduled locations can be found beforehand by applying the first phase of

the two-phase heuristic. The optimal schedules are found using a direct implementation

of the two commodity flow formulation of the VRSP.

In Figure 2.2 the number of rescheduled locations and traveling costs in the optimal

solution are depicted, for different values of u. Notice that when u = 0, all locations

are rescheduled. However, as u grows slightly above 0, a new schedule is found with less

rescheduled locations but with equal traveling costs.

Figure 2.2 illustrates the fact that the number of rescheduled locations in the opti-

mal schedule decreases as u grows. In this particular instance, the minimum number

of rescheduled locations is 4 and the critical value is 4.25, a much lower value than the

theoretical upper bound. However, the value of ucritical is meaningless unless related to

the traveling costs. Let c̄M be the average of the traveling costs over the edges used in

the master schedule. For the example depicted in Figure 2.2, c̄M = 4.13, which can be

considered very close to the critical level u of 4.25.

We have repeated this experiment for 100 randomly generated instances. In 29 of the

cases, ucritical lies below 0.5c̄M , in 61 cases below c̄M and in 82 cases below 1.5c̄M . Observe
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Figure 2.2: Number of rescheduled locations and traveling costs

that 53 of the critical levels do not differ more than 50% of the value of c̄M . When we

calculate the bound derived in Proposition 2.2, the two-phase heuristic could only have

been guaranteed to generate the optimal schedule for u ≥ 102.4c̄M on average.

Finally, we discuss the tradeoff between transportation costs and the number of

rescheduled locations. The schedules with minimal traveling costs in the first example,

have a traveling cost equal to 137.1. Among these schedules the best in terms of number

of rescheduled locations, is a solution with 10 rescheduled locations. The schedule with

minimal number of rescheduled locations, 4, has a traveling costs equal to 151.7. Observe

that in this case, the number of rescheduled locations decreases by 6 while the traveling

costs increase by 10.6%. For the 100 generated cases, the average increase in traveling

costs between the schedule with minimal traveling costs and the schedule with minimal

number of rescheduled locations is 10.8%, with standard deviation 5.1.

2.4.2 Algorithm performance

The performance of the two-phase heuristic is evaluated on multiple test instances. For

these cases, deviation costs decreasing in locations per route are obtained by generating

a positive cost decrease uδ
i for each customer i ∈ V ′. We use a normal distribution with

mean equal to either 0.25c̄M or 0.75c̄M and a standard deviation of 0.5c̄M . The cost

decreases are truncated from below at 0. These parameters were chosen such that it is

unlikely that the generated instances either revert to standard CVRP because all u are

near or equal to 0, or that they are sufficiently high so that the two-phase heuristic is

guaranteed optimal.
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The performance of the two-phase heuristic is compared to solving the VRSP to op-

timality using the branch-and-cut algorithm. For each instance a time limit of one hour

is maintained for both the heuristic and the exact algorithm.

In Tables 2.1 and 2.2 the results of computational experiments for instances of different

sizes are presented. The master schedule is generated by solving a CVRP to optimality.

For each value of n, representing the number of customer locations, 50 instances were

generated. The instances used for Table 1 have average deviation cost decreases equal to

0.25c̄M and the ones used for Table 2.2 have average cost decrease equal to 0.75c̄M .

Column BL2.2 shows the average value of the theoretical bound on umin in Proposition

2.2, and the standard deviation in between brackets. Column BL2.3 presents the average

worst case bound as described in Proposition 2.3, expressed in percentages, and the stan-

dard deviation in between brackets. Column CDTP shows, in percentages, the average

difference between the cost of the schedule produced with the two-phase heuristic and the

cost of the optimal schedule, and the standard deviation in between brackets. Note that

these costs include both the traveling costs and the deviation costs. Finally, the values

in Topt and TTP represent average running times in seconds of the exact algorithm and

the two-phase heuristic respectively. As a master schedule was assumed to be given, the

time needed to generate it is not incorporated. The column OPT not found indicates the

number of instances out of 50, for which the optimal solution was not found within a one

hour time limit. These instances were not considered in the presented averages.

Table 2.1: Deviation costs average 0.25c̄M

n BL2.2 BL2.3 CDTP Topt TTP OPT not found
10 141.4(20.5) 2022(1230) 2.9(4.4) 0.13 0.01 0
20 294.2(28.0) 2795(1413) 2.4(2.7) 7.92 0.05 0
30 440.5(28.9) 3835(1724) 3.0(2.8) 256.83 0.37 2
40 587.5(39.6) 3960(1637) 4.9(3.9) 1483.44 1.84 37

Table 2.2: Deviation costs average 0.75c̄M

n BL2.2 BL2.3 CDTP Topt TTP OPT not found
10 141.4(20.5) 2022(1230) 0.9(2.1) 0.235 0.01 0
20 294.2(28.0) 2795(1413) 1.0(1.6) 17.636 0.06 0
30 440.5(28.9) 3835(1724) 1.2(1.5) 481.763 0.43 4
40 587.5(39.6) 3960(1637) 1.0(0.7) 2436.45 1.16 45

In these experiments, the total costs of the schedules generated by the two-phase

heuristic are on average not more than 2.9% above the optimum in Table 2.1 and not
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more than 1.0% in Table 2.2. As can be seen in column BL2.3, this differs significantly

from the theoretical performance bound in Proposition 2.3. As expected, the solutions

produced by the two-phase heuristic are on average closer to the optimum for the instances

with average cost decreases of 0.75c̄M than for the instances with average cost decreases

of 0.25c̄M .

From the columns indicating running times it can be concluded that using the two-

phase heuristic reduces the solution time significantly with respect to solving it to opti-

mality using the branch-and-cut algorithm.

Out of the 39 instances with low deviation costs for which the optimal solution is

not found, a feasible solution was found for 14 instances using the branch-and-cut algo-

rithm. The average difference in solution value with respect to the two-phase heuristic

is 4.4%. The two-phase heuristic solved these instances using an average computation

time of 262.17 seconds. Out of the 49 instances with high deviation costs for which the

optimal solution is not found, a feasible solution was found for 23 instances using the

branch-and-cut algorithm. The average difference in solution value with respect to the

two-phase heuristic is −0.7%. The two-phase heuristic solved these instances using an

average computation time of 3.32 seconds.

2.4.3 Impact of the master schedule

Using an inefficient master schedule with respect to traveling costs, might affect the

performance of the two-phase heuristic. When rescheduling using an inefficient master

schedule, the traveling costs might be considerably reduced at the expense of deviating

early in a route. In such cases, the two-phase heuristic will not perform well as it never

generates unnecessarily early deviations. To investigate the effect of the quality of the

master schedule on the performance of the two-phase heuristic, the experiment is repeated

using instances where the master schedule is obtained by solving a CVRP heuristically

using the savings algorithm by Clarke and Wright (1964). Tables 2.3 and 2.4 show the

results of these experiments.

Table 2.3: Deviation costs average 0.25c̄M , heuristic master schedule

n BL2.2 BL2.3 CDTP Topt TTP OPT not found
10 137.3(18.5) 1863(745) 3.4(6.3) 0.142 0.011 0
20 290.5(27.4) 2645(1143) 2.7(3.4) 2.686 0.056 0
30 443.1(32.7) 3925(1778) 4.5(3.5) 232.103 0.425 0
40 598.1(42.5) 4135(1807) 4.6(3.3) 939.925 3.567 22
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Table 2.4: Deviation costs average 0.75c̄M , heuristic master schedule

n BL2.2 BL2.3 CDTP Topt TTP OPT not found
10 137.3(18.5) 1863(745) 1.7(4.5) 0.198 0.011 0
20 290.5(27.4) 2645(1143) 1.3(2.3) 3.768 0.049 0
30 443.1(32.7) 3925(1778) 1.8(2.4) 493.469 0.489 3
40 598.1(42.5) 4135(1807) 1.5(1.5) 1187.79 2.814 30

For the instances used in Tables 2.3 and 2.4, more are solved within the one hour time

limit than for the instances in Tables 2.1 and 2.2. Moreover, the average computation

time of the exact method is lower. Nevertheless, the computation time of the two-phase

heuristic is slightly higher for the instances where the master schedule is generated heuris-

tically. The difference between the optimal solution value and the value of the solution

produced by the two-phase heuristic is not significantly different for the instances where

the master schedule is generated heuristically.

2.4.4 Number of deviating locations

The minimum number of deviating locations is an important factor for the speed of the

two-phase heuristic. In the second phase a CVRP with the number of customers roughly

equal to the minimum number of deviating locations should be solved. It depends on

the instance at hand what the minimum number of deviations is. The average minimum

number of deviating locations of the instances used in section 4.2 can be found in Table 2.5.

Table 2.5: Minimum number of deviating locations

n Exact CVRP master schedule Heuristic CVRP master schedule
10 2.4(1.0) 2.0(1.1)
20 4.6(1.4) 5.0(1.4)
30 8.8(2.0) 8.2(2.0)
40 14.7(2.4) 12.0(3.1)

In our implementation of the two-phase heuristic, we use an exact method to solve

the reduced CVRP in the second phase. Many heuristic algorithms exist that can be

used to deal with for instance large scale CVRP instances. When the size of the second

phase CVRP grows too large for exact algorithms to be useful, such a heuristic can

be employed. As the performance of existing exact algorithms and heuristics directly

translate to our setting, we refer the interested reader to Laporte (2007). For a software

library of heuristic methods for the CVRP that can be used in the second phase of the

heuristic see for instance Groër et al. (2010).
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2.5 Conclusion

In this chapter, the negative effects of deviating from a master schedule have been in-

corporated in a vehicle routing model, hence introducing the VRSP. Insight has been

obtained into the behavior of the optimal solution of the VRSP for different values of

the deviation costs relative to the traveling costs. We have formulated this problem that

allows existing CVRP algorithms to be used to solve the VRSP after slight modifications.

Furthermore, we propose a two-phase heuristic that is capable of finding good solutions

within a small amount of computation time. We have proven that this algorithm generates

an optimal schedule when deviation costs are sufficiently high. Even when the deviation

costs are not as high as required by our proposition, numerical experiments show that

solutions of the two-phase heuristic are on average close to optimal. Moreover, for general

problem instances, an analytical bound on the difference between the solution generated

by the two-phase heuristic and the optimum is presented. Numerical results indicate,

however, that this analytical upper bound is extremely far from the actual difference. As

in the second phase of this heuristic an instance of the CVRP, an NP-hard problem, has

to be solved for the locations that need to be rescheduled, the computation time heavily

depends on the number of isolated vertices after the first phase of the heuristic.





Chapter 3

The Time Window Assignment

Vehicle Routing Problem

3.1 Introduction

In many distribution networks deliveries are made at regular intervals and take place

within a scheduled time window. Typically, these time windows are endogenously im-

posed. The supplier and customer might for instance agree on a specific time window for

delivery. These endogenous time windows are long term decisions in certain industries.

In retail it is very common that deliveries at a store are always made within a specific

time interval on the same day of the week for an entire year. This is crucial for many

operational processes like inventory management and the scheduling of personnel. Dis-

tribution networks are often also faced with exogenous time windows. For example, an

exogenous time window might be imposed by a local government which forces trucks to

make deliveries in a populated area during day time only. Hence an endogenous time

window can only be chosen within the exogenous time window.

Demand is usually unknown at the moment that endogenous time windows are as-

signed and most often fluctuates per delivery. When demand of the customers becomes

known, a vehicle routing schedule has to be determined for making the deliveries within

the endogenous time windows. This problem is known as the vehicle routing problem

with time windows, VRPTW, a well studied problem in the scientific literature, see for

instance the surveys by Baldacci et al. (2012) and Kallehauge et al. (2005).

In this chapter a model is presented to assign time windows before demand is known.

The problem of assigning time windows will be referred to as the time window assignment

vehicle routing problem, TWAVRP. A finite number of scenarios is given, each scenario
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describing a realization of demand for each location. Furthermore, the probability with

which each scenario occurs is known at the moment of scheduling. The TWAVRP con-

sists of assigning a time window to each customer and constructing a vehicle routing

schedule for each scenario satisfying these time windows, such that the expected costs are

minimized. The TWAVRP is NP-hard as for one scenario it is the VRPTW.

The TWAVRP is similar to the consistent vehicle routing problem, ConVRP, intro-

duced by Groër et al. (2009). The TWAVRP and ConVRP differ in the following require-

ments. In the ConVRP, a customer does not necessarily require service in each scenario.

Also, each customer needs to be visited by the same driver in all scenarios in which it

requires service. Finally, there are restrictions on the total driving time of each driver.

The ConVRP has applications in small-package shipping. Our experience with specific

Dutch retail chains suggests that the ConVRP is too stringent for application in their

case. Here, every customer requires goods on each day of delivery. Furthermore, person-

alization of service is not an issue, as both the supplier and customers are part of the same

retail chain, hence, the same-driver condition is not necessary. Finally, delivery routes

will (almost) never exceed the maximum allowed driving time as capacity constraints in

many retail settings prohibit long routes, unlike in the small package shipping industry

to which Groër et al. (2009) applied the ConVRP. In the paper by Groër et al. (2009)

computational experiments are provided with ConVRP instances with up to 12 customers

and 3 scenarios. They solve these instances to optimality using a commercial mixed inte-

ger program solver. They report computation times of up to several days. Furthermore,

they develop a local search heuristic to find solutions to instances of up to 3715 customers

and 25 scenarios.

A closely related problem to the TWAVRP is the vehicle routing problem with stochas-

tic demand, SVRP. In this problem, vehicle routes are determined before demand is

known. When demand becomes known, routes may be infeasible due to the limited ca-

pacity of each truck in which case a recourse action is required. Among the most popular

recourse actions is the strategy suggested by Dror et al. (1989), in which the original ve-

hicle route is followed until the load of the truck is depleted, and is resumed after a visit

to the depot to restock. An advantage of this recourse action is that the expected costs

of a vehicle route can be computed efficiently. Studies on this model include the work

by Laporte et al. (2002) who solve the SVRP to optimality using an integer L-shaped

method and Novoa and Storer (2009) who develop an approximate dynamic programming

approach for the single vehicle variant. In this model, however, the time of service at the

customer is not taken into account.
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Another closely related problem is considered by Jabali et al. (2010). In their paper,

demand is assumed to be known at the moment of assigning the time windows and travel

time is stochastic. They develop a tabu search algorithm to find good solutions for this

problem. Furthermore, Agatz et al. (2011) consider the problem of deciding which time

slot to offer to customers in different zip code areas for a web store offering home deliveries.

They propose a local search heuristic.

In this chapter, we propose a relevant new problem which we have encountered in

practice, the TWAVRP. We develop a column generation algorithm to find lower bounds

on the optimal solution value of the TWAVRP. We apply route relaxation to allow cyclic

routes and apply the algorithm by Ioachim et al. (2008) to solve the pricing problem.

Furthermore, to strengthen the lower bound we eliminate routes containing 2-cycles and

modify the algorithm by Ioachim et al.(2008) accordingly. We incorporate this column

generation algorithm into a branch-price-and-cut algorithm to find optimal integer so-

lutions to the TWAVRP. We show by means of computational experiments that this

algorithm is capable of solving instances with up to 25 customers and 3 scenarios to op-

timality within one hour of computation time. Finally, as is frequently done in practice,

we construct a solution by solving a VRPTW using average (historic) demand and using

the arrival times at each customer as reference points for the endogenous time windows.

We compare the solutions obtained in this fashion with the optimal solution value of the

TWAVRP to offer insight in the value of an exact approach for the TWAVRP.

This chapter is organized as follows. A formal definition of the TWAVRP is given in

Section 3.2. In Section 3.3, the branch-price-and-cut algorithm is presented. The results

of our computational experiments are provided in Section 3.4. The chapter ends with a

short conclusion.

3.2 Problem definition

Consider a complete graph G = (V,A), where V = {0, ..., n + 1} is a set of locations

such that 0 represents the starting depot, n + 1 the ending depot and V ′ = {1, ..., n}
are the customers. Let cij ≥ 0 be the cost to travel along arc (i, j) and let tij ≥ 0 be

the corresponding travel time. Both the travel costs and travel times satisfy the triangle

inequality. Furthermore, an unlimited number of vehicles of equal capacity Q is available.

Let Ω be a set of scenarios, where each scenario represents a realization of demand.

The probability that scenario ω occurs is pω. Let demand at location v in scenario ω ∈ Ω

be given by dωv where 0 < dωv ≤ Q. For ease of notation, let dω0 = dωn+1 = 0.
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Associated with each location v ∈ V is the exogenous time window [sv, ev], which is

not to be confused with the endogenous time window.

In this chapter we will use the term route to refer to a pair (P, t) where P is a path

in G starting at 0 and ending at n + 1 and t is a vector containing arrival times at each

location on the path. Let avr be the number of times customer v ∈ V ′ is visited by route r.

Furthermore, let tvr be the cumulative time of service of customer v ∈ V ′, i.e., if location

v is not visited tvr = 0, if it is visited once, tvr is the time of service, and if customer v

is visited multiple times tvr is the sum of the times of service. To each route r with arcs

{r1, ..., rk} we assign costs cr =
∑k

i=1 cri .

A route is considered feasible for scenario ω if i) the capacity constraint in scenario ω

is satisfied, ii) the exogenous time window constraints are satisfied, and iii) the service

time at location j is not before the service time at location i plus the travel time tij if

location j is visited directly after i. Note that waiting at a customer is allowed. Let R(ω)

be the set of all feasible routes for scenario ω.

An endogenous time window of width wv has to be assigned to each customer v ∈ V ′

within which it will receive its delivery. The assignment is made before the realization of

demand is learned. Prior to the dispatching of the vehicles, demand becomes known and

an optimal routing schedule will be designed to make the deliveries within the assigned

time windows. The TWAVRP is to assign time windows before demand is known and

selecting feasible routes in each scenario ω ∈ Ω that satisfy these time windows. The

objective is to minimize the expected traveling costs.

Next we provide a mixed integer linear programming formulation for the TWAVRP.

Let the time window variable yv be the start time of the endogenous time window at each

location v ∈ V ′. Note that yv ∈ [sv, ev − wv]. We will assume sv ≤ ev − wv. Let the

binary route variable xω
r indicate whether route r is used for scenario ω. The TWAVRP

can be formulated using the following mixed integer linear program.
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min
∑
ω∈Ω

pω
∑

r∈R(ω)

crx
ω
r (3.1)

∑
r∈R(ω)

avrx
ω
r = 1 ∀v ∈ V ′, ∀ω ∈ Ω (3.2)

∑
r∈R(ω)

tvrx
ω
r ≥ yv ∀v ∈ V ′, ∀ω ∈ Ω (3.3)

∑
r∈R(ω)

tvrx
ω
r ≤ yv + wv ∀v ∈ V ′, ∀ω ∈ Ω (3.4)

xω
r ∈ {0, 1} ∀ω ∈ Ω, ∀r ∈ R(ω) (3.5)

yv ∈ [sv, ev − wv] ∀v ∈ V ′ (3.6)

Here (3.1) are the expected total costs of a time window assignment. Constraints (3.2)

ensure that every location is visited exactly once and constraints (3.3) and (3.4) ensure

that all locations are visited within the assigned time windows. Finally, note that as time

is continuous the number of routes in R(ω) for all ω ∈ Ω, and therefore also the number

of variables, is infinite, unless wv = 0 and sv = ev for all v ∈ V ′.

3.3 Solution method

In this section we propose a branch-price-and-cut algorithm to solve the TWAVRP. First,

we present a column generation algorithm to find lower bounds by solving the LP re-

laxation of the TWAVRP formulated in (3.1)-(3.6). We consider two route relaxations,

allowing the path of a route to be nonelementary. Moreover, we discuss the algorithm to

solve the pricing problem, an acceleration strategy and the addition of valid inequalities.

Finally we discuss the branch-price-and-cut algorithm.

3.3.1 Column generation algorithm

We propose using a column generation algorithm to solve the LP relaxation of (3.1)-(3.6),

referred to as the master problem. We consider the master problem where only a subset

of routes are included, also known as the restricted master problem. At each iteration

of the column generation algorithm a restricted master problem is solved, followed by

solving a pricing problem to identify feasible routes with negative reduced costs. Routes

with negative reduced costs are added to the restricted master problem. If no such route
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exists, the current solution to the restricted master problem is optimal for the master

problem.

We decompose the pricing problem into several problems, one for each scenario. For

scenario ω, the pricing problem is to find a feasible route (P, t) such that P is elementary,

with minimum reduced costs. Let us denote the dual variables corresponding to (3.2)-

(3.4) by λ, μ and ν respectively. For ease of notation, let π = ν − μ. Observe that both

λ and π are unrestricted. The reduced costs corresponding to route variable xω
r are given

by

pωcr −
∑
v∈V ′

λω
v a

v
r −

∑
v∈V ′

πω
v t

v
r . (3.7)

We model the pricing problem for scenario ω using graph G. With each node v ∈ V ′

we associate demand dωv , time window [sv, ev], and the cost coefficient −πω
v . Furthermore,

with each arc (i, j) ∈ E we associate the travel time tij, and costs pωcij − λω
j if j ∈ V ′

and pωcij otherwise. For each route (P, t) we calculate the corresponding reduced costs

in scenario ω as the sum of the costs of the arcs on path P and the costs at each node

v. These costs are linear in the arrival time tv with coefficient −πω
v . The pricing problem

is solved by finding an elementary shortest path in G with a capacity constraint, time

window constraints and linear node costs.

We consider this pricing problem to be very difficult to solve exactly. To the best of

our knowledge, no algorithm is described in the current scientific literature to solve this

problem. Instead, we suggest using route relaxations, i.e., allowing nonelementary routes,

yielding a less complex pricing problem.

Observe that the optimal integer solution of the TWAVRP does not change when

cyclic routes are used in the formulation. However, the LP-value will decrease. Route

relaxation has been successfully used by for instance Desrochers et al. (1992) to solve

the VRPTW, which is a closely related problem to the TWAVRP. They solve a pricing

problem in which they allow cyclic routes. Moreover, they eliminate 2-cycles, i.e., cycles

of the form i − j − i to strengthen the LP bound with respect to allowing all cycles, at

the cost of increased computational complexity. Other examples of route relaxations that

provide stronger LP-bounds than allowing all cycles at the cost of increased computational

complexity are k−cycle elimination for k ≥ 3 as described by Irnich and Villeneuve (2006)

and the ng-route relaxation as introduced by Baldacci et al. (2011). In this chapter, we

consider allowing all cyclic routes and allowing all cyclic routes not including 2-cycles.

Next, we present the algorithms used to solve the corresponding pricing problems.
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3.3.2 Pricing problem with all cyclic routes

When all cyclic routes are allowed, the pricing problem is a shortest path problem with

a capacity constraint, time window constraints and linear node costs. In order to solve

this problem, we introduce an auxiliary acyclic graph Ĝω for each scenario ω in which

only the paths in G with a total load less or equal to Q are represented. This allows us

to solve the pricing problem of scenario ω by applying the algorithm by Ioachim et al.

(1998) to the auxiliary graph Ĝω. In this section, we formally define the auxiliary graph

and discuss the labeling algorithm.

Let Ĝω = (V̂ ω, Âω) be the auxiliary graph in scenario ω. The set V̂ ω includes a

node for i) the starting depot 0, ii) each triple (v,m, q) such that v ∈ V ′, there exists a

(0, v)−path in G visiting exactly m locations and with a total load of q ≤ Q in scenario ω,

and iii) each pair (n+1, q) such that there exists a (0, n+1)−path in G with a total load of

q ≤ Q. By construction, to each node u ∈ V̂ ω there is a corresponding node in V denoted

by o(u). We refer to o(u) as the original node corresponding to u. We also associate to

each node u such that o(u) = i, demand dωu = dωi , time window [ŝu, êu] = [si, ei], and the

linear node cost coefficient ĉu which is −πω
i if i ∈ V ′ and 0 otherwise.

The set Âω includes a) the arcs (0, v) for every node v ∈ V̂ ω representing a triple

(o(v), 1, dωo(v)), b) the arcs (v, u) where v ∈ V̂ ω represents the triple (o(v),m, q) and u ∈ V̂ ω

represents the triple (o(u),m+1, q+dωo(u)), such that (o(v), o(u)) ∈ A, and c) the arcs (v, u),

where v ∈ V̂ ω represents the triple (v,m, q) and u ∈ V̂ ω represents the pair (n + 1, q).

With each arc (v, u) ∈ Âω where o(v) = i and o(u) = j, we associate the travel time

t̂vu = tij and costs ĉvu = cij − λω
j if j �= n+ 1 and costs ĉvu = cij if j = n+ 1.

With each pair (P, t), where P is a path in Ĝω and t are service times at each node

visited on P , we associate costs. These costs are computed as the sum of the costs of each

arc traversed by P and the costs at each node v ∈ V̂ ω visited by P equal to the service

time tv multiplied with the linear node cost coefficient ĉv.

Observe that there exists a bijection between the paths in G and Ĝω. Moreover, the

costs of corresponding paths in G and Ĝω are equal when the times of service coincide.

Hence, when allowing all cycles, the pricing problem can be solved by finding a shortest

path in Ĝω, with a capacity constraint, time window constraints and linear node costs.

To solve the pricing problem we apply the algorithm by Ioachim et al. (1998) to Ĝω.

We describe this algorithm next. First note that even when a path P in Ĝω is given, as

the linear node costs ĉv of each node v ∈ V̂ ω on the path can be positive or negative,

determining the optimal times of service is an optimization problem in itself. To deal

with this, Ioachim et al. (1998) introduce a node cost function gP (T ) that provides the

minimum costs of using path P where service at the last node in P is performed before
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time T . They show how to construct this function and prove that it is piecewise linear,

convex and contains at most |P | line pieces.

Consider the set of partial paths Πv starting at the depot and ending at node v ∈ V̂ ω.

Define the dominance functionDv(T ) = min{gP (T )|P ∈ Πv} which provides the minimum

costs of servicing node v before time T . Ioachim et al. (1998) prove that Dv is piecewise

linear, non increasing but not necessarily convex or continuous. Next, we describe the

dynamic programming algorithm they propose to construct this function.

Let fv be the number of line pieces of Dv restricted to the interval [ŝv, êv]. We refer

to the start and end points of these line pieces as the breakpoints b1v, ..., b
fv+1
v . Line piece

lk, 1 ≤ k ≤ fv, of the dominance function can be represented by

lkv = (bkv , Dv(b
k
v), h

k
v), (3.8)

where bkv is the start of the line piece, Dv(b
k
v) is the value of the dominance function at

the start of the line piece and hk
v is the slope. The dominance function can be described

using the set of line pieces {lkv |1 ≤ k ≤ fv}. Note that Dv(T ) is not defined for T < b1v,

and

Dv(T ) = Dv(b
fv
v ) + hfv

v (bfv+1
v − bfvv ), if T > bfvv . (3.9)

Every line piece corresponds to a label in the labeling algorithm. The label extension

operator that is used to extend a label from node v to u, is defined as follows:

EXTENDvu(l
k
v) = (max{ŝu, bkv + t̂vu},

Dv(b
k
v) + ĉvu + ĉu max{ŝu, bkv + t̂vu},

min{0, hk
v + ĉu})

(3.10)

Note that extended labels with max{ŝu, bkv+ t̂vu} > min{êu, bk+1
v + t̂vu} are removed, as

the path corresponding to such a line piece does not satisfy the time window constraint.

We denote by EXTENDvu(Dv) the extension operator that provides the set of extended

labels for each label lkv for 1 ≤ k ≤ fv, and an additional label if bfv+1
v + tvu < êu.

This additional label represents a line piece that provides the minimum costs for service

commencing before T , for T ∈ [bfvv + t̂vu, eu] and is defined by
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l′u =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(bfv+1
v + t̂vu,

Du(b
fv+1
v ) + ĉvu + ĉu(b

fv+1
v + t̂vu),

0) if bfv+1
v + tvu < êu;

∅ otherwise.

(3.11)

The extension operator on a dominance function is defined as

EXTENDvu(Dv) = {EXTENDvu(l
k
v)|1 ≤ k ≤ fv}

⋃
{l′u}. (3.12)

The set of labels EXTENDvu(Dv) describes a piecewise linear function. Let F denote

the operator that finds the minimum of a set of piecewise linear functions represented by

a set of labels, which we use to construct the dominance functions. Furthermore, let V̂ ω

be ordered as follows. First 0, next the nodes representing triples (v,m, q) in increasing

order of m and ordered lexicographically in v and q, and finally the nodes representing

the pairs (n + 1, q) ordered with respect to q. The labeling algorithm is summarized in

Algorithm 3.1.

Algorithm 3.1 Labeling algorithm to solve the pricing problem

Initialize Lv = ∅ for all v ∈ V̂ ω.
Initialize l10 = (ŝ0, 0, 0), and f0 = 1.
Initialize L0 = {l10}.
for all v ∈ V̂ ω do
Dv = F (Lv).
for all (v, u) ∈ Âω do
Add EXTENDvu(Dv) to Lu.

end for
end for

This labeling procedure yields the dominance functions Dv for all v ∈ V̂ ω. Backtrack-

ing allows us to find the shortest paths corresponding to the labels of the dominance

functions Dv for o(v) = n + 1. In our experiments, we add all found routes with nega-

tive reduced costs. Hence, at each iteration of the column generation algorithm, multiple

routes might be added to the restricted master problem for one scenario.

3.3.3 Pricing problem with 2-cycle elimination

To improve the LP-bound obtained when allowing all cyclic routes, we propose to elimi-

nate 2-cycles. A 2-cycle i−j−i in G is represented in Ĝω by a partial path v̂−v̂′−v̂′′ where

o(v̂) = o(v̂′′). Next we discuss the modifications to the labeling algorithm to eliminate

2-cycles.
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Let Pred(lkv) be the predecessor of v on the path in Ĝω corresponding to line piece

lkv . Similarly, let Pred(P ) be the node preceding the last node on path P in Ĝω. For

T ∈ [bkv , b
k+1
v ], define D′

v(T ) = min{gP (T )|P ∈ Πv, o(Pred(P )) �= o(Pred(lkv))}, providing
the minimum costs of servicing node v before time T , considering only the paths with

a different original previous customer than o(Pred(lkv)). The main idea of the modified

algorithm is to extend the path corresponding to D′
v(T ) at time T instead of the path

corresponding to Dv(T ), when extending the latter would yield a 2-cycle.

For the labeling algorithm with 2-cycle elimination, we redefine the extension operator.

We associate with every line piece lkv of Dv the line piece lk
′

v , k
′ < k, as the last line piece

such that bk
′

v ≤ bkv with a different original predecessor customer, i.e., o(Pred(lkv)) �=
o(Pred(lk

′
v )). When extension of the path corresponding to lkv yields a 2-cycle lk

′
v is used

instead. In this case, the extended line piece represents service at v at time bk
′+1

v and

waiting to service u. Even though the resulting label will never be part of Du, it might

be part of D′
u. The new extension operator is defined as follows, using the same notation

for line pieces of D′
v.

EXTEND′vu(l
k
v) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

EXTENDvu(l
k
v) if o(Pred(lkv)) �= o(u);

(max{ŝu, bkv + t̂vu},
Dv(b

k′+1
v ) + ĉvu + ĉu max{ŝu, bkv + t̂vu},

min{0, ĉu}) otherwise.

(3.13)

Let F ′ denote the operator that finds D′
v. The labeling algorithm is summarized in

Algorithm 3.2.

Algorithm 3.2 Labeling algorithm to solve the pricing problem with 2-cycle elimination

Initialize Lv = ∅ for all v ∈ V̂ ω.
Initialize l10 = (ŝ0, 0, 0), and f0 = 1.
Initialize L0 = {l10}.
for all v ∈ V̂ ω do
Dv = F (Lv).
D′

v = F ′(Lv).
for all (v, u) ∈ Âω do
Add EXTEND′vu(Dv) to Lu.
Add EXTEND′vu(D

′
v) to Lu.

end for
end for
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3.3.4 Acceleration strategy

The column generation algorithm requires solving a pricing problem for each scenario

ω ∈ Ω at every iteration. These pricing problems differ only in the values of the dual

variables, the demand of each customer and the scenario probabilities that are part of

the reduced costs. Therefore, we propose the following acceleration strategy. Whenever

a route is found as a solution to the pricing problem of some scenario ω, it is also added

to the restricted master problem in scenario ω′ if it is feasible and has negative reduced

costs in that scenario as well. In this case, the pricing problem of scenario ω′ is not solved

during this iteration. This procedure potentially reduces the number of pricing problems

that have to be solved. The column generation algorithm is summarized in Algorithm 3.3.

Algorithm 3.3 Column Generation Algorithm, Reusing Routes

Initialize R(ω) for all ω.
repeat
Solve the restricted master problem using the routes R(ω) for scenario ω.
Set Ω̃ = Ω.
while Ω̃ �= ∅ do
Choose ω ∈ Ω̃ and remove it from Ω̃.
Solve the pricing problem for scenario ω, to find a set of routes R.
Add all routes in R that have negative reduced costs for scenario ω to R(ω).
for All ω̃ ∈ Ω̃ do
Let R̃ ⊆ R be all routes that are feasible and have negative reduced costs for
scenario ω̃.
if R̃ �= ∅ then
Add all routes in R̃ to Rω̃ and remove ω̃ from Ω̃.

end if
end for

end while
until No new routes are added to the master problem.

3.3.5 Valid inequalities

To improve the LP-bound of the TWAVRP we add valid inequalities. In particular we

consider inequalities that are valid for the vehicle routing problem, as they are also valid for

each scenario in the TWAVRP. These inequalities include capacity, comb, hypotour and

multistar inequalities (Lysgaard et al. (2004)). We have experimented with adding these

inequalities using the separation routines of Lysgaard (2003). Preliminary experiments

showed that adding only capacity inequalities yields the lowest computation time.
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Next, we briefly discuss the capacity inequalities. Let zωij be the arc flow in G on

arc (i, j) in scenario ω. Let b(S) be the minimum number of vehicles needed to visit all

customers in S ⊆ V ′. The capacity inequalities are

∑
i∈S,j �∈S

zωij ≥ b(S) ∀S ⊆ V ′, ∀ω ∈ Ω. (3.14)

As is common, we replace b(S) by the lower bound
⌈∑

i∈S dωi
Q

⌉
. These constraints can

be reformulated using the route variables xω
r . When capacity inequalities are added, the

pricing problem remains a shortest path problem with a capacity constraint, time window

constraints and linear node costs. However, the costs on each arc are modified as follows.

Let σω
S be the dual variable associated with the capacity inequalities for subset S in

scenario ω. We subtract σω
S from the initial costs of each arc (i, j) ∈ Â such that i ∈ S

and j �∈ S.

Other valid inequalities for the VRP and VRPTW which might also be applied here

are the following. The k−path inequalities introduced by Kohl et al. (1999) and extended

to generalized k−path inequalities by Desaulniers et al. (2008) have been used to solve the

VRPTW successfully. These inequalities are strongest when capacity and time window

constraints are tight. Since we focus on instances with wide exogenous time windows, we

have chosen not to include these inequalities. Also, the subset row inequalities introduced

by Jepsen et al. (2008) have been used to solve the VRPTW using a branch-price-and-

cut algorithm. However, the pricing problem changes substantially when adding these

inequalities, making it more difficult to solve. Therefore we have chosen not to include

these inequalities.

3.3.6 Branch-price-and-cut

Next we describe the branch-price-and-cut algorithm we propose to solve the TWAVRP.

Lower bounds are obtained by using the column generation algorithm to solve the LP-

relaxation of (3.1)-(3.6) and adding capacity inequalities. In our implementation, capacity

inequalities are only separated during the iterations of the column generation algorithm

where no new routes with negative reduced costs are found.

With each feasible solution to the LP-relaxation of (3.1)-(3.6) we associate an arc flow

in G for each scenario ω. Observe that an integer arc flow in each scenario corresponds

to an integer solution of the TWAVRP, even when the route variables are fractional. In
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our branch-price-and-cut algorithm we perform special ordered subset (SOS) branching

on the arcs as follows.

For scenario ω and customer v, let δ−ω (v) and δ+ω (v) be the sets of in and out arcs

respectively. Next, a customer v′, a scenario ω′ and an arc type o′ ∈ {−,+} is selected

with the highest number of arcs a in δo
′

ω′(v′) for which zω
′

a > 0. Let δo
′

ω′(v′) = {a1, ..., ak}
be ordered such that zω

′
ai
≥ zω

′
aj

if i < j. The arcs are divided into two groups, S and its

complement S̄, where S = {a1, ..., ai} is such that
∑

a∈S z
ω′
a ≥ 0.5 and

∑
a∈S\{ai} z

ω′
a < 0.5.

In one branch we disallow the use of the arcs in S and in the other we disallow the use

of the arcs in S̄. Observe that the pricing problem remains a shortest path problem with

a capacity constraint, time window constraints and linear node costs. However, less arcs

are included in the graph.

Upper bounds are obtained when a solution with integer arc flow in each scenario is

found to the LP-relaxation. At each iteration of the branch-price-and-cut algorithm, the

node with the lowest lower bound is selected.

3.4 Computational results

In this section we present the results of numerical experiments using our algorithms. First,

we discuss the test instances that we have generated. Next, we show results of solving

the LP-relaxation for these instances, obtained by using the column generation algorithm.

This is followed by the results of using the branch-price-and-cut algorithm. Finally, we

compare the optimal solution value of the TWAVRP to the value of the solution found by

solving a VRPTW with average demand, as is often done in practice. In all experiments,

a one hour time limit is used.

All algorithms are coded in C++ and ILOG CPLEX 12.4 is used to solve the restricted

master problem at each iteration of the column generation algorithm. The experiments

were performed on an Intel(R) Core(TM) i5-2450M CPU 2.5 GHz processor.

3.4.1 Test instances

We have generated a total of 40 instances, consisting of 10 instances with 10, 15, 20 and

25 customers respectively1. These instances are inspired by Dutch retail chains.

Customer locations are generated using a uniform distribution over a square with

sides of length 5. The depot is located in the center of the square. Both the travel

costs and times are equal to the Euclidean distance between locations, rounded to two

1All instances are available on request.
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digits. The depot has the exogenous time window [6, 22]. Each customer is given one of

three exogenous time windows, each assigned with a fixed frequency. The exogenous time

window [10, 16] is given to 10% of the customers, [8, 18] to 60% and [7, 21] to 30%. The

endogenous time window width is set to 2 for all customers. The vehicle capacity is 30.

For every instance, 3 scenarios are generated, each occurring with equal probability.

To vary demand throughout the scenarios for each customer, we generate it by computing

dωv = �uω
v dv�. Here, dv is drawn from a normal distribution with an expectation of 5 and

a variance of 1.5. Furthermore, for each ω ∈ Ω the multiplier uω
v is drawn from a uniform

distribution on the interval [0.7, 0.8], [0.95, 1.05] or [1.2, 1.3], to generate scenarios with

low, medium or high demand respectively.

3.4.2 Column generation results

Next, we provide the results of solving the LP-relaxation of (3.1)-(3.6) using the proposed

column generation algorithm. We compare the two route relaxations considered in this

chapter, allowing all cyclic routes and 2-cycle elimination.

Preliminary experiments suggest that the column generation algorithm employing the

acceleration strategy of reusing routes, as summarized in Algorithm 3.3, is faster than

without this acceleration strategy. Therefore, we only present results obtained using this

algorithm.

The column generation algorithm is initialized by including single customer routes,

i.e., routes of the form ((0, v, n+1), (t− t0v, t, t+ tv,n+1)), for each customer v ∈ V ′ in each

scenario, for different values of t in the exogenous time window. More precisely, we use

the values t = s′v, s
′
v+wv, ..., s

′
v+kwv, where s

′
v = max{sv, s0+ t0v} is the earliest possible

arrival times at customer v, e′v = min{ev, en+1− tv,n+1} is the latest possible arrival times

at customer v, and k =  e′v−s′v
wv
�. This way, for every endogenous time window assignment,

feasible routes are included in the restricted master problem in each scenario satisfying

the assigned time windows.

Table 3.1 shows the results of the experiments using the column generation algorithm.

In the first two columns, the instance and the number of customers in that instance are

indicated. For each instance, we report the results obtained when allowing all cycles

and when 2-cycles are eliminated. In the columns T.Time, the total computation time

in seconds is reported. The columns P.Time report the total time in seconds spent on

solving the pricing problems. The columns Iter. indicate the total number of iterations

before termination. Finally, the columns LP contain the value of the LP-relaxation per

instance for each route relaxation.
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Table 3.1: Column generation results

All cycles allowed 2-cycle elimination
Inst. |V ′| T.Time P.Time Iter. LP T.Time P.Time Iter. LP

1 10 0.44 0.20 13 14.22 0.69 0.67 15 17.64
2 10 0.39 0.37 15 13.48 1.05 1.03 12 14.27
3 10 0.92 0.86 17 14.66 2.72 2.70 18 16.63
4 10 0.16 0.16 13 16.51 0.70 0.66 17 18.48
5 10 0.30 0.30 15 14.15 0.75 0.75 11 14.84
6 10 0.37 0.34 19 17.27 0.89 0.89 12 18.00
7 10 0.48 0.48 14 13.34 1.53 1.51 15 16.48
8 10 0.16 0.14 12 19.61 0.58 0.58 12 22.65
9 10 0.47 0.47 15 17.38 1.06 1.03 13 19.74

10 10 0.61 0.61 17 14.69 2.00 2.00 15 15.58
11 15 3.40 3.38 29 14.96 13.67 13.62 28 17.28
12 15 1.23 1.17 20 22.73 3.73 3.68 21 24.33
13 15 0.80 0.78 25 25.83 2.53 2.41 27 27.65
14 15 1.11 1.11 25 18.83 4.49 4.45 22 22.34
15 15 1.25 1.23 24 21.30 3.84 3.79 24 22.91
16 15 1.58 1.57 30 19.71 3.68 3.62 27 20.20
17 15 1.09 1.05 24 19.44 3.45 3.40 21 21.30
18 15 1.44 1.39 26 19.98 4.32 4.29 20 20.97
19 15 1.54 1.50 24 24.40 5.29 5.27 33 25.59
20 15 1.89 1.86 28 20.32 5.45 5.40 23 21.42
21 20 2.32 2.29 37 26.44 8.61 8.47 40 27.80
22 20 3.03 2.95 34 27.29 9.98 9.89 37 29.56
23 20 3.10 3.04 30 26.39 10.23 10.16 34 28.20
24 20 4.62 4.53 36 22.69 15.82 15.69 33 23.44
25 20 2.17 2.03 35 28.00 7.41 7.27 35 28.83
26 20 4.26 4.13 35 26.94 13.99 13.93 37 28.38
27 20 3.28 3.18 36 23.50 9.22 9.11 36 25.58
28 20 3.24 3.16 35 24.30 9.31 9.25 29 25.60
29 20 3.20 3.11 35 23.69 13.23 13.09 36 25.83
30 20 5.77 5.68 40 24.49 17.71 17.56 40 25.26
31 25 6.47 6.40 49 28.04 23.24 23.03 42 30.59
32 25 9.08 8.92 48 28.31 40.90 40.62 57 29.37
33 25 8.56 8.39 47 30.91 37.05 36.74 51 32.42
34 25 5.21 5.01 47 31.61 16.88 16.74 51 32.57
35 25 6.80 6.63 49 26.97 26.36 26.12 51 27.71
36 25 4.51 4.38 36 28.47 20.66 20.50 46 29.91
37 25 15.58 15.38 45 25.48 73.32 72.94 68 27.40
38 25 4.90 4.78 42 31.85 19.70 19.48 48 34.56
39 25 4.77 4.68 37 28.88 17.02 16.81 42 31.36
40 25 4.06 3.87 49 29.08 14.49 14.26 52 30.80

First observe that the computation time increases with the number of customers.

Furthermore, almost all the computation time is spent on solving the pricing problems.

When comparing the two route relaxations, Table 3.1 indicates that the column generation

algorithm is significantly faster when all cycles are allowed. However, the values of the

LP-relaxations are higher when 2-cycles are eliminated. In the next section we discuss

how the branch-price-and-cut algorithm is affected by the increase of both the LP-value

and computation time in the case of 2-cycle elimination as opposed to allowing all cycles.

3.4.3 Branch-price-and-cut results

In this section we present the results of the computational experiments performed with the

branch-price-and-cut algorithm. In this algorithm, lower bounds are obtained by using

Algorithm 3.3 and by adding capacity inequalities in iterations where no new routes are

found. We compare the branch-price-and-cut algorithms using the two route relaxations,

allowing all cycles and 2-cycle elimination.
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Table 3.2: Branch-price-and-cut results, allowing all cycles

Inst. |V ′| Tot.Time Opt.Gap LP Gap Root Gap Nodes CI
1 10 2.28 0 19.46 0 6 41
2 10 86.25 0 13.39 0.19 543 54
3 10 1.28 0 15.86 0 1 43
4 10 21.92 0 10.83 0.14 241 65
5 10 5.19 0 11.93 0.29 19 53
6 10 1.44 0 4.04 0 4 41
7 10 3.87 0 21.65 0 5 34
8 10 4.20 0 17.90 0.85 62 50
9 10 4.03 0 14.42 0 17 41

10 10 9.22 0 9.94 0 21 45
11 15 35.01 0 15.85 0 12 76
12 15 3600.00 - - - 3932 212
13 15 3600.00 - - - 3634 304
14 15 47.46 0 18.74 0.03 53 123
15 15 22.82 0 11.81 0.08 42 112
16 15 64.41 0 6.29 0.13 151 86
17 15 29.70 0 11.80 0 42 97
18 15 709.16 0 10.43 0.42 1107 142
19 15 232.58 0 7.99 0.71 318 206
20 15 24.52 0 8.11 0 31 101
21 20 3600.00 - - - 1824 382
22 20 237.68 0 8.40 0.12 150 239
23 20 104.68 0 12.91 0.11 78 171
24 20 161.57 0 6.10 0.30 111 199
25 20 3600.00 - - - 2040 361
26 20 100.45 0 9.36 0 80 177
27 20 92.35 0 11.27 0 53 209
28 20 120.96 0 7.05 0.04 85 240
29 20 94.50 0 10.96 0 37 261
30 20 110.90 0 7.10 0 54 176
31 25 3600.00 - - - 1161 433
32 25 704.47 0 7.82 0.22 192 293
33 25 3600.00 - - - 22 353
34 25 3600.00 - - - 778 479
35 25 3600.00 - - - 827 460
36 25 3600.00 - - - 1422 504
37 25 3600.00 - - - 288 388
38 25 3600.00 - - - 765 537
39 25 3600.00 - - - 1343 506
40 25 3600.00 - - - 1030 461

Tables 3.2 and 3.3 show the results of applying the branch-price-and-cut algorithm

to the test instances when allowing all cycles and eliminating 2-cycles respectively. The

column Opt.Gap provides the percentage difference between the best obtained upper and

lower bounds after termination of the algorithm. The columns LP Gap and Root Gap

show the percentage difference between the value of the LP relaxation and the best found

upper bound, before and after adding capacity inequalities respectively. The column

Nodes provides the number of nodes processed in the search tree and the column CI gives

the number of added capacity inequalities.

Table 3.2 shows that when allowing all cycles, two 15-customer instances, two 20-

customer instances and nine 25-customer instances remain unsolved within the one hour

time limit. For the other instances, the LP gap ranges from 4.04% to 21.65%. After

adding capacity inequalities, these gaps are all tightened to less than 0.85%, and the gap

is even completely closed for thirteen instances.

The results of the same experiment, but when eliminating 2-cycles, are shown in

Table 3.3. Out of the thirteen unsolved instances when allowing all cycles, four 25-

customer instances are now solved. Moreover, for the previously unsolved instances 13
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Table 3.3: Branch-price-and-cut results, 2-cycle elimination

Inst. |V ′| Tot.Time Opt.Gap LP Gap Root Gap Nodes CI
1 10 0.67 0 0.05 0 1 2
2 10 127.53 0 8.29 0.17 483 30
3 10 4.15 0 4.53 0 1 13
4 10 31.17 0 0.14 0.14 193 17
5 10 2.64 0 7.66 0 2 11
6 10 1.72 0 0 0 2 0
7 10 5.76 0 3.16 0 4 4
8 10 3.93 0 5.19 0.65 29 11
9 10 3.45 0 2.82 0 7 6

10 10 6.88 0 4.51 0 5 32
11 15 102.48 0 2.79 0 22 34
12 15 3600.00 - - - 1070 83
13 15 3600.00 0.25 5.87 1.11 4391 172
14 15 68.11 0 3.60 0 45 51
15 15 34.59 0 5.10 0 36 56
16 15 108.58 0 3.96 0.10 98 28
17 15 26.94 0 3.35 0 15 24
18 15 123.86 0 5.96 0.20 98 53
19 15 157.45 0 3.49 0.56 133 65
20 15 46.44 0 3.11 0 25 59
21 20 3600.00 - - - 864 103
22 20 196.17 0 0.80 0.03 62 74
23 20 159.71 0 6.92 0 65 101
24 20 142.87 0 2.98 0.03 27 68
25 20 3600.00 0.25 3.59 0.83 2130 184
26 20 80.79 0 4.51 0 16 106
27 20 101.20 0 3.390 0 22 98
28 20 146.66 0 2.09 0 47 108
29 20 59.52 0 2.92 0 10 87
30 20 57.10 0 4.17 0 4 112
31 25 312.75 0 2.67 0.13 39 199
32 25 1371.48 0 4.37 0.07 232 144
33 25 3600.00 - - - 880 286
34 25 138.33 0 2.31 0 18 285
35 25 389.74 0 4.59 0 58 253
36 25 3600.00 - - - 1333 266
37 25 3600.00 - - - 232 179
38 25 3600.00 - - - 978 294
39 25 3600.00 - - - 2083 279
40 25 1749.58 0 4.17 0.30 539 286

and 25, an integer solution is found and the optimality gap is closed to 0.25% within

one hour. The other seven previously unsolved instances, remain unsolved with 2-cycle

elimination.

As can be seen from Tables 3.2 and 3.3, the LP gaps are significantly smaller when

2-cycles are eliminated. After adding capacity inequalities, the gap is completely closed

for the thirteen previously closed instances, as well as for five other instances. For the

remaining instances for which the optimum is found, the root gap is smaller when 2-cycles

are eliminated. Note that a tighter root gap is not guaranteed as a heuristic procedure is

used to separate capacity inequalities.

Out of the twenty-seven instances that are solved when all cycles are allowed, thirteen

instances are solved faster when 2-cycles are eliminated while fourteen instances are solved

slower.
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3.4.4 Comparison with current practice

In practice, a solution to the TWAVRP is commonly found by assigning endogenous time

windows using the following procedure. A VRPTW is solved using average demand over

all scenarios and using the exogenous time windows as time windows. The arrival time at

each customer is used as a point of reference for the time window. For t the arrival time

at customer v, the endogenous time window [yv, yv + wv] is computed as

[yv, yv + wv] =

⎧⎪⎨
⎪⎩

[sv, sv + wv] if t− wv

2
≤ sv;

[ev − wv, ev] if t+ wv

2
≥ ev;[

t− wv

2
, t+ wv

2

]
otherwise.

(3.15)

We have implemented this procedure and used it to solve the test instances. To

evaluate the expected costs of the endogenous time window assignment obtained by this

procedure, a VRPTW is solved for each scenario using the endogenous time windows

as the time windows. The expected costs are now computed by taking the (weighted)

average of the solution values.

Table 3.4 shows the results of using this procedure. The column Value shows the

value of the solution based on solving a VRPTW with average demand, and the column

Opt. gives the optimal value of each instance. The column Gap provides the percentage

difference between the solution value and the optimum. Only instances that have been

solved to optimality are included in Table 3.4.

As can be seen from Table 3.4, the heuristic procedure provides the optimal solution

for five 10-customer instances and two 20-customer instances. For the other instances, the

differences are up to 5.42%. The average difference over all instances is 1.85%. After one

hour of computation time, the branch-price-and-cut algorithm with 2-cycle elimination

has found a solution for instance 13 with value 29.37 and for instance 25 with value

29.066. The VRPTW with average demand based solution values of instance 13 and 25

are 29.545 and 30.04 respectively. The differences between the solutions obtained by these

procedures are 0,57% and 0,45%.

3.5 Conclusion

In this chapter we introduce the time window assignment vehicle routing problem, the

TWAVRP, which models the problem of assigning time windows to customers before

demand is known. In this model, demand realizations occur according to a predefined

set of scenarios with known probability distribution. After demand becomes known,
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Table 3.4: VRPTW with average demand based solutions

Inst. |V ′| Value Opt. Gap
1 10 17.65 17.65 0
2 10 16.17 15.56 3.92
3 10 17.42 17.42 0
4 10 18.51 18.51 0
5 10 16.15 16.07 0.52
6 10 18.00 18.00 0
7 10 17.02 17.02 0
8 10 23.97 23.89 0.33
9 10 21.41 20.31 5.42

10 10 16.54 16.31 1.41
Average gap: 1.16

11 15 18.05 17.78 1.54
14 15 24.05 23.18 3.77
15 15 24.87 24.15 3.00
16 15 21.11 21.03 0.36
17 15 23.22 22.04 5.35
18 15 23.03 22.30 3.27
19 15 26.66 26.52 0.54
20 15 22.73 22.11 2.80

Average gap: 2.58
22 20 30.47 29.80 2.26
23 20 30.92 30.30 2.05
24 20 24.30 24.16 0.57
26 20 29.72 29.72 0
27 20 27.48 26.48 3.78
28 20 27.05 26.14 3.47
29 20 27.16 26.61 2.08
30 20 26.36 26.36 0

Average gap: 1.77
31 25 31.82 31.43 1.25
32 25 31.86 30.71 3.74
34 25 34.54 33.34 3.59
35 25 29.66 29.05 2.11
40 25 32.22 32.14 0.26

Average gap: 2.19
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an optimal vehicle routing schedule is made adhering to the assigned time windows.

The problem is to assign time windows such that the expected total traveling costs are

minimized.

We propose a branch-price-and-cut algorithm to solve the TWAVRP. We have con-

sidered two route relaxations, allowing all cycles and eliminating 2-cycles. Moreover, we

strengthen the LP-bound by adding capacity inequalities. Computational experiments

show that the proposed branch-price-and-cut algorithm is capable of solving instances

of the TWAVRP of up to 25 customers and 3 scenarios. Using 2-cycle elimination in

the branch-price-and-cut algorithm increased the number of instances that were solved

to optimality. However, neither route relaxation yields a branch-price-and-cut algorithm

that is superior with respect to running times.

We compared the optimal solution to a solution obtained by solving a VRPTW with

average demand as is commonly done in practice. In our experiments, the solutions based

on solving a VRPTW with average demand have costs that are up to 5.42% higher than

the optimum, and are on average 1.85% higher.



Chapter 4

The Discrete Time Window

Assignment Vehicle Routing

Problem

4.1 Introduction

In distribution networks, it is common for a supplier and a customer to agree on a time

window in which a delivery will be made. This time window is often used repeatedly

within some period of time in which multiple deliveries are made at regular intervals. At

the moment of choosing a time window for a customer, its demand is usually unknown

and may fluctuate for different deliveries. When demand for all customers becomes known

for a given day, a vehicle routing problem with time windows (VRPTW) must be solved

to construct a delivery schedule within the agreed time windows.

The time window assignment vehicle routing problem (TWAVRP) is introduced in

Chapter 3. Given a set of customers to be visited on the same day, it consists of assigning

a time window to each customer before demand is known, and constructing vehicle routes

that satisfy the assigned time windows when demand becomes known. The assigned time

windows have a predetermined width and can start at any time within an exogenous time

window that can be customer-dependent. The objective of the TWAVRP is to minimize

the expected total transportation costs. Uncertain demand is represented by a set of

scenarios each occurring with a certain probability. For instance, different scenarios can

be used for low, normal and high demands.

In this chapter, we study the discrete TWAVRP (DTWAVRP) which differs from the

TWAVRP by considering for each customer a discrete set of candidate time windows from
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which one has to be selected. For example, a customer might divide the day in blocks

of two hours commencing on the hour and require one of these blocks to be the assigned

time window. We have encountered such time window assignment problems (discrete or

not) while collaborating with Dutch retail chains, and believe they are common in this

industry. Here, the retailers (customers) are heavily dependent on the time window to

be fixed in advance and kept for some time. For instance, a retailer might receive all its

deliveries on the same day of the week and more or less the same hour of the day for

an entire year. This is crucial for many operational purposes like inventory management

and the scheduling of personnel. Considering a discrete set of time windows is often more

practical for the retailers, especially to ease the personnel scheduling process which must

take into account various regulations. Furthermore, it can give them the opportunity to

express preferences for the time windows. Maximizing the satisfaction of these preferences

might be taken into account as a secondary objective during the optimization process, an

option that is not considered in this chapter.

The DTWAVRP is NP-hard as in the case of one scenario and one candidate time

window per customer it reduces to the VRPTW. When it involves several scenarios, the

DTWAVRP corresponds to solving several VRPTWs (one per scenario) that are linked

together by the choice of the time windows. The VRPTW is a well-studied problem for

which many exact and heuristic algorithms have been developed (see, e.g., the surveys

of Baldacci et al., 2012, Kallehauge et al., 2005, and Bräysy and Gendreau, 2005a,b).

We believe that in the scientific literature, the problem of assigning time windows before

knowing demand has been largely overlooked so far. In Chapter 3 an exact branch-and-

price algorithm is presented for the TWAVRP that can solve instances with up to 25

customers and 3 scenarios.

Introduced by Groër et al. (2009), the consistent vehicle routing problem (ConVRP) is

similar to the DTWVARP. In this problem each customer must be visited on different days

of a given horizon (not all customers must be serviced each day) following a consistent

schedule, that is, the arrival times at a customer from one day to another cannot differ

by much than a limited amount of time. Moreover, it is required that each customer

is always visited by the same driver. Groër et al. (2009) found optimal solutions to

ConVRP instances involving up to 12 customers and 3 scenarios using a commercial

mixed integer programming solver. They reported computation times of up to several

days. Furthermore, they developed a local search heuristic to solve instances with over

3700 customers.

Jabali et al. (2010) considered another related problem that involves the assignment of

time windows in a vehicle routing problem with stochastic travel times and deterministic
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demands. They developed a tabu search algorithm for solving it. Also, Agatz et al. (2011)

studied a problem faced by e-tailers providing home delivery that consists of selecting

which time slots to offer per zip code for making deliveries. They developed a local search

heuristic.

The main contributions of this chapter are as follows. First, we propose a new prob-

lem, the DTWAVRP. Second, we develop a state-of-the-art exact branch-price-and-cut

algorithm to solve it and report computational results obtained on randomly generated

instances to evaluate the effectiveness of some of its components. Finally, we compare the

gains yielded by exact solutions over current practice, where time window assignment is

typically based on the solution of a vehicle routing problem with average historic demand.

In the next section, we provide a formal definition of the DTWAVRP and present an

integer programming formulation for it. In Section 4.3, we describe the proposed branch-

price-and-cut algorithm. In Section 4.4, we report the results of the numerical experiments

that we conducted with our algorithm. Finally, conclusions are drawn in Section 4.5.

4.2 Problem definition

Consider a complete graph G = (V,A), where V = {0, ..., n+1} is a set of locations such

that 0 represents the starting depot, n + 1 the ending depot and V ′ = {1, ..., n} are the

customers. Let cij ≥ 0 be the cost to travel along arc (i, j) and tij ≥ 0 the corresponding

travel time (including, if any, the service time at i). Both the travel costs and travel times

satisfy the triangle inequality. Furthermore, an unlimited number of vehicles of equal

capacity Q is available.

Let Ω be a set of scenarios, where each scenario is characterized by a realization of

demand. Let dωv be the demand at customer v in scenario ω ∈ Ω such that 0 < dωv ≤ Q.

The probability that scenario ω occurs is pω.

Associate with each customer v a set Wv of candidate time windows that may or may

not overlap. One time window w = [w,w] ∈ Wv must be selected for each customer such

that in each scenario service at customer v starts between w and w. For the starting and

ending depot only one time window exists. Note that waiting at a location is allowed,

i.e., a vehicle can arrive prior to the start of a time window and start service later.

Using the set of candidate time windows for each customer, we can construct an

auxiliary graph Ĝ = (V̂ , Â), where V̂ = {(v, w) | w ∈ Wv, v ∈ V } contains a copy of each

customer node v for each of its possible time windows w ∈ Wv. Moreover, Â contains an

arc between two nodes (v, w) and (v′, w′), v �= v′, if and only if w + tvv′ ≤ w′.
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We use the term route to refer to a pair (P̂ , t) where P̂ is a path in Ĝ starting at 0

and ending at n+1 and t is a vector containing the time of service at each location on the

path. Associated with each route r is the parameter avwr indicating the number of times

customer v is visited within time window w ∈ Wv on route r. To each route r whose path

contains the arcs {r1, ..., rk} we assign the cost cr =
∑k

i=1 cri .

Let R(ω) be the set of all feasible routes for scenario ω. A route (P̂ , t) is considered

feasible if i) it satisfies the capacity constraint, ii) t is such that, for each customer v on

the route, service commences within a time window in Wv, and iii) if location j is visited

directly after i on route r then ti + tij ≤ tj.

The DTWAVRP is the problem of assigning one time window to each customer and

selecting feasible routes for each scenario such that, for each scenario, each customer is

visited exactly once and is serviced within its assigned time window. The expected travel

costs must be minimized.

Next, we present an integer programming formulation for the DTWAVRP. Let the

variables xω
r , for ω ∈ Ω and r ∈ R(ω), be route variables indicating whether route r is

selected in scenario ω. Furthermore, let yvw, for v ∈ V ′ and w ∈ Wv, be time window

assignment variables indicating whether time window w is selected for customer v. The

DTWAVRP can be formulated as the following mixed integer linear program.

min
∑
ω∈Ω

pω
∑

r∈R(ω)

crx
ω
r (4.1)

s.t.
∑
w∈Wv

yvw = 1 ∀v ∈ V ′ (4.2)

∑
r∈R(ω)

avwrx
ω
r = yvw ∀v ∈ V ′, ∀w ∈ Wv, ∀ω ∈ Ω (4.3)

xω
r ∈ {0, 1} ∀ω ∈ Ω, ∀r ∈ R(ω) (4.4)

yvw ∈ {0, 1} ∀v ∈ V ′, ∀w ∈ Wv (4.5)

The objective function (4.1) aims at minimizing the expected total costs resulting

from a time window assignment. Constraints (4.2) ensure that exactly one time window is

selected for each customer. Constraints (4.3) impose that each customer is visited exactly

once in each scenario and within the selected time window. The integrality requirements

on the x and y variables are provided by (4.4) and (4.5)

Next, let us discuss how to reformulate these integrality requirements. Consider the

linear programming (LP) relaxation of formulation (4.1)-(4.5) where the integrality re-
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quirements on the x and y variables are relaxed continuously. For each scenario, let the

arc flow in Ĝ be the value by which each arc a ∈ Â is selected in a solution to this LP

relaxation. It is straightforward that when the arc flow in Ĝ is integer for every scenario,

it also provides an optimal integer solution to the DTWAVRP.

Moreover, a solution to the LP relaxation also corresponds to an arc flow in G for

each scenario. Observe that when the arc flow in Ĝ is integer, so is the arc flow in G.

However, when the arc flow in G is integer, the arc flow in Ĝ might not be. Nevertheless,

Proposition 4.1 states that an optimal integer solution to the problem can always be

derived in this case.

Proposition 4.1. Let (x, y) be an optimal solution to the LP relaxation of formulation

(4.1)-(4.5). When the corresponding arc flow in G is integer for every scenario, there

exists an optimal solution (x∗, y∗) to the DTWAVRP of equal value.

Proof. For each customer v, let w(v, y) ∈ argmin{w | w ∈ Wv, yvw > 0} be the candidate

time window with the earliest start time among the ones selected in solution (x, y).

Let F ω be the integer arc flow in G for scenario ω, corresponding to solution (x, y).

This arc flow can be represented as a set of (0, n + 1)−paths in G, F ω = {P1, ..., Pk(ω)}.
Furthermore, denote by F ω

a the flow on arc a ∈ A for scenario ω.

For any path P ∈ F ω visiting the customers {v1, ..., vl}, consider the path P̂ in Ĝ

visiting the nodes {(v1, w(v1, y)), ..., (vl, w(vl, y))}. Using path P̂ for all P ∈ F ω, ω ∈ Ω,

and the time windows w(v, y) for each v ∈ V ′, yields a solution whose value is equal

to that of (x, y). To complete the proof, we need to show that this solution is feasible.

Because a path P̂ visits the same customers as its parent path P , the capacity constraints

are satisfied by the routes in the new solution. Hence, all that remains to be shown is

that the time window constraints are also satisfied along those routes.

Consider the graph Ĝ(F ω, y) = (V̂ (y), Â(F ω, y)), where V̂ (y) = {(v, w) ∈ V̂ | yvw > 0}⋃ {(0, w0), (n+ 1, wn+1)} contains the combinations of locations and time windows that

are selected in solution (x, y), and Â(F ω, y) = {((v, w), (v′, w′)) ∈ Â | (v, w), (v′, w′) ∈
V̂ (y), F ω

(v,v′) > 0}. Observe that all paths from (0, w0) to (n + 1, wn+1) in Ĝ(F ω, y) can

be represented in Ĝ. Moreover, any such path visits the same customers as some path

P ∈ F ω and in the same order.

Let tωvw be the earliest possible start of service time in node (v, w) by any path in

Ĝ(F ω, y) starting at node (0, w0). Let tω0w0
= w0. Observe that as yvw > 0 for (v, w) ∈

V̂ (y), constraints (4.3) ensure that there is a route r ∈ R(ω) such that xr > 0 for all

ω ∈ Ω. Hence, tωvw exists for all (v, w) ∈ V̂ (y) and all ω ∈ Ω.

Let Wv(y) = {w|w ∈ Wv, yvw > 0}. Next, let tωv = minw∈Wv(y){tωvw} be the earliest

start of service time at customer v in Ĝ(F ω, y). Observe that tω0 = tω0w0
. For every pair



54 The Discrete Time Window Assignment Vehicle Routing Problem

(v, v′) such that F ω
(v,v′) > 0, it holds that

tωv′w(v′,y) = max{w(v′, y), tωv + tvv′} ≤ max{w, tωv + tvv′} = tωv′w ∀w ∈ Wv′(y).

Therefore, tωv = tωvw(v,y) and it follows that tωv′w(v′,y) ≥ tωvw(v,y) + tvv′ . This shows that

using path P̂ and service times tωvw(v,y) for the nodes (v, w(v, y)) visited on this path

provides a feasible route for each P ∈ F ω and each scenario ω ∈ Ω.

The proof of Proposition 4.1 also provides a method to derive an optimal solution. In

the rest of this chapter, we relax the integrality conditions (4.4) and (4.5), and instead

impose integrality on the arc flow in G.

4.3 Solution method

In this section, we first describe the column generation algorithm that we use to solve

the LP relaxation of (4.1)-(4.5). In particular, we present the ng-route relaxation and

discuss acceleration strategies to speed up the pricing algorithm. Next, we suggest valid

inequalities to strengthen the LP bound. Finally, we describe the branch-price-and-cut

algorithm.

4.3.1 Column generation algorithm

In practice, the LP relaxation of (4.1)-(4.5), also called the master problem, contains a

very large number of variables. To overcome this difficulty, we solve the master problem

using a column generation algorithm that was first proposed by Dantzig and Wolfe (1960).

This algorithm iteratively solves a restricted master problem (RMP) and a pricing prob-

lem. The RMP is the master problem where only a subset of the routes are included. It

is solved using the simplex algorithm, providing a feasible primal solution and the values

of the dual multipliers associated with constraints (4.2) and (4.3). The pricing problem

is solved to identify route variables with negative reduced costs that have not yet been

added to the RMP. When a route with a negative reduced cost is identified, it is added to

the RMP and the procedure is repeated. If no route with a negative reduced cost exists,

the current solution to the RMP is also optimal for the master problem.

For the DTWAVRP, the pricing problem can be decoupled into several problems, one

for each scenario. The pricing problem for scenario ω aims at finding a feasible route for

scenario ω with the least reduced cost. Let λ be the vector of unrestricted dual multipliers
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associated with constraints (4.3). The reduced cost of a route r ∈ R(ω) is given by

pωcr −
∑
v∈V ′

∑
w∈Wv

λω
vwavwr. (4.6)

This pricing problem can be modeled as an elementary shortest path problem with

resource constraints defined on network Ĝ. To do so, associate with each node (v, w) ∈ V̂

the demand dωv and with each arc ((v, w), (v′, w′)) ∈ Â the reduced cost pωcvv′ − λω
v′w′

and the travel time tv,v′ . The pricing problem consists of finding a shortest elementary

(0, n+ 1)-path in Ĝ that respects time windows and vehicle capacity (the resource con-

straints). Note, however, that elementarity is required for the customers. This means that

for each customer v ∈ V ′ at most one node (v, w) ∈ V̂ can be included in an elementary

path.

To solve the pricing problem, we use the labeling algorithm proposed by Feillet et al.

(2004) which we modify to consider elementarity of the customers instead of the nodes

in network Ĝ. In this algorithm, constructed partial paths are represented by labels.

Let l be a label representing a partial path from the starting depot to a specific node

(v, w) ∈ V̂ . Let c(l) be the total reduced cost of the partial path represented by label

l, t(l) its earliest service time at customer v in time window w, and q(l) its total load.

Finally, let fu(l), u ∈ V ′, be a binary parameter equal to 1 if customer u has already

been visited in the partial path associated with label l or if this path cannot be feasibly

extended to reach any node representing customer u as this would violate capacity or

time window constraints. In this respect, we define the function Uω
u (l) that takes value 1

if q(l) + dωu > Q or t(l) + tvu > w for all w ∈ Wu, indicating whether l can be extended to

u.

The labeling algorithm starts with a single label associated with depot node 0. Next,

labels are extended along the arcs in Ĝ. A label l associated with a node (v, w) can be

extended to a node (v′, w′) only if ((v, w), (v′, w′)) ∈ Â and fv′(l) = 0. To perform this

extension and create a label l′, we use the following extension functions:

c(l′) =c(l) + pωcvv′ − λω
v′w′ (4.7)

t(l′) =max{t(l) + tvv′ , w
′} (4.8)

q(l′) =q(l) + dωv′ (4.9)

fu(l
′) =

{
1 if u = v′

max{fu(l), Uω
u (l

′)} otherwise
∀u ∈ V ′. (4.10)
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Label l′ is deemed feasible if t(l′) ≤ w′. Otherwise, it is discarded. Note that it is not

necessary to check if q(l′) ≤ Q because fv′(l) = 0.

In order to avoid the enumeration of all partial paths, a dominance procedure is

applied. The aim of this procedure is to remove all non-Pareto optimal labels. A label

that is not Pareto optimal is said to be dominated. Label l′ is dominated if there exists

a label l associated with the same customer and c(l) ≤ c(l′), t(l) ≤ t(l′), q(l) ≤ q(l′) and

fu(l) ≤ fu(l
′) for all u ∈ V ′. We want to emphasize the fact that we check dominance

for labels at the same customer instead of at the same node as we require elementarity of

customers and not nodes. This increases the number of dominated labels.

This labeling algorithm might provide multiple routes with negative reduced costs. In

our implementation of the column generation algorithm, we add all routes with a negative

reduced cost to the RMP at each iteration.

4.3.2 Route relaxations

As solving the elementary shortest path problem with resource constraints is compu-

tationally expensive, it is common to relax elementarity. Generating routes containing

cycles and adding them to the formulation does not alter the optimal integer solution as

each customer is visited exactly once. However, the LP bound becomes weaker. For the

VRPTW, Desrochers et al. (1992) were the first to suggest a branch-and-price algorithm

using a non-elementary shortest path problem as the pricing problem. They eliminate

2-cycles, i.e., cycles of the form i−j−i, to strengthen the LP bound at the expense of lim-

ited additional computation time. Irnich and Villeneuve (2006) extended this approach

by providing an algorithm to solve the shortest path problem with resource constraints

and k−cycle elimination, for arbitrary values of k.

Recently, Baldacci et al. (2011) proposed the ng-route relaxation. For each customer

v ∈ V ′ a neighbourhood Nv ⊆ V ′ with v ∈ Nv is introduced. An ng-path is not necessarily

an elementary path. Indeed, cycles starting and ending at a customer v are allowed if this

cycle contains a customer v′ such that v �∈ Nv′ . Similar to, e.g., Baldacci et al. (2011) and

Ribeiro et al. (2012), we construct neighbourhoods of a fixed size Δng for each customer

v ∈ V ′. They contain the closest customers with respect to travel costs, including v itself.

This way, any cycle in an ng-path will be relatively long or expensive.

In our branch-price-and-cut algorithm we use the ng-route relaxation. We adjust the

labeling algorithm for the elementary shortest path problem with resource constraints to

solve a shortest ng-path problem with resource constraints by modifying the extension

functions for the customer resources. When extending label l from a node (v, w) to (v′, w′)
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to create label l′, customer resource fu(l
′) is set to zero if u �∈ Nv′ even though fu(l) = 1.

Hence, expression (4.10) is replaced by the following:

fu(l
′) =

⎧⎪⎨
⎪⎩

1 if u = v′

max{fu(l), Uω
u (l

′)} if u ∈ Nv′ \ {v′}
0 otherwise

∀u ∈ V ′. (4.11)

In this case, label l′ is declared feasible if t(l′) ≤ w′ and q(l′) ≤ Q. Here the latter

condition must be checked because it can be violated even if fv′(l) = 0.

During the label dominance check at a node (v, w), v ∈ V ′, only the customer resources

for u ∈ Nv need to be considered, that is, the dominance rule involves only the conditions

fu(l) ≤ fu(l
′), ∀u ∈ Nv, for the customer resources. This is sufficient because fu(l) =

fu(l
′) = 0, ∀u ∈ V ′ \ Nv. Using ng-paths typically increases the number of dominated

labels and, thus, speeds up the labeling algorithm. Low values of Δng yield a fast labeling

algorithm at the expense of a decreased LP bound, whereas high values slow down the

labeling algorithm but increase the value of the LP bound. Observe that all cycles are

allowed in an ng-path when Δng = 1, and only elementary paths are allowed when Δng =

n.

4.3.3 Acceleration strategies

It is well known that, in a column generation algorithm, there is no need to solve the

pricing problems to optimality at each iteration. As long as negative reduced cost columns

are found, the pricing problems can be solved heuristically and it is even possible to skip

some pricing problems. The algorithm remains exact if the pricing problems are solved

to optimality in the last column generation iteration when solving a linear relaxation.

Below, we discuss two strategies to potentially generate negative reduced cost columns in

fast computation times.

Reusing routes

At each iteration of the column generation algorithm, a pricing problem is solved for each

scenario. Because these pricing problems are very similar, solutions to the pricing problem

of one scenario might also be feasible for another. Reusing a solution in this way poten-

tially decreases the number of pricing problems that have to be solved at each iteration.

Therefore, we propose the column generation algorithm described in Algorithm 4.1, in

which solutions are reused for other scenarios when they are feasible and have a negative

reduced cost.
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Algorithm 4.1 Column Generation Algorithm, Reusing Routes

Initialize R(ω) for all ω ∈ Ω
repeat
Solve the RMP using the routes in R(ω) for scenario ω ∈ Ω
Set Ω̃ = Ω
while Ω̃ �= ∅ do
Choose ω ∈ Ω̃ and remove it from Ω̃
Solve the pricing problem for scenario ω to find a set R of routes with negative
reduced costs
Add all routes in R to R(ω)
for all ω̃ ∈ Ω̃ do
Let R̃ ⊆ R be the subset of routes that are feasible and have a negative reduced
cost for scenario ω̃
if R̃ �= ∅ then
Add the routes in R̃ to R(ω̃) and remove ω̃ from Ω̃

end if
end for

end while
until No new routes are added to the RMP

Note that the order in which the scenarios are solved at each iteration might affect

the performance of the algorithm. However, our preliminary experiments showed no

significant differences for several strategies of ordering the scenarios. The computational

results presented in Section 4.4 were obtained by using a fixed order of the scenarios over

all iterations.

Heuristic column generation: tabu search

The column generation algorithm can be further accelerated by using a heuristic to solve

the pricing problem. A heuristic might be able to identify feasible routes with negative

reduced costs in less time than it takes to solve the pricing problem exactly. When using

a heuristic at each iteration of the column generation algorithm, the exact algorithm is

only used to find new routes or prove optimality when the heuristic fails.

As done by, e.g., Desaulniers et al. (2008), we developed a tabu search algorithm

to solve the pricing problem. In this algorithm an initial route is considered, which is

iteratively replaced by a neighbouring route. The neighbourhood of each route contains

all feasible elementary routes that can be obtained by performing one move. We consider

two types of moves: adding a single node at any position in the route and removing a

single node from the route.
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At each iteration, the best neighbour in terms of reduced cost is selected as the new

route. Note that this might yield a route with a higher reduced cost than that of the

previous route. To avoid cycling, selecting the inverse of the move used to obtain the

current route is tabu for TStabu iterations. If the reduced cost of the new route is negative,

it is added to the RMP. To diversify the search, at every TSIt iterations, it is restarted

using a completely new route. The initial route and those used to restart the search

corresponds to the routes selected in the current solution to the RMP for the scenario

associated with the pricing problem. When such a route is not elementary, the first visit

to each customer is maintained and all other visits to the same customer are removed

from the route. The algorithm stops when all selected routes have been used to restart,

or a total of TSmax new routes have been added to the RMP during the current search.

4.3.4 Valid inequalities

For the vehicle routing problem, many valid inequalities have been studied: for exam-

ple, capacity, comb, hypotour and multistar inequalities (Lysgaard et al. 2004), k-path

inequalities (Kohl et al. 1999) and subset row inequalties (Jepsen et al. 2008). These

inequalities are also applicable for each scenario in the DTWAVRP.

We have tested all the above mentioned valid inequalities in our algorithm. However,

preliminary experiments showed that adding capacity inequalities and subset row inequal-

ities provide the lowest computation time. Below, we describe these inequalities in more

detail.

Let zωij be the arc flow in G on arc (i, j) in scenario ω. Let b(S) be the minimum

number of vehicles needed to visit all customers in S ⊆ V ′. The capacity inequalities are

as follows:

∑
i∈S,j �∈S

zωij ≥ b(S) ∀S ⊆ V ′, ∀ω ∈ Ω (4.12)

and can be expressed in terms of the variables xω
r . As is common, we replace b(S) by the

lower bound
⌈∑

i∈S dωi
Q

⌉
. The separation problem of these rounded capacity inequalities

is strongly NP-hard. We use the heuristic of Lysgaard et al. (2004) to separate them,

more precisely, we use the implementation that can be found in the package by Lysgaard

(2003).

When capacity inequalities are added to the master problem, the pricing problems

remain the same. However, the reduced cost of a route may be altered. Let μω
S be the

dual variable associated with the capacity inequality for subset S in scenario ω. We
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modify the pricing problem for scenario ω by subtracting μω
S from the reduced cost of the

arcs ((v, w), (v′, w′)) ∈ Â such that v ∈ S and v′ �∈ S.

The subset row inequalities are a special case of the Chvátal-Gomory rank 1 cuts.

They were introduced by Jepsen et al. (2008). Let avr =
∑

w∈Wv
avwr be the number of

times v is visited on route r. The subset row inequalites can be expressed as follows:

∑
r∈R(ω)

⌊
1

k

∑
v∈S

avr

⌋
xω
r ≤

⌊ |S|
k

⌋
∀S ⊆ V ′, 2 ≤ k ≤ |S|, ∀ω ∈ Ω. (4.13)

The subset row separation problem is NP-complete. As suggested by e.g. Jepsen et al.

(2008) and Desaulniers et al. (2008), we separate only subset row inequalities for subsets

of size three, using k = 2, by enumeration. In this case, the inequalities ensure that for

any set of three customers, at most one route can be selected that includes more than one

of these customers.

Adding subset row inequalities to the formulation for scenario ω changes the corre-

sponding pricing problem. Let σω
S be the dual variable associated with the subset row

inequality for subset S in scenario ω. For every k customers in S visited by a path in the

pricing problem, σω
S is subtracted from the reduced cost of that path.

The labeling algorithm is adjusted to include the dual values of the subset row inequal-

ities in the reduced cost of each path. For the pricing problem associated with scenario

ω, the labels are modified by incorporating a new resource hS for every generated subset

row inequality associated with a subset S and scenario ω. When extending a label to a

customer in S, hS is increased by one. When this resource reaches k, then σω
S is subtracted

from the reduced cost and the resource is reset to 0. Hence, hS(l) gives the number of

times a customer in S was visited by the partial path corresponding to label l since the

last time σω
S was subtracted from the reduced cost.

As proposed by Jepsen et al. (2008), the dominance check is modified as follows. When

trying to establish whether a label l dominates a label l′, instead of checking whether

c(l) ≤ c(l′), we check whether c(l) −∑
S:hS(l)>hS(l′) σ

ω
S ≤ c(l′). Note that the subset row

resources hS(l) and hS(l
′) are not compared during the dominance check. This way, more

labels might be dominated.

As adding subset row inequalities slows down the labeling algorithm, we limit the

number of inequalities added simultaneously as proposed by Desaulniers et al. (2008). In

each iteration only a maximum number of SRmax
v subset row inequalities might be added

for subsets that include customer v. Furthermore, we limit the number of subset row

inequalities added at once by SRmax
It . Finally, we limit the total number of added subset
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row inequalities to SRmax. To ensure that the limited number of subset row inequalities

are likely to make an impact on the LP bound, we only add subset row inequalities that

are violated by at least SRmin
Vio .

4.3.5 Branch-price-and-cut

We propose the following branch-price-and-cut algorithm to solve the DTWAVRP to

optimality. Lower bounds are found by solving the LP relaxation using column generation

(see Algorithm 4.1) and adding valid inequalities. Capacity inequalities are separated in

each iteration of the column generation algorithm where no new routes with negative

reduced costs are identified. Because of their negative impact on the computation time of

the algorithm that solves the pricing problem, subset row inequalities are only generated

when no violated capacity constraint can be found. Branching is performed on the arcs in

G, as by Proposition 4.1, integer arc flow in G is sufficient to identify an integer optimal

solution.

We perform special ordered subset branching on the arcs (SOS branching). More

specifically, for scenario ω and customer v, let δ−ω (v) and δ+ω (v) be the sets of in and out

arcs of a node representing customer v, respectively. Next, a customer v′, a scenario ω′

and an arc type o′ ∈ {−,+} is selected such that the number of arcs a in δo
′

ω′(v′) for which

zω
′

a > 0 is the largest set. Let δo
′

ω′(v′) = {a1, ..., ak} be ordered with respect to the arc

flow in G, such that zω
′

ai
≥ zω

′
aj

if i < j. The arcs are divided into two groups, S and its

complement S̄, where S = {a1, ..., ai} is such that
∑

a∈S z
ω′
a ≥ 0.5 and

∑
a∈S\{ai} z

ω′
a < 0.5.

In one branch we disallow the use of the arcs in S and in the other we disallow the use of

the arcs in S̄. This does not alter the nature of the pricing problem, in fact the number

of arcs in the network decreases.

In our branch-price-and-cut algorithm, upper bounds are obtained when any current

LP relaxation has an integer solution. The search tree is explored using a best-first

strategy, that is, the node with the lowest lower bound is selected to process next.

4.4 Computational results

In this section we present the results of our computational experiments. First, we elabo-

rate on the instances that were used. Next, we illustrate the performance of the column

generation algorithm. Finally, the results of using the branch-price-and-cut algorithm are

presented. A time limit of one hour is enforced to solve each instance.
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All our tests were performed on an Intel(R) Core(TM) i5-2450M CPU 2.5 GHz pro-

cessor. The algorithms were coded in C++ and the IBM ILOG Cplex optimizer, version

12.4, was used to solve the RMP in the column generation algorithm.

4.4.1 Test instances

The instances used for our experiments were randomly generated1. For each instance, n

customers are generated using a uniform distribution over a square with sides of length 5.

The depot is located in the center of the square. Travel costs and times are computed as

the Euclidean distance between two locations rounded to two digits. Vehicle capacity is 30.

The depot has time window [6,20]. We construct three sets of candidate time windows

which we randomly assign to each customer, such that each set of candidate time windows

is assigned with fixed frequency. We assign the set {[10, 12], [12, 14], [14, 16]} to 10% of

the customers, the set {[8, 10], [10, 12], [12, 14], [14, 16], [16, 18]} to 60% of the customers,

and {[7, 9], [9, 11], [11, 13], [13, 15], [15, 17], [17, 19], [19, 21]} to 30% of the customers.

For each instance, we generate 3 demand scenarios, each occurring with equal proba-

bility. The scenarios are generated such that the first scenario has low demand, the second

scenario has medium demand and the final scenario has high demand. We accomplish

this by randomly generating a demand realization dv for all v ∈ V ′ according to a normal

distribution with expectation 5 and variance 1.5. Next we generate multipliers u1
v, u

2
v and

u3
v for all v ∈ V ′ uniformly distributed in [0.7, 0.8], [0.95, 1.05] and [1.2, 1.3], respectively.

Finally, we generate the demand for each customer v ∈ V ′ and each scenario ω ∈ {1, 2, 3}
by computing dωv = �uω

v dv�. Generating scenarios in this way resembles demand behavior

that is encountered in the case, for instance, of ice cream vendors. When the weather is

exceptionally good or bad, demand for ice cream goes up or down respectively. Moreover,

all vendors in the network are affected similarly by the weather, leading to an increase or

decrease of demand for all vendors simultaneously.

These settings are inspired by experience with a Dutch retail chain. The time window

and capacity constraints ensure that no more than roughly 7 or 8 customers can be visited

by a single vehicle in any scenario. We have generated 10 instances for each of the following

4 sizes, namely, 10, 15, 20 and 25 customers, making a total of 40 instances.

4.4.2 Column generation results

In this section we present the results obtained by the column generation algorithm when

solving the LP relaxation of (4.1)-(4.5). The algorithm used in these experiments is the

1Instances are available on request.
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algorithm in which columns of different scenarios are reused, as summarized in Algo-

rithm 4.1. As initial routes in the RMP, we use routes visiting a single node, i.e., routes

of the form (0, w0)− (v, w)− (n+ 1, wn+1) for all (v, w) ∈ V̂ and for all scenarios ω ∈ Ω.

We will distinguish between using only the exact algorithm to generate routes, and using

the tabu search heuristic to generate routes as well. No valid inequalities are added during

these experiments.

Table 4.1 shows the results of using Algorithm 4.1, without the tabu search algorithm,

for the case where all cycles are allowed, when only ng-paths are allowed for a neigh-

bourhood size of Δng = 5, and when only elementary paths are allowed. Recall that the

same implementation of the algorithm can be used for these route relaxations by setting

Δng = 1, Δng = 5 and Δng = n, respectively.

The first and second columns of Table 4.1 show the number of the instance and the

number of customers in this instance. For each instance and each type of pricing problem,

we report the total time in seconds needed by the column generation algorithm to solve

the LP relaxation of the instance (T.Time), the time spent on solving pricing problems

(P.Time), the number of column generation iterations needed (Iter.), and the LP value of

the instance (LP).

Observe that almost all of the computation time is spent on solving the pricing prob-

lems. For four of the instances with 25 customers, the time limit is exceeded before solving

the LP relaxation, when using only elementary paths.

When comparing the use of elementary paths versus allowing all cycles, we observe

that the computation times are in general significantly faster when all cycles are allowed

but the LP values are significantly lower. When using ng-paths with Δng = 5, the

LP values are very close to those obtained when using elementary paths. Moreover,

for the largest instances, the computation times are significantly lower than when using

elementary shortest paths. Hence, using ng-paths provides bounds that are comparable

to those obtained when using elementary paths, in much less time.

Table 4.2 shows the results of using the column generation algorithm in which the

tabu search algorithm is used to find routes with negative reduced costs heuristically. We

use the settings TStabu = 5, TSIt = 15 and TSmax = 150.

When comparing the results in Tables 4.1 and 4.2, one can observe a significant de-

crease in computation time when using the tabu search heuristic in the elementary route

case. In this case, all instances are now solved within the time limit of one hour. When

the ng-route relaxation is used, a smaller decrease in computation time is observed. When

all cycles are allowed, using the tabu search algorithm leads to an increase in computation

time in many instances. Recall that the tabu search heuristic generates only elementary
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Table 4.1: Column generation experiment results, without tabu search

All cycles allowed ng-paths with Δng = 5 Elementary paths
Inst. |V ′| T.Time P.Time Iter. LP T.Time P.Time Iter. LP T.Time P.Time Iter. LP

1 10 25.43 25.29 18 9.80 6.86 6.57 28 12.78 7.99 7.71 28 12.79
2 10 3.39 3.28 17 15.19 3.04 2.73 32 16.67 3.67 3.26 30 16.67
3 10 1.06 1.03 16 12.02 1.40 1.23 33 16.53 1.76 1.59 32 16.53
4 10 1.73 1.67 21 14.87 4.31 3.93 37 15.70 6.66 6.30 36 15.83
5 10 1.81 1.64 32 17.61 1.97 1.63 48 19.65 2.31 1.98 45 19.65
6 10 0.86 0.81 21 16.09 1.59 1.33 32 18.06 1.83 1.61 33 18.06
7 10 2.01 1.81 28 11.36 2.15 1.81 30 12.17 4.38 4.20 31 12.17
8 10 1.50 1.31 28 15.16 2.29 1.82 38 17.09 2.32 2.04 43 17.09
9 10 1.92 1.79 31 16.91 1.98 1.54 47 19.78 1.83 1.53 39 19.78

10 10 0.89 0.81 20 14.92 1.40 1.09 26 17.17 1.47 1.19 33 17.17
11 15 8.27 7.92 29 20.77 12.61 12.03 33 22.22 44.99 44.45 33 22.23
12 15 4.54 4.35 27 22.12 8.86 8.37 33 24.86 14.27 13.82 34 24.86
13 15 9.24 9.00 22 18.41 12.67 12.03 26 21.36 28.39 27.86 28 21.41
14 15 38.55 38.08 26 15.31 42.85 41.43 40 18.08 134.41 132.99 39 18.08
15 15 8.72 8.44 24 21.34 16.46 15.84 40 24.15 33.68 33.06 32 24.26
16 15 22.93 22.37 29 16.65 29.53 28.37 38 19.11 103.72 102.27 43 19.11
17 15 16.72 16.04 30 20.49 30.65 28.92 52 21.45 141.79 140.29 49 21.53
18 15 16.44 16.18 21 19.56 21.42 20.25 38 22.49 38.74 37.81 44 22.55
19 15 6.77 6.58 28 20.51 8.94 8.38 33 22.58 19.91 19.25 33 22.65
20 15 10.28 10.01 22 17.00 15.44 14.70 35 18.29 69.42 68.50 30 18.30
21 20 15.66 15.21 29 24.78 36.11 34.63 42 27.46 176.25 174.95 32 27.54
22 20 73.96 72.20 37 23.30 223.78 221.14 35 25.23 2061.23 2058.81 39 25.27
23 20 45.19 44.29 35 22.49 153.04 150.59 42 25.90 1162.78 1160.08 47 25.91
24 20 22.42 21.59 27 29.50 38.41 37.25 35 31.13 166.98 165.80 31 31.16
25 20 32.95 32.14 27 25.54 56.43 54.43 44 27.56 145.28 143.21 40 27.70
26 20 17.49 16.79 34 24.07 51.48 48.92 43 26.95 402.75 399.91 43 26.97
27 20 58.47 57.60 25 24.98 156.16 154.70 29 26.76 1334.75 1333.41 34 26.82
28 20 45.41 44.24 34 25.15 63.34 61.01 42 26.22 1029.01 1026.10 46 26.23
29 20 64.93 63.87 26 26.30 94.58 93.30 28 28.61 367.40 366.21 30 28.74
30 20 35.35 34.41 27 21.71 73.54 71.36 39 23.24 1626.60 1624.22 43 23.25
31 25 73.94 71.87 34 33.65 178.12 175.02 40 35.02 2108.34 2105.72 34 35.14
32 25 90.18 87.86 30 29.48 150.37 145.88 47 31.37 1170.66 1165.34 51 31.56
33 25 169.32 166.78 34 27.97 276.76 273.67 31 30.45 3600.00 3600.00 1 -
34 25 39.55 38.91 28 30.56 94.21 92.20 36 33.18 1584.22 1582.39 35 33.27
35 25 93.62 92.38 33 27.86 193.52 189.53 45 30.03 3600.00 3600.00 1 -
36 25 129.92 127.83 30 29.76 236.79 232.68 48 31.62 2823.07 2819.57 40 31.69
37 25 110.81 108.98 30 24.62 250.16 245.17 51 27.17 3600.00 3600.00 1 -
38 25 60.72 58.81 35 32.16 151.21 146.47 49 34.07 942.12 938.66 43 34.14
39 25 124.61 122.74 32 31.69 239.12 235.84 39 33.46 2476.24 2473.37 37 33.51
40 25 121.01 119.37 30 28.09 269.54 266.53 36 29.66 3600.00 3600.00 1 -

routes. Therefore the routes produced by this heuristic may be less useful when cycles

are allowed. Note that we also developed a similar tabu search algorithm for generat-

ing ng-routes. It was not successful because checking whether a route is an ng-route is

computationally expensive.

All results presented in the next sections were obtained using the tabu search heuristic

as well as the ng-route relaxation. Moreover, preliminary experiments with various values

of Δng showed that the algorithm yields its best results for Δng = 5.

4.4.3 Branch-price-and-cut results

Next, we present the results of our experiments using the exact branch-price-and-cut

algorithm. Table 4.3 reports the results obtained when only capacity inequalities are con-

sidered. The column Opt.Gap shows the percentage difference between the best obtained

upper and lower bounds after termination of the algorithm. The column LP Gap shows

the percentage difference between the value of the LP relaxation, without adding valid

inequalities, and the best upper bound found. The column Root Gap specifies the same



4.4 Computational results 65

Table 4.2: Column generation experiment results, with tabu search

All cycles allowed ng-paths with Δng = 5 Elementary paths
Inst. |V ′| T.Time P.Time Iter. LP T.Time P.Time Iter. LP T.Time P.Time Iter. LP

1 10 21.01 19.92 103 9.80 2.87 2.53 47 12.78 1.90 1.62 34 12.79
2 10 8.42 7.41 97 15.19 1.31 0.99 46 16.67 1.59 1.26 50 16.67
3 10 4.34 3.67 86 12.02 1.25 0.81 63 16.53 1.23 0.86 50 16.53
4 10 5.40 4.51 94 14.87 2.75 2.12 79 15.70 2.34 1.84 73 15.83
5 10 4.59 3.58 105 17.61 1.61 1.08 71 19.65 1.53 0.98 68 19.65
6 10 4.57 3.84 90 16.09 0.98 0.70 46 18.06 1.00 0.67 46 18.06
7 10 7.00 6.15 124 11.36 1.23 0.95 67 12.17 1.31 1.05 70 12.17
8 10 7.66 6.53 119 15.16 1.83 1.53 79 17.09 1.48 1.11 75 17.09
9 10 6.12 4.93 120 16.91 1.79 1.42 63 19.78 2.18 1.67 73 19.78

10 10 4.29 3.38 99 14.92 0.95 0.47 53 17.17 1.11 0.53 62 17.17
11 15 20.00 17.55 110 20.77 3.35 2.53 29 22.22 4.07 3.17 31 22.23
12 15 13.21 11.24 86 22.12 3.39 2.56 33 24.86 3.46 2.71 33 24.86
13 15 18.49 16.72 103 18.41 3.39 2.69 37 21.36 3.17 2.59 34 21.41
14 15 45.01 40.18 164 15.31 8.39 5.87 79 18.08 8.02 5.64 77 18.08
15 15 26.60 23.46 116 21.34 7.10 5.53 57 24.15 6.32 4.99 50 24.26
16 15 37.03 32.53 143 16.65 9.94 8.32 67 19.11 9.31 7.38 58 19.11
17 15 30.03 26.42 119 20.49 7.16 5.43 52 21.45 7.69 6.42 44 21.53
18 15 24.37 21.83 103 19.56 8.08 6.49 69 22.49 6.96 6.21 49 22.55
19 15 18.44 16.61 106 20.51 3.92 3.15 41 22.58 3.37 2.75 35 22.65
20 15 21.36 18.28 122 17.00 5.87 4.57 51 18.29 6.79 5.48 54 18.30
21 20 35.90 30.64 124 24.78 8.56 6.49 42 27.46 6.27 4.57 33 27.54
22 20 72.59 65.06 133 23.30 46.22 41.32 100 25.23 104.72 101.42 66 25.27
23 20 84.13 74.98 196 22.49 12.45 9.64 50 25.9 16.23 13.56 47 25.91
24 20 35.55 30.53 116 29.50 12.06 9.48 54 31.13 11.36 9.05 47 31.16
25 20 52.34 45.87 134 25.54 9.75 7.49 46 27.56 10.28 8.25 45 27.70
26 20 48.31 41.46 128 24.07 14.71 11.68 55 26.95 29.75 26.68 64 26.97
27 20 56.07 50.81 113 24.98 29.86 27.34 56 26.76 44.48 42.46 43 26.82
28 20 46.50 41.39 117 25.15 14.62 11.58 61 26.22 10.67 8.10 46 26.23
29 20 60.34 53.14 153 26.30 12.86 10.64 45 28.61 8.36 6.77 31 28.74
30 20 67.89 61.36 142 21.71 14.99 12.28 56 23.24 16.10 13.68 47 23.25
31 25 80.04 71.14 143 33.65 42.71 37.88 78 35.02 47.55 44.38 44 35.14
32 25 133.01 116.34 225 29.48 39.72 32.69 91 31.37 64.93 59.54 69 31.56
33 25 135.53 124.32 155 27.97 47.00 41.11 79 30.45 344.21 339.67 67 30.60
34 25 73.83 66.83 154 30.56 15.55 12.67 44 33.18 20.44 18.07 38 33.27
35 25 129.25 120.55 143 27.86 34.23 29.90 62 30.03 41.50 38.37 41 30.04
36 25 110.64 100.48 162 29.76 26.38 21.71 63 31.62 44.77 41.11 50 31.69
37 25 192.65 176.89 194 24.62 62.90 55.74 91 27.17 163.25 157.09 72 27.22
38 25 81.14 71.37 151 32.16 24.82 20.04 70 34.07 21.90 18.46 50 34.14
39 25 136.41 124.78 164 31.69 56.36 50.76 80 33.46 91.06 87.11 56 33.51
40 25 129.25 119.31 186 28.09 28.77 25.09 61 29.66 121.38 118.08 55 29.71

difference but after adding valid inequalities. The column Nodes indicates the number of

nodes processed in the search tree and the column CI gives the number of added capacity

cuts.

Observe that the total computation time increases rapidly with the number of cus-

tomers in the instances. Three of the instances with 20 customers could not be solved

within one hour and eight of the instances with 25 customers could not be solved. For four

10-customer instances, the LP bound is already tight. For fourteen more instances the

gap is completely closed by adding capacity cuts, including the instance with the largest

(observed) LP gap.

Table 4.4 shows the results of using the branch-price-and-cut algorithm while adding

both the capacity inequalities and the subset row inequalities. Recall that subset row

inequalities are only separated when no violated capacity inequalities are identified. We

limit the subset row inequalities that we add as described in Section 4.3.4. We use the

settings SRmax
v = 5, SRmax

It = 10, SRmax = 30 and SRmin
Vio = 0.1. In this table, the column

SRI indicates the number of generated subset row inequalities.
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Table 4.3: Branch-price-and-cut experiment results, with capacity inequalities only

Inst. |V ′| Tot.Time Opt.Gap LP Gap Root Gap Nodes CI
1 10 4.85 0 0.4 0 2 1
2 10 2.18 0 1.04 0 1 6
3 10 1.29 0 0.47 0 1 3
4 10 20.48 0 1.61 0.58 23 24
5 10 1.59 0 0 0 1 0
6 10 1.54 0 0.38 0 1 6
7 10 1.23 0 0 0 1 0
8 10 1.84 0 0 0 1 0
9 10 3.41 0 1.78 0 4 7

10 10 0.95 0 0 0 1 0
11 15 726.36 0 3.56 0.47 345 59
12 15 6.00 0 1.6 0 1 31
13 15 16.10 0 3.44 0 2 27
14 15 78.40 0 2.06 0 10 4
15 15 701.79 0 2.93 1.01 329 29
16 15 82.74 0 3.59 0.09 7 16
17 15 344.62 0 2.36 0.52 69 55
18 15 66.48 0 1.9 0 19 12
19 15 33.64 0 2.39 0 8 44
20 15 35.44 0 2.9 0 7 26
21 20 32.94 0 1.87 0 2 29
22 20 1438.67 0 1.59 0.34 125 56
23 20 3080.33 0 2.39 0.13 216 87
24 20 894.09 0 3.8 0.36 223 106
25 20 105.59 0 4.44 0 3 54
26 20 150.07 0 0.12 0.11 21 4
27 20 3600.00 0.06 2.87 0.33 233 81
28 20 3600.00 0.02 1.16 0.41 346 114
29 20 654.39 0 2.97 0.29 46 112
30 20 3600.00 0.57 1.69 0.93 307 118
31 25 1460.91 0 1.26 0.1 44 184
32 25 3600.00 - - - 346 110
33 25 3600.00 - - - 163 138
34 25 3600.00 - - - 504 118
35 25 3600.00 - - - 97 132
36 25 3600.00 - - - 140 648
37 25 3600.00 - - - 98 135
38 25 204.20 0 2.16 0 5 88
39 25 3600.00 - - - 110 178
40 25 3600.00 - - - 152 166

Three instances (28, 30 and 40) that were previously unsolved are now solved by

adding subset row inequalities. Out of the twenty other instances in which subset row

inequalities were added, seven instances were solved faster than without adding them,

eight remain unsolved, while the others required more computation time. The LP gap of

one additional instance is closed after adding subset row inequalities.

Adding subset row inequalities improves the lower bounds that are obtained and en-

sures that less nodes have to be evaluated in the branching tree. However, the additional

time spent on solving the pricing problems as a result of adding these inequalities often

outweighs the gains of these improved bounds.

4.4.4 Comparison with current practice

In practice, the DTWAVRP is often heuristically solved as follows. A vehicle routing

problem with multiple time windows is solved, where the time windows for each customer

are its candidate time windows and demand is the average over all scenarios. Note that

when there is no time between subsequent candidate time windows, the problem reverts
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Table 4.4: Branch-price-and-cut experiment results, with capacity and subset row in-

equalities

Inst. |V ′| Tot.Time Opt.Gap LP Gap Root Gap Nodes CI SRI
1 10 4.88 0 0.4 0 2 1 0
2 10 2.02 0 1.04 0 1 6 0
3 10 1.32 0 0.47 0 1 3 0
4 10 26.31 0 1.61 0.58 16 24 17
5 10 1.59 0 0 0 1 0 0
6 10 1.56 0 0.38 0 1 6 0
7 10 1.23 0 0 0 1 0 0
8 10 1.82 0 0 0 1 0 0
9 10 3.44 0 1.78 0 4 7 0

10 10 0.96 0 0 0 1 0 0
11 15 507.00 0 3.56 0.27 119 41 30
12 15 5.91 0 1.6 0 1 31 0
13 15 15.92 0 3.44 0 2 27 0
14 15 78.51 0 2.06 0 10 4 0
15 15 1364.49 0 2.93 1.01 221 28 30
16 15 70.60 0 3.59 0.08 3 16 10
17 15 501.76 0 2.36 0.27 17 31 30
18 15 66.83 0 1.9 0 21 12 5
19 15 32.93 0 2.39 0 8 44 0
20 15 35.03 0 2.9 0 7 26 0
21 20 32.94 0 1.87 0 2 29 0
22 20 1225.18 0 1.59 0.12 19 43 26
23 20 3079.46 0 2.39 0.13 216 87 0
24 20 594.39 0 3.8 0.21 86 105 25
25 20 105.65 0 4.44 0 3 54 0
26 20 138.12 0 0.12 0 3 1 10
27 20 3600.00 - - - 7 75 27
28 20 3284.31 0 1.16 0.2 91 61 30
29 20 343.38 0 2.97 0.07 11 84 20
30 20 2425.43 0 1.33 0.33 147 96 30
31 25 820.01 0 1.26 0.01 7 162 17
32 25 3600.00 - - - 157 98 30
33 25 3600.00 - - - 30 118 30
34 25 3600.00 - - - 174 78 30
35 25 3600.00 - - - 46 113 24
36 25 3600.00 - - - 68 110 30
37 25 3600.00 - - - 25 101 30
38 25 214.90 0 2.16 0 5 88 2
39 25 3600.00 - - - 81 172 27
40 25 489.06 0 3.49 0 4 101 10

to a vehicle routing problem with a single time window. The time window within which

service commences at each customer is selected for the time window assignment.

We have implemented this procedure and used it to obtain solutions for our instances.

To evaluate the expected costs of the time window assignment that is obtained, a VRPTW

is solved for each scenario using the assigned time windows.

Table 4.5 shows the difference between the quality of the solutions obtained by this

procedure and that of the optimal solutions obtained using the branch-price-and-cut al-

gorithm. The column Value gives the expected costs of using the heuristic procedure,

Opt. gives the optimal expected costs of the instance, and Gap provides the percentage

difference between the heuristic solution value and the optimal one. Note that only the

instances for which an optimal solution was found are included in Table 4.5.

Only for one instance does the heuristic find an optimal time window assignment.

The difference between the optimal solution value and the solution value found by the

heuristic is up to 7.01% for these instances with an average difference of 3.32%. Table 4.5

suggests that the difference increases with the number of customers.
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Table 4.5: Current practice experiment results

Inst. |V ′| Value Opt. Gap
1 10 12.87 12.83 0.31
2 10 17.53 16.84 4.10
3 10 16.72 16.60 0.72
4 10 15.96 15.96 0
5 10 20.11 19.65 2.34
6 10 18.38 18.13 1.28
7 10 12.35 12.17 1.48
8 10 17.44 17.09 2.05
9 10 20.54 20.14 1.99

10 10 17.54 17.17 2.15
Average gap: 1.65

11 15 23.47 23.04 1.87
12 15 25.73 24.27 6.02
13 15 23.15 22.12 4.66
14 15 18.73 18.46 1.46
15 15 25.47 24.87 2.41
16 15 20.73 19.82 4.59
17 15 22.80 21.96 3.83
18 15 23.40 22.93 2.05
19 15 24.15 23.14 4.36
20 15 19.16 18.84 1.70

Average gap: 3.29
21 20 29.54 27.99 5.54
22 20 26.97 25.63 5.23
23 20 27.25 26.53 2.71
24 20 33.79 32.36 4.42
25 20 30.85 28.84 6.97
26 20 27.97 26.99 3.63
28 20 28.39 26.53 7.01
29 20 30.15 29.49 2.24
30 20 24.53 23.55 4.16

Average gap: 4.65
31 25 37.02 35.46 4.40
38 25 36.80 34.83 5.57
40 25 32.30 30.73 5.11

Average gap: 5.05
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4.5 Conclusion

In this chapter, we have introduced a new problem, the DTWAVRP. We have developed

an exact branch-price-and-cut algorithm to solve it. The column generation algorithm

exploits the fact that columns for one scenario can be reused in another scenario. Fur-

thermore, we use an ng-route relaxation to speed up the pricing problem while limiting

the decrease of the LP value and we also generate columns using a tabu search heuristic.

Finally, the branch-price-and-cut algorithm incorporates valid inequalities that are known

from vehicle routing, namely, capacity and subset row inequalities.

We are able to solve instances of up to 25 customers and 3 scenarios. Moreover,

the experiments show that using the exact algorithm for the instances presented in this

chapter, provides a decrease of up to 7.01% in expected costs with respect to current

practice.

In the future, various research directions ensuing from this work can be explored. One

of them would be to consider customer preferences on the candidate time windows that

can be assigned to them and to include in the DTWAVRP a secondary objective consisting

of maximizing the customer preference satisfaction. Another line of research would be to

enhance the proposed method or develop a new one to tackle instances involving a large

number of scenarios. Finally, it would be interesting to devise a heuristic based on the

proposed branch-price-and-cut algorithm that would be able to solve instances involving

more than 25 customers. In particular, one may think about branching directly and only

on the time window variables as the assigned time windows are the only decisions imposed

following the solution of the DTWAVRP.





Chapter 5

The Driver Assignment Vehicle

Routing problem

5.1 Introduction

The capacitated vehicle routing problem, CVRP, is the problem of designing routes for

vehicles with limited capacity to deliver goods to customers in a distribution network,

such that the total transportation costs are minimized. This is a well studied problem

in the scientific literature, see Baldacci et al. (2012), Laporte (2009) and Toth and Vigo

(2002) amongst others for a survey on exact and heuristic methods to solve the CVRP.

In distribution networks where each customer frequently receives a delivery, it is often

desired that the same driver makes these deliveries. The quality of service benefits from

regularity and personalization by having the same driver visit a customer, as is suggested

by Bertsimas and Simchi-Levi (1996). Moreover, Groër et al. (2009) indicate that because

drivers at UPS form a real bond with customers they generate additional sales with a

volume of over 60 million packages per year. In this chapter we focus on distribution

networks in which the driver is also responsible for unloading the shipment and placing

them in the storage facility of the customer, e.g. as is the case for the service provided

by TNT Innight. This requires the driver to carry a key or password to enter the storage

facility, which increases the need of a customer to be visited by the same driver. Moreover,

security screening of drivers in this case, further increases this need.

In this chapter we study the problem of assigning customers to drivers before the

quantity to be delivered to these customers is known. We consider a set of demand

scenarios, and for each scenario a delivery schedule has to be made which minimizes the

transportation costs while satisfying the vehicle capacity constraints. Furthermore, the
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delivery schedules per scenario should be such that at least a fraction α of the customers

that are assigned to a driver is actually visited by that driver, where α is provided by

the decision maker. The driver assignment vehicle routing problem, DAVRP, is to assign

customers to drivers such that the expected transportation costs over all scenarios are

minimized. The DAVRP is NP-hard as in the case of one scenario it reduces to the

CVRP.

The DAVRP is similar to the consistent vehicle routing problem, ConVRP, introduced

by Groër et al. (2009). In the ConVRP each customer must also always be visited by

the same driver. However, it is additionally required that the time of delivery for a

single customer cannot differ by more than a limited amount of time per scenario. In

the DAVRP we do not consider the timing of deliveries as this is not relevant in the

application on which we focus. Moreover, the decision maker is allowed more flexibility

by setting an appropriate α. Groër et al. (2009) report finding optimal solutions to the

ConVRP of instances with up to 12 customers and 3 scenarios using a commercial mixed

integer programming solver, and they design a local search heuristic which they use to

solve instances with over 3700 customers.

In another related study, Li et al. (2009) consider the rescheduling of bus trips in case

of a disruption. In their model, they incorporate a penalty for assigning drivers to a trip

they are unfamiliar with. They design a Lagrangian heuristic to solve their problem.

The main contributions of this chapter are the following. We propose a new and

relevant problem, the DAVRP. Secondly, we design a cluster first-route second heuristic

and use it to find good solutions to the DAVRP for instances with up to 100 customers

and instances with up to 100 scenarios. Thirdly, in our computational experiments we

study the costs of adhering to the driver assignments. We compare the costs of always

having a customer visited by the same driver, with the costs of relaxing this requirement

entirely. Such an analysis aids a policy maker in determining whether it is worthwhile

to require customers to be visited by the same driver. Furthermore, using two variants

of the cluster first-route second algorithm, we study the increase in transportation costs

of only constructing new routes with customers that cannot be visited by their assigned

drivers, instead of trying to assign them to different drivers.

The outline of this chapter is the following. In the next section, the DAVRP is formally

defined. In Section 5.3, the cluster first-route second heuristic is presented. We provide the

results of our computational experiments in Section 5.4, and we end with our conclusions

in Section 5.5.
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5.2 Problem definition

Consider a complete graph G = (V,E), where V = {0, ..., n} is a set of locations such

that 0 represents the depot and V ′ = {1, ..., n} are the customers. A route is a path in

G starting and ending at the depot. A routing schedule is a collection of routes such that

each customer is visited exactly once.

Let cij ≥ 0 be the cost to travel along edge (i, j). Hence, the costs of a routing schedule

is the sum of the edges that are used on the routes. The travel costs satisfy the triangle

inequality.

Let K be the set of available vehicles, each having a capacity of Q. Without loss of

generality, let the set of vehicles be ordered, K = {k1, ..., k|K|}. In our model there is no

distinction between a driver and a vehicle. Therefore, we will use the term driver and

vehicle interchangeably throughout this chapter. Each driver will drive at most one route.

Moreover, in this chapter we consider |K| = n.

Furthermore, a set Ω of scenarios is given, where each scenario is characterized by a

realization of demand. Let demand at location i in scenario ω ∈ Ω be given by the integer

qωi such that 1 ≤ qωi ≤ Q. Let the probability that scenario ω occurs be pω.

A driver assignment is an assignment of every customer to a driver. Note that not

every driver necessarily has a customer assigned to it. Given a driver assignment, a routing

schedule is considered feasible for scenario ω if for every driver at least a fraction α of

the customers assigned to it is visited by that driver and additionally when every route

satisfies the vehicle capacity constraint. A driver assignment is considered feasible if for

every scenario there exists at least one feasible routing schedule. The driver assignment

vehicle routing problem, DAVRP, is to find a feasible driver assignment and a feasible

routing schedule for every scenario such that the expected traveling costs over all scenarios

are minimized.

Next, we provide a mixed integer linear programming formulation of the DAVRP. Let

aik, for all i ∈ V ′ and k ∈ K, indicate whether customer i is assigned to driver k. Let

xω
ijk, for all i, j ∈ V , k ∈ K and ω ∈ Ω, indicate whether driver k travels from customer

i to j in scenario ω. Furthermore, let fω
ijk, for all i, j ∈ V , k ∈ K and ω ∈ Ω, be the

commodity flow between customer i and j on vehicle k in scenario ω. Finally, let dωik, for

all i ∈ V ′, k ∈ K and ω ∈ Ω, indicate whether customer i is assigned to vehicle k but is

visited by another vehicle in scenario ω. The DAVRP can be formulated as follows.
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min
∑

ω∈Ω,i,j∈V,k∈K

pωcijx
ω
ijk (5.1)

∑
k∈K

aik = 1 ∀i ∈ V ′ (5.2)

∑
j∈V,k∈K

xω
ijk = 1 ∀i ∈ V ′, ∀ω ∈ Ω (5.3)

∑
j∈V ′

xω
0jk ≤ 1 ∀k ∈ K, ∀ω ∈ Ω (5.4)

∑
j∈V

xω
ijk =

∑
j∈V

xω
jik ∀i ∈ V , ∀k ∈ K, ∀ω ∈ Ω (5.5)

∑
j∈V

(fω
jik − fω

ijk) = qωi
∑
j∈V

xω
ijk ∀i ∈ V ′, ∀k ∈ K, ∀ω ∈ Ω (5.6)

fω
ijk ≤ (Q− qωi )x

ω
ijk ∀i, j ∈ V , ∀k ∈ K, ∀ω ∈ Ω (5.7)

fω
ijk ≥ qωj x

ω
ijk ∀i, j ∈ V , ∀k ∈ K, ∀ω ∈ Ω (5.8)

aik −
∑
j∈V

xω
ijk ≤ dωik ∀i ∈ V ′, ∀k ∈ K, ∀ω ∈ Ω (5.9)

∑
i∈V ′

dωik ≤ (1− α)
∑
i∈V ′

aik ∀k ∈ K, ∀ω ∈ Ω (5.10)

∑
i∈V ′,k∈K

xω
0ik ≥

⌈∑
i∈V ′ qωi
Q

⌉
∀ω ∈ Ω (5.11)

∑
i∈V ′

aikl
≥

∑
i∈V ′

aikl+1
∀kl ∈ K\{k|K|

}
(5.12)

∑
i∈V

xω
0ikl

≥
∑
i∈V

xω
0ikl+1

∀kl ∈ K\{k|K|
}
, ∀ω ∈ Ω (5.13)

aik ∈ {0, 1} ∀i ∈ V ′, ∀k ∈ K (5.14)

xω
ijk ∈ {0, 1} ∀i, j ∈ V , ∀k ∈ K, ∀ω ∈ Ω (5.15)

fω
ijk ∈ [0, Q] ∀i, j ∈ V , ∀k ∈ K, ∀ω ∈ Ω (5.16)

dωik ∈ {0, 1} ∀i ∈ V ′, ∀k ∈ K, ∀ω ∈ Ω (5.17)

The objective function is given by (5.1). Constraints (5.2) ensure that each customer

is assigned to a driver.

Constraints (5.3)-(5.8) are the vehicle routing constraints that make sure that any

integer solution represent a routing schedule for each scenario. These constraints are

based on a formulation of the heterogenous vehicle routing problem, HVRP. The HVRP
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is a vehicle routing problem in which a heterogenous fleet of vehicles is available. In this

problem customers have to be assigned to specific vehicles among a collection of vehicles

with different capacities. The HVRP is to construct a routing schedule that minimizes the

total traveling and vehicle usage costs, while adhering to this assignment and the capacity

constraints. Six formulations of the HVRP are provided and compared by Yaman (2006).

Constraints (5.3)-(5.8) are based on HV RP6, which is the strongest formulation of these

six.

Constraints (5.3) make sure that each customer is departed from exactly once in every

scenario and constraints (5.4) make sure that each driver drives at most one route. Each

driver departs from a location as often as it arrives there due to (5.5).

Constraints (5.6)-(5.8) are the commodity flow constraints. They prohibit the violation

of the capacity constraints in any scenario. Moreover, they ensure that in each scenario

no subtours are allowed in any integer solution. Constraints (5.6) ensure that for each

scenario ω and driver k the flow into location i is exactly its demand qωi if driver k is used

in scenario ω to visit customer i. The vehicle capacity is never violated by the flow from

node i to j due to constraints (5.7). Moreover, constraints (5.8) ensure that if driver k

travels from i to j in scenario ω, the flow is at least the demand of j.

Constraints (5.9) ensure that when customer i is assigned to driver k but is not visited

by that driver in scenario ω then dωik = 1. Constraints (5.10) ensure that at most a

fraction 1 − α of the customers assigned to driver k may be visited in scenario ω by

another driver. This is of course equivalent with the requirement that at least a fraction

α of the customers assigned to driver k are visited in scenario ω by that driver.

Constraints (5.11)-(5.13) are not required for the validity of the formulation. Con-

straints (5.11) are valid inequalities known for vehicle routing problems which strengthen

the LP bound. They force a minimum number of vehicles to be used in each scenario.

Constraints (5.12) and (5.13) are symmetry breaking constraints that might speed up a

branching procedure. Constraints (5.12) ensure that a driver always gets assigned at least

the same amount of customers as the next driver. Constraints (5.13) ensure that in each

scenario ω, a driver can only be used whenever the previous driver is also in use.

The variable domains are specified by (5.14)-(5.17). Note that the formulation remains

valid when we relax integrality on dωik.

In Section 5.4, we present results of computational experiments in which the DAVRP is

solved using formulation (5.1)-(5.17) and a commercial mixed integer programming solver.

Next, we describe a cluster first-route second heuristic to quickly find good solutions to

the DAVRP.
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5.3 Solution method

To quickly find solutions to the DAVRP with a large number of customers and scenarios,

we propose a heuristic. In this heuristic we decouple the driver assignment and the routing

in each scenario. It is a two-phase approach that is similar to cluster first-route second

heuristics, which are a well known family of heuristics for vehicle routing problems. In

the first phase of cluster first-route second heuristics for the vehicle routing problem,

customers are clustered and in the second phase a routing schedule is constructed based

on these clusters. For the CVRP, one typically ensures for every cluster in the first phase

that the total demand of the customers in a cluster does not exceed the capacity of a

vehicle. This way, a feasible routing schedule can be obtained in the second phase by

simply constructing a route for each cluster. Well known examples of cluster first-route

second algorithms for the CVRP are provided by Fisher and Jaikumar (1981) and Bramel

and Simchi-Levi (1995).

In this section we describe a cluster first-route second algorithm for the DAVRP. In

Section 3.1 we describe an algorithm used in the first phase to construct clusters. In

Section 3.2 we describe two algorithms that are used in the second phase to construct a

routing schedule based on the clusters obtained in the first phase. In the first algorithm

for the second phase, we allow customers that are not visited by their assigned driver to

be assigned to another driver that already has customers assigned to it. In the second

algorithm for the second phase, customers that are not visited by their assigned driver

are used to construct routes for drivers that do not have any customers assigned to them.

5.3.1 Cluster first

In the first phase we construct clusters of customers. We require of every cluster that

in each scenario at least one subset of customers, containing at least a fraction α of all

customers in that cluster, has a total demand less or equal to the vehicle capacity. This

allows us to use the clusters of customers as driver assignments, i.e. a feasible driver

assignment is obtained by assigning all customers in one cluster (and no other customers)

to a single driver. In the second phase we construct a routing schedule using the driver

assignment obtained in the first phase.

The clustering problem

Next, we introduce the clustering problem which we solve to construct clusters. Consider

a set of potential cluster centers, we will use the set of customers V ′ for this. When a
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cluster center is in use, costs are incurred equal to the traveling costs from the depot to

a cluster center plus some penalty costs β ≥ 0. Furthermore, all customers are assigned

to a cluster. Note that a customer location can be used as a cluster center, while that

customer itself is assigned to a different cluster. In each scenario a decision is made

whether a customer is skipped. If a location is not skipped, costs are incurred equal to

the traveling costs from that customer to its assigned cluster center, otherwise traveling

costs to the depot are incurred. In every scenario, at least a fraction α of the customers

in a cluster must not be skipped. Furthermore, in each scenario the capacity constraints

must be satisfied by the locations in a cluster that are not skipped. The clustering problem

is to select clusters, assign each customer to one of the selected clusters and select which

customers to skip in each scenario, such that the total costs are minimized.

A solution of the clustering problem can directly be used as a feasible driver assign-

ment. Moreover, note that the corresponding solution value (times 2) provides an upper

bound on the solution value of any feasible solution to the DAVRP using this driver as-

signment. The optimal solution to the clustering problem minimizes this upper bound.

Furthermore, β is added to the costs of using a cluster center to discourage the use of too

many cluster centers.

Next we provide an integer linear programming formulation for the clustering problem.

Let yj, for all j ∈ V ′, indicate whether potential cluster center j is selected. Let zij, for

all i, j ∈ V ′ indicate whether customer i is assigned to cluster center j. Finally, let zωij,

for all i, j ∈ V ′ and ω ∈ Ω, indicate whether location i is assigned to cluster center j and

is not skipped in scenario ω. The clustering problem can be formulated as follows.

min
∑
j∈V ′

(c0j + β)yj +
∑

i,j∈V ′,ω∈Ω
pω

[
cijz

ω
ij + c0i(zij − zωij)

]
(5.18)

∑
j∈V ′

zij = 1 ∀i ∈ V ′ (5.19)

zij ≤ yj ∀i, j ∈ V ′ (5.20)

zωij ≤ zij ∀i, j ∈ V ′, ∀ω ∈ Ω (5.21)∑
i∈V ′

qωi z
ω
ij ≤ Qyj ∀j ∈ V ′, ∀ω ∈ Ω (5.22)

α
∑
i∈V ′

zij ≤
∑
i∈V ′

zωij ∀j ∈ V ′, ∀ω ∈ Ω (5.23)

yj, zij, z
ω
ij ∈ {0, 1} ∀i, j ∈ V ′, ∀ω ∈ Ω (5.24)
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The objective function is given by (5.18). Constraints (5.19) ensure that each location

is assigned to a cluster center. Furthermore, constraints (5.20) model the requirement that

a location can only be assigned to a cluster center that is in use. It is ensured in (5.21)

that a location cannot be assigned to a cluster in a specific scenario, if it not assigned

to that cluster in general. Constraints (5.22) are the capacity constraints per scenario.

Finally, constraints (5.23) ensure that at least α% of the customers in a cluster are not

skipped per scenario. Note that constraints (5.20) are not necessary for the validity of

the formulation but serve to strengthen it.

Lower bounds for the clustering problem

To find a lower bound on the solution value of the clustering problem, we apply Lagrangian

relaxation. Let λ and μ be the dual multipliers associated with constraints (5.21) and

(5.23) respectively. Consider the Lagrangian relaxation of the clustering problem obtained

by relaxing (5.21) and (5.23). In this relaxed problem, for each j ∈ V ′ and ω ∈ Ω, if

yj = 0 then zωij = 0 for all i ∈ V ′ otherwise the optimal values of zωij can be found by

solving the following knapsack problem.

vωj (λ, μ) = min
∑
i∈V ′

(pω(cij−c0i) + λω
ij − μω

j )z
ω
ij (5.25)

∑
i∈V ′

qωi z
ω
ij ≤ Q (5.26)

zωij ∈ {0, 1} ∀i ∈ V ′ (5.27)

For specific values of λ and μ, let θ(λ, μ) be the value of the Lagrangian relaxation.

It is obtained by solving the following uncapacitated facility location problem.

θ(λ, μ) = min
∑
j∈V ′

(
c0j + β +

∑
ω∈Ω

vωj (λ, μ)

)
yj+

+
∑
i,j∈V ′

(c0i −
∑
ω∈Ω

λω
ij + α

∑
ω∈Ω

μω
j )zij (5.28)

∑
j∈V ′

zij = 1 ∀i ∈ V ′ (5.29)

zij ≤ yj ∀i, j ∈ V ′ (5.30)

yj, zij ∈ {0, 1} ∀i, j ∈ V ′ (5.31)
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Computing θ(λ, μ) entails solving |V ′| · |Ω| knapsack problems and one uncapacitated

facility location problem. In our implementation we solve each knapsack problem using

a standard dynamic programming algorithm, see also Keller et al. (2004). We solve the

uncapacitated facility location problem using a commercial mixed integer programming

solver. For more specialized solution procedures see for instance Erlenkotter (1978) and

Körkel (1989).

To optimize the lower bound provided by θ(λ, μ) we apply a subgradient optimization

procedure. This procedure makes use of some upper bound to the clustering problem

UB and a parameter γ. For some initial multipliers λ(0) and μ(0), the lower bound

θ(λ(0), μ(0)) is calculated. Next, the multipliers are updated and used to calculate a new

lower bound. The multipliers are updated as follows.

λω
ij(t+ 1) = max

{
λω
ij(t) + γ

θ(λ(t), μ(t))− UB∑
i,j∈V ′,ω∈Ω

(
zij − zωij

)2 (zij − zωij
)
, 0

}

μω
j (t+ 1) = max

{
μω
j (t) + γ

θ(λ(t), μ(t))− UB∑
j∈V ′,ω∈Ω

(∑
i∈V ′

(
zωij − αzij

))2
(∑

i∈V ′

(
zωij − αzij

))
, 0

}

This procedure is repeated iteratively. If the lower bound does not improve for γi

iterations, then γ is decreased by a factor γf . The procedure terminates when either

the relaxed solution is feasible for the clustering problem, or a preset optimality gap is

obtained, or γ decreases below a certain threshold γt.

Note that this updating scheme of the multipliers does not guarantee convergence to

optimality. However, it performs well in practice.

Upper bounds for the clustering problem

At every iteration of the subgradient optimization algorithm, a solution to the Lagrangian

relaxation is obtained. When this relaxed solution is not feasible for the clustering prob-

lem, a heuristic is used to find a feasible solution by modifying the relaxed solution,

yielding an upper bound. If the new upper bound is lower than UB, UB is replaced.

Next, we describe the heuristic to obtain this upper bound.

Observe that initially constraints (5.21) and (5.23) might be violated by the relaxed

solution. We attempt to repair this using a greedy procedure. First, we skip all customers

that are not skipped in some cluster, but which are also not assigned to that cluster,

i.e. if zωij = 1 and zij = 0 then we set zωij = 0. The current solution now satisfies

constraints (5.21).
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If (5.23) is violated, then there exists a customer i that is assigned to some cluster

center j and is skipped in some scenario ω, i.e. zij = 1 and zωij = 0. Next, customer i

will be assigned to a different cluster center. Find all cluster centers that are in use and

where customer i can be assigned to without violating (5.22) and (5.23), and select the

cheapest cluster center j′. If cluster center i is not in use, compare the costs of assigning

customer i to cluster center j′ with the costs of using cluster center i. The cheapest option

is executed. If location i cannot be assigned to a different cluster center, the heuristic

fails to find a feasible solution. This step is repeated until (5.23) is no longer violated.

The heuristic is summarized in Algorithm 5.1.

Algorithm 5.1 Heuristic to find a feasible solution to the clustering problem.

Require: A feasible solution to the Lagrangian relaxation (5.28)-(5.31).

for all i, j ∈ V ′ and ω ∈ Ω such that zωij = 1 and zij = 0 do

Set zωij = 0.

end for

for all j ∈ V ′ and ω ∈ Ω such that (5.23) is violated do

Select an i ∈ V ′ such that zij = 1 and zωij = 0.

Set zij = 0 and zωij = 0 for all ω ∈ Ω, i.e. remove location i from cluster j.

Let j ′ be the cheapest cluster center where location i can feasibly be added to,

in particular without violating (5.22) and (5.23).

if no such j′ exists or the costs of using location i as a cluster center are lower then

if yi = 0 then

Create a new cluster center by setting yi = 1, zii = 1 and zωii = 1 for all ω ∈ Ω.

else

The algorithm fails to identify a feasible solution

end if

else

Add location i to cluster j ′.

end if

end for

In our implementation, for all j ∈ V ′ and ω ∈ Ω such that (5.23) is violated we select

location i ∈ V ′ such that zij = 1 and zωij = 0 as follows. Select the customer that is

skipped most in cluster center j among all scenarios in which (5.23) is violated. Also

note that in searching for a new cluster center to assign a customer to, it is sufficient
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for our purposes to merely try to assign the customer to that cluster center in different

scenarios, without considering skipping customers that are currently not skipped. This

does, however, increase the likeliness of the heuristic failing to identify a feasible solution.

The clustering algorithm

To solve the clustering problem we use a branch-and-bound algorithm, which we refer to

as the clustering algorithm. Lower bounds are found using the subgradient optimization

algorithm and upper bounds are found by using Algorithm 5.1 at each iteration of the

subgradient optimization algorithm. Branching is done in such a way that for each node

that is added to the branching tree one of the constraints (5.21) or (5.23), which is violated

by a current solution to the Lagrangian relaxation, is no longer violated. Next, we explain

this in more detail.

First, select a customer i, a cluster center j and scenario ω for which (5.21) is violated.

Next, we add two new nodes to the search tree. In one node we set zij = 0 and zω
′

ij = 0 for

all ω′ ∈ Ω. In the other node we set zij = 1, yj = 1 and zij′ = zω
′

ij′ = 0 for all j′ ∈ V ′\{j}
and ω′ ∈ Ω\{ω}. In both newly added nodes any solution to the Lagrangian relaxation

now satisfies (5.21) for i, j and ω.

If constraints (5.21) are not violated in the current solution, we select a cluster center

j and scenario ω for which (5.23) is violated. For every customer i such that zij = 1,

a new node is added to the branching tree in which we set zij = 0 and zω
′

ij = 0 for all

ω′ ∈ Ω. Furthermore, for every customer i such that zωij = 0, a new node is added to

the branching tree in which we set zωij = 1, zij = 1, yj = 1 and zij′ = zω
′

ij′ = 0 for all

j′ ∈ V ′\{j} and ω′ ∈ Ω\{ω}.
In each iteration of the branch-and-bound algorithm, the node with the lowest lower

bound is selected to be processed next.

5.3.2 Route second

The clustering algorithm as described in Section 5.3.1 provides clusters of customers.

By assigning every customer in one cluster (and no other customers) to a single driver,

a feasible driver assignment is obtained. In the routing phase of the cluster first-route

second algorithm, this driver assignment is used to construct a feasible routing schedule

for every scenario.

The routing problem is the problem of, given a feasible driver assignment, finding

a feasible routing schedule for scenario ω that minimizes the traveling costs. Next, we

provide an algorithm to solve the routing problem to optimality, referred to as the exact
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routing algorithm. We also present a heuristic algorithm to find a solution to the routing

problem, referred to as the heuristic routing algorithm. In the heuristic routing algorithm,

customers that are not visited by their assigned driver are used to construct new routes

instead of trying to add them to drivers that already have customers assigned to it.

The exact routing algorithm

We provide a mixed integer linear programming formulation of the routing problem. It

is obtained by considering the parts of (5.1)-(5.17) that pertain to scenario ω. Moreover,

to make the formulation more compact, we introduce the set of drivers K̂ containing all

drivers k ∈ K that are part of the driver assignment and containing an artificial driver k̂.

This artificial driver represents all drivers that do not have a customer assigned to it in

the driver assignment. As such, the artificial driver may drive multiple routes. For ease

of notation, let k(i) ∈ K̂ be the driver to which customer i is assigned. Finally, let Ak be

the number of customers assigned to driver k. The formulation is the following.
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min pω
∑

i,j∈V,k∈K̂
cijx

ω
ijk (5.32)

∑
j∈V,k∈K̂

xω
ijk = 1 ∀i ∈ V ′ (5.33)

∑
j∈V

xω
ijk =

∑
j∈V

xω
jik ∀i ∈ V , ∀k ∈ K̂ (5.34)

∑
j∈V ′

xω
0jk ≤ 1 ∀k ∈ K̂\{k̂} (5.35)

∑
j∈V

(fω
jik − fω

ijk) = qωi
∑
j∈V

xω
ijk ∀i ∈ V ′, ∀k ∈ K̂ (5.36)

fω
ijk ≤ (Q− qωi )x

ω
ijk ∀i, j ∈ V , ∀k ∈ K̂ (5.37)

fω
ijk ≥ qωj x

ω
ijk ∀i, j ∈ V , ∀k ∈ K̂ (5.38)

1−
∑
j∈V

xω
ijk(i) ≤ dωik(i) ∀i ∈ V ′ (5.39)

∑
i∈V ′:k(i)=k

dωik ≤ (1− α)Ak ∀k ∈ K̂\{k̂} (5.40)

∑
i∈V ′,k∈KM

xω
0ik ≥

⌈∑′
i∈V qωi
Q

⌉
(5.41)

xω
ijk ∈ {0, 1} ∀i, j ∈ V , ∀k ∈ K̂ (5.42)

dωik(i) ∈ {0, 1} ∀i ∈ V (5.43)

fω
ijk ∈ [0, Q] ∀i ∈ V , ∀k ∈ K̂ (5.44)

The interpretation of (5.32)-(5.44) is analogous to that of (5.1), (5.3)-(5.11) and (5.15)-

(5.17).
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Formulation (5.32)-(5.44) can be strengthened by adding valid inequalities known for

the CVRP. In particular, we consider adding capacity inequalities, which are defined as

follows.

∑
i∈S,j �∈S

xω
ijk ≥ b(S) ∀S ⊆ V ′, ∀k ∈ K̂ (5.45)

Here b(S) is the minimum number of vehicles needed to visit all customers in S.

Computing b(S) requires solving a bin packing problem. As is common, we replace b(S)

by the lower bound
⌈∑

i∈S qωi
Q

⌉
instead.

The exact routing algorithm is a branch-and-cut algorithm using formulation (5.32)-

(5.44) to solve the routing problem for every scenario ω ∈ Ω. Violated capacity inequalities

are separated only in the rootnode using the heuristic of Lysgaard et al.(2004). We use the

implementation of the separation algorithm provided in the package by Lysgaard (2003).

Furthermore, we use a commercial mixed integer programming solver to solve the LP

relaxation and to construct the search tree.

The heuristic routing algorithm

The heuristic routing algorithm makes use of the solution to the clustering problem as

found by the clustering algorithm. In every scenario, a route is constructed for each

cluster center using the customers that are not skipped. This is done by solving a traveling

salesman problem, TSP. Furthermore, a CVRP is solved using the skipped customers of

every cluster center. The routes obtained by solving the TSP for each cluster and solving

the CVRP, together form a feasible routing schedule.

To solve the TSP, we use a branch-and-cut algorithm and a formulation containing

only degree constraints. We add subtour elimination constraints that are separated by

solving a max flow problem. We perform special ordered set branching and perform depth

first search until an integer solution is found and switch to best node first search next.

For an overview of algorithms to solve the TSP see Applegate et al.(2006).

To solve the CVRP, we use our implementation of the exact routing algorithm, where

we remove the customers that are not skipped in the solution to the clustering problem,

and where we set K̂ = {k̂}. This yields a branch-and-cut algorithm for the CVRP, where

violated capacity inequalities are separated at the rootnode only.
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5.4 Computational results

In this section, we present results of computational experiments in which instances of the

DAVRP are solved. The procedure used to generate instances is described in Section 5.4.1.

In Section 5.4.2 we illustrate the computational complexity of the DAVRP empirically by

solving instances using a commercial mixed integer programming solver and formulation

(5.1)-(5.17). The computational results in Section 5.4.3 show how the optimality gap of

the solution to the clustering problem affects the quality of the solution to the DAVRP

produced by the cluster first-route second algorithm. In Section 5.4.4, the performance

of the cluster first-route second heuristic using the exact routing algorithm and using the

heuristic routing algorithm is compared. In particular, this gives insight in the increase

in transportation costs from constructing new routes with skipped customers as is done

in the heuristic routing algorithm, instead of trying to assign them to drivers that already

have customers assigned to it. We illustrate the limitations of the cluster-first route-

second algorithm in Section 5.4.5 by solving instances with a large number of customers

and a large number of scenarios. Finally, computational results are presented in Section

5.4.6 to show the effect of the value of α on the costs of the routing schedule produced by

our algorithm. The same experiments also provide a bound on the quality of the solutions

produced by the cluster first-route second algorithm using the exact routing algorithm.

Preliminary experiments with the clustering algorithm indicate that choosing β = 7.1

(an upper bound on the traveling costs in our experiments), initially setting γ = 2, and

setting γi = 100, γf = 2, γt = 0.0001 produces good results. These settings are used in

all experiments of which results are presented in this chapter. Also we set a time limit

of 60 seconds on the running time of the clustering algorithm. In our experiments the

quality of the solution produced by the cluster first-route second algorithm never improves

from maintaining a higher time limit. The time limit on the running time of the cluster

first-route second algorithm is set to 1 hour.

All experiments are performed on an Intel(R) Core(TM) i5-2450M CPU 2.5 GHz

processor. The algorithms were coded in C++ and the commercial mixed integer pro-

gramming solver IBM ILOG Cplex optimizer, version 12.4, is used.

5.4.1 Test instances

We generate the instances1 used in our computational experiments as follows. First,

n customers are randomly generated, uniformly distributed over a square with sides 5.

The depot is located in the center of the square. The travel costs are computed as the

1Instances are available on request.
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Table 5.1: Solving the DAVRP to optimality

Inst. |V ′| Gap Time
1 10 0 220.08
2 10 0 577.03
3 10 0 2903.97
4 10 0 491.97
5 10 0 638.78
6 15 0.09 3600.00
7 15 0.06 3600.00
8 15 0.06 3600.00
9 15 0 3259.74

10 15 0 2991.34
11 20 - 3600.00
12 20 - 3600.00
13 20 - 3600.00
14 20 - 3600.00
15 20 - 3600.00

Euclidean distance between two locations. The vehicle capacity is set to 50 and, unless

stated otherwise, we set α = 0.75.

With the exception of the experiments presented in Section 5.4.5, 3 demand scenarios

are generated, each occurring with equal probability. Let the demand scenarios be Ω =

{1, 2, 3}. Demand of customer i ∈ V ′ in scenario ω ∈ Ω is computed as diu
ω
i , where di is

generated using a normal distribution with expectation 5 and variance 1.5, and where u1
v,

u2
v and u3

v are generated using a uniform distribution on [0.7, 0.8], [0.95, 1.05] and [1.2, 1.3],

respectively. Generating demand in this fashion ensures that the scenarios resemble low,

medium and high demand respectively for all customers.

5.4.2 Results on solving the DAVRP to optimality

Next, we present the results of an experiment in which the DAVRP is solved using a

commercial mixed integer programming solver and formulation (5.1)-(5.17). Table 5.1

shows the results of solving instances with 10, 15 and 20 customers. The column Gap

provides the optimality gap after termination, a dash indicates that no integer solution

has been found within one hour. The column Time shows computation time in seconds.

Optimality is not proved for three out of the five instances with 15 customers within

one hour. Furthermore, no integer solution is found for any of the instances with 20

customers within one hour. This illustrates that standard branch-and-bound procedures

using formulation (5.1)-(5.17) will not be sufficient to solve the DAVRP in practice.
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Table 5.2: Cluster first-route second, different optimality gaps in the clustering algorithm

Gap 1% Gap 5% Gap 10%
Inst. Value Time Ph.1 Time Ph.2 Value Time Ph.1 Time Ph.2 Value Time Ph.1 Time Ph.2

16 29.69 60.00 425.88 29.06 2.01 92.84 29.02 1.62 163.21
17 24.96 30.39 424.11 25.08 10.37 182.57 27.30 4.99 415.98
18 30.36 60.00 1477.08 30.21 10.14 488.73 31.20 4.01 1125.69
19 27.66 4.10 171.55 27.62 1.19 232.41 27.34 0.91 137.37
20 27.42 60.00 302.61 27.22 24.24 242.40 27.16 9.47 175.17
21 25.92 60.00 667.50 25.92 30.21 607.39 25.95 6.94 439.07
22 29.26 60.00 877.75 28.88 5.99 293.67 29.35 4.96 385.37
23 28.48 60.00 587.53 28.48 19.00 1517.42 28.20 6.79 164.21
24 26.18 60.00 169.56 26.33 5.41 68.02 26.36 3.00 30.94
25 27.43 4.38 29.61 27.45 1.19 18.60 28.61 0.47 382.41

5.4.3 Analysis of the optimality gap in the clustering algorithm

The optimal solution to the clustering problem is not guaranteed to provide the optimal

driver assignment. Moreover, spending computation time on proving optimality might

not be necessary in the first phase of the cluster first-route second algorithm. Therefore,

the clustering algorithm is terminated when the optimality gap of its current solution

is below some specified level. In Table 5.2 the results are shown of using the cluster

first-route second algorithm, using the exact routing algorithm, to solve ten instances

with 25 customers. Each instance is solved three times where the clustering algorithm

is terminated when an optimality gap of respectively 1%, 5% and 10% is attained. The

columns Value show the value of the solution to the DAVRP produced by the cluster

first-route second algorithm. The columns Time Ph.1 present the computation time in

seconds of the clustering algorithm and the columns Time Ph.2 present the computation

time in seconds of the exact routing algorithm.

Requiring an optimality of 1% in the clustering algorithm allows termination within

the time limit of 60 seconds in three out of ten instances. On average, the solution

produced when requiring an optimality gap of 1% are 0.4% more expensive than requiring

an optimality gap of 5%. Requiring an optimality gap of 10% yields solutions that are

on average 1.6% more expensive than requiring an optimality gap of 5%. Closing the

optimality gap in the clustering algorithm does not seem to significantly decrease the

costs of the solution produced by the cluster first-route second algorithm.

In our experiments, terminating the clustering algorithm when an optimality gap

of 5% is attained provides good solutions in relatively little computation time. In all

the experiments presented in the remainder of this section, the clustering algorithm is

terminated when an optimality gap of 5% is attained.



88 The Driver Assignment Vehicle Routing problem

Table 5.3: Cluster first-route second, exact and heuristic routing

Inst. |V ′| Time Ph.1 Time Ph.2 Exact Time Ph.2 Heuristic Diff.
26 20 4.38 56.41 3.65 20.97
27 20 6.30 30.20 6.41 19.13
28 20 60.00 132.88 60.14 15.47
29 20 4.21 28.91 4.37 11.97
30 20 60.00 121.96 60.13 23.72
31 20 0.61 49.94 0.69 14.77
32 20 60.00 161.62 60.29 9.60
33 20 0.61 29.33 0.72 16.13
34 20 60.00 77.98 60.14 24.06
35 20 60.00 88.11 60.12 12.06
36 30 21.47 1078.58 22.01 9.24
37 30 13.31 350.60 13.53 10.97
38 30 0.05 34.09 0.28 15.92
39 30 60.00 1879.49 60.47 17.64
40 30 23.82 482.76 24.11 9.50
41 30 5.01 1039.21 5.24 11.87
42 30 4.43 664.74 4.76 15.19
43 30 11.97 322.36 12.39 18.03
44 30 5.79 814.52 6.26 15.25
45 30 1.98 561.73 2.39 17.94
46 40 48.19 3540.00 48.61 -
47 40 20.69 3540.00 21.53 -
48 40 17.38 3540.00 17.82 -
49 40 52.96 3540.00 54.20 -
50 40 18.72 2851.80 19.36 12.44
51 40 33.70 3540.00 34.87 -
52 40 20.00 3540.00 22.12 -
53 40 60.00 3540.00 61.03 -
54 40 1.84 3540.00 3.51 -
55 40 45.88 3540.00 43.82 -

5.4.4 Comparison of the exact and heuristic routing algorithm

Table 5.3 shows the results of solving ten instances with 20, 30 and 40 customers. Each

instance is solved twice using the cluster first-route second algorithm with the exact rout-

ing algorithm and with the heuristic routing algorithm. The column Time Ph.1 shows the

computation time in seconds of the clustering algorithm. The columns Time Ph.2 Exact

and Time Ph.2 Heuristic show the computation time in seconds of the exact and heuristic

routing algorithm respectively. Finally, the column Diff. shows the percentage difference

between the solutions obtained by using the exact and heuristic routing algorithm.

The cluster first-route second algorithm does not find a feasible integer solution within

the time limit for nine out of ten instances with 40 customers. The computation time of

the exact routing algorithm is much larger than that of the heuristic routing algorithm.

Furthermore, for the instances where a solution is found by both algorithms, the solu-

tions produced by the heuristic routing algorithm are on average 15.3% more expensive.

This shows that transportation costs increase significantly by constructing new routes for

customers that are skipped by their assigned driver. Transportation costs can be much
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Table 5.4: Cluster first-route second, large instances

10 Scenarios 50 Scenarios 100 Scenarios
|V ′| Time St.dev. Time St.dev. Time St.dev.
30 88.67 40.92 119.36 19.01 135.14 4.12
50 126.42 0.67 179.84 8.87 247.49 18.45
70 141.80 2.92 350.39 38.92 571.57 97.27

100 201.61 10.90 - - - -

lower when these skipped customers are assigned to a different driver that already has

customers assigned to it.

5.4.5 Results for large instances

The cluster first-route second heuristic using the exact routing algorithm is not able to

solve all instances with 40 customers and 3 scenarios within one hour of computation

time. Next, we illustrate the limitations of the cluster first-route second algorithm when

using the heuristic routing algorithm.

The scenarios of the instances in this experiment are generated in the following way.

Demand of customer i ∈ V ′ in scenario ω ∈ Ω is generated using a normal distribution

with expectation dv and variance 1.5, rounding to the nearest integer, rounding up to 1

if demand is below that and rounding down to Q if demand is above that. We generate

dv using a normal distribution with demand 5 and variance 1.5.

In Table 5.4, results are presented for instances with 30, 50, 70 and 100 customers.

For each of these numbers of customers, ten instances are generated. For every instance

three variants are constructed, with 10, 50 and 100 scenarios. For every ten instances

with n customers and |Ω| scenarios, the columns Time and St.dev. provide the average

computation time in seconds and its standard deviation of the cluster first-route second

algorithm using the heuristic routing algorithm.

No instances with 100 customers and 50 and 100 scenarios are solved. Also no instances

with 200 scenarios are solved. This is due to memory requirements of our implementation

of the cluster first-route second algorithm. The computation time seems to increase

less than linearly with the number of scenarios and roughly linearly with the number of

customers.
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Table 5.5: Cluster first-route second, different values of α

Inst. α = 0 α = 0.75 α = 1
56 27.40 28.45 32.20
57 27.15 27.51 29.79
58 26.72 27.29 28.34
59 27.09 27.65 30.24
60 25.89 27.02 31.32
61 28.68 30.18 32.16
62 27.78 28.39 30.53
63 25.18 25.79 28.00
64 25.77 26.09 29.93
65 26.09 26.60 31.54
66 27.47 28.42 29.36
67 26.51 27.01 29.34
68 25.19 25.47 29.26
69 29.36 30.04 35.02
70 25.20 25.84 27.54
71 28.62 29.36 32.11
72 29.71 30.35 34.63
73 27.38 28.58 29.23
74 25.08 25.84 27.24
75 25.85 27.86 28.57

5.4.6 The effect of α

Adhering to the driver assignments may be beneficial for business, but it decreases flex-

ibility in transportation. Hence, the expected transportation costs increase. Next, we

investigate the increase of expected transportation costs.

In Table 5.5 the results are presented of an experiment in which twenty instances

with 25 customers are solved. For each instance three variants are considered in which

we set α = 0, α = 0.75 and α = 1. For α = 0, the instances are solved by solving a

CVRP to optimality for every scenario to construct a routing schedule. It is equivalent

to not imposing any driver assignment constraints. Hence, the lowest possible expected

transportation costs are obtained for α = 0. For α = 0.75 and α = 1 the instances are

solved using the cluster first-route second heuristic using the exact routing algorithm.

Table 5.5 shows the solution values of the obtained solutions.

Next, we report the average percentage difference of the solution values obtained for the

instances with different values of α. For these instances, adhering to the driver assignments

with α = 1 increases the expected transportation costs with 12.7%. The highest increase

of 21.0% is obtained for instance 60. Adhering to the driver assignments with α = 0.75

increases the expected transportation costs with 2.9%. This can be considered a moderate

increase. Having driver assignment requirements but allowing a little flexibility, i.e. using

α = 0.75 instead of α = 1, decreases the expected transportation costs significantly.
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Finally, note that the value of the optimal solution to the DAVRP for instances with a

specific value of α, is in between the solution value obtained for instances with α = 0 and

those obtained using the cluster first-route second algorithm. This allows us to deduce

that for instances with α = 1 the cluster first-route second algorithm produces solutions

that are on average at most 12% more expensive than the optimal solutions. Moreover,

this shows that for the instances with α = 0.75 the cluster first-route second heuristic

produces solutions that are on average at most 2.9% more expensive than the optimal

solution.

5.5 Conclusion

In this chapter the DAVRP is introduced. We developed a cluster first-route second

heuristic to find solutions to the DAVRP. In the first phase, a solution to the clustering

problem is found using a branch-and-bound algorithm based on a Lagrangian relaxation.

In the second phase, a solution to the DAVRP is constructed based on the clusters con-

structed in the first phase, which are used as a driver assignment. For the routing problem

that is solved in this phase we designed an exact and a heuristic algorithm. In the latter,

customers that are not visited by their assigned driver are used to construct new routes

instead of trying to add them to drivers that already have customers assigned to them.

Using our formulation of the DAVRP and a commercial mixed integer programming

solver, we are able to solve instances with 10 customers and 3 scenarios to optimality

within one hour of computation time. Computational experiments show that the cluster

first-route second heuristic is able to solve instances with up to three times more customers

when the exact routing algorithm is used. Furthermore, when using the heuristic routing

algorithm, instances with up to 100 customers and up to 100 scenarios can be solved well

within one hour.

We present an experiment in which the cluster first-route second algorithm produces

on average 15.3% more expensive solutions when the heuristic routing algorithm is used

instead of the exact routing algorithm. This quantifies the increase in transportation costs

from constructing new routes with skipped customers instead of assigning them to drivers

that already have customers assigned to them.

From experiments where we solve instances of the DAVRP with the cluster first-route

second algorithm using the exact routing algorithm, we conclude that adhering to the

driver assignments can lead to an increase in expected transportation costs of up to

21.0%. When setting α = 1 the increase is on average 12.7%. However, when adhering

to the driver constraints but allowing a little flexibility by using α = 0.75, the increase in
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expected transportation costs is on average only 2.9%. These experiments also allow us

to conclude that, even though we do not solve these instances to optimality, the solution

value of the solutions produced by the cluster first-route second algorithm for instances

with α = 0.75 are on average at most 2.9% more expensive than the optimal solutions.



Chapter 6

Summary and conclusion

In this thesis vehicle routing with uncertain demand is considered. Several different

views on a fixed schedule are explored and sophisticated rescheduling procedures are

used. It accommodates the growing need to achieve efficiency in transport, and the need

to incorporate the uncertainty experienced in reality into transportation models. Next,

each chapter is summarized and findings are presented.

In Chapter 2 the vehicle rescheduling problem, VRSP, is introduced. It is the prob-

lem of finding a new schedule that not only minimizes the total traveling costs but also

minimizes the incurred penalty costs for deviating from a given fixed schedule. A branch-

and-cut algorithm is used to solve the VRSP to optimality. Moreover, a fast two-phase

heuristic is presented. Sufficiency conditions are provided which state that when the

penalty costs for deviating are high enough with respect to the traveling costs, the heuris-

tic produces an optimal solution. These sufficiency conditions are unlikely to be met in

most real world problem instances. However, computational experiments show that the

heuristic often produces an optimal solution even when the penalty costs for deviating

are close to the average traveling costs between two locations in the delivery schedule.

Furthermore, in Chapter 3 the time window assignment vehicle routing problem,

TWAVRP, is introduced. In this problem time windows have to be assigned before de-

mand is known. Next, a realization of demand is revealed and a vehicle routing schedule

is made that satisfies the assigned time windows. The objective is to minimize the ex-

pected traveling costs. In the TWAVRP, time windows of fixed width are chosen for each

customer from an exogenous time window. A branch-price-and-cut algorithm is presented

to solve the TWAVRP to optimality. This algorithm is used to solve instances with up to

25 customers and 3 scenarios to optimality within one hour of computation time. Finally,

the value of an exact approach for the TWAVRP is investigated by comparing the opti-

mal solution to the solution found by assigning time windows based on solving a VRPTW
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with average demand, as is commonly done in practice. In the presented experiments,

the solutions obtained with the exact algorithm yield a decrease in costs of up to 5.42%

with respect to current practice, and an average decrease of 1.85%.

Introduced in Chapter 4 is the discrete time window assignment vehicle routing prob-

lem, DTWAVRP. This problem is similar to the TWAVRP. The main difference is that

in the DTWAVRP a time window is not chosen from an exogenous time window, but

selected from a discrete set of candidate time windows. Selecting time windows from a

set of candidates does not only make sense from a practical point of view. It also al-

lows more sophisticated techniques, that are successfully used to solve classical vehicle

routing problems, to be incorporated into a branch-price-and-cut algorithm to solve the

DTWAVRP to optimality. The branch-price-and-cut algorithm is used to solve instances

with up to 25 customers and 3 scenarios to optimality within one hour of computation

time. Moreover, computational experiments show that using the exact algorithm for the

instances presented in this chapter, provides a decrease of up to 7.01% in expected costs

with respect to current practice, and an average decrease of 3.32%.

When comparing the TWAVRP with the DTWAVRP, observe that modeling a real

world problem as a TWAVRP allows more flexibility in selecting time windows than

modeling the same problem as a DTWAVRP. As such, implementing TWAVRP solutions

yield lower costs. However, the freedom to select time windows as done in the TWAVRP

might not always be desirable or possible. Finally, note that experiments show that

selecting time windows as is done in current practice produces solutions that are further

away from the optimum in the DTWAVRP case than in the TWAVRP case.

Finally, the driver assignment vehicle routing problem, DAVRP, is introduced in Chap-

ter 5. In this problem customers have to be assigned to drivers before demand is known,

and after demand is known a routing schedule has to be made such that every driver

visits at least a fraction α of its assigned customers. A cluster first-route second heuristic

is designed to find good solutions to this problem. Computational experiments show that

adhering to driver assignments can lead to an increase of the expected transportation

costs of up to 21.0%, and on average 12.7%. Allowing a little flexibility, by choosing

α = 0.75, leads to an average increase in transportation costs of only 2.9% with respect to

not adhering to the driver assignments. Finally, for instances with α = 0.75 we compare

the expected transportation costs from constructing new routes with customers that can

not be visited by their assigned driver, to the costs from trying to assign them to drivers

that already have customers assigned to it. The former leads to an average increase in

expected transportation costs of 15.3%.
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This thesis shows that significant decreases in transportation cost can be attained with

respect to current practice by taking into account uncertain demand. Many organizations

operate with a fixed schedule that is often designed before demand of customers is known.

A fixed delivery schedule can almost never be maintained and rescheduling will always be

necessary or desired due to demand uncertainty and variations in demand. Different types

of fixed schedules, and accompanying rescheduling procedures, call for different methods

of designing a fixed schedule.

Furthermore, not only the direct transportation costs should be taken into account

when constructing a schedule. Also indirect effects that transportation has on a network

as a whole, such as costs for the customer when deliveries arrive late, should be integrated

into a procedure to construct delivery schedules. This holds in particular for the many

industries in which the supplier and customer are part of a single organization.

The methods presented in this thesis can be used to construct fixed schedules and to

do rescheduling in different settings. They decrease total costs in distribution networks

by primarily taking into account uncertain demand, and also by taking into account the

indirect effects of transportation on the customers and supplier.
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(Summary in Dutch)

Dit proefschrift gaat over het transport van goederen vanuit een distributiecentrum naar

klanten in een distributienetwerk door middel van voertuigen met beperkte capaciteit.

Het voertuig routering probleem, VRP, is het probleem om een rittenplanning te maken

voor de voertuigen om goederen af te leveren bij klanten, zodanig dat de transportkosten

minimaal zijn. Dit is een klassiek probleem binnen de combinatorische optimalisering

en wordt al bestudeerd sinds het gëıntroduceerd werd in de wetenschappelijke literatuur

door Dantzig en Ramer in 1959. In dit probleem wordt verondersteld dat de hoeveelheid

goederen die aan iedere klant geleverd moet worden bekend is.

Echter, in de praktijk wordt een planning vaak gemaakt voordat de vraag van klanten

bekend is. Voor ketens van detailhandelaren is het meer regel dan uitzondering dat een

rittenplanning gemaakt wordt die gebruikt wordt voor wekelijks of zelfs dagelijks transport

voor een periode van een jaar. Op het moment dat een dergelijke langetermijnplanning

gemaakt wordt is normaal gesproken de vraag van de klanten gedurende deze plannings-

periode nog niet bekend. Een langetermijnplanning wordt dan ook vaak gebaseerd op

gemiddelde historische vraag.

In het geval dat een rittenplanning voor langetermijn is vastgesteld, wordt deze ritten-

planning aangepast zodra de hoeveelheid goederen die klanten vragen bekend is. Immers,

als de vraag van klanten, die volgens de planning in dezelfde rit bezocht moeten worden

door één voertuig, uitzonderlijk hoog is, dan past het niet meer in het voertuig. Ook als

de vraag van klanten laag is kan herplannen gewenst zijn. Het combineren van de vracht

van verschillende voertuigen kan tot kostenbesparing leiden doordat minder voertuigen

gebruikt hoeven te worden of minder afstand afgelegd hoeft te worden. Als in de oor-

spronkelijke planning deze onzekerheid van de vraag niet goed is meegenomen, kan dit

leiden tot hoge transportkosten na het herplannen.

Het herplannen heeft verder ook indirecte gevolgen voor zowel de leverancier als de

klanten binnen een distributienetwerk. Onderzoek onder Nederlandse detailhandelaren
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door Drop (2011) wees uit dat de kosten die een winkelier maakt als gevolg van een

te late levering, dusdanig hoog zijn dat het loont om hiermee rekening te houden bij

het herplannen. Een vrachtwagen om laten rijden kan goedkoper zijn dan te laat leveren

bijvoorbeeld. In dit proefschrift wordt onder andere een nieuwe procedure voor herplannen

gepresenteerd waarmee een rittenplanning gemaakt wordt die niet alleen de kosten van

transport maar ook de kosten voor het afwijken van de oorspronkelijke rittenplanning

minimaliseert.

Er zijn verschillende typen langetermijnplanningen mogelijk die helpen de directe en

indirecte kosten van transport laag te houden. In plaats van het maken van een ritten-

planning is het niet ongebruikelijk dat de leverancier met zijn klant een tijdsvenster af-

spreekt waarbinnen de klant bezocht moet worden. In veel ketens van detailhandelaren,

waar winkeliers bijvoorbeeld wekelijks een levering ontvangen, wordt een dergelijke toe-

wijzing van tijdsvensters vastgezet voor periodes van vaak meer van een jaar. Tijdens

het toewijzen van de tijdsvensters weet men vaak niet wat de vraaghoeveelheid is van

elke klant gedurende de planningsperiode. Daarnaast zal deze ook variëren voor de af-

zonderlijke leveringen. In de praktijk worden deze tijdsvensters meestal gekozen rondom

de aankomsttijd bij een klant in een standaard rittenplanning gebaseerd op gemiddelde

historische vraag. Zodra de vraag van de klant bekend wordt, wordt er een nieuwe ritten-

planning gemaakt waarin deze tijdsvensters niet geschonden worden.

In dit proefschrift introduceren we twee nieuwe modellen voor het toewijzen van

tijdsvensters voordat de vraag bekend is. In het ene model worden tijdsvensters aan

klanten toegewezen binnen een exogeen tijdsvenster, bijvoorbeeld een tijdsvenster van

twee uur gedurende de openingstijden van de winkel. In het andere model moet voor

iedere klant een tijdvenster gekozen worden uit een beperkt aantal kandidaten. In dit

proefschrift wordt voor beide modellen een algoritme gepresenteerd dat tijdsvensters

toewijst aan klanten zodanig dat de verwachte transportkosten wordt geminimaliseerd. In

numerieke experimenten leveren de tijdvensters die gevonden worden met deze algoritmes

kostenbesparingen op tot 7.01% ten opzichte van de tijdsvensters zoals deze in de praktijk

toegewezen worden.

Een ander type langetermijnplanning is het volgende. Een klant kan voor lange tijd

toegewezen worden aan een chauffeur. Deze chauffeur zal alle leveringen doen aan de klant

gedurende de planningsperiode. Dit is bijvoorbeeld gewenst als de chauffeur een sleutel

of wachtwoord van een opslagruimte nodig heeft om een levering daarin te plaatsen. Dit

is onder andere het geval bij de dienst aangeboden door TNT Innight. In een artikel

geschreven door Groër et al. (2009) wordt bovendien gesteld dat doordat de chauffeurs
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van UPS een persoonlijke band met hun klanten vormen er jaarlijks 60 miljoen extra

pakketten verzonden worden via UPS.

Voor het probleem van het toewijzen van klanten aan chauffeurs wordt in dit proefschrift

een nieuw model gëıntroduceerd. Hierin worden klanten toegewezen aan chauffeurs nog

voor de vraag van de klanten bekend is. Zodra de vraag van de klant bekend is wordt er een

rittenplanning gemaakt waarbij klanten bezocht moeten worden door de chauffeurs aan

wie ze toegewezen zijn, zodanig dat de transportkosten geminimaliseerd worden. Voor dit

probleem wordt een heuristiek gepresenteerd die snel goede toewijzingen van klanten aan

chauffeurs construeert. Numerieke experimenten geven inzicht in de additionele kosten

die gemaakt worden voor het vasthouden aan de toewijzingen. Zo kan een goede afweging

gemaakt worden tussen de baten van het vasthouden aan de toewijzing van klanten aan

chauffeurs, en de extra transportkosten die dit met zich meebrengt.

In dit proefschrift wordt laten zien dat aanzienlijke kostenbesparingen gemaakt kunnen

worden door de onzekerheid van de vraaghoeveelheid van klanten in ogenschouw te nemen

tijdens het maken van een langetermijnplanning. Verschillende types van langetermijn-

planningen worden onderzocht, te weten een vaste rittenplanning, vaste tijdsvensters, of

vaste chauffeurs voor klanten. Voor elk van dit type langetermijnplanning is een andere

procedure voor herplannen nodig en een andere methode om de langetermijnplanning te

genereren.

Verder moeten de secundaire kosten van transport niet vergeten worden bij het maken

van een planning, zoals kosten van de klant als een levering te laat is. Deze secundaire

kosten dienen gëıntegreerd te worden in een methode om langetermijnplanningen en ritten-

planningen te construeren. Dit geldt in het bijzonder voor de vele distributienetwerken

waarin de leverancier en klant onderdeel zijn van hetzelfde bedrijf.

De methodes die gepresenteerd worden in dit proefschrift kunnen gebruikt worden om

vaste planningen te maken en om te herplannen. Zij zorgen voor verlaagde kosten van

transport in distributienetwerken door de onzekerheid van de vraag in te calculeren, en

ook door de indirecte effecten van transport op de leverancier en klanten mee te nemen.
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l)VEHICLE ROUTING WITH UNCERTAIN DEMAND

In distribution networks a supplier transports goods from a distribution center to
customers by means of vehicles with limited capacity. Drivers will drive routes on which
they visit multiple customers to make deliveries. Typically, deliveries are made regularly
and a fixed schedule is maintained. A fixed schedule is beneficial for many operational
purposes, as it for instance allows for easy planning of the packing of the vehicles at the
distribution center, or it allows the customer to roster the delivery handling personnel. A
fixed schedule is often reused to make weekly deliveries for a period of a year or longer.

However, at the moment of designing a schedule, the demand of the customers is
usually unknown. Moreover, in most cases, demand of a customer will be different for
each delivery. Therefore, it will be necessary to construct or adapt vehicle routes for each
day of delivery, without deviating too much from the fixed schedule.

In this thesis several different views on a fixed schedule are explored. It addresses the
need from practice to incorporate the uncertainty of demand in transportation models to
increase the efficiency of transport. Innovative vehicle routing models are presented
taking uncertain or varying demand into account. New algorithms using state-of-the-art
methods are presented based on these models, to construct fixed schedules and vehicle
routes. The algorithms make use of recent scientific advances in mathematical
programming, specifically in the domain of vehicle routing.
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