
A Quasi-Robust Optimization Approach
for Resource Rescheduling

Lucas P. Veelenturf1, Daniel Potthoff3, Dennis Huisman2,4,

Leo G. Kroon1,4, Gábor Maróti4 and Albert P.M. Wagelmans2

1 Rotterdam School of Management and ECOPT,
2 Econometric Institute and ECOPT,

Erasmus University Rotterdam
P.O.Box 1738, 3000 DR, Rotterdam, The Netherlands

3 Ab Ovo Germany
Prinzenallee 1, 40549, Düsseldorf, Germany

4 Process quality & Innovation,
Netherlands Railways

P.O.Box 2025, 3500 HA Utrecht, The Netherlands

E-mail: {lveelenturf,lkroon}@rsm.nl, {huisman, wagelmans}@ese.eur.nl
daniel.potthoff@ab-ovo.com, gabor.maroti@ns.nl,

Econometric Institute Report EI2013-28

Abstract

If a disruption takes place in a complex task-based system, where tasks are carried out
by a number of resource units or servers, real-time disruption management usually has
to deal with an uncertain duration of the disruption. In this paper we present a novel
approach for rescheduling such systems, thereby taking into account the uncertain du-
ration of the disruption. We assume that several possibilities for the duration of the
disruption are given.

We solve the rescheduling problem as a two-stage optimization problem. In the
first stage, at the start of the disruption, we reschedule the plan based on the optimistic
scenario for the duration of the disruption, while taking into account the possibility
that another scenario will be realized. In fact, we require a prescribed number of the
rescheduled resource duties to be recoverable. This means that they can be easily
recovered if it turns out that another scenario than the optimistic one is realized.

We demonstrate the effectiveness of our approach by an application in real-time
railway crew rescheduling. This is an important subproblem in the disruption manage-
ment process of a railway company with a lot of uncertainty about the duration of a
disruption. We test our approach on a number of instances of Netherlands Railways

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Erasmus University Digital Repository

https://core.ac.uk/display/18514201?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

(NS), the main operator of passenger trains in the Netherlands. The numerical exper-
iments show that the approach indeed finds schedules which are easier to adjust if it
turns out that another scenario than the optimistic one is realized.

1 Introduction

Transportation and production systems sometimes have to deal with disruptions. Due to a

disruption, the underlying plans for the allocation of tasks to resource units or servers have

to be rescheduled. Indeed, some tasks may be cancelled by the disruption, which makes the

original plans infeasible. Examples are the rescheduling of vehicles and crews in various

transportation systems (bus, rail and air), or the rescheduling of machines in a production

system. This paper focuses on dealing with large-scale disruptions, often caused by machine

failures, weather conditions or the temporary unavailability of the underlying infrastructure.

In such rescheduling problems, uncertainty in the duration of the disruption usually

plays a major role. For example, recovery works on a broken switch in a railway network

may take two hours in the optimistic scenario. However, they may stretch up to four hours

in the pessimistic scenario. During the recovery works, the railway traffic is usually inter-

rupted, leading to cancelled tasks for rolling stock and crews. It is unclear at the start of the

disruption how many tasks will be cancelled.

A common approach to tackle this uncertainty is to modify the schedule at the start of

the disruption, given an estimated duration of the disruption. Usually the shortest possible

or optimistic duration is taken as an initial estimate for the duration of the disruption. Later,

when it turns out that the disruption lasts longer than estimated initially, the schedule is

modified again (and possibly again). This approach is also called a wait-and-see approach.

In this paper we present a new approach to deal with this uncertainty about the duration

of the disruption. In particular, we study real-time disruption management for task-based

scheduling systems under uncertainty. In a task-based scheduling system, a number of

timetabled tasks have to be carried out by a given number of resource units or servers. Each

task has a fixed start and end time and a given start and end location. A duty is an ordered

sequence of tasks that have been assigned to a single server.

Existing algorithmic frameworks for dealing with uncertainty include the classical ap-

proaches of robust optimization and stochastic programming:

• Robust optimization tries to find the best solution that, without any modifications or

recovery actions, remains feasible under all specified scenarios. For more information

about robust optimization we refer to Bertsimas and Sim (2003) and Ben-Tal and

Nemirovski (2002).

2

• Two-stage stochastic programming with recourse minimizes the sum of the costs of

the first stage solution plus the expected costs of the recovery in the second stage. An

important assumption is that the probability for the occurrence of each of the consid-

ered scenarios is known a priori. For more information about stochastic programming

we refer to Birge and Louveaux (1997) and Kall and Wallace (1994).

Both robust optimization and stochastic programming lead to significantly more complex

optimization problems than the underlying deterministic problems. Usually, realistic in-

stances cannot be solved in (near) real-time. In addition, robust optimization is a very

conservative approach, while stochastic programming needs information about a probabil-

ity distribution for the occurrence of the different scenarios, which is usually not available

in practice.

In this paper we propose a quasi-robust rescheduling approach, which is built upon the

recently introduced concept of recoverable robustness by Liebchen et al. (2009). The main

idea is to compute a good schedule for the optimistic scenario in such a way that it can

easily be turned into a feasible schedule when another scenario than the optimistic one is

realized. This is achieved by requiring that a given number of the duties that are rescheduled

in the first stage have an alternative for the tasks for which it is not certain at the start of the

disruption that they must be carried out. Thus, also if such tasks turn out to be cancelled

in the second stage, such a duty can be made feasible again. Duties with this property are

called recoverable.

Recoverability of a duty is a local property of a duty that depends on the duty itself,

and not on the entire solution. It is therefore rather easy to incorporate it in column gen-

eration based algorithms without substantially raising their running time. Furthermore, the

approach admits to balance the robustness and the operational costs by requiring a given

number of the rescheduled duties to be recoverable.

Our method consists of a two-stage approach. In the first stage we assume that the op-

timistic scenario takes place, and we compute the modified schedule subject to a constraint

that a given number of rescheduled duties must be recoverable. Then, in the second stage,

when it turns out that another scenario than the optimistic scenario is realized, we compute

the rescheduled duties from scratch. That is, we do not limit the recovery action in the

second stage to simply falling back to the recovery alternatives of the recoverable duties.

Computing the rescheduled duties from scratch in the second stage will be necessary when

not all duties are recoverable after the first stage. Moreover, rescheduling from scratch in

the second stage also helps to reduce the second stage costs.

The primary criterion for assessing the quality of a schedule is the number of addition-

ally cancelled tasks (i.e. the ones that are cancelled in addition to the ones that are cancelled

3

due to the disruption), both in the first stage and in the second stage. The two-stage eval-

uation framework allows us to analyze how the robustness requirements in the first stage

influence the actual rescheduling performance in the pessimistic scenario or in any other

scenario. We also compare our approach with a typical rolling horizon approach where

initially only the optimistic duration of the disruption is taken into account, and where the

duties are rescheduled whenever the information about the duration of the disruption is

updated.

We demonstrate the effectiveness of our approach by the results of the computational

tests that were carried out on a number of railway crew rescheduling instances of Nether-

lands Railways (NS), the main operator of passenger trains in the Netherlands. Summariz-

ing, the contributions of this paper are as follows.

- We consider disruption management of task-based scheduling systems under uncer-

tainty.

- We develop a framework to deal with the uncertainty about the duration of a disrup-

tion.

- We evaluate our approach on a number of railway crew rescheduling instances of

Netherlands Railways.

We want to emphasize that our focus lies both on developing new methods and on prac-

tical applications. We consider real-time disruption management of substantially complex

scheduling systems. In fact, our computational tests are based on railway crew rescheduling

instances that are quite challenging, even without taking into account the uncertainty in the

duration of the disruption.

This paper is organized as follows. In Section 2, we give a description of our quasi-

robust rescheduling approach and of the uncertainty that has to be dealt with. We also give a

formal definition of the concept of quasi-robustness. In Section 3, we explain the application

of our approach on the rescheduling of railway crews during a disruption. Section 4 presents

our computational results based on instances of NS. This paper is concluded in Section 5

with suggestions for further research.

2 Quasi-robust optimization approach

2.1 Rescheduling problems

Many scheduling problems can be seen as a set of timetabled tasks which must be carried

out by a number of servers. In the scheduling problems that we consider, each task has a

4

fixed start and end time and a given start and end location. A sequence of tasks to be carried

out by a single server is called a duty. If a task is carried out by a certain server, we say that

the task is covered by that server.

If a disruption occurs, usually a number of tasks must be cancelled. As a consequence,

some of the original duties of the servers become infeasible and must be rescheduled. In

such a rescheduling problem (RSP), the duties must be modified such that as many of the

remaining tasks as possible are covered by a server and such that the modifications in the

duties are minimal.

In this section we assume that the disruption starts at time τ1 and that the duration of

the disruption is known. Thus the set of remaining tasks that still have to be carried out

is known at time τ1. At time τ1 every server that has not yet finished its duty must get

a new feasible sequence of tasks to end its duty. Moreover, every server that has not yet

started its duty must get a new feasible sequence of tasks to replace its duty, preferably in

the same time interval as the original duty. In both cases, this is the completion of a duty.

Furthermore, we use the following notation:

• T : The set of tasks that have not started yet at the time of rescheduling, and that,

given the duration of the disruption, are still to be carried out.

• ∆: The set of unfinished servers.

• Kδ: The set of all feasible completions for server δ ∈ ∆. For every feasible comple-

tion k ∈ Kδ we have:

– cδk: The cost of completion k for server δ. The cost of a completion is zero if

the original duty of the server is not modified.

– aδik: A binary parameter indicating if task i is covered by completion k for server

δ.

• fi: The cost for not covering a task i.

Given these definitions, we can formulate such an RSP at time τ1 with a given duration of

the disruption as a Mixed Integer Program (MIP). This MIP is an adapted version of a Set

Covering model. The model uses binary variables xδk to represent whether or not completion

k is selected for server δ, and binary variables zi to indicate if task i is covered or not. The
model can be formulated as follows:

5

(RSP) : min
∑
δ∈∆

∑
k∈Kδ

cδkx
δ
k +

∑
i∈T

fizi (1)

s.t.
∑
δ∈∆

∑
k∈Kδ

aδikx
δ
k + zi ≥ 1 ∀i ∈ T (2)

∑
k∈Kδ

xδk = 1 ∀δ ∈ ∆ (3)

xδk, zi ∈ {0, 1} ∀δ ∈ ∆, ∀k ∈ Kδ,∀i ∈ T (4)

Here the objective function (1) describes the aim of minimizing the sum of the costs of the

completions and the costs of not covering certain tasks. Constraints (2) make sure that every

task is either covered by a completion or is not covered. Furthermore, constraints (3) ensure

that every server is assigned to exactly one completion. Constraints (4) describe the binary

character of the decision variables.

2.2 Rescheduling under uncertainty

In contrast with the assumption in Section 2.1, the duration of the disruption is usually not

known at time τ1, the start time of the disruption. In this paper we deal with this uncertainty

in the duration of the disruption by considering the rescheduling problem as a two-stage

optimization problem.

The first stage rescheduling is carried out at time τ1. At time τ1 an optimistic estimate

τ and a pessimistic estimate τ̄ of the end time of the disruption are assumed to be known.

Later, at time τ2, with τ1 < τ2 < τ , the actual end time of the disruption τ becomes known

with τ ≤ τ ≤ τ̄ . Time τ2 is the time at which the second stage rescheduling is carried out.

Since at time τ1 we do not know the actual duration of the disruption, we consider a

finite set of scenarios S with index s. The optimistic scenario s and the pessimistic scenario

s̄ correspond with the optimistic and the pessimistic end time of the disruption, respectively.

In the optimistic scenario the set of tasks Ts must be carried out, and in the pessimistic

scenario the smaller set of tasks Ts̄ must be carried out. The set of tasks Ts \ Ts̄ is called

the set of critical tasks C.

All other scenarios are obtained by cancelling a number of critical tasks from the set

C. In general, the set of tasks that must be carried out in scenario s is denoted by Ts. We

assume that the scenarios have been ordered in such a way that Ts2 ⊂ Ts1 if in scenario s1

the disruption ends earlier than in scenario s2.

Then the rescheduling problem under uncertainty can be stated as follows. Given the

6

set of possible scenarios S, find at time τ1 a new schedule valid for the optimistic scenario

s such that the sum of the costs of this schedule and the worst case costs for the additional

rescheduling in the second stage at time τ2 is minimized. Note that, since we do not assume

knowledge of a probability distribution of the scenarios, we cannot minimize the expected

costs. The objective function that we use in our model will be explained in more detail in

Section 2.3.

2.3 Definitions

In this section we give a definition of the concept of q-quasi-robustness, but first we give

an informal description. The idea behind q-quasi-robust optimization is to generate for q

servers completions that are, in some sense, robust against all possible scenarios, i.e. they

can be carried out whatever scenario is actually realized. In this way we minimize the costs

(in particular the number of cancelled tasks) for rescheduling in the second stage at time τ2

if a scenario other than the optimistic scenario s is realized. Note that we do not require all

completions to be robust. That is why we call our approach quasi-robust rather than robust.

Now the formal definition of q-quasi-robustness follows in three steps in Definitions 1,

2 and 3.

Definition 1. If k is a completion for server δ that is feasible in the first stage RSP, then

a completion γs for server δ that is feasible in the second stage RSP when scenario s is

realized is said to be a recovery alternative for completion k in scenario s if aδiγs = 1 for

each task i ∈ Ts with aδik = 1.

In other words, the completion γs of server δ is a recovery alternative for completion k of

server δ in scenario s, if each task i ∈ Ts that is covered by completion k is also covered

by completion γs. Informally speaking, this means that the critical tasks that are covered

by completion k and that are cancelled in scenario s can be circumvented in some way if

scenario s is realized, so that all non-critical tasks in k are still carried out in γs. Usually,

this requires the completion k to contain a certain amount of idle time around (i.e. before

and/or after) a critical task.

Now a recoverable completion is defined as follows:

Definition 2. A completion k of server δ that is feasible in the first stage RSP for the opti-

mistic scenario s is called recoverable if

- k does not contain two critical tasks directly after each other, and

- there exists a recovery alternative γs for completion k in all scenarios s ∈ S.

7

Note that by Definition 2 every completion that does not contain any critical task is recov-

erable. Note further that a recoverable completion may contain more than one critical task,

but only if there is at least one non-critical task between each pair of critical tasks.

Definition 3. A schedule that is obtained in the first-stage rescheduling phase is called

q-quasi robust if q > 0 servers have a recoverable completion.

Based on the above Definitions 1, 2 and 3, we next describe the q-quasi-robust rescheduling

problem (q-QRSP) that is to be solved in the first-stage rescheduling phase. We denote the

set of recoverable completions for server δ by Rδ ⊂ Kδ. Furthermore, for each server δ

and each feasible completion k of δ, the binary decision variable xδk describes whether or

not completion k ∈ Kδ is selected in the solution. For each task i ∈ Ts, the binary variable

zi describes whether or not task i is covered. Now we can state q-QRSP in the first stage as

follows:

min
∑
δ∈∆

∑
k∈Kδ

cδkx
δ
k +

∑
i∈Ts

fizi (5)

s.t.
∑
δ∈∆

∑
k∈Kδ

aδikx
δ
k + zi ≥ 1 ∀i ∈ Ts (6)

∑
k∈Kδ

xδk = 1 ∀δ ∈ ∆ (7)

∑
δ∈∆

∑
k∈Rδ

xδk ≥ q (8)

xδk, zi ∈ {0, 1} ∀δ ∈ ∆, ∀k ∈ Rδ,∀i ∈ Ts (9)

The objective function (5) describes that the aim is to minimize the sum of the costs

of the selected completions and the costs of leaving certain tasks uncovered. Constraints

(6) specify that each task i ∈ Ts must be covered by a completion or remains uncovered.

Constraints (7) describe that each server must get a completion. Constraints (8) determine

that at least q servers must get a recoverable completion. Finally, constraints (9) require the

decision variables to be binary valued.

Note that the model (5)–(9) for q-QRSP in the first stage is almost the same as the

model (1)–(4) for RSP. The difference is that in (5)–(9) we require at least q servers to have

a recoverable completion. Note that if q = |∆|, then all servers must have a recoverable

completion. That implies that in each scenario a feasible solution can be obtained by using

for each server the corresponding recovery alternative.

If another scenario is realized than the optimistic one, then in the second stage RSP,

where we assume the remaining duration of the disruption to be known, we solve the RSP,

8

given the solution that was obtained for q-QRSP in the first stage. We aim at minimizing

the total costs of the first stage and the second stage by varying q, the number of servers

required to get a recoverable completion in the first stage.

2.4 Solution approach

The solution approach for q-QRSP in the first stage consists of a combination of Lagrangian

relaxation and column generation, which is based on Caprara et al. (1999), Huisman et al.

(2005) and Potthoff et al. (2010). If the problem contains many tasks, then servers can have

a huge number of feasible completions. Therefore we use a column generation approach

where only promising completions are considered.

2.4.1 Lagrangian relaxation

In the master problem for q-QRSP in the first stage, Constraints (6) are relaxed which results

in the following Lagrangian subproblem:

Θ(λ) = min
∑
δ∈∆

∑
k∈Kδ

cδkx
δ
k +

∑
i∈Ts

fizi +
∑
i∈Ts

λi(1−
∑
δ∈∆

∑
k∈Kδ

aδikx
δ
k − zi) (10)

s.t.
∑
k∈Kδ

xδk = 1 ∀δ ∈ ∆ (11)

∑
δ∈∆

∑
k∈Rδ

xδk ≥ q (12)

xδk, zi ∈ {0, 1} ∀δ ∈ ∆,∀k ∈ Rδ,∀i ∈ Ts, (13)

The latter can be rewritten as:

Θ(λ) = min
∑
i∈Ts

λi +
∑
δ∈∆

∑
k∈Kδ

(cδk −
∑
i∈Ts

λia
δ
ik)x

δ
k +

∑
i∈Ts

(fi − λi)zi

s.t. (11)− (13)

For given Lagrange multipliers λi, the Lagrangian subproblem can be solved in the follow-

ing way. First, zi = 1 if fi − λi < 0, and zi = 0 otherwise. To determine the xδk values,

we have to choose at least q servers which must have a recoverable completion. This can be

accomplished in the following way.

First, for notational reasons, we replace cδk−
∑

i∈Ts̄ λia
δ
ik by c̄δk. Here for every server δ

9

we have kδ = arg min{c̄δk|k ∈ Kδ\Rδ} and rδ = arg min{c̄δk|k ∈ Rδ}. Thus kδ represents

the completion with the lowest reduced costs of all non recoverable completions for server

δ, and rδ represents the completion with the lowest reduced costs of all recoverable com-

pletions for server δ. For every server either of these completions must be selected. Based

on this information we can determine the optimal values for the xδk variables as follows:

1. Set all xδk variables equal to 0.

2. Compute for every server δ the difference between the reduced costs of the two com-

pletions cδ,∗ = c̄δ
rδ
− c̄δ

kδ
.

3. For the q servers δ with the lowest values of cδ,∗, set xδ
rδ

= 1.

4. For all remaining servers, set xδ
rδ

= 1 if cδ,∗ ≤ 0. Otherwise set xδ
kδ

= 1.

Now the Lagrangian dual problem is to find:

Θ∗ = max
λ≥0

Θ(λ) (14)

2.4.2 Restricted master problem

Since we use column generation, we consider a restricted master problem (RMP) of (10)-

(13) containing only a subset of the xδk variables. Note that we implemented this such that

this subset always contains at least one recoverable completion for every server (and not

necessarily a non-recoverable completion). For example, a recoverable completion for a

server that is feasible in each scenario is to end its duty without carrying out any further

tasks.

In the nth column generation iteration the xδk variables in the RMP are given by∪δ∈∆{xδk :

k ∈ Kδ
n}, where Kδ

n ⊆ Kδ is a subset of completions for server δ, Rδn ⊆ Kδ
n is a subset of

recoverable completions for server δ, and Rδn 6= ∅.
Let Θ∗n be the optimal value of the Lagrangian subproblem of the nth column generation

iteration. For every RMP we use subgradient optimization to approximate Θ∗n. We call

this approximation A∗n. This leads to the following relation: A∗n ≤ Θ∗n. Let λ∗n be the

corresponding multiplier vector. We solve a pricing problem for every server δ ∈ ∆ to

check if A∗n is a good approximation of Θ∗. Otherwise we need to add more completions

to the RMP in order to improve the solution. For the details of this procedure we refer to

Potthoff et al. (2010).

The pricing problems are modeled as shortest path problems with resource constraints

(SPPRC) in dedicated graphs. These graphs are introduced in Section 2.4.3. Let uδn =

min{c̄δk(λ∗n) : k ∈ Rδn} and vδn = min{c̄δk(λ∗n) : k ∈ Kδ
n} be the smallest Lagrangian

10

reduced costs of the already generated recoverable and general completions, respectively.

Furthermore, let sδn = min{c̄δk(λ∗n) : k ∈ Rδ} and tδn = min{c̄δk(λ∗n) : k ∈ Kδ} be the

optimal values of the recoverable and the general pricing problem for server δ, respectively.

Then the completions corresponding to uδn and vδn should be added to the RMP if sδn−uδn <
0 and tδn − vδn < 0.

2.4.3 The pricing problem

We deal with rescheduling problems where a set of tasks that are fixed in time must be per-

formed by a number of servers. In the same way as described by Potthoff et al. (2010), the

pricing problem for every server δ can be modeled as a shortest path problem with resource

constraints (SPPRC) in the pricing problem graph. The resources are required to handle

certain additional properties of the completions. For example, in a crew scheduling appli-

cation the time before and after a meal break may not be too long. This kind of constraints

can be handled by considering the problem as SPPRC.

In a pricing problem graph, a node represents the start or the end of a task. Arcs are used

to represent the tasks and to indicate which tasks can follow each other. The latter depends

on the scheduled time but also on other characteristics such as the start and end locations of

a task.

Example 4. Figure 1 shows an example of a pricing problem graph involving tasks g, h, i,

j, l, m, and n. The bold arcs correspond to the tasks. The thin arcs indicate transfers from

one task to another.

h

g

i

j

l

m

n

h

g

i′

i′′

i′′′

j

l

m

n

deadhead

task
departure nodearrival node

transfer

Figure 1: A pricing problem graph involving tasks g, h, i, j, l, m, and n.

By construction of the pricing problem graph, any feasible completion corresponds to a

path in a pricing problem graph. Note that the reverse is not true in general since some-

times complex rules, e.g. about meal breaks, have to be taken into account. These rules are

handled by the resource constraints.

11

A task i is said to be covered directly after task h in a completion if task h is followed

directly by task i in the corresponding path. In this case, task i is a successor of task h, and

task h is a predecessor of task i. We denote all predecessors of task i by pred(i), and all

successors of task h by suc(h).

Finding recoverable completions The regular completions for a server can be generated

based on regular pricing problem graphs as shown in Figure 1.

However, for generating recoverable completions, we have to modify the pricing prob-

lem graphs in order to guarantee the existence of a recovery alternative for completions

containing critical tasks. In other words, when constructing a completion, we have to guar-

antee that for each critical task in the completion also an alternative path is available that

can be used in case the critical task is cancelled. Here we use the following lemma.

Lemma 5. If a feasible completion k for server δ is recoverable, then for every critical task

i in completion k there exists a path, consisting of non-critical tasks only, from the end node

of the non-critical predecessor of task i to the start node of the non-critical successor of

task i.

Proof. If completion k is recoverable, then it does not contain two critical tasks directly

after each other. Thus each critical task i in k has a non-critical predecessor and a non-

critical successor. Now the implication follows from the fact that completion k should have

a recovery alternative in the pessimistic scenario s̄, in which all critical tasks have been

cancelled. In this pessimistic scenario the non-critical predecessor of task i and the non-

critical successor of task i still have to be carried out, but task i is cancelled. Thus there

exists a path as indicated.

In Lemma 5, if a critical task is the first task of completion k, then the end node of its

predecessor is meant to be a dummy node representing the start of the duty. Similarly, if a

critical task is the last task of completion k, then the start node of its successor is meant to

be a dummy node representing the end of the duty.

Note that the relation in Lemma 5 is not an equivalence, since the existence of a path

does not imply the existence of a feasible completion, as was noted earlier.

Lemma 5 suggests that the generation of the recoverable completions can be accom-

plished by (i) modifying the pricing problem graph, and (ii) considering additional re-

sources in the SPPRC. As was indicated before, these additional resources are required to

handle certain rules that must be satisfied by the completions, such as the time before or

after the meal break in a crew duty.

12

For this purpose we introduce additional arc properties next to the costs. These arc

properties are used to define so-called Resource Extension Functions. For each scenario, a

separate Resource Extension Function is needed to check whether a generated completion is

feasible in the corresponding scenario. For the details of the Resource Extension Functions,

we refer to Potthoff (2010).

Finding alternative paths We have to find out for each critical task i whether there exists

an alternative path in the pricing problem graph consisting of non-critical tasks only that

can be used to replace critical task i if this task is cancelled.

To that end, we remove all arcs corresponding to the critical tasks from the graph. In

the reduced graph we can use a shortest path algorithm to determine for every non-critical

predecessor task h of critical task i all non-critical successor tasks of critical task i that can

be reached from task h via a path consisting of non-critical arcs only. In case of a SPPRC we

are not interested in reachability alone, but also in information about how a successor node

can be reached. To be more precise, we would like to find the path from the non-critical

predecessor task h to the non-critical successor task j which uses the fewest resources.

Modifying the pricing problem graph Next we go back to the original pricing problem

graph, and we modify it as follows. Let task i be a critical task. Then the arc corresponding

to this task is removed from the graph. For each non-critical predecessor task of critical

task i and each non-critical successor task of critical task i that can be reached from the

predecessor task via a path consisting of non-critical arcs only (as described in the previous

paragraph), we replace the removed arc corresponding to task i by a copy of the removed

arc corresponding to task i. This procedure is illustrated in Example 6.

Note that we consider here only non-critical predecessors and non-critical successors in

order to avoid the occurrence of two critical tasks directly after each other in a completion.

We also copy the original transfer arcs to and from the copy of the critical task i, and we set

the resource consumptions accordingly. These steps are carried out for each critical task.

Example 6. Figure 2 shows the modified pricing problem graph that is obtained when the

preprocessing steps are applied to the pricing problem graph shown in Figure 1. Here task

i is a critical task that is carried out in scenario s and cancelled in scenario s. Task i has

two predecessors, pred(i) = {h, g}, and three successors, suc(i) = {l,m, n}. From task h,

only task m can be reached via task j in the auxiliary problem when critical task i has been

removed. For this relation we introduce a new task i′ and the necessary arcs. From task g,

tasks m and n can be reached in the auxiliary problem, which is represented by the copies

13

i′′ and i′′′ of critical task i. Note that task l cannot be reached from any predecessor of task

i. Therefore, task l cannot be covered by any recoverable completion.

h

g

i

j

l

m

n

h

g

i′

i′′

i′′′

j

l

m

n

deadhead

task
departure nodearrival node

transfer
Figure 2: Part of a pricing problem graph after the preprocessing for critical task i that is
cancelled in scenario s has been carried out.

Lemma 7. A feasible completion k that is obtained as a resource constrained shortest path

in the graph constructed according to the above described procedure is recoverable.

Proof. If the feasible completion k does not contain any critical task, then it is recoverable

by definition.

If completion k contains exactly one critical task i, then task i is not preceded nor

succeeded in k directly by another critical task. Thus the alternative path for critical task i

that was determined in the described procedure fits between the non-critical predecessor of

task i in k to the non-critical successor of task i in k.

If completion k contains more than one critical task, then, due to the construction of the

graph, two critical tasks in k do not follow each other directly in k. As a consequence, their

alternative paths do not interact with each other: they are separated from each other in time

by at least one non-critical task.

The foregoing cases imply that, if task i is a critical task, then in any scenario not

containing task i, this task can be replaced by its alternative path. And, obviously, in any

scenario containing task i, this task can be carried out as planned.

Finally, the Resource Extension Functions per scenario are used to handle the resource

consumptions in each scenario. As a consequence, completion k is a feasible completion

in the first stage under the optimistic scenario, and if any other scenario than the optimistic

one is realized, then the corresponding recovery alternative for completion k is a feasible

completion in the second stage.

14

It is clear from the above example that the number of nodes and arcs in the pricing problem

graphs increase significantly if many successors of the arrival node of a critical task can

be reached from many predecessors of the departure node of the critical task. This has

consequences for applying the concept of recoverability on instances of practical relevance.

Note that the number of copies of critical tasks can be reduced slightly by merging

copies of tasks that have the same set of successors or the same set of predecessors. For

example, if copies i′′ and i′′′ in Figure 2 are merged since these tasks have the same prede-

cessor, then the distinguishing characteristics of tasks i′′ and i′′′ can be moved to the two

arcs between the newly merged task i′′ and tasks m and n. Alternatively, if copies i′ and i′′

are merged since these have the same successor, then the distinguishing characteristics of

tasks i′ and i′′ can be moved to the two arcs between tasks h and g and the newly merged

task i′. However, this usually does not lead to a significant reduction of the size of the

pricing problem graph.

3 Application: Railway crew rescheduling

In this section we describe the application of the concept of q-QRSP to the real-time reschedul-

ing of railway train drivers due to a disruption with an uncertain duration.

The operation of a railway system is usually based on an extensive planning process,

resulting in a timetable and schedules for the rolling stock and crews. The interested reader

can find further details about the underlying planning problems in Abbink et al. (2005) and

Kroon et al. (2009).

In the regular timetable a number of tasks have to be carried out by the train drivers.

Each task corresponds to driving a train or to deadheading on a train from one station to

another. Thus each task has a departure time and station, and an arrival time and station. A

duty is a set of consecutive tasks to be carried out by a single driver on a single day. Each

driver belongs to a crew base, where all his or her duties should start and end.

In an ideal situation, the timetable and the schedules for rolling stock and crews are

executed exactly as planned. However, in a railway system disturbances and disruptions

happen frequently. For example, malfunctioning infrastructure or rolling stock or an ac-

cident may block the railway traffic at a certain location and during a certain time period.

As a consequence, the timetable and the schedules for rolling stock and crews cannot be

executed as planned: they have to be rescheduled.

Therefore, effective disruption management is key to a good operational performance of

a train operating company. We refer to Jespersen-Groth et al. (2009) for a detailed descrip-

tion of the disruption management process. Within the disruption management process,

15

the ability to reschedule the crews is particularly crucial, since the crew duties are subject to

complex rules and regulations. In the following, the problem of rescheduling the crew duties

in a disrupted situation is called the Operational Crew Rescheduling Problem (OCRSP).

Potthoff et al. (2010) proposed an approach for solving OCRSP. However, this approach

assumes that an accurate estimate of the duration of the disruption is available at the time

the rescheduling is carried out. The same holds for the approach of Rezanova and Ryan

(2010) and for the models developed for crew rescheduling in the airline industry. We refer

to Clausen et al. (2010) for an overview of crew rescheduling models in the airline industry.

3.1 Examples

Example 8. This example deals with a case in the north of the Netherlands that is repre-

sented in Figure 3. Due to broken catenary, no railway traffic is possible between Hoogeveen

(Hgv) and Beilen (Bl) from 7:10 on. It is estimated that the repair works will last between 3

and 4 hours. The timetable is updated according to a pattern described by the contingency

plan that is applicable in this situation.

In this case, the trains of the train lines 500, 700, and 9100, that are operated between

Zwolle (Zl) and Groningen (Gn) (and vice versa) in an hourly periodic timetable, are turned

in four intermediate stations. In particular, the intercity trains of the 500 and 700 lines are

turned in Hoogeveen and Assen (Asn). The regional trains of the 9100 train line are turned

in Meppel (Mp) and Beilen. The corresponding trips between Hoogeveen and Assen (and

vice versa) and between Meppel and Beilen (and vice versa) are cancelled.

At the intermediate stations where the trains are turned, the crew is supposed to stay

with the turning trains. This means effectively that tasks from Groningen to Zwolle are

changed into tasks from Groningen to Groningen, and that tasks from Zwolle to Gronin-

gen are changed into tasks from Zwolle to Zwolle. Such combined tasks are also called

rerouted tasks. The rerouted tasks are indicated later with “/r” after their corresponding

train number. Note that the rerouted tasks fit perfectly well within the framework that has

been developed so far.

Figure 3 shows how the timetable between Zwolle and Groningen is updated. Since

the repair works take at least 3 hours, the turning pattern is applied for sure for three

southbound and three northbound trains of each of the three involved train lines. For the

trains in the fourth hour after the start of the disruption, it is uncertain whether the trains

will take their normal routes (dashed lines in Figure 3) or whether they will be turned as

well (dotted arcs in Figure 3).

16

716

720

740

71
1

73
1

518

522

542

9122

9142

91
13

91
33

53
3

724

728

732

736

71
5

71
9

72
3

72
7

526

530

534

538

51
7

52
1

52
5

52
9

9126

9130

9134

9138

91
17

91
21

91
25

91
29

Time

Gn

Asn

Bl

Hgv

Mp

Zl

5:00 6:00 7:00 8:00 9:00 10:00 11:00 12:00
τ1 τ2

Figure 3: Time space diagram showing how the timetable between Groningen (Gn) and
Zwolle (Zl) is updated, if the route between Beilen (Bl) and Hoogeveen (Hgv) is blocked
temporarily.

Current crew rescheduling approaches deal with this situation as follows. At time τ1 the

optimistic duration of the disruption is estimated, and the modified timetable corresponding

to this estimate is used as input for OCRSP.

In Example 8 this means that it is estimated that the blockage will be over by 10:10.

Therefore, the modified timetable that is given as input to OCRSP assumes that the trains

727, 736, 529, 538, 9129 and 9138 can run between Beilen and Hoogeveen as planned.

Therefore the corresponding tasks that are indicated with dashed lines in Figure 3 are con-

sidered in the instance of OCRSP.

However, it may happen that at time τ2, which is 9:40 in the example, new information

becomes available saying that the route will be blocked until 11:10. This means that the

timetable has to be updated again and that the trains 727, 736, 529, 538, 9129 and 9138

must also be turned at the intermediate stations. Thus at time τ2 the rolling stock and crew

schedules must be rescheduled as well, given this new information and the rescheduled

timetable. The rerouted tasks 727/r, 736/r, 529/r, 538/r, 9129/r, and 9138/r are used as input

for a second instance of OCRSP. Here, for example, task 727/r consists of a task from

Zwolle to Hoogeveen in the time slot of the original task 727, followed by a return task

from Hoogeveen to Zwolle in the time slot of the original task 736, see Figure 3. Since

the two consecutive parts of task 727/r must be carried out by the same crew, the two parts

together are considered as one single rerouted task.

17

Given the route blockage between Hoogeveen and Beilen and the scenarios that were

presented in Example 8, Example 9 gives a number of examples of feasible completions to

illustrate the concept of recovery alternatives and recoverability.

Example 9. Figure 4a shows a planned duty from crew base Groningen (Gn). Due to the

route blockage between Hoogeveen and Beilen, the task 724 from Groningen to Zwolle (Zl)

is rerouted and returns to Groningen. Therefore, the driver cannot follow his planned duty.

A feasible completion of the duty under the optimistic scenario s is shown in Figure 4b.

The optimistic scenario s assumes that the route blockage lasts until 10:10. Since this

completion does not cover any critical task, it is a recoverable completion. The completion

in Figure 4c is not recoverable. It covers critical task 736 from Groningen to Zwolle. If the

pessimistic scenario s is realized, which means that the route is blocked until 11:10, then

this task is rerouted (736/r) and ends in Groningen. Then the driver is not able to get to

Zwolle in time to deadhead on task 538 from Zl to Amersfoort (Amf). Figure 4d shows a

recoverable feasible completion covering this critical task. Its recovery alternative that is

valid in the pessimistic scenario s is shown in Figure 4e. In this recovery alternative, task

9142 is in fact a deadheading task, since, according to the definition of a recoverable duty,

this task is also covered by another feasible completion.

3.2 Solution approach for crew rescheduling

Potthoff et al. (2010) describe a heuristic approach for solving OCRSP, assuming that the

duration of the disruption is known in advance. Their solution approach uses dynamic col-

umn generation, Lagrangian lower bounds, and a greedy heuristic for constructing feasible

solutions. Since the running times should be low, preferably within a few minutes, they do

not aim at rescheduling all duties, but only a subset of them. This subset is updated as long

as there are still tasks uncovered. The initial subset consists of the duties that are directly af-

fected by the disruption (these duties must be rescheduled), but also of a set of heuristically

chosen additional duties that may help to solve the instance of OCRSP in a better way.

Our approach selects the subset of duties in the same manner as Potthoff et al. (2010).

However, we do not update this subset in the same way as was described above. We adapt

the master and pricing problem to handle the recoverability. Especially in the pricing prob-

lems we have to be aware that we are dealing with an SPPRC in which we have to ensure

that meal break rules are not violated.

In the first stage, our approach ensures for crews that need a recoverable completion

that there is a recovery alternative if another scenario than the optimistic scenario is real-

ized. From all feasible recovery alternatives, this approach picks the one which consumes

18

a) 724 724 5827 5830 MB 5841 743 9145

Gn Zl Amf Amf Asd Asd Amf Zl Gn

b)
724/r Taxi 530 MB 732 743 743 9145

Gn ZlGn AmfAmf Hfdo Amf Zl Gn

c) 724/r 728/r 732/r 736 MB 538 2845 747 9149

Gn Gn Gn Gn Zl Zl Amf Ut Amf Zl Gn

d) 724/r 728/r 732/r 736 MB 542 747 747

Gn Gn Gn Gn Zl Zl Amf Zl Gn

e) 724/r 728/r 732/r 736/r MB 9142 542 747 747

Gn Gn Gn Gn Gn Gn Zl Amf Zl Gn

7:00 8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00

Time of rescheduling

task deadheading MB meal break

modified or rerouted task Taxi deadheading using a taxi

Figure 4: Examples of feasible completions for an affected original duty from crew base
Groningen (Gn).

the fewest resources. Such an alternative does not have to be the cheapest alternative.

Therefore we reschedule again in the second stage to search for the cheapest alternative.

For rescheduling in the second stage we use the method of Potthoff et al. (2010) to solve

OCRSP, since we assume that the duration of the disruption is known at that time. Note that

we can only skip the rescheduling in the second stage if in the first stage all crews have a

recoverable completion, but even then rescheduling can reduce the second stage costs.

4 Computational results

In this section we report our computational results for the q-quasi-robust optimization ap-

proach for crew rescheduling under uncertainty. We test the method on realistic crew

scheduling cases of NS.

In order to explore the balance between robustness and nominal costs, every case is

solved multiple times. We start with the instance where no completion is required to be re-

coverable, which corresponds with the wait-and-see approach. Then we gradually increase

the number of completions that must be recoverable, until we finally reach the point where

19

all completions are required to be recoverable.

Since we are using a heuristic to solve the problem it may happen that we do not find an

optimal solution for an instance. Due to this phenomenon, it may happen that a solution of

the first stage where q1 crews need a recoverable completion has lower costs than a solution

where q2 crews need a recoverable completion, even though q1 > q2. In such a case we use

in our results the solution of q1 for all values of q with q2 ≤ q ≤ q1.

It is worthwhile to compare the two extreme cases. If no crew needs a recoverable

completion, we just solve the underlying OCRSP for the optimistic scenario without any

robustness requirements. This may lead to high rescheduling costs in the second stage. On

the other hand, if the entire schedule is required to be quasi-robust and if we find a solution

that covers all tasks, then in principle no further rescheduling steps are necessary no matter

which scenario is realized.

The q-quasi-robust optimization approaches have been implemented in C++ and com-

piled with the Visual C++ 10.0 compiler.

4.1 Cases

For our computational study, we used five large-scale disruptions that actually took place in

the past in the Netherlands. On a regular working day about 10,000 tasks are carried out by

about 1,000 duties, about 90 of which are reserve duties. In all five cases a route becomes

suddenly unavailable for 2 to 3 hours due to a disruption.

As a preparation to the crew rescheduling step, we modify the timetable according to the

procedures currently used by NS. In particular, the timetable services on the disrupted line

are immediately cancelled. Rolling stock rescheduling is a challenging problem in itself,

see Nielsen (2011). Therefore we consider here a simplified rolling stock schedule. The

original (undisrupted) duties of the crews are taken from the operational schedules of NS

on a workday in September 2007.

Location ID Time Type # crews
affected in core

Abcoude Ac A 16:30-18:30 Two-sided blockage 67 142
Abcoude Ac B 16:30-18:30 Two-sided blockage 59 116
Beilen Bl A 07:00-10:00 Two-sided blockage 15 42
Beilen Bl B 16:00-19:00 Two-sided blockage 15 39
’s-Hertogenbosch Ht 08:00-11:00 Two-sided blockage 55 98

Table 1: Summary of the different cases.

A brief description of the five cases is given in Table 1. This table considers the opti-

20

mistic scenario that the disruption ends after the minimum possible duration.

The cases around Abcoude involve a disruption of the centrally located and heavily

utilized route between Utrecht and Amsterdam. The network does allow rerouting possi-

bilities for passengers and crews, although these are time-consuming. Around 60 drivers

are directly affected by the disruption in these cases. The two cases around Beilen show a

disruption on a less heavily used route, but the blockage cuts off the northern part of the

network from the rest. The cases around Beilen have a direct effect on 15 drivers. The

case with a disruption around ’s Hertogenbosch has a big impact, since this also involves a

heavily utilized route. In total 55 drivers are directly affected by this disruption.

For each of the 5 cases we consider two scenarios: we define the optimistic scenario s

and the pessimistic scenario s as the scenarios corresponding to the shortest and the longest

duration of the disruption, respectively. For the q-quasi-robust optimization approach, espe-

cially the number of critical tasks is important. Table 2 shows the main characteristics of the

five cases. For every case we present the optimistic duration of the disruption, and the time

the disruption lasts longer in the pessimistic scenario s. We also show the number of critical

tasks and the number of rerouted tasks. The rerouted tasks were explained in Examples 8

and 9.

Optimistic Considered Critical tasks
Case Duration Extension Canceled in s Rerouted in s Total
Ac A 2:00 0:30 4 4 8
Ac B 2:00 0:30 4 4 8
Bl A 3:00 1:00 0 6 6
Bl B 3:00 1:00 1 4 5
Ht 3:00 0:30 8 2 10

Table 2: Information about the disruptions and the considered uncertainty.

4.2 Objective function

The quality of a solution is measured by a combination of the operational costs and the

rescheduling costs. The most important goal is that all remaining tasks are covered by the

modified duties. Therefore, we account cost 20,000 for the additional cancellation of a task

due to a missing driver.

The cost of each completion is zero if the duty is unchanged. Otherwise the cost is

defined as the sum of the individual penalties depending on the way the duty is changed.

We used the following values for the penalties. We account a cost of 400 for each duty that

is changed anyhow. Every task that is not assigned to its original duty has a cost of 50. A

21

cost of 1 is accounted for every transfer between two tasks that was not used in the original

plan by some crew member. Finally, if a crew member has to be repositioned by using a

taxi ride, the accounted costs equals 1,000. These values for the cost parameters performed

best in a preliminary study.

4.3 Numerical results

The first stage problem of q-QRSP amounts to computing the completions for the optimistic

scenario subject to the additional requirements about the number of recoverable comple-

tions. In the first stage problem of q-QRSP we consider initial core problems as described

in Section 3.2. In order to account for the uncertainty in the duration of the disruption, we

construct the initial core problems based on the optimistic duration of the disruption plus

the possible extension.

In the second stage problem we assume that the pessimistic scenario is realized, and

we solve the RSP using the results of the first stage problem as input. All second stage

problems are solved by the algorithm presented in Potthoff et al. (2010) with the same

subsets of duties as in the first stage. Note that we do not restrict the recovery action to the

mere use of the recovery alternatives of the completions. That approach would lead to a

feasible solution only if all completions were required to be recoverable in the first stage.

Table 3 shows the objective values obtained for the first and second stage problems. For

every fixed value of q, denoting the number of duties that are required to have a recoverable

completion, we report the results of the first stage, the second stage, and the sum of them.

The outcome of the first stage indicates what happens under the optimistic scenario, while

the sum of the first and second stage represents what happens under the pessimistic scenario.

For every solved instance we give the lower bound (LB), the cost of the best found solution

(UB), and the number of cancelled tasks (#CANC).

First, we notice the intuitive result that more robustness requirements (i.e., a higher

value of q) leads to higher first stage costs. The number of additionally cancelled tasks

shows the same pattern, which can be expected since these tasks constitute the main part

of the first stage costs. So we see that in the first stage more tasks are cancelled to have,

most of the time, a better solution in the second stage. Canceling tasks in the first stage also

means that there will be more slack in the completions, which can be used in the second

stage.

The total costs of the two stages indicate the tradeoff between costs and robustness.

Especially for the cases Bl A en Bl B, the requirement of more and more robustness ini-

tially decreases the total costs. From a certain value of q on, however, the total costs start

increasing again. That is, the robustness requirements help to decrease the second stage

22

Case Ac A Stage 1 Stage 2 Stage 1 + 2
q LB UB #CANC LB UB #CANC UB #CANC
0-135 471,430 530,162 22 55,296 56,302 2 586,464 24
136-137 479,646 530,513 22 103,037 112,425 5 642,938 27
138 494,392 550,767 23 115,631 116,349 5 667,116 28
139-140 506,108 551,377 23 43,206 44,604 2 595,981 25
141 534,303 592,182 25 9,979 10,332 0 602,514 25
142 575,931 612,734 26 297 1,807 0 614,541 26
Case Ac B Stage 1 Stage 2 Stage 1 + 2
q LB UB #CANC LB UB #CANC UB #CANC
0-109 46,182 52,486 0 55,434 58,031 2 110,517 2
110-111 43,690 54,148 0 43,852 48,484 2 102,632 2
112 38,478 55,244 0 49,085 66,529 3 121,773 3
113 42,863 57,667 0 26,491 26,582 1 84,249 1
114 42,326 63,252 0 26,969 28,840 1 92,092 1
115-116 48,309 86,567 1 3,918 3,918 0 90,485 1
Case Bl A Stage 1 Stage 2 Stage 1 + 2
q LB UB #CANC LB UB #CANC UB #CANC
0-36 32,093 32,350 1 36,046 45,168 2 77,518 3
37 32,786 32,896 1 34,516 43,661 2 76,557 3
38 31,222 34,653 1 22,747 24,110 1 58,763 2
39 36,645 39,021 1 5,623 23,314 1 62,335 2
40 56,550 77,666 3 2,157 2,157 0 79,823 3
41 78,384 80,925 3 1,833 1,909 0 82,834 3
42 108,055 118,568 5 1,240 1,305 0 119,873 5
Case Bl B Stage 1 Stage 2 Stage 1 + 2
q LB UB #CANC LB UB #CANC UB #CANC
0-34 46,626 58,406 2 65,453 66,511 3 124,917 5
35 47,955 59,765 2 29,868 42,360 2 83,923 4
36 56,549 76,803 3 24,114 24,114 1 83,923 4
37 73,236 78,164 3 21,876 21,908 1 103,612 4
38 93,673 99,165 4 1,405 1,405 0 102,972 4
39 117,441 119,727 5 2,609 2,609 0 121,832 5
Case Ht Stage 1 Stage 2 Stage 1 + 2
q LB UB #CANC LB UB #CANC UB #CANC
0-86 151,455 157,135 5 50,620 55,138 2 212,273 7
87-88 150,683 158,198 5 55,903 61,674 2 219,872 7
89 149,497 158,599 5 60,226 61,818 2 220,417 7
90 148,476 158,903 5 71,199 85,320 3 244,223 8
91 147,851 161,222 5 84,797 99,855 4 261,077 9
92 145,239 162,071 5 51,011 60,712 2 222,783 7
93 145,634 164,484 5 55,768 56,091 2 220,575 7
94 141,731 164,578 5 74,104 97,043 4 261,621 9
95 144,067 164,581 5 14,698 15,735 0 180,316 5
96 145,375 188,234 6 94,815 98,510 4 286,744 10
97 164,382 191,141 6 7,126 7,974 0 199,115 6
98 183,565 209,077 7 4,436 6,721 0 215,798 7

Table 3: Results of the different cases for different values of q

rescheduling costs, but too much robustness turns out to be expensive in the first stage with-

out any further added value in the second stage.

23

In the other cases we have somewhat irregular behavior: a more robust schedule in the

first stage may lead to higher costs in the second stage. This can happen because not all

duties have a recoverable completion and then rescheduling the duties which did not yet

have a recovery alternative could lead to bad luck and additionally cancelled tasks in the

second stage. Anyway, in all cases the second stage costs are negligible if all crews have a

recoverable completion in the first stage.

For all cases, except for Ac A, we have solutions that have the same number of cancelled

tasks in the first stage as the solution where no uncertainty is taken into account (q =

0), but with less cancelled tasks in the second stage. Thus in these cases, at the price of

some slightly higher total costs for the first stage but without additional cancellations if

the optimistic scenario is realized, we can reduce the total number of cancellations if the

pessimistic scenario is realized. For these cases, the instance with minimum total costs,

a minimum number of cancellations if the optimistic scenario is realized, and a minimum

total number of cancellations if the pessimistic scenario is realized is indicated with bold
figures in Table 3.

For the case Ac A, the instance with minimum total costs and a minimum total number

of cancellations if the pessimistic scenario is realized has one more cancellation if the op-

timistic scenario is realized than the instance with q = 0. This instance is indicated with

italic figures in Table 3.

To illustrate the foregoing, Figure 5 gives a graphical representation of the results for the

case Bl A. The blue line indicates the costs of the first stage for varying levels of the number

of recoverable duties q, and the dashed blue line gives the corresponding lower bounds for

the costs of the first stage. The green line indicates the costs of the second stage for varying

levels of q, and the dashed green line gives the corresponding lower bounds. The red line

represents the total costs for the first and second stage for varying levels of q. The figure

clearly indicates that the solution corresponding to q = 38 has only slightly higher costs for

the first stage than the solution corresponding to a value of q between 0 and 36. However,

for this solution the total costs for the first and second stage are significantly lower. Note

that the differences between the upper and the lower bounds are small.

Summarizing, the computational results confirm the intuition that a higher degree of

first stage q-quasi-robustness in general leads to higher first stage costs as well as to lower

second stage costs, and that an optimal level of q-quasi-robustness can be obtained by vary-

ing the number of recoverable duties q. Most of our cases reach the lowest total costs at

an intermediate robustness level: no robustness and full robustness are both inferior. Our

algorithm can explore the consequences of several robustness levels, and thereby help the

decision makers to find the best balance between total costs and robustness.

24

Figure 5: Graphical representation of the results for the case Bl A.

4.4 Computation times

Computation times are very important for our application, since we are dealing with an

application of real-time rescheduling. The cases around Beilen can be solved very quickly.

For any given value of q for the number of crews that need to have a recoverable completion,

the first stage is solved within 10 seconds and the second stage is solved within 3 seconds.

The other cases need longer computation times. For a given value of q, the second stage

is solved within 1.5 minutes, but the first stage can take up to 3.5 minutes. These running

times are promising and fast enough for a real-time application.

It is beyond the scope of this paper to fully address the running time issues. We are cur-

rently working on improving the computational times, though. One may exploit the fact that

the key ingredients of the underlying column generation algorithm are suitable for parallel

computations. We expect a major improvement from a multi-threaded reimplementation

of our programs. Another idea is that the computation runs of the same case for different

values of q share a large amount of information, in particular the graph representation of the

tasks. Our prototype algorithm handles each value of q as an independent run. We expect

to save quite some CPU time by a more careful reuse of the earlier built data structures.

5 Concluding remarks and future work

In this paper we study real-time resource rescheduling problems in case of large-scale dis-

ruptions. We propose a novel rescheduling approach that explicitly deals with the uncertain

25

duration of the disruption. We introduce the concept of q-quasi-robustness, and argue why

classical models (such as robust optimization and stochastic programming) are unsatisfac-

tory for the problems we consider.

Our method is widely applicable to real-life vehicle, crew and machine scheduling prob-

lems. Furthermore, the robustness requirements can easily and tractably be integrated into

existing column generation models, a commonly used optimization framework for resource

scheduling and rescheduling.

We demonstrate the power of our approach on real-life crew rescheduling problems

of NS. Our method is able to find solutions of reasonably good quality (proven by lower

bounds) in a matter of minutes. A detailed analysis shows that q-quasi-robustness reflects

the intuitive notion of robustness quite well.

Besides its methodological contributions, the method has good prospects to be valuable

in practice. First, computations on challenging real-life cases reliably lead to good solutions.

Second, the computation times of a few minutes are close to what is needed in real-life

decision making. And third, our approach is able to balance robustness requirements against

operational and recovery costs. This allows decision makers to explore several variants and

with different robustness levels.

References

Abbink, E.J.W., M. Fischetti, L.G. Kroon, G. Timmer, and M.J.C.M. Vromans (2005).
Reinventing Crew Scheduling at Netherlands Railways. Interfaces 35, 393–401.

Ben-Tal, A. and A. Nemirovski (2002). Robust optimization - methodology and applica-
tions. Mathematical Programming 92, 453–480.

Bertsimas, D. and M. Sim (2003). Robust discrete optimization and network flows. Math-
ematical Programming 98, 49–71.

Birge, J.R. and F. Louveaux (1997). Introduction to Stochastic Programming. New York:
Springer.

Caprara, A., M. Fischetti, and P. Toth (1999). A Heuristic Method for the Set Covering
Problem. Operations Research 47, 730–743.

Clausen, J., A. Larsen, J. Larsen, and N.J. Rezanova (2010). Disruption management in the
airline industry - Concepts, models and methods. Computers & Operations Research 37,
809–821.

Huisman, D., R. Jans, M. Peters, and A.P.M. Wagelmans (2005). Combining Column Gen-
eration and Lagrangian Relaxation. In G. Desaulniers, J. Desrosiers, and M.M. Solomon
(Eds.), Column Generation, GERAD 25th Anniversary Series, pp. 247–270. New York:
Springer.

26

Jespersen-Groth, J., D. Potthoff, J. Clausen, D. Huisman, L.G. Kroon, G. Maróti, and
M. Nyhave Nielsen (2009). Disruption Management in Passenger Railway Transporta-
tion. In R.K. Ahuja, R.H. Möhring, and C.D. Zaroliagis (Eds.), Robust and Online Large-
Scale Optimization, Volume 5868 of LNCS, pp. 399–421. New York: Springer.

Kall, P. and S.W. Wallace (1994). Stochastic Programming. Chichester: John Wiley &
Sons.

Kroon, L.G., D. Huisman, E. Abbink, P.-J. Fioole, M. Fischetti, G. Maróti, A. Schrijver,
A. Steenbeek, and R. Ybema (2009). The New Dutch Timetable: The OR Revolution.
Interfaces 39, 6–17.

Liebchen, C., M.E. Lübbecke, R.H. Möhring, and S. Stiller (2009). The concept of recov-
erable robustness, linear programming, and railway applications. In R.K. Ahuja, R.H.
Möhring, and C.D. Zaroliagis (Eds.), Robust and Online Large-Scale Optimization, Vol-
ume 5868 of LNCS, pp. 1–27. New York: Springer.

Nielsen, L.K. (2011). Rolling Stock Rescheduling in Passenger Railways: Applications in
short-term planning and in disruption management. Ph. D. thesis, Erasmus University
Rotterdam, The Netherlands.

Potthoff, D. (2010). Railway Crew Rescheduling: Novel Approaches and Extensions. Ph.
D. thesis, Erasmus University, Rotterdam, The Netherlands.

Potthoff, D., D. Huisman, and G. Desaulniers (2010). Column Generation with Dynamic
Duty Selection for Railway Crew Rescheduling. Transportation Science 44, 493–505.

Rezanova, N.J. and D.M. Ryan (2010). The train driver recovery problem - A set partition-
ing based model and solution method. Computers & Operations Research 37, 845–856.

27

