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Abstract

In this article we focus on time-to-event studies with a randomised
treatment assignment that may be compromised by selective compliance.
Contrary to most of the extensive literature on evaluation studies we do
not consider the effect of the treatment on some average outcome but
on the hazard rate. In time-to-event studies the treatment may vary over
time. Another complication of duration data is that they are usually heavy
censored. Censoring limits the observation period, but is not a feature
of the treatment program. Therefore, a natural choice is to relate the
treatment to the hazard rate. We show that even if the compliance is
selective, we can still use the randomisation to estimate the impact of
the program corrected for selective compliance on the hazard. The only
requirement is that participation in the program is affected by a variable
that is not correlated with the baseline duration.

We develop an Instrumental Variable estimation procedure for the
Generalized Accelerated Failure Time (GAFT) model. The GAFT model
is a duration data model that encompasses two competing approaches to
such data; the (Mixed) Proportional Hazard (MPH) model and the Accel-
erated Failure Time (AFT) model. We discuss the large sample properties
of this Instrumental Linear Rank Estimation and show how we can im-
prove its efficiency. The estimator is used to re-analyze the data from the
Illinois unemployment bonus experiment.
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1 Introduction

In recent years, social experiments have gained popularity as a method for
evaluating social and labor market programs (see e.g. Meyer (1995), Heckman,
LaLonde, and Smith (1999) and Angrist and Krueger (1999)). In experiments
the assignment of units to the intervention can be manipulated. If assignment
is random, the average impact of the intervention can be estimated. However, a
randomized assignment may be compromised, if the units can refuse to partic-
ipate, either by dropping out, if they are to receive the intervention, or by ob-
taining the intervention, if they are in the control group. If this non–compliance
to the assigned treatment is correlated with the outcomes in the treatment or
control regimes, the observed effect of the intervention is a biased estimate of
the intervention effect.

Even if the compliance is selective, we can still use the randomization in the
assignment to the intervention and control groups to estimate the impact of the
program correcting for selective compliance. This is the subject of this article.
The methods that we propose can be used in all programs with selective partic-
ipation. The only requirement is that participation in the program is affected
by a variable that is not correlated with the potential outcomes. We focus on
an outcome variable that is the waiting time to some event, e.g. unemployment
duration.

Most of the evaluation literature has focused on static interventions, i.e. in-
terventions that are administered at a particular point in time or in a particular
time interval. An example is a training program. For instance, Ham and LaLonde
(1996) study the effect of the experimental JTPA program, a training program
directed at the unemployed, on unemployment spells. In that case the waiting
time is an outcome variable like any other. If the outcome is a waiting time, or
in general a time series, the intervention can be dynamic, i.e. it can be switched
on and off over time. Examples are the unemployment insurance experiments
(see Meyer (1995) for a survey) in which the unemployed receive a cash bonus
if they find a job in a specified period. Another example is a temporary cut
in unemployment benefits of unemployed individuals who do not expend suffi-
cient effort to find a job (see Abbring, van den Berg, and van Ours (1997) and
Van den Berg, van Ours, and van der Klaauw (1998) for The Netherlands and
Ashenfelter, Ashmore, and Deschêne (1999) for the U.S. ). As a final economic
example we mention the studies on the effect of monitoring to the unemployed
workers by employment offices (see Gorter and Kalb (1996) and Van den Berg
and van der Klaauw (2000) for The Netherlands, Dolton and O’Neill (1996)
for the so–called Restart experiments in the UK ). The monitoring programs
consist of one or more interviews of the (long termed) unemployed to counsel
and advice them on effective job search.

Economic models for durations, e.g. search models, often have direct impli-
cations for the hazard rate. In general, the intervention may even depend on
information that accumulates during the evolution of the event. With a time-
varying intervention, the effect of the intervention becomes dependent on the
outcome. Relating the time-varying intervention to the hazard seems the natural
solution. Another reason to consider the effect of an intervention on the hazard
rate is that duration data are usually censored. Censoring limits the observation
period, but is not a feature of the program. Hence, the estimated effect should
be independent of the censoring time. Because the hazard rate is invariant to
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censoring, it is natural to relate the intervention to this quantity.

Two competing approaches to the estimation of the effect of a time–varying
treatment on survival has been the (Mixed) Proportional Hazard (MPH) model
(for a recent survey see Van den Berg (2000)) and the Accelerated Failure Time
(AFT) model (see a.o. Kalbfleisch and Prentice (1980), Brännäs (1992), Keid-
ing, Andersen, and Klein (1997) and Klein and Moeschberger (1997)). In the
Mixed Proportional Hazards (MPH) model the hazard is written as the product
of the baseline hazard, a non-negative regression function, and a non-negative
random variable that represents the covariates that are omitted from the re-
gression function. In an accompanying article, Bijwaard and Ridder (2000), we
introduced the Generalized Accelerated Failure Time (GAFT) model (see also
Ridder (1990) and Bijwaard (2001)), a generalization of the AFT models that
also includes the MPH model.

Using the actual treatment indicator as a normal covariate in the model
will give biased results of the treatment effect if some of the individuals do
not comply with their assigned treatment. The problem is that even if the
intervention has no effect on the hazard the treatment parameter may not have
a causal interpretation, because those who comply with their assigned treatment
differ in observed and unobserved characteristics from those who do not comply.
One could ignore the post–randomization compliance and rely on the analysis
of the treatment assignment groups. This intention–to–treat estimator suffers
from an error –in–variable bias.

We propose an Instrumental Variable (IV) method for GAFT models that
adjusts for the possible endogeneity of the intervention, without suffering the
problems of the Intention–to–treat method. We develop an estimation procedure
that collapses to the Linear Rank Estimator procedure for Generalized Accel-
erated Failure Time (GAFT) if there is no instrumenting. This is accomplished
by using a model that transforms the duration such that for the population
parameters, this transformed duration is independent of the instrument.

The GAFT models with instrumenting are a generalization of the Rank–
Preserving Structural Failure Time Models (RPSFTM) models of Robins and
Tsiatis (1991) (see also Mark and Robins (1993b)). Both models consider a
transformation of the duration time to identify the treatment parameters, but
the GAFT models allow for an extension of the transformation. The main draw-
back of the RPSFT–models is that they assume a latent baseline duration time
exists, representing the unit’s survival time had the intervention always been
withheld. This implies that if two individuals have identical durations and ob-
served treatment and covariate histories then they would have had identical
durations had they never been treated. The GAFT models are not rank pre-
serving and therefore do not imply this strong non–interaction.

The Two Stage Linear Rank estimator (2SLR), we proposed in Bijwaard and
Ridder (2002), is related to the Instrumental Variable Linear Rank Estimator
(IVLR) we suggest in this article. The 2SLR restricts the transformation to an
MPH representation and requires preliminary estimates of the baseline hazard.
The 2SLR is only applicable if there is full compliance in the control group,
because only then the preliminary estimates are identified. The analysis in this
article does not impose the MPH assumption, nor does it require that the control
group is totally excluded from treatment.

The existence of endogenous covariates implies (possible) dependence be-
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tween the transformed duration and the censoring time. This implies that the
IVLR estimator, which exploits the independence between the transformed du-
rations and the instruments, may give biased results. If the censoring is part of
the study design or a consequence of administrative rules, we can often make
the assumption that the (potential) censoring time is known at the start of the
study. Then, we can modify the GAFT transformation such that this modified
transformation and the instruments are independent. Then, the IVLR estimator
on this modified transformation leads to consistent estimators.

The estimator is used to re–analyse data from the Illinois unemployment
bonus experiment. These data have been analysed before with increasing sophis-
tication by Woodbury and Spiegelman (1987), Meyer (1996) and in Bijwaard
(2001). In this experiment a group of individuals who became unemployed dur-
ing four months in 1984 were divided at random in three groups of about equal
size: two treatment groups and a control group. The unemployed in the claimant
bonus group qualified for a cash bonus if they found a job within 11 weeks and
would hold this job for at least four months. In the other treatment group, the
employer bonus group, the bonus was paid to their employer. The members
of the two treatment groups were asked whether they were prepared to par-
ticipate in the experiment. About 15% of the claimant bonus and 35% of the
employer bonus groups refused participation. Here we focus on the importance
of extending the RPSFT–models to the GAFT models for the re–employment
data. Indeed we find that evidence that the RPSFT–model is not the correct
model for this application.

The outline of the article is as follows. Section 2 provides a discussion on
the GAFT model with endogenous covariates. If the interventions are randomly
assigned, this model reduces to the GAFT model. We explain the interpreta-
tion of the parameters of the model and discuss the problems of endogenous
censoring. Within the counting process framework, the asymptotic properties of
our estimator, which is introduced in section 3, can be derived using martingale
theory. We discuss the consistency and asymptotic normality of the estimator.
Section 4 discusses an empirical application of the IVLR estimator of the GAFT
model with instruments.

2 The Generalized Accelerated Failure Time Model
with endogenous Covariates

It can rarely be defended that a study on unemployment durations includes all
the relevant characteristics of the individuals looking for a job. Consider, for
example, the study on the effect of UI sanctions. Sanctions such as a temporary
cut in unemployment benefits may be applied if a UI benefit recipient does not
act according to certain rules concerning search behaviour and registration. The
intention of a sanction is to change the behaviour of the benefit recipient, so that
in the future she will comply with the rules. Because these rules are supposed to
stimulate the benefit recipients to search actively for employment and because a
cut in benefits itself gives an incentive to search more intensively the sanctions
are expected to increase the re–employment hazard.

Suppose it is possible to observe the number of job applications in a partic-
ular time period of an unemployed individual. The number of applications has
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certainly an effect on the re–employment hazard. Since a frequently used reason
for giving a sanction is an insufficient number of applications, it also influences
the probability to get a sanction. However, the non (or partially) observed mo-
tivation to return to work has an impact on both the sanction probability and
the number of job applications. The motivation to return to work is then an
unmeasured confounder and the estimated treatment effects give biased results
of the effect of the sanction. Note that both conditioning on the number of ap-
plications and ignoring it completely will induce a bias in the estimated effect
of a sanction.

A way of adjusting for a correlation between the error and a covariate is
the conventional instrumental variable assumptions of instrument–error inde-
pendence and an exclusion restriction. A familiar example of an instrumental
variable is a randomly assigned treatment for a policy in which the actual treat-
ment still depends on a decision by the agents (or on decisions made by those
who execute the program). For instance, long–term unemployed can be ran-
domly assigned to a training program, but for many programs they can still
decide not to join, or the training manager can decide to withheld some train-
ing from some people. Then, the assignment indicator is an instrument for the
actual indicator of training received.

An example that does not use explicit randomization may work for the sanc-
tions studies. In the Netherlands the Unemployment Law does not specify which
sanction has to be applied to which offence. So the UI administration offices are
free to choose the sanctions they think are appropriate. As a consequence, the
application of UI sanctions depend on some extend on the discretion of the em-
ployees of the social security councils. Then, if the UI recipients are randomly
assigned to different people at the administration offices, the indicator of the
civil servant that is responsible for the particular UI recipient can serve as an
instrument for the application of a sanction.

In this section we extend the Generalized Accelerated Failure Time (GAFT)
Model we introduced in Bijwaard and Ridder (2000) (see also Ridder (1990)
and Bijwaard (2001)) to include endogenous covariates. We assume that the
time-to-event T is a random variable with an absolutely continuous distribution,
for instance the time spent in unemployment of an individual. We concentrate
on the studies with selective compliance to randomised treatment assignment.
Censoring and time–varying covariates and treatments are easily incorporated.
The observed durations may be right–censored, i.e. we observe T̃ = min(T, C)
with C the censoring time. Here we relax the assumption that T and C are con-
ditionally independent given a vector of observable covariates (see section 2.4).
The existence of endogenous covariates implies (possible) dependence between
the duration and the censoring time.

We assume the intervention can be switched on or off at fixed time points
tk for k = 0, 1, . . . , and t0 = 0. In medical studies the discretized points in
time usually coincide with the clinical visits. In the UI sanction studies these
fixed points may reflect the monthly check on sufficient applications of the UI
recipients. Let Dk denote the treatment status for the time–interval (tk, tk+1]. If
Dk = 1 the unit is treated in that time interval and, Dk = 0 otherwise. Thus, if
at a particular visit to the social security council it is decided to cut the benefits
of an unemployed individual we assume that sanction will be imposed until, at
least, the next visit. We only consider binary treatments, thus in the sanction
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studies Dk would indicate whether or not a sanction is imposed in the time–
interval (tk, tk+1] and not the amount the benefit is reduced. Before we turn
to the formulation of the model we discuss the problems involved in analysing
duration data with endogenous covariates.

If everybody enrolled in a randomised trial complied with his or her assigned
treatment, standard techniques for the analysis of survival time data can be
used to estimate treatment effects. For example, if everyone assigned to a bonus
group agreed to participate, we can use a Mixed Proportional Hazards model
with conditional hazard

θ(t | X, D, V ) = V λ(t;α0)eβ′0X(t)+γ0D (1)

where time t is measured as time since randomization, λ(t; α0) is the baseline
hazard at time t, X(t) is a vector of time–constant and time–varying charac-
teristics of the individual, V is random variable capturing omitted covariates
and, D equals one if an individual is in the bonus group and zero otherwise. We
can estimate γ0 using (semi–parametric) Maximum Likelihood procedures, de-
pending on the assumptions we make about the distribution of the unobserved
heterogeneity, V , and the baseline hazard. If the model is correctly specified the
MLE yields a consistent estimate of the log hazard ratio of receiving a bonus.

However, we will get biased results for the treatment parameters if some
of the individuals do not comply with their assigned treatment. The problem
is that even if the bonus has no effect on the hazard the treatment parameter
γ0 may not have a causal interpretation, because those who comply with their
assigned treatment differ in observed and unobserved characteristics from those
who do not comply.

One commonly used solution to this problem, is to ignore the post–randomization
compliance and rely on the analysis of the treatment assignment groups. This
intention–to–treat analysis replaces the actual treatment by the treatment as-
signment indicator, R, in (1). Since physical randomization implies that at time
zero all attributes of the two treatment groups are (in expectation) identical.
Further, if the model is correctly specified the estimated treatment effect will
correspond to the overall treatment effect that would be realized in the whole
population, under the assumption that the compliance rate and the factors in-
fluencing compliance in the sample are identical to those that would occur in
the whole population.

The major drawback of the intention–to–treat analysis is that the estimated
treatment effect is a mixture of the population effect and the effect on the
compliance. Hence, if the bonus effectively raises the re–employment hazard,
the intention–to–treat measure of this effect will diminish as non–compliance
increases. Another disadvantage is that compliance is very likely to depend on
the perceived effects of the treatment. If, for example, the unemployed know
that being eligible for a fast re–employment bonus does not stigmatize them,
they will be more prone to participate. Thus, when the pattern of compliance is
a function of the perceived efficacy of the treatment the estimated intention–to–
treat will not represent the overall effect of the treatment would it been adopted
in the whole population.

We propose an Instrumental Variable (IV) method for GAFT models that
adjusts for the possible endogeneity of the intervention, without suffering the

6



problems of the intention–to–treat method. Conventional IV estimators special-
ize to Ordinary Least Squares (OLS) in the case where treatment status is an
exogenous variable. We develop an estimation procedure that collapses to the
Linear Rank Estimator procedure for the GAFT models we proposed in Bi-
jwaard and Ridder (2000) if there is no instrumenting. This is accomplished
by using a model that transforms the duration such that for the population
treatment effect parameter, the transformed duration is independent of the in-
strument.

The intuition behind the idea of transforming can be clarified by consider-
ing the simple example of an experiment with random assignment and selective
compliance at the start of the study. For the moment we assume no other covari-
ates are observed. If the treatment has no impact on the hazards the probability
of observing a unit with R = 1 among the survivors at some duration t should
be equal to the treatment assignment probability at the start. If the treatment
has an effect on the hazard this does not hold. However, there always exists a
transformation of the duration, h(T,D; θ0), depending on the treatment D and
a parameter vector θ0 that make the probabilities equal again, i.e.

Pr
(
R = 1 | h(T,D; θ0) ≥ h(t, D; θ0)

)
= Pr

(
R = 1 | T ≥ 0

)
, (2)

where θ0 is the population parameter vector. Note that (2) implies that the
hazard of the population transformed duration is independent of the instruments.

The transformation model we suggest is closely related to the Rank Pre-
serving Structural Failure Time (RPSFTM) model of Robins and Tsiatis (1991)
(see also Mark and Robins (1993b)).1 This model assumes that the duration
an individual would spend in unemployment if never treated does not depend
on the treatment arm to which the individual is assigned. This latent baseline
duration is related to the observed data through the strong version of the AFT
model transformation (see Cox and Oakes (1984)). An important limitation
of the RPSFT–model is that it makes a strong non–interaction assumption.
This implies that if two units have identical observed survival times and ob-
served treatment histories then they would have had identical survival times
had treatment always been withheld. We propose a model that does not impose
this non–interaction assumption.

We do not discuss how to identify the Instrumental variable. We assume the
data contains a variable which affects the (time–varying) treatment assignment
but which does not affect the outcome of interest directly. Abbring and van den
Berg (2000) discuss non–parametric identification of treatment effects from non–
experimental data that do not need instruments. They use the variation in the
timing of the treatment and the outcome variable to identify the treatment
effect. They impose an MPH structure on both the treatment process and the
outcome process.

1The RPSFTM model is a deterministic Structural Nested Failure Time Models (SNFTM)
developed by Robins (1992). These models (see also Robins(1989,1993, 1998), Mark and
Robins (1993a) and many other publications of Robins) are causal models for the effect of
dynamic interventions on a survival time outcome in the presence of time–dependent confound-
ing covariates (but no unmeasured confounding). One estimation procedure for the unknown
treatment effect parameter in this model is the method of g–estimation, discussed in Robins
(1992)).
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2.1 The Generalized Accelerated Failure Time Model

We assume that the time-to-event T is a random variable with an absolutely
continuous distribution. The observed durations may be right–censored, i.e. we
observe T̃ = min(T, C) with C the censoring time. The possible time–varying
covariates are given by the vector Xi(t) where i refers to a member of the
population. The path of the covariates are predetermined. If the path of the
intervention is also predetermined the relation between the time-to-event T and
the covariates is specified as a GAFT model if2

∫ T

0

λ(s;α0)b
(
X(s); β0

)
eψ(s,D(s);γ0) ds = U0 (3)

where λ(t;α) is a non–negative function on [0,∞). The non–negative regression
function b(.) captures the effect of the covariates. ψ(s,D(s); γ0) is the treat-
ment function. We choose parametric but flexible specifications for λ, b and ψ.
The impact of the exogenous variables is often taken log linear; b

(
X(s); β0

)
=

exp
(
β′0X(s)

)
. A flexible functional form for λ is the piecewise constant function.

If we assume that D only changes at fixed durations a flexible functional form
of the treatment function is, for example,

ψ(s, D(s); γ) =
k∑

j=0

γj ·Dj · Ij(s) (4)

with Ij(s) = I(tj < s ≤ tj+1).
The GAFT model is characterized by these functions and by the distribution

of the non–negative random variable U0. We denote the c.d.f. of U0 by G0 that
does not depend on X or D. The last assumption will be relaxed in the next sec-
tion. In that section we allow the treatment indicator to depend on unobserved
random variables that also influence the baseline duration U0. For the moment
we assume the treatment indicator is a variable like any other. The survivor
function of U0 is denoted by G0 and its hazard function by µ0. We assume that
the distribution of U0 is absolutely continuous. The semi–parametric estimators
considered in this article avoid assumptions on the distribution of U0.

We denote the left–hand side of (3) by h(T,X(T ), D(T ); θ0) with θ = (α′, β′, γ′)′

the vector of parameters and X(t) = {X(s); 0 ≤ s ≤ t}. The path of the in-
tervention up to t for tk < t ≤ tk+1 is D(t) = {D0, D1, . . . , Dk}. The survivor
function of T given t in the GAFT model is

F (t | X(t), D(t); θ0) = G0

(
h(t,X(t), D(t); θ0)

)
(5)

and the hazard of T in t is

λ(t; α0)eβ′0X(t)+ψ(t,D(t);γ0)µ0

(
h(t,X(t), D(t); θ0)

)
(6)

where we used the log–linear assumption on the regression function.
The GAFT model contains as special cases the popular Accelerated Failure

Time (AFT), the Proportional Hazard (PH) and the Mixed Proportional Hazard
(MPH) models. The AFT model restricts the transformation to λ(t; α0) ≡ 1,

2In Bijwaard and Ridder (2000) and Bijwaard (2001) we give a more extensive discussion
on the GAFT model. Here we repeat the main features of the model.
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but leaves the distribution of U0 unrestricted (with the exception of that U0

should be non–negative, see e.g. Cox and Oakes (1984)). The (M)PH model
restricts the distribution of U0, but leaves the λ unrestricted (non–negative).
The distribution of U0 is an unit exponential distribution (PH) or a mixture of
exponential distributions (MPH).

For a model without covariates and with ψ(t,D(t); γ0) = γ0D(t) we can
interpret the model in terms of the effect of regressing on baseline quantiles.
Let tq(D; θ0) be the q–th quantile of the population distribution of T with
intervention vector D. Let tq(θ0) be the q–th quantile for the reference unit
(with D(t) identically equal to zero). Then from (5)

G0

(
h
(
tq(D; θ0), 0, D

(
tq(D; θ0)

)
; θ0

))
= 1− q = G0

(
h
(
tq(θ0), 0, 0; θ0

))
(7)

Hence we obtain a relation between tq(D; θ0) and tq(θ0) that is defined implicitly
by ∫ tq(D;θ0)

0

λ(s;α0)eγ0D(s) ds =
∫ tq(θ0)

0

λ(s;α0) ds (8)

This implies that

d tq(D; θ0)
d tq(θ0)

= e−γ0D
(
tq(D;θ0)

)
λ
(
tq(θ0); α0

)

λ
(
tq(D; θ0); α0

) (9)

In the AFT model the time-to-event of a unit with (time–constant) treatment
D is distributed as U0e

−γ0D. The factor e−γ0D is called the acceleration factor,
because the time-to-event for a unit with treatment vector D is obtained by
accelerating the time-to-event of the reference unit by this factor. Thus, in the
relation between the quantiles in the GAFT model the acceleration factor is
multiplied by the ratio of the values of λ in the q–th quantile of the reference
and D unit, respectively.

In the MPH model we can interpret λ as the baseline hazard, i.e. the factor
in the proportional hazard that captures the (duration) time variation in the
hazard function. Thus, in the MPH model the ratio in (9) can be interpreted as
the ratio of baseline hazards. The treatment parameter, γ, is the proportional
change in the hazard rate due to a unit change in D(t) for a unit with unobserved
heterogeneity V .

2.2 GAFT model and endogenous interventions

As we mentioned above, if the treatment is randomly assigned and all units com-
ply with their assigned treatment we can simply add the treatment indicator to
the covariates. Then we can apply, for example, the techniques in Bijwaard and
Ridder (2000) to estimate the treatment effect. However, if the actual treatment
is based on a selective decision we cannot use these methods. In that case, even
for the population parameter vector θ0 the baseline duration U0 and D are not
independent. However, if there exist an (dynamic) instrument that is indepen-
dent of the counterfactual hazard but related to the actual treatment we can
develop an instrumental variable procedure.

Consider a (possibly time–dependent) random variable Rk that is constant
on [tk, tk+1) and that may change just before the actual treatment, Dk, can
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change. If this variable is correlated with Dk conditional on the observed history,
Dk−1, but independent of the baseline duration U0, it is an instrument for Dk.
We assume the instrument is also binary, just as the treatment indicator. It is not
difficult to extend the analysis to more, discrete, levels of both the instrument
and the treatment indicator.

We assume that there is no interaction between the units. Thus, knowing
your friend who is also unemployed got a sanction for inactive behaviour does not
alter your chance on getting a sanction yourself nor the probability to find a job.
Further we assume that (i) the instrument has no direct effect on the duration,
(ii) the probability of treatment only depends on previous actual treatment and
the current treatment assignment and not on previous treatment assignments,
(iii) the conditional distribution of the instrument is not degenerate and only
depends on the history of the intervention and not of the instrument. The latter
two assumptions imply that the instruments are sequentially independent.

An IV method in a ordinary linear model is usually meant for adjusting
correlation between the error term and the covariates. The instrumental variable
method for estimating the treatment effects in the GAFT models does basically
the same. It corrects for the correlation between the treatment and the baseline
(transformed) durations. The estimation procedure is based on the independence
of Rk and U0, i.e. for T ≥ t > tk and observed covariate and treatment history
X(T ), Dk−1 we require

Pr
(
Rk = 1

∣∣h(T, X(T ), Dk; θ0) ≥ h(t, X(T ), Dk; θ0)
)

=

Pr
(
Rk = 1

∣∣h(T,X(T ), Dk−1; θ0) ≥ h(tk, X(T ), Dk−1; θ0)
)
, (10)

It implies that the probability of observing a unit with Rik = 1 (conditional on
the observed history up to tk) does not alter over the transformed interval of
(tk, tk+1]. This is equivalent to requiring that the hazard rate of the baseline
durations and the instruments are independent.

The GAFT model, which implies (3), provides a transformation that fulfills
the condition in (10). This independence only holds for the population param-
eters and therefore we can build an estimation procedure similar to the Lin-
ear Rank Estimation of Bijwaard and Ridder (2000) and Bijwaard and Ridder
(2002) (see also Bijwaard (2001)) that exploits this. In section 3 we discuss this
Instrumental Variable Linear Rank estimator. First, we address the implications
of the GAFT model on the treatment effects.

Equation (3) implicitly defines the outcome, i.e. duration, distributions for the
temporal treatment and control groups. With time–varying interventions and
time–varying instruments the relevant distinction is between the group (given
the observed treatment history) that has received treatment at some point in
time, the temporal treatment group, and the group that has not received the
treatment at that point in time, the temporal control group. We indicate these
regimes by the subscripts (1) and (0), respectively. If there are no additional
covariates x and given Dk−1, the observed treatment history up to tk, then the
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outcome distributions for the two regimes for T ∗(1), T
∗
(0) > tk are given by3

U∗
(0) =

∫ tk

0

λ(s; α0)eψ(s,D(s);γ0)ds +
∫ T∗(0)

tk

λ(s; α0) ds (11)

U∗
(1) =

∫ tk

0

λ(s; α0)eψ(s,D(s);γ0)ds +
∫ T∗(1)

tk

λ(s; α0)eψ(s,D(s);γ0)ds (12)

The fundamental assumption that assures identification is that U∗
(0) and U∗

(1)

have the same distribution. They may be dependent, but the joint distribution
is only identified in special cases and not of particular interest. A special case
is that U∗

(1) ≡ U∗
(0). In that case there is a deterministic relation between the

outcomes in the two regimes and,

∫ T∗(0)

tk

λ(s; α0)ds =
∫ T∗(1)

tk

λ(s; α0)eψ(s,D(s);γ0)ds (13)

This model corresponds, but is not identical to the Rank Preserving Structural
Failure Time (RPSFTM) model of Robins and Tsiatis (1991). The model is rank
preserving. If we consider two units with potential outcomes T ∗(0)i, T

∗
(1)i, i = 1, 2,

then T ∗(0)1 > T ∗(0)2 implies T ∗(1)1 > T ∗(1)2 and vise versa. However,

T ∗(0) 6=
∫ T∗(1)

0

λ(s;α0)eψ(s,D(s);γ0)ds
∣∣∣
ψ(t,D(t);γ0)≡0, for tk<t≤tk+1

(14)

and T ∗(0) cannot be interpreted as the latent baseline failure time. Robins and
Tsiatis think of U∗

(0) ≡ U∗
(1) = U∗, with U∗ is the baseline duration for the never

treated, as a pre–treatment characteristic of the unit. An unattractive feature of
this model is that it implies that units with the same outcome in the treatment
regime have the same outcome in the no treatment regime, and the other way
round. This equality of counterfactuals is a strong assumption.

Under the weaker assumption that U∗
(0) and U∗

(1) have the same distribution,
the relation in (13) still holds but now for the quantiles of the outcome distri-
bution. Thus we can extend the relation between the quantiles of the GAFT
model in (9). Let tq(0) > tk and tq(1) > tk be the quantiles of U∗

(0) and U∗
(1),

both with covariate vector X, then,

dtq(1)
dtq(0)

= e−ψ
(
tq(1),D(tq(1));γ0

)
eβ′0

(
X(tq(0))−X(tq(1))

)
λ(tq(0);α0)
λ(tq(1);α0)

(15)

If we compare this expression to that given by Robins and Tsiatis (under
the stronger assumption U∗

(0) ≡ U∗
(1), the covariates are time–constant and,

ψ(., D(.); γ0) = γ0D), we see that the third factor, the ratio of the values of λ in
the q–th quantile of the temporal control and treatment, is missing. Note that
if Dk(tq(1)) = 1, ψ(tq(1), Dk(tq(1)); γ0) = 0 and λ(tq(0);α0) < λ(tq(1);α0),
the RPSFT model concludes that the treatment effect is positive. Hence failure
to correct for variation in the baseline intensity may bias the estimate of the
treatment effect.

3To ease exposure we assume that the treatment function is zero on the relevant interval
if Dk = 0. The model can easily incorporate more general treatment functions.
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The hazard or re–employment rate of unemployment durations often exhibits
a spike just before the time that unemployment benefits are exhausted. This
corresponds to a large increase in λ at that spike. For the bonus data this
implies that if we assume that all unemployed who find a job receive the bonus
and that the bonus has a small positive effect on the job finding rate, so that
tq(0) > tq(1). If tq(0) is in the spike while tq(1) is not, then the left–hand side
of (15) is greater than one and the AFT treatment effect at tq(1) is negative.
Thus if there is (substantial) variation in λ, the AFT treatment effects will be
biased.

Note that the transformation in Bijwaard and Ridder (2002),

U = b

∫ T

0

λ(s)eγD(s) ds ≡ h(T ) (16)

is embedded in transformation of the durations presented here. An important
difference with Bijwaard and Ridder (2002) is that here we do not assume an
MPH model. Our proposed Instrumental Variable Linear Rank estimator leaves
the distribution of U0 unspecified, because it does not require assumptions on
this distribution. This is a major advantage, because inference on the distribu-
tion of the unobserved heterogeneity in a MPH model is unreliable.

We briefly mention some identification problems. In Bijwaard and Ridder (2000)
we have shown that in the GAFT model without endogenous covariates identi-
fication depends on whether the covariates are time constant or time–varying.
If the covariates are time constant we can identify the transformation Λ, the
integral of λ, up to a power and β up to scale (with the power and the scale
being equal).4

If the interventions and the treatment function are also time constant and the
treatment function is linear in γ all observationally equivalent GAFT models,
i.e. models that give the same conditional distribution of T given X and D, have
regression parameters dβ0, treatment parameters dγ, integrated transformation
cΛ(t; α0)d and U0 distribution G0

((
u
c

)1/d
)

for some constants c, d > 0.
If the covariates and/or the treatments are time–varying we can identify

Λ and the distribution of U0 up to a common scale parameter. Note that we
can also reduce the set of observationally equivalent GAFT models by taking
a time–varying treatment function. For example, in the Illinois re–employment
Bonus experiment the unemployed know in advance that the treatment, getting
a $500 bonus for finding a job, lasts only for a limited period of the time they
receive unemployment benefits. Those who choose to participate can only obtain
the bonus if they find a job within 10 weeks. We have two equivalent ways of
specifying the treatment function, or we let the function change after 10 weeks
or we keep the function time constant and let the treatment change after 10
weeks.

Because we leave U0 unspecified in our estimation method, we can not use
restrictions on U0 to find the scale parameter. For that reason we normalize
Λ(t; α0) by setting Λ(t0; α0) = 1 for some t0 > 0. With time constant regressors
and treatments we need the same normalisation, but in addition we need to set

4The restrictions on the baseline hazard for the MPH model as introduced by Ridder and
Woutersen (2001) to secure non-singularity of the efficiency bound are related.
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one regression coefficient equal to one. Of course, we could choose a class of trans-
formations that is not closed under the power transformation. This amounts to
identification by functional form. Finally, we need that lnλ, D and X are not
collinear.

2.3 Counting process interpretation

The c.d.f. and p.d.f. of the distribution of a duration T can be expressed as
functions of the hazard rate. These expressions can be used to obtain a likeli-
hood function. We use a different (but of course equivalent) representation of
the relation between the hazard rate and the random duration. In particular,
we use the framework of counting processes (see e.g. Andersen, Borgan, Gill,
and Keiding (1993) and Klein and Moeschberger (1997)). The main advantage
of this framework is that it allows us to express the duration distribution as a
regression model with an error term that is a martingale difference. This sim-
plifies the analysis of estimators. The conditions for non selective observation
can be precisely stated in this framework. The same is true for conditions on
time–varying covariates.

The starting point is that the hazard of T is the intensity of the counting
process {N(t); t ≥ 0} that counts the number of times that the event occurs
during [0, t]. The counting process has a jump +1 at the time of occurrence of
the event5. A jump occurs if and only if dN(t) = N(t)−N(t−) = 1. For duration
data, the event can only occur once. In many unemployment studies the unit
are only observed until re-employment. So, at most one jump is observed for any
unit. To account for this we introduce the observation indicator Y (t) = I(T ≥ t)
that is zero after re–employment. By specifying the intensity as the product of
this observation indicator and the hazard rate we effectively limit the number of
occurrences of the event to one. We assume that the observation indicator only
depends on events up to time t. The observation process is assumed to have
left–continuous sample paths. We define the history of the process up to time
t by H(t) = {Y (t), D(t), X(t)}, where Y (t) = {Y (s), 0 ≤ s ≤ t}. The history
H(t) only contains observable events.

Let V (t) be the path of some unobserved (possibly time–varying) variables
up to t that both influence the treatment decision and the time–to–event. An
example is the, usually, unobserved search intensity of unemployed looking for
a job. We assume that V (t) and X(t) are stochastically independent. Denote
HV (t) = {H(t), V (t)}, the history that also includes the path of the unobserv-
ables. As with dynamic regressors in time-series models, the time-varying D(t)
and X(t) may depend on the dependent variable up to time t but not after time
t (conditionally on V (t)). Thus D(t) only depends on HV (t) and X(t) only on
H(t). In the counting process literature such a time-varying covariate is called
predictable. We will use the econometric term predetermined.

If the conditional distributions of N(t) given either HV (t) or H(t) are well-
defined (see Andersen, Borgan, Gill, and Keiding (1993) for assumptions that
ensure this) we can express the probability of an event in (t− dt, t] as6

Pr(dN(t) = 1 | HV (t)) = Y (t)κ(t | X(t), D(t), V (t)) dt (17)

5The sample paths are assumed to be right-continuous.
6Because the sample paths of {Y (t), X(t), t ≥ 0} are assumed to be left-continuous (as is

the baseline hazard), we can to substitute t for t− dt in (17).
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with κ(t | ·) is the hazard of T at t given X(t), D(t) and V (t). By the Doob-Meier
decomposition

dN(t) = Y (t)κ(t | X(t), D(t), V (t)) dt + dM(t) (18)

with {M(t); t ≥ 0} a (local square integrable) martingale. The conditional mean
and variance of this martingale are

E
(
dM(t) | H(t)

)
= 0 (19)

Var
(
dM(t) | H(t)

)
= Y (t)κ(t | X(t), D(t), V (t)) dt (20)

The (conditional on H(t)) mean and variance of the counting process are equal,
so that the disturbances in equation (18) are heteroscedastic. The probability
in equation (17) is zero, if the unit is not under observation.

A counting process can be considered as a sequence of Bernoulli experiments,
because if dt is small equations (17) and (20) give the mean and variance of a
Bernoulli random variable. The relation between the counting process and the
sequence of Bernoulli experiments is given in equation (18), that can be consid-
ered as a regression model with an additive error that is a martingale difference.
This equation resembles a time-series regression model. The Doob-Meier de-
composition is the key to the derivation of the distribution of the estimators,
because the asymptotic behavior of partial sums of martingales is well-known.

The GAFT model is defined in (3) as a transformation of the observed time-
to-event T to a baseline duration U0. The transformation involved a parameter
vector θ0. We denote the transformation for parameter vectors θ 6= θ0 by U(θ)
with U0 = U(θ0). Just as the distribution of T , that of U(θ) can be represented
by a (transformed) counting process {NU (u); u ≥ 0}. The relation between the
original and transformed counting process, observation indicator, time-varying
covariate and, time-varying treatment is

NU (u) = N
(
h−1(u; θ)

)
Y U (u) = Y

(
h−1(u; θ)

)

XU (u) = X
(
h−1(u; θ)

)
DU (u) = D

(
h−1(u; θ)

)

with h(T ; θ) = h(T, X(T ), D(T ); θ). For θ = θ0 we denote h0(T ) = h(T, X(T ), D(T ); θ0).
The corresponding history is HU (u; θ) = {Y U

(u; θ), X
U

(u; θ), D
U

(u; θ)}. The
intensity of the transformed counting process with respect to history HU (u; θ)
is (see Andersen, Borgan, Gill, and Keiding (1993), p. 87)7

Pr
(
dNU (u; θ) = 1 | HU (u; θ)

)
= Y U (u; θ)E

[
λ
(
h−1(u; θ); α0

)

λ
(
h−1(u; θ); α

) e(β0−β)′XU (u;θ)

× exp
(
ψ(h−1(u; θ), DU (u; θ), γ0)− ψ(h−1(u; θ), DU (u; θ), γ)

)

× µ0

(
h0

(
h−1(u; θ)

))∣∣∣∣HU (u; θ)
]

du (21)

7If U = h(T ) and λT is the hazard rate of the distribution of T , then the hazard rate of
the distribution of U is

λU (u) = λT (h−1(u))
1

h′(h−1(u))
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We implicitly integrate with respect to the distribution of the unobserved V (t)
conditional on HU (u). Note that these unobserved covariates are only intro-
duced to ascertain the predictability of the treatment process. Although the
distribution of those variables determines the distribution of U0, the consis-
tency of the IVLR is independent of that distribution.8 Unfortunately, even for
the population parameters θ0 the hazard of U0, µ0(u), still depends on the inter-
vention path (through the correlation with V (.)). If we condition on the history
of the instruments instead of the actual treatment we do get the independence.

If we consider (transformed) durations from a (sequentially) randomized ex-
periment, we must add the (path of the) randomization indicator R to the condi-
tioning variables in (21). Let the UR–history, HUR(u) = {Y U (s), XU (s), RU (s); 0 ≤
s ≤ u}, be the history on the transformed durations in which D

U
(u) is re-

placed by the history of the randomization indicator on the transformed time,
RU (u) = R

(
h−1(u; θ)

)
. Then, another application of the innovation theorem

gives the intensity of the transformed process on the UR–history

Pr
(
dNU (u; θ) = 1 | HU (u; θ)

)
= Y U (u; θ)E

[
λ
(
h−1(u; θ); α0

)

λ
(
h−1(u; θ); α

) e(β0−β)′XU (u;θ)

× exp
(
ψ(h−1(u; θ), DU (u; θ), γ0)− ψ(h−1(u; θ), DU (u; θ), γ)

)

× µ0

(
h0

(
h−1(u; θ)

))∣∣∣∣HUR(u; θ)
]

du (22)

which for the population parameters simplifies to Y U
0 (u)µ0(u)du with Y U

0 (u) =
Y U (u; θ0) and HUR

0 (u) = HUR(u; θ0). Note that (21) and (22) only differ in the
history the intensities are conditioned on.

The intensity in (22) is independent of (the history) of X and R if we sub-
stitute the population parameter values, but not for other values of the param-
eters. This result is the basis for identification of the parameters. Independence
of (the history) of X and R and the hazard rate of U0 implies that the quantiles
of the distribution of U0 do not depend on X or R. By choosing CU

0 such that
Pr(U0 ≤ CU

0 ) = q we restrict the independence to the quantiles up to the q–th.
For further reference we denote the intensity in (22) by µU

i (u; θ) which reduces
to µ0(u) for the population parameters.

2.4 Censoring and endogenous treatment

A common feature of time–to–event data is that some of the observations are
censored. Assume the censoring time, C, is (potentially) known at each point in
time a change of treatment can occur. As in the bonus experiment this censoring
time usually corresponds to the end of the observation period. Thus, at each
duration tk we know the potential censoring times for all units still at risk (e.g.
we know the end of the observation period). Then, the observed variables are
T̃ = min(T, C) and ∆ = I(T ≤ C), where ∆ is one if T is observed.

One is tempted to assume we can define the censored transformed durations
by Ũ(θ) = min

(
h(T ; θ), h(C; θ)

)
= h(T̃ ; θ). However, with endogenous covari-

ates censoring makes some of the orthogonality conditions fail to hold. This
8In Bijwaard and Ridder (2002) we discussed the special case when V (t) = V (0) enters the

hazard rate multiplicatively. Here we do not make any assumptions on how V (t) enters the
hazard.
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can be illustrated by a simple example: Consider, as we observe in the bonus
data, a fixed censoring time. Then for all units, irrespective of treatment regime,
censoring occurs at time C. Let the (endogenous) intervention, D, and other co-
variates all be determined at the start of the study and have a constant effect
on the hazard. Finally, we assume that except for the treatment parameter, all
parameters, β0 and α0, are known. Then, the transformation is

U0 = eγ0D+β′0XΛ0(T ) (23)

with Λ the integral of λ. Hence, if D = 0 the censoring in the transformed time is
at eβ′0XΛ0(C), but if D = 1 the censoring time is eβ′0X+γ0Λ0(C). Thus, if γ0 > 0,
then all transformed durations in the interval [eβ′0XΛ0(C), eβ′0X+γ0Λ0(C)] have
D = 1, i.e. belong to the treatment group (for γ0 < 0 the boundaries are
reversed). The hazard of U0 on this interval is clearly not independent of D and
hence of R. The independence of the hazard of U0 and R only holds up to the
lower bound of the interval. This implies that in the IVLR, which exploits this
independence, the transformed durations that fall in the problematic interval
have to be censored.

This can be generalized to the model with time–varying interventions and co-
variates. We denote, for tk < t ≤ tk+1, the treatment function at t if Dk = 1
by ψ1

k(t; γ) and if Dk = 0 by ψ0
k(t; γ). Simple examples of these treatment func-

tions are ψ1
k(t; γ) = eγk and ψ0

k(t) = 1. We define the transformed censoring
time CU (θ) (possibly depending on the observed history of other covariates)
such that: (a) T ≥ C implies h(T ; θ) ≥ CU (θ) and (b) U0 and Rk are indepen-
dent on the interval bounded above by CU (θ).

Note that we either observe T ≤ C and ∆ = 1, or T > C and ∆ = 0. If
some of the other covariates are also time–varying we have another identification
problem, because these covariates are only observed up until T̃ . The transformed
censoring times (conditional on T,C > tk) that take all these considerations
into account are the sum of the transformed duration up to tk, h(tk; θ) and the
censoring adjustment, i.e

CU (θ) =
∫ tk

0

λ(s; α)eβ′X(s)+ψ(s,D(s);γ)ds + (24)

+

{∫ C

tk
λ(s;α)eβ′X(s) min(ψ1

k(s; γ), ψ0
k(s; γ)) ds if T > C,∫ T

tk
λ(s; α)eβ′X(s) min(ψ1

k(s; γ), ψ0
k(s; γ)) ds +

∫ C

T
λ(s; α) ds if T ≤ C.

From the last term on the right–hand side of (24) we see why we need to know C
even for the uncensored observations. Otherwise we can not compute CU (θ) for
these observations. We can estimate the parameters of the Instrumental GAFT
model from the following observed data

Ũ(θ) = min
(
U(θ), CU (θ)

)
, ∆U (θ) = I

(
U(θ) < CU (θ))

and Y U (u; θ) = I
(
Ũ(θ) ≥ u

)
. Now Ũ(θ0) is independent of Rk for ∆U (θ0) = 1.

Note that if both ψ1
k(t; γ) and ψ0

k(t; γ) differ from one, we get extra censoring on
the transformed durations, because some units with ∆ = 1 have ∆U (θ) = 0. In
the next section we use the independence of {Ũ(θ0),∆U (θ0)} and Rk to obtain
estimates of the parameters of the model.
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3 Instrumental Variable Linear Rank Estima-
tion of the treatment Effect

In this section we introduce the Instrumental Variable Linear Rank (IVLR)
estimator of the GAFT model with instruments. The estimator is based on the
transformed durations U(θ) and the properties of the IVLR are derived using
the transformed counting process NU (u). The IVLR is motivated by (22) and
is defined on the, possibly censored durations Ũ(θ).

3.1 The IVLR estimator

For the population parameter vector θ0 the hazard of U0, µ0(u), is independent
of the covariate and instrument history up to h−1

0 (u). Because this is true only
for θ = θ0, we can use an estimate of (22) as an estimating equation. This
independence can be used to construct test statistics close to the linear rank
test (see Prentice (1978)). The IVLR also exploits this independence and is the
estimation procedure derived from these rank tests.

In Bijwaard and Ridder (2002) we suggested a Two–Stage Linear Rank Es-
timator (2SLR) for the (M)PH models, a submodel of the GAFT models. The
2SLR is partially an Instrumental Variable method. In the first stage of the
2SLR the regression parameters and the parameters of the baseline hazard are
obtained by Maximum Likelihood Estimation on the control group data. These
estimated parameters are substituted in (3) to compute the transformed dura-
tions. These transformed duration are also a function of the treatment parameter
which is estimated in the second stage by a Instrumental Variable LRE.

The 2SLR estimator requires preliminary estimates of the regression and
baseline hazard parameters. However, only if there is full compliance in the
control group it is possible to get these first stage estimators. The (M)PH as-
sumption of the 2SLR is also questionable; it restricts the distribution of U0 to
a mixture of exponentials. In this section we suggest a one stage Instrumental
Variable LRE that allows to estimate all the parameters of the GAFT model,
the regression parameters, the parameters of λ and the treatment parameters,
simultaneously without assuming full compliance in the control group (or tem-
poral control groups) nor assuming an (M)PH model.

We mention again that the IVLR–estimator is also closely related to the
Rank Preserving Structural Failure Time Model (RPSFTM) estimator in Robins
and Tsiatis (1991). As we argued before the GAFT models are not rank pre-
serving as the RPSFTM and, therefore, do not impose the non–interaction as-
sumption of the RPSFT-models.

The estimating equation that defines the IVLR estimator contains a a left–
continuous weight function W . The dimension of W is greater than or equal
to the dimension of θ0 that is p. The weight function may depend on X

U

i (u; θ)
and R

U

i (u; θ). Typical examples are X
U

(u; θ) and RU
i (u; θ). The variance of the

IVLR estimator depends on W and in section 3.2 we discuss the optimal choice
of this function. The IVLR estimator is defined by the estimating equations
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Sn(θ; W ) =
n∑

i=1

∆U
i (θ)

{
W

(
Ũi(θ), X

U

i

(
Ũi(θ); θ

)
, R

U

i

(
Ũi(θ); θ

))−W (Ũi(θ); θ)
}

(25)
where

W (Ũi(θ); θ) =

∑n
j=1 Y U

j (Ũi(θ); θ)W
(
Ũi(θ), X

U

j

(
Ũi(θ); θ

)
, R

U

j

(
Ũi(θ); θ

))
∑n

j=1 Y U
j (Ũi)

,

the average of the weight function evaluated at Ũi(θ) among the individuals still
at risk. Note that we used ∆U

i (θ) instead of ∆i to assure independence of the
instruments and the transformed durations for all uncensored observations.

The statistic Sn(θ; W ) has mean zero in the population parameters and,
therefore, we base our estimator on the roots of Sn(θ; W ) = 0. However, the
estimating functions are discontinuous, piecewise constant, functions of θ and a
solution may not exist. For that reason we define the Instrumental Linear Rank
estimator (IVLR) θ̂n(W ) as the minimizer of the quadratic form, i.e.

θ̂n(W ) = inf{θ | Sn(θ; W )′Sn(θ; W )} (26)

The counting process interpretation of duration models allows for another, of
course equivalent, formulation of the estimating equations in (25). The relevant
counting measure, NU

i (u; θ), can be seen as a discrete ’probability distribu-
tion’ that assigns weight unity to uncensored transformed durations and is zero
elsewhere. Then the estimating equations can be expressed as an integral with
respect to that counting process

Sn(θ; W ) =
n∑

i=1

∫ CU
i (θ)

0

{
W

(
u,X

U

i (u; θ), R
U

i (u; θ)
)−W (u; θ)

}
dN Ũ

i (u; θ) (27)

where CU
i (θ) is the transformed censoring time defined in (24). To ensure weak

consistency and asymptotic normality of the IVLR estimator we make the fol-
lowing assumptions. The intervention can be switched on or off at fixed time
points tk for k = 0, 1, . . . , and t0 = 0. Let Dk denote the treatment status for
the time–interval (tk, tk+1]. If Dk = 1 the unit is treated in that time interval
and, Dk = 0 otherwise. The, possibly time–dependent, random variable Rk is
an instrument that is constant on [tk, tk+1) and may change just before the ac-
tual treatment, Dk, can change. We restrict both the instrument, Rk, and the
treatment, Dk, to be binary.

C1: The covariate process X(t) is predetermined, i.e. its distribution is inde-
pendent of {H(s), s > t}. The sample paths of the covariate process are
bounded and at least one of time–varying covariates is a continuous vari-
able.

C2: The observation process Y (t) is caglad and Y (t) is predetermined. More-
over,

Pr
(
dN(t) = 1 | Y (t) = 1,H(t)

)
= Pr

(
dN(t) = 0 | Y (t) = 0,H(t)

)
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C3: The population distribution of T given X and D satisfies
∫ T

0

λ(s; α0)eβ′0X(s)+ψ(s,D;γ0) ds = U0

The absolutely continuous distribution of U0 does not depend on X or R.
The p.d.f. of U0 is bounded.

C4: The transformed observation process Y U (u; θ) = I
(
Ũ(θ) ≥ u

)
is caglad

and predetermined, with Ũ(θ) = min
(
U(θ), CU (θ

)
and CU (θ) defined in

(24).

C5: The instrumental function W is bounded and left–continuous.

C6: The intensity of U(θ), µU
i (u; θ) given history HUR(u; θ) in (22) can be

linearised in a neighbourhood of θ0 as a function of θ, i.e. there exist κ(u)
and ε > 0 such that for ‖θ − θ0‖ < ε

∣∣∣∣∣µ
U
i (u; θ)− µ0(u)− (θ − θ0)′

∂µU
i (u; θ)
∂θ

∣∣∣∣
θ=θ0

∣∣∣∣∣ ≤ ‖θ − θ0‖2 κ(u)

for u ≤ CU (θ0).

C7: There exists a continuous function a(u; θ) of θ in a neighbourhood B of θ0

such that
sup

u≤CU (θ0)

sup
θ∈B

∥∥W (u; θ)− a(u; θ)
∥∥ p→ 0

where

W (u; θ) =

∑n
j=1 Y U

j (u; θ)W
(
u, X

U

j (u; θ), R
U

j (u; θ)
)

∑n
j=1 Y U

j (u; θ)

C8: There exists a continuous matrix function A(u; θ) of θ in a neighbourhood
B of θ0 such that

sup
u≤CU (θ0)

sup
θ∈B

∥∥∥∥∥
1
n

n∑

i=1

[
W

(
u, X

U

i (u; θ), R
U

i (u; θ)
)−W (u; θ)

]

×
[
W

(
u,X

U

i (u; θ), R
U

i (u; θ)
)−W (u; θ)

]′
Y U

i (u; θ)−A(u; θ)
∥∥∥∥

p→ 0

C9: There exists a continuous matrix-function Z(u; θ) of θ in a neighbourhood
B of θ0 such that

sup
u≤CU (θ0)

sup
θ∈B

∥∥∥∥
1
n

n∑

i=1

[
W

(
u, X

U

i (u; θ), R
U

i (u; θ)
)−W (u; θ)

]
di0(u)′Y U

i (u; θ)−

− Z(u; θ)
∥∥∥∥

p→ 0

with

di0(u) =
∂µU

i (u; θ)
∂θ

∣∣∣∣
θ=θ0
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As for the 2SLR and the LRE the discontinuities of the estimating equation
complicate the development of the asymptotic theory of the IVLR estimator. If
Sn(θ; W ) were differentiable with respect to θ, then asymptotic normality can
be proved using Taylor series expansion in a neighbourhood of θ0. Tsiatis (1990)
showed that, if Sn(θ; W ) is not differentiable, as in the current problem, we can
still use a linear approximation of n−1/2Sn(θ; W ). Using this approximation and
the asymptotic normality of Sn(θ0;W ), we can show that

√
n(θ̂n(W ) − θ0) is

asymptotically normal.
The asymptotic properties of the 2SLR in Bijwaard and Ridder (2002) and of

the LRE in Bijwaard and Ridder (2000) are based on a similar linearization. One
difference is that in the IVLR the weight functions depend on the, transformed,
instruments but not on the actual treatment. A second difference is that due
to the possible endogeneity of the treatment, the transformed durations are
restricted to the interval bounded above by the transformed censoring time (see
section 2.4).

This amounts to a small modification of the proof of the asymptotic linearity
of Sn(θ; W ) in the neighbourhood of the population parameter θ0 as given in
Bijwaard and Ridder (2000).

Sn(θ; W ) =
n∑

i=1

∫ CU
i (θ0)

0

{
W

(
u, X

U

i (u; θ), R
U

i (u; θ)
)−W (u; θ)

}
dNU

i (u; θ)

+
n∑

i=1

∫ CU
i (θ0)

CU
i (θ)

{
W

(
u, X

U

i (u; θ), R
U

i (u; θ)
)−W (u; θ)

}
dNU

i (u; θ) (28)

Substitution of the Doob–Meier composition in the first term on the right for
NU

i gives

Sn(θ; W ) =
n∑

i=1

∫ CU
i (θ0)

0

{
W

(
u, X

U

i (u; θ), R
U

i (u; θ)
)−W (u; θ)

}
dMU

i (u; θ)

+
n∑

i=1

∫ CU
i (θ0)

0

{
W

(
u,X

U

i (u; θ), R
U

i (u; θ)
)−W (u; θ)

}
µU

i (u; θ)Y U
i (u; θ) du

(29)

We consider both terms separately. The first term is for θ close to θ0 close to
Sn(θ0; W ) and for the second term we have

n∑

i=1

∫ CU
i (θ0)

0

{
W

(
u, X

U

i (u; θ), R
U

i (u; θ)
)−W (u; θ)

}∂µU
i (u; θ)
∂θ

′
Y U

i (u; θ) du

× (θ − θ0) + Op

(‖θ − θ0‖2
)

Returning to (28) we note that the second term in this equation equals

n∑

i=1

{[
W

(
Cu

i (θ0), Xi

(
Cu

i (θ0); θ0

)
, Ri

(
Cu

i (θ0); θ0

))−W
(
Cu

i (θ0); θ0

)]

× θ0

(
Cu

i (θ0)
)
Yi

(
Cu

i (θ0); θ0

)
}

+ Op

(‖θ − θ0‖2
)
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The term between brackets is the covariance between θ0

(
Cu

i (θ0)
)

and
W

(
Cu

i (θ0), Xi(Cu
i (θ0); θ0), Ri(Cu

i (θ0); θ0)
)

which is zero. Thus this whole term
is zero for θ close to θ0 and we have

Sn(θ; W ) ≈ Sn(θ0; W ) + n

∫ CU (θ0)

0

Z(u; θ0) du · (θ − θ0) (30)

Hence, approximately for the IVLR estimator θ̂n(W )

√
n(θ̂n(W )− θ0) =

[∫ CU (θ0)

0

Z(u; θ0) du

]−1
1√
n

Sn(θ0; W ) (31)

The asymptotic properties of the IVLR estimator are summarized in the follow-
ing two theorems.

Theorem 1 (Consistency).
If conditions C1 to C7 hold θ̂n(W ) converges in probability to θ0.

Proof: See the appendix.

Theorem 2 (Asymptotic Normality).
If conditions C1 to C9 hold and Q(W ) has full rank, then

√
n(θ̂n(W )− θ0)

d→ N
(
0, Q−1(W )Ω(W )Q′−1(W )

)
(32)

where

Ω(W ) =
∫ CU (θ0)

0

a(u; θ0)µ0(u) du (33)

the asymptotic variance of n−1/2Sn(θ0; W ) and,

Q(W ) =
∫ CU (θ0)

0

Z(u, θ0) du (34)

the limiting covariance matrix of the processes W (u,X
U

i0(u), R
U

i0(u)) and di0(u)/µ0(u).

Proof: See the appendix.

3.2 Efficiency

Many different choices of the weight function lead to consistent estimates of the
parameters. By properly choosing the weight function the asymptotic variance
of the IVLR can be minimized. The optimal weight function of the IVLR is
very similar to the optimal weight function we derived in Bijwaard and Ridder
(2000) for LRE of the GAFT model without instrumenting.

Theorem 3 (Optimal weight function in IVLR).
The W–function that gives the smallest asymptotic variance for θ̂n(W ) is

Wopt(u, X(u), R(u)) ∝ ∂ ln µU (u; θ)
∂θ

∣∣∣∣
θ=θ0

=
1

µ0(u)
∂µU (u; θ0)

∂θ
(35)
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Note that the only difference between the optimal weight function for the
IVLR and the LRE of Bijwaard and Ridder (2000) is that for the IVLR estimator
we take the derivative of the hazard conditional on the path of the instruments
instead of the path of the actual treatment. Therefore, the argument for the
proof of this theorem is almost identical to the proof of the optimal W–function
for the Linear Rank Estimator (LRE) without instrumenting. The latter can be
found in Bijwaard and Ridder (2000). Hence, this proof is not repeated here.

Again, the asymptotic covariance matrix of the optimal IVLR estimator
reduces to

Ω−1(Wopt) = Q−1(Wopt). (36)

which is the analog of the asymptotic variance matrix of the optimal LRE.
Despite the simple formulation in theorem 3, these optimal W–function can

be very complicated. The next example, which is based on the model we use in
the empirical application, shows that in simple GAFT model the optimal weight
functions are already troublesome to grasp.

Example 1 (Optimal weight function for piecewise constant λ and treatment
effect). Consider9

λ(t; α) =
K−1∑

k=1

eαkIk(t) (37)

where Ik(t) = I(tk−1 ≤ t < tk) and t0 = 0, tK = ∞. X(t) is a vector of prede-
termined covariates. We assume the treatment effect is also piecewise constant
on, possibly, other intervals than λ, i.e.,

ψ(t,D; γ) = D

L∑

l=1

γl · Il(t) (38)

where the actual treatment D is chosen at the start, but the effect may change
at fixed durations (e.g. after 10 weeks in the bonus experiment). For each
k = 1, . . . , K − 1 we define ID

k (u) = I
(
mk−1(X, D) ≤ u < mk(X, D)

)
with

mk(X,D) =
∫ tk

0
λ(s; α)eψ(s,D;γ)+β′X(s) ds and similar for l = 1, . . . , L.

Obvious choices for the weight function are XU (u), ID
k (u) and R ·I1

l (u). Let
p1 = Pr(D = 1 | R = 1) and p0 = Pr(D = 1 | R = 0). The density of U0 given
D and R is denoted by g0(u|D, R), the hazard and the derivative are defined
analogously. Finally, we denote

χ(u | D, R) = g0(u | D,R)/G0(u) + g′0(u | D, R)/g0(u)

and

MD
j (u|D, R) =

[g0(u | D,R)
g0(u)

+u·χ(u | D,R)
]
ID
j (u)−mj−1(X,D)χ(u | D, R)ID

j (u)

+ χ(u | D, R)
(
mj(X, D)−mj−1(X, D)

)
I
(
u > mj(X,D)

)
(39)

for j = k = 1, . . . , K − 1 and for j = l = 1, . . . , L.
9Because in a model with α̃k defined for each interval only K−1 of these α’s are identified

(see Bijwaard and Ridder (2000)) we choose to fix α̃K = 0 and redefine the remaining α̃’s in
αk = α̃k − α̃K .
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From (22) and (35) we derive the optimal W–function for this model as

Wβ,opt

(
u, X

U
(u), R

)
= X(u) +

µ′0(u)
µ0(u)

∫ u

0

X(s) ds (40)

Wαk,opt

(
u, X

U
(u), R

)
= R

[
p1M

1
k (u | 1, 1) + (1− p1)M0

k (u | 0, 1)
]

(41)

+ (1−R)
[
p0M

1
k (u | 1, 0) + (1− p0)M0

k (u | 0, 0)
]

Wγl,opt

(
u, X

U
(u), R

)
= R · p1M

1
l (u | 1, 1) + (1−R)p0M

1
l (u | 1, 0) (42)

Note that Wβ,opt

(
u,X

U
(u), R

)
is identical to Wβ,opt

(
u, X

U
(u)

)
defined in Bi-

jwaard and Ridder (2000). Thus, instrumenting does not effect the optimal
weight function of the regression parameters.

If the treatment decision is not confounded we have g0(u | D,R) = g0(u),
µ(u | D, R) = µ′0(u). Then, Wαk,opt

(
u,X

U
(u), R

)
is almost identical to the

optimal W–function for αk defined in Bijwaard and Ridder (2000). The only
difference is that the optimal weight function of the IVLR estimator is the
average of M0

k (u) = M0
k (u | D = 0, R) and M1

k (u) = M1
k (u | D = 1, R) while

the optimal weight function of the LRE is based solely on Mk(u | D).
Finally, we mention that with full compliance in the control group, i.e. p0 = 0,

and a constant treatment effect, the optimal weight function for γ reduces to

Wγ,opt

(
u, X

U
(u), R

)
= R · p1

[
g0(u|1, 1)/g0(u) + u · χ(u|1, 1)

]
(43)

(end of example 1).

3.3 Estimation in practice

The statistic Sn(θ; W ) is a multi–dimensional step–function. Therefore, the stan-
dard Newton–Raphson algorithm cannot be used to solve (26). One of the alter-
native methods for finding a zero of a non–differentiable function is the Powell–
method. This method (see Press et al. (1986, §10.5)) is a multi–dimensional
version of the Brent algorithm. Another possible algorithm for finding the min-
imizer of the quadratic form is Simulated Annealing (see e.g. Vanderbilt and
Louie (1984) and Lin and Geyer (1992)).

Related to the computation of optimal weight function is the estimation of
the variance matrix for an arbitrary weight function.10 The difficulty in estimat-
ing the covariance matrix lies in the calculation of the matrix Q(W ) and not
in the calculation of the variance matrix of the estimating equation. The latter
can be consistently estimated by

Ω̂ =
1
n

n∑

i=1

∫ CU
i (θ̂)

0

[
W

(
u, X

U

i (u; θ̂), R
U

i (u; θ̂)
)−W (u, θ̂)

]

×
[
W

(
u, X

U

i (u; θ̂), R
U

i (u; θ̂)
)−W (u, θ̂)

]′
dN̂U

i (u) (44)

10Robins and Tsiatis (1991) suggested to use a numerical derivative of n−1Sn(θ; W ) that

does not need an estimate of the optimal W–function to get Q̂(W ). This numerical derivative
is sensitive to the choice of the difference in θ. We found it hard to get stable results.
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where N̂U
i (u) is the counting process of U(θ̂).

The computation of the variance matrix and the adaptive IVLR deserve more
attention. The difficulty in computing the variance matrix lies in the calculation
of the matrix Q(W ) and not in the calculation of the variance matrix of the
estimating equation. The latter can be consistently estimated by

Ω̂ =
1
n

n∑

i=1

∫ τ

0

[
W

(
u, X

U

i

(
u; θ̂n(W )

))−W
(
u, θ̂n(W )

)]

×
[
W

(
u, X

U

i

(
u; θ̂n(W )

))−W
(
u, θ̂n(W )

)]′
dN̂U

i (u) (45)

where N̂U
i (u) is the counting process of U

(
θ̂n(W )

)
.

These functions are estimated in two steps. The first step consists of ob-
taining a consistent estimate of θ0 using an instrumental function that does not
depend on the distribution of U0. The transformed durations for these parameter
values are estimates of the unobserved population transformed durations. The
second step concerns the estimation of the unknown distribution of U0. Many
different methods are available to get a reasonable estimate of an unknown
distribution. We shall not apply the commonly used kernel based method. Al-
though kernel–smoothed hazard rate estimators have been developed (see e.g.
Ramlau-Hansen (1983)) and adjusted to deal with the boundary problems in-
herent to hazard rates (see e.g. Gasser and Müller (1979)) these methods can
be difficult to implement due to the choice of the bandwidth. It is also unclear
how the boundary corrections can be incorporated in the kernel estimates of the
derivative of the hazard. We therefore choose to use a series approximation of
the distribution.

Suppose the distribution of U0 can be approximated arbitrary well using
orthonormal polynomials. We base our approximation on Hermite polynomials
using the exponential distribution as a weighting function:

g0(u) =
ae−au

∑J
j=0 b2

j




J∑

j=0

bjLj(u)




2

(46)

where

Lj(u) =
j∑

k=0

(
j

k

)
(−au)k

k!
(47)

are the Laguerre polynomials. The unknown parameters of this approximation
are a and b0, . . . , bJ . If bj ≡ 0 for all j > 0 the distribution of U0 is exponential.
Even for J as small as three (46) allows for many different shapes of µ0(u)
and its derivative. Both can be derived analytically given the estimates of the
parameters. The parameter estimators can be obtained from standard maximum
likelihood procedures on the observed (Ũi(θ̂n(W )), ∆i).

If a consistent but inefficient estimator θ̂n(W ) of θ0 is available and we have
estimated the parameters of the polynomial approximation of the distribution
of U0 we can obtain an efficient estimator θ̂opt in just one extra step. From the
linearization of the estimating equations, given in (30), we obtain an efficient
estimator from

θ̂opt = θ̂n(W )− Q̂(W )−1Sn(θ̂n(W ); Wopt)/n (48)

24



It also possible to obtain the efficient estimator directly from minimizing the
quadratic form Sn(θ;Wopt)′Sn(θ; Wopt). However, this involves again the mini-
mization of a multi–dimensional step function.

4 Application to the Illinois Reemployment Bonus
Experiment

Between mid–1984 and mid–1985, the Illinois Department of Employment Se-
curity conducted a controlled social experiment.11 This experiment provides
the opportunity to explore, within a controlled experimental setting, whether
bonuses paid to Unemployment Insurance (UI) beneficiaries or their employers
reduce the time spend in unemployment relative to a randomly selected control
group. In the experiment, newly unemployed claimants were randomly divided
into three groups: a Claimant Bonus Group, a Employer Bonus Group and, a
control group. The members of both treatment group were instructed that they
(Claimant group) or their employer (Employer group) would qualify for a cash
bonus of $500 if they found a job (of at least 30 hours) within 11 weeks and,
if they held that job for at least four months. Each newly unemployed individ-
ual who was randomly assigned to one of the two treatment groups had the
possibility to refuse participation in the experiment.

Woodbury and Spiegelman (1987) concluded from a direct comparison of
the control group and the two treatment groups that the claimant bonus group
had a significantly smaller average unemployment duration. The average un-
employment duration was also smaller for the employer bonus group, but the
difference was not significantly different from zero. These results are confirmed
in table 4.1. Note that the response variable is insured weeks of unemployment.
Because UI benefits end after 26 weeks, all unemployment durations are cen-
sored at 26 weeks. In table 4.1 no allowance is made for censoring. In the table
we distinguish between compliers and non-compliers. We see that the claimant
bonus only affects the compliers and that the average unemployment duration
of the non-compliers and the control group are almost equal.

Table 4.1: Average unemployment durations:
control group and (non-)compliers.

Control Claimant Employer
Group Bonus Bonus

All Compl. Non-compl. All Compl. Non-compl.
Benefit
weeks

18.33 16.96 16.74 18.18 17.65 17.62 17.72

(0.20) (0.20) (0.22) (0.50) (0.21) (0.26) (0.35)
N 3952 4186 3527 659 3963 2586 1377

standard error of average in brackets.

About 15% of Claimant group and 35% of the employer group declined par-
ticipation. The reason for this refusal is unknown. In Bijwaard and Ridder (2002)
we showed that the participation rate is significantly related to some observed

11More detailed information can be found in Bijwaard (2001). A complete description of the
experiment and a summary of its results can be found in Woodbury and Spiegelman (1987).
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characteristics of the individuals that also influence that re–employment hazard
(see table B.1). Hence, we cannot exclude the possibility of unmeasured variables
that affect both the compliance decision and the re–employment hazard.

In Bijwaard and Ridder (2002) we analyzed this data using the Two Stage
Linear Rank (2SLR) estimator. The 2SLR is a device to reduce the computa-
tional burden by dividing the computation into two steps. This is appealing
because in the 2SLR is the solution to a discontinuous estimating function.
However, the first stage of the 2SLR estimator is based on a MPH model for
the control group and can only be estimated if the individuals in that group do
not have any possibility to get a treatment. Although, this is the situation for
the data under consideration and we found that the 2SLR removes the biases
of the Maximum Likelihood (based on exogeneity of the treatment) and the
intention–to-treat (ITT, ML based on the treatment assignment instead of the
actual treatment), it restricts the model unnecessary.

In this paper we extend the analysis of Bijwaard and Ridder (2000) to the
(possibly) endogenous participation decision. Apart from the effect of the bonus
the model is the same as in Bijwaard and Ridder (2000) with a log–linear regres-
sion function and a piecewise constant λ. The program effect, the regression pa-
rameters and, the parameters of λ are all estimated simultaneously. The choices
of the specification of the GAFT model are based on the results of Bijwaard
and Ridder (2000). We consider the two interventions separately: thus Claimant
Bonus group versus Control group and Employer Bonus group versus Control.

We shall consider two alternative treatment functions: (i) constant treatment
effects and, (ii) a change in the effect after 10 weeks, in line with the end of the
eligibility period of the bonuses.12 Thus, the implied transformed durations are

U(θ) =
∫ T

0

λ(s; α)eβ′X+(γ1I1(s)+γ2I2(s))Dds (49)

with I1(t) = I(0 ≤ t < 11) and I2(t) is its complement. Note that the covariates
are all time–constant because the individual characteristics available in the data
are all determined when the individuals register at the unemployment office.
We include the following: the logarithm of the age (LNAGE), the logarithm
of the pre–unemployment earnings (LNBPE), gender (MALE= 1), ethnicity
(BLACK= 1), and the logarithm of the weekly amount of UI benefits plus
dependence allowance (LNBEN). We employ three different specifications for
λ(t;α0): (i) AFT model, i.e. λ(t; α0) ≡ 1; (ii) model with a piecewise constant
λ on five intervals 0–2, 2–4, 4–10, 10–25 and 25 and beyond; (iii) model (ii) in
which the third interval is split in two 4–6 and 6–10.

For identification we need to set one of the parameters of the piecewise
constant λ equal to one (or the log equal to zero). We call the interval on which
the value of λ is one the base interval. In the two specifications of λ with more
than one interval we let the base interval start on the last week before the end
of the observation period, at 25 weeks. This is done for two reasons. First, it
is easier to compare the estimates of the λ for different numbers of intervals.
Second, the spike in the observed unemployment duration just before the UI

12For both the interventions the treatment path is determined at the start. It should
be underlined that the estimated treatment effects correct for bias due to selective non–
participation. No attempt is made to estimate the effects under the (counterfactual) assump-
tion that all eligible individuals indeed collect the bonus.
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eligibility period ends is captured. This is also the end of the observation period
and, therefore, for all individuals the potential censoring time is at 26 weeks.
We denote by αk the log values of λ in the relevant interval minus the log value
in the base interval.

For all specifications we estimate a first stage IVLR using the Powell–method
and the one step optimal IVLR. The first stage IVLR uses the values of the co-
variates, the interval indicators on the transformed duration and, the treatment
assignment indicator times the treatment interval indicators on the transformed
duration, R·I1(u) and R·I2(u), as the weight functions for the parameters. From
these first stage IVLR’s the implied transformed duration are obtained. Then,
we estimate the parameters of the polynomial approximation of the distribution
of U conditional on R and D as mentioned in section 3.2 (and described in detail
in section 3.3). From these estimated parameters we can calculate the hazard
and its derivative of the transformed duration.

Example 1 can help to deduce all the relevant optimal weight functions. In
particular, we can substitute the estimated distributions (and implied deriva-
tives and hazards) of U0 given D and R into (39) and subsequently substitute
all of these in (40), (41) and (42), to get all the optimal weight functions. Note
that in this application p0 = 0 and, therefore, M1

k (u | 1, 0) = M0
k (u | 0, 0). This

full compliance in the control group also allows us to apply (43) for the model
with constant treatment effects.

The results for the treatment effects are reported in table 4.2. The parameter
estimates of the regression parameters are reported in table B.2 (for the model
with constant treatment effects) and in table B.3 (for the model with time–
varying treatment effects). Finally, table B.4 gives the estimated parameters of
λ. These last three tables can be found in appendix B.

The Coase Theorem predicts that in a world of zero transaction costs the
bonuses paid to the Claimant group and to the Employer group would be equally
efficient. Because they both imply the same amount of money, an employment
contract would be established whenever the bonus was sufficient to enable a mu-
tually advantageous bargain to be struck. However, Woodbury and Spiegelman
(1987) concluded from a direct comparison of the control group and the two
treatment groups that the claimant bonus group had a significantly smaller av-
erage unemployment duration.13 The average unemployment duration was also
smaller for the employer bonus group, but the difference was not significantly
different from zero.

We cannot confirm the different treatment effects of the two bonuses if we
use the IVLR estimator of the GAFT model. Although we find for almost all
specifications a slightly greater effect on the re–employment probability of the
Claimant Bonus, these effects do not differ significantly from the effects of the
Employer Bonus. For both groups the results in table 4.2 indicate that the
estimated treatment effects are decreasing if we allow for a more flexible λ. The
same pattern is observed for the (absolute) values of the regression parameters in
table B.2 and B.3. The AFT model seem to overestimate the treatment effects.
This is especially apparent if we allow the treatment effect to change after ten
weeks of unemployment duration.

The results clearly indicate that the bonuses only influence the chances to
find a job in the first ten weeks. This is in line with the bonus eligibility period:

13See also Bijwaard and Ridder (2002), table 4.1 and, Donohue (1989).
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Table 4.2: Instrumental Variable Linear Rank estimates for the effect of the
Bonus

Constant effect Claimant Employer
AFT (2) (3) AFT (2) (3)

First stage 0.1446 0.1141 0.1024 0.1011 0.0866 0.0721
(0.0493) (0.0369) (0.0523) (0.0646) (0.0496) (0.0470)

1–step optimal 0.1596 0.1004 0.0932 0.1332 0.1100 0.0696
(0.0460) (0.0355) (0.0380) (0.0612) (0.0459) (0.0425)

Time varying effect
Claimant Employer

First stage AFT (2) (3) AFT (2) (3)
0-10 0.2955 0.1593 0.1433 0.2304 0.1333 0.1103

(0.0523) (0.0624) (0.0907) (0.0710) (0.0553) (0.0736)
10+ -0.0720 0.0166 0.0063 -0.0783 0.0207 -0.0048

(0.0608) (0.0682) (0.0886) (0.0836) (0.1116) (0.1253)
1–step optimal
0-10 0.3865 0.1468 0.1439 0.6334 0.1450 0.1279

(0.0486) (0.0502) (0.0578) (0.0674) (0.0568) (0.0521)
10+ -0.0437 -0.1195 -0.0411 0.0330 0.0060 -0.0747

(0.0572) (0.0652) (0.0850) (0.0745) (0.0929) (0.0882)

(2) piecewise constant intervals: 0–2, 2–4, 4–10, 10-25, 25 →;
(3) piecewise constant intervals: 0–2, 2–4, 4–6, 6–10, 10–25, 25 →;
standard error in brackets.

those who find a job after that period would not get the bonus. However, the
increase in the treatment effect if it is confined to this bonus eligibility period is
not as large as we found before (in Bijwaard and Ridder (2002)). The effect of
the Claimant Bonus increases from about 10% higher probability to find a job at
every unemployment duration to about 15% higher probability to find a job in
the first ten weeks (and no effect thereafter). While the bonus for the Employer
group raises the job finding probability with about 7% at every unemployment
duration or with about 12% in the first ten weeks of unemployment.

The AFT models tells a different story, but we tend to reject this model.
Another indication that λ should be included is the difference between the first
stage and one–step optimal estimators for the AFT model. For a correctly spec-
ified model both estimators are consistent and, therefore, do not differ much. In
the models with a λ specified the first stage and one–step estimator are of the
same magnitude. The estimated standard errors of the latter are, as expected,
substantially lower in most situations.

Although the focus in this article is on the estimation of the effect of a possibly
confounded intervention we also give a short discussion on the other estimated
parameters. These estimators can be found in the tables in appendix B. We
mentioned already that the regression parameters are overestimated (in abso-
lute terms) if we assume an AFT model. These regression parameters hardly
change from a model with constant treatment effects (table B.2) to a model
with time–varying treatment effects (table B.3). The regression parameters for
the Claimant data and the Employer data (both including the control group)

28



are almost identical. Gender, MALE, is the exception; This covariate has no sig-
nificant influence on the re–employment probability in the Employer data. The
shape of the estimated λ’s are very similar to those we obtained in Bijwaard
and Ridder (2000) on the control group. Again the results indicate a U–shaped
λ.

We end with a discussion on the selectivity in the bonus data. The compli-
ance rate in the Claimant group, 85%, was much higher than the compliance
rate in the employer group, 65%. Many individuals in the Employer group, ap-
parently and contrary to our findings, did not perceive a bonus paid to their
new employer beneficiary for their job search. Following Moffitt (1983) this par-
tial compliance may be explained by a stigma effect. However, this is a tentative
explanation because our analysis only adjust for (possible) selective compliance.
It does not provide a model for the selection process. Thus, both an advantage
and a drawback of our method is that we do not make any assumptions on the
selection process and therefore cannot tell why individuals make such a selective
decision.

5 Conclusion

In this article we extend the analysis of the GAFT model in Bijwaard and
Ridder (2000) to allow for endogenous covariates. In particular, we focus on
time-to-event studies with a randomised treatment assignment that may be
compromised by selective compliance. We show that even if the compliance is
selective, we can still use the randomisation in the assignment to the interven-
tion and control groups to estimate the impact of the program on the hazard
correcting for selective compliance. The only requirement is that participation
in the program is affected by a variable that is not correlated with the baseline
duration.

We develop an Instrumental Variable estimation procedure for this model
that is closely related to the Rank Preserving Structural Failure Time Model
(RPSFTM) estimator of Robins and Tsiatis (1991). The difference is originated
by the basic model they assume if there is no instrumenting: the models of
Robins and Tsiatis (1991) collapse into the strong version of the AFT model,
while our models collapse into the GAFT models proposed in Bijwaard and Rid-
der (2000). The empirical application shows that incorrectly assuming an AFT
model can give misleading conclusions about the effects of a bonus on the re–
employment hazard. We discuss the large sample properties of this Instrumental
Linear Rank Estimation and show how we can improve its efficiency.
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insurance recipients actively seek work. Working paper, no. 6982, NBER.

Bijwaard, G. E. (2001). Rank Estimation of Duration Models. Ph.D. The-
sis Vrije Universiteit Amsterdam and Tinbergen Institute: Thela Thesis,
Amsterdam.

Bijwaard, G. E. and G. Ridder (2000). Rank estimation of Generalized Ac-
celerated Failure Time Models. memeo.

Bijwaard, G. E. and G. Ridder (2002). Correcting for selective compliance in
a re–employemnt bonus experiment. forthcoming Journal of Econometrics
(under revision).

Brännäs, K. (1992). Econometrics of the Accelerated Duration Model. Ume̊a:
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Appendices

A Asymptotic properties of the IVLR

In this appendix we prove the consistency (theorem 1) and asymptotic normality
(theorem 2) of the IVLR. The proof of the consistency and asymptotic normality
are both based upon the asymptotic linearity of Sn(θ;W ) in the neighbourhood
of the true value θ0. We follow the reasoning of Tsiatis (1990). The following
lemma shows that the linearization in (30) is uniformly close to the original
estimating function

Lemma 1. In neighbourhoods of O(n−1/2) of θ0

n−1/2
∥∥∥S̃n(θ; W )− Sn(θ;W )

∥∥∥

converges uniformly to zero.

This lemma implies that n−1/2S̃n(θ; W ) and n−1/2Sn(θ;W ) are asymptoti-
cally equivalent in a neighbourhood close to θ0.

Proof: This can be proved in lines of Tsiatis (1990) Lemma (3.1) and (3.2) and
theorem (3.2) and this is, because of the analogy, not repeated here.

Proof of theorem 1 and theorem 2. According to lemma 1 is n−1/2Sn(θ; W ) in a
neighbourhood close to θ0 asymptotically equivalent to n−1/2S̃n(θ; W ). Then the
estimates θ∗ and θ̂, with S̃n(θ∗; W ) = 0, will also be asymptotically equivalent.
Clearly, θ∗ converges in probability to θ0. Hence, if we show that

√
n(θ̂−θ∗)

p→ 0
then this would imply that θ̂ also converges in probability to θ0. Tsiatis (1990)
argues that lemma 1 suffices to proof this. This proves theorem 1.

According to the Mann–Wald theorem convergence in probability implies
convergence in distribution. We note that

√
n(θ∗−θ0) = n−1/2Q−1(W )Sn(θ0;W )

clearly converges to a normal distribution with mean zero and variance matrix
Q−1(W )Ω(W )Q′−1(W ). This completes the proof of theorem 2.

Remark. To establish detailed conditions on when S̃n(θ; W ) has a unique
root is rather tedious; however Ying (1993) gave an excellent general treatment
on rank estimation, which can also be used for the estimating equations in this
chapter.
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B Additional Tables for the IVLR of reemploy-
ment bonus experiment

Table B.1: Probit analysis of the compliance decision.
Claimant Employer

Bonus Bonus
Constant 0.9973 0.3108

(0.0384) (0.0329)
AGE -0.0029 -0.0025

(0.0027) (0.0024)
LNBPE 0.0763 -0.1328

(0.0544) (0.0559)
BLACK -0.1866 0.0565

(0.0527) (0.0484)
MALE 0.1073 0.1360

(0.0478) (0.0421)
LNBEN -0.1973 -0.1535

(0.0958) (0.0939)
Log likelihood -1810.21 -2524.71
LR test (5 d.f.) 24.60 69.69
N 4186 3963
No. of compliers 3527 2586
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Table B.2: Instrumental Variable Linear Rank estimates for the regression co-
efficients of the Illinois data (Constant Bonus Effect)

First stage Claimant Employer
AFT (2) (3) AFT (2) (3)

LNAGE -0.5718 -0.3807 -0.3424 -0.5219 -0.4053 -0.3379
(0.0734) (0.0780) (0.0897) (0.0717) (0.0668) (0.0699)

LNBPE 0.3528 0.2388 0.2146 0.3188 0.2446 0.2036
(0.0510) (0.0534) (0.0601) (0.0512) (0.0468) (0.0482)

BLACK -0.6636 -0.4211 -0.3770 -0.6264 -0.4587 -0.3792
(0.0526) (0.0684) (0.0842) (0.0510) (0.0557) (0.0641)

MALE 0.1135 0.0740 0.0663 0.0464 0.0358 0.0295
(0.0377) (0.0320) (0.0330) (0.0376) (0.0309) (0.0305)

LNBEN -0.5841 -0.3956 -0.3558 -0.6263 -0.4823 -0.4010
(0.0867) (0.0897) (0.1011) (0.0871) (0.0826) (0.0865)

One step Optimal
Claimant Employer

AFT (2) (3) AFT (2) (3)
LNAGE -0.5204 -0.3711 -0.3612 -0.4733 -0.3509 -0.3110

(0.0693) (0.0656) (0.0653) (0.0683) (0.0613) (0.0603)
LNBPE 0.3537 0.2325 0.2266 0.3133 0.2108 0.1871

(0.0473) (0.0452) (0.0449) (0.0483) (0.0434) (0.0424)
BLACK -0.6162 -0.4085 -0.3982 -0.5646 -0.3992 -0.3574

(0.0509) (0.0507) (0.0510) (0.0495) (0.0448) (0.0443)
MALE 0.1293 0.0713 0.0691 0.0698 0.0272 0.0227

(0.0355) (0.0306) (0.0303) (0.0355) (0.0309) (0.0303)
LNBEN -0.5924 -0.3807 -0.3692 -0.6040 -0.4114 -0.3610

(0.0813) (0.0766) (0.0762) (0.0826) (0.0745) (0.0727)

(2) piecewise constant intervals: 0–2, 2–4, 4–10, 10-25, 25 →;
(3) piecewise constant intervals: 0–2, 2–4, 4–6, 6–10, 10–25, 25 →;
standard error in brackets.
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Table B.3: Instrumental Variable Linear Rank estimates for the regression co-
efficients of the Illinois data (Time–varying Bonus effect)

First stage Claimant Employer
AFT (2) (3) AFT (2) (3)

LNAGE -0.5361 -0.3692 -0.3285 -0.5233 -0.3906 -0.3355
(0.0693) (0.0826) (0.0897) (0.0706) (0.0702) (0.0763)

LNBPE 0.3313 0.2388 0.2139 0.3153 0.2447 0.2029
(0.0481) (0.0570) (0.0617) (0.0506) (0.0498) (0.0530)

BLACK -0.6086 -0.4080 -0.3665 -0.6268 -0.4467 -0.3771
(0.0494) (0.0749) (0.0861) (0.0501) (0.0612) (0.0740)

MALE 0.1036 0.0740 0.0668 0.0461 0.0362 0.0294
(0.0352) (0.0328) (0.0337) (0.0371) (0.0308) (0.0304)

LNBEN -0.5470 -0.3956 -0.3564 -0.6187 -0.4819 -0.3989
(0.0820) (0.0958) (0.1043) (0.0859) (0.0885) (0.0959)

One step Optimal
Claimant Employer

AFT (2) (3) AFT (2) (3)
LNAGE -0.4861 -0.3578 -0.3288 -0.4529 -0.4057 -0.3660

(0.0653) (0.0642) (0.0664) (0.0675) (0.0623) (0.0622)
BPE 0.3332 0.2247 0.2061 0.3017 0.2433 0.2236

(0.0442) (0.0442) (0.0455) (0.0474) (0.0437) (0.0434)
BLACK -0.5644 -0.3987 -0.3615 -0.5286 -0.4594 -0.4189

(0.0476) (0.0502) (0.0533) (0.0488) (0.0467) (0.0480)
MALE 0.1176 0.0689 0.0626 0.0622 0.0334 0.0283

(0.0332) (0.0303) (0.0304) (0.0349) (0.0307) (0.0302)
LNBEN -0.5501 -0.3675 -0.3343 -0.5813 -0.4737 -0.4284

(0.0765) (0.0751) (0.0770) (0.0815) (0.0755) (0.0752)

(2) piecewise constant intervals: 0–2, 2–4, 4–10, 10-25, 25 →;
(3) piecewise constant intervals: 0–2, 2–4, 4–6, 6–10, 10–25, 25 →;
standard error in brackets.
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Table B.4: Estimated λ for the Bonus data

Claimant Constant Bonus effect Time varying Bonus effect
interval first opt. first opt.

(2) 0–2 0.5653 0.6758 0.6143 0.7822
(0.3616) (0.2197) (0.4316) (0.2156)

2–4 0.1180 0.1726 0.1381 0.1542
(0.2944) (0.1636) (0.3391) (0.1610)

4–10 -0.2988 -0.1639 -0.2855 -0.1476
(0.1996) (0.1255) (0.2393) (0.1254)

10–25 -0.7121 -0.6717 -0.6585 -0.5487
(0.1511) (0.1026) (0.1563) (0.0907)

(3) 0–2 0.8098 0.7500 0.8625 0.9328
(0.4638) (0.2052) (0.5262) (0.2409)

2–4 0.3146 0.2348 0.3542 0.2309
(0.3691) (0.1462) (0.4048) (0.1799)

4–6 -0.0782 -0.0415 -0.0390 0.0318
(0.2646) (0.1220) (0.3015) (0.1552)

6–10 -0.2743 -0.1859 -0.2341 -0.2085
(0.2392) (0.1133) (0.2807) (0.1369)

10–25 -0.6868 -0.6655 -0.6077 -0.6345
(0.1626) (0.1006) (0.1758) (0.1261)

Employer Constant Bonus effect Time varying Bonus effect
interval first opt. first opt.

(2) 0–2 0.2781 0.6903 0.3029 0.3593
(0.2565) (0.1407) (0.3358) (0.1681)

2–4 -0.0925 0.2458 -0.0811 -0.0341
(0.1865) (0.0965) (0.2583) (0.1202)

4–10 -0.4944 -0.3020 -0.4927 -0.3249
(0.1474) (0.0676) (0.1860) (0.0893)

10–25 -0.7908 -0.6793 -0.7688 -0.6358
(0.1013) (0.0374) (0.1035) (0.0470)

(3) 0–2 0.7095 0.8929 0.7088 0.5647
(0.3063) (0.1450) (0.4375) (0.1716)

2–4 0.2540 0.4451 0.2542 0.1464
(0.2134) (0.0939) (0.3344) (0.1227)

4–6 -0.1217 -0.1178 -0.1195 0.0875
(0.2008) (0.0925) (0.2330) (0.1050)

6–10 -0.4552 -0.2707 -0.4526 -0.4098
(0.1516) (0.0751) (0.2255) (0.0975)

10–25 -0.7492 -0.6826 -0.7180 -0.6057
(0.0971) (0.0372) (0.1015) (0.0491)

(2) baseline hazard intervals: 0–2, 2–4, 4–10, 10-25, 25 →;
(3) baseline hazard intervals: 0–2, 2–4, 4–6, 6–10, 10–25, 25 →;
standard error in brackets.
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