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Chapter 1 

1.1 Clinical backgronnd 

Respiratory distress syndrome (RDS), also known as hyaline mem­

brane disease, is an important cause of neonatal and infant mortality (1). 

Together with congenital malformations, it is the leading cause of death in 

preterm infants (2) and is responsible for serious morbidity in survivors, 

associated with high costs to society (3). 

Since 1959 it is known that RDS is caused by lung immaturity with 

concomitant surfactant deficiency (4). Numerous small studies and large 

multicenter trials have demonstrated decreased death rates and complications 

from RDS as a result of treatment with surfactant (5,6). Despite its success 

however, surfactant therapy is not a panacea. Recent meta-analyses from the 

available data do not show a consistent decrease in long term pulmonary 

complications such as bronchopulmonary dysplasia, nor in the major non­

pulmonary complications such as intraventricular haemorrhage (5,6). 

Postnatal surfactant treatment is clearly not a substitute for attempts to 

increase fetal lung maturation (6). Antepartum corticosteroid therapy is more 

effective than postnatal surfactant therapy in reducing mortality and compli­

cations from RDS (7). Currently, other ways to increase lung maturation are 

being studied. Clinical studies with maternal administration of a combination 

of thyrotropin-releasing hormone (TRH) and corticosteroids suggested a 

slight advantage over corticosteroids alone in the prevention of broncho­

pulmonary dysplasia (8,9), but a recent multicenter trial found a worse 

outcome after prenatal corticosteroids + TRH compared to corticosteroids 

alone (10). Thus, major problems remain. In the recent surfactant trials, only 

about 15-20% of the babies at risk of developing RDS could be given 
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Introduction 

antenatal steroids (11). Maternal administration of steroids is not without 

complications (12), can impair lung growth (13), and can cause long term 

adverse effects, potentially into adulthood, which are only recently being 

recognized (14). TRH, via an increase in thyroid hormones, seems to have 

some theoretical disadvantages in that it inhibits maturation of anti-oxidant 

enzymes at least in the rat (15,16), does not stimulate (or even inhibits) 

surfactant protein production (17-20), and inhibits fatty acid synthesis 

(21-23). 

At the moment, the benefits of prenatal corticosteroids outweigh the 

disadvantages, but insufficient reduction in bronchopulmonary dysplasia is 

achieved in the entire group of very preteI'm infants, presently seen in 

neonatal intensive care units. Enhancing lung maturation seems more 

effective than surfactant therapy in reducing RDS and its complications, but 

faster, safer, more efficient, and more specific ways to increase lung 

maturation and surfactant production are clearly needed. 

Therefore, it is necessary to understand more about the mechanisms of 

morphological and biochemical lung maturation and their regulation. More 

specific, a better understanding of the regulation of surfactant synthesis 

during lung development is needed. 

1.2 Fetal lung development 

It is now generally recognized that lung development can be subdi­

vided into five stages (reviewed in 24). (1) In the embryonic period (3-6 

weeks in human, 10-16 days in rat) the lung originates from a diverticulum 

of the ventral wall of the primitive gut and soon divides into two bronchial 
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buds. This endodermally derived epithelium later differentiates into both the 

respiratory epithelium lining the airways and the specialized epithelium that 

lines the alveoli. The lung bud grows into a mass of mesodermal cells from 

which blood vessels, smooth muscle, cartilage, and other connective tissues 

differentiate. Ectoderm contributes to the innervation of the lung. The two 

lung buds develop lobar buds which subsequently undergo progressive 

dichotomous branching. As in other organs, mutual interactions between 

epithelium and mesenchyme are essential for the sequential events of 

organogenesis. Mesenchyme has been demonstrated to play a determining 

role in the formation of the characteristic branching morphology. (2) In the 

pseudoglalldular period (6-16 weeks in human, 16-19 days in rat) 16 to 25 

generations of presumptive airways result from the repeated dichotomous 

branching. These ducts are surrounded by abundant mesenchyme, and in 

cross section the tissue resembles glandular tissue. The ducts end in terminal 

sacs, the presumptive alveolar ducts, which are lined by a columnar 

epithelium. (3) In the canalicular period (16-28 weeks in human, 19-20 days 

in rat) the functionally important respiratory or gas-exchanging portion of the 

lung becomes delineated. This period is characterized by the differentiation 

of the alveolar epithelium, a decrease in the relative amount of connective 

tissue in the lung and an increase in the number of blood vessels, with 

capillaries coming into closer contact with the primitive alveoli. Also, the 

first appearance of differentiated type II pneumocytes, the producers of 

surfactant, is noted. All these changes make that babies who are born 

towards the end of this period are potentially viable. However, the relatively 

small surface area for gas exchange, the still thick intersaccular septa and the 

high cuboidal epithelium may pose significant problems for gas exchange, 

especially if surfactant production is deficient and alveolar collapse occurs. 
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(4) In the terminal saccular period of lung development (28-36 weeks in 

human, 21-22 days in rat) the lungs are further prepared for air breathing 

after birth: the respiratory portion of the lung further differentiates. Respira­

tory bronchioles rapidly subdivide into an array of thin walled primitive 

alveolar ducts and primitive alveoli, which are lined by type II and flat type 

I pneumocytes in close contact with a rapidly proliferating capillary network. 

(5) In the alveolar period (in the human starting before term birth and 

continuing after birth, postnatal in rats) true alveoli are formed by indenta­

tions of the septal wall. The thitllling of the walls continues and the amount 

of connective tissue decreases further. The number of alveoli increases up to 

eight years of life. 

It is evident that the fetal lung morphogenesis, as described in the 5 

phases, involves major structural changes which are associated with both cell 

proliferation (growth) and cell differentiation. Lung growth is regulated by 

physical factors and hormones. The effect of these factors may be mediated 

by intercellular interactions, extracellular matrix components and growth 

factors. The cytodifferentiation of the different lung cells is essential for 

adequate lung function. The regulation of the differentiation of the type II 

pneumocytes is especially interesting as they are the producers of pulmonary 

surfactant. 

It can be concluded that, although the lung has no major functions 

before birth, its almost complete morphological and biochemical development 

and maturation before birth is crucial for survival immediately after birth. 

From the sequence of normal lung development, it is also easy to understand 

that very premature infants « 28 weeks and especially < 26 weeks) with 

lungs in the canalicular stage of development, frequently have suboptimal gas 

exchange, even in the absence of the typical hyaline membrane disease. 
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1.3 Alveolar type II cells 

During embryonic lung morphogenesis the walls of the lung 

primordium are lined with undifferentiated columnar epithelial cells, which 

later differentiate into prospective bronchial epithelium and prospective 

alveolar epithelium. The acinar tubules during the late pseudoglandular and 

early canalicular stages of lung development are lined with cuboidal 

epithelium. At this stage of development, these cells do not contain lamellar 

bodies, characteristic of mature type II cells. Nevertheless, they do express 

phenotypic features and possess antigenic determinants of mature type II 

cells (25-28). They are frequently called protodifferentiated type II cells or 

pre-type II cells. During the canalicular period of lung development, the 

rapid proliferation slows down and the pre-type II cells start to mature 

further. The most striking morphological feature is the decrease in glycogen 

content and at the same time the increase in number and size of lamellar 

bodies (29). These lamellar bodies are the intracellular storage pools of 

pulmonary surfactant. 

It is now firmly established that the alveolar type II cells are the 

producers of surfactant (reviewed in 30). Several experimental models have 

been used to study surfactant synthesis such as whole animal studies in vivo, 

isolated perfused lung and lung slices in vitro, lung explants in culture and 

finally isolated type II cells in primary culture. Each model has certain 

advantages and disadvantages. For physiologic studies the intact animal is 

usually best suited. In vitro models however, overcome the problem of the 

possible indirect effect mediated via other organs on the lung. The lung 

consists of more than 40 cell types and only a small percentage of these are 
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type II cells. Thus, isolated type II cell studies are the only model to over­

come this problem of cell heterogeneity, and offer many advantages over 

other models in the study of surfactant metabolism (13,30,31). In the studies 

described in this thesis, we elected to use primary cultures of fetal type II 

cells or pre-type II cells, because the aim of our studies was to investigate 

the regulation of an important regulatory enzyme in surfactant production 

within the cell. However, we have to realize that isolated type II cells in 

primary culture cannot be considered a physiologic model and that the data 

from such studies cannot be extrapolated directly to the whole animal and 

especially not to the human situation without further validation. Another 

problem with isolated type II cells is that they lack the interaction with other 

cells, which has been shown to be important in the regulation of surfactant 

synthesis by hormones, growth factors or other stimuli. Glucocorticoids have 

been shown to stimulate the production of fibroblast-pneumocyte-factor 

(FPF) in fibroblasts which in turn stimulates surfactant phospholipid produc­

tion in type II pneumocytes. Hormones such as sex hormones and insulin 

affect surfactant production by means of an effect on FPF in fibroblasts. 

We conclude that the choice of primary cultures of fetal type II cells to 

study the (intracellular) regulation of an important enzyme in surfactant 

production is a logical one. However, it is necessary to keep a good perspec­

tive of the value of these findings for the in vivo situation. 

1.4 The composition and function of snrfactant 

The main function of surfactant is to decrease the surface tension at 

the air-liquid interface of the alveoli in a manner that depends on alveolar 
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surface area (32). The reduction of surface tension at this very extensive 

alveolar surface promotes lung expansion on inspiration and prevents lung 

collapse on expiration. Thus, surfactant plays a major role in the pressure­

volume characteristics of the lung and in the gas exchange. The importance 

of surfactant is best illustrated by the respiratory distress syndrome where an 

inadequate amount and dysfunction of surfactant leads to an almost general 

alveolar collapse while the intratracheal administration of exogenous 

surfactant leads to a dramatic improvement in lung expansion and gas 

exchange. 

It is generally assumed that two surfactant pools exist in the lung. One 

is the intracellular pool, which consists of the lamellar bodies, the character­

istic organelles of type II cells. Lamellar bodies are secreted by type II cells 

into the second pool, the alveolar pool. In the alveolus, surfactant exists in 

many different morphological forms which are converted into each other 

(reviews 30,33). Lamellar bodies unravel to form tubular myelin which most 

likely is a direct precursor of the surfactant monolayer, the functional form 

of surfactant. "Used surfactant" then leaves the monolayer as small vesicular 

structures which are taken up again by the type II cells. A large part of this 

material can be re-used by the type II cell for secretion. Thus, surfactant 

recycling is at least as important as de novo synthesis of surfactant in the 

adult lung. In the newborn lung, recycling is quantitatively even much more 

important (about 15 times) than de novo synthesis (33). 

The composition of surfactant is somewhat variable depending on the 

animal species. In general, it consists of about 90% lipid, 5-10% protein and 

small amounts of carbohydrate. Four specific surfactant-associated proteins 

have been described. Surfactant protein A (SP-A) is the most abundant 

surfactant-associated protein and makes up 3-4 % of the surfactant mass. It is 
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a large collagen-like glycoprotein which is synthesized in type II cells but 

also in Clara cells of the respiratory bronchioles. The synthesis of SP-A is 

developmentally and hormonally regulated. SP-A plays a role in tubular 

myelin formation, in the regulation of re-uptake and secretion of surfactant 

by type II cells, in the adsorption of surfactant phospholipids at the air-liquid 

interface (together with SP-B and SP-C). Especially intriguing is its role in 

non-immunological pulmonary defence (32). Surfactant protein B (SP-B) and 

surfactant protein C (SP-C) are smaller and very hydrophobic proteins. 

Together they make up 1-2 % of the surfactant mass. SP-B plays a role in the 

tubular myelin structure but the most important function of both SP-B and 

SP-C is to promote the phospholipid adsorption at the air-liquid interface in 

the alveoli (32). Surfactant protein D (SP-D) is a more recently characterized 

surfactant protein which has several characteristics and functions in common 

to SP-A (34). The surfactant lipids mainly consist of phospholipids (80-

90%). Cholesterol is the major neutral lipid. Phosphatidylcholine (PC) 

represents about 80% of surfactant phospholipids and is thus by far the most 

abundant phospholipid and surfactant component (30,31,35). Approximately 

60% of the PCs are fully saturated. This disaturated phosphatidylcholine is 

almost entirely dipalmitoylphosphatidylcholine, which is the main surface 

tension lowering component (36). Therefore adequate amounts of this 

surfactant component are essential for proper lung function immediately after 

birth. Phosphatidylglycerol is the second most abundant phospholipid in 

surfactant, accounting for 10% of total lipids in mature surfactant. However, 

in immature infants with RDS phosphatidylglycerol is almost absent. Phos­

phatidylglycerol and the other phospholipids help in the spreading of disatu­

rated phosphatidylcholine at the alveolar lining, but their precise function is 

not completely resolved. 
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1.5 The regulation of CTP:phosphocholine cytidylyJtransferase activity in 

fetal type II cells during development 

PC is quantitatively the most important component of pulmonary 

surfactant and the disaturated form of PC is the main surface tension lower­

ing component. Because adequate amounts of surfactant are essential for 

proper lung function immediately after birth, the production of surfactant PC 

increases towards the end of gestation (30,31,37). The CDPcholine pathway 

is the primary pathway for de novo PC synthesis in the developing lung 

(30,31,35) and the activity of this pathway has been shown to increase 

during late gestation (38). In the second and third chapter of this thesis, we 

will present evidence showing that the enzyme CTP:phosphocholine cytidyl­

yItransferase (CT) is a rate-limiting step in the CDPcholine pathway in fetal 

type II cells, and that the activity of this enzyme increases with advancing 

gestation at the same time as the increase in surfactant PC synthesis. CT is 

also an important target for regulation by a variety of hormones that are 

known to affect surfactant lipid synthesis in the developing lung. Therefore, 

the regulation of the activity of CT is very important for the regulation of 

surfactant PC synthesis. However, it should be kept in mind that an overall 

metabolic pathway is never regulated under all circumstances by the activity 

of one single enzyme. 
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1.6 Aims 

The aim of the investigations described in this thesis is to study the 

regulation of CT in maturing fetal rat type II cells at late gestation. These 

studies can help to better understand the regulation of surfactant synthesis 

and will eventually benefit sick human infants. 

In Chapter 2, a review of the literature regarding the regulation of CT 

is presented, with emphasis on what is known in the developing lung and 

especially fetal type II cells. In the introduction of this review the CDP­

choline pathway for de novo PC synthesis is briefly described and evidence 

is presented which demonstrates that CT is a rate regulatory step in this 

pathway. As knowledge is progressing fast, new developments have been 

made since some of our studies were performed. To give an updated over­

view, we therefore also included the studies described in this thesis. 

In Chapter 3, the rate of PC synthesis from different precursors is 

studied in fetal type II cells during development and correlated with the 

activity of the three enzymes in the CDPcholine pathway and the subcellular 

distribution of CT. 

In Chapter 4, it is investigated whether the increased CT in fetal type 

II cells during development is due to an increase in CT gene expression and 

CT protein levels. 

In Chapter 5, the role of lipids in the developmental activation of 
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cytosolic and microsomal CT in fetal type II cells is studied. 

In Chapter 6, the role of cAMP-dependent protein kinase in the 

developmental regulation of CT activity in fetal type II cells is investigated. 

In Chapter 7, the role of protein phosphatases and protein kinase C in 

the developmental regulation of CT activity in fetal type II cells is studied. 

In Chapter 8, the mechanisms of reduced surfactant PC in a rat model 

for congenital diaphragmatic hernia are investigated. PC synthesis and CT 

activity in fetal type II cells isolated from fetuses with congenital 

diaphragmatic hernia are studied in relation to type II cell-fibroblast interac­

tions. 

In Chapter 9, the results from the studies are summarized and overall 

conclusions and future perspectives are presented. 
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Chapter 2 

2.1 Introduction 

The mechanical stability of the alveoli is highly dependent upon 

pulmonary surfactant, which consists predominantly (- 90 %) of lipids and 

about 10% of proteins (I). Phosphatidylcholine (PC) accounts for about 70% 

of surfactant lipids (2-4). About 50-60% of this PC consists of disaturated 

phosphatidylcholine (DSPC), almost entirely the dipalmitoyl (16:0/16:0) 

species, which is the main surface-tens ion-lowering component (5). There­

fore adequate amounts of this surfactant component are essential for proper 

lung functioning immediately after birth. Since 1959 it has been known that 

neonatal respiratory distress syndrome is caused by lung immaturity with 

concomitant surfactant deficiency (6). 

Abundant evidence indicates that the synthesis of surfactant PC 

increases during late gestation (1-3,7,8). The CDPcholine pathway is the 

primary pathway for de novo PC synthesis in the developing lung (reviewed 

in 2,3,9,10) (Fig. 1). Choline is brought into the cell by a facilitated trans­

port system, and is phosphorylated by the choline kinase. The synthesis of 

the activated intermediate, CDPcholine, is catalyzed by the CTP:phospho­

choline cytidylyItransferase (CT) (EC 2.7.7.15). Finally, the phosphocholine 

moiety is transferred to diacylglycerol by the CDPcholine: I ,2-diacylglycerol 

phosphocholinetransferase (Fig. 1). Studies with whole lung have shown an 

increased activity of the CDPcholine pathway during late gestation (11). Pool 

size studies have demonstrated that the reaction catalyzed by the CT is a 

rate-limiting step in the CDPcholine pathway in fetal lung and isolated fetal 

type II cells (12,13). In addition, many studies indicate that CT is an 

important target for developmental (7,14-17) and hormonal regulation in 
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phosphatidyJcholine is shown in the lower part of the figure. 



Chapter 2 

alveolar type II cells of the developing lung (18-24). Although under most 

circumstances CT has indeed been shown to be the regulating step, we have 

to realize that an entire pathway is never regulated by the activity of one 

single enzyme under all circumstances. Recently, important progress has 

been made in the understanding of the regulation of CT activity. This was 

mainly made possible by the purification of the enzyme (25,26), followed by 

the availability of antibodies against the enzyme (27-29) and the cloning of 

the cDNA for CT from rat liver (30) and lung (31). These recent advance­

ments have important implications for the understanding of the regulation of 

CT in developing fetal lung, which is the topic of this review. 

As the lung consists of many different cell types and surfactant is 

produced by the alveolar type II cells, the regulation of CT activity in fetal 

type II cells will be the main focus of this review. The data are usually 

obtained by the study of isolated type II cells in primary culture (2,32). 

Although the cuboidal epithelium which lines the acinar tubules during the 

late pseudo-glandular and early canalicular stages of lung development does 

not contain lamellar bodies, the phenotypic marker for type II cells, it was 

shown that these cells do express other phenotypic features of type II cells . 

and possess antigenic determinants of mature type II cells (33,34). Therefore 

these cells are usually called protodifferentiated type II cells or pre-type II 

cells (3). In this review the term 'type II cells' will be used for type II cells 

and pre-type II cells. Although the focus will be on type II cells, data 

obtained from whole lung studies will also be described, for two reasons. 

Firstly, the interaction of type II cells with other pulmonary cells is import­

ant in the regulation of surfactant synthesis and more specific in the regula­

tion of CT activity (18,19). Secondly, many aspects of the regulation of CT 

activity in the developing lung have not been studied in isolated fetal type II 
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cells. I will also summarize mechanisms of CT regulation studied with 

purified CT and studies in other cell types or organs than the lung. Indeed, 

PC synthesis is necessary in all living cells as it is an essential component of 

cell membranes. In hepatocytes, CT activity is extensively studied because of 

the importance of PC in lipoproteins. The studies with these cell types can 

provide a better understanding of the mechanisms of regulation of CT in the 

developing lung, in which some of these mechanisms have not yet been 

studied. 

It has been reported that in type II cells only about half of the DSPC, 

the main surface tension lowering component of surfactant, is being syn­

thesized directly by the de novo pathway by using saturated diacylglycerols 

as precursors (7,35). A considerable part of the disaturated species of PC is 

formed by remodelling of de novo synthesized unsaturated (in the 2-position) 

phosphatidylcholine (Fig. 1). The most important mechanism for this 

remodelling is a deacylation of PC at the 2-position by a phospholipase A2 

or by a transacylation with another phospholipid, followed by a reacylation 

step of the resulting lysophosphatidylcholine by the lysophosphatidylcholine 

acyltransferase (reviewed in 2,3,9) (Fig. 1). The activity of the latter enzyme 

has been shown to be higher in type II cells than in whole lung, to increase 

during development and to exhibit specificity towards palmitoyl-CoA as a 

substrate in fetal type II cells (3,9,36). The remodelling of the de novo 

synthesized PC to a high proportion of DSPC will not be discussed further in 

this review. 
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2.2 The structure and characteristics of cytidylyItransferase 

The enzyme CT has been purified to homogeneity (26) and the eDNA 

has been cloned (30) from rat liver and expressed in Chinese Hamster Ovary 

Cells (37,38) and insect cells using a baculovirus vector (39,40). We 

recently purified CT from adult rat lung (41) by the same protocol as used 

for rat liver and cloned the CT cDNA from fetal rat type II cells (31). This 

CT consists of 367 amino acids and has a molecular weight of 41 720 (41). 

The coding region demonstrated 99% sequence similarity between rat liver 

and rat type II cell CT cDNA. The putative amino acid sequence was 

different at four positions (31). Very recently, a human CT cDNA was 

cloned from a erythroleukemic K562 cell library and also showed close 

homology to other mammalian CTs (42). 

The central domain of the CT protein has a close sequence homology 

to yeast CT (30,31,42). This region is thought to be the catalytic region 

(Fig. 2). There is one potential site for phosphorylation by cAMP-dependent 

protein kinase and six potential sites for phosphorylation by protein kinase C 

in the rat liver enzyme (30). The slightly different putative amino acid 

sequence of CT in the fetal type II cells resulted in an additional potential 

site for phosphorylation by protein kinase C (31). There are several potential 

sites for phosphorylation by other protein kinases (30,43). Purified rat liver 

CT has been shown to be a substrate for phosphorylation by cAMP-depend­

ent kinase (44). The study of the phosphorylation of CT in insect cells using 

a recombinant baculovirus clone showed that only the carboxy-terminal 

region was phosphorylated and that phosphorylation was confined to serine 

residues (43)(Fig. 2). The potential role for the phosphorylation and dephos-
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phorylation of CT in the regulation of its activity will be discussed below. 

CT has an amphipathic a-helix at its C-terminal part (30) (Fig. 2). Recent 

studies using peptide-specific antibodies, limited chymotrypsin proteolysis 

and synthesis of a peptide corresponding to the amphipathic region, have 

identified this a-helix as the membrane-interacting domain of CT (45-47). 

This a-helix binds selectively to anionic membranes, and the binding 

involves intercalation of the hydrophobic face of the helix into the membrane 

core (47,48). The importance of the binding of CT to membranes for the 

regulation of CT activity will be discussed in the following sections. Finally, 

the N-terminal part contains a sequence which has been shown to playa role 

as a nuclear localization signal (49) (Fig. 2). Further studies are required to 

define the precise significance of this finding. 

The purified CT catalytic subunit is inactive and requires phospho­

lipids for activity (26,48,50). When bound to membrane vesicles CT exists 

as a dimer, but these dimers self-aggregate in the absence of lipids or 

detergents (51). In cytosol, CT exists in two forms (Fig. 3), a low molecular 
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weight L-form, which is inactive in the absence of added phospholipids and 

a high molecular weight H-form, which is active in the absence of added 

phospholipids (52-54). In the cytosol of most tissues, including fetal lung, 

the L-form is the predominant form, but in the adult lung and isolated type II 

cells from adult lung, the H-form is predominant (52-55). Many studies have 

demonstrated that CT becomes activated when bound to membranes 

(reviewed in 56-58)(Fig. 3). Recently, a 112-kDa CT binding protein has 

been described which is present in different organs including rat lung 

(59,60). The binding of CT to this binding protein is promoted by fatty acids 

(60). The precise structure and functional role of this binding protein 

remains unclear at present. 

CT catalyses a reversible reaction. The pH optimum for the enzyme is 

7.0. The equilibrium of this reaction in vitro, slightly favors the formation of 

CTP and phosphocholine ("reverse reaction"). The Keq for the forward 

reaction was indeed found to be 0.2 (61). However, it is thought that in 

intact cells the reverse reaction is insignificant, because the levels of CDP­

choline and inorganic pyrophosphate are far below their Km's. Purified CT 

has a Km for CDPcholine of 0.64 mM (62) while the concentration of 

CDPcholine in fetal and adult lung is only 46.2 and 31.8 nmol/g wet weight 

respectively (13,63). The Km for inorganic pyrophosphate is 0.007 mM (62) 

while inorganic pyrophosphate was undetectable «2 pmol/I'g DNA) in 

either whole adult lung or type II cells (63). This latter finding implies the 

presence of very active pyrophosphatases, which were suggested by Infante 

and Kinsella (61) to promote the forward reaction catalyzed by CT. Pure 

CT, assayed in the presence of saturating amounts of PC/oleic acid (OA) 

vesicles, has an apparent Km of 0.22 mM for CTP and 0.24 mM for 

phosphacholine, the substrates for the forward reaction (26). The Km' s for 
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CTP and phosphocholine were found to be slightly higher but of the same 

order of magnitude in whole lung cytosol and microsomes when assayed in 

the presence of fatty acids (64,65). A recent study shows that the CT is 

highly specific for phosphocholine as a substrate, as the Km values for 

phosphodimethylethanolamine (Km = 4 mM), phosphomonoethanolamine (6.9 

mM) and phosphoethanolamine (68.4 mM) were much higher (66). Under 

normal circumstances, the concentrations of CTP and phosphocholine are not 
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limiting. The phosphocholine concentration was found to be 922 and 247 

nmol/g wet weight in fetal (13) resp. adult rat lung, and the CTP concentra­

tion 53.5 nmol/g wet weight in adult rat lung (63). In isolated fetal or adult 

type II cells these concentrations were 18 to 60 times higher (13,63). Only 

under extreme circumstances, such as hypoxia or starvation, the supply of 

CTP or phosphocholine can be limited (reviewed in 57). The concentrations 

of substrates measured in tissues, cells or cell fractions do not necessarily 

reflect local concentrations in a particular cellular compartment. There is 

indeed good evidence for the channelling of intermediates during PC 

biosynthesis (reviewed in 57,58,67). This evidence was obtained by experi­

ments with glioma cells permeabilized with electroporation (68). Such 

channelling would make the transfer of intermediates from one enzyme to the 

next much more efficient. This would certainly make sense in a specialized 

cell like the type II cell, which produces large amounts of surfactant PC in 

addition to the PC as part of membrane structure and function. The cyto­

skeleton may playa functional role in this channelling process (58,67). Hunt 

et al. (69) demonstrated the in vitro association between rat and human lung 

CT and the cytoskeletal actin, but so far, there is no further evidence for the 

channelling of substrates in type II cells. If such compartmentalization exists, 

the locally higher substrate concentrations would make it necessary to also 

consider the reversed reaction of CT. 
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2.3 Induction of cytidylyltransfcrase and regulation of gene expression 

Overall CT activity in the cell can be altered by a change in CT 

enzyme protein or by a change in the activity of existing protein. Until 

recently, it was not possible to study CT protein mass in a reliable way. 

Relative CT enzyme mass was usually compared between two conditions by 

measuring CT activity in the presence of lipid vesicles that are known to 

maximally activate the enzyme. Since the availability of antibodies against 

CT (27-29), it is possible to study CT enzyme protein mass and CT localiz­

ation in the cell in a more direct way. In addition, the cloning of the cDNA 

for CT from rat liver and lung (30,31) makes it possible to investigate CT 

gene expression. 

That increased expression of CT mRNA is possible, was shown in a 

colony-stimulating factor 1 (CSF-I)-dependent murine macrophage cell-line 

BAC1.2F5, which was stimulated with CSF-l (70). Houweling et al. (71,72) 

demonstrated increased activities of CT in liver cytosol and microsomal 

fractions after partial hepatectomy. This 1.4-fold increase in cytosolic 

activity was accompanied by a 1.5-fold increase in the amount of immuno­

reactive CT protein as well as by a 1.7-fold increase in eSSlmethionine 

incorporation into CT protein (72). Furthermore, Northern blot analysis 

showed a 2-3 fold increase in CT mRNA's at 12 hours after surgery (72). 

Studies with fetal lung (8,73) and fetal type II cells (7) showed 

increased activities of both cytosolic and microsomal CT activities during 

maturation when CT activity was assayed in the absence of added lipids. 

Although specific activities of the enzyme were higher, similar develop­

mental profiles were also found when the activities were assayed in the 
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presence of sanu'ating concentrations of lipids, which are known to maximal­

ly activate the enzyme (7,8,73). These data suggest that CT is not only 

activated during lung development but that the amount of CT enzyme 

increases as well. The regulation of the amount of CT enzyme and also 

mRNA levels was confirmed in several experiments involving fetal lung or 

fetal type II cells. In day-18 fetal rat lung explant cultures (74) and, even 

more pronounced, in day-17 fetal rat lung type II cell cultures (75), a 

spontaneous increase in CT mRNA was seen over a few days in culture in 

the absence of hormones. Also in vivo, Mallampalli and Hunninghake (76) 

found an increased expression of immunoreactive CT protein mass in fetal 

lung, a decreased amount in neonatal lung and an even lower amount in 

adult lung. However, in the adult lung, a larger part of the cytosolic CT was 

found in a more active form (76). In fetal type II cells, we found a marked 

increase in the amount of CT in microsomes during development at late 

gestation, as measured by Western blot and densitometry (31). No change in 

the amount of cytosolic enzyme was found (31). This correlated with CT 

activities in these cell fractions (7,31). By reverse-transcriptase polymerase 

chain reaction (RT -PCR) analysis, CT mRNA content was shown to increase 

three-fold in fetal type II cells with advancing gestation, whereas CT mRNA 

levels in fetal lung fibroblasts remained constant (31). This finding demon­

strates the need for studies with isolated type II cells, besides whole lung 

studies, as type II cells are only a small fraction of total lung cells. 

The effect of corticosteroids on CT enzyme mass and mRNA content 

has also been investigated in fetal lung and fetal type II cells. Dexa­

methasone has been reported to increase the activity but not the amount of 

CT in fetal rat lung explants (28). Also, in vivo no increased amount of CT 

was found by Western blot in fetal rat lungs after maternal administration of 
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betamethasone (23). Although in several studies the effect of glucocorticoid 

stimulation on CT activity was markedly diminished when the activity was 

assayed in the presence of activating lipids (10,23,28,77,78), the effect was 

not completely abolished (23,28,77). In a study with human fetal lung 

explants (24), the stimulating effect was even more pronounced when CT 

was assayed in the presence of activating lipids. In contrast to the two 

studies which only found activation of existing CT by corticosteroids, this 

suggests an increase in enzyme mass in addition to enzyme activation (10). 

Indeed, Batenburg and Elfring (79) reported a small (around 30%) increase 

in CT mRNA content in fetal rat type II cells exposed to cortisol-containing 

fibroblast-conditioned medium. Such medium is known to activate CT in 

fetal type II cells and transmits the corticosteroid signal from fibroblasts to 

type II cells via a so called fibroblast-pneumocyte factor (FPF) (19,80). In 

contrast to these fetal type II cell studies, dexamethasone did not increase CT 

mRNA content in fetal rat lung explants (74). Therefore it remains an 

um'esolved question whether the small increase in CT mRNA levels in fetal 

type II cells after corticosteroid stimulation is meaningful. It is possible that 

the increase is indeed meaningful but not seen with fetal lung explants 

because the effect is masked by the analysis of mixed cells. 

In conclusion, the amount of CT enzyme can be regulated at a pre­

translational level in developing lung or type II cells, and this regulation may 

be important together with enzyme activation. Whether corticosteroids 

increase the amount of CT mRNA and enzyme protein is not completely 

resolved. 
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2.4 The regulation of cytosolic cytidylyltl'ansfel'ase activity by (phospho)­

lipids 

The rest of this review will focus on the mechanisms of CT activation 

(Fig. 3) as opposed to CT enzyme induction. It was already shown several 

years ago that phospholipids are able to stimulate cytosolic CT activity in 

lung cytosol (8,52-54,81-84). The best stimulation was obtained with acidic 

phospholipids, especially phosphatidylglycerol (53,54,81-83) or by mixed 

PCIOA (in a III molar ratio) vesicles (54,83). This was also demonstrated 

for CT in fetal type II cell cytosol (85). Adult lung cytosolic CT is stimu­

lated less by phosphatidylglycerol than fetal lung cytosolic CT activity 

(16,81). During the last few years, the studies using purified CT have 

confirmed the activation of the enzyme by acidic phospholipids and PCIOA 

vesicles (25,26,48,50). Cornell (50) showed that the negative surface 

potential is a major factor in the activation of purified CT by anionic lipids 

(50) and described the physical chemistry of the lipid activation of CT in 

detail (48,50). 

It is now accepted by most investigators, that the cytosolic CT exists 

in two forms (Fig. 3), a low molecular weight L-form, which is inactive in 

the absence of added phospholipids and a high molecular weight H-form, 

which is active in the absence of added phospholipids (52-54). In the cytosol 

of most tissues, including fetal lung, the L-fol'm is the predominant form, 

but in the adult lung and isolated type II cells from adult lung the H-form is 

predominant (52-55,76). The L-form can be converted into the H-form by 

the addition of phospholipids (52,54,76) or fatty acids (55,65,86-88). The H­

form thus appears to be a lipoprotein consisting of L-form CTs complexed 
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with lipids (54,89). An unexplained observation is that the H-form was stable 

at 4°C, but dissociated during incubation at 37°C for 15 min (54). 

Numerous studies have observed a developmental increase in fetal and 

neonatal CT activity in the cytosolic fraction of the lung (8,14,16,17,73,90-

92). At the same time an increase in phospholipid concentration has been 

demonstrated in fetal lung cytosol (16,52). Chu and Rooney (16) demon­

strated a strong correlation between CT activities in the developing rabbit 

lung cytosol and the ability of cytosolic phospholipids of the same lungs to 

activate delipidated cytosolic CT. The delipidated enzyme had very low 

activities without the re-addition of lipids (16). These data strongly suggest 

that phospholipids regulate cytosolic CT in the developing lung. Recently, 

we also demonstrated the importance of cytosolic lipids in the regulation of 

CT in isolated fetal type II cells (85,93). The stimulation of the activity of 

cytosolic CT by PC/OA vesicles decreased with advancing gestation, 

suggesting that the enzyme is in a more active form at the end of gestation. 

Moreover, lipids extracted from cytosol of fetal rat type II cells of various 

gestational ages differed in their ability to activate CT: cytosolic lipids from 

type II cells at the end of gestation were the most stimulatory (85,93). Which 

lipid is responsible for the developmental activation is not yet resolved. In 

the study of Chu and Rooney (16) the activation of CT could not be 

attributed to any individual (phospho)lipid species. In contrast to fetal lung, 

adult lung required not only the extracted phospholipids but also the 

extracted neutral lipids to fully re-activate the delipidated CT (16). The most 

important factor in these neutral lipids was the fatty acid fraction (16,86). 

Thus, adult lung displays a different lipid activation pattern, which may be 

related to the higher proportion of CT in the H-form in adult lung. The 

precise relation between the existence of L- and H-forms and the role of 
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phospholipids in the developmental activation of cytosolic CT is not com­

pletely resolved. In the study by Chu and Rooney (16), the developmental 

increase in cytosolic phospholipids in fetal lung (16,52) did not correlate 

with increased cytosolic CT activity. In addition, a developmental increase in 

H-fonn with an associated decrease in L-form has not been clearly demon­

strated. However, an increase in H-form following birth has been demon­

strated (15). The transition between fetal and adult type CT activity patterns 

(16,52,53,76) is not well described. 

The activation of fetal lung cytosolic CT has also been demonstrated in 

response to several hormones such as estrogen, glucocorticoids and thyroid 

hormone (reviewed in 2,18). These experiments were performed in vivo, by 

maternal injection of the hormone, and in lung explants in culture. The effect 

of estrogen on CT activation has been shown to be mediated by phospho­

lipids (22,94). The stimulatory effect of estrogens on fetal lung CT was not 

observed when the enzyme was assayed in the presence of phosphat idyl­

glycerol, suggesting that the hormone increased the activation state of the 

enzyme rather than the amount of enzyme (82). The stimulatory effect of 

maternal injection of estrogen on fetal lung cytosolic CT activity was 

abolished by delipidation of the enzyme prior to the assay of CT activity 

(22). The enzyme activity and the effect of estrogen were restored by re­

addition of cytosolic phospholipids obtained from lungs of estrogen treated 

fetuses or controls (22). Although these data demonstrate that the effect of 

estrogen on CT activity is mediated by phospholipids, estrogen had no effect 

on the phospholipid content or composition of fetal lung sub fractions (82), 

and the stimulatory effect of estrogen could not be attributed to any individ­

ual phospholipid species (22). The relation between these findings of 

phospholipid-mediated activation of CT after estrogen treatment and the 
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conversion from L- to H-form still remains to be established. Mallampalli et 

al. (65) found a decreased H-form and an increased L-forll,l in fetal lung 

cytosol after maternal administration of estrogen, the opposite of what would 

be expected. It is not clear whether species (rabbit versus rat) or timing 

differences (in hormonal treatment or delivery etc .. ) play a role in these 

dissimilar findings. 

The stimulatory effect of corticosteroids on CT activity was also 

considerably reduced or completely abolished when the enzyme activity was 

assayed in the presence of a saturating concentration of activating lipids 

(10,23,28,77 ,78) or after delipidation (23). Further, Mallampalli et al. (23) 

showed that the addition of cytosolic lipid extracts from lungs of fetuses 

treated with betamethasone increased CT activity to a greater extent than 

cytosolic lipid extracts from control lungs (23). This lipid-mediated stimula­

tory effect of corticosteroids on cytosolic CT activity could be attributed to 

an increase in cytosolic H-forms associated with a decrease in L-forms 

(23,65). Several recent studies suggest that an increase in fatty acids, either 

in free form or after incorporation into (phospho)lipids, is responsible for the 

corticosteroid effect on CT activity (see reviews 10,95) via a cOIiversion of 

L- to H-form (65). 

2.5 Activation of cytidylyltransferase by translocation from cytosol to 

membranes 

The mechanism of CT activation by translocation from cytosol to the 

membranes of the endoplasmic reticulum (Fig. 3) was suggested by Vance 

and Pelech in the early 1980's and was based on experiments with HeLa 
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cells and hepatocytes (reviewed in 56). The cytosolic CT was considered an 

inactive reservoir, while the microsomal fraction contained the active 

enzyme, which is activated by the lipidic microsomal environment, and 

which activity correlated with PC synthesis (reviews 56-58). The reversible 

translocation of CT between cytosol and endoplasmic reticulum has been 

shown in Krebs II cells to occur within minutes (96). Several mechanisms 

have been reported to be involved in the regulation of this subcellular 

translocation (Fig. 3). Fatty acids, diacylglycerols, phosphorylation/dephos­

phorylation of the enzyme and feedback inhibition by increasing PC levels 

have been studied in tissues and cells, especially in HeLa cells and hepato­

cytes (reviewed in 57,58,67). The location of the active CT on the 

endoplasmic reticulum has the advantage of producing CDPcholine on the 

site of its utilization by the phosphocholinetransferase, the next enzyme in 

the CDPcholine pathway for de novo PC synthesis. However, other mem­

brane locations of CT have been described. In rat liver cells CT was found 

in the Golgi apparatus (97). In Chinese Hamster Ovary Cells and HeLa cells 

a nuclear localization was found or could be induced (98-100). In lung no 

such localizations have been described. However, two recent studies make it 

necessary to consider this possibility in the lung. A nuclear localization of 

CT by indirect immunofluorescence microscopy in several cells, including 

HepG2, and in rat liver (101) has recently been described. In addition, Wang 

et al. (49 %) found that aN-terminal domain of CT functions as a nuclear 

localization signal (Fig. 3). Further studies are necessary to confirm these 

findings and to define the role of this possible nuclear localization. 

In lung, only the study by Weinhold et al.(84) showed an increase in 

microsomal CT activity with an associated decrease in cytosolic CT activity, 

which is considered strong evidence for a translocation of CT from cytosol 
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to microsomes. The translocation of CT in the rat lung following birth was 

mediated by fatty acids, which was further substantiated by in vitro evidence 

(84). Several studies, however. showed an increased microsomal CT activity 

in association with increased PC synthesis in fetal lung (15.21,102), or fetal 

(7,103) and adult type II cells (104-106). In these and other studies a 

proportional redistribution was found (with an increased percentage of total 

activity found in microsomes and a decreased percentage in cytosol), but in 

absolute terms, cytosolic activity did not decrease in association with the 

increased microsomal activity (7,17,20,73,102-107). A developmental 

increase in microsomal CT activity of fetal lung has been demonstrated to 

occur with advancing gestation (8,73) and following premature birth (15,84). 

A similar increase in microsomal activity and shift in subcellular distribution 

has been found in fetal type II cells with advancing gestation (7,17,31). 

Hormones snch as corticosteroids, alone (20,21) or in combination with 

thyroid hormone (21), increase microsomal CT activity in fetal lung or fetal 

type II cells without causing a subcellular redistribution of CT activity. 

2,6 The regulation of cytosolic and microsomal cytidylyltransferase 

activity: a unifying hypothesis 

In the current literature some controversy exists around the question 

whether developmental and hormonal activation of fetal lung CT takes place 

in cytosol or in microsomes, via a translocation of CT from cytosol to the 

endoplasmic reticulum. Our hypothesis is that both cytosolic and microsomal 

activation of CT occurs during lung development and during hormonal 

stimulation. CT activity of both cytosolic and microsomal fractions increases 
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due to the conversion of cytosolic L-form to microsomal CT and cytosolic 

H-form, which are similar forms of the enzyme. 

As discussed in the previous sections, several studies with fetal lung 

and fetal type II cells demonstrated a developmental or hormone-induced 

increase in cytosolic CT activity while other studies showed an increase in 

microsomal CT activity. However, a large number of studies that measured 

both cytosolic and microsomal CT activity found an increased enzyme 

activity in both fractions (7,8,15,17,21,73,78). This was frequently, although 

certainly not always (20,22,78), associated with a relative redistribution of 

CT activity from cytosol to microsomes, without showing good evidence for 

a translocation mechanism because the absolute cytosolic CT activity did not 

decrease (7,15,17,31,73). One study in lung did show an increased 

microsomal activity together with a decreased cytosolic CT activity after 

birth (84). Taken together, it is reasonable to conclude that the increased 

activity of CT found in fetal lung or isolated fetal type II cells during late 

gestation is caused by an increase in both cytosolic and microsomal enzyme 

activity. 

A few recent studies directly support this view that both cytosolic and 

microsomal activities can be activated in a coordinated way (Fig. 3). The 

study by Feldman et al. (55), although performed with adult instead of fetal 

lung, describes the relationship between the cytosolic and membrane forms 

of CT. It turns out that microsomal CT existed in a form similar if not 

identical to the cytosolic H-form. The microsomal form would be formed 

after binding of the L-form to microsomal membranes, which can be induced 

by fatty acids, and the H-form is released from the membrane (Fig. 3). The 

same group of researchers already showed some evidence for such interpre­

tation in the perinatal lung several years ago (84). Firstly, the type of 
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response to lipid stimulators (fatty acids and phosphat idyl glycerol) and to 

albumin treatment (which removes fatty acids by binding) was similar for the 

H-form and the microsomal form of CT. Secondly, the phospholipid compo­

sition of the H-form was similar to that of microsomes (81). These data 

support the idea that the H -form of the cytosolic CT appears to be CT bound 

to small membrane fragments (84). Another study with HepG2 cells showed 

evidence for activation of both cytosolic and microsomal CT activity by OA 

(89). The cytosolic activation was accompanied by an increase in H-form. 

The unique finding was that the immunoreactive CT protein increased in 

both the cytosolic and membrane fractions in these HepG2 cells treated with 

OA (89). The short response time and the inability of cycloheximide to 

prevent the increase, argue against the synthesis of new enzyme. These 

results suggested that fatty acids promoted the formation of active CT (H­

form and microsomal enzyme) from a pre-existing inactive form, which was 

not (completely) detected by antibodies. The increased activity was distrib­

uted between membranes and H-form in cytosol (89). 

It is not yet clear in which state the inactive, immunologically less 

detectable, form exists. It is possible that the large and enzymatically 

inactive aggregates, that are formed when purified CT is Triton- and lipid­

depleted (51), constitute such an inactive state. The possible role of the 

recently discovered CT binding protein (59,60) and of post-translational 

modifications of the enzyme should also be considered. Whether a similar 

process exists in the developing lung remains to be demonstrated. In any 

case, with the above findings in mind, it is easy to understand that fatty acids 

may increase both cytosolic H-form and microsomal enzyme activity, as they 

are essentially the same form of the enzyme (55,89). This may provide a 

possible explanation for the paradoxical finding in fetal lung that enzyme 
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translocation may take place and yet cytosolic activity increases at the same 

time. As will be described in the next section, fatty acids may indeed playa 

very important role in the regulation of both the activity of the cytosolic CT 

(by increasing the H-form) and the microsomal enzyme activity (possibly via 

a translocation mechanism) in the lung or fetal type II cells during develop­

ment or hormone-induced stimulation. The precise role of fatty acids as 

opposed to phospholipids in the activation of cytosolic CT is not yet com­

pletely clear. There are however two obvious relations between phospholipid 

and fatty acid activation of CT. Firstly, fatty acids can be incorporated into 

phospholipids, which then activate CT (95). Secondly, fatty acids promote 

the conversion of L-form to H-form (65,87,88), which consists of aggregated 

CT, complexed with mainly phospholipids (Fig. 3). 

2.7 Regulation of cytidylyltransfel'ase activity by fatty acids 

In vitro, fatty acids promote the binding of CT to lipid vesicles (108) 

and membranes (84). Recent studies with the purified CT or a synthetic 

peptide sequence have shown that this membrane-binding part of the enzyme 

consists of the amphipathic a-helical domain (45-47). Thus, fatty acids do 

not activate CT on their own but need a vesicle or membrane structure to 

activate CT (25,48,83,109). In intact cells these lipid structures are the 

cytosolic H-form and the membranes of the endoplasmic reticulum (Fig. 3). 

Fatty acids have been shown to activate CT by translocation from 

cytosol to microsomes in different cell types or organs (84,96,109-112), 

including perinatal lung (84). Several studies showed a fatty-acid-induced 

increase of CT activity in the microsomal fraction of adult (104,105) and 
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fetal type II cells (103) in primary culture. Fatty acids also have been shown 

to increase cytosolic CT activity in adult type II cells (105) and fetal lung in 

culture (88). Also in vitro, CT activity in fetal type II cell cytosol (85) or 

fetal lung cytosol (86,87) was activated by fatty acids. Several studies by 

Mallampalli et a!. (65,87,88) demonstrated that this cytosolic CT activation 

in fetal lung is due to a conversion of L-form to H-form induced by fatty 

acids. 

During norlllal lling development, fatty acids play at least two import­

ant roles in the de novo surfactant PC synthesis. Besides their role in 

regulating CT activity (and thus PC synthesis), fatty acids are a substrate for 

PC synthesis and they are synthesized de novo by perinatal fetal type II cells 

at a high rate (113,114) from a variety of substrates (115-118). The follow­

ing observations point to the importance of de /lOVO fatty acid synthesis for 

surfactant phospholipid formation in the perinatal period (reviews 4,95): [1] 

in fetal rat lung the rate of fatty acid synthesis (116,119) and the specific 

activities of acetyl-CoA carboxylase (116,120) and fatty acid synthase 

(120,121) are increased in the period when surfactant production is acceler­

ated; [2] even in the presence of exogenous palmitate, inhibitors of fatty acid 

synthesis depress the rate of saturated phosphatidy1choline formation in 

explants of fetal rat lung and isolated lung cells (122,123); [3] in lungs of 

newborn rabbits fatty acids synthesized from acetate are preferentially 

incorporated into surfactant PC (saturated and total) compared to exogenous 

palmitate (124). All these findings suggest the importance of fatty acid 

synthesis in developing type II cells. These newly synthesized fatty acids 

playa role in the activation of cytosolic and microsomal CT. Weinhold et 

al.(84) found an increased amount of CT activity in lung microsomes shortly 

after birth in association with an increase in free fatty acid content in 
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microsomes. Viscardi and McKenna (17) studied the fatty acid content of 

microsomal phospholipids in fetal and neonatal lung and also showed an 

increase in these fatty acids together with increased microsomal CT activity. 

Free fatty acids were however not measured. The increase of cytosolic H­

form has been demonstrated in fetal lung following premature birth (15) and 

the role of free fatty acids has been shown in the transition of fetal to adult 

lung forms of cytosolic CT (16,86). A progressive increase in cytosolic free 

fatty acids together with an increase in H-form during lung development has 

however not yet been demonstrated. Although free fatty acids can activate 

CT and possibly do so in the developing lung in vivo (84), it is very well 

possible that the activation of CT takes place after fatty acids have been 

incorporated into phospholipids or into diacylglycerols. The fact that free 

fatty acids can directly activate CT in different cells and do so in a reversible 

way (as shown by the addition of albumin (84,100, Ill» within minutes 

(96,100), would suggest a role for free fatty acids themselves. Furthermore 

the role of free fatty acids in the activation of CT during hormonal stimula­

tion, together with the importance of these hormones for lung development, 

would suggest a similar role for fatty acids during type II cell maturation. 

The importance of fatty acids in the activation of IlIlIg CT by 

corticosteroids is better defined. Firstly, fatty acid synthesis is regulated by 

corticosteroids. Dexamethasone has been shown to accelerate the normal 

developmental increase in fetal lung fatty acid synthesis ill vivo and ill vitro 

(1l9,125,126) and to enhance the activity of fatty acid synthase in fetal lung 

tissue (121,125,127,128). Batenburg and collaborators have also demon­

strated this in isolated fetal type II cells (79,120) and have stressed again that 

type II cell-fibroblast interactions are important in modulating the effect of 

hormones, not only on PC synthesis (18-20,80), but also on fatty acid 
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synthesis (79,120). The effect of dexamethasone on fatty acid synthase 

activity in cultured fetal lung is due to enzyme induction (127) and is 

regulated at a pre-translational level (74,79,129,130). Secondly, quantitation 

of CT protein in fetal lung by immunotitration (28) and Western blotting (23) 

confirmed that CT enzyme mass is not increased by glucocorticoids. Earlier 

studies had already suggested an activation of the enzyme instead of an 

increased enzyme mass, because the stimulatory effects of glucocorticoids 

could be severely diminished or abolished by assaying CT in the presence of 

lipid activators (10,23,28,77,78). Thirdly and most importantly, inhibitors of 

de novo fatty acid synthesis, which act at steps in the pathway prior to those 

catalyzed by fatty acid synthase, abolished the stimulatory effect of dexa­

methasone on CT activity in fetal rat lung explants (77). The similar time 

course of fatty acid synthase and CT activity in these fetal rat lung explants 

cultured in the presence of dexamethasone further supports the importance of 

increased fatty acid synthesis through increased fatty acid synthase activity in 

the regulation of CT activity (77). The role of a fatty acid mediated activa­

tion of CT by corticosteroids was further confirmed by the in vivo experi­

ments performed by Mallampalli et al.(65). Maternal adminstration of 

betamethasone increased the total amount of free fatty acids associated with 

the cytosolic H-form by 62 % (65) in association with increased CT activity 

caused by a conversion of L-form to H-form (23,65). This supports a direct 

role for free fatty acids but an effect of fatty acids after incorporation into 

(phospho)lipids or diacylglycerols cannot be excluded. 

Taken together, the studies available to date support the following 

sequence (Fig. 4): corticosteroids induce the production of fibroblast-pneu­

mocyte factor (FPF) in lung fibroblasts adjacent to the alveolar epithelial 

cells (34) at a pre-translational level (review 80); this FPF induces fatty acid 
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synthase and other enzymes involved in fatty acid synthesis in fetal type II 

cells at a pre-translational level (79); this leads to an increase in fatty acid 

biosynthesis, and fatty acids, their metabolites, or lipids into which they 

become incorporated ultimately activate CT (10) by increasing cytosolic H­

form and possibly translocation of CT from cytosol to microsomes. A similar 

sequence could take place during type II cell maturation at late gestation or 

around birth. 

Some recent studies start to give some idea which fatty acids may be 

important for CT activation in vivo. In general, these in vivo studies show 

that an increase in total saturated and unsaturated fatty acids may be the most 

important mechanism (17,65). This confirms earlier studies which only 

measured total fatty acids (16,84,86). From in vitro and culture studies, 

using hepatocytes (109), HeLa cells (110) but also fetal type II cells (85, 

103), fetal (87) and adult lung (86), it was known however that long chain 

(mono-)unsaturated fatty acids (OA was used most frequently) were the best 

activators of CT. This was confirmed with purified enzyme, but free fatty 

acids were only able to activate CT in the presence of lipid vesicles (48). 

Mallampalli et al. (88) suggested from in vitro evidence and fetal lung 

explants that polyunsaturated n-3 fatty acids were the best stimulators. Their 

in vivo study with maternal administration of betamethasone suggested a 

selective increase in myristic, oleic and linoleic acids in H-form lipids, the 

latter two fatty acids being very effective in the conversion of L-form to H­

form (65). If exogenous fatty acids such as linoleic or n-3 poly-unsaturated 

fatty acids, which are not synthesized de novo by human cells, are indeed 

important for CT activation, the role of the endogenous fatty acid synthesis 

should be re-evaluated. 

Further studies are necessary to confirm the role of the described 
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glucocorticoid 

FIBROBLAST 

fibroblast-pneumocyte factor (FPF) 

? 
~FAS 

FAS mRNA ... 

fatty acids 

TYPE" CELL 
CT mRNA 

CT~+ 
~ .... + phospholipids 

choline -- P-choline CDPcholine PC 

Figure 4. A model for the regulation of CTP:phosphocholine cytidylyltrans­
ferase (CT) in fetal lung after glucocorticoid administration. Fetal type II cell­
fibroblast interactions have been shown to play a very important role in this 
regulation. FPF: fibroblast-pneumocyte factor; P-choline: phosphocholine; PC: 
phosphatidylcholine; FAS: fatty acid synthase 

sequence of events in vivo and to elucidate the role of the various fatty 

acids. The role of fatty acids in the promotion of CT binding to a CT 

binding protein, as recently described (60), also needs further evaluation. 
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2.8 Regulation of cytidylyltransferase activity by diacylglycerols 

Studies in different cell types, other than type II cells, stimulated with 

various agents suggest that diacylglycerols may play an important role in CT 

activation (review 58). All of the following observations were shown to be 

related to increased diacylglycerol levels: the translocation of CT induced 

by the phorbolester 12-0-tetradecanoylphorbol-13-acetate (TPA) in HeLa 

cells (131); the increase in H-form of CT in rat liver cytosol induced by 

phospholipase C or by feeding rats a high cholesterol diet (132); the reversal 

of CT inhibition of okadaic acid by fatty acids through enzyme translocation 

in rat hepatocytes (133); the translocation of CT in GH3 pituitary cells (134) 

and phospholipase C treated chick-embryonic muscle cells (135). Thus, the 

activation of CT by a conversion of L- to H-form or by a translocation of 

CT from cytosol to microsomes, can be mediated by diacylglycerols in 

response to various stimuli. 

The molecular mechanism of the activation of CT by diacylglycerols is 

suggested to be an increased degree of curvature of the membrane (48) or, 

more in general, a disruption of the packing of the membrane lipid bilayer 

(136) with increased intercalation of the a-helical domain of CT into the 

lipid membrane (48,136) (Fig. 3). This can activate CT by translocation 

(131,133-135) or by binding to cytosolic lipoprotein aggregates as H-form 

(132). 

Until now, evidence is lacking that diacylglycerols playa major role in 

the regulation of CT in the developing lung. In fetal type II cell cytosol we 

did not find any activation of CT by 1,3-diolein and l-oleyl-2-acetylglycerol 

(85). A study with adult type II cells in primary culture showed an activation 
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of CT when 1-0Ieyl-2-acetylglycerol, diolein or mixed diacylglycerols were 

included in the medium (137). Two studies with adult lung suggested that the 

major CT activating component of neutral cytosolic lipids was free fatty acid 

and not diacylglycerol (16,86). However, the possible effect on CT 

translocation was not examined in these studies. It is clear that the 

physiologic significance of CT activation by diacylglycerols in the develop­

ing lung is far from proven but the data from other cell types make it worth 

to investigate. 

2.9 Feedback regulation of cytidylyltransferase activity by phosphatidyl­

choline 

Two models have provided good evidence for the existence of a 

feedback regulation of CT, the rate-limiting step of the CDPcholine pathway, 

by PC, the end product of the pathway. 

The first and most convincing evidence is the model of choline 

depletion. In this model, choline depletion of cells, in vitro or in vivo, leads 

to a decrease of PC in all cellular membranes with a resulting activation of 

CT by translocation from cytosol to microsomes. Resupplementation of 

choline has the reverse effect. Choline starvation (138) or supplementary 

feeding with choline-analogues (139) in Chinese Hamster Ovary Cells 

trans locates CT to the PC-deficient membranes (139). A more physiological­

ly relevant system using the same idea is the choline-deficient liver caused 

by feeding rats a choline-deficient diet. (27). In choline-deficient 

hepatocytes, a translocation of CT from cytosol to endoplasmic reticulum 

was found which was reversed by choline supplementation (140). There was 
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a highly significant correlation between the concentration of PC in the 

membranes and the increased activity of CT in cytosol and decreased activity 

in the membranes (140). Methionine or Iysophosphatidylcholine 

supplementation, which also increase membrane PC, also reversed the 

translocation with a decrease of CT activity in membranes (140). This 

feedback mechanism of CT activity is quite specific for the PC head group, 

which is a trimethyl-aminogroup (141,142). Tijburg et al.(143) demonstrated 

that fasting and then re-feeding of rats had similar effects on PC levels and 

binding of CT to membranes as described for the choline deficiency. 

A second, less convincing model to study PC deficiency of membranes 

and the subsequent translocation of CT to those membranes, is the treatment 

of cells with phospholipase C. The suggested mechanism by phospholipase C 

is a PC degradation in the cell membrane. The subsequent movement of PC 

from the endoplasmic membrane to the cell membrane makes the membranes 

of the endoplasmic reticulum relatively PC depleted (57,136). These relative­

ly PC depleted microsomal membranes then activate CT by increased 

binding, thus promoting translocation from cytosol to microsomes. The 

translocation was demonstrated in Chinese Hamster Ovary Cells (144,145), 

Krebs II cells (146), chick-embryonic muscle cells (135) and hepatocytes 

(136). 

Jamil et al.(136) suggested a general molecular mechanism to explain 

the feedback inhibition by PC, but also most other effects of lipids on CT 

activity. The ratio of bilayer- to non-bilayer-forming lipids may be the 

overriding common factor in the regulation of CT binding to membranes 

(136). PC, for example, is a bilayer-forming lipid and inhibits the intercala­

tion of the (¥-helical domain of CT into the lipids, while diacylglycerol, fatty 

acids and phosphatidylethanolamine are non-bilayer-forming lipids and thus 

61 



Review 

stimulate binding of CT to the membranes by promoting the intercalation of 

the a-helical domain of CT into the lipids (136) (Fig. 3). 

A few studies suggest that a negative PC feedback on CT activity may 

also play a role in the lung. When rats were fed a choline and methionine 

deficient diet, lung PC production was relatively maintained compared to 

liver PC production (147). A possible mechanism was suggested to be an 

increased activity of lung CT, because also CDPcholine levels were main­

tained (148). More convincing evidence that similar mechanisms, as 

described in this section, may play a role in lung, was given by depleting 

adult rat type II cells of choline (107). This caused subcellular redistribution 

of CT together with activation of the enzyme (107). Aeberhard et al.(149) 

treated fetal rabbit type II cells with phospholipase C and found marked 

increased CT activity. The role of such mechanisms during fetal lung 

development remains to be established. 

2.10 Regulation of cytidylyltransferase activity by phosphorylation and 

dephosphorylation, protein kinases and protein phosphatases 

From the cloning and sequencing of rat liver and lung CT eDNA, it 

was deducted that CT has one potential site for phosphorylation by cAMP­

dependent protein kinase, several potential sites for phosphorylation by 

protein kinase C, and also for other protein kinases (30,31,43). In the last 

few years, it has become clear that CT is phosphorylated and dephospho­

rylated in intact cells (43,100,133,150-153). The study of the 

phosphorylation of CT in insect cells using a recombinant baculovirus clone 

showed that only the carboxy-terminal region was phosphorylated and that 
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phosphorylation was confined to serine residues (43), which was also found 

in HeLa cells (150). The phosphorylation state of CT was shown to correlate 

with the location of CT: increased phosphorylation in cytosol and decreased 

phosphorylation when bound to membranes (100,133,151-153). The interac­

tion with other mechanisms of CT regulation and the timing of 

phosphorylation/dephosphorylation with respect to translocation has recently 

been investigated (Fig. 3). Several studies suggest that a dephosphorylation 

of CT is required for CT translocation from cytosol to membranes (100, 

151,152). These studies were performed in Chinese Hamster Ovary Cells 

after phospholipase C treatment (lSI), in HeLa cells after oleate treatment 

(100) and in HepG2 cells after choline depletion and repletion (152). On the 

other hand, the study by Houweling et al.(153) demonstrated that a prior 

dephosphorylation was not required for binding of CT to membranes in rat 

hepatocytes treated with OA or phospholipase C. In this study, CT becomes 

dephosphorylated after translocation to membranes (153). The very rapid 

translocation of CT to endoplasmic reticulum in Krebs II cells (96) also 

supports the view that translocation to membranes happens before dephos­

phorylation of CT. For the reversed translocation from membranes to 

cytosol, studies agree on the fact that the release of CT from membranes 

occurs before the enzyme is phosphorylated, and that subsequent 

phosphorylation occurs (100,152) with further loss of activity (100). It is 

interesting to speculate. that the membrane bound CT is first converted to 

cytosolic H-form and then gradually phosphorylated to become L-fonn (100) 

(Fig. 3). This is consistent with earlier studies of Pelech (154, ISS), who 

showed, the other way around, that the conversion from L-form to H-form 

in liver cytosol was much faster under dephosphorylating conditions and 

rednced by sodium fluoride, a phosphatase inhibitor. 
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All these studies taken into account, it seems reasonable to conclude 

that CT activity can be regulated by phosphorylation and dephosphorylation 

and that all mechanisms of regulation of CT discussed so far are interrelated. 

In particular, the reversible phosphorylation and dephosphorylation of CT 

are closely related to interconversion between cytosolic L- and H-form and 

to the reversible translocation of CT between cytosol and microsomes. 

If CT is phosphO/ylared and dephosphory/ated, then, which enzymes 

are responsible for the dephosphorylation and which for the phosphorylation 

ofCT? 

DephosphO/ylatioll of CT by protein phosphatases and an associated 

increase in CT activity by translocation has been shown in hepatocytes 

(133,156). These studies with intact cells incubated with okadaic acid, a 

protein phosphatase inhibitor, confirmed the previous in vitro evidence for 

translocation of CT to membranes induced by phosphatases (157) obtained 

with rat liver cytosol incubated with okadaic acid or sodium fluoride. In the 

developing lung no similar studies with intact cells have been performed so 

far. In vitro evidence with fetal rabbit lung cytosol shows that nnder phos­

phorylating conditions with Magnesium! ATP, cytosolic CT activity is 

reduced (158). We showed in fetal rat type II cell cytosol that dephosphor­

ylation with alkaline phosphatases increased CT activity in a concentration­

dependent manner. This was also found with purified lung CT. Alkaline 

phosphatase had no effect on the activity of purified CT in the presence of 

PC!OA vesicles, which are known to maximally activate the enzyme. 

Sodium fluoride decreased CT activity in cytosol (159). Further studies in 

the developing lung are necessary. 
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In vitro, purified rat liver and lung CT have been shown to be a 

substrate for phosphorylation by cAMP-dependelll kinase (41,44). The 

binding of the purified liver CT to membranes was inhibited by 

phosphorylation by cAMP-dependent protein kinase. Studies with hepatocytes 

in culture suggested that cAMP analogues decreased PC synthesis with a 

decrease in CT activity in microsomes (160). More recent studies with 

hepatocytes however, did not show any change in CT activity, 

phosphorylation state or distribution between microsomes and cytosol in 

response to cAMP-analogues nor in response to an elevation of cAMP levels 

by cholera toxin (29,161). The inhibition of PC synthesis by cAMP-ana­

logues in these experiments, could be explained by decreased diacylglycerol 

levels, which then become limiting for the last enzyme in the CDPcholine 

pathway, the 1,2 diacylglycerol phosphocholinetransferase (29), but CT 

activity was not affected. We recently demonstrated that cAMP analogues or 

cAMP-dependent protein kinase inhibitors did not alter CT activity in fetal 

type II cell cytosol in vitro, nor in intact fetal type II cells in primary culture 

(41). The activity of cAMP-dependent protein kinase was stimulated by 

cAMP analogues under similar conditions (41). Thus, it is unlikely that a 

phosphorylation by cAMP-dependent protein kinase regulates CT activity. 

However, there is still a possible role for the long-term regulation of 

CT activity by cAMP and cAMP-dependent protein kinases. In fetal lung 

(162) and fetal type II cells (41) changes in cAMP-dependent protein kinase 

during development have been demonstrated, which correlated with a change 

in the phosphorylation of several proteins (162). Long-term stimulation (one 

to several days) by cAMP-analogues or agents that increase cellular cAMP 

content, increased PC synthesis in fetal (rat and human) lung explants, in an 

alveolar type II cell line (A549) and in fetal rabbit type II cells (163-167). 
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Interestingly, in the human fetal lung explants fatty acid synthase gene 

expression (165) and fatty acid synthase activity were increased hy increasing 

levels of intracellular cAMP (164). As increased fatty acid synthesis is 

known to activate CT, the indirect effect of cAMP-dependent protein kinase 

activity on CT activity mediated by fatty acids, and its consequences for 

developmental regulation of CT activity need to be examined. 

Protein kinase C was another possible candidate for phosphorylating 

CT. Phorbol esters, such as TPA, which are well known to activate protein 

kinase C, stimulated PC synthesis in a variety of cells (87,131,150,168-172) 

including fetal rabbit type II cells (173). Some studies with HeLa cells 

treated with TPA, support the activation of CT by translocation to mem­

branes (131, 169, 170), while one study does not (150). Studies with other 

cells are also controversial regarding TPA induction of CT translocation to 

membranes (170,172,174,175). In any case, it appears that direct 

phosphorylation of CT by protein kinase C does not account for the possible 

increase in CT activity in HeLa cells (131,150,168). Taking into account that 

phosphorylation of CT usually decreases its activity, it would indeed be quite 

surprising if CT phosphorylation would increase its activity. The possible 

increased activity of CT in HeLa cells stimulated with TP A has recently 

been shown to be related to an increased diacylglycerol production instead of 

to an increased phosphorylation of CT (131). Moreover pure CT is reported 

not to be phosphorylated by protein kinase C (58). In adult type II cells, 

Warburton et al.(176) demonstrated protein kinase C-dependent 

phosphorylation of several proteins, suggesting key roles for these proteins 

in type II cell functions. A change of protein kinase C (and protein 

phosphatase) activities during fetal type II cell development (177) which was 

similar to that of growth related genes, c-myc and histone (178) also sug-
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gests a major role for protein kinase C in fetal type II cell function. How­

ever, no effects of TP A and protein kinase C inhibitors were fonnd on CT 

activity, neither in cytosol in vitro, nor in intact fetal type II cells in primary 

cultnre (177). 

I conclude that CT activity is regulated by a phosphorylation/dephos­

phorylation mechanism and that this mechanism is closely interrelated to 

other mechanisms of CT regulation. Dephosphorylation of CT by protein 

phosphatases has been demonstrated. There is also some evidence for CT 

dephosphorylation by phosphatases in fetal type II cells. However, it is 

unclear which protein kinase phosphorylates CT in intact cells and in vivo. 

Considering recent studies, protein kinase C and cAMP-dependent protein 

kinase are very unlikely candidates to play that role. This was also demon­

strated in fetal type II cells (41,177). 

2.11 Summary and conclusions 

Increased production of surfactant at the end of gestation is essential 

for the stability of alveoli during air breathing after birth. PC is the most 

abundant component of surfactant. CT has heen shown to he the rate-regula­

tory step in de novo PC synthesis in type II cells, which are the producers of 

surfactant. CT activity increases with advancing gestation in association with 

the increased production of PC. In addition, many studies indicate that CT is 

an important target for developmental and hormonal regulation in alveolar 

type II cells of the developing lung. Since the purification of CT in 1986 and 

the cloning of CT cDNA in rat liver, the progress in the understanding of 
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the regulation of CT activity has accelerated. Not all new insights into the 

mechanisms of CT regulation have been examined yet in the developing 

lung. 

CT is essentially inactive without lipids. The amphipathic a-helical 

domain of the CT protein is involved in the binding of the enzyme to lipid 

membranes. In the type II cell, the most important binding sites involved in 

the activation of CT are the microsomal membranes and the lipids of the 

cytosolic H-form (Fig. 3). The currently available data are indeed most 

compatible with an activation of both cytosolic and microsomal CT activity 

during fetal lung development and after corticosteroid administration. 

Cytosolic CT is regulated by phospholipids. The activation of cytosolic CT is 

accompanied by a conversion of a low molecular weight L-form to a high 

molecular weight H-fol'ln, which is a lipoprotein complex consisting of 

aggregated CT complexed with (phospho)lipids. The H-form is the predomi­

nant form in the adult lung. Fatty acids, either in free form or possibly after 

incorporation into (phospho)lipids, induce the conversion from L-form to H­

form and are shown to be a very important regulator of CT activity after 

corticosteroid administration and, most likely, also during normal lung 

development. Translocation of CT from cytosol to the membranes of the 

endoplasmic reticulum activates the enzyme. This mechanism is also regu­

lated by fatty acids (Fig. 3) and plays an important role during lung develop­

ment. Recent evidence demonstrates that the cytosolic interconversion from 

L-form to H-form and the translocation of CT from cytosol to endoplasmic 

reticulum are closely related. 

Taken together, recent studies support the following sequence in the 

fetal lung after exogenous corticosteroid administration (Fig. 4): 

corticosteroids induce the production of fibroblast-pneumocyte factor (FPF) 
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in lung fibroblasts adjacent to the type II cells at a pre-translational level; 

this FPF induces fatty acid synthase and other enzymes involved in fatty acid 

synthesis in fetal type II cells at a pre-translational level; this leads to an 

increase in fatty acid biosynthesis, and fatty acids, their metabolites, or lipids 

into which they become incorporated, ultimately activate CT by increasing 

cytosolic H-form and translocation of CT from cytosol to microsomes. A 

similar sequence could take place during normal type II cell maturation at 

late gestation or around birth, caused by endogenous corticosteroid produc­

tion. 

CT contains several potential sites for phosphorylation by protein 

kinases. There is now convincing evidence that CT is phosphorylated and 

dephosphorylated in intact cells and that the phosphorylation state of the 

enzyme regulates its activity. The phosphorylation state of the enzyme is 

correlated with its location (Fig. 3): when the enzyme translocates from 

membranes to cytosol it becomes subsequently phosphorylated, when it 

translocates from cytosol to membranes it becomes dephosphorylated and 

active but the order of events and the precise significance is not yet clear. 

Protein phosphatases 1 and/or 2A have been shown to dephosphorylate the 

enzyme, but which protein kinase is involved in the phosphorylation is still 

unclear. Protein kinase C and cAMP-dependent protein kinase are very 

unlikely candidates as is demonstrated by recent studies, also involving fetal 

type II cells. The number of studies about the phosphorylation and dephos­

phorylation mechanism in developing lung are still very limited, and clearly 

further studies are required to elucidate the precise role of this mechanism in 

the regulation of CT activity. 

In several cell types the regulation of CT activity by diacylglycerols 

was demonstrated but no convincing evidence exists for the fetal lung. The 
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feedback inhibition of CT activity by increased PC in membranes or in 

general, the regulation of CT activity by altered membrane composition, may 

be a very important mechanism. Some evidence for this exists in type II 

cells. 

From recent experiments, it has become very clear that all mechanisms 

in the regulation of CT activity are very closely interrelated (Fig. 3). The 

precise role of these mechanisms and its interdependence has to be further 

investigated in the developing lung and isolated type II cells. Recent studies 

show that not only the activity of CT is regulated, but also that CT protein 

expression is regulated at a pre-translational level in the II cells of the 

developing lung. The relative importance and the regulation of these mechan­

isms will surely be investigated in the near future. It is expected that the 

gene sequence for CT will be known soon, which will make it much easier 

to study the regulation of gene expression. Structure-function relationships 

will be further investigated with the help of site-directed mutagenesis and 

transgenic animals. New laboratory techniques will help to resolve the 

question of the recently suggested and intriguing possibil ity of the 

channelling of intermediates of the CDPcholine pathway from one enzyme to 

the next. The role of the cytoskeleton in this channelling will be further 

examined. 

The regulation of CT has frequently been used as an example for the 

mechanisms of enzyme regulation in general. It is evident that the study of 

the regulation of CT has not yet come to an end. 
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Chapter 3 

3.1 Abstract 

Phosphatidylcholine (PC) synthesis increases in fetal rat type II cells during 

late gestation, as demonstrated by an increased incorporation of radio labeled 

palmitate, glycerol, acetate and choline into PC. However, the percentage 

of PC present in the saturated form remains essentially constant. The 

developmental profile of the enzymes of the CDPcholine pathway suggests 

that CTP:phosphocholine cytidylyltransferase (CT) catalyses a rate-regulatory 

step in de /lOVO PC synthesis by fetal type II cells. When CT activity is 

assayed in different subcellular fractions the greatest increase, as a function 

of development, is found in microsomes. This developmental increase is 

accompanied by a shift in subcellular distribution of CT activity from cytosol 

to microsomes in fetal type II cells during late gestation. This shift is 

evident even when CT activity is assayed in the presence of 0.5 mM PCI 

oleic acid (OA) (1/1 molar ratio) vesicles. We speculate that either a 

subcellular translocation of CT from cytosol to microsomes or an increase in 

CT gene expression are responsible for the developmental increase of de 

/lOVO PC synthesis by fetal type II cells. 

3.2 Introduction 

Adequate amounts of pulmonary surfactant are essential for proper lung 

functioning immediately after birth. Pulmonary surfactant prevents alveolar 

collapse at end-expiration by reducing surface tension at air-liquid inter­

faces. Phospholipids are quantitatively the most important constituents of 
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surfactant. PhosphatidylchoIine (PC) makes up 70-85 % of the phospholipids 

(1,2). Abundant evidence indicates that the synthesis of PC increases during 

late gestation (1-3). The CDPcholine pathway is the primary pathway for de 

1I0VO PC synthesis in the developing lung (reviewed in 1). Studies with 

whole lung have shown an increased activity of the CDPcholine pathway 

during late gestation (4). Pool size studies have demonstrated that the 

reaction catalysed by CTP:phosphocholine cytidylyltransferase (CT) is the 

rate-limiting step in the de /laVa synthesis of PC in fetal lung (5,6). How­

ever, when assayed under optimal conditions ill vitro, only an increased 

activity of CT just before or immediately after birth has been demonstrated 

(7-10), but no good evidence exists for an activation of the enzyme during 

fetal development. The increased activity around birth has mainly been 

observed in cytosol (3,7). However, there is evidence from a number of 

systems, including whole lung (I), that the endoplasmic-associated enzyme is 

the more active form, and that the enzyme can be activated by subcellular 

translocation from cytosol to endoplasmic reticulum (reviewed in 11). These 

studies showed an activation by translocation of CT in response to different 

agents, but the physiologic importance of this mechanism during develop­

ment has not been demonstrated. Furthermore, no data are available that 

demonstrate the importance of this mechanism in fetal type II cells, the 

producers of surfactant. Herein, we report that increased PC formation from 

radioactive precursors during fetal type II cell development is associated with 

an increase in the activity of CT. This increase in CT activity with advanc­

ing gestation correlates with a shift in subcellular distribution of total CT 

activity in type II cells from cytosol to endoplasmic reticulum. 
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3.3 Materials and methods 

Materials 

Female (200-2S0g) and male (250-300g) Wistar rats were purchased 

from Charles River (51. Constant, Quebec) and bred in our animal facilities. 

Cell culture media, antibiotics, and trypsin were obtained from Gibco 

Canada (Burlington, Ontario). Fetal calf serum (FCS) was from Flow 

Laboratories (McLean, VA), collagenase and DNase from Worthington 

Biochemical Corporation (Freehold, NJ). Cell culture flasks were purchased 

from Falcon (Becton Dickinson, Lincoln Park, NJ). All radioactive 

chemicals were from New England Nuclear Research (Dupont Canada, 

Mississauga, Ontario). All remaining unlabeled biochemicals were obtained 

from Sigma (51. Louis, MO). 

Cell cultures 

Timed pregnant rats were killed by diethylether excess on days 18 to 

22 of gestation (term = day 22) and the fetuses were aseptically removed 

from the dams. 

The epithelial cells were isolated as described in detail elsewhere (12,13). 

Although the term "type II cells" is used in this paper, the cuboidal 

epithel ium which lines the acinar tubules during the late pseudoglandular and 

early canalicular stages of lung development, does not contain lamellar 

bodies, the phenotypic marker for type II cells. In previous studies, we have 

shown that these cells do express other phenotypic features of type II cells 

and possess antigenic determinants of mature type II cells (14). 
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Radioactive precursor incorporation illfo diacylglycerol alld PC 

Fetal epithelial cells were plated into plastic 24-well plates. At con flu­

ency (next day), the cells were rinsed with serum-free Eagle's minimal 

essential medium (MEM) and incubated with serum-free MEM containing 

either 1 !,Ci/ml [methyl-3Hjcholine, 5 !,Ci/ml [1 (3)_3Hjglycerol , 5 !,Ci/ml 

[I)4C]acetate, or 10 !,Cilml [9,10 (n)_3Hjpalmitate (complexed to bovine 

serum albumin in a molar ratio of 5.3: I). After 24 h of incubation, the 

medium was removed and the cells were washed with serum-free MEM. 

Following trypsinization to remove the cells from the plate, cellular lipids 

were extracted according to the method of Bligh and Dyer (15). In experi­

ments with radioactive glycerol, palmitate, and acetate, half of the lipid 

extract was used for diacylglycerol and the other half for phospholipid 

determination. Incorporation of radiolabeled glycerol, acetate, and palmitate 

into diacylglycerols was measured. Neutral lipids were separated from the 

lipid extracts by thin-layer chromatography on precoated silica G plates using 

diethylether/petroleum ether/acetic acid (20:80:2, vol/vol/vol) as developing 

solution. The neutral lipid spots were visualized with iodine vapour. 

PC was isolated from the lipid extract by thin-layer chromatography 

on silica H plates with chloroform/methanol/water (65:25:4, vol/vol/vol) as 

developing solution. To isolate disaturated phosphatidylcholine (DSPC), lipid 

extracts were treated with osmium tetroxide after which DSPC was isolated 

by thin-layer chromatography on precoated silica gel H plates with chloro­

form/methanol/ water (65:25:4) as eluent. PC spots were visualized with a 

bromothymol blue solution. The PC and diacylglycerol spots were trans­

ferred to scintillation vials and radioactivity was measured in a scintillation 

counter. 
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Cell fractionation 

After overnight incubation in 75-cm2 culture flasks, attached cells 

were collected by scraping in homogenization buffer of 145 mM NaCl, 50 

mM Tris-HCI (pH 7.4), 50 mM NaF, and 2.5 mM EDTA (hereafter referred 

to as Tris saline). For each experiment, cells from two culture flasks were 

combined. After homogenization with 50 strokes of a Dounce homogenizer 

and sonication with a probe sonicator (3 x 20 sec at maximal output), the 

homogenate was centrifuged at 300xg for 10 min. The resulting supernatant 

was centrifuged at 13,000xg for 10 min to obtain a postmitochondrial 

supernatant. After an aliquot of this supernatant was stored, microsomal and 

cytosolic fractions were obtained by centrifugation at 313,000xg for 15 min. 

Microsomes were resuspended in a volume of Tris saline equal to that of the 

cytosol. All steps were carried out at 4°C. Cell homogenates and cell 

fractions were stored at -70°C until enzyme activities were measured. 

Enzyme assays 

Choline kinase activity was assayed by measuring the rate of incorpor­

ation of radiolabeled choline into phosphocholine. The incubation medium 

(0.1 ml) contained 100 mM Tris-HCl (pH 8.0), 30 mM MgClz, 10 mM 

ATP, 0.25 mM [1I1ethyl-14C]choline (specific activity: 50 /lCi! /lmol), and up 

to 100 /lg of protein. After a IS-min incubation period at 3rC, the reaction 

was terminated by the addition of 30 /ll of glacial acetic acid. The reaction 

product, phosphocholine, was separated from radioactive choline by paper 

chromatography as described previously (16). 

CT activity was assayed in the forward direction by measuring the rate 

of incorporation of [methyl)4C]phosphocholine into CDPcholine. The 

incubation medium (0.2 ml) contained 20 mM Tris-succinate (pH 7.8), 6 
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mM MgCI2, 4 mM CTP, 1.6 mM [lIlethyl-14C]phosphocholine (specific 

activity: 0.625 I'Cill'mol) and up to 150 I'g protein. Some assays were 

performed in the presence of 0.5 mM PC-OA (I: I molar ratio) vesicles. 

These vesicles were prepared by sonication as described previously (17). 

After 40 minutes of incubation at 3rC, the reaction was stopped by addition 

of 0.1 ml of 25% (wt/vol) trichloroacetic acid and 0.5 ml of charcoal 

suspension (6% charcoal in 50 mM phosphocholine). The samples were 

placed on ice and [lIlethyl-14C]CDPcholine was isolated as described previ­

ously (18). The recovery (69-74%) of CDPcholine was determined in each 

set of assays by adding a known amount of [lIlethyl-14C]CDPcholine to a 

complete assay mixture. All assays were corrected for background and 

recovery. 

Cholinephosphotransferase activity was determined by measuring the 

rate of incorporation of radio labeled CDPcholine into PC using either 

endogenous or exogenous (15 mM) diacylglycerols as substrates. The cell 

homogenates (50-100 I'g of protein) were incubated for 15 minutes at 37°C 

in 0.15 ml of incubation medium containing 100 mM Tris-maleate (pH 8.0), 

25 mM MgCI2, 10 mM ll-mercaptoethanol, 1 mM EDTA, and 0.5 mM 

[methyl-14C]-CDPcholine (specific activity: 42 I'Cill'mol). A 50-1'1 aliquot 

was taken for the measurement of the formation of radioactive PC by the 

filter disc method (19). The remaining 100 1'1 of the reaction mixture was 

extracted with chloroform/methanol (1 :2, vol/vol) and the lipid extract was 

used for the determination of saturated phosphatidylcholine as described 

above. In preliminary experiments we established that, under the conditions 

used, product formation in all assays was directly proportional to incubation 

time and amount of protein. 
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Measurement of choline cOlliaining metabolites 

The aqueous phase remaining after lipid extraction from cells incu­

bated with radioactive choline was used to determine the choline intermedi­

ates. An aliquot (250 "I) of the aqueous layer (2.5 m!) was subjected to high 

performance liquid chromatography on an ion exchange column (Aminex A-

27) in an isocratic mode (20). The phosphocholine and CDPcholine fractions 

were recovered from the column in scintillation vials and assayed for 

radioactivity. 

Protein and DNA measurements 

The protein concentrations were determined by the method of Bradford 

(21), using bovine serum albumin as standard. DNA was measured by the 

modified method of Burton (22). 

Statistical analysis 

Data are presented as means ± SE. The trend of enzyme activities and 

protein-to-DNA ratio with advancing gestation were analyzed with the 

Pearson product moment correlation coefficient (r). Statistical significance 

was accepted at the p < 0.05 level (two-tailed). 

3.4 Results 

Incorporation of radioactive precursors illlo diacylglycerol and PC 

In order to investigate whether surfactant PC production increases with 

type II cell development, the incorporation of several radioactive precursors 

into PC by type II cells isolated at different gestational ages was assessed. 
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Figure 1. Developmental profile of diacylglycerol (DAG) and phosphatidyl· 
choline (PC) synthesis from l'adiolabeled palmitate and glycerol by fetal type 
II cells, Type II cells in primary cullure were incubated with MEM supplemented 
wilh 10 "Cifml [9,10 (n)_3Hjpalmiiate or 5 "Cifml [1(3)_3Hjglycerol. After 24 
hours of incubation, cellular lipids were extracted and incorporation of radia­
labeled precursors into DAG (A) and PC (B) was measured as described under 
"Materials and Methods", The data represent the means ± SE of at least three 
independent experiments carried out in quadruplicate, Where no error bars are 
drawn, SE are small and within the size of the data symbols, 
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As diacylglycerols provide a substrate for PC formation, the incorporation of 

labeled precursors into this important neutral lipid was also measured. As 

gestation advanced, incorporation of palmitate into diacylglycerols showed an 

initial small increase, followed by a small decrease on day 21, then a sixfold 

increase on day 22 (Fig. lA). A similar pattern was observed for acetate 

incorporation into diacylglycerols (data not shown). Glycerol incorporation 

into diacylglycerols (Fig. lA) increased progressively with advancing 
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Figure 2. Developmental profile of phosphatidylcholine (PC) synthesis from 
radiolabeled acetate and choline by fetal type II cells. Type II cells in primary 
culture were incubated with MEM supplemented with 5 I,Ci/ml [I)4C]acetate (A) 
or I I'Cilml [melhyl-14C]choline (B). After 24 hours of incubation. cellular lipids 
were extracted and incorporation of radiolabeled precursors into PC, as well as 
radiolabeled choline into disaturated PC, were measured as described under 
"Materials and Methods". Percentage of disaturated PC was calculated from 
disaturated and tOlal PC (B). The data represent the means ± SE of at least three 
independent experiments carried out in quadruplicate. Where no error bars are 
drawn, SE are small and within the size of the data symbols. 
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gestation, again with the largest increase on day 22. 

Glycerol and palmitate incorporation into total phospholipids increased 

2.5-fold and > 4-fold, respectively between day 18 and 22. Glycerol 

incorporation into PC increased more than twofold between day 18 and 20. 

A 35 % decrease in incorporation was observed on day 21 followed by an 

increase on day 22 (Fig. 18). Although incorporation of label into PC 

generally showed an increase during development, incorporation of glycerol 

into PC, as a percentage of total phospholipids, remained essentially constant 
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Figure 3. Choline kinase activity in fetal type II cells during development. 
Type II cells in primary culture, isolated from fetal rats at 18 to 22 days gestation, 
were homogenized and choline kinase activity was assayed by measuring the rate 
of incorporation of radiolabeled choline into phosphocholine. The data represent 
the means ± SE of three independent experiments carried out in duplicate (r =-
0.21, p= N.S). 
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throughout late gestation (not shown). 

Palmitate incorporation into PC exhibited a developmental profile similar to 

that observed with glycerol incorporation (Fig. IB) and it resembles the 

pattern for palmitate incorporation into diacylglycerols (Fig. lA). Again, the 

incorporation of palmitate into PC as a percentage of total phospholipids 

remained virtually unchanged (not shown). The developmental profile for 

acetate incorporation into PC was almost identical to that described for 

glycerol and palmitate incorporation into PC (Fig. 2A). As can be seen in 

Fig. 2B, the choline incorporation into PC by fetal type II cells increased 

with advancing gestation. Interestingly, the percentage of PC present in the 

saturated form remained essentially unchanged after day 19. Taken together, 

these data clearly indicate that PC synthesis increases in maturing type II 

cells. 

Developmental profiles of enzymes involved ill the CDPcholine pathway 

As the CDPcholine pathway is the primary pathway for de novo PC 

synthesis in type II cells (1), the activities of choline kinase, CT and choline­

phospho transferase were measured in maturing type II cells. The specific 

activity of choline kinase exhibited no significant change with advancing 

gestation (Fig. 3). An increase in the specific activity of CT (Fig. 4) was 

noted during fetal development. The ratio of phosphocholine to CDPcholine 

also decreased (Fig. 4) and was mainly due to a decrease in incorporation of 

radiolabel into phosphocholine. This observation also supports the idea for 

an enhanced flux through the reaction catalysed by CT. Figure 5 illustrates 

the developmental profile for the specific activity of cholinephosphotrans­

ferase using endogenous diacylglycerols as substrate. No significant change 

was observed from day 18 to 22. Approximately 20% of the PC formed in 
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this reaction was present in the saturated form. This percentage did not 

change significantly with advancing gestation (Fig. 5). Although diacyl-
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Figure 4. CT activity and phosphocholine I CDPcholine ratio in fetal type II 
cells during development. Type II cells in primary culture, isolated from fetal 
rats at 18 to 22 days gestation, were homogenized and CT activity was assayed by 
measuring the rate of incorporation of radiolabeled phosphocholine into CDP­
choline (in the absence of lipid vesicles) (r=0.61, p<0.02). High-performance 
liquid chromatography was used for determinations of choline containing 
metabolites in the aqueous phase remaining after lipid extraction from type II cells 
from the choline incorporation studies (r=-0.80, p<O.OI). The data represent the 
means ± SE of three independent experiments carried out in duplicate and 
quadruplicate. SE bars for ratio phosphocholine/CDPcholine of day 21 data point 
are small and within size of data symbol. 
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glycerol formation increased slightly during fetal development, it is possible 

that diacylglycerol availability influenced the measurements of the enzyme. 

Therefore, we measured the cholinephosphotransferase activity in the 

presence of 15 mM exogenous diolein (Fig. 6). The cholinephosphotrans­

ferase activity using exogenous diacylglycerols as substrate remained con­

stant from day 18 to 20 but increased significantly at day 21. The increase 

in cholinephosphotransferase activity occurred, however, after the increase in 

CT activity. To exclude the possibility that the observed enzyme changes 

z GIl 0.06 r----.-----.----~----.-----.-,60 
0 

I !;i 
::Ii CD 

'" ...... e r: 
w ]! 0.04 
z e :J a. 

o 

40 6 

0 

'" :r: 
~ E 
>- ....... 
c " 0.02 
~ 'E 
:I: ....... n. 
III -0 0 :r: E n. ,5, 0.00 

L-__ ~ ____ ~ ____ ~ ____ ~ ____ ~~O 

18 19 20 21 22 

GESTATIONAL AGE (days) 

Figure 5. Cholinephosphott"ansferase activity in fetal type II cells during 
development and percentage disaturated phosphatidylcholine formed frolll 
endogenous diacylglycerols. Type II cells in primalY culture, isolated from fetal 
rats at 18 to 22 days gestation, were homogenized and cholinephosphotransferase 
activity was assayed by measuring the rate of incorporation of radiolabeled 
CDPcholine into phosphatidylcholine (r=-O.OI, p=N.S.). 
Disaturated phosphatidylcholine formed in this reaction was measured and is 
presented as the percentage of total phosphatidylcholine synthesized (r=O.4I, 
p=N.S.). The data represent the means ± SE of three independent experiments 
carried out in duplicate. 
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were due to increased overall protein synthesis during development, the 

protein and DNA levels of the cells were measured. The protein-to-DNA 

ratio (p,glp,g) in the cells did not significantly change with advancing gesta­

tion (20.92 ± 6.60 on day 18 to 13.79 ± 4.47 on day 22; mean ± SE; r=-

0.27 and p = NS). Although cholinephosphotransferase may play a regula­

tory role in PC synthesis at term, the findings suggest that CT controls PC 

synthesis in type II cells during fetal development. 

Distribution of CT ill subcellular fractions 

Several studies with other systems, particularly HeLa cells and 

hepatocytes (reviewed in 11) have suggested that CT can be activated by 

subcellular translocation from cytosol to endoplasmic reticulum. To investi­

gate whether the observed increases in PC synthesis (Figs. 1B and 2) and CT 

activity (Fig. 4) in type II cells during fetal development is accompanied by 

a shift in distribution of enzyme activity from cytosol to endoplasmic 

reticulum, the CT activity in the subcellular fractions of fetal type II cells 

was measured. As shown in figure 7 A, the increase in specific activity of 

CT during development was greater in the microsomal fraction than in the 

cytosolic fraction. As expected, the specific activities in the post-

mitochondrial supernatant were found to be intermediate of the activities of 

the fractions (not shown). During fetal development, the percentage of total 

activity of CT in cytosol of type II cells decreased (r=-0.52, p=0.023) 

while a corresponding increase in microsomal CT activity was noted (r= 

0.52, p=0.023) (Fig. 7B). CT activity was also determined in the presence 

of 0.5 mM PC/OA vesicles (1:1 molar ratio) (19). The developmental shift 

in subcellular distribution of CT from cytosol to microsomes was similar 
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when the enzyme activity was measured in the presence of the mixed lipid 

vesicles (in cytosol from 59.73±4.55% on day 18 to 42.29±3.08% on day 

21; in microsomes from 40.27±2.41% on day 18 to 57.71±3.08% on day 

21: r= ±0.56, p=0.013). Also when unstimulated microsomes were 

compared with lipid stimulated cytosol, an almost identical shift in distribu­

tion of enzyme activity during fetal development was observed (r= ±0.56, 

p=0.012) (not shown). 

The stimulation of the cytosolic CT activity by lipids decreased from 

262 % at day 18 to 181 % of control at day 21, while the lipid stimulation of 

microsomal CT activity (approx. 150% of control) remained constant during 

fetal development. 
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Figure 6. Cholinephosphotransferase activity in fetal type II cells using 
exogenous diacylglycerols. Type II cells in primary culture, isolaled from felal 
rals at 18 to 21 days gestation, lVere homogenized and cholinephosphotransferase 
aClivity lVas assayed by measuring Ihe rate of incorporalion of radiolabeled 
CDPcholine inlo phosphatidylcholine using 15 mM diolein. The dala represenl Ihe 
means ± SE of a represenlalive experimenl carried oul in triplicale. 
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3.5 Discussion 

The present study shows that the developmental increase in PC 

synthesis in fetal type II pneumocytes during late gestation is associated with 

an increase in CT activity. The choline kinase and cholinephosphotrans­

ferase activities remain constant or increase just before birth. This increase 

in specific activity of CT during fetal development is more pronounced in 

microsomes than in cytosol. The developmental increase in CT activity is 

accompanied by a developmental shift of enzyme activity from cytosol to 

endoplasmic reticulum. 

Taken together, these data provide further evidence that CT catalyses a 

regulatory step in the CDPcholine pathway for de /laVa PC synthesis in fetal 

type II cells. The finding that a shift in subcellular distribution of enzyme 

activity from cytosol to microsomes coincides with increased CT activity led 

us to conclude that the enzyme may be activated during development by a 

subcellular translocation of enzyme from cytosol to endoplasmic reticulum 

(11). Another explanation for the observed shift might be that gene express­

ion of CT increases with advancing gestation and that new CT protein is 

mainly bound to microsomes. Both mechanisms may be involved in 

controlling surfactant PC synthesis in maturing type II cells. It is evident, 

however, that both translocation of CT molecules from cytosol to micro­

somes and CT gene expression need further investigation to elucidate their 

role in PC synthesis by fetal type II cells. 

The present study also focuses on whether direct de /laVa synthesis 

may contribute to the formation of DSPC in fetal type II cells. Earlier 
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Figure 7. Specific activity and subcellular distribution of CT in cytosol and 
microsomes of fetal type II cells as function of development. Cytosolic and 
microsomal fractions were prepared from type II cells in primary culture, isolated 
from fetal rats at 18 to 21 days gestation. CT activity was assayed in the different 
fractions. In figure A specific activities are expressed as nmollmin/mg protein. 
In figure B the percentage of total activity in each fraction is calculated as the total 
activity in that fraction (specific activity x total mg protein) x 100, over the sum of 
the total activities in cytosol and microsomes. The data represent the means ± SE 
of four or five independent experiments carried out in duplicate. Where no error 
bars are drawn for cytosolic activities in A, SE are small and within the size of the 
data symbols. 

studies with rat lung microsomes, homogenates and also adult type II cells 

have suggested that cholinephosphotransferase does utilize endogenous 

disaturated diacylglycerols for the formation of DSPC (23-26). In the 

present study, we found that incubation of fetal type II cell homogenates with 

CDP[methyl-,4Cjcholine resulted in the formation of labeled PC that was 20-

25 % saturated. This finding suggests a direct conversion of endogenous 
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disaturated diacylglycerols into DSPC. However, other explanations cannot 

be excluded. Unsaturated PCs synthesized by cholinephosphotransferase 

could be rapidly remodelled, or labeled CDPcholine could be hydrolysed to 

choline or phosphocholine with subsequent introduction of these substrates 

into existing DSPCs by a base-exchange mechanism. Previous studies (27) 

with type II cells isolated from adult rat lung have shown that the cells have 

the capability of hydrolysing CDPcholine. However type II cell homo­

genates incubated under the same conditions as with CDPcholine, did not 

incorporate the hydrolysis products choline and phosphocholine into PC, 

even under conditions which promote base exchange. If we assume that 

direct de /laVa synthesis of DSPCs occurs from disaturated diacylglycerols, 

the results of the present study suggest that approximately half of the total 

DSPCs are synthesized from this source. Similar contributions of de /laVa 

synthesis to total synthesis of saturated PC have been reported in previous 

studies using adult type II cells (25) or lung microsomes (23). Lower figures 

have been published by Mason and NeUenbogen (24), who estimated from 

pulse-chase experiments that 25 % of the DSPC in type II cells was made 

via synthesis de novo. 
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4.1 Abstract 

We previously reported that phosphatidylcholine (PC) synthesis increased in 

fetal rat lung type II cells with advancing gestation. This increase was 

accompanied by an increase in CTP:phosphocholine cytidylyltransferase (CT) 

activity, which catalyses a rate-regulatory step in de /lOVO PC synthesis by 

fetal type II cells. To determine whether this increase in CT activity is due 

to an increase in CT protein levels, the gene and protein expression of CT 

was investigated in maturing type II cells. The CT cDNA was cloned from 

fetal rat type II cells and showed 99% sequence homology with rat liver 

cDNA. The cDNA detected two mRNA transcripts (1.8 and 7.5 kb) in fetal 

rat lung. By reverse-transcriptase polymerase chain reaction (RT-PCR) 

analysis, CT mRNA content increased threefold in fetal type II cells with 

advancing gestation, whereas CT mRNA levels in fibroblasts remained 

constant. An antibody against rat liver CT was used to assess CT protein. 

Western blotting revealed that CT protein content increased threefold in the 

microsomal fraction of type II cells with advancing gestation. The enzyme 

protein levels in the cytosolic fraction did not significantly change with 

development. Enzyme activity studies confirmed these latter observations. 

We conclude that the increase in surfactant PC synthesis by type II cells at 

late fetal gestation is due in part to an increase in the amount of CT protein. 
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4.2 Introdnction 

Adequate amounts of pulmonary surfactant are essential for proper lung 

functioning immediately after birth. Pulmonary surfactant stabilizes the lung 

at end expiration by reducing the surface tension at the air-liquid interface of 

the alveoli. Pulmonary surfactant is composed of lipids and proteins. 

Phospholipids are quantitatively the most important constituents of surfactant. 

Phosphatidylcholine (PC) makes up 70-85% of the phospholipids (l,2). 

Ample evidence has accumulated indicating that the synthesis of PC 

increases during late gestation (1-3). The CDPcholine or Kennedy pathway 

is the primary pathway for de 1101'0 PC synthesis in the developing lung 

(reviewed in 1). Studies with whole lung have shown an increased activity 

of the CDPcholine pathway during late gestation (4). Pool size studies have 

demonstrated that the reaction catalysed by CTP:phosphocholine cytidylyl­

transferase (CT) is the rate-limiting step in the de 1101'0 synthesis of PC in 

fetal lung (5,6). Recently, we reported that increased PC formation during 

fetal type II cell development is associated with an increase in the activity of 

CT (7). This increase in CT activity with advancing gestation was mainly 

observed in the microsomal membrane fraction of type II cells (7). In 

addition, we noted a developmental shift in the distribution of CT activity 

from cytosol to microsomes. This increase in CT activity in maturing type 

II cells might be due to a subcellular translocation of CT from cytosol to 

endoplasmic reticulum. Another possibility is that the developmental 

increase in CT activity is caused by an increase in CT protein. In this 

report, we cloned CT from fetal type II cells and further investigated CT 

gene and protein expression in fetal type II cells during late gestation. 
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Evidence is presented that the increased synthesis of surfactant PC by fetal 

type II cells during late gestation is due to an increase in CT expression. 

4.3 Materials and methods 

Materials 

Female (200-250g) and male (250-300g) Wistar rats were purchased 

from Charles River (St. Constant, Quebec) and bred in our animal facilities. 

The sources of all cell culture material have been described elsewhere (8). 

A rabbit polyclonal antibody to a synthetic peptide (D-F-V-A-H-D-D-l-P-Y­

S-S-A) corresponding to residues 164-176 of rat liver CT was a generous gift 

of Dr. D.E. Vance [University of Alberta, Edmonton, Canada] (9). [Methyl-

14C]phosphocholine was from New England Nuclear (Dupont, Mississauga, 

Ontario). Biotinylated goat anti-rabbit immunoglobulin G, streptavidin­

biotinylated peroxidase complex and a chemiluminescence detection system 

were from Amersham (Oakville, Ontario). Phosphodiester oligodeoxy­

nucleotides were synthesized on a 391 DNA synthesizer from Applied 

Biosystems (Foster City, CAl. All remaining biochemicals were obtained 

from Sigma Chemical (St. Louis, MO). 

Cell culture 

Rats were killed by diethylether inhalation on days 18 to 21 of gesta­

tion (term = 22 days). The fetuses were aseptically removed from the 

mothers, the fetal lungs dissected out in cold Hanks' balanced salt solution 

(HBSS) without calcium or magnesium [HBSS (-)] and cleared of major 

airways and vessels. The lungs were washed twice in HBSS (-), minced and 
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suspended in HBSS (-). Fibroblasts and epithelial cells were isolated from 

the fetal lungs as previously described in detail (8). Briefly, the lung tissue 

was digested for 20 min in an enzymatic solution of 0.125% trypsin and 0.4 

mg/ml DNase. After filtering through 100-l'm mesh nylon bolting cloth, 

Eagle's minimal essential medium (MEM) with 10% fetal bovine serum 

(FBS) was added and the mixture centrifuged. The pellet was resuspended 

in MEM containing 0.1 % collagenase. After a 15-min incubation, the 

collagenase activity was neutralized by adding MEM + 10 % FBS. Two l-h 

differential adhesion periods in tissue culture flasks allowed removal of 

fibroblasts. The nonadherent cells were removed, transferred to new culture 

flasks, and incubated overnight for attachment of epithelial cells. Non­

adherent cells were removed from all cell cultures after overnight incubation. 

All experiments were performed 24-36 h after the start of isolation. Viabil­

ity and purity of the cultures were not affected by gestational age and were 

comparable to previously published data (8,10). Although the term "type II 

cells" is used in this paper, the cuboidal epithelium which lines the acinar 

tubules during the late pseudoglandular and early canalicular stages of lung 

development does not contain lamellar bodies, the phenotypic marker for 

type II cells. In previous studies, we have shown that these cells do express 

other phenotypic features of type II cells and possess antigenic determinants 

of mature type II cells (11). 

Cell fractionation 

After overnight incubation in 75-cm2 culture flasks, attached cells 

were collected by scraping in a homogenization buffer of 145 mM NaCI, 50 

mM Tris-HCI (pH 7.4),50 mM NaF and 2.5 mM EDTA (hereafter referred 

to as Tris-saline). For each experiment, cells from two culture flasks were 
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combined. After homogenization with 50 strokes of a Dounce homogenizer 

and sonication with a probe sonicator (3 x 20 sec at maximal output), the 

homogenate was centrifuged at 300 x g for 10 min. The resulting 

supernatant was centrifuged at 13,000 x g for 10 min to obtain a post­

mitochondrial supernatant. After an aliquot of this supernatant was stored, 

microsomal and cytosolic fractions were obtained by centrifugation at 

313,000 x g for 15 min. Microsomes were resuspended in a volume of Tris­

saline equal to that of the cytosol. All steps were carried out at 4 "C. 

Protein content of samples was determined according to Bradford (12). Cell 

homogenates and cell fractions were stored at -70"C until CT activities and 

protein levels were measured. 

CT activity assay 

CT activity was assayed in the forward direction by measuring the rate 

of incorporation of [methyl-14C]phosphocholine into CDPcholine. The 

incubation medium (0.2 ml) contained 20 mM Tris-succinate (pH 7.8), 6 

mM MgCI2, 4 mM CTP, 1.6 mM [methyIJ4C]phosphocholine (specific 

activity: 0.625 I'Cill'mol) and up to 150 I'g protein. All assays were 

performed in the presence of 0.5 mM PC-oleic acid (OA) (1: 1 molar ratio) 

vesicles. These vesicles were prepared by sonication as described previously 

(13). After 40-minutes of incubation at 37"C, the reaction was stopped by 

addition of 0.1 ml of 25 % (wt:vol) trichloroacetic acid and 0.5 ml of 

charcoal suspension (6% charcoal in 50 mM phosphocholine). The samples 

were placed on ice and [lIIethyIJ4C]CDPcholine was isolated as described 

previously (14). The recovery (69-74%) of CDPcholine was determined in 

each set of assays by adding a known amount of [methyl-14C]CDPcholine to 

a complete assay mixture. All assays were corrected for background and 
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recovery. 

Reverse-transcribed polymerase chaill reactioll (RT-PCR) clOlliflg of rat IUllg 

type II cell CT 

The protocol was modeled after the rapid amplification of cDNA ends 

(RACE) procedure (15). Briefly RNA was isolated by lysing the tissue in 4 

M guanidinium thiocyanate followed by centrifugation on a 5.7 M cesium 

chloride cushion to pellet RNA (16). After sequential extraction with 

phenol:chloroform (1: I, vol:vol) the RNA was ethanol precipitated and 

collected by centrifugation. This RNA was lyophilized and dissolved in 

sterile water. For 3-RACE, the RNA was reverse transcribed with avian 

myeloblastosis virus (AMV) reverse transcriptase and a dT 17-adaptor primer, 

Tl7-CATGATCAGCTGCGCACCGG. The cDNA was then amplified for 

two rounds of 35 cycles with amplitaq DNA polymerase (Perkin-Elmer/ 

Cetus, Norwalk, CT). The primers for the first round of amplification were 

CT-specific sense primer 1: 5 '-GATTTCGTCGCCCATGACGATAT-3 , 

complementary to nucleotide 591-614 of the conserved region of rat liver CT 

(17) and antisense primer: 5'-GGCCACGCGTCGACTAGTAC-3' comple­

mentary to the adaptor sequence of the dT 17-adaptor primer. The 3' -RACE 

products were then reamplified in a second round of amplification using the 

nested sense CT -specific primer: 5' -CCCGCA TTGTCCGTGACTA TGATG-

3' complementary to nucleotides 721-745 of the conserved region of rat liver 

CT (17) and the 3' -primer complementary to the adaptor sequence of the 

dT17-adaptor primer. For 5'-RACE, the RNA was reverse transcribed using 

a 3'-RACE sequence specific CT primer: 

5' -CTTTTCGTTGAT AAAGCTGACATT-3'. Terminal deoxynucleotidyl­

transferase was then used to attach oligo(dC) tails to the 3'ends of the first-
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strand cDNA. Tailed cDNA was amplified with 40 cycles of PCR using a 

nested antisense CT -specific primer: 

5'-CACATCGTCGCTCCCTGCCGA-3' complementary to nucleotides 625-

646 of the conserved region of rat liver CT (17) and a sense anchor primer 

5'-GGCCACGCGTCGACTAGTACGGGIIGGGIIGGGIIG-3' which was 

specific for the oligo(DC) tail. After PCR amplification, RACE-products 

were analyzed by 2% agarose gel electrophoresis. DNA of positive PCR 

reactions were then directly ligated into pCR vector (Invitrogen, San Diego, 

CAl with T4 DNA ligase. After transformation of competent Escherichia 

Coli, positive colonies were picked for sequence analysis using the dideoxy 

chain termination method (Pharmacia, Baie D'Urfe, Quebec) according to 

the manufacturer's instructions. 

Northern analysis 

Total RNA was isolated from day 21 fetal rat lung and liver essentially 

as described by Chirgwin et al. (16). This RNA was used to prepare 

poly(A) + RNA and poly(Ar RNA using one cycle of chromatography on 

oligo(dT)-cellulose. Total RNA and poly(A) + and poly(Ar selected RNA 

were dissolved in 25 mM EDT A/O.l % (wt:vol) sodium dodecyl sulfate 

(SDS), denatured for 2 min at 100°C, fractionated on 1 % (wt:vol) agarose 

gels containing 6% (vol:vol) formaldehyde and transferred to a nylon 

membrane, which was fixed by baking at 80°C for 2 h. CT cDNA was 

labeled with deoxycytidine 5'_[Cl_32pj triphosphate by a random primed 

labeling system. Prehybridization (overnight), and hybridization, was 

performed in hybridization solution of 50% (vol:vol) formamide, 750 mM 

NaCI, 75 mM sodium citrate, 5xDenhardt's solution, 10% (wt:vol) dextran 

sulfate, and 100 pg/ml denatured salmon sperm DNA for 24 h at 42°C. The 
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blot was washed twice with 2xSSC; 0.2% (wt:vol) SDS at 42°C for 10 min. 

The blot was exposed for 24-48 h to Kodak XAR -5 film using Dupont 

Cronex Intensifying screens. 

RT-PCR assay for CT message 

Total RNA was isolated essentially as described by Chirgwin et al. 

(16). This RNA was used to prepare cDNA using AMV reverse transcript­

ase. The cDNAs from the reverse transcription reaction were then amplified 

using PCR. The primers chosen for amplification of CT were primers I and 

4 (Fig. IA). The predicted product size with these primers was 225 bp. The 

primers chosen for amplification of fl-actin, based on the mouse fl-actin 

mRNA sequence reported by Alonso et al. (18), predict a 540-nucleotide 

product. These were: 5'-primer: 5'-GTGGGCCGCTCTAGGCACCAA-3', 

complementary to nucleotides 25-46; and 3' -primer: 

5'- CTCTTTGATGTCACGCAGGATTTC-3', corresponding to nucleotides 

540-564. The PCR products were separated by electrophoresis on a 2% 

(wt:vol) agarose gel and then visualized by ethidium bromide staining. If 

required, amplified DNA was transferred to a nylon membrane by Southern 

blotting. The blots were hybridized with radiolabeled CT probe and results 

obtained by autoradiography. 

/mmulloprecipitation and Western analysis of CT 

Cytosol and microsomes were prepared from fetal type II cells as 

described in Cell ji·actionation. To remove all cytosolic CT, microsomal 

fractions were incubated for 8 min with cold digitonin buffer containing 

phosphate-buffered saline (PBS), 250 mM sucrose, 0.5 mg/ml digitonin, and 

0.5 mM phenylmethylsulfonyl fluoride. Digitonin-released proteins and 
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membranes were separated by centrifugation at 100,000 x g for 60 min at 

4°C. Cytosolic and membrane samples (400 ",g of protein) were precleared 

by incubation with 3 ",I of noninunune rabbit IgG for 30 min at 4°C, 

followed by the addition of 50 ",I of 10% (vol:vol) Formalin-fixed Staphylo­

coccus aureus Cowan strain A (Zysorbin) in PBS. The incubation was 

continued for 30 min at 4°C before centrifugation for 5 min at 12,000 x g. 

Rabbit anti-CT (10 ",I) was added to the samples and incubated overnight on 

an end to end rotator at 4°C. Zysorbin (50 ",I) was then added to precipitate 

the immune complexes. After a 60-min incubation at 4°C, immune com­

plexes were washed three times with lysis buffer, boiled for 3 min in sample 

buffer [10% (vol:vol) glycerol, 2% (wt:vol) SOS, 5% (vol:vol) {1-mercapto­

ethanol, 0.0025% (wt:vol) bromophenol blue, 0.06 M Tris-HCI, pH 8.0) to 

dissociate immune complexes, and the immunoprecipitated proteins were 

separated on 10% (wt:vol) SOS-polyacrylamide gel (SOS-PAGE) as 

described by Laemmli 

(19). The separated proteins were electrophoretically transferred to 

nitrocellulose membrane (20). Nonspecific binding was blocked by incubat­

ing the nitrocellulose membrane with 3% (wt:vol) dry skim milk in PBS at 

4°C for 60 min, then rabbit anti-CT (1: 100) was added to detect the 

immunoprecipitated CT. After overnight incubation at 4°C, the 

nitrocellulose membrane was washed three times with PBS, followed by 

incubation with biotin-conjugated goat anti-rabbit IgG (1: 1 ,000) for 60 min 

at 4°C. The membrane was washed again three times with PBS, and then 

incubated with streptavidin-biotinylated horseradish peroxidase complex 

(1:700 dilution) for 60 min at 4°C. The membranes were then thoroughly 

washed with cold PBS (2 x 10 min), immersed in chemiluminescence 

detection reagents for 1 min and exposed to Amersham Hyperfilm-ECL for 
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10 s in an X-ray cassette. 

4.4 Results and discussion 

Cloning of CT 

We used RT-PCR to clone CT cDNA from fetal rat lung type II cell 

RNA in several fragments as shown in figure I. We first amplified a 225-bp 

fragment using two oligonucleotide primers (1 and 4) based on the rat liver 

CT cDNA sequence (17). The region between the primers covered part of 

the central region of the rat liver CT with 100 % sequence homology to 

yeast CT. The nucleotide sequence of the 225-bp fragment (Fig. 1) 

exhibited a 100 % homology with the corresponding region of the rat liver 

CT cDNA. We used this sequence information to design nested primers 2 

and 3 for RACE-PCR. CT sequence-specific primers 1 and 2 with 

nonspecific primer 5, which annealed to a sequence element incorporated 

during the reverse transcription, were then used to amplify the 3' half of the 

coding region and the 3' untranslated region of the mRNA out to the poly(A) 

tract (Fig. 1). This amplification yielded one major and three minor bands 

which were cloned and sequenced. Clones of the major band showed 100% 

sequence identity with rat liver cDNA. The other three clones displayed 

100% sequence homology for the conserved region of rat liver cDNA but 

showed no further similarity with 3' end of the coding region of rat liver 

CT. After cloning and sequencing of 3' RACE products, we used CT 

sequence-specific antisense primer 6 to start first strand cDNA synthesis for 

5' RACE. Following homopolymeric tailing of 3' ends of cDNA, tailed 

cDNA was then used to amplify the 5' end of the coding region and the 5' 
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Figure 1. Cloning and sequence of fetal rat type II cell CTP:phosphocholine 
cytidylyltl'ansfel'ase (CT). A: The cloning strategy used for isolation of fetal type 
II cell CT eDNA. Three fragments were polymerase chain reaction (PCR) 
amplified from fetal rat type II cell eDNA. Small numbered arrows denote 
primers referenced in text. B: Sequence of fetal type II cell CT 3 clones. 
Nucleotide sequence is shown with presumed reading frame. (GIl) amino acids in 
presumed reading frame which are different from liver CT (17). 
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untranslated region of message (Fig. I). CT sequence specific primer 3 and 

nonspecific primer 7 , which anneals to a sequence element incorporated 

during 3' homopolymeric tailing, were used for amplification. One major 

5'RACE product was obtained, cloned, and sequenced. The rat lung type II 

cell CT eDNA sequence is shown in figure lB. The coding region demon­

strated 99% sequence similarity with rat liver eDNA. The putative amino 

acid sequence was altered at four positions when compared to that of rat 

liver CT (17). All changes were observed at the 5' end of the coding 

region. The changes resulted in an additional potential site for 

phosphorylation by protein kinase C compared with rat liver CT (17). 

Evidence suggests that reversible phosphorylation might be one of the 

mechanisms by which CT activity is regulated (1,9). However, it is also 

possible that the nucleotide changes are due to misreading of DNA during 

the PCR reaction. 

By using the 5'RACE eDNA product (Fig. I) as a CT probe, we found 

that the probe hybridized to two different sizes of RNA on blots of poly(A)+ 

selected RNA isolated from day 21 fetal rat lung and liver (Fig. 2). In both 

tissues, there was a major band of "" 7.5 kb and a second, less abundant, 

RNA of "" 1.8 kb. The RNA sizes are consistent with published data for 

rat liver (17) and fetal rat lung (21). 

CT gene alld protein expression in maturing type II cells 

In previous experiments with fetal type II cells, we found that CT 

activity increased with advancing gestation (7). To investigate whether the 

increase in CT activity was accompanied by an increase in CT gene express­

ion, we measured the steady-state CT mRNA levels. Our Northern analysis 

suggested that CT mRNA is present in very small quantities. Therefore, we 
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Figure. 2. Norlhem bioI analysis of RNA from day 21 fetal ral lung and liver 
for cytidylyllransferase. Left: a pholograph of Ihe elhidium-bromide stained gel. 
Right: a Norlhern bioI of rnRNA hybridized wilh 32P-Iabeled CT eDNA afler 48h 
of auloradiography al -70'C. Lalles I. 3 and 5, felalliver; lalles 2,4 and 6, felal 
lung. Lanes 1 and 2: 15 flg lolal RNA; lalles 3 and 4: 8 flg poly(A)+ RNA; lanes 
5 and 6: 15 flg poly (A)- RNA. The sizes of Ihe hybridizing Iranscripls are 
indicaled in kilobases. 

measured CT mRNA by RT -PCR using the oligonucleotide primers 1 and 4 

(Fig. 1). RT-PCR of 1 p.g of total RNA of fetal type II cells yielded the 

predicted single 225-bp cON A fragment (Fig. 3). No bands were observed 

when PCR was performed without first transcribing mRN A with reverse 

transcriptase, suggesting that the amplified RT-PCR products are not due to 

DNA contamination of the RNA samples. To test RNA integrity and the 

efficiency of the reverse-transcriptase reaction of each sample, RT-PCR for 

Il-actin was carried out. Message of Il-actin in type II cells did not change 

with advancing gestation (Fig. 3). Southern analysis of the RT -PCR prod-
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Figure 3. Expression of cytidylyltl'ansferase (CT) and II-actin mRNAs in fetal 
type II cells. Tolal RNA was extracted from fetal type II cells in primalY culture. 
Reverse transcriptase (RT)-PCR analysis was carried out on I I'g total RNA as 
described in "Materials and Methods". Ethidium bromide-stained agarose gel 
showing amplified CT (225 bp) and B-actin (540 bp) products after either 20 or 25 
cycles of PCR is representative of 4 experiments. 

ucts, using a eZPJ-Iabeled CT eDNA corresponding to positions -65 to 708 

in figure IB as probe, revealed that the amplified 225-bp CT eDNA frag­

ment was detectable with 20 cycles of PCR in fetal type II cells (Fig. 4). 

The CT mRNA content increased with advancing gestation (Figs. 3 and 4). 

We observed a threefold increase in the relative amount of CT mRNA of 

fetal type II cells between day 18 and day 21 of gestation (Fig. 5). In 

contrast, CT mRNA content of fetal lung fibroblasts did not change with 

development (Fig. 5). This increase in message for CT in maturing type II 

cells correlates with the previously observed increase in CT activity (7). 

We then investigated whether the increase in CT gene expression was 

accompanied by an increase in enzyme mass. To measure the content of CT 
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Figure 4. Southern analysis of cytidylyltmnsferase (CT) RT-PCR products of 
fetal type II cell mRNA. Top: Elhidium bromide-slained agarose gel showing 
amplified CT product (225 bp) after eilher 10, 20 or 25 cycles of PCR on 1 I'g 
RNA of felal type II cells. Middle: Southern blot of amplified (10, 20 and 30 
cycles) CT PCR product hybridized with 32P-labeled CT cDNA after 2h autoradio­
graphy at room temperature. LOlVer: Southern blot of amplified (10, 20 and 30 
cycles) CT PCR product after 2h autoradiography at -700C. 

in the soluble and membrane fractions of fetal type II cells, we first immuno­

precipitated CT with CT antiserum and then determined CT in the immuno­

precipitates by enhanced chemiluminescence Western blot immunoanalysis. 

Figure 6 shows a representative Western blot immunostained with CT 

antiserum. The rabbit antibodies raised against the CT peptide (9) immuno­

precipitated and recognized a major 42-kDa protein in both cytosolic and 

microsomal samples of fetal type II cells, consistent with the previously 

reported molecular mass for the Mr 42,000 catalytic subunit from purified 

rat liver CT (9,14,22). This observation suggests that CT of fetal rat type II 
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Figure 5. Determination of message for cytidylyltransfel'ase (CT) in fetal type 
II cells and fibroblasts as a function of development. Total RNA was extracted 
from type II cells and fibroblasts isolated from fetal rat lung at 18 to 21 days' 
gestation. CT and B-actin gene expression was assessed by RT-PCR as described 
in "Materials and Methods. The gels were photographed and the negatives were 
used to quantify messages for CT and B-actin by laser densitometry. Ontogeny of 
CT mRNA is expressed as a ratio of the arbitrary units of CT over B-actin. Values 
are mean ± S.E. of 4 separate experiments. (0) fetal lung fibroblasts; (ClI) fetal 
lung type II cells. 

cells is immunologically similar to that of adult rat liver. As assessed by 

laser densitometry the immunoreactive content of microsomal CT increased 

approximately threefold between day 18 and 21 of fetal gestation, whereas 

the CT content in the cytosol remained constant (Fig. 7). These results are 

in agreement with our previous finding that microsomal CT activity in type 

II cells increased with advancing gestation (7). The observation that the 

cytosolic content of immunoreactive CT did not change with advancing 
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Figure 6. Inllnunoprecipitation and Western blot inllllunoanalysis of cytidylyl­
transferase (CT) in cytosol and micl'Osomes of fetal type II cells as a function 
of development. Cytosolic and microsomal fractions were prepared from type II 
cells in primary culture, isoiated from fetal rats at 18 to 21 days of gestation. 
Aliquots (400 I'g of protein) of both fractions were incubated with 10 1'1 of rabbit 
anti-cytidylyltransferase as described in "Materials and Methods". Immuno­
precipitated CT was loaded and separated on a 10% (wt:vol) polyacrylamide gel 
under reducing conditions. Protein was transferred to a nitrocellulose membrane 
and immunostained with cytidylyltransferase antibodies. Western blot is represen­
tative of 2 separate experiments. 

gestation suggests that the increase in microsomal CT mass is due to the 

observed increase in CT gene expression. However, we have to assume that 

the peptide antibody recognizes both cytosolic forms of CT, the inactive L­

form and the active H-form (23,24). The cytosolic H-form, which is a 

lipoprotein complex consisting of L-form and lipids, seems to be similar to 

the active enzyme associated with microsomal membranes (24). If the 
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Figure 7. Ontogeny of cytidylyltransferase (CT) pl'Otein in cytosol and 
microsomes of fetal type II cells as a function of development. Cylosolic and 
microsomal CT was detelmined by immunoprecipitation and Western immuno­
analysis as described in IlMaterials and Methods tl

• The enhanced 
chemiluminescence Western blot was scanned on a laser densitometer. (0) 
cytosol; (0) microsomes. Figure is representative of 2 separate experiments. 

antibody does not recognize the predominantly cytosolic L-fOl'm, it is 

possible that the increase in microsomal CT protein is in part due to a 

translocation of the cytosolic L-form to the microsomal membrane. To 

investigate this possibility, we determined the ontogeny of CT activity in the 

presence of optimal amounts of lipid activators (13). Although the specific 

activities of CT measured in the presence of lipids (Fig. 8) were significantly 

higher than CT measured in the absence of the lipids (7), the developmental 

profiles of both cytosolic and microsomal CT activities measured in the 

presence of lipids were similar to those measured in the absence of lipid 
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Figure 8. Specific activity of cylidylyltransferase (CT) in cytosol and micro­
somes of fetal type II cells as a function of development. Cylosolic (0) and 
microsomal ( ... ) fractions were prepared from type II cells in primary culture, 
isolaled from felal rals al 18 10 21 days of geslalion. CT activity was assayed in 
different fraclions in presence of 0.5 M phosphalidylcholine/oleic acid vesicles. 
Data represent the means ± S.E. of 4 independent experiments carried out in 
duplicale. 

activators (7). Independent of the assay condition, microsomal CT activity 

increased threefold with advancing gestation whereas cytosolic CT remained 

constant (7). This suggests that the increase in microsomal CT activity in 

maturing type II cells is not due to an activation of preexisting inactive 

enzyme by translocation from cytosol to microsomes. We have reported 
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earlier (7) that the protein-to-DNA ratio did not change with advancing 

gestation. The percentage of total protein in cytosol and microsomes 

remained also constant during fetal development (in cytosol from 56.1 ± 

3.8% on day 18 to 63.3 ± 3.7% on day 21; in microsomes from 12.5 ± 

1.8% on day 18 to 14.5 ± 0.5% on day 21). Based upon these findings, we 

calculated that total CT protein increased approximately twofold with 

advancing gestation and that the percentage of total CT protein in the 

microsomal fraction increased from approximately 20% on day 18 to 45 % on 

day 21. 

In conclusion, our results indicate that the increased synthesis of 

surfactant PC by maturing type II cells is due to an increase in CT 

gene and protein expression. The observation by Fraslon and Batenburg (21) 

that CT mRNA increases in hormone-free explant cultures of 18-day fetal 

rat lung supports this idea. It is of interest that the developmental profiles of 

surfactant proteins A, Band C mRNAs are similar to that of CT (25-28). 

When the need to produce large amounts of surfactant becomes important, 

expression of both CT and surfactant proteins increases in maturing type II 

cells. This suggests that the expression of both surfactant proteins and lipids 

in fetal type II cells is well coordinated. Although it is tempting to speculate 

that CT expression in type II cells is regulated in a similar fashion as 

surfactant proteins, the developmental regulation of CT expression remains 

to be elucidated. The differential gene expression of CT in fetal type II cells 

and fibroblasts suggests that CT gene expression in fetal type II cells is 

regulated at the transcriptional level. 
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5.1 Abstract 

CTP:phosphocholine cytidylyItransferase (CT) catalyses a rate regulatory 

step in the de /lOVO synthesis of surfactant phosphatidy1choline (PC). We 

have previously shown that CT activity increases during late gestation in 

alveolar type II cells, and that this increase is most pronounced in micro­

somes. As it is known that CT is activated by lipids, we investigated the 

lipid activation of CT in fetal type II cells during late gestation. The degree 

of activation of cytosolic CT by PC/oleic acid (OA) (1: I molar ratio) 

vesicles was gestation dependent (a 3-fold stimulation on day 18 and a \.5-

fold stimulation on day 21). In contrast, microsomal CT activation by 

PC/oleic acid (OA) vesicles (1.5-fold) remained constant with advancing 

gestation. Lipids extracted from microsomes of fetal type II cells of different 

gestational ages (day 18 to 21) did not differ in their ability to activate either 

cytosolic CT of day 18 or day 21 fetal type II cells, pllt'ified CT from adult 

lung or delipidated purified CT. In contrast, lipids extracted from cytosol of 

fetal type II cells of different gestational ages (day 18 and 21) differed in 

their ability to activate either delipidated cytosolic CT of fetal type II cells, 

or delipidated purified CT from adult lung. Day 21 cytosolic lipids activated 

CT more than day 18 cytosolic lipids. Both cytosolic and purified CT, when 

delipidated by acetone/butanol extraction, showed reduced activities. Several 

lipids were tested for their ability to activate cytosolic CT. Acidic phospho­

lipids and the mixture of PC/OA (1: 1) were the strongest stimulators of 

cytosolic CT activity. We conclude that cytosolic but not microsomal lipids 

are involved in the developmental activation of cytosolic CT in fetal type II 

cells at late gestation. 
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5.2 Introduction 

The production of pulmonary surfactant, which is produced by the alveolar 

type II cells, is initiated during the latter part of gestation. The subsequent 

accumulation of surfactant in the airways coincides with the ability of the 

newborn to establish regular air breathing. Surfactant deficiency due to lung 

immaturity is the main factor responsible for the occurrence of respiratory 

distress syndrome in premature neonates. Phosphatidylcholine (PC) is a 

major component of surfactant (1,2). CTP:phosphocholine cytidylyltrans­

ferase (CT) (E.C. 2.7.7.15) has been demonstrated to catalyse a rate-limiting 

step in the de novo synthesis of PC in the developing lung (3,4). We have 

previously shown that CT activity increases in fetal type II cells at late 

gestation (5). The increase in enzyme activity coincides with an increase in 

PC synthesis (5). The developmental regulation of CT in fetal type II cells 

remains to be elucidated. Recently, we have reported that the increased PC 

synthesis by fetal type II cells at late gestation is due, in part, to an increase 

in CT protein (6). However, there is overwhelming evidence that CT may 

also be regulated by enzyme-membrane interactions (reviews 7,8). The 

enzyme exists in an inactive soluble form and an active membrane-bound 

form (9,10). Recent studies have identified the lipid-binding domain of CT 

as an a-helical domain of the protein (11,12). Our previous studies with fetal 

type II cells demonstrated that CT protein content and activity increased in 

the microsomal fraction with advancing gestation with no developmental 

change in the cytosolic fraction (5,6). In whole fetal lung, fatty acids (13-15) 

and phospholipids (16,17) may play an important physiologic role in the 

activation of CT during development, possibly through CT -membrane 
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interactions (13). However, results from studies with whole lung cannot be 

directly extrapolated to developmental changes in type II cells, the producers 

of surfactant, as pointed out in several reviews (2,18,19). In the present 

study, therefore, we investigated CT activation by microsomal and cytosolic 

lipids of maturing type II pneumocytes. An abstract of these studies has been 

published previously (20). 

5.3 Materials and methods 

Materials 

Female (200-2S0g) and male (2S0-300g) Wistar rats were purchased 

from Charles River (St. Constant, Quebec) and bred in our animal facilities. 

Cell culture media, antibiotics and trypsin were obtained from Gibco Canada 

(Burlington, Ontario). Fetal calf serum was from Flow Laboratories 

(McLean, VA), collagenase and DNAse from Worthington Biochemical 

(Freehold, NJ). Cell culture flasks were purchased from Falcon (Becton 

Dickinson, Lincoln Park, NJ). [Methyl)4C]phosphocholine and [Methy/-

14C]CDPcholine were from New England Nuclear Research (Dupont 

Canada, Mississauga, Ontario). All remaining unlabeled biochemicals were 

obtained from Sigma (St. Louis, MO). 

Cell cultures 

Timed pregnant rats were killed by diethylether excess on days 18 to 

21 of gestation (term = day 22) and the fetuses were aseptically removed 

from the dams. The epithelial cells were isolated from the fetal lungs as 

described in detail elsewhere (21-23). Although the term 'type II cells' is 

used in this paper, the cuboidal epithelium which lines the acinar tubules 
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during the late pseudo-glandular and early canalicular stages of lung develop­

ment does not contain lamellar bodies, the phenotypic marker for type II 

cells. In previous studies, we have shown that these cells do express other 

phenotypic features of type II cells and possess antigenic determinants of 

mature type II cells (22,24). 

Cell fractionation 

After overnight incubation in tissue culture flasks, attached cells were 

collected by scraping in homogenization buffer of 145 mM NaCl, 50 mM 

Tris-HCl (pH 7.4),50 mM NaF and 2.5 mM EDTA (hereafter referred to as 

Tris-saline). Postmitochondrial supernatant, microsomal and cytosolic 

fractions were obtained as previously described (5) and stored at -70°C until 

processed further. 

Enzyme assay 

CT activity was assayed in the forward direction by measuring the rate 

of incorporation of [methyl-14C]phosphocholine into CDPcholine as previous­

ly described (5,21). 

Purification of CT 

Rats were killed by diethylether excess and immediately afterwards a 

tracheostomy was performed and lungs were inflated with a pressure of 15 

cm H20. The thorax was opened and the lungs were thoroughly perfused 

with normal saline via injection in the right ventricle and opening the left 

atrium. Lungs were immediately frozen in liquid nitrogen and kept at -70°C 

till the purification was started. CT was purified from 100 g lung as 

described by Weinhold et al. for liver (25). A 2278-fold purification was 
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obtained and a yield of 9.34% of total cytosolic activity (21). 

Delipidation of purifted CT alld cytosol 

Purified CT and cytosolic CT were delipidated by acetone/butanol 

extraction according to the method of Fiscus and Schneider (26) as modified 

by Chu and Rooney (17). The final pellet was resuspended in Tris-saline (see 

above) by sonication for 2 x 20 s at O°C and foam was removed under 

vacuum. 

Lipid extraction and preparation of (Phospho)lipid vesicles 

Total lipids were extracted from cell fractions with chloro­

form/methanol by the method of Bligh and Dyer (27). Phospholipid phos­

phorus was measured according to Bartlett (28). All microsomal and cyto­

solic lipid concentrations are therefore given as I'M of lipid phosphorus. 

Lipids to be tested were dried under a stream of N2 at 40°C. After traces of 

solvent were removed under high vacuum, lipids were resuspended in Tris­

saline (see above) by sonication (29) for 3x30 s, or longer when the turbid 

suspension had not clarified. 

Protein measurements 

Protein concentrations were determined by the method of Bradford 

(30), using bovine serum albumin as standard. 

Statistical analysis 

Statistical differences between various groups were analyzed by paired 

or unpaired t-test (for two groups) or by analysis of variance with the 

Neumann-Keuls test (for more than two groups). Statistical significance was 
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accepted at the p < 0.05 level (two-tailed). 

5.4 Results 

Stimulation of CT activity of fetal type II cells by phospholipid vesicles 

We first investigated whether activation of CT activity in cytosol and 

microsomes by phospholipids varied as a function of development. As 

PC lOA (1:1 molar ratio) vesicles at a (combined) concentration of 0.5 mM 

(PC and OA each 0.25 mM) have been shown to stimulate CT activity 

maximally (29), we assayed CT activity in both cell fractions in the absence 

and presence of 0.5 mM PC lOA (1: 1) vesicles. The CT activities in cytosol 

and microsomes measnred in the absence of PCIOA were in the same range 

as published previously (5). Independent of gestational age, CT activity in 

the microsomal fraction of fetal type II cells was stimulated approximately 

1.5-fold by PCIOA vesicles (Fig. 1). In contrast, activation of cytosolic CT 

by PCIOA vesicles was gestation dependent. It was activated 3-fold on day 

18 but 1.5-fold on day 21 (Fig. 1). The greater lipid stimulation of cytosolic 

CT activity in day 18 compared to that of day 21 fetal type II cells suggests 

that fetal type II cell cytosol contains a higher proportion of inactive CT at 

18 days than at 21 days of gestation. 

Activation of CT by microsomal lipids of maturing type II cells 

We then determined whether microsomal lipids of maturing type II 

cells differed in their ability to activate CT. Microsomal lipids of day 18 and 

day 21 fetal type II cells were extracted and their effect on cytosolic CT 

activity of day 18 and day 21 fetal type II cells was assessed. In addition, 
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Figure 1. Gestation-dependent activation of cytidylyltransferase in subcellular 
fractions by phosphatidylcholine/oleic acid (PC/OAl vesicles. Cytosolic (0) and 
microsomal (0) fractions were prepared from type II cells in primary culture, 
isolated from fetal rats at 18 to 21 days of gestation. CT activity was assayed in 
both fractions in the absence (control) and presence of 0.5 mM PCIOA vesicles 
(Ill M ratio, 0.25 111M each), which are known to activate the enzyme. Data are 
presented as percentage of control (activity in the presence of PCIOA x 100 I 
activity in the absence of PCIOA). Each data point represents mean ± S.E. of at 
least 4 separate experiments, performed in duplicate. 

this effect was compared with those of microsomal lipids from whole adult 

lung and PC/OA (1: 1) vesicles. Figure 2 shows that day 18 and day 21 

microsomal lipids stimulated the cytosolic CT activity in a concentration­

dependent manner and to a similar degree as PC/OA vesicles. Stimulation of 

cytosolic CT activity by microsomal lipids of adult lung was less pronounced 

than the stimulation by microsomal lipids of fetal type II cells. Day 18 and 

day 21 cytosolic CT activities were different when assayed without lipids 
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(0.29 versus 0.56 nmollmin/mg protein) but CT activity in both cytosols was 

stimulated maximally to the same value (l.82 and l.86 nmollmin/mg 

protein) by 100 I'M lipids (assayed by phospholipid phosphorus) of either 

day 18 or day 21 fetal type II cell microsomes. The amount of microsomal 

lipids of type II cells increased slightly from day 18 (0.016 ftg phos­

phorus/ftg protein) to day 21 (0.020 ftg phosphorus/ftg protein). Thus, 

although the amount of microsomal lipids increases during development, 

there is no qualitative developmental difference in the ability of these 

microsomal lipids to activate CT in fetal type II cells. This was confirmed by 

testing the ability of 50 f,M microsomal lipids of fetal type II cells of 18-21 

days' gestation to stimulate purified lung CT (Table 1). Microsomal lipids 

from day 18 to day 21 fetal type II cells stimulated CT activity. However, 

no significant gestation-dependent differences in CT activation were 

observed. Since the presence of residual lipids may mask the effect of 

microsomal lipids on purified CT, we delipidated purified CT by 

acetone/butanol extraction. The extraction drastically reduced the CT activity 

(1310 mnol/min/mg protein to 46 IIDlol/min/mg protein measured with 25 1'1 

of the purified enzyme solution). The activity of the delipidated CT was 

partially restored by the addition of 50 I'M PCIOA (1: 1, 25 I'M each) 

vesicles (817 nmollmin/mg protein), but not to the same level as the unex­

tracted purified CT activated by 50 I'M PCIOA (1: 1) vesicles (3184 mnoll 

min/mg protein). Microsomal lipids (50 I'M lipid phosphorus) of fetal type II 

cells also increased the activity of the delipidated enzyme but less than the 

PC lOA vesicles (Table 1). Again, there was no difference in the ability of 

day 18 and day 21 microsomal lipids of fetal type II cells to stimulate 

delipidated purified CT (Table 1). 
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Table 1. Activation of purified lung cytidylyltransferase by microsomal and 
cytosolic lipids. 

Addition 

no lipids added 

pc/oA (1/1 M) 

Microsomal lipids 
day 18 
day 19 

- day 20 
- day 21 

cytosolic lipids 
day 18 
day 19 

- day 20 
- day 21 

cytidylyltransferase activity 
nmol/min/mg protein (fold increase) 

purified CT delipidated 
purified CT 

1310±127 (1) 46±14 (1) 

3184±275 (2.43) 817±308 (17.78) 

235B±131 (1.80) 268±70 (5.82) 
2397±197 (1. 83) 
2083±118 (1. 59) 
1900±223 (1.45) 234±38 (5.09) 

3013±26 (2.30) 386±75 (8.39) * 
3263±157 (2.49) 
3236±170 (2.47) 

(14.82)* 327S±13 (2.50) 682±172 

CT was purified from whole adult lung and the activation of CT was studied in the presence of 
50 I'M mixed PC/OA (III M ratio, 25 I'M each) vesicles or lipids (50 I'M lipid phosphorus) 
extracted from microsomes or cytosol from type II cells isolated at different days of gestation. In 
separate experiments, CT was first delipidated by acetone/butanol extraction before studying lipid 
activation (protein recovery during· extraction was 60%). The CT activities are expressed 
nmollminlmg protein (and fold change compared to controls without the addition of lipids). Mean 
± S.D. are shown for 4 separate experiments. 
'significantly different (p<0.02) by t-test. 

Activation of CT by cytosolic lipids of maturing type II cells 

As previous studies with whole fetal lung have suggested that cytosolic 

CT can be activated by cytosolic lipids (16,17), we also examined the effect 

of cytosolic lipid extracts of fetal type II cells on CT activation. In prelimi­

nary experiments it was found that the activation of CT in delipidated cytosol 

by cytosolic lipids was concentration dependent. Saturation (maximal 

stimulation) of CT activity was obtained with 5 times the amount of lipids 

present in the original cytosol (approximately 95 flM of lipid phosphorus) 
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Figure 2. Activation of cytosolic cytidylyltransferase by microsomal lipids. 
CT activity was assayed in day 18 (left) and day 21 (right) cytosol in the 
presence of different concentrations of PCIOA (III M ratio) vesicles (A) 
(expressed as sum of [PC] + [OA]) or in the presence of different concentrations 
of lipids (expressed as I'M of lipid phosphorus) extracted from microsomes of 
day 18 fetal type II cells (0), day 21 fetal type II cells (e) or adult whole lung 
(A). Assays were performed in duplicate. The experiment was repeated with 
almost identical results. 

(not shown). Using the same saturating conditions, we then compared the 

ability of cytosolic lipids from day 18 and day 21 fetal type II cells to 

stimulate delipidated cytosolic CT of day 18 and day 21 fetal type II cells 

(Fig. 3). Delipidation of cytosol of day 18 and day 21 fetal type II cells 

resnlted in a drastic reduction of CT activity. The CT activities of both day 

18 and day 21 delipidated cytosol were restored on re-addition of cytosolic 

lipids (approx. 0.5 nmolfminlmg protein). However, this activity is still 

lower than that of unextracted cytosolic CT activated by lipids (approx. 1.85 
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Figure 3. Activation of deli pi dated eytosolie eytidylyltransFerase by eytosolie 
lipids From day 18 and 21 Fetal type II cells. 
CT activity lVas assayed in normal cytosol (open bars) or in cytosol delipidated 
by acetone/butanol (cross-hatched bars) of day 18 (graph on the left) and day 21 
(graph on the right) fetal type II cells. CT activity in delipidated cytosols lVas 
assayed in the absence and presence of cytosolic lipids from day 18 and 21 fetal 
type II cells. The amollnt of lipids added to the delipidated cytosol lVas 5 times 
the amount of lipid present in the original cytosol (the average final concentra­
tion in the assay was 96 I'M for day 18 cytosolic lipids and 92.4 I,M for day 21 
cytosolic lipids). Data are presented as mean ± S.E. of 4 separate experiments, 
all performed in duplicate. Comparison between the activities in the presence of 
either d18 or d21 cytosolic lipids by paired Hest (tlVo-sided): * p=O.075 (n=4, 
all in duplicate) and # p=O.064 (n=4, all in duplicate); all 8 comparisons (day 
18 and day 21 CT data) taken together p=O.OI9 (n=8, all in duplicate). 

nmollminlmg protein). It appeared that cytosolic lipids of day 21 had a 

greater stimulatory effect on CT activity than day 18 cytosolic lipids [signifi­

cantly different when all 8 comparisons (day 18 and 21 enzyme data) were 
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taken together (n=8), p=0.019 by paired t-test]. As these measurements 

were performed under saturating conditions of lipids, these data suggest that 

there is a difference in cytosolic lipid composition between day 18 and day 

21 cytosol of fetal type II cells. In order to confirm these cytosolic findings, 

we tested the ability of cytosolic lipids (50 I'M of lipid phosphorus) to 

activate purified CT delipidated by acetone/butanol extraction (Table 1). Day 

21 cytosolic lipids activated delipidated CT to a significantly greater extent 

than day 18 cytosolic lipids. When the same experiment was carried out with 

non-delipidated purified CT, no significant gestation-dependant differences 

were observed (Table 1), likely because the effect is masked by the presence 

of residual lipids in the purified CT preparation. 

Comparison of activation of cytosolic CT by variolls lipids 

Cytosolic lipids, microsomal lipids or combinations of both (all from 

day 20 fetal type II cells), stimulated CT activity of delipidated day 20 

cytosol (0.04 nmol/min/mg protein) to the same level as 0.5 mM PC/OA 

(1: 1, each 0.25 mM) vesicles (1.27 nmol/min/mg protein), when saturating 

conditions of lipids were used. However, CT in delipidated cytosol could not 

be activated to the level found in cytosol before acetone/butanol extraction 

(2.42 nmol/min/mg protein in presence of 0.5 mM PC/OA vesicles). To 

further investigate which lipid(s) may be responsible for the activation of 

cytosolic CT, we investigated the effect of two phospholipids, PC and 

phosphatidylglycerol, and OA on cytosolic CT activity. Figure 4 shows that 

the stimulatory effect of PC/OA (1:1) vesicles on cytosolic CT activity was 

dependent on concentration up to 50 I'M (25 I'M of each PC and OA) when 

maximum stimulation was reached. Stimulation of CT with PC/OA (1:1) 

vesicles was noted up to at least 1 mM. A similar concentration vs. CT 
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activity curve was obtained with phosphatidylglycerol vesicles. OA alone 

stimulated CT activity at low « 100 I'M) but not at high concentrations 

(>200 I'M). PC vesicles alone inhibited cytosolic CT activity. Based upon 

these results a variety of other lipids were tested at a concentration of 50 I'M 

for their ability to activate cytosolic CT from day 20 fetal type II cells (not 

shown). Consistent with previolls studies with CT. obtained from other 

sources (29,31-33), vesicles of acidic phospholipids, phosphatidylglycerol 

250,---------------------------------, 

...J 
o 
Q:! 

200 

I- 150 z 
o 
U 
I..L 
o 

100 

50 \ -----, ----ED ED-e' •. ED_e-e 
OL-____ ~ __ -J ____ ~ ____ ~ ____ _L~ 

o 200 400 600 800 1000 

LIPID CONCENTRATION (fLM) 

Figure 4. Effect of different lipids on cytosolic cytidylyltransferase activity. 
CT activity was assayed in cytosol prepared from day 20 fetal type II cells in 
the absence (control) or presence of different concentrations of vesicles consist­
ing of phosphatidylcholine (e), oleic acid (.), phosphatidylgtycerol (A) or 
mixed phosphatidylcholine/oleic acid vesicles (1/1 M ratio) (0) (concentration 
expressed as sum of [PC] + [OA]). Values are expressed as percentage of control 
(0.35 nmot/min/mg protein). Assays were performed in duplicate. The experi­
ment was repeated with almost identical results. 
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(6.44±0.08 fold stimulation), phosphatidylinositol (5.01 ±0.15 fold) and 

phosphat idyl serine (4.04 ±0.02 fold) were the strongest stimulators of 

cytosolic CT activity in fetal type II cells. Phosphatidic acid (2.29±0.01 fold 

stimulation), phosphatidylethanolamine (2.92 ±0.24) and 1,2-dioctanoyl­

glycerol vesicles (3.04±0.02) stimulated CT activity to some extent. Inde­

pendent of fatty acid chain, PC vesicles did not stimulate CT activity. 

Addition of 1,3-diolein and 1-01eyl-2-acetylglycerol vesicles did also not 

activate CT. Oleic acid (5.13±0.34 fold) but not palmitic acid vesicles 

(1.38±0.05 fold) stimulated CT activity to the same maximal value as the 

acidic phospholipids. The effect of most stimulatory lipids was less when 

experiments were repeated at a concentration of 500 I'M (not shown). 

5.5 Discussion 

Several mechanisms by which the activity of CT is regulated, and which are 

probably interrelated, have been studied in the fetal lung including sub­

cellular translocation of the enzyme from cytosol to microsomes (13), 

activation by fatty acids (13,14) and phospholipids (16,17 ,31,34), and 

regulation by phosphorylation/dephosphorylation (35). While activation of 

cytosolic CT by lipids has been shown in a number of these studies, the role 

of this mechanism in activating CT in maturing type II cells has not been 

determined. In the present study, we found that the developmental increase 

in CT activity in fetal rat type II cells during late gestation (5) was in part 

mediated by an increased capacity of cytosolic lipids to activate CT with 

advancing gestation. Microsomal lipids did also stimulate CT activity, but no 

developmental difference was demonstrated. In previous studies with whole 
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lung it has been shown that activation of cytosolic CT by either estrogen (17) 

or betamethasone (36) is lipid dependent. Mallampalli et al. (36) demon­

strated that the administration of betamethasone to pregnant rats increased 

CT activity in fetal rat lungs by increasing the proportion of cytosolic CT in 

the H-fonu. These hormonal findings cannot be extrapolated directly to CT 

activation during normal lung development. However, Chu et al. (16) have 

found that lipids also regulate cytosolic CT activity during whole rabbit lung 

development. Our present findings with isolated maturing type II cells of 

fetal rat lungs are in agreement with a developmental regulation of CT by 

cytosolic lipids. In addition, we showed the developmental activation of 

purified rat lung CT by cytosolic lipids of fetal type II cells. It was some­

what surprising that no developmental difference was found in the ability of 

microsomal lipids to activate CT, because we have previously observed that 

the specific and total activity of CT increased more in the microsomal 

fraction with advancing gestation than in the cytosolic fraction (5). This may 

be explained by two mechanisms, which may be complementary. It is 

possible that a developmental change in the cytosolic lipids promotes the 

translocation of CT from cytosol to microsomes, which are also more 

abundant at a later gestational age (37) and contain an increased amount of 

phospholipid fatty acids (38). A likely lipid candidate is free fatty acid. Fatty 

acid synthesis increases at late gestation (39,40) and translocation of CT to 

microsomes by free fatty acids has been demonstrated in whole lung (13). 

Another possibility is that newly synthesized CT remains associated with the 

microsomal membranes, thereby increasing microsomal CT activity with 

advancing gestation (6), while cytosolic CT activity remains a less active 

pool, which is regulated by cytosolic lipids. Our present data are compatible 

with developmental activation of pre-existing CT enzyme as opposed to 
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increased enzyme synthesis during late gestation. We have previously 

reported, however, that CT mRNA and protein levels increased in fetal type 

II cells with advancing gestation (6). Increased CT activity in fetal type II 

cells stimulated with conditioned medium from cortisol-treated fetal lung 

fibroblasts (41) also appears in part to be regulated at a pre-translational 

level (42). Therefore, both mechanisms of increased synthesis and activation 

may be important, and may complement each other during type II cell 

development. 

In the present study, activities of both CT in fetal type II cell cytosol 

and purified lung CT were significantly reduced when lipids were removed. 

CT activity was partially restored by re-addition of lipids, confirming the 

lipid dependency of CT activity. However, re-addition of lipids to the 

delipidated cytosolic or purified CT was unable to activate CT to the same 

level as unextracted CT activated by lipids. The reason for this finding is not 

known, but it is possible that the extraction of lipids had a damaging effect 

on CT or that non-lipid factors necessary for optimal CT activity are lost 

during the extraction. With regard to the question of which lipids are able to 

activate CT in fetal type II cell cytosol, we demonstrated that vesicles of 

anionic phospholipids, oleic acid alone or mixed egg PCIOA (1: 1 molar 

ratio) vesicles stimulated CT activity. This is consistent with studies using 

whole fetal lung cytosol (29,31) and purified rat liver CT (32,33). OA was 

enough to provide the required negative charge for activation of cytosolic 

CT. It is likely that OA incorporated in lipids present in the cytosol, thereby 

forming anionic membranes which bound and stimulated CT activity (29,32). 

We did not investigate the lipid composition of the type II cell cytosol and 

therefore are, at this moment, unable to answer the question which lipid is 

physiologically important during type II cell development. Chu et al. 
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determined the lipid composition of whole fetal lung cytosol during develop­

ment (16) and after estrogen stimulation (17) but were unable to identify any 

individual lipid component that could explain the activation of CT. 

Mallampalli's studies (15,36) suggest that phosphatidylglycerol and unsatu­

rated fatty acids play an important role in cytosolic CT activation by the 

conversion of the L-form to the H-form either in vitro (15) or after beta­

methasone stimulation in vivo (36). The physiologic importance of these 

findings during normal development however remain to be established. In the 

present study we found that cytosolic CT activity of fetal type II cells was 

inhibited by PC vesicles. This may be due to a feedback inhibition of the end 

product of the pathway, PC, on the rate-limiting enzyme, CT, as was 

suggested by Jamil et al. (43,44) using rat hepatocytes. 

In conclusion, cytosolic lipids play an important role in the develop­

mental activation of CT in fetal rat type II cells during late gestation, but the 

precise mechanism of activation remains to be elucidated. 

157 



Regulation of CT by cytosolic lipids 

5.6 References 

1. Goerke J. Lung surfactant. Biochim Biophys Acta 1974;344:241-61. 

2. Post M, van Golde LMG. Metabolic and developmental aspects of pulmonary 

surfactant systems. Biochim Biophys Acta 1988;947:249-86. 

3. Tokmakjian S. PossnJayer F. Pool sizes of the precursors for phosphatidylcholine 

synthesis in developing rat lung. Biochim Biophys Acta 1981 ;666: 176-80. 

4. Post M, Batenburg JJ, van Golde LMG, Smith BT. The rate-limiting reaction in 

phosphatidylcholine synthesis by alveolar type II cells isolated from fetal lung. 

Biochim Biophys Acta 1984;795:558-63. 

5. Zimmermann U, Hogan M, Carlson KS, Smith BT, Post M. Regulation of 

phosphatidylcholine synthesis in fetal type II cells by CT. Am J Physiol 1993;264: 

L575-80. 

6. Hogan M, Zimmernlalill U, Wang J, Kuliszewski M, Liu J, Post M. Increased 

expression of CT in maturing type II cells. Am J Physiol 1994;267:L25-32. 

7. Vance DE, Pelech SL. Enzyme translocation in the regulation of phosphat idyl­

choline biosynthesis. Trends Biochem Sci 1984;9:17-20. 

8. Tranchere H, Record M, Terce F, Chap H. Phosphatidylcholine cycle and 

regulation of phosphatidylcholine biosynthesis by enzyme translocation. Biochim 

Biophys Acta 1994;1212:137-51. 

9. Feldman DA, Rounsifer ME, Charles L, Weinhold PA. CT in rat lung: relation­

ship between cytosolic and membrane forms. Biochim Biophys Acta 1990;1045: 

49-57. 

10. Weinhold PA, Rounsifer ME, Charles L, Feldman DA. Characterization of 

cytosolic fonns of CTP: choline-phosphate cytidylyltransferase in lung, isolated 

alveolar type II cells, A549 cell and Hep G2 cells. Biochim Biophys Acta 1989; 

1006:299-310. 

11. Wieder T, Geilen CC, Wieprecht M, Becker A, Orfanos CEo Identification of a 

putative membrane-interacting domain ofCT from rat liver. FEBS Lett 1994;345:207-10. 

158 



Chapter 5 

12. Johnson IE, Cornell RH. Membrane-binding amphipathic alpha-helical peptide 

derived from CT. Biochemistry 1994;33:4327-35. 

13. Weinhold PA, Rounsifer ME, Williams SE, Bmbaker PG, Feldman DA. CTP: 

phosphorylcholine cytidylyltransferase in rat lung. The effect of free fatty acids on 

the translocation of activity between microsomes and cytosol. J BioI Chem 

1984;259: 10315-21. 

14. Xu ZX, Smart DA, Rooney SA. Glucocorticoid induction of fatty-acid synthase 

mediates the stimulatory effect of the hormone on choline-phosphate cytidylyltrans­

ferase activity in fetal rat lung. Biochim Biophys Acta 1990; 1044:70-6. 

15. Mallampalli RK, Salome RG, Hunninghake GW. Lung CTP:choline-phosphate 

cytidylyltransferase: activation of cytosolic species by unsaturated fatty acid. Am J 

Physiol 1993;265:L158-63. 

16. Chu AJ, Rooney SA. Developmental differences in activation of cholinephosphate 

cytidylyltransferase by lipids in rabbit lung cytosol. Biochim Biophys Acta 

1985;835: 132-40. 

17. Chu AJ, Rooney SA. Stimulation of cholinephosphate cytidylyltransferase activity 

by estrogen in fetal rabbit lung is mediated by phospholipids. Biochim Biophys 

Acta 1985;834:346-56. 

18. Pelech SL, Vance DE. Regulation of phosphatidylcholine biosynthesis. Biochim 

Biophys Acta 1984;779:217-51. 

19. Rooney SA. The surfactant system and lung phospholipid biochemistry. Am Rev 

Respir Dis 1985; 131 :439-60. 

20. Zimmermann L, Post M. Regulation of CT by lipids in rat type II pneumocytes 

during development. Am Rev Respir Dis 1992; 145:A872. 

21. Zimmermann U, Lee WS, Smith BT, Post M. Cyclic AMP-dependent protein 

kinase does not regulate CT activity in maturing type II cells. Biochim Biophys 

Acta 1994;1211:44-50. 

22. Caniggia I, Tseu I, Han RNN, Smith BT, Tanswell K, Post M. Spatial and 

temporal differences in fibroblast behavior in fetal rat lung. Am J Physiol 1991; 

261:L424-33. 

159 



Regulation of CT by cytosolic lipids 

23. Jassal D, Han RNN, Caniggia I, Post M, Tanswell AK. Growth of distal fetal rat 

lung epithelial cells in a defined senull-free medium. In Vitro Cell Dev BioI 

1991 ;27 A:625-32. 

24. Post M, Smith BT. Histochemical and immunocytochemical identification of 

alveolar type" epithelial cells isolated from fetal rat lung. Am Rev Respir Dis 

1988; 137:525-30. 

25. Weinhold PA, Rounsifer ME, Feldman DA. The purification and characterization 

of CTP:phosphorylcholine cytidylyUransferase from rat liver. J BioI Chem 

1986;261 :5104-10. 

26. Fiscus WG, Schneider WC. The role of phospholipids in stimulating phosphoryl­

choline cytidyUransferase activity. J Bioi Chem 1966;241:3324-30. 

27. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can 

J Biochem Physiol 1959;37:911-7. 

28. Bartlett GR. Phosphoms assay in column chromatography. J BioI Chem 1959;234: 

466-8. 

29. Feldman DA, Rounsifer ME, Weinhold PA. The stimulation and binding of CTP: 

phosphoryicholine cytidylyUransferase by phosphatidylcholine-oleic acid vesicles. 

Biochim Biophys Acta 1985;833:429-37. 

30. Bradford MM. A rapid and sensitive method for the quantitation of microgram 

quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 

1976;72:248-54. 

31. Feldman DA, Dietrich JW, Weinhold PA. Comparison of the phospholipid 

requirements and molecular fmm of CT from rat lung, kidney, brain and liver. 

Biochim Biophys Acta 1980;620:603-11. 

32. Cornell RB. Regulation of CT by lipids. 1. Negative surface charge dependence 

for activation. Biochemistry 1991;30:5873-80. 

33. Cornell RB. Regulation of CT by lipids. 2. Surface curvature, acyl chain length, 

and lipid-phase dependence for activation. Biochemistry 1991;30:5881-8. 

34. Rooney SA, Wai-Lee TS, Gobran L, Motoyama EK. Phospholipid content, 

composition and biosynthesis during fetal lung development in the rabbit. Biochim 

160 



Chapter 5 

Biophys Acta 1976;431:447-58. 

35. Radika K, Possmayer F. Inhibition of foetal pulmonary choline-phosphate cytidyl­

yltransferase under conditions favouring protein phosphorylation. Biochem J 

1985;232:833-40. 

36. Mallampalli RK, Walter ME, Peterson MW, HUlUlinghake GW. Betamethasone 

activation of CTP:cholinephosphate cytidylyltransferase in vivo is lipid dependent. 

Am J Respir Cell Mol Bioi 1994;10:48-57. 

37. Carlson KS, Davies P, Smith BT, Post M. Temporal linkage of glycogen and 

saturated phosphatidylcholine in fetal lung type II cells. Pediatr Res 1987;22: 

79-82. 

38. Viscardi RM, McKenna Me. Developmental changes in cholinephosphate cytidyl­

yltransferase activity and microsomal phospholipid fatty acid composition in 

alveolar type II cells. Life Sci 1994;54:1411-21. 

39. Fraslon C, Batenburg JJ. Pre-translational regulation of lipid synthesizing enzymes 

and surfactant proteins in fetal rat lung in explant culture. FEBS Lett 1993;325: 

285-90. 

40. Batenburg JJ, Whitsett lA. Levels of mRNAs coding for lipogenic enzymes in rat 

lung upon fasting and refeeding and during perinatal development. Biochim 

Biophys Acta 1989; 1006:329-34. 

41. Post M, Barsoumian A, Smith BT. The cellular mechanism of glucocorticoid 

acceleration of fetal lung maturation. Fibroblast-pneumonocyte factor stimulates 

choline-phosphate cytidylyltransferase activity. J Bioi Chem 1986;261:2179-84. 

42. Batenburg JJ, Elfring RH. Pre-translational regulation by glucocorticoid of fatty 

acid and phosphatidylcholine synthesis in type" cells from fetal rat lung. FEBS 

Lett 1992; 307: 164-8. 

43. Jamil H, Yao ZM, Vance DE. Feedback regulation of CT translocation between 

cytosol and endoplasmic reticulum by phosphatidylcholine. J Bioi Chem 1990;265: 

4332-9. 

44. Jamil H, Vance DE. Head-group specificity for feedback regulation of CT. 

Biochem J 1990;270:749-54. 

161 





CHAPTER 6 

CYCLIC AMP-DEPENDENT PROTEIN KINASE DOES NOT 

REGULATE CTP:PHOSPHOCHOLINE CYTIDYLYL­

TRANSFERASE ACTIVITY IN MATURING TYPE II CELLS 

Luc J. Zimmermann, Wen-Su Lee, Barry T. Smith and Martin Post 

Medical Research Grollp in Lung Development, Neonatal Research, 

Hospital for Sick Children Research Illstilllte, Torollto, Olltario, Callada 

Biochim Biophys Acta 1994; 1211 :44-50 





Chapter 6 

6.1 Abstract 

CTP:phosphocholine cytidylyltransferase (CT) catalyses a rate regulatory 

step in the de 1l0VO synthesis of surfactant phosphatidylcholine (PC) in 

alveolar type II cells. To investigate if CT can be regulated by cAMP­

dependent protein kinase, we first studied the ontogeny of cAMP-dependent 

protein kinase activity in type II cells of fetal rat lung. Total cAMP-depend­

ent protein kinase activity, measured in the presence of 10 I'M cAMP, as 

well as endogenous activity, measured without cAMP, increased with 

advancing gestation. CT activity showed a similar developmental profile. 

This temporal relationship between cAMP-dependent protein kinase and CT 

supports a potential role for cAMP-dependent protein kinase in regulating 

CT phosphorylation. CT purified from adult rat lung was, indeed, phos-

phorylated ill vitro by cAMP-dependent protein kinase. Despite the 

phosphorylation, however, no change in CT activity was noted. Pre-incuba­

tion of fetal type II cell cytosol with A TP and Mg + + did not affect CT 

activity. Addition of either cAMP, dibutyryl-cAMP or the catalytic subunit 

of cAMP-dependent protein kinase to the pre-incubation medium did also not 

alter CT activity. Furthermore, neither cAMP-dependent protein kinase 

inhibitor peptide, nor H8, a cyclic nucleo-dependent protein kinase inhibitor, 

affected CT activity in fetal type II cell cytosol. Treatment of intact fetal 

type II cells with either cAMP, dibutyryl-cAMP or 8-[4-chlorophenylthio]­

cAMP activated cAMP-dependent protein kinase but did not alter CT 

activity. We conclude that the increase in CT activity in fetal type II cells at 

late gestation is not regulated by the developmental activation of cAMP­

dependent protein kinase. 
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6.2 Introduction 

Phosphatidylcholine (PC) is a major component of pulmonary 

surfactant (1,2). It is well known that the production of surfactant is 

initiated during the latter part of gestation. The subsequent accumulation of 

surfactant in the airways coincides with the ability of the newborn to estab­

lish regular air breathing. A surfactant deficiency due to insufficient lung 

maturity is, indeed, the prime factor responsible for the occurrence of 

respiratory distress syndrome (RDS) in premature neonates. CTP:phospho­

choline cytidylyltransferase (CT) (EC 2.7.7.15) has been demonstrated to 

catalyse a rate-limiting step in the de /laVa PC synthesis in the developing 

lung (3,4). Its developmental regulation in lung remains to be elucidated. 

There is substantial evidence that CT is regulated by enzyme-membrane 

interaction (5-10). Studies with numerous cell types (5-12) have indicated 

that PC synthesis is regulated by translocation of inactive CT from the 

cytosol to the endoplasmic reticulum where it becomes activated by associ­

ation with membrane lipids (12). A similar model for the regulation of 

pulmonary CT has been proposed by Weinhold et al. (13,14). Recently, we 

have reported that CT activity increases in fetal type II cells at late gestation 

(15). The increase in enzyme activity with advancing gestation was accom­

panied by a developmental shift in the distribution of CT activity from 

cytosol to endoplasmic reticulum. 

The mechanism by which CT is activated is unknown, but some 

evidence suggests that reversible phosphorylation might be involved. In 

short term incubations, cyclic AMP (cAMP) and its analogues have been 

shown to inhibit PC synthesis in hepatocytes (16). The inhibition was 
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accompanied by partial inactivation of microsomal enzyme and redistribution 

of CT to the cytosolic compartment (16). In addition, it has been demon­

strated that serine residue(s) of rat liver CT are substrates for cAMP-depend­

ent protein kinase in vitro (17). Phosphorylation and dephosphorylation of 

proteins has also been demonstrated for adult type II cells (18). In contrast 

to the hepatocyte studies, investigations with adult type II cells showed no 

short-term effect of cAMP or its analogues on PC synthesis (19) and CT 

activity (20). Recent studies suggest, however, that protein phosphorylation 

by cAMP-dependent protein kinase may play an important role in regulating 

cellular functions in the developing lung (21). Furthermore, there is sugges­

tive evidence for the involvement of cAMP-dependent protein kinase in 

regulating CT activity in whole fetal lung (22). As no data are currently 

available for isolated fetal type II cells, we investigated the ontogeny of 

cAMP-dependent protein kinase and the possible regulation of CT by cAMP­

dependent protein kinase in fetal rat type II cells. 

6.3 Materials and methods 

Materials 

Female (200-2S0g) and male (2S0-300g) Wistar rats were purchased 

from Charles River (St. Constant, Quebec) and bred in our animal facilities. 

Cell culture media, antibiotics, trypsin and a cAMP-dependent protein kinase 

enzyme assay system were obtained from Gibco Canada (Burlington, 

Ontario). Fetal bovine serum was from Flow Laboratories (McLean, VA), 

collagenase and DNase from Worthington Biochemical (Freehold, NJ). Cell 

culture flasks were purchased from Falcon (Becton Dickinson, Lincoln Park, 
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NI). [Methyt-I4C)phosphocholine was from New England Nuclear Research 

(Dupont Canada, Mississauga, Ontario). [Methyl-14C)CDPcholine and 

adenosine 5' _[y_32Pjtriphosphate were obtained from Amersham Canada 

(Oakville, Canada). N-[2-(methylamino)-ethylj-5-isoquinolinesulfonamide 

dihydrochloride (H8) was from Seikagaku America (St. Petersburg, Florida). 

Catalytic subunit of cAMP-dependent protein kinase A (bovine heart) and 

cAMP-dependent protein kinase inhibitor peptide (rabbit sequence) and all 

remaining unlabelled biochemicals were obtained from Sigma (St. Louis, 

MO). 

Cell cultures 

Rats were sacrificed by diethylether inhalation on day 18 to day 21 of 

gestation (term = 22 days). The fetuses were aseptically removed from the 

mothers, the fetal lungs dissected out in cold Hank's balanced salt solution 

without calcium or magnesium [HBSSj and cleared of major airways and 

vessels. The lungs were washed twice in HBSS, minced and suspended in 

HBSS. Epithelial cells were isolated from the fetal lungs as described in 

detail previously (23). Briefly, the lung tissue was digested for 20 min in an 

enzymatic solution of 0.125% trypsin and 0.4 mg/ml DNase. After filtering 

through 100 I"m mesh nylon bolting cloth, Eagle's minimal essential medium 

(MEM) with 10% fetal bovine serum (FBS) was added and the mixture 

centrifuged. The pellet was resuspended in MEM containing 0.1 % collagen­

ase. After 15 min of incubation, the collagenase activity was neutralized by 

adding MEM + 10% FBS. Two differential adhesion periods of I h in tissue 

culture flasks allowed removal of fibroblasts. The non-adherent cells were 

removed, transferred to new culture flasks and incubated overnight for 

attachment of epithelial cells. Non-adherent cells were removed from all 
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epithelial cell cultures after overnight incubation. All experiments were 

performed 24 h after isolation. Although the term "type II cells" is used in 

this paper, the cuboidal epithelium which lines the acinar tubules during the 

late pseudoglandular and early canalicular stages of lung development does 

not contain lamellar bodies, the phenotypic marker for type II cells. In 

previous studies, we have shown that these cells do express other phenotypic 

features of type II cells and possess antigenic determinants of mature type II 

cells (24). 

Cell fractionation 

After overnight incubation in tissue culture flasks, attached epithelial 

cells were collected by scraping in homogenization buffer, the composition 

of which varied with each experiment. After homogenization with 50 

strokes of a Dounce homogenizer, the homogenate was centrifuged at 300 x 

g for 10 min. The resulting supernatant was centrifuged at 13,000 x g for 

10 min to obtain a postmitochondrial supernatant. Microsomal and cytosolic 

fractions were obtained by centrifugation at 313,000 x g for 15 min. 

Microsomes were resuspended in the same homogenization buffer as initially 

used to scrape the cells. All steps were carried out at 4°C. Cell homo­

genates and cell fractions were stored at -70°C until enzyme activities were 

measured. 

Enzyme assays 

CT activity was assayed in the forward direction by measuring the rate 

of incorporation of [metllyl)4C]phosphocholine into CDPcholine. The 

incubation medium (0.2 011) contained 20 mM Tt'is-succinate (pH 7.8), 6 

mM MgCI2 , 4 mM CTP, 1.6 mM [methyl-14C]phosphocholine (specific 
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activity: 0.625 I'Ci/ I'mol) and up to 150 !Ig protein. After 30 minutes (20 

min for purified adult lung CT) of incubation at 37°C, the reaction was 

stopped by addition of 0.1 ml of 25 % (w/v) trichloroacetic acid and 0.5 ml 

of charcoal suspension (6% charcoal in 50 mM phosphocholine). The 

samples were placed on ice and [methyIJ4C]CDPcholine was isolated as 

described by Weinhold et 01. (25). The recovery (69-74%) of CDPcholine 

was determined in each set of assays by adding a known amount of [methyl-

14C]CDPcholine to a complete assay mixture. All assays were corrected for 

background and recovery. 

For cAMP-dependent protein kinase activity measurements, cells were 

scraped and homogenized in 0.75 ml of 50 mM Tris, 5 mM EDTA, pH 7.5. 

A 10 1'1 aliquot of the homogenate was incubated at 30°C in 50 mM Tris, 10 

mM MgCI2, 0.25 mg/ml BSA, 50 I'M Kemptide, 100 I'M ['Y_32p]ATP 

(specific activity 65 I'Ci/l'mol) , pH 7.5 (26). After 5 min of incubation, 

samples were spotted on phosphocellulose filters. The filters were washed 

with 1 % (v/v) phosphoric acid and water, transferred to scintillation vials 

and radioactivity was measured. Total cAMP-dependent protein kinase 

activity was defined as the activity measured in the presence of 10 I'M 

cAMP minus the activity determined in the presence of cAMP and cAMP­

dependent protein kinase inhibitor peptide. Endogenous cAMP-dependent 

protein kinase activity was defined as the activity assayed in the absence of 

cAMP minus the activity measured in the presence of cAMP-dependent 

protein kinase inhibitor peptide. Percentage activated cAMP-dependent 

protein kinase was defined as (endogenous activity x 100) I total activity. 

In preliminary experiments we established that, under the conditions 

used, product formation in all assays was directly proportional to incubation 

time and amount of protein. 
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Purification of CT 

Adult rats were sacrificed by diethylether inhalation and immediately 

afterwards a tracheostomy was performed and lungs were inflated with a 

pressure of 15 cm H20. The thorax was opened and the lungs were thor­

oughly perfused with normal saline via injection in the right ventricle and 

opening the left atrium. Lungs were immediately frozen in liquid nitrogen 

and kept at -70°C till purification was started. CT was purified from 100 g 

of lung tissue as described by Weinhold et at. (25). A 2278-fold purification 

of CT was obtained with a yield of 9.3 % of total cytosolic activity. 

Pre-incubation of purified CT with the catalytic subunit of cAMP-dependent 

protein kinase A 25 1'1 aliquot of purified CT (0.45 nmollmin measured 

in the presence 0.5 mM [1: 1 molar ratio) PC/oleic acid (OA) vesicles) was 

incubated at 37"C in a total volume of 155 1'1 of buffer A (50 mM Tris-HCI, 

150 mM NaCl, 2 mM DTT, 1 mM EDT A and 0.025 % (w/v) sodium azide, 

pH 7.4) with 0-60 units of pure catalytic subunit of cAMP-dependent protein 

kinase, 4 mM MgCI2 and 0.1 mM ATP. After 30 min of incubation, CT 

activity was assayed. In some experiments purified CT was dephos­

phorylated prior to incubation with catalytic subunit of cAMP-dependent 

protein kinase. The dephosphorylation was performed by incubating 60 1'1 

of purified CT (1.08 nmollmin measured in presence of 0.5 mM PC/OA 

vesicles) with 5 units of alkaline phosphatase bound to agarose at 4°C for 1 

h in a volume of 250 1'1 of buffer A supplemented with 4 mM MgCI2. The 

alkaline phosphatase was removed by centrifugation at 2500 x g for 5 min. 

Preliminary experiments revealed that 5 units of alkaline phosphatase was 

optimal for activating purified CT. 
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Phosphorylation of purifled CT with the catalytic subunit of cAMP-dependellt 

protein kinase and [-y_32pJATP 

A 500 It! aliquot of purified lung CT (9.03 nmol/min measured in 

presence of 0.5 mM PC/OA vesicles or approx. 2.9 flg) was first dephos­

phorylated with 25 units of alkaline phosphatase bound to agarose in buffer 

A with 4 mM MgCl2 (total volume 1 mI). After a 1 h incubation at 4°C, 

the alkaline phosphatase was removed by centrifugation (2 times 2500 x g 

for 5 min at 4°C). The supernatant was then incubated with 100 units of 

catalytic subunit of cAMP-dependent protein kinase with 0.1 mM [-y_32Pl_ 

ATP (specific activity 108 flCilflmol) in buffer A (total volume 1 ml). After 

30 min of incubation at 37°C the reaction was stopped by adding 5 flg 

sodium deoxycholate and 400 fll of 25 % trichloroacetic acid (17). The 

sample was kept on ice for 30 min and the precipitate was pelle ted by 

centrifugation at 2500 x g for 20 min. The supernatant was discarded and 

the pellet washed twice with 1 ml of chilled acetone. The precipitate was 

then resuspended in sample buffer and separated on 12 % (w/v) SDS-poly­

acrylamide gels under reducing conditions according to the method of 

Laemmli (27). The gel was dried and exposed for 48 h to Kodak XAR-5 

film using Dupont Cronex intensifying screens. 

Incubation of fetal type II cells in culture with cAMP or cAMP analogues 

Fetal type II cells were grown to confluence in MEM plus 2 % FBS 

and 5 flg/ml transferrin. The cells were washed three times with fresh 

serum-free MEM prior to incubation with serum-free MEM containing either 

cAMP, dibutyryl-cAMP or 8-[4-chlorophenylthiol-cAMP. After 1 or 3 h of 

incubation, cells were washed twice with phosphate buffered saline (PBS) 

and scraped in Tris/saline buffer (145 mM NaCl, 50 mM NaF, 2.5 mM 
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EDTA, 50 mM Tris-HC1, pH 7.4). Post-mitochondrial supernatant, cytosol 

and microsomes were prepared as described above and CT activity was 

assayed. When cAMP-dependent protein kinase activity was measured, 

solutions were lIsed as described for cAMP-dependent protein kinase assay. 

Protein measuremellls 

Protein concentrations were determined by the method of 

Bradford (28), using bovine serum albumin as standard. 

Statistical analysis 

Data are presented as means ± S.E. Statistical differences between various 

groups were analysed by unpaired t-test (for two groups) or by analysis of 

variance with the Neumann-Keuls test (for more than two groups). Statisti­

cal significance was accepted at the p < 0.05 level (two-tailed). 

6.4 Results 

Ontogeny of cAMP-dependelll protein kinase activity in fetal type II cells 

during late gestation 

The developmental profiles of activities of cAMP-dependent protein 

kinase and CT were determined in postmitochondrial supernatants of fetal 

type II cells. Total cAMP-dependent protein kinase activity, measured in the 

presence of 10 pM cAMP, increased from d 18 to d20 and then decreased on 

d21 (Fig. IB). Endogenolls cAMP-dependent protein kinase activity, 

measured in the absence of cAMP, showed a similar developmental pattern 

(Fig. lA). The percentage activated cAMP-dependent protein kinase 
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Figure I. Ontogeny of cAMP-dependent protein kinase activity in fetal type 
II cells during late gestation. Post-mitochondrial supematants were prepared 
from type II cells in primary culture, isolated from fetal rats at 18 to 21 days 
gestation. Total cAMP-dependent protein kinase activity was assayed in the 
presence of 10 I'M cAMP (B) and endogenous cAMP-dependent protein kinase 
was assayed in the absence of cAMP (A). Activities were corrected for 
background activity in the presence of cAMP-dependent protein kinase inhibitor 
peptide. The percentage activated cAMP-dependent protein kinase was calcu­
lated as endogenous activity x 100 / total activity (C). The data represent the 
means ± S.E. of three independent experiments carried out in duplicate. 
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(endogenous x 100/ total) increased from d18 to d21 (Fig. 1C). Previously, 

we have reported that CT activity increases in type II cells with advancing 

gestation (15). This temporal relationship between cAMP-dependent protein 

kinase and CT supports a regulatory role for cAMP-dependent protein kinase 

in activating CT activity in maturing type II cells. 
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Effect of catalytic subunit of cAMP-dependelll protein kinase 011 IUllg CT 

To demonstrate that cAMP-dependent protein kinase is able to phos­

phorylate lung CT, CT purified from adult rat lung was first incubated with 

alkaline phosphatase to dephosphorylate the enzyme. Subsequently, CT was 

incuhated in the presence of [r-32p]ATP and catalytic subunit of cAMP­

dependent protein kinase and subjected to SDS-PAGE and 

autoradiography. Most of the radioactivity was found at the 40 kDa band 

where purified 

CT runs on the gel (not shown). Thus, lung CT seems to be a substrate for 

cAMP-dependent protein kinase. We further investigated the effect of 

cAMP-dependent protein kinase on the activity of rat lung CT. Incubation 

of CT (0.08 nmoifmin) with 20-60 units of catalytic subunit of cAMP­

dependent protein kinase in the presence of 0.1 mM ATP did not significant­

ly alter its activity (Fig. 2A). In addition, no effect of catalytic subunit of 

cAMP-dependent protein kinase on CT activity (Fig. 2A) was noted when 

CT activity was assayed in the presence of 0.5 mM PC/OA [I: I molar ratio] 

vesicles «0.47 nmoifmin), which has been shown to stimulate CT activity 

maximally (25). Since we did not observe any effect of cAMP-dependent 

protein kinase on CT activity, purified CT was first dephosphorylated with 

alkaline phosphatase (0.071 nmol/min vs. 0.043 nmoifmin, dephosphorylated 

vs. control, activity measured in absence of PC/OA vesicles) and then 

incubated with 20 units of catalytic subunit of cAMP-dependent protein 

kinase in the presence of 0.1 111M ATP. However, again the activity of CT 

did not change (Fig. 2B). These results suggest that phosphorylation of lung 

CT by cAMP-dependent protein kinase does not directly affect the activity of 

the pulmonary enzyme. 
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Figure 2. Effect of catalytic subunit of cAMP-dependent protein kinase 011 

the activity of adult rat lung phosphocholine cytidylyltransferase. A: 
Purified lung cytidylyltransferase was incubated with 20 U of catalytic subunit 
of cAMP-dependent protein kinase (abbreviated as PKA) in the presence of 0.1 
mM ATP, with (open bars) or without (filled bars) 0.5 mM 
phosphatidylcholine/oleic acid (111 molar ratio) vesicles (abbreviated as 
PC/OA). Subsequently cytidylyltransferase activity was measured. Controls 
[control (0.08 nmol/min) and PC/OA (0.47 nmol/min)] consisted of a pre­
incubation with ATP but without catalytic subunit of cAMP-dependent protein 
kinase. Additional controls (no ATP, no catalytic subunit; or catalytic subunit 
but no ATP) were similar (not shown). Incubations with 40 or 60 U of catalytic 
subunit did also not alter the activity. B: Purified lung cytidylyltransferase was 
first dephosphorylated with alkaline phosphatase (0.071 nmol/min) and then 
incubated with 0.1 mM ATP, with or without 20 U of the catalytic subunit of 
cAMP-dependent protein kinase. Subsequently, cylidylyltransferase activity was 
measured. The cytidylyltransferase activities are presented as percentage of 
controls. Mean ± S.E. are shown of at least three separate experiments, all 
performed in duplicate. 
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Chapter 6 

Effect of cAMP 011 CT activity of fetal type II cells 

We first investigated whether incubation of d20 fetal type II cell 

cytosol (0.22 nmollminfmg) with ATP leads to inhibition of CT as has been 

reported for rat liver (12) and rabbit lung cytosol (22). As shown in figure 

3A, cytosolic CT activity was not changed after a 30-min incubation at 37°C 

with 0.5 mM ATP and 8 mM Mg2+. Addition of 2 mM DTT did not alter 

this observation. In all subsequent experiments, cytosol from d20 fetal type 

II cells was pre-incubated for 30 min at 37"C in the presence of 0.5 mM 

A TP, 8 mM MgCl2 and 2 mM DTT. In order to further investigate the role 

of cAMP-dependent protein kinase in regulating CT activity in fetal type II 

cells, we added either 0.25 mM cAMP or I mM dibutyryl-cAMP to the pre­

incubation solution. No effect on CT activity was noted (Fig. 3A). In 

contrast, cAMP-dependent protein kinase activity was already stimulated 

with 10 I'M cAMP (Fig. IB). Pre-incubation of cytosol with different 

amounts of catalytic subunit of cAMP-dependent protein kinase (0-50 units) 

also did not change the CT activity (Fig. 3A). In addition, neither cAMP­

dependent protein kinase inhibitor peptide (10 I'M) or H8 (50 I'M), a cyclic 

nucleotide-dependent protein kinase inhibitor, did affect CT activity (Fig. 

3B). 

In line with these cytosolic findings, incubations of intact d20 fetal 

type II cells with increasing concentrations of cAMP (0-2 mM) did not 

significantly alter the CT activity (0.58 nmol/minfmg) in the post­

mitochondrial supernatant. Similar results were obtained when cells were 

exposed to either 1 mM dibutyryl-cAMP or I mM 8-[4-chlorophenylthioJ­

cAMP (Fig. 4A). Neither the cytosolic (0.35 nmol/min/mg) nor the 

microsomal (1.34 nmol/minfmg) CT activity was changed (Fig. 4B). In 

addition, the distribution of CT activity between cytosol and microsomes was 
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not altered (not shown). Similar results were obtained with dl9 fetal type II 

cells. 

To exclude the possibility that cAMP-dependent protein kinase was not 

stimulated by cAMP or its analogues, we measured cAMP-dependent protein 

kinase activity in cytosol from fetal type II cells which were incubated with I 

mM dibutyryl-cAMP. After I h of incubation, cAMP-dependent protein 

kinase activity increased by 47.6 ± 11.6 % (mean ± SE) compared to control 

(1.4 nmollminlmg). The activity returned to control values after 3 h of 

incubation (Fig. 5A). Total cAMP-dependent protein kinase activity, 

assayed in the presence of 10 I'M cAMP, did not change significantly. 

To test if this activated cytosolic cAMP-dependent protein kinase was 

able to influence CT activity, cytosol from dibutyryl-cAMP (1 h of incuba­

tion) stimulated cells was incubated at 37"C with purified rat lung CT (0.043 

nmollmin measured in absence of lipid activators) in the presence of 0.1 mM 

ATP, 8 mM MgCl2 and 2 mM DTT. After 30 min of incubation, CT 

activity was measured. No change in CT activity was found despite the 

increase in cAMP-dependent protein kinase activity (Fig. 5B). Taken 

together, these results suggest that cAMP-dependent protein kinase does not 

regulate CT activity in fetal type II cells. 

6.S Discussion 

Although the developmental profiles of cAMP-dependent protein 

kinase and CT activities in fetal type II cells are compatible with a role for 

cAMP-dependent protein kinase in regulating CT activity, our findings with 

purified rat lung CT and fetal type II cells do not support such a regulatory 
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Figure 3. Effect of activators 01' inhibitors of cAMP-dependent protein 
kinase 011 cytidylyltransferase activity of fetal type II cell cytosol. Cytosol 
from day 20 fetal type II cells was incubated for 30 min at 37°C (controls) in 
the presence of 0.5 mM ATP, 8 mM MgCI2 and 2 mM OTT (ATP/Mg). 
Further addition of one of the following was tested: 0.25 mM cAMP, lmM 
dibutyryl-cAMP, 20 U of the catalytic subunit of cAMP-dependent protein 
kinase, 10 ~M protein kinase inhibitor peptide or 50 ~M H8, a cyclic 
nucleotide-dependent protein kinase inhibitor. Subsequently cytidylyltransferase 
activity was measured [presented as % of control (0.22 nmollmin)]. Data 
represent means ± S.B. of at least four separate experiments carried out in 
duplicate. 
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role for cAMP-dependent protein kinase. Firstly, purified adult rat lung CT 

is phosphorylated by the catalytic subunit of cAMP-dependent protein kinase 

but the activity of rat lung CT is not affected. In contrast, phosphorylation 

of rat liver CT by the catalytic subunit of cAMP-dependent protein kinase 

has been shown to be accompanied by a decrease in CT activity (17). 

Secondly, experiments with rat liver cytosol have shown a time-dependent 
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Figure 4. Effect of cAMP 011 cytidylyltrallsferase activity of fetal type II 
cells in primary culture. A: Day 20 fetal type II cells were incubated with 
MEM alone (controls) or MEM with either 0.25 mM cAMP, I mM dibutyryl­
cAMP or 1 mM 8-[4-chlorophenylthioJ-cAMP (abbreviated as CPT-cAMP). 
After 3 hours of incubation, cells were homogenized and cytidylyltransferase 
activity was assayed in post-mitochondrial supernatant as described under 
Materials and Methods. B: Day 20 fetal type II cells were incubated with 
MEM alone (controls) or MEM with I mM dibutyryl-cAMP. After I hour of 
incubation, cells were homogenized and cytidylyltransferase activity was assayed 
in post-mitochondrial supernatant (PMS), cytosol and microsomes as described 
under Materials and Methods. The cytidylyltransferase activities are presented 
as percentage of controls [PMS:0.58 mnollmin; cytosol:0.35 mnol/min; micro­
somes: 1.34 nmol/min). Means ± S.E. are shown for at least 4 separate 
experiments carried out in duplicate. 
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Figure 5. The effect of dibutYl'yl-cAMP on the activity of cAMP-dependent 
pl'otein kinase in fetal type II cells in pl'imal'Y cultul'e and its subsequent 
effect on cytidylyltl'ansfel'ase activity. A: Day 20 fetal type II cells were 
incubated with MEM alone (control) or MEM with I mM dibutyryl-cAMP. 
After I or 3 hours, cells were homogenized and cAMP-dependent protein kinase 
activity was assayed in cytosol. Endogenous cAMP-dependent protein kinase 
activity is shown as percentage of control (1.4 nmol/min/mg). B: Cells were 
incubated and cytosol prepared as in A. This cytosol was incubated with 
purified rat lung cytidylyJtransferase in the presence of 0.1 mM ATP, 8 mM 
MgCI2 and 2 mM DIT. After 30 min of incubation cytidylyJtransferase activity 
was assayed (shown as percentage of control, 0.043 nmollmin measured in the 
absence of lipid activators). Data are presented as mean ± S.E. of at least 4 
independent experiments perfonned in duplicate. 
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activation of CT by incubation at 37"C which was inhibited by ATP/Mg 

(12). The ATP/Mg inhibition was abolished by cAMP-dependent protein 

kinase inhibitors. This time-dependent activation of CT is not found with 

cytosol of fetal type II cells. This may explain the lack of inhibition of 

cytosolic CT of fetal type II cells by ATP/Mg. Furthermore, cAMP and 

cAMP-dependent protein kinase blockers do not affect cytosolic CT activity 
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of fetal rat type II cells. In contrast, Radika and Possmayer (22) reported 

that ATP/Mg inhibited CT activity in fetal rabbit lung cytosol. They showed 

also that the inhibition was abolished by cAMP-dependent protein kinase 

blockers. In line with our findings, however, they were unable to demon­

strate a cAMP effect. Thirdly, our findings with intact fetal type II cells that 

cAMP and its analogues stimulate cAMP-dependent kinase activity without 

affecting CT activity and subcellular distribution, argue against a regulatory 

role for cAMP-dependent kinase. This is in agreement with recent studies 

with intact hepatocytes which showed that increased cAMP levels or 

increased cAMP-dependent protein kinase activity did not affect CT activity 

(29,30). In addition, it was shown that the phosphorylation state of CT was 

not altered following stimulation of cAMP-dependent protein kinase (30). In 

the present study, we measured the short-term effect of cAMP on fetal type 

II cell CT activity. The short -term inhibition of PC synthesis of hepatocytes 

has recently been shown to be due to a decrease in cellular diacylglycerol 

levels rather than by a decreased activity of CT (29). Long-term treatment 

(> 15 h) with cAMP of hepatocytes (31), fetal lung explants (32) and a 

human alveolar carcinoma cell line (A549 cells) (33), has been reported to 

increase PC synthesis. The effect of this long-term treatment on fetal type II 

cell CT remains to be elucidated. We observed that cAMP-dependent 

protein kinase was activated in fetal type II cells following 1-h exposure to 

dibutyryl-cAMP but not following a 3-h exposure. This suggests that 

cAMP-dependent protein kinase cannot solely be responsible for the long­

term effect of cAMP on PC synthesis. It is worthwhile mentioning that our 

finding of an increase in cAMP-dependent protein kinase in fetal type II cells 

with advancing gestation is contrary to previous studies with whole fetal rat 

lung (21), where a decrease was noted. As cAMP-dependent protein kinase 
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of fetal type II cells was measured 24 h following cell isolation, it is ,plaus­

ible that this discrepancy in the developmental profiles of cAMP-dependent 

protein kinase merely reflects the cellular complexity of the lung or the ill 

vitro conditions used. 
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Chapter 7 

7.1 Abstract 

CTP:phosphocholine cytidylyltransferase (CT) (EC 2.7.7.15) catalyses a rate 

regulatory step in the de 1l0VO synthesis of surfactant phosphatidylcholine 

(PC) in alveolar type II cells. To investigate whether CT is regulated by 

protein kinase C and protein phosphatases, we first studied the ontogeny of 

protein kinase C and protein phosphatase activities in type II cells of fetal rat 

lung. Protein kinase C activity increased from fetal day 18 to 20 and then 

decreased on day 21. Protein phosphatase activity increased from day 18 to 

19, remained constant on day 20 and decreased markedly on day 21. The 

ontogenic pattern of either enzymatic activity is not similar to that of CT 

activity which continues to rise after 20 days of gestation. Secondly, we 

investigated whether protein phosphatases affect CT activity of fetal type II 

cells. Alkaline phosphatase treatment increased CT activity purified from 

adult rat lung in a concentration-dependent manner. Pre-incubation of fetal 

type II cell cytosol with alkaline phosphatase resulted also in an increase of 

CT activity. Under phosphorylating conditions with NaF, cytosolic CT 

activity was decreased. However, no decrease in activity was found when 

cytosol was incubated with okadaic acid, a selective phosphatase inhibitor of 

protein phosphatases type 1 and 2A. Thirdly, we investigated the effect of 

protein kinase C on CT activity in fetal type II cells. Pre-incubation of 

cytosol of fetal type II cells in the presence of ATP and Mg + + with 

phorbol ester (TPA), a protein kinase C activator, did not affect CT activity. 

Neither protein kinase C inhibitor peptide, nor H7 and H8, protein kinase C 

inhibitors, did change CT activity. Protein kinase C activity in cytosol 

increased or decreased after treatment with TPA and protein kinase 
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inhibitors, respectively. Furthermore, treatment of intact fetal type II cells 

with either TPA, H7 or H8 for 1 to 3 h did not alter CT activity assayed in 

post-mitochondrial supernatant, cytosol and microsomes. Exposure of the 

cells to TP A did activate protein kinase C. We conclude that CT activity in 

fetal type II cells may be modulated by protein phosphatase but not protein 

kinase C activity. 

7.2 Introduction 

Phosphatidylcholine (PC) is a major component of pulmonary 

surfactant, which is produced by alveolar epithelial type II cells. The 

increased production of pulmonary surfactant during the latter part of 

gestation is of paramount importance for the ability of the newborn to 

establish regular air-breathing. Surfactant deficiency due to lung immaturity 

is the main factor responsible for the respiratory distress syndrome in 

premature neonates. The increased synthesis of PC in alveolar type II cells at 

the end of gestation has been shown to be associated with an increased 

activity of the enzyme CTP:phosphocholine cytidylyltransferase (CT) (1), 

which is known to catalyse a rate-limiting step in the de novo PC synthesis 

(2). Several mechanisms have been proposed for the regulation of CT in the 

lung and isolated type II cells. 

H has been demonstrated that CT is present in both cytosolic and 

membrane-associated cell fractions and that the membrane-bound form is the 

most active (3-5). Fatty acids (3-8) and phospholipids (9,10) may play an 

important physiologic role in the activation of CT in fetal lung. Recent 

studies have identified the lipid-binding domain of CT as an a-helical domain 
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of the protein (11,12). Although activation of CT by membrane lipids may 

play an important role during normal type II cell development (1,6,13), we 

have recently demonstrated that the increased PC formation in maturing type 

II cells is, in part, due to an increased gene and protein expression of CT 

(14). Our studies demonstrated that CT protein content and activity 

increased in the membrane fraction with advancing gestation with no devel­

opmental change in the cytosolic fraction (1,14). The mechanism for this 

increased association with the membranes during late gestation is unknown. 

Studies with hepatocytes, HeLa and Chinese hamster ovary (CHO) 

cells have suggested a regulation of CT activity by a phosphorylation / 

dephosphorylation mechanism (15-20). Dephosphorylation of CT in CHO 

(20) and He La (16) cells has been shown to coincide with a redistribution of 

enzyme from cytosolic to membrane compartment. In contrast, a recent study 

with hepatocytes suggests that dephosphorylation is not a prerequisite for its 

translocation but occurs after insertion into the membrane (21). Collectively, 

these studies indicate that reversible phosphorylation plays an important role 

in the regulation of CT. Purified rat liver (22) and lung (23) CT can be 

phosphorylated ill vitro by cAMP-dependent protein kinase. Recent studies in 

hepatocytes have shown that the inhibition of PC synthesis by cAMP is not 

due to the phosphorylation state of CT (24,25). Similarly, we have shown 

that CT is not regulated by cAMP-dependent protein kinase in fetal type II 

cells (23). Aside from cAMP-dependent protein kinase, protein phosphatases 

(26) and protein kinase C (27) are likely involved in protein phosphorylation 

and dephosphorylation. No data regarding both enzyme activities are 

currently available for isolated fetal type II cells. Herein, we investigated 

the ontogeny of protein phosphatase and protein kinase C activities and the 
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possible regulation of CT activity by phosphatases and protein kinase C in 

fetal rat type II cells. 

7.3 Materials and methods 

Materials 

Female (200-250g) and male (250-300g) Wistar rats were purchased 

from Charles River (St. Constant, Quebec) and bred in our animal facilities. 

Cell culture media, antibiotics, trypsin and protein kinase C enzyme assay 

system were obtained from Gibco Canada (Burlington, Ontario). Fetal calf 

serum (FCS) was from Flow Laboratories (McLean, V A), collagenase and 

DNAse from Worthington Biochemical (Freehold, NJ). Cell culture flasks 

were purchased from Falcon (Becton Dickinson, Lincoln Park, NJ). [Methyl-

14C]phosphocholine was from New England Nuclear Research (Dupont 

Canada, Mississauga, Ontario). [MethyIJ4C]CDPcholine and adenosine 5'­

['Y_32p)ATP were obtained from Amersham Canada (Oakville, Canada). N­

[2-(methylamino}ethyl)-5-isoquinolinesulfonamide dihydrochloride (HS) and 

1-(5-isoquinolinesulfonyl}-2-methylpiperazine dihydrochloride (H7) were 

from Seikagaku America (St. Petersburg, Florida). Protein kinase C 

substrate (MBP 4-14) , protein kinase C inhibitor peptide (19-31) and 

okadaic acid were from Upstate Biotechnology Inc. (Lake Placid, NY). All 

remaining unlabelled biochemicals were obtained from Sigma (St. Louis, 

MO). 

Cell cultures 

Timed pregnant rats were sacrificed by diethylether excess on days IS 

194 



Chapter 7 

to 21 of gestation (term = day 22). The fetuses were aseptically removed 

from the mothers and the fetal lungs dissected out. The epithelial cells were 

isolated as described in detail elsewhere (1,28). All experiments were 

performed 24 h after isolation. Although the term "type II cells" is used in 

this paper, the cuboidal epithelium which lines the acinar tubules during the 

late pseudoglandular and early canalicular stages of lung development does 

not contain lamellar bodies, the phenotypic marker for type II cells. In 

previous studies, we have shown that these cells do express other phenotypic 

features of type II cells and possess antigenic determinants of mature type II 

cells (28,29). 

Cell fractionation 

After overnight incubation in tissue culture flasks, attached epithelial 

cells were collected by scraping in homogenization buffer, the composition 

of which varied with each enzymatic assay. After homogenization with 50 

strokes of a Dounce homogenizer, the homogenate was centrifuged at 300xg 

for 10 min. The resulting supernatant was centrifuged at 13,OOOxg for 10 

min to obtain a postmitochondrial supernatant. Microsomal and cytosolic 

fractions were obtained by centrifugation at 313,000xg for 15 min. Micro­

somes were resuspended in the same homogenization buffer as initially used 

to scrape the cells. All steps were carried out at 4°C. Cell homogenates and 

cell fractions were stored at -70°C until enzyme activities were measured. 

Enzyme assays 

CT activity was assayed in the forward direction by measuring the rate 

of incorporation of [methyl)4C]phosphocholine into CDPcholine. The 

incubation medium (0.2 m!) contained 20 mM Tris-succinate (pH 7.8), 6 
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mM MgCI2, 4 mM CTP, 1.6 mM [methyl-14C]phosphocholine (specific 

activity: 0.625 I'Cill'mol) and up to 150 I'g protein. After 30 minutes (20 

min for the purified CT) of incubation at 37°C, the reaction was stopped by 

addition of 0.1 ml of 25% (w/v) trichloroacetic acid and 0.5 ml of charcoal 

suspension (6% charcoal in 50 mM phosphocholine). The samples were 

placed on ice and [methyl-14C]CDPcholine was isolated as described by 

Weinhold et al. (30). The recovery (70-74%) of CDPcholine was determined 

in each set of assays by adding a known amount of [methyl)4C]CDPcholine 

to a complete assay mixture. All assays were corrected for background and 

recovery. 

For protein kinase C measurements, cells were scraped and homogen­

ized in 0.6ml of 20 mM Tris, pH 7.5,0.5 mM EDTA, 0.5 mM EGTA, 10 

mM ll-mercaptoethanol, 25 I'g/ml aprotinin and 25 I'g/ml leupeptin. Cellular 

debris was removed by a 2 min centrifugation in a microcentrifuge. When a 

partial purification step of protein kinase C was performed, 0.5% Triton X-

100 was included in the homogenization buffer. Protein kinase C in the 

homogenate was partially purified on a small DEAE cellulose (Whatman 

DE52) column (DEAE cellulose was suspended in wash buffer (20 mM 

Tris, pH 7.5, 0.5 mM EDTA, 0.5 mM EGTA and 10 mM ll-mercapto­

ethanol». After washing with 5 ml wash buffer, the protein kinase C was 

eluted with 5 ml elution buffer (wash buffer plus 0.2 M NaCl). When the 

partial purification step was omitted, cell homogenate was diluted 8 x with 

elution buffer. A 20-25 1'1 aliquot of diluted homogenate or partially 

purified protein kinase C was incubated at 30°C in 20 mM Tris, pH 7.5, 20 

mM MgCI2, 1 mM CaClz, 20 I'M ['Y_32p]ATP (specific activity 225 I'Cii 

I'mol) , 50 I'M protein kinase C substrate [MBP 4-14] (31). After 5 min of 

incubation, samples were spotted on phosphocellulose filters. The filters 
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were washed with 1 % (v/v) phosphoric acid and water, transferred to 

scintillation vials and radioactivity was measured. All samples were assayed 

in the presence of lipid activators (10 liM phorbol 12-myristate 13-acetate 

(TPA), 0.28 mg/ml phosphatidylserine and 0.3% (v/v) Triton X-IOO mixed 

micelles (32» and corrected for the remaining activity measured in the 

presence of 20 liM protein kinase C inhibitor peptide (31). Protein kinase C 

activities in diluted homogenates were also assayed in the absence of lipid 

activators. 

Protein phosphatase activity was assayed by measuring the rate of 

dephosphorylation of [y_32P]-labelled phosphorylase a (33). This substrate 

was prepared by incubating unphosphorylated 5 mg/ml of phosphorylase b at 

25°C in 50 mM Tris, pH 8.2, 50 mM glycerol-2-phosphate, 1 mM [y-

32p]ATP (specific activity 22.5 liCillimol), 10 mM Mg-acetate and 1 unit/ml 

phosphorylase kinase. After 60 min of incubation, the reaction was termin­

ated by addition of an equal volume of 90% saturated (NH4)2S04' pH 7. 

The precipitate was collected by centrifugation, washed with buffer A (50 

mM Tris/HCI (pH 7.0), 1 mM EDTA, 50 mM mercaptoethanol) containing 

45 % saturated (NH4)2S04 and redissolved in 1 ml of buffer A. The substrate 

was dialysed against 500 ml of buffer A for 16 h at 4°C (with one change of 

dialysis buffer), collected by centrifugation at 1O,000xg for 10 min and 

redissolved in 1 ml buffer A containing 0.25 M NaCI at 25°C. Protein 

phosphatase activity was assayed in 40 iiI post-mitochondrial supernatant of 

type II cells, homogenized in 50 mM Tris/HCI, pH 7, 1 mM EGTA, 50 mM 

mercaptoethanol and 1 mg/ml bovine serum albumin. The reaction was 

initiated by the addition of 20 iiI of [y_32P]-labelled phosphorylase a solution 

(specific activity at the time of the assays was 6.7 liCi/ limo\). After 20 min 

incubation at 30°C the reactions were terminated by the addition of 100 iiI of 
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ice-cold trichloroacetic acid and 100 III of 6 mg bovine serum albumin/m!. 

The solution was vortexed, kept on ice for 10 min and then centrifuged at 

13,000xg for 4 min. A portion of 200 III of the supernatant was counted for 

radioactivity. Assays were corrected for radioactivity measured with 40 III 

homogenization buffer instead of post-mitochondrial supernatants. 

In preliminary experiments we established that, under the conditions 

used, product formation in all assays was directly proportional to incubation 

time and amount of protein. 

Purification of CT 

Rats were sacrificed by diethylether excess and immediately afterwards 

a tracheostomy was performed and lungs were inflated with a pressure of 15 

cm H20. The thorax was opened and the lungs were thoroughly perfused 

with normal saline via injection in the right ventricle and opening the left 

atrium. Lungs were immediately frozen in liquid nitrogen and kept at -70°C 

till the purification was started. CT was purified from 100 g lung as 

described by Weinhold et al. for liver (30). A 2278-fold purification was 

obtained and a yield of 9.34% of total cytosolic activity (23). 

Incubation of purified CT with alkaline phosphatase 

A 25 III aliquot of purified CT (0.47 nmol/min measured in the 

presence of 0.5 mM (1:1 molar ratio) PC/oleic acid [OA] vesicles) was 

incubated at 37°C in a total volume of 155 III of buffer (50 mM Tris-HCl, 

150 mM NaCl, 2 mM OTT, 1 mM EOTA and 0.025% sodium azide, pH 

7.4) with 0-10 U alkaline phosphatase and 4 mM MgCl2 in the absence or 

presence of 0.5 mM (1: 1 molar ratio, 0.25 mM each) PC/OA vesicles. After 

30 min of incubation, CT activity was assayed. 

198 



Chapter 7 

Incubation of fetal type II cells in culture with TPA, H7 or H8 

Day 20 type II cells were grown to confluency (about 24 hours) in 

Eagle's minimal essential medium (MEM) with 2 % fetal calf serum and 5 

J'g/ml transferrin. The cells in the culture flasks were washed three times 

with fresh serum-free MEM prior to incubation with serum-free MEM 

containing either TPA (dissolved in 10% DMSO in ethanol), H7 or H8 

(dissolved in water) or the corresponding amount of solvent as control. After 

1 or 3 hours of incubation, cells were washed twice with phosphate-buffered 

saline (PBS), and scraped in Tris/saline buffer (145 mM NaCI, 50 mM NaF, 

2.5 mM EDTA, 50 mM Tris-HCI, pH 7.4). Post-mitochondrial supernatant, 

cytosol and microsomes were prepared as described above and CT activity 

was assayed. When protein kinase C activity was measured, cells were 

homogenized in the appropriate buffers. 

Protein measuremellfs 

Protein concentrations were determined by the method of Bradford 

(34), using bovine serum albumin as standard. 

Statistical analysis 

Data are presented as mean ± S.E. Statistical differences between 

various groups were analysed by unpaired t-test (for two groups) or by 

analysis of variance with the Neumann-Keuls test (for more than two 

groups). Statistical significance was accepted at the p < 0.05 level (two­

tailed). 
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7.4 Results 

Ontogeny of protein kinase C alld protein phosphatase activities ill maturing 

type II cells during late gestation 

Previously, we have demonstrated that CT activity increases in 

maturing type II cells during late gestation (1). To investigate whether 

protein kinase C and protein phosphatases can regulate CT activity in fetal 

type II cells during late gestation, we first studied the developmental profiles 

of the enzyme activities in homogenates of type II cells isolated from fetal 

rats of 18 to 21 days of gestation. The protein kinase C activity, measured in 

the presence (Fig. lA) or absence (Fig. IB) of lipid activators, increased 

from day 18 to day 20 of fetal gestation and then decreased on day 21. This 

decrease of protein kinase C activity on day 21 was more evident when 

assays were performed in the absence of lipid activators (Fig. IB). Similar 

results were obtained when protein kinase C was first partially purified on 

DEAE cellulose columns and assayed in the presence of lipid activators (not 

shown). The average recovery of protein kinase C activity after the purifica­

tion step was 64 %. Protein phosphatase activity increased in type II cells 

from day 18 to day 19, remained constant on day 20, but then decreased on 

day 21 (Fig. 1 C). These data demonstrate that protein kinase C and protein 

phosphatase activities are developmentally regulated in maturing type II 

cells. However, the decreased activities on day 21 do not parallel the further 

increase in CT activity on day 21 (1). 
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Figure I. Ontogeny of protein kinase C and protein phosphatase activities in 
fetal type II cells during late gestation. Protein kinase C activity was assayed 
in the presence (A) or absence (B) of lipid activators (10 I'M TPA, 0.28 mglml 
phosphatidylserine and 0.3% [v/v) Triton X·100 mixed micelles) in homo· 
genates prepared from type II cells in primary culture, isolated from fetal rats at 
18 to 21 days gestation. Activities were corrected for background activity 
measured in the presence of protein kinase C inhibitor peptide. Protein 
ph0'T,hatase activity was assayed by measuring the rate of dephosphOlylation of 
['1. 3 P)·labelied phosphorylase a in postmitochondrial supernatants of day 18 to 
21 fetal type II cells (C). The data represent mean ± S.E. of three independent 
experiments carried out in duplicate. Where error bars are not evident, they are 
within the plot point. 
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Recently, we (23) and others (22) have shown that CT can be phos· 

phorylated ill vitro by cAMP·dependent protein kinase. However, it appears 

that CT activity in fetal type II cells is not regnlated by cAMp· dependent 

protein kinase (23). It has been shown that the liver enzyme can be dephos· 

201 



Effect of proteill p!lOsphatases alld proteill killase Call CT 

...J 
0 
0<: 
l-
Z 
0 
() 

..... 
0 
~ 

200 200 
A • • B 

• 
150 150 

100 100 

50 50 
o 0.5 2 5 10 0 0.5 2 5 10 

ALKALINE PHOSPHATASE (UNITS) 

Figure 2. Effect of alkaline phosphatase on the activity of purified rat lung 
cytidylyltransferase. Purified lung cytidylyltransferase was incubated at 37°C 
with 0 to 10 units of alkaline phosphatase and 4 mM MgCI2 in the absence (A) 
or presence (B) of 0.5 mM (I: 1 molar ratio, 0.25 mM each) 
phosphatidylcilolineioleic acid vesicles. After 30 min of incubation, cytidylyl­
transferase activity was assayed, Control activities were 0.08 nmol/min in the 
absence (A) and 0.47 nmollmin in the presence (B) of phosphatidylcholineioleic 
acid vesicles. Mean ± S.E. are shown of three separate experiments carried 
out in duplicate. 
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phorylated ill vitro by alkaline phosphatase (22). Here we found that 

dephosphorylation of purified lung CT with alkaline phosphatase increased 

CT activity in a concentration-dependent manner (Fig. 2A). However, when 

purified lung CT was incubated with 0.5 mM PCIOA vesicles (Ill molar 

ratio, 0.25 mM each) prior to alkaline phosphatase treatment, no further 

activation of the enzyme was observed (Fig. 2B). The most likely explana­

tion for the latter finding is that CT is maximally stimulated by the PCIOA 

vesicles (13,35). We then incubated cytosol of day 20 fetal type II cells with 
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Figure 3. Effect of alkaline phosphatase and phosphatase inhibitors on 
cytidylyltransferase activity of fetal type II cell cytosol. (A) Cytosol (50-100 
Ilg protein) from day 20 fetal type II cells (homogenized in 145 mM NaCI, 50 
mM Tris-HCI, pH 7.4) was pre-incubated at 37'C with 0 to 20 units of alkaline 
phosphatase in the presence of 8 mM MgCI2 and 2 mM DDT. (B) Cytosol (50-
100 Ilg) was pre-incubated at 37'C in the presence of 0.5 mM ATP, 8 mM 
MgCI2 and 2 mM DDT (control) with the addition of 5 11M okadaic acid or 50 
mM NaF. The okadaic acid control, 25 111 of 20% DMSO in ethanol, was not 
different from regular buffer control. After 30 min of incubation, cytidylyl!rans­
ferase activity was measured. The activity is presented as % of control (0.25 
nmol/min/mg protein). Data represent mean ± S.E. of at least 3 separate 
experiments carried out in duplicate. 
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increasing concentrations of alkaline phosphatase. Again, we found a 

concentration-dependent increase in cytosolic CT activity (Fig. 3A). Incuba­

tion of cytosol of day 20 fetal type II cells with 50 mM NaF, a potent 

protein phosphatase inhibitor, decreased the CT activity (Fig. 3B). We did 

not find a significant inhibition of cytosolic CT activity after incubation with 

5 ttM okadaic acid, a potent inhibitor of two of the most common protein 
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phosphatases, type 1 and 2A. Taken together, these results are compatible 

with CT activity being regulated by protein phosphatase activity in fetal type 

II cells. 

Effect of protein kinase Call CT activity of fetal type 11 cells 

Amino acid sequence analysis of CT has revealed several potential 

phosphorylation sites for protein kinase C (14,36). To determine whether 

protein kinase C can influence CT activity in fetal type II cells, we first 

incubated day 20 fetal type II cell cytosol with activators or inhibitors of 

protein kinase C. In these experiments, cytosol was incubated for 30 min at 

3rC in the presence of 0.5 mM ATP, 8 mM MgCl2 and 2 mM DDT and 

the substance to be tested. No effect on CT activity was noted when 

different concentrations of TPA (10-8 to 10-4 M) were added to the incuba­

tion medium (Fig. 4A). However, cytosolic protein kinase C activity was 

increased by "" 70 % after 1O-5M TP A treatment. When cytosolic protein 

kinase C was first partially purified on a DEAE cellulose column, the protein 

kinase C activity was increased by 170 % after incubation with 1O-5M TP A 

(not shown). Neither 20 I'M protein kinase C inhibitor peptide nor SO I'M 

protein kinase inhibitors H7 and H8 did affect cytosolic CT activity (Fig. 

4B). Although H8 has a higher affinity for cyclic nucleotide-dependent 

kinases (including protein kinase A) than for protein kinase C, it will inhibit 

protein kinase C activity at a concentration of 50,uM (37). H7 is a potent 

protein kinase C inhibitor (37,38). Pre-incubation of cytosol with all 3 

inhibitors, indeed, decreased protein kinase C activity (not shown). Also, 

there was no effect on cytosolic CT activity when A TP was omitted from the 

incubation medium (not shown). In line with these cytosolic findings, 
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Figure 4. Effect of phorbol ester (TPA) and protein kinase C inhibitors on 
cytidylyltransferase activity of fetal type II cell cytosol. Cytosol (50-100 ~g 
protein) from day 20 fetal type II cells (homogenized in 145 mM NaCI, 50 mM 
Tris-HCI, pH 7.4) was incubated for 30 min at 37°C in the presence of 0.5 mM 
ATP, 8 mM MgCI2 and 2 mM DDT (control) with the addition of either 10-8 

to 10.4 M TPA, 20 I,M protein kinase C inhibitor peptide, 50 I,M H7 or 50 ~M 
H8. Subsequently cytidylyltransferase activity was measured (presented as % of 
control (0.25 IlInolimin/mg protein)). Data represent mean ± S.E. of at least 3 
separate experiments carried out in duplicate. 
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incubations of intact day 20 fetal type II cells with 1O-5M TPA for 1 hour 

did not alter CT activity in either post-mitochondrial supernatant, cytosol or 

microsomes (Fig. SA). In addition, the distribution of CT activity between 

cytosol and microsomes was not altered by TPA treatment (not shown). 

Similar results were obtained when cells were exposed for 3 hours to 

different concentrations (l0-8M to 1O-4M) of TPA. It is well known that 

protein kinase C activation is mediated through its translocation from the 
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Figure 5. Effect of phorbol ester (TPA) and protein kinase inhibitors on 
cytidylyltransferase activity of fetal type II cells in primary culture. (A) Day 
20 fetal type II cells were incubated with MEM plus 10 I,M TPA or MEM 
containing an equal mount of 10% DMSO in ethanol as used for TPA (control). 
After I hour of incubation. cells were homogenized and cytidylyltransferase 
activity was assayed in post·mitochondrial supernatant (PMS). cytosol and 
microsomes. (B) Day 20 fetal type II cells were incubated with MEM alone 
(control) or MEM with either 50 I,M H7 or H8. After 3 hours of incubation. 
cells were homogenized and cytidylyltransferase activity was assayed in post· 
mitochondrial supernatant (PMS). The cytidylyltransferase activities are pres· 
ented as percentage of control (PMS: 0.9 nmol/minlmg protein; cytosol: 0.25 
ll1nol/min/mg protein; microsomes: 1.9 nmollmin/mg protein). Data represent 
mean ± S.E. of 3 separate experiments carried out in duplicate. 
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cytosolic to the membrane fraction. As shown in Table 1, TP A induced a 

shift in the subcellular distribution of protein kinase C activity from cytosol 

to membranes in fetal type II cells after 1 h exposure. The specific activity 
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Table I: Effect of phorbol ester (TPA) on protein kinase C of 
fetal type II cells in primary culture. 

Treatment Protein kinase C activity 

% in membrane fraction Pvalue 

Control 57.3 ± 2.3 

TPA. 1,1M 73.8 ± 5.3 <0.05 

TPA, 10 11M 86.5 ± 2.7 <0.05 

Day 20 fetal type II cells were incubated with MEM plus either 1 or 10 ,uM TPA or 

MEM containing an equal mount of 10% DMSO in ethanol as used for TPA (control). 

After 1 hour of incubation, cells were homogenized and protein kinase C activity was 

assayed in cytosol and microsomes. Percentage of total activity present in membrane 

fraction is calculated as total activity in membrane fraction (specific activity x protein) x 

100, over sum of total activities in cytosol and membranes. Data represent mean ± 

S,E. of 3 separate experiments. 

in the membranes increased 2-fold. Exposure of cells for 3 hours to 50 pM 

H7 or H8 also did not change the CT activity in the post-mitochondrial 

supernatant (Fig. 5B). Similar results were observed after 1 hour exposure to 

H7 or H8 (not shown). Previously, we have shown that these inhibitors 

decrease the basal protein kinase C activity in fetal lung cells (39). Taken 

together, these results suggest that protein kinase C does not regulate CT 

activity in fetal type II cells. 
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7.5 Discussion 

Reversible phosphorylation is a common mechanism for the regulation 

of many intracellular events in eukaryotic cells (26,27, 40). Phosphorylation 

and dephosphorylation of proteins has been demonstrated for adult type II 

cells (41). In these cells, several proteins were shown to be phosphorylated 

by protein kinase C and dephosphorylated by protein phosphatases, suggest­

ing key roles for these enzymes in reversible protein phosphorylation in adult 

type II cells. The present study shows that the activities of protein kinase C 

and protein phosphatase are developmentally regulated in fetal type II cells 

during a period which is critical for the preparation of the lung to the onset 

of air-breathing. The developmental profile of CT activity (l) is similar to 

those of protein kinase C and protein phosphatase activities till day 20 of 

gestation. Both protein kinase C and protein phosphatase activities decrease 

on day 21 while that of CT increases (1). Thus, a role for these enzymes in 

regulating CT activity in fetal type II cells during development is unclear. 

The developmental profiles of protein kinase C and protein 

phosphatase activities correlate with those of growth related genes, c-myc 

and histone 3 (42). This is not surprising, as it is well known that protein 

kinases and protein phosphatases are involved in the intracellular 

transduction pathways of growth factors (43). Protein kinase C is involved 

in the cascade of intracellular events following activation of several growth 

factor receptors. Thus, the developmental profiles of protein kinase C and 

protein phosphatase activities likely reflect the balance between growth and 

maturation of type II cells during late fetal gestation. Studies with whole rat 

lung have shown that protein phosphatase type I and 2A activities increase 
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from fetal day 18 to term (45). The different ontogenic profiles of protein 

phosphatases in whole fetal lung and isolated fetal type II cells are most 

easily explained by the cellular complexity of the lung. To our knowledge, 

no developmental profile of protein kinase C activity in lung has been 

reported. Interestingly, the ontogenic pattern for protein kinase C is remark­

ably similar to that of cAMP-dependent protein kinase in fetal type II cells 

(23). This supports the idea that the activity of both protein kinases in fetal 

type II cells reflects a stage of cellnlar development. 

Although no clear temporal relationship between protein phosphatase 

and CT activities was noted, several lines of evidence suggest that CT 

activity is regulated by protein phosphatase activity in fetal type II cells. 

First, we found that dephosphorylation of purified lung CT as well as of 

cytosolic CT of fetal type II cells with alkaline phosphatase stimulated its 

activity. Secondly, incubation of cytosol under phosphorylating conditions 

with NaF decreased CT activity. More or less similar findings have been 

reported by Radika and Possmayer with fetal rabbit lung (45). Surprisingly, 

okadaic acid did not inhibit cytosolic CT activity. Recent studies with 

hepatocytes (19), have suggested that okadaic acid-induced inhibition of PC 

synthesis is due to an increase in CT phosphorylation. Also, pre-incubation 

with Mg+ + and ATP had no effect on CT activity in cytosol of isolated type 

II cells (23). Studies with purified CT (22), rat liver (17), hepatocytes (19) 

and CHO cells (20) have suggested that dephosphorylation of CT promotes 

translocation of CT from the cytosolic to membrane fraction, thereby 

activating the enzyme. Recent studies with HeLa cells (16) and hepatocytes 

(21) suggest, however, that a change in lipid composition of membranes is 

probably the initial event which mediates translocation of CT and that 

dephosphorylation of the enzyme is not required for translocation. Whether 
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such translocation mechanism without dephosphorylation occurs in fetal type 

II cells remains to be investigated. 

Our findings with intact fetal type II cells and with cytosol prepared 

from such cells suggest that protein kinase C does not regulate CT activity in 

fetal type II cells. Neither protein kinase C activators nor inhibitors had any 

effect on the enzyme activity. Recently, Scott (46) reported that disaturated 

phosphatidylcholine (DSPC) synthesis increases in fetal rabbit type II cells in 

response to TPA. Another known activator of protein kinase C, sn-I-oleoyl-

2-acetylglycerol (OAG), decreased, however, DSPC synthesis in these cells 

(46). Moreover, the activity of the enzyme CT was not studied. In HeLa 

cells, TPA stimulates PC synthesis (47-49). It is unclear whether the 

increased PC synthesis in HeLa cells is caused by a translocation of CT from 

cytosol to membrane (47,48,50,51). Studies with other cells are also 

controversial regarding TPA induction of CT activity by translocation (52-

56). However, it appears that direct phosphorylation of the enzyme by 

protein kinase C does not account for the increase in CT activity in HeLa 

cells (47-49). As CT contains several potential sites for phosphorylation by 

protein kinase C (14,36,57), further studies are required to reveal their 

function in the complex regulation of CT activity in fetal type II cells. 

We conclude that protein kinase C and protein phosphatase activities 

are developmentally regulated in fetal type II cells during late gestation. 

Although dephosphorylation of CT in vitro activates the enzyme, the import­

ance of dephosphorylation in the overall regulation of CT activity in fetal 

type II cells remains to be elucidated. Moreover, it is unclear which protein 

kinase regulates CT activity by phosphorylation in fetal type II cells. Our 

present and previous (23) studies suggest that neither protein kinase C nor 

cAMP-dependent protein kinase are directly involved in the regulation of CT 
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activity in fetal type II cells. 
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Chapter 8 

8.1 Abstract 

We studied the underlying mechanisms of surfactant deficiency in a rat 

model for congenital diaphragmatic hernia (CDH), induced by Nitrofen. 

Fetal type II cells and lung fibroblasts were isolated on day 21 of gestation. 

Phosphatidylcholine (PC) and disaturated phosphatidylcholine (DSPC) 

synthesis were lower in CDH than in control (no Nitrofen) type II cells. The 

activity of CTP:phosphocholine cytidylyltransferase (CT), a rate-regulatory 

step in de the novo PC synthesis, was lower in type II cells from severe 

CDH than in controls or than in a milder form of CDH. No difference was 

found in lysoPC acyl transferase activity or protein/DNA ratio. Conditioned 

medium from fetal lung fibroblasts stimulated with cortisol (FCM) is known 

to increase DSPC synthesis in fetal type II cells. FCM from control 

fibroblasts stimulated PC and DSPC synthesis in both control and CDH fetal 

type II cells, but FCM from CDH fibroblasts did not. 

These data suggest that decreased PC and DSPC synthesis in CDH can be 

explained by a lower CT activity in fetal type II cells due to a decreased 

production of fibroblast pneumocyte factor by lung fibroblasts. 

8.2 Introduction 

Despite significant advances in the management of newborn infants 

with congenital diaphragmatic hernia (CDH), mortality rate remains as high 

as 40-60% (I). This high mortality is mainly attributed to pulmonary 

hypoplasia and persistent pulmonary hypertension (2). It has become clear 
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however, that the lungs of newborn infants with CDH are not only 

hypoplastic, but also show a variable morphological and biochemical imma­

turity (3-6). This immaturity has also been found in animal models for CDH. 

Besides structural immaturity (7), surfactant deficiency has been demon­

strated in a fetal lamb model (8) and a fetal rat model (9) of CDH. The 

induction of CDH in fetal rats by the maternal administration of Nitrofen 

(2,4 dichlorophenyl-p-nitrophenylether) has been proven to be a reproducible 

and reliable model for CDH with many characteristics which are also present 

in children with CDH (2,10,11). By varying the timing of the Nitrofen gift 

during pregnancy the location of the diaphragmatic defect and the severity of 

pulmonary hypoplasia can be manipulated (10). In this model Suen et al. 

showed a decreased amount of pulmonary disaturated phosphatidylcholine 

(DSPC) when compared to control fetuses (9). DSPC is a major constituent 

of pulmonary surfactant, which is produced in alveolar type II pneumocytes. 

The CDPcholine pathway is the primary pathway for the de novo phos­

phatidylcholine (PC) synthesis in the developing lung (reviewed in 12). Pool 

size studies have demonstrated that the reaction catalyzed by CTP:phospho­

choline cytidylyltransferase (CT) is the rate-limiting step in the CDPcholine 

pathway in fetal type II cells (13). Previously, we showed that the activity of 

CT increases in fetal type II cells during late gestation (14). There is good 

evidence that a considerable part of DSPC is formed by remodelling of de 

novo synthesized unsaturated PC (reviewed in 12). The most important 

mechanism for this remodelling is a deacylation of PC at the 2-position 

followed by a reacylation of the resulting palmitoyllysophosphatidylcholine 

by the enzyme lysophosphatidylcholine acyltransferase, which has a high 

selectivity to utilize palmitoyl-CoA as a substrate (12,15) and shows a 

developmental increase in fetal type II cells (16). The synthesis of DSPC in 
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fetal type II cells is under hormonal control. The maternal administration of 

glncocorticoids leads to an increased PC synthesis in type II cells isolated 

from rat fetuses (17). This glucocorticoid action however, is not directly on 

the fetal type II cells but involves the production of a fibroblast-pneumocyte 

factor (FPF) by the fetal lung fibroblasts (18). This FPF then, stimulates PC 

synthesis in fetal type II cells by increasing CT activity (18). 

To gain a better insight into the mechanisms by which the amount of 

surfactant DSPC is reduced in CDH, we studied PC and DSPC synthesis, 

CT and lysophosphatidylcholine acyl transferase activities in fetal type II cells 

isolated from rat fetuses with Nitrofen-induced CDH. As type II cell­

fibroblast interactions are important for the control of DSPC synthesis, also 

the capacity of lung fibroblasts isolated from rat fetuses with Nitrofen­

induced CDH to stimulate PC synthesis in fetal type II cells was studied. 

8.3 Materials and Methods 

Materials 

Female and male Sprague Dawley rats were purchased from Harlan 

Olac (Zeist, the Netherlands) and bred in our animal facilities. 2,4 dichloro­

phenyl-p-nitrophenylether (Nitro fen) was obtained from Rohm Haas Com­

pany (Philadelphia). Cell culture media, trypsin and fetal and newborn 

bovine serum were obtained from Gibco (Gaithersburg,MO), collagenase and 

DNase from Worthington Biochemical (Freehold, NJ). Cell culture flasks 

and multiwell plates were purchased from Costar (Cambridge,USA). 

[Methyl-14C]phosphocholine, [Methyl-14C]CDPcholine, [1-14C]palmitoyl­

CoA and [Methyl-3Hlcholine were from Amersham (UK). Remaining 
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unlabelled biochemicals were obtained from Merck (Darmstadt, Germany). 

Induction of CDH 

Rats were mated during 1 hour. This was considered day 0 of gesta­

tion. On day 10 of gestation 100 mg Nitrofen, dissolved in 1 ml olive oil, 

was administered by gastric tube, resulting in a left-sided or bilateral CDH 

with severe pulmonary hypoplasi; in the majority of fetuses (dlO-CDH) (19). 

Controls received 1 ml of olive oil. In some experiments 60 mg Nitrofen 

was given on day 12 of gestation, resulting in a small right-sided CDH with 

only mild pulmonary hypoplasia in the majority of fetuses (dI2-CDH). Food 

and water were supplied ad libitum during the whole period of pregnancy. 

Cell cultures 

The pregnant rats were sacrificed by diethylether excess on day 21 of 

gestation (term = day 22.5) and the fetuses were aseptically removed from 

the dams and sacrificed by decapitation. Median sternotomy with extension 

into both chest cavities by bilateral supracostal incisions was performed and 

the diaphragm and lungs inspected for the presence or absence of CDH 

before removal of the lungs. For dlO-CDH only (both) lungs from fetuses 

with the typical large left-sided (missing more than half of the diaphragmatic 

crus) or bilateral CDH were pooled. For dI2-CDH only (both) lungs from 

fetuses with the typical small right-sided CDH (missing up to 30% of the 

diaphragmatic crus) were pooled. Controls did not show CDH. For each 

culture, lungs from at least 20 (up to 50) fetuses were pooled. The epithelial 

cells and fibroblasts were isolated from the fetal lungs as described in detail 

elsewhere (20,21). Although the term 'type II cells' is used in this paper, the 

cuboidal epithelium which lines the acinar tubules during the late pseudo-
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glandular and early canalicular stages of lung development does not contain 

lamellar bodies, the phenotypic marker for type II cells. In previous studies, 

it was shown that these cells do express other phenotypic features of type II 

cells and possess antigenic determinants of mature type II cells (20,22). 

Fibroblast-conditioned cortisol-colllailling media 

Fibroblast-conditioned media were prepared as described previously 

(23,24). In short, fibroblasts (from controls or d1O-CDH) that had attached 

to the tissue culture flasks during the first I-h attachment period (20) in 

minimal essential medium containing 10% fetal bovine serum were rinsed 

with serum-free MEM and grown to confluence in MEM containing 10% 

charcoal-stripped newborn calf serum. At confluence, fibroblasts were rinsed 

with serum-free MEM and subsequently incubated for 24 h in serum-free 

MEM containing 10-7 M cortisol. After exposure, the medium was collected, 

centrifuged to remove detached cells and incubated for 2 h at 58°C (23,24) 

and stored at -40°C. Portions of MEM containing 10-7 M cortisol but not 

exposed to fibroblasts, were treated in the same mamler. 

Measurement of PC and DSPC synthesis ill fetal type II cells 

At the end of the cell isolation (20) type II cells were plated in equal 

numbers (in high density) in multiwell plates. After overnight incubation of 

fetal type II cells in MEM containing 10 % fetal bovine serum, cells were 

rinsed with serum-free MEM and subsequently incubated with the media 

described above pre-mixed 1: 1 with serum-free MEM. To these media 0.5 

p.Ci/ml [Methyl-3Hjcholine was added. After 24 hours of incubation, the 

medium was removed and cells were rinsed repeatedly with phosphate 

buffered saline. Cells were scraped and homogenized. After a portion of the 
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homogenate had been kept for protein determination, an aliquot (0.2 "mol 

phospholipid phosphorus) of a natural surfactant (AlvofactR, Boehringer 

Ingelheim, Germany) was added as a carrier and lipids were extracted by the 

method of Bligh and Dyer (25). An aliquot of the extracted lipids was 

evaporated to dryness in a scintillation vial. After the addition of scintillation 

liquid (Instagel, Packard-Becker, Groningen, Netherlands) radioactivity was 

counted. Although the PC-fraction was not isolated, Rooney and Motayama 

(26) demonstrated that almost 95 % of the radioactivity incorporated from 

[MefhyPH]choline into lipid was found in PC. Therefore, this measurement 

will be considered a measure of PC synthesis. DSPC was isolated from the 

lipid extract by the method of Mason (27) and after drying, radioactivity was 

counted. 

Enzyme assays 

Enzymes were assayed in post-mitochondrial supernatants obtained 

from fetal type II cells as follows. After overnight incubation in tissue 

culture flasks and rinsing with a Tris buffer (145 mM NaCl, 50 111M Tris­

HCl, pH 7.4), attached cells were collected by scraping in homogenization 

buffer consisting of 145 mM NaCl, 50 mM Tris-HCl (pH 7.4), 50 mM NaF 

and 2.5 mM EDT A. The cells were homogenized with 50 strokes of a 

Dounce homogenizer and the homogenate was centrifuged at 300 g for 10 

min at 4°C. The resulting supernatant was centrifuged at 13000 g for 10 min 

at 4°C to obtain a postmitochondrial supernatant. This was stored at -70°C 

(14). 

CT activity was assayed in the forward direction by measuring the rate of 

incorporation of [mefhyl-14C]phosphocholine into CDPcholine. 

The incubation medium (0.1 ml) contained 50 mM Tris-succinate (pH 6.5), 
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10 mM MgAcetate, 5 mM CTP, 1 mM [Methyl)4C]phosphocholine (specific 

activity 0.45 JlCi/Jlmol) and up to 100 Jlg protein. Assays were performed in 

the absence and presence of (egg) PC / oleic acid (OA) (0.25 mM each) 

vesicles, which are known to activate the enzyme (28,29). After 20 min of 

incubation the reaction was terminated by boiling for 2 min, and the protein 

was removed by centrifugation. A 50 Jll aliquot was taken from the 

supernatant, mixed with 2 Jlmol of unlabelled CDPcholine and 8 Jlmol of 

unlabelled phosphocholine as carriers, and applied to silica H-plates which 

were developed in 0.5% NaCI in H20/methanol/concentrated NH3 (50:50:5 

v/v) for isolation of the reaction product, CDPcholine (30). Radioactivity 

was measured in a scintillation counter. 

Lysophosphatidylcholine acyltransferase activity was assayed by measuring 

the conversion of I-palmitoyl-sn-glycero-3-phosphocholine into PC using [1-

14C]palmitoyl-CoA as acyl donor (16). 

In preliminary experiments, we established that, under the conditions used, 

product formation in all assays was directly proportional to incubation time 

and amount of protein. 

Protein measurements 

Protein concentrations were determined by the method of Bradford 

(31), using bovine serum albumin as standard. 

DNA measurements 

DNA concentrations were determined in cell sonicates by the method 

described by Labarca and Paigen (32) which is based on the enhancement of 

fluorescence seen when bisbenzimidazole (Hoechst 33258) binds to DNA. 

Herring sperm DNA was used as standard. 
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Statistical analysis 

Statistical differences between various groups were analyzed by 

unpaired t-test (for two groups) or by analysis of variance with the 

Neumann-Keuls test (for more than two groups). Statistical significance was 

accepted at the p < 0.05 level (two-tailed). 

8.4 Results 

Comparison between fetal type II cells from CDH alld controls 

When 100 mg Nitrofen was given on day 10 of gestation, large left­

sided CDR with severe pulmonary hypoplasia were found in 70-80% of the 

fetuses (dlO-CDR). When 60 mg Nitrofen was given on day 12 of gestation 

small right-sided CDR with only mild pulmonary hypoplasia were found in 

70-80% of the fetuses (dI2-CDR). Fetuses from the occasional dam which 

contained < 60 % of fetuses with the typical diaphragmatic defect were not 

collected. As described under 'Methods', for tissue cultures, only lungs from 

fetuses with the typical defect (or from control rats) were collected. No 

immunohistochemical identification of cells in primary culture was per­

formed, but on phase-contrast microscopy, CDR type II cell and fibroblast 

cultures had the typical aspect of those cells (20). 

The protein/DNA ratio was not different between diO-CDR and control fetal 

type II cells (Table I). PC and DSPC synthesis were measured in confluent 

type II cells in primary culture incubated with previously prepared cortisol­

containing MEM (heated at 58°C for 2 hours) diluted I: 1 with fresh serum­

free MEM. PC and DSPC synthesis were significantly lower in diO-CDR 

compared to control fetal type II cells (Table 1). 
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Table 1. Comparison between day-21 fetal type II cells isolated 
from control fetuses and fetuses with severe CDH (dl0-CDH). 

control 

protein/DNA (pg!pg) 6,65 ± 1.44 

PC synthesis (dprn/well) 469057 ± 128298# 

DSPC synth. (dpm/well) 127233 ± 31584* 

dlO-CDH 

6.99 ± 1.72 

~31771 ± 83568# 

{9203 ± 16722* 

Results are expressed as mean ± S.D. For proteinlDNA n=5 performed in 
duplicate. PC and DSPC synthesis were measured in confluent type II cells in 
primary culture incubated with previously prepared cortisol-containing MEM 
(heated at 58°C for 2 hours) diluted I: 1 with fresh serum-free MEM. For PC 
and DSPC synthesis n= 10 (with a similar protein content of 142±78 ~giwell in 
controls and dlO-CDH); • significantly different with p<O.OOl; # p=O.OII. 

CT alld lysophosphatidylc1wlille acyltrallsferase activity ill fetal type II cells 

from controls alld from fetuses lVith mild or severe CDH 

In order to better understand why the amount of DSPC is decreased in 

CDH, we elected to measure the activity of CT and lysophosphatidylcholine 

acyl transferase because they catalyse important steps in the synthesis of 

DSPC and are known to be developmentally regulated in normal fetal type II 

cells (14,16). CT, assayed both in the absence or presence of PC/OA 

vesicles, was decreased in fetal type II cells isolated from dlO-CDH but not 

in type II cells from fetuses with d12-CDH (Fig. 1), which have a much 

milder degree of pulmonary hypoplasia. The stimulation of type II cell CT 

activity by PC/OA vesicles is low (around 20%) and not significantly 

different between control and CDH groups (Fig. 2). 

Lysophosphatidylcholine acyl transferase activity in fetal type II cells, 

although lowest in dlO-CDH, was not significantly different between controls 
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Figure 1. CTP:phosphocholine cytidylyUransferase activity in fetal type II 
cells from CDH compared to controls. Cytidylyltransferase activity was 
assayed in the absence (A) or presence (B) of phosphatidylcholineioleic acid 
(0.25 mM each) vesicles in post-mitochondrial supernatant of day-2l fetal type 
II cells isolated from lungs of controls, severe CDH (dlO-CDH) and small CDH 
(dI2-CDH). Data represent means±S.D. of 8 independent experiments for 
controls and dlO-CDH and of 4 independent experiments for dI2-CDH. Each 
measurement was perfonned in quadruplicate. * significantly different from 
control and dI2-CDH by ANOYA (p<O.OI) followed by Neumann-Keuls test. 

and both CDH groups (Fig. 3). 
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PC and DSPC synthesis in fetal type II cells incubated with jibroblast­

conditioned cortisol-collfaining medium (FCM) from lung jibroblasts of 

controls and of fetuses with severe CDH 

CT activity and thus PC and DSPC synthesis in fetal type II cells are 

regulated by a fibroblast-pneumocyte factor (FPF) produced by fetal lung 
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Figure 2. Stimulation of CTP:phosphocholine cytidylyUransferase by 
activating lipids ill fetal type II cells from CDH compared to controls. Data 
from figure I were used to calculate the activity in the presence of phosphatidyl­
choline/oleic acid vesicles as a percentage of the activity in the absence of the 
lipid vesicles. Phosphatidylcholine/oieic acid vesicles in the concentration used, 
are known to maximally activate cytidylyltransferase. Data represent 
means±S.D. of 8 independent experiments for controls and dlO-CDH and of 4 
independent experiments for dI2-CDH. Each measurement was perfonned in 
quadruplicate. 

fibroblasts (18). Therefore, to better understand the regulation of CT activity 

and PC and DSPC synthesis in CDH, we studied type II cell-fibroblast 

interactions in the Nitrofen model. FCM from fibroblasts of controls stimu­

lated PC and DSPC synthesis significantly in both control and dlO-CDH 

fetal type II cells (Table 2). FCM from fibroblasts of dlO-CDH did not 

stimulate PC and DSPC synthesis significantly in either control or dlO-CDH 

fetal type II cells (Table 2). We conclude that fetal type II cells from dlO-
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Figure 3. Lysophosphatidylcholine acyltransfel'ase activity in fetal type II 
cells from CDH compared to controls. Acyltransferase activity was assayed in 
post-mitochondrial supernatant of day-21 fetal type II cells isolated from lungs 
of controls, severe CDH (dlO-CDH) and small CDH (dI2-CDH). Data repre­
sent means±S.D. of 6 independent experiments for controls and dlO-CDH and 
of 4 independent experiments for dI2-CDH. Each measurement was perfonned 
in quadruplicate. 

CDH are able to respond well to stimulation by FCM, but fibroblasts from 

dlO-CDH do not produce adequate amounts of FPF-like activity in response 

to cortisol. 
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8.5 Discussion 

The present study is the first to describe the underlying mechanisms of 

the decreased surfactant concentration in the lungs of fetuses with CDH. 

Firstly, we studied protein/DNA ratio in type II cells from control and CDH 

fetuses because two studies using the Nitrofen-induced CDH rat model did 

find a significantly lower protein/DNA ratio in CDH lungs compared to 

control lungs, although the difference was small (9,33). We did not find a 

difference in protein/DNA ratio between CDH and control fetal type II cells 

in primary culture (Table 1). This is in agreement with the study of Sluiter et 

al. (34) who did not find a difference in protein/DNA ratio between lungs 

from control fetuses and lungs from fetuses with CDH, using the same 

Nitrofen-induced CDH rat model. Hosoda et al. (35) also found no differ­

ence in protein/DNA ratio between control lungs and hypoplastic lungs in 

two different models for pulmonary hypoplasia, a rabbit chronic amniotic 

leak model and a CDH fetal lamb model. These data suggested that cell size 

in the hypoplastic lungs was unchanged and that the hypoplasia was due to a 

decreased cell population (hypoplasia but not atrophy) (35). We demon­

strated previously that also during normal fetal rat development, 

protein/DNA ratio in whole lung (34) or isolated type II cells (14) did not 

change with advancing gestation. 

Secondly, we investigated PC and DSPC synthesis in fetal type II cells from 

control and CDH fetuses because previous studies had demonstrated that 

phospholipid and especially DSPC was decreased in lungs of fetuses with 

Nitrofen-induced CDH compared to controls (9,33). We found a decreased 

PC and DSPC synthesis in type II cells from CDH fetuses compared to 
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controls (Table I). Type II cells isolated at fetal day-21 from rats with 

severe CDH were responsive to conditioned medium from cortisol-treated 

control lung fibroblasts: PC and DSPC synthesis increased in the type II 

cells in response to FCM. The magnitude of this response was at least equal 

to that in control fetal type II cells (Table 2). Caniggia et al. (20) observed 

an at least equally good response to FCM with regard to increasing DSPC 

synthesis in type II cells from day-20 rat fetuses as in those from day-21 

fetuses, while type II cells from day-19 fetuses showed less response to 

FCM. According to their counting our experiments were performed on day 

20.5. Thus the observation that type II cells from CDH fetuses respond to 

FCM (Table 2) suggests that in lungs of CDH fetuses the immaturity of type 

II cells is not very pronounced. The ability of FCM obtained from 

fibroblasts isolated from normal fetal rat lungs at day 18 of gestation to 

increase DSPC synthesis in day-20 fetal type II cells was shown to be less 

than that of FCM from lung fibroblasts from fetuses at day 19 to day 21 of 

gestation (20). Similar developmental changes in fibroblasts, with regard to 

production of FCM stimulatory to type II cells, were shown in studies on 

mouse lung (36). Thus, the absence of a significant stimulatory effect of 

conditioned medium from cortisol-stimulated fetal lung fibroblasts isolated 

from rats with severe CDH on PC and DSPC synthesis by type II cells 

(Table 2), suggests a more pronounced immaturity of the fibroblasts than of 

the type II cells in the lungs of fetuses with CDH. 

Thirdly, we found a decreased CT activity in fetal type II cells isolated from 

dlO-CDH, which, at least partially, explains the decreased PC synthesis. 

This is consistent with a more immature state of these fetal type II cells, as 

CT activity has been shown to increase in fetal type II cells with advancing 

gestation (14). The relatively small difference between the CT activity in the 
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Table 2. Phosphatidylcholine (PC) and disaturated phosphatidylcholine (DSPC) 
synthesis in day-21 fetal type II cells incubated with fibroblast-conditioned 
cortisol-containing medium (FCM) from fibroblasts of controls and of fetuses 
with severe CDR «UO-CDR). 

lipid synthesized Rate DE synthesis (' DE synthesis in MEM+cortisol) 

MEM FCM FCM 

+cortisol control dlO-CDH 

control type II cells 

PC 100 ± 16.5* 120.6 ± 25.7* 109.9 ± 26.3 

DSPC 100 ± 18.4* 116.6 ± 20.5* 105.9 ± 17.4 

dlO-CDH type II cells 
PC 100 ± 19.7* 129.7 ± 36.1+ 110.8 ± 40.8 

DSPC 100 ± 23.2· 129.3 ± 47,9* 104.2 ± 33,3 

[Methyl-3Hjcholine incorporation into PC and DSPC was measured in control and dlO-CDH fetal 
type II cells incubated with MEM +cortisol or fibroblast-conditioned c0I1isol-containing medium 
from control or dlO-CDH fibroblasts (all diluted I: I with fresh serum-free MEM). PC and 
DSPC synthesis pel' ~g cell protein (mean ± S.D.) were expressed as % of the average value 
after exposure to MEM +coI1isol. In each type II cell culture the 3 conditions MEM +cortisol, 
FCM control and FCM dlO-CDH were tested in parallel. Each value represents 18 FCM's (or 
MEM +cortisol) tested on 4 separate type II cell cultures. Results were similar when synthesis 
rate per culture well instead of per ~g protein was used to calculate the percentages. 
* The conditions MEM+cortisol and FCM control were significantly (p<O.05) different from 
each other by one way analysis of variance (comparing the 3 conditions) followed by Neumann­
Keuls test. 

fetal type II cells from fetuses with CDR and controls, again suggests that 

type II cell immaturity in lungs from fetuses with CDR is not very pro­

nounced. CT activity in type II cells from day-21 control fetuses was not 

stimulated very much by PC/OA vesicles, which is in agreement with our 

previous findings of a more activated state of the enzyme at this stage of 
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development (29). However, the same low degree of stimulation by lipid 

vesicles was found in CDH fetal type II cells, also suggesting a highly 

activated state of the enzyme. These data suggest that the decrease in CT 

activity in type II cells from CDH fetuses is most likely explained by a 

decreased amount of the enzyme (37). FCM has been demonstrated to 

increase mRNA for CT in fetal type II cells (23). Our data can be explained 

by an immaturity of lung fibroblasts in CDH with a lower FPF production 

and as a result a lower amount of CT in the fetal type cells, resulting in 

decreased PC and DSPC synthesis. In a study on isolated fetal rat type II 

cells (16) it was found that the activity of lysophosphatidylcholine acyltrans­

ferase was lower when the cells were less mature. However, in the present 

study, we found no clear evidence for a lowered lysophosphatidylcholine 

acyltransferase activity in type II cells from CDH fetuses (Fig. 3). 

Our observations can be summarized as follows. We found a decreased 

activity of CT in fetal type II cells isolated from rats with severe CDH. This 

decreased activity of CT in fetal type II cells from fetuses with CDH may, at 

least partially, be due to a decreased capacity of lung fibroblasts to produce 

fibroblast-pneumocyte factor. Indeed, conditioned medium from cortisol­

stimulated fetal lung fibroblasts isolated from rats with severe CDH did not 

increase PC and DSPC synthesis significantly in fetal type II cells. On the 

other hand, the fetal type II cells isolated from rats with severe CDH were 

responsive to conditioned medium from cortisol-treated control lung 

fibroblasts. This suggests that in lungs of CDH fetuses the primary cause of 

decreased PC synthesis in the type II cells is immaturity of the fibroblasts. 

This conclusion has implications for future research and potential treatment 

options in CDH. Research involving CDH should not only focus on 

epithelial maturation, but also on the maturation of the lung mesenchyme and 
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epithelial-mesenchymal interactions. Treatment of CDH, preferably started 

antenatally, would ideally advance both type II cell and fibroblast matura­

tion. Epidermal growth factor has been shown to advance the production of 

FPF by lung fibroblasts in response to corticosteroids by one day in fetal 

mice (36). Thus, epidermal growth factor may be a possible candidate for 

antenatal treatment of CDH in combination with the recently studied antena­

tal administration of corticosteroids (38). The combined administration of 

antenatal corticosteroids and thyrotropin releasing hormone (TRH) was 

shown to improve pulmonary biochemical immaturity in the Nitrofen-induced 

CDH model (39). However, in the light of the recent finding of an increased 

perinatal and maternal morbidity in a large multicenter clinical trial with 

maternal administration of corticosteroids and TRH to prevent respiratory 

distress syndrome in premature infants (40), more experimental evidence is 

needed before the combination of corticosteroids and TRH for antenatal 

treatment of CDH can be used in clinical practice. 
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9.1 Summary 

Chapter 1 (Introduction). Neonatal respiratory distress syndrome (RDS) is 

caused by lung immaturity associated with surfactant deficiency. Despite the 

success of the treatment of RDS with exogenous surfactant, many problems 

remain. Surfactant treatment is clearly not a substitute for attempts to 

increase fetal lung maturation. Therefore, it is necessary to have a profound 

understanding of the regulation of surfactant synthesis during fetal lung 

maturation. Lung development is usually described in five phases. During 

the last stages of fetal lung development cell proliferation slows down and 

cell differentiation becomes more important. The maturation of the type II 

cell during this stage of development is of special importance, because it is 

the producer of surfactant. Surfactant is essential for air breathing after birth. 

It helps to open alveoli during inspiration and prevent alveolar collapse 

during expiration. This function of surfactant is due to its capacity to reduce 

surface tension at the air-liquid interface of the alveoli and to vary surface 

tension with varying alveolar inflation. Surfactant consists of about 5-10 % 

protein and > 90% lipids of which phosphatidylcholine (PC) is by far the 

most abundant. The dipalmitoyl-form of PC has been shown to be the main 

surface tension lowering component. Together with the increased surfactant 

PC production towards the end of gestation, the activity of the enzyme 

CTP:phosphocholine cytidylyltransferase (CT) increases. This enzyme has 

been shown to be a rate-limiting step in the de novo PC synthesis and to be 

regulated by hormones. Therefore, to understand the regulation of surfactant 

production during late gestation, it is important to understand the mechan­

isms of regulation of CT activity in type II cells during fetal development. 
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However, the restrictions of studying the regulation of one enzyme in one 

cell type should be kept in mind. 

Chapter 2 (Review of the literature). The primary pathway for the de novo 

PC synthesis is the CDPcholine pathway which has an increased activity 

towards the end of gestation. In this pathway, choline is phosphorylated by 

choline kinase. Phosphocholine is then converted to CDPcholine by CT. 

Finally, the phosphocholine moiety is transferred to diacylglycerol by the 

CDPcholine: 1 ,2-diacylglycerol phosphocholinetransferase to form PC. Under 

most circumstances, the activity of CT has been shown to be rate limiting in 

fetal type II cells. This enzyme has been purified and the cDNA cloned from 

rat liver and lung. The central region is thought to be the catalytic region. 

The carboxy-terminal part can be phosphorylated and dephosphorylated on 

serine residues and contains an amphipathic a-helical domain, which has 

been shown to be the lipid-binding domain. Indeed, the interaction of CT 

with lipids is essential for CT activity. The active, lipid-bound forms of the 

enzyme are either CT bound to membranes, especially membranes of the 

endoplasmic reticulum, or large CT aggregates in the presence of phospho­

lipids (so-called H-forms) in the cytosol. CT catalyses a reversible reaction 

but it is thought that in intact cells the reverse reaction is insignificant. The 

largest part of the review (chapter 2) describes the mechanisms of regulation 

of CT with emphasis on fetal type II cells in the developing lung. 

Chapter 3. In fetal type II cells during late gestation, we demonstrated an 

increased PC synthesis from several precursors. CT was found to be the only 

enzyme in the CDPcholine pathway with a developmental increase similar to 

that of PC synthesis. When CT activity was assayed in different subcellular 
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fractions, the greatest increase, as a function of development, was found in 

microsomes. This developmental increase was accompanied by a shift in 

subcellular distribution of CT activity from cytosol to microsomes in fetal 

type II cells during late gestation. This can be explained by a subcellular 

translocation of CT from cytosol to microsomes or by an increased CT gene 

expression. 

Chapter 4. We cloned the CT eDNA from fetal rat type II cells and showed 

99% sequence homology with rat liver CT eDNA. CT mRNA increased 

threefold in fetal type II cells with advancing gestation, whereas CT mRNA 

levels in lung fibroblasts remained constant. Western blotting revealed that 

CT protein content increased threefold in the microsomal fraction, but not in 

cytosol of type II cells with advancing gestation. It is concluded that the 

developmental increase in CT activity in fetal type II cells is, at least in part, 

due to increased CT gene expression resulting in a higher amount of CT 

protein. 

Chapter 5. The degree of activation of cytosolic CT by lipid vesicles 

(pC/oleic acid lOA] vesicles) was found to be gestation dependent in fetal rat 

type II cells. In contrast, microsomal CT activation by lipid vesicles 

remained constant with advancing gestation. Cytosolic lipids extracted from 

day 21 (term = 22 days) fetal type II cells were able to activate CT more 

than cytosolic lipids extracted from day 18 fetal type II cells. This develop­

mental difference in the ability to activate CT was not found with lipids 

extracted from microsomes. We conclude that cytosolic but not microsomal 

lipids are involved in the developmental activation of cytosolic CT in fetal 

type II cells at late gestation. 
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Chapter 6. We found that cAMP-dependent protein kinase activity in fetal 

type II cells had a developmental profile similar to that of CT activity. 

Purified lung CT was found to be phosphorylated in vitro by cAMP-depend­

ent protein kinase. These findings suggested a potential role of cAMP­

dependent protein kinase in the regulation of CT activity in fetal rat type II 

cells during development. However, despite phosphorylation by cAMP­

dependent protein kinase the activity of the purified CT did not change. 

Incubating fetal type II cell cytosol in vitro with cAMP-dependent protein 

kinase or stimulators or inhibitors of this kinase also did not alter CT 

activity. Treatment of intact fetal type II cells in culture with cAMP ana­

logues increased cAMP-dependent protein kinase but did not alter CT 

activity. We conclude that the increase in CT activity in fetal type II cells at 

late gestation is not regulated by cAMP-dependent protein kinase. 

Chapter 7. Protein phosphatase and protein kinase C activities were found to 

be regulated during fetal rat type II cell development at late gestation. Both 

activities first increased but then decreased on day 21 of gestation. In vitro, 

pre-incubation of purified CT or fetal type II cell cytosol with alkaline 

phosphatase increased CT activity in a concentration-dependent manner. 

Under phosphorylation conditions with sodium fluoride, a phosphatase 

inhibitor, cytosolic CT was decreased. Pre-incubation of fetal type II cell 

cytosol with a protein kinase C activator (the phorbol ester TPA) or protein 

kinase inhibitors altered protein kinase C activity but not CT activity. 

Furthermore, treatment of intact fetal type II cells in culture with either 

TPA, which did activate protein kinase C, or protein kinase C inhibitors did 

not alter CT activity. We conclude that CT activity in fetal type II cells may 

be modulated by protein phosphatases but not by protein kinase C. 
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Chapter 8. Surfactant deficiency was recently demonstrated in a rat model 

for congenital diaphragmatic hernia (CDH), induced by Nitrofen. We found 

that PC and disaturated phosphatidylcholine (DSPC) synthesis were lower in 

fetal type II cells from fetuses with CDH than from controls and this was 

associated with a lower CT activity. Conditioned medium from fetal lung 

fibroblasts stimulated with cortisol (FCM) is known to increase DSPC 

synthesis (through a fibroblast-pneumocyte factor) in fetal type II cells. In 

our experiments, FCM from control fibroblasts stimulated PC and DSPC 

synthesis in both control and CDH fetal type II cells, but FCM from CDH 

fibroblasts did not. Our data suggest that reduced PC synthesis in CDH is, at 

least in part, due to a lower CT activity in fetal type II cells which is caused 

by a decreased production of fibroblast-pneumocyte factor by lung 

fibroblasts. 

9.2 General conclusions and perspectives 

The synthesis of PC, the most abundant component of pulmonary 

surfactant, increases in maturing fetal type II cells at late gestation. This 

increased PC production is associated with an increased activity of CT, the 

rate-limiting step in the de novo PC synthesis. The increased activity of CT 

in developing type II cells can be partially explained by an increase in CT 

gene expression with a resulting higher amount of CT protein. This is in 

accordance with studies investigating spontaneous maturation of fetal rat lung 

explants (1) or fetal type II cells (2) in culture. A spontaneous increase in 

CT mRNA was found. The effect of corticosteroids on CT gene expression 

is controversial at the moment, but a study with fetal type II cells showed a 
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small but significant increase in CT mRNA in response to cortisol-containing 

fibroblast-conditioned medium (3). After stimulation with corticosteroids, an 

activation of CT is probably more important than an increased enzyme mass 

(4,5). 

The increased CT protein in fetal type II cells during normal develop­

ment was especially found in the microsomal fraction. This correlated with 

CT activities which were also found to increase more in the microsomal 

fraction. The developmental increase in activity of microsomal CT was also 

found in another study with fetal type II cells (6) and in several other studies 

with whole lung (7-10). From our data it is difficult to judge whether an 

activation of CT by a translocation from cytosol to microsomes also plays a 

role. It is possible that the newly synthesized CT remains bound to the 

microsomal membranes. One study with whole lung found good evidence for 

an activation of CT by subcellular translocation from cytosol to microsomes 

following birth (10). 

From our studies it is clear that besides an increase in CT protein, also 

the activation of CT is important during fetal type II cell development. 

Cytosolic lipids playa very important role in this developmental activation of 

CT. These data are in agreement with findings in whole lung which demon­

strate the importance of phospholipids in the developmental activation of 

cytosolic CT (11). Cytosolic CT has been shown to exist in two forms, a 

low molecular weight L-form, which is inactive in the absence of added 

phospholipids, and a high molecular weight H-form, which is active in the 

absence of added phospholipids (\2,13). The H-form is a lipoprotein com­

plex, consisting of CT and phospholipids, and is the predominant form in 

adult lung. Maternal administration of corticosteroids has been shown to 

induce the conversion of inactive cytosolic L-form to active H-form in fetal 
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lung and this effect is mediated by intracellular fatty acids (14). It is likely 

that a similar mechanism of L-form/H-form conversion plays an important 

role during fetal type II cell development but definite experimental evidence 

is lacking. However, in whole lung an increase in H-form following birth 

has been demonstrated (9). 

Our data support the regulation of CT activity by phosphorylation and 

dephosphorylation of CT in fetal type II cells. CT is dephosphorylated by 

protein phosphatases and thereby activated. It is not clear which protein 

kinases phosphorylate CT in fetal type II cells. Protein kinase C and cAMP­

dependent protein kinase are very unlikely candidates for CT 

phosphorylation, as was demonstrated by our studies. These findings with 

fetal type II cells are similar to recent findings with other cell types (15-22). 

Further studies are necessary to identify the protein kinases involved in CT 

phosphorylation. 

As discussed in chapter 2, several intriguing studies with different cell 

types, especially with hepatocytes, suggest that the different mechanisms of 

CT regulation are interdependent. For example, fatty acids have been shown 

to increase cytosolic CT activity by a conversion of L-form to H-form 

(14,23,24), to decrease the phosphorylation state of CT (25,26) and to 

promote the activation of CT by subcellular translocation from cytosol to 

microsomes (10,27-31). In addition, the cytosolic H-form and the 

microsomal form of CT have been shown to be very similar forms of the 

enzyme (32). A possible mechanism for activation is the dephosphorylation 

of CT prior to a translocation (25,33,34) of L-form to microsomal mem­

branes (32). Inactivation would involve a reversed translocation of CT from 

membranes to cytosol, where the dephosphorylated form exists (25,34) as H­

form, followed by a further deactivation by phosphorylation (25) and 
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dissociation of the H-form into inactive L-form (32)(Fig. 3, chapter 2). 

These interactions and their role in the regulation of CT during type II cell 

development need further study. 

Other possible mechanisms of CT regulation, as shown in other cell 

types, such as an activation by diacylglycerols and a feedback regulation by 

the amount of PC in membranes (see chapter 2) need further study in fetal 

type II cells. 

The relative contribution of the activation of CT versus the increase in CT 

enzyme mass during developmental and hormonal regulation of CT activity 

in fetal type II cells remains to be established. It is expected that the gene 

sequence for CT will be known soon, which will make it much easier to 

study the regulation of gene expression. Structure-function relationships will 

be further investigated with the help of site-directed mutagenesis and trans­

genic animals. New laboratory techniques will help to resolve the question of 

the recently suggested and intriguing possibility of the channelling of 

intermediates of the CDPcholine pathway from one enzyme to the next. The 

role of the cytoskeleton in this channelling will be further examined. 

Apart from the molecular mechanisms of regulation of CT in fetal type 

II cells, it is important to understand how hormonal factors, growth factors, 

extracellnlar matrix and other extracellular influences affect CT activity 

through these intracellular pathways of CT regulation. Fetal type II cell­

fibroblast interactions have been shown to be very important in modulating 

the effect of hormones and growth factors on CT activity and thus PC 

synthesis. There is good evidence for the following sequence of exogenous 

corticosteroid stimulation in fetal lung (Fig. 4, chapter 2): corticosteroids 

induce the production of fibroblast-pneumocyte factor (FPF) in lung 

fibroblasts adjacent to the alveolar epithelial cells (35) at a pre-translational 
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level (review 36); this FPF induces fatty acid synthase and other enzymes 

involved in fatty acid synthesis in fetal type II cells at a pre-translational 

level (3); this leads to an increase in fatty acid biosynthesis, and fatty acids, 

their metabolites, or lipids into which they become incorporated ultimately 

activate CT (37) by increasing cytosolic H-form and possibly translocation of 

CT from cytosol to microsomes. Our study using a rat model for CD H, 

demonstrates that this sequence can be disturbed by an abnormal lung 

development and reinforces the idea that it is at least as important to study 

mesenchyme and epithelial-mesenchymal interactions as it is to study 

epithelial cell functions. Several other hormones such as thyroid hormones, 

insulin and sex hormones, and also several growth factors such as epidermal 

growth factor (EGF) and transforming growth factor beta (TGF-Il) have been 

shown to influence this sequence of events either by influencing the produc­

tion of FPF in lung fibroblasts or by modulating the effect of FPF on fetal 

type II cells (for review see 38). That such regulatory mechanisms are not 

only important in cell culture or organ culture systems but also in clinical 

practice is illustrated by the success of the prenatal use of corticosteroids to 

prevent respiratory distress syndrome in premature infants (editorials 39,40). 

The antenatal administration of thyrotropin-releasing hormone (TRH) in 

combination with corticosteroids to accelerate lung maturity (41-43) orig­

inates from the insight gained from culture work and subsequent animal 

studies (review 38). The recent suggestion to use antenatal TRH and 

corticosteroids for lung maturation in CDH (44,45) also originates from 

laboratory data showing lung immaturity in different models of CDH 

(Chapter 8)(46-48). The same is true for the possible use of EGF (review 

38) as is currently being tested in baboons. The increased incidence of RDS 

in infants born to women with diabetes (49) can also be explained, at least in 
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part, by the insulin inhibition of the glucocorticoid-induced production of 

FPF by fetal lung fibroblasts (50). 

Our studies can help in the understanding of the mechanisms involved 

in these modulations of lung maturity. From such basic studies as the 

regulation of one enzyme in one cell type it is difficult to expect a direct 

clinical implication. The implications should be seen in the more general 

perspective of understanding underlying mechanisms that eventually lead to 

clinical applications. Some direct ideas can however be generated from our 

studies and similar studies by others. The importance of choline as a 

substrate for PC, and the influence of choline depletion on CT activity, make 

it worth to evaluate the importance of choline intake, and its precursors, by 

premature infants with RDS. The importance of lipids and fatty acids in the 

regulation of CT activity pose questions about the in vivo administration of 

lipid emulsions and their composition. Some studies demonstrate that certain 

fatty acids may stimulate CT activity better than others (14,23,24) and in 

vivo studies have demonstrated that the intravenous administration of lipids 

(Intralipid) at least influences the fatty acid composition of surfactant lipids 

(51). Phosphorylation and dephosphorylation mechanisms are frequently 

involved in the intracellular transduction of hormonal and growth factor 

signals. Thus, the influence of new (experimental) therapies with growth 

hormone, insuline-like growth factors, EGF etc .. on surfactant PC should be 

studied. The purification and potential clinical use of FPF would of course 

be very interesting. Our findings in the CDH model suggest that the role of 

the mesenchyme should be further explored and that new strategies to 

enhance lung maturity in CDH should take into account the possible ineffec­

tive FPF production by fibroblasts. It may be worth to study the effect of 

EGF in CDH because EGF has been shown to advance immature fibroblasts 
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to the production of FPF (52). Finally, the cloning of CT cDNA from rat 

lung (chapter 4) and the recent cloning of a human CT cDNA (53) suggest 

that we are not so far away from finding genetic variations in the CT gene 

that may explain some of the variation in the susceptibility to RDS in 

premature infants. This is currently being investigated for the surfactant 

protein A gene (54). 
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Samenvatting en Conclusies 

Samenvatting 

Hoojdsfllk 1 (lllieidillg): Hyaliene membraanziekte (HMZ), de belang­

rijkste reden van longproblemen bij preterme pasgeborenen, wordt veroor­

zaakt door omijpheid van de longen die gepaard gaat met een tekort aan 

surfactant. Ondanks het succes van de behandeling van HMZ met exogeen 

toegediend surfactant, blijven vele problemen onopgelost. Het is duidelijk dat 

de behandeling met surfactant aileen onvoldoende is en de pogingen om de 

foetale longrijpheid te bevorderen niet kan vervangen. Daarom is het nodig 

dat we beter begrijpen hoe de regulatie van de surfactantsynthese verloopt 

gedurende de foetale longontwikkeling. De longontwikkeling wordt gewoon­

lijk in vijf fasen beschreven. Tijdens de laatste fasen van de ontwikkeling 

vertraagt de celgroei en komt de differentiatie van de cellen op de Voor­

grond. Vooral de rijping van de type II eel is gedurende deze ontwikkelings­

fase bijzonder belangrijk,m omdat deze eel het surfactant aanmaakt. Surfac­

tant is essentieel voor de adem haling na de geboorte. Het helpt om de 

alveolen te ontplooien bij inspiratie en voorkomt het samenvallen van de 

alveolen bij expiratie. Dit is mogelijk dankzij de oppervlaktespanningsverla­

gende werking van surfactant tel' hoogte van het lucht-water oppervlak in de 

alveolen en dankzij de mogelijkheid van surfactant deze oppervlaktespanning 

aan te passen aan de inflatietoestand van de alveolus. Surfactant be staat voor 

meer dan 90 % uit velten, waarvan het fosfatidylcholine veruit het belangrijk­

ste is, en VOOI' 5-10% uit eiwitten. Het is aangetoond dat de dipalmitoyl­

vorm van fosfatidylcholine de voornaamste oppervlaktespalmingsverlagende 

component is. Tegelijkertijd met de toename van de produktie van het 
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surfaetantfosfatidyleholine aan het einde van de zwangersehap neemt de 

aetiviteit van het enzym CTP:fosfocholine eytidylyltransferase (CT) toe. Dit 

enzym katalyseert een snelheidsbepalende stap tijdens de de 1I0VO fosfatidyl­

eholinesynthese. De regulatie van de enzymactiviteit van CT staat onder 

honnonale invloed. Om de regula tie van de surfactantproduktie aan het einde 

van de zwangerschap goed te verstaan, moeten we dus de mechanismen 

begrijpen die de activiteit regelen van CT in type II cellen gedurende de 

foetale ontwikkeling. Het doel van dit proefschrift is de studie van de 

regulatie van de activiteit van CT in foetale type II cellen aan het einde van 

de zwangerschap. We moeten wei steeds voor ogen houden dat de studie van 

een enzym in een celtype uiteraard zijn beperkingen heeft, en dat de resulta­

ten niet zonder meer te extrapoleren zijn naar de klinische situatie. 

Hoofstuk 2 (Overzicht vall de literatI/III): De vool'l1aamste syntheseweg 

voor de de 1I0VO fosfatidylcholineproduktie is de CDPcholine-syntheseweg 

die een verhoogde activiteit vertoont aan het einde van de zwangersehap. In 

deze syntheseweg wordt choline gefosforyleerd door cholinekinase. Fosfo­

choline wordt dan omgezet tot CDPeholine door CT. Tenslotte wordt de 

fosfocholinegroep getransfereerd naar diacylglycerol door het CDPeholi­

ne: 1 ,2-diacylglycerol fosfocholinetransferase zodat fosfatidylcholine gevormd 

wordt. Onder de meeste omstandigheden is de activiteit van CT snelheidsbe­

palend voor deze syntheseweg in type II cellen. Vrij recent is CT volledig 

gezuiverd en het eDNA ervan gekloneerd uit de lever en longen van ratten. 

Het centrale deel van het CT -molecule wordt aanzien als het katalytische 

dee!. Het C-terminale deel kan gefosforyleerd en gedefosforyleerd worden op 

serine residuen en bevat ook een amfipathische lX-helix, waarvan aangetoond 

werd dat deze het vet-bindende deel van het enzym is. Inderdaad is de 
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interactie vall CT met velten essentieel voor de enzymactiviteit van CT. De , 
actieve, vet-gebonden vormen van CT zijn: CT gebonden aan membranen, 

vooral membranen van het endoplasmatisch reticulum, en de grote CT 

aggregaten met fosfolipiden (zogenaamde H-vormen) in het cytosol. In 

principe katalyseert CT een reversibele reactie maar men denkt dat de reactie 

in omgekeerde richting in intacte cellen onbelangrijk is. Hoofdstuk 2 be­

schrijft verder de mechanismen van de regula tie van CT met de nadruk op de 

regulatie in foetale type II cellen van de zich ontwikkelende long. 

Hoofs/uk 3: We toonden aan dat de fosfatidylcholinesynthese vanuit 

meerdere precursoren toeneemt in foe tale type II cellen bij een vorderende 

zwangerschapsduUl'. CT was het enige enzym van de CDPcholine-synthese­

weg met een toename in activiteit gedurende de longontwikkeling die 

gelijklopend was met de toename van de fosfatidylcholineproduktie. Wanneer 

de activiteit van CT gemeten werd in verschillende celfracties werd de 

grootste toename, als functie van de ontwikkeling, gevonden in de microso­

men. Tegelijkertijd met deze toename van CT activiteit in foetale type II 

cellen aan het einde van de zwangerschap, verschoof de subcellulaire 

verdeling van CT activiteit van het cytosol naar de microsomen. Dit kan 

verklaard worden door een subcellulaire translocatie (verplaatsing) van CT 

van het cytosol naar de microsomen of weI door een verhoogde expressie van 

het CT gen met een verhoogde aanmaak van het enzym. 

Hoofs/uk 4: We kloneerden het CT cDNA van foetale type II cellen 

van de rat en vonden een overeenkomst van 99 % met de sequentie van het 

CT cDNA van de lever van de rat. Het CT mRNA in de foetale type II 

cellen nam drievoudig toe met een vorderende zwangerschapsduur, terwijl 
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het CT mRNA in longfibroblasten constant bleef. Met behulp van Western 

blotting vonden we ook een drievoudige toename van het CT eiwit in de 

microsomen van type II cellen met vorderende zwangerschapsduur, maar niet 

in het cytosol van deze cellen. We concluderen dat de toename van de CT 

activiteit in foetale type II cellen gedurende de ontwikkeling tenminste voor 

een deel veroorzaakt wordt door een verhoogde expressie van het CT gen 

met een grotere hoeveelheid CT eiwit als gevolg. 

HoofS/ilk 5: We vonden dat de mate van activatie van cytosolisch CT 

door vetten (fosfatidylcholine / olelnezuur vesikeltjes) in foetale type II 

cellen afl13nkelijk was van de zwangerschapsduur. De activatie van microso­

maal CT door vetten, daarentegen, bleef constant bij een vorderende zwan­

gerschapsduur van de type II cellen. Vetten in het cytosol die onttrokken 

werden aan foetale type II cellen van dag 21 in de zwangerschap (it terme = 

dag 22) activeerden CT meer dan vetten in het cytosol onttrokken aan foe tale 

type II cellen van dag 18. Een dergelijke ontwikkelingsafhankelijke activatie 

van CT werd niet gevonden met microsomale vetten. We concluderen dat de 

vetten in het cytosol, maar niet de vetten van de microsomen, betrokken zijn 

bij de ontwikkelingsafhankelijke activatie van cytosolisch CT in foetale type 

II cellen. 

HoofS/ilk 6: We vonden dat het activiteitspatroon van het cAMP­

afl13nkelijke proteinekinase in foe tale type II cellen gedurende de ontwikke­

ling gelijkaardig verliep aan dit van CT. CT gezuiverd uit longen kon in 

vitro gefosforyleerd worden door het cAMP-afllankelijke proteinekinase. 

Deze bevindingen suggereren een 1'01 voor het cAMP-afl13nkelijke proteineki­

nase in de regula tie van de CT activiteit in foetale type II cellen tijdens de 
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longontwikkeling. Ondanks de fosforylering door het cAMP-afhankelijke 

proteinekinase vonden we echter geen verandering in de activiteit van het 

gezuiverde CT. Tevens vonden we geen verandering in de activiteit van het 

cytosolisch CT bij incubatie in vitro van cytosol van foetale type II cellen 

met het cAMP-afhankelijke proteinekinase of met stimulatoren of inhibitoren 

van dit kinase. Bij incubatie van intacte type II cellen in kweek met cAMP­

analogen verhoogde weI de activiteit van het cAMP-afhankelijke proteineki­

nase maar niet deze van CT. We concluderen dat de verhoogde activiteit van 

CT in foe tale type II cell en aan het einde van de zwangerschap niet bepaald 

wordt door het cAMP-afhankelijke proteinekinase. 

Hoofdstuk 7: We vonden dat er een regulatie bestaat van de activiteiten 

van de proteinefosfatases en van het proteinekinase C in foe tale type II cellen 

aan het einde van de zwangerschap. De beide enzymactiviteiten namen eerst 

toe bij een vorderende zwangerschapsleeftijd maar namen af op dag 21 van 

de zwangerschap. In vitro incubatie van gezuiverd CT of van cytosol van 

foetale type II cellen met alkalische fosfatase verhoogde de CT activiteit op 

een concentratie-afhankelijke manier. Onder fosforylerende omstandigheden 

met natrium fluoride, een inhibitor van fosfatases, vonden we een verlaagde 

activiteit van het cytosolische CT. Pre-incubatie van het cytosol van foetale 

type II cellen met een activator van het proteinekinase C (forbolester TPA) 

of met inhibitoren van het proteinekinase C veranderden weI de activiteit van 

het proteinekinase C maar niet die van CT. Wanneer we intacte type II 

cellen in kweek incubeerden met TP A (hetgeen de proteinekinase C activiteit 

deed toenemen) of weI met inhibitoren van proteinekinase C, zagen we ook 

geen verandering in de activiteit van CT in de cellen. We concluderen dat de 

activiteit van CT in foetale type II cellen mogelijk gemoduleerd wordt door 
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proteinefosfatases maar niet door het proteinekinase C. 

Hoofdsluk 8: Recent werd een tekort aan surfactant aangetoond in een 

rattenmodel voor congenitale hernia diafragmatica (CDH) gelnduceerd door 

Nitrofen. We vonden een lagere aanmaak van fosfatidylcholine en van 

tweevoudig verzadigd fosfatidylcholine in type II cellen van foetale ratten 

met CDH dan van controle foetussen. Dit ging gepaard met een lagere 

activiteit van CT in type II cellen van foetale ratten met CDH. Het is bekend 

dat FCM (kweekmedium dat geconditioneerd werd door foetale longfibro­

blasten die gestimuleerd werden door cortisol) de aanmaak verhoogt van 

tweevoudig verzadigd fosfatidylcholine in foetale type II cellen. In onze 

proeven vonden we dat FCM van controlefibroblasten de fosfatidylcholine en 

de tweevoudig verzadigd fosfatidylcholine produktie verhoogde zowel in 

controle als in CDH foetale type II cellen, maar dat FCM van CDH fibro­

blasten dit niet deed. Deze bevindingen suggereren dat de verlaagde aanmaak 

van fosfatidylcholine in CDH tenminste ten dele kan verklaard worden door 

een lagere activiteit van CT in de foetale type II cellen en dat dit het gevolg 

is van een verminderde produktie van de zogenaamde "fibroblast-pneumocyte 

factor" door de longfibroblasten. 
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ConcIusies 

Surfactant is nodig voor het open houden van de longblaasjes en wordt 

aangemaakt in de zogenaamde type II cellen van de long. De synthese van 

fosfatidylcholine, de belangrijkste component van surfactant, in foetale type 

II cellen neemt toe naar het einde van de zwangerschap. Dit gaat gepaard 

aan een toename van de activiteit van het enzym CTP: fosfocholine cytidylyl­

transferase (CT), dat een snelheidsbepalende stap katalyseerd in de aanmaak 

van fosfatidylcholine. Deze toegenomen activiteit van CT in foe tale type II 

cellen wordt vooral gevonden in het endoplasmatisch reticulum. Dit kan 

tenminste ten dele verklaard worden door een toegenomen CT genexpressie 

met een verhoogde aanmaak van het CT eiwit tot gevolg. Niet aileen wordt 

het enzym meer aangemaakt, het blijkt ook meer geactiveerd te worden bij 

een toenemende zwangerschapsduur. Vooral de vetten in het cytosol spelen 

een belangrijke rol in de activatie van CT in de foe tale type II cellen gedu­

rende de longontwikkeling. Mogelijk speelt ook een activering door verplaat­

sing van het enzym van cytosol naar endoplasmatisch reticulum een rol. CT 

in foetale type II cellen kan geactiveerd worden door defosforylatie door 

proteinefosfatases en geinactiveerd door fosforylatie door proteinekinases. 

Welke proteinekinases hierin een rol spelen blijft echter onduidelijk. Onze 

studies sluiten een belangrijke rol voor proteinekinase C en cAMP-afhanke­

lijk proteinekinase vrijwel uit. 

De laatste jaren is het duidelijk geworden dat de verschillende mechanismen 

voor de regulatie van de activiteit van CT niet onafhankelijk van elkaar 

functioneren maar elkaar belnvloeden. Zo stimuleren vetten in het cytosol 

niet aileen rechtstreeks de activiteit van CT maar ze bevorderen ook de 
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defosforylatie van CT en de translocatie van CT van het cytosol naar het 

endoplasmatisch reticulum. Deze complexe regulatie van de activiteit van CT 

in foetale type II cellen staat onder controle van hormonen en groeifactoren. 

In deze hormonale controle spelen fibroblast-type II eel interacties een zeer 

belangrijke rol. Een goed voorbeeld is de regulatie van CT activiteit door 

corticosteroiden. Deze induceren de productie van een "fibroblast-pneumocy­

te factor" (FPF) in fibroblasten die dicht tegen de type II cellen aanliggen. 

Dit FPF induceert vervolgens in de type II cellen een hogere aanmaak van 

het enzyme vetzuursynthase wat aanleiding geeft tot verhoogde productie van 

vetzuren. Deze vetzuren, of de vetten waarin ze ingebouwd worden, stimule­

ren de activiteit van CT in de type II cellen wat leidt tot een hogere aanmaak 

van surfactantfosfatidylcholine. Vele andere hOl'monen en groeifactoren 

hebben hun invloed via beinvloeding van deze sequentie. Dat dit niet aileen 

belangrijk is in celkweken maar ook voor de kliniek wordt gelllustreerd door 

het succes van het prenataal toedienen van glucocorticoiden aan prematuren 

ter voorkoming van HMZ. Recent wordt (experimenteel) "thyrotropin 

releasing hormone (TRH)" prenataal toegediend samen met glucocorticoiden 

om de longrijping van de prematuur te bevol'deren. Het idee hiervoor komt 

voort uit basaal wetenschappelijk ondel'zoek. Hetzelfde geldt voor het 

dierexperimenteel gebruik van 'epidermal growth factor' (EGF) tel' bevorde­

ring van de longrijpheid in apen. De verhoogde incidentie van HMZ bij 

kinderen van moeders met diabetes kan ook deels verklaard worden door de 

insuline-inhibitie van de FPF productie door de longfibroblasten. In ons 

onderzoek toonden we aan dat de verminderde aanmaak van surfactantfosfati­

dylcholine in type II cellen gelsoleerd van longen van ratten met een hernia 

diafragmatica ook kan verklaard worden door een verminderde FPF produk­

tie door de longfibroblasten. 
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Het belangrijkste doe 1 van studies zoals beschreven in dit proefschrift is het 

verkrijgen van een betel' inzicht in de mechanismen van de regulatie van de 

longrijping. Van dergelijke studies kan natuurlijk niet verwacht worden dat 

ze direct leiden tot klinische toepassingen. Het verkregen inzicht zal uiteinde­

lijk weI leiden tot verbetering van het klinisch beleid. Toch geven onze 

studies, en gelijkaardige studies door anderen, aanleiding tot enkele ideeen 

voor de kliniek. De rol van choline (substraat voor fosfatidy1choline) en de 

vets amen stelling van parenterale en orale voeding op de produktie en 

samenstelling van surfactant dienen nader bekeken worden. Aangezien 

hormonen en groeifactoren veelal hun effect uitoefenen door fosforylatie en 

defosforylatie van eiwitten in de cel, moet de invloed van deze factoren op 

de surfactantprodllktie bestudeerd worden. De zllivering van FPF en het 

mogelijk klinisch gebruik ervan zou natuurlijk' zeer interessant zijn. De 

stoornis in FPF produktie in hernia diafragmatica geeft aanleiding tot verdeI' 

onderzoek en tot behandelingen die hiermee rekening proberen te houden. 

Tenslotte zal de klonering van CT cDNA leiden tot het bestuderen van 

genetische variaties in het CT gen die mogelijk kunnen verklaren waarom 

sommige pasgeborenen gevoeliger zijn voor het krijgen van HMZ. Er is nog 

vee 1 werk te doen ... 
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