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l)SCHEDULING WITH TIME LAGS

Scheduling is essential when activities need to be allocated to scarce resources over
time. Motivated by the problem of scheduling barges along container terminals in the Port
of Rotterdam, this thesis designs and analyzes algorithms for various on-line and off-line
scheduling problems with time lags. A time lag specifies a minimum time delay required
between the executions of two consecutive operations of the same job. Time lags may be
the result of transportation delays (like the time required for barges to sail from one
terminal to the next), the duration of activities that require no resources (like drying or
cooling down), or intermediate processes on non-bottleneck machines between two
bottleneck machines.

For the on-line flow shop, job shop and open shop problems of minimizing the
makespan, we analyze the competitive ratio of a class of greedy algorithms. For the off-
line parallel flow shop scheduling problem with time lags of minimizing the makespan, we
design algorithms with fixed worst-case performance guarantees. For two special subsets
of scheduling problems with time lags, we show that Polynomial-Time Approximation
Schemes (PTAS) can be constructed under certain mild conditions. For the fixed interval
scheduling problem, we show that the flow shop problem is solvable in polynomial time in
the case of equal time lags but that it is NP-hard in the strong sense for general time lags.
The fixed interval two-machine job shop and open shop problems are shown to be
solvable in polynomial time if the time lags are smaller than the processing time of any
operation.
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Preface

It was July 1999 when I first came to Erasmus University Rotterdam. At that

time, Professor Willem Lammerts van Bueren, the founder and honorary chair-

man of the China-Holland Education & Research Center (CHERC), organized a

master class in Rotterdam for potential Chinese Ph.D. candidates. I was kindly

invited to join this class. And, from then on, I decided to pursue a Ph.D. degree

from Erasmus University. In the years that followed, I have been continuously

encouraged and supported by Willem and Professor Qifan Wang to achieve this

goal; I am very grateful for their encouragement and support.

This thesis is based on work that began in January 2007, when I came to

Erasmus University for the second time. My promotor, Professor Steef van de

Velde, led me to the research field of scheduling with time lags. At the time, we

called it the barges and container terminals problem, as its motivation lied in

port operations. The topic fitted me very well. Some initial results were found

almost immediately. Steef gave me a lot of suggestions to improve these initial and

ensuing results and my English writing style. After nearly four years of research

in this area, I think I have really become a scheduling guy. I would like to thank

Steef for cultivating my skills and taste for academic research.

I express my thanks to the other members of my Ph.D. committee for reading

the draft version and providing me with useful feedback: Professor René M.B.M.

de Koster, Professor Albert P.M. Wagelmans and Professor Bo Chen.

Since I had to visit the Rotterdam School of Management (RSM), Erasmus

University twice a year to continue my study, I express my gratitude towards
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many people who have contributed a lot to making this happen. Firstly, I thank

Weichia Tseng, the managing director of CHERC, who sent me invitation letters

twice a year to invite me to come here and helped me to cope with the administra-

tive issues of my Ph.D. Secondly, I thank Xiongwen Lu, the dean of the School of

Management, Fudan University (FDSM); Yihong Yu, the vice dean; Qiuzhi Xue,

the vice dean; and Yifan Xu, the chairman of the Department of Management

Science at FDSM, for their continuous support for my visits to the Netherlands.

Thirdly, I thank Huang Lei, the senior officer for foreign affairs at FDSM, who

kindly helped me with my visa applications every time. Then, I thank Mengfei

Yu, my best friend in Rotterdam, who generously provided free accommodation

for my short stays and has much better cooking skills than I. Next, I would like

to thank Carmen Meesters-Mirasol, the secretary of Department 6, who kindly

arranged office room for me every time and helped with the many administrative

issues at the department.

I thank my colleagues in the Department of Management of Technology and

Innovation at RSM and in the Department of Management Science, Fudan Uni-

versity, for the great working atmosphere on both sides. I really enjoy the lunch

time we spend together in the L-Building and in the Starr Building. I enjoyed

our many fruitful discussions very much.

A special word of thanks goes the Chinese group in the Department of Man-

agement of Technology and Innovation. I learned a lot from the discussions with

Yugang Yu, whose knowledge on integer programming deepened my understand-

ings of this topic. Yeming Gong generously provided the LaTex template for this

thesis and shared his many experiences in doing research with me. With Mengfei

Yu, who used AutoMod in his research, I had the pleasure of discussing common

topics in simulation.

Also, I would like to thank Professor Meine Pieter van Dijk, who acted as my

supervisor at Erasmus University in the very beginning. After his move to the

UNESCO-IHE Institute, we almost lost contact with each other. I think he will

be gratified when he sees this thesis.

I thank both Erasmus University and FDSM for supporting my study finan-

cially. The research was also supported in part by projects of the National Science

Foundation of China (No. 70832002, No. 10971034 and No. 70771028).
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1

Introduction

All things under heaven sprang from it as existing, the existence sprang from it

as non-existent.

- Lao Tzu (around 500BC)

Scheduling theory has been developed along with the evolution of modern

manufacturing, aimed to solve problems of allocating scarce resources to activi-

ties over time. The ubiquity of resource scarcity makes scheduling theory highly

relevant for a wide variety of industrial settings. The resources and activities are

commonly referred as machines and jobs, respectively, where a job may consist of

multiple operations. This thesis is concerned with the theory of scheduling with

time lags, where a time lag specifies a minimum delay between the execution of

two consecutive operations of the same job. Such a time lag may for instance arise

if the transfer of a job from one machine to the next requires a certain amount

of transportation time.

1.1 Machine scheduling

The distinguishing features of machine scheduling problems are captured by a

well-known three-field framework, which describes the machine environment, the

job characteristics, and the scheduling objective (Graham et al (1979)). In the

remainder of this section we give a short overview of the framework. For more

elaborate descriptions we refer to Hoogeveen et al (1997) and Pinedo (1995).



4 1 Introduction

Machine environment The machine environment specifies the type(s) of

machine(s) available for processing jobs. A machine may be continuously available

or have break downs. It is commonly assumed that each machine can perform at

most one operation at any time and each operation requires at most one machine

at any time. The simplest machine environment is the single machine, on which 𝑛

jobs 𝐽𝑗 (𝑗 = 1, . . . , 𝑛), each consisting of a single operation, have to be processed

for a processing time 𝑝𝑗 . In a parallel machine environment, there are𝑚machines,

all jobs consist of a single operation and each job has to be assigned to exactly

one of the machines. These 𝑚 machines may be identical or not. In flow shops,

job shops and open shops, there are also 𝑚 machines but job 𝐽𝑗 (𝑗 = 1, . . . , 𝑛)

consists of a set of 𝑚 operations, each of which requires processing on a specified

machine and no job can undergo more than one operation at a time. In a flow

shop, the order for processing the operations of job 𝐽𝑗 (𝑗 = 1, . . . , 𝑛) is fixed and

the same for all jobs; in a job shop, the order for processing the operations of job

𝐽𝑗 (𝑗 = 1, . . . , 𝑛) is fixed and not the same for all jobs; in a open shop, the order

for processing the operations of job 𝐽𝑗 (𝑗 = 1, . . . , 𝑛) is free and hence up to the

scheduler. A flow shop is called a permutation flow shop if the order in which the

jobs go through the first machine need to be maintained throughout the entire

system. A permutation schedule is defined analogously. A flexible flow shop is a

flow shop with a number of parallel machines in each stage. Flexible job shops

and flexible open shops are defined analogously.

Job characteristics A job 𝐽𝑗 may have a release date 𝑟𝑗 , by which job 𝐽𝑗 is

available for processing, a due date 𝑑𝑗 , by which job 𝐽𝑗 is expected to be finished,

and a deadline 𝑑𝑗 , by which job 𝐽𝑗 has either to be finished or discarded. If

a job completes after its due date, it is called late or tardy. The lateness of a

job is measured by the difference between its completion time and its due date.

Furthermore, each job 𝐽𝑗 may have a weight 𝑤𝑗 , by which job 𝐽𝑗 is weighted

in an objective function. For single machine problems, 𝑝𝑗 denotes the required

processing time of job 𝐽𝑗 , while for problems with 𝑚 machines, 𝑝𝑖𝑗 is the required

processing time of job 𝐽𝑗 on machine 𝑀𝑖 (𝑖 = 1, . . . ,𝑚).

If the scheduler has all relevant information for scheduling the 𝑛 jobs available

before scheduling, the scheduling problem is called an off-line problem. If the

processing of a job can be interrupted at any point in time, the problem is a

preemptive scheduling problem. If the scheduler has no access to all information
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of a problem instance and has to react to new job scheduling requests with only

a partial knowledge of the problem instance, the scheduling problem is called an

on-line problem.

Sgall (1998) distinguishes the following on-line paradigms.

(i) Jobs arriving in a list. Jobs are presented to the scheduler one by one. As

soon as a job is revealed, the scheduler knows all its characteristics, such as

its processing time, deadline, weight, etc. The scheduler has no information

of the next job and the total number of jobs. The scheduler has to assign the

job to a time interval and a machine while satisfying all constraints. Once the

scheduler sees the next job he cannot change the assignment of the previous

jobs.

(ii) Jobs arriving over time. Each job becomes available at its release time. Before

the release time of a job, the scheduler has no information about it. After the

job is revealed, the scheduler may start the job immediately or delay it. If

the on-line problem is of the clairvoyant type, the processing time of a job

becomes known at its arrival. If the on-line problem is of the non-clairvoyant

type, then the processing time of each job is unknown until it finishes.

If no information of the jobs is available but additional knowledge of about the

structure of the problem is known, the scheduling problem is called a semi-online

problem. For example, Seiden et al (2000) investigated the semi-online problem

of scheduling jobs on 𝑚 identical parallel machines where the jobs are known to

arrive in order of decreasing processing times. In this case, jobs arrive in a list

but the scheduler knows in advance that the processing time of incoming jobs are

becoming smaller and smaller.

Objective functions A schedule is a specification of the job start and com-

pletion times such that all machine and job requirements are met. The quality

of a schedule can be measured in many different ways. One is the makespan or

length of the schedule, denoted by 𝐶max. If we let 𝐶𝑗 denote the time when job 𝐽𝑗
finishes its processing, then the makespan is defined as max{𝐶1, . . . , 𝐶𝑛}, that is,
the completion time of the last completed job. A small makespan usually implies

a high utilization of the machine(s). If the scheduler cares about the total inven-

tory costs incurred by the schedule, the total weighted completion time,
∑
𝑤𝑗𝐶𝑗 ,

may work as an objective function, where 𝑤𝑗 is the weight of job 𝐽𝑗 .
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The scheduling objective may also be a function of the due dates. For example,

the lateness of job 𝐽𝑗 is defined as 𝐿𝑗 = 𝐶𝑗 − 𝑑𝑗 , and the maximum lateness
𝐿max, which is defined as max{𝐿1, . . . , 𝐿𝑛}, is a measure of the largest violation
of the due dates. The tardiness of job 𝐽𝑗 is defined as 𝑇𝑗 = max{𝐶𝑗 − 𝑑𝑗 , 0} =
max{𝐿𝑗 , 0}.
The weighted number of tardy jobs,

∑
𝑤𝑗𝑈𝑗 , is a measure for the weighted number

of jobs that are finished late, where 𝑈𝑗 is a variable that takes the value 1 if job

𝐽𝑗 is finished after its due date and the value 0 otherwise. For other objective

functions, please refer to Pinedo (1995).

Given the machine environment, job characteristics, and scheduling objectives,

a scheduling problem can be denoted by the three-field notation 𝛼∣𝛽∣𝛾, introduced
by Graham et al (1979). The first field 𝛼 specifies the machine environment, the

second field 𝛽 describes the job characteristics, and the third field 𝛾 refers to

the optimality criterion. For example, 𝐹2∣∣𝐶max is the well-known two-machine

flow shop scheduling problem to minimize the makespan. 𝑃2∣∣𝐶max is the parallel

two-machine problem to minimize the makespan, where the two machines are

identical. 𝑂2∣𝑜𝑛-𝑙𝑖𝑛𝑒, 𝑟𝑗 , 𝑙𝑗 ∣𝐶max is the on-line two-machine open shop scheduling

problem to minimize the makespan, where jobs have release times and there is a

time lag 𝑙𝑗 between the two operations of job 𝐽𝑗 , for 𝑗 = 1, . . . , 𝑛.

1.2 Computational complexity

The main goal of scheduling research is to find efficient algorithms for schedul-

ing problems. For any off-line non-preemptive deterministic scheduling problem,

the total number of feasible sequences is finite. Although possibly very large, an

optimal sequence can in principle always be found by exhaustive enumeration,

by examining all possible sequences. This is not a practical approach when the

search space is large. For many combinatorial optimization problems, enumerat-

ing all feasible solutions may take thousands of years even with the most powerful

computer in the world.

An algorithm is an 𝑂(𝑔(𝑛)) algorithm if there exists a constant 𝑐 > 0, a

function 𝑔(𝑛), and an integer 𝑛0 > 0 such that the maximum number of iterations

𝑓(𝑛) needed to find an optimal solution satisfies 𝑓(𝑛) ≤ 𝑐𝑔(𝑛) for all 𝑛 ≥ 𝑛0,

where 𝑛 is the size of a problem instance (the number of bits required to represent
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the instance by a computer as an input to the algorithm). If 𝑔 is a polynomial

function, the algorithm is called a polynomial-time algorithm. According to Garey

and Johnson (1979), a problem has not been ”well-solved” until a polynomial-

time algorithm is known for it, since polynomial-time algorithms typically require

much less computing time than non-polynomial time algorithms.

Encoding scheme The size of a problem instance is related to the encoding

scheme used. For example, consider an instance of 𝑃2∣∣𝐶max with 5 jobs (𝑛 = 5)

and processing times 2, 3, 5, 9, and 8. An unary encoding scheme uses 𝑘 ones to

represent the number 𝑘. The instance of the 𝑃2∣∣𝐶max problem is then encoded

as

11, 111, 11111, 111111111, 11111111.

Therefore, the size of the instance is 2 + 3 + 5 + 9 + 8 = 27.

If all the data were presented in binary encoding, the above instance would be

encoded as

10, 11, 101, 1001, 1000.

The size of the instance is then 2 + 2 + 3 + 4 + 4 = 15. Hence, the value 𝑘 has

size 𝑘 in unary encoding but has size ⌊𝑙𝑜𝑔2𝑘⌋+ 1 in binary encoding.
Suppose an algorithm is a polynomial-time algorithm where the time complex-

ity is a function of the size of the problem instance in unary encoding, i.e., an

𝑂(𝑔(𝑛)) algorithm where 𝑛 is the size in unary encoding. If the encoding scheme

is changed to binary encoding, the problem size may decrease to 𝑛′ = ⌊𝑙𝑜𝑔2𝑛⌋+1
with 𝑛 ≥ 2𝑛′−1. The algorithm then becomes an 𝑂(𝑔(2𝑛

′
)) algorithm, which is

not a polynomial-time algorithm any more in binary encoding.

Usually, an algorithm is said to be polynomial-time only if the encoding scheme

is binary. An algorithm that runs in polynomial time with respect to an unary

encoding scheme is called a pseudo-polynomial algorithm.

Classes P and NP In complexity theory, a decision problem is a problem

that requires a ”yes” or ”no” answer. Every combinatorial optimization problem

has a corresponding decision problem. For example, for the 𝐹2∣∣𝐶max problem,

the corresponding decision problem is: is there a schedule that completes within

the given makespan 𝐶?

If for any yes instance of a decision problem, there exists a verifier algorithm

that can check in polynomial time whether the instance is indeed a yes instance,

the decision problem is said to belong to the class NP. For example, if a schedule
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for a problem instance of 𝐹2∣∣𝐶max is claimed to have a makespan less than C,

we can easily verify this claim in polynomial. Hence, 𝐹2∣∣𝐶max belongs to class

NP.

Class P is a subset of class NP. A decision problem is said to belong to class

P, if it can be answered by a polynomial-time algorithm which can also be used

to verify any yes instance of the problem. Problems in class P are so-called easy

problems.

Class NP-complete is another subset of class NP. A decision problem A in

NP is called NP-complete if all other problems in NP polynomially reduce to

A. We say that a decision problem A polynomially reduces to another decision

problem B if, given any instance 𝑥 of A, we can construct an instance 𝑦 of B

within polynomial (in size of 𝑥) time such that 𝑥 is a yes instance of A if and

only if 𝑦 is a yes instance of B (Papadimitriou and Steiglitz (1998)). Therefore, if

any NP-complete problem can be solved in polynomial time, then all problems in

class NP can be solved in polynomial time. Since no polynomial-time algorithm

has ever been found for an NP-complete problem, problems in class NP-complete

are called hard problems.

A decision problem A is called NP-hard if all other problems in NP polyno-

mially reduce to A, and problem A may be in class NP or not. Therefore, class

NP-complete is a subset of class NP-hard.

For a subset of problems in class NP-hard, pseudo-polynomial algorithms may

exist. A decision problem is so called weakly NP-hard/NP-complete if it has a

pseudo-polynomial algorithm. A strongly NP-hard/NP-complete problem cannot

have a pseudo-polynomial algorithm unless P=NP.

An optimization problem is called strongly/weakly NP-hard/NP-complete if

its corresponding decision problem is strongly/weakly NP-hard/NP-complete.

1.3 Performance measurements

Given a scheduling problem, we first need to identify whether the problem is in

class P or class NP-hard, and if it is in class NP-hard, we need to further explore

whether it is weakly or strongly NP-hard. Brucker and Knust (2010) have made

a near complete list of the complexity results of the best-known scheduling prob-

lems. Scheduling problems are grouped by machine environments, such as single
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machine problems, parallel machine problems, etc., and then classified into five

categories: maximal polynomially solvable, maximal pseudo-polynomially solv-

able, minimal NP-hard, minimal open and maximal open.

For NP-hard problems, optimization algorithms may work for small prob-

lem instances only. For large scale problem instances, the approach is typically

aimed at finding a near-optimal solution, since the search for an optimal solution

may take a prohibitively large amount of time. To evaluate the performance of

an approximation algorithm, we use worst case ratio for off-line algorithms and

competitive ratio for on-line algorithms.

Worst case ratio Given an off-line NP-hard scheduling problem A of mini-

mizing an objective function 𝑓 , we define 𝑓𝐻(𝐼) to be the objective value of the

solution given by a polynomial-time algorithm 𝐻 for an instance 𝐼, and 𝑓∗(𝐼) to
be the value of an optimum schedule. If for all 𝐼 ∈ 𝒳, where 𝒳 is the set of all

instances of the problem, it holds that

𝑓𝐻(𝐼) ≤ 𝜌𝑓∗(𝐼)

for a specific constant 𝜌 ≥ 1, then algorithm 𝐻 is called a 𝜌-approximation

algorithm for problem A. The worst case (performance) ratio of algorithm 𝐻 is

defined as

𝑅𝐻 = sup
𝐼∈𝒳
(
𝑓𝐻(𝐼)

𝑓∗(𝐼)
).

By definition, we have 𝑅𝐻 ≤ 𝜌. If we have found an instance 𝐼 ′ such that
𝑓𝐻(𝐼′)
𝑓∗(𝐼′) = 𝜌, then the approximation ratio of algorithm 𝐻 is said to be tight and

𝑅𝐻 = 𝜌. The ratio is used to measure the quality of an algorithm and to compare

different algorithms.

For any 𝜀 > 0, algorithm 𝐻 is said to be an approximation scheme for problem

A if

𝑓𝐻(𝐼) ≤ (1 + 𝜀)𝑓∗(𝐼).
𝐻 is said to be a polynomial time approximation scheme, abbreviated as PTAS,

if for each fixed 𝜀 > 0, its running time is bounded by a polynomial in the size

of the instance 𝐼. If the running time of 𝐻 is bounded by a polynomial in the

size of the instance 𝐼 and 1/𝜀, then 𝐻 is a fully polynomial time approximation

scheme, abbreviated as FPTAS. No strongly NP-hard optimization problem can
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have an FPTAS unless P=NP, if the value of the objective function is bounded

by a polynomial in the unary size of instance 𝐼 (Vazirani (2004)).

Competitive ratio The competitive ratio in an on-line scheduling environ-

ment is the equivalent of the worst case ratio in an off-line scheduling environ-

ment. For any on-line scheduling problem A of minimizing an objective function

𝑓 , let 𝑓𝐻(𝐼) denote the objective value of the schedule give by some polynomial-

time algorithm 𝐻 for an instance 𝐼, and let 𝑓∗(𝐼) be the optimal objective value
of the off-line version of the problem. If for all 𝐼 ∈ 𝒳, where 𝒳 is the set of all

instances of the problem

𝑓𝐻(𝐼) ≤ 𝑐𝑓∗(𝐼),

for some constant 𝑐 ≥ 1, then algorithm 𝐻 is called a 𝑐-competitive algorithm for

problem A. The competitive ratio of algorithm 𝐻 is defined as

𝑅𝐻 = sup
𝐼∈𝒳
(
𝑓𝐻(𝐼)

𝑓∗(𝐼)
),

and we have 𝑅𝐻 ≤ 𝑐. If there exists an instance 𝐼 ′ such that 𝑓𝐻(𝐼′)
𝑓∗(𝐼′) = 𝑐, then the

competitive ratio of algorithm 𝐻 is tight and 𝑅𝐻 = 𝑐.

1.4 Time lags

A time lag is the minimum time delay required between the execution of two

consecutive operations of the same job. Mitten (1959) was the first to consider

a scheduling problem with time lags; in his problem, jobs need to be processed

by a number of non-bottleneck machines in between two bottleneck machines.

The total time required for processing a job 𝐽𝑗 (𝑗 = 1, . . . , 𝑛) on the intermediate

non-bottleneck machines may then be represented as a certain time lag 𝑙𝑗 . For

this problem, denoted by 𝐹2∣𝑙𝑗 ∣𝐶max, Mitten (1959) shows that an optimal per-

mutation schedule can be found in polynomial time. Yu (1996) proved that the

problem 𝐹2∣𝑙𝑗 , 𝑝𝑗 = 1∣𝐶max is strongly NP-hard if non-permutation schedules are

allowed.

Time lags can represent the following:

(i) Transportation delays. When the time needed to move a job from one ma-

chine to another is not negligible, we have to take transportation delays into
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account when constructing a schedule. The implicit assumption is that there

is a sufficient number of vehicles to carry out the transportation, or, that jobs

may travel by themselves, like trucks and barges loading and unloading at

terminals and traveling between them.

(ii) Activities that require no limited resources. In many industries, activities re-

quire no limited resources other than time. Examples include the fermentation

process in the food industry, the cooling down process in metal casting, and

the sun-drying process in the agricultural industry.

(iii)Intermediate processes. In a manufacturing/service system, processes between

two bottleneck machines may often be modeled as activities that require no

limited resources.

1.4.1 Classification of time lags

When we talk about time lags, we usually refer to minimal time lags, that is, the

minimal amount of time required to elapse between two consecutive operations of

a job. In a feasible sequence, the actual time between two consecutive operations

may be larger than the minimal time lag. A maximal time lag specifies an upper

bound on the time delay between two consecutive operations of a job.

A scheduling problem may include both minimal and maximal time lags. The

classical scheduling setting is one in which all minimal time lags are equal to zero

and all maximal time lags are infinite, whereas the no-wait situation implies that

all the minimal and maximal time lags are equal to zero. In the fixed interval

scheduling problem, job 𝐽𝑗 has a minimal time lag 𝑙𝑗 and a maximal time lag 𝜏𝑗 ,

where 𝑙𝑗 = 𝜏𝑗 for 𝑗 = 1, . . . , 𝑛.

The minimal (maximal) time lag between two consecutive operations of a

job may be job-dependent or job-independent, machine-dependent or machine-

independent. Let 𝑙𝑗𝑘𝑙 denote the minimum time delay required by job 𝐽𝑗 when

transferring from machine 𝑀𝑘 to machine 𝑀𝑙. The time lag is denoted by 𝑙𝑗 if it

is machine-independent, while it is denoted by 𝑙𝑘𝑙 if it is job-independent.

A time lag requires no additional resources/machines. If jobs would need ad-

ditional resources during their time lags, the additional resources could be mod-

eled as machines. For example, the problem where a single robot transports jobs

from one machine to the next in the two-machine flow shop problem of minimiz-

ing the makespan is equivalent to the classical three-machine flow shop problem
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𝐹3∣∣𝐶max. Brucker and Knust (2010) summarized NP-hardness results for flow

shop problems with transportation times and a single robot.

The focus of this thesis is on scheduling problems with minimal time lags with

no bottlenecks resources required during those time lags.

1.4.2 Complexity results

Tables 1.1 and 1.2, adapted from Brucker and Knust (2010), list the complexity

results for flow and open shop scheduling problems with minimal time lags.

Table 1.1. Complexity results for flow shop problems with minimal time lags

∙ Polynomially solvable problems
𝐹2∣𝑝𝑖𝑗 = 1; 𝑙𝑗 ∈ {𝑇1, 𝑇2}∣𝐶max Yu (1996)
𝐹2∣𝑙𝑗 = 𝑇 ∣𝐶max Johnson (1954)
𝐹 ∣𝑝𝑖𝑗 = 1, 𝑙𝑗 ∣

∑
𝐶𝑗 Brucker et al (2004)

𝐹 ∣𝑝𝑖𝑗 = 1, 𝑙𝑘, 𝑟𝑗 ∣
∑
𝑤𝑗𝑈𝑗 Single-machine problem

𝐹 ∣𝑃𝑖𝑗 = 1, 𝑙𝑘, 𝑟𝑗 ∣
∑
𝑤𝑗𝑇𝑗 Single-machine problem

∙ Strongly NP-hard problems
𝐹2∣𝑝𝑖𝑗 = 1, 𝑙𝑗 ∣𝐶max Yu (1996)
𝐹2∣𝑙𝑗 ∈ {𝑇1, 𝑇2}∣𝐶max Yu (1996)
𝐹2∣𝑟𝑗 ∣𝐶max Lenstra et al (1977)
𝐹3∣∣𝐶max Garey et al (1976)
𝐹2∣∣𝐿max Lenstra et al (1977)
𝐹2∣∣∑𝐶𝑗 Garey et al (1976)
𝐹2∣𝑝𝑖𝑗 = 1, 𝑙𝑗 , 𝑟𝑗 ∣

∑
𝐶𝑗 Brucker et al (2004)

𝐹2∣𝑝𝑖𝑗 = 1, 𝑙𝑗 ∣
∑
𝑤𝑗𝐶𝑗 Brucker et al (2004)

1.4.3 Approximation algorithms

Since most scheduling problems with time lags are strongly NP-hard, we focus on

the design and analysis of approximation algorithms. Only few worst-case perfor-

mance guarantee results are known for approximation algorithms for scheduling

problems with time lags.
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Table 1.2. Complexity results for open shop problems with minimal time lags

∙ Polynomially solvable problems
𝑂∣𝑝𝑖𝑗 = 1; 𝑙𝑗𝑘𝑙 = 𝑇 ∣𝐶max Rayward-Smith and Rebaine (1992)
𝑂2∣𝑝𝑖𝑗 = 1, 𝑙𝑗𝑘𝑙, 𝑟𝑗 ∣𝐶max Brucker et al (2004)
𝑂2∣𝑝𝑖𝑗 = 1, 𝑙𝑘𝑙∣𝐶max Knust (1999)
𝑂2∣𝑝𝑖𝑗 = 1, 𝑙𝑘𝑙∣

∑
𝑤𝑗𝐶𝑗 Brucker et al (2004)

𝑂2∣𝑝𝑖𝑗 = 1; 𝑙𝑗𝑘𝑙 = 𝑇 ∣
∑
𝑈𝑗 Brucker et al (2004)

∙ Strongly NP-hard problems
𝑂2∣𝑙𝑗𝑘𝑙 = 𝑇 ∣𝐶max Yu (1996)
𝑂2∣𝑙𝑗 = 𝑇1, 𝑇2∣𝐶max Yu (1996)
𝑂3∣∣𝐶max Gonzalez and Sahni (1976)
𝑂∣𝑝𝑖𝑗 = 1, 𝑙𝑘𝑙 = 𝑙𝑙𝑘∣𝐶max Rayward-Smith and Rebaine (1992)
𝑂2∣𝑝𝑖𝑗 = 1, 𝑙𝑗 ∣𝐶max Yu (1996)
𝑂2∣𝑟𝑗 ∣𝐶max Lawler et al (1981)
𝑂2∣∣∑𝐶𝑗 Achugbue and Chin (1982)
𝑂2∣𝑝𝑖𝑗 = 1, 𝑙𝑗 , 𝑟𝑗 ∣

∑
𝐶𝑗 Brucker et al (2004)

𝑂2∣𝑝𝑖𝑗 = 1, 𝑙𝑗 ∣
∑
𝑤𝑗𝐶𝑗 Brucker et al (2004)

𝑂∣𝑝𝑖𝑗 = 1, 𝑟𝑗 ∣
∑
𝑈𝑗 Kravchenko (2000)

Flow shop For the two-machine flow shop environment, Dell’Amico (1996)

provided a 2-approximation algorithm for 𝐹2∣𝑙𝑗 ∣𝐶max. Karuno and Nagamochi

(2003) improved on this and gave an 11
6 -approximation algorithm. Ageev (2008)

showed that the worst case ratio could be improved to 3
2 if 𝑝1𝑗 = 𝑝2𝑗 for each job

𝐽𝑗 (𝑗 = 1, . . . , 𝑛).

Open shop For the two-machine open shop environment, Strusevich and Re-

baine (1995) presented a 7
4 -approximation algorithm for 𝑂2∣𝑙ℎ𝑖𝑗 = 𝑙ℎ𝑗𝑖∣𝐶max. This

bound was improved to 3
2 by Strusevich (1999). Rebaine and Strusevich (1999)

presented an 8
5 -approximation algorithm for 𝑂2∣𝑙𝑖𝑗 ∣𝐶max. Rebaine (2004) pre-

sented a 2-approximation algorithm for 𝑂2∣𝑙ℎ𝑖𝑗 ∣𝐶max and a (
7
4− 1

2𝑛)-approximation

algorithm for 𝑂2∣𝑝𝑖𝑗 = 𝑝, 𝑙ℎ𝑖𝑗 ∣𝐶max, where 𝑛 is the number of jobs.

1.5 Some practical problems

We now give two examples of machine scheduling problems with time lags.
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Example 1.1: Barges loading and unloading containers at terminals

in the Port of Rotterdam (Douma (2008)) In the Port of Rotterdam,

there are three clusters of container terminals: Maasvlakte, Botlek, and Vier-

havens/Mervehaven (see Figure 1.1).

Fig. 1.1. Layout of the Port of Rotterdam. (Adapted from Douma (2008))

Each barge has a sailing plan that specifies the container terminals that need

to be called upon for unloading and loading containers, and sailing between clus-

ters takes about one or two hours, whereas sailing from one terminal to another

terminal in the same cluster takes about 20 minutes. The main objective of a

barge operator is to minimize possible delays in the sailing schedule, which deter-

mines the time at which a barge is planned to be in the port and at its hinterland

destinations. The way containers are stacked on the barge limits the sequence in

which terminals can be visited. If a barge operator decides to visit terminals in

a different order, it might happen that a barge has not unloaded enough con-

tainers to load the containers available at the next terminal. The loading and

unloading time of a barge depends on the speed of the terminal cranes, which

may vary between 35 and 45 containers per hour. The Port of Rotterdam’s main

objective is to minimize the congestion in the port (Van Groningen (2006)). The

key performance indicators include the fraction of barges leaving the port late,
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the average barge tardiness, the average level of congestion per hour, and the

maximum level of congestion per hour.

The problem of scheduling barges along container terminals can be modeled

as a machine scheduling problem with time lags, where the jobs are the barges

coming to and sailing in the Port of Rotterdam, and the machines are the con-

tainer terminals in the port. If a barge’s sequence of container terminals to be

called upon is fixed, then the scheduling environment is a job shop. Otherwise the

scheduling environment is an open shop. If the processing times, release times,

and the total number of barges are known before they arrive, the scheduling prob-

lem is an off-line problem; otherwise, the problem is an on-line problem. If the

container terminal handling times are fixed, the on-line problem is clairvoyant. If

the processing time of each barge is unknown until it is finishes, the on-line prob-

lem is non-clairvoyant. The scheduling objective could be to minimize
∑
𝑤𝑗𝑈𝑗 ,∑

𝑤𝑗𝑇𝑗 ,
∑
𝑤𝑗𝐶𝑗 , 𝐶max, etc.

Example 1.2: The coffee production process (Simeonov and Simeonovová

(1997)). Figure 1.2 shows the material flow in a coffee production facility with a

single roasting machine. Its per hour output is known and identical for all types of

coffee. A pipeline system transports the ground coffee to silos. Coffee is degassed

immediately after roasting. For this purpose, it is stored in eight degassing silos

of known maximum capacity. Only the same type of coffee can be stored in a silo.

The minimum duration of degassing after roasting is specified by the technology

and must be strictly adhered to. Besides this, the maximum period of keeping

coffee in the silo is also limited. Refer to Table 1.3 for an example with three

types of coffee with their minimum and maximum storage times in hours.

Table 1.3. Minimum and maximum storage times in hours

Type of coffee minimum storage time maximum storage time

Coffee type A 8 50
Coffee type B 10 50
Coffee type C 12 50
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Fig. 1.2. Material flow in coffee production. (Adapted from Simeonov and Simeonovová
(1997))

Coffee is transported from the silos to the mills by a tube system controlled

by the dispatcher. Coffee is ground in two mills, and their per hour output is

known. Ground coffee is transported via the pipeline system to the containers,

where additional degassing is carried out. The maximum capacity of each con-

tainer is known. The duration of degassing after grinding is again specified by

the technology. For the three types of coffee it is as follows:

Table 1.4. Minimum and maximum degassing times in hours

Type of coffee minimum degassing time maximum degassing time

Coffee type A 2.5 14.5
Coffee type B 20 30
Coffee type C 6 17
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After degassing the containers are transported to three packaging machines,

where coffee is poured into the loader of the packaging machine. The per hour

output of the packaging machine depends on the type of coffee. Some products

require a certain packaging machine; others can be processed on any packaging

machine.

The problem is to generate a feasible production schedule that maximizes the

production throughput. This problem can be modeled as a scheduling problem

with time lags. Jobs are production lots, and the machines are the roasting ma-

chine, silos, mills, containers, and packaging machines. Since there are a number

of parallel machines in each stage, the environment is a flexible flow shop. The

transportation times between machines can be modeled as minimal time lags.

The scheduling problem also includes maximal time lags induced by the max-

imal degassing times. Since all data and information are available beforehand,

the problem is an off-line problem. The scheduling objective function could be

to minimize
∑
𝑤𝑗𝑈𝑗 ,

∑
𝑤𝑗𝑇𝑗 ,

∑
𝑤𝑗𝐶𝑗 , 𝐶max, etc.

1.6 Outline of the thesis

The thesis contains four parts and seven chapters. The first part is the introduc-

tory chapter. The second part includes Chapters 2 and 3, both devoted to on-line

problems, while the third part includes Chapters 4 to 6, devoted to off-line prob-

lems. The concluding chapter is the fourth and last part.

In Chapter 2, we consider the on-line two-machine job shop makespan schedul-

ing problem with minimal time lags. We prove that the greedy algorithm is 2-

competitive. For the non-clairvoyant variant of the problem, no on-line algorithm

can do better. For the clairvoyant variant, no on-line delay algorithm has a com-

petitive ratio better than
√

5+1
2 ≈ 1.618, and the greedy algorithm is still the

best on-line non-delay algorithm. We also show that the same results hold for

two machine flow shop problem with time lags. This chapter is based on Zhang

and Van de Velde (2010c).

In Chapter 3, we consider the on-line two-machine open shop makespan

scheduling problem with minimal time lags. The competitive ratio for the greedy

algorithm is 2, and it can be reduced to 5/3 if the maximum time lag is less than

the minimum positive processing time of any operation. These ratios are tight.
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We also prove that no on-line non-delay algorithm can have a better competi-

tive ratio. As far as delay algorithms are concerned, no algorithm can do better

than the greedy algorithm for the non-clairvoyant variant of the problem. For

the clairvoyant variant, no on-line delay algorithm has a competitive ratio better

than
√
2. This chapter is based on Zhang and Van de Velde (2010d).

In Chapter 4, we consider the NP-hard problem of scheduling 𝑛 jobs on 𝑚

parallel two-stage flow shops so to minimize the makespan. This problem decom-

poses into two subproblems; assigning each job to one of the parallel flow shops,

and then scheduling the jobs assigned to the same flow shop by use of Johnson’s

rule. For 𝑚 = 2, we present a 3
2 -approximation algorithm, and for 𝑚 = 3, we

present a 15
7 -approximation algorithm. Both algorithms run in 𝑂(𝑛 log 𝑛) time.

This chapter is based on Zhang and Van de Velde (2010a).

In Chapter 5, we identify two classes of machine scheduling problems with

time lags that possess Polynomial-Time Approximation Schemes (PTASs). These

classes together, one for minimizing makespan and one for minimizing total com-

pletion time (
∑
𝐶𝑗), include many well-studied time lag scheduling problems.

The running times of these approximation schemes are polynomial in the num-

ber of jobs but exponential in the number of machines and the ratio between the

largest time lag and the smallest positive operation time. These classes consti-

tute the first PTAS results for scheduling problems with time lags. This chapter

is based on Zhang and Van de Velde (2009).

In Chapter 6, we introduce and analyze the fixed interval shop scheduling

problem, where the objective is to maximize the weighted number of jobs that

can be processed in a two-stage flow, job, or open shop, if each job has a fixed start

and finish time and requires a given transportation time, a time lag, for moving

from one stage to the other. We prove that the two-machine fixed interval flow

shop problem is NP-hard in the strong sense for general time lags, even in case

of unit processing times. The problem is solvable in polynomial time if all time

lags are equal. The two-machine fixed interval job shop and open shop problems

are solvable in 𝑂(𝑛3) time if the time lags are identical and relatively small. This

chapter is based on Zhang and Van de Velde (2010b)

Finally, in Chapter 7, we summarize our results for machine scheduling prob-

lems with time lags. We also point out promising directions for further research.
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On-Line Algorithms





2

Two-Machine Job Shop1

In the kingdom of the blind, the one-eyed man is king.

- Desiderius Erasmus(1466-1536)

In this chapter, we consider the on-line two-machine job shop scheduling problem

with time lags so as to minimize the makespan. Each job consists of no more than

two operations and time lags exist between the completion time of the first and

the start time of the second operation of any two-operation job. We prove that

any greedy algorithm is 2-competitive. For the non-clairvoyant variant of the

problem, no on-line algorithm can do better. For the clairvoyant variant, no on-

line delay algorithm has a competitive ratio better than
√

5+1
2 ≈ 1.618, and a

greedy algorithm is still the best on-line non-delay algorithm. We also show that

the same results hold for the two-machine flow shop problem with time lags.

2.1 Introduction

We consider the two-machine job shop problem with time lags, where jobs arrive

over time, to minimize the makespan. In such a system, there is a set 𝒥 of 𝑛

independent jobs 𝐽1, . . . , 𝐽𝑛 that needs scheduling on two machines 𝑀1 and 𝑀2.

Each job 𝐽𝑗 ∈ 𝒥 consists of no more than two operations 𝑂𝑖𝑗 (𝑖 = 1, 2), and

1 This chapter is based on a paper that has been published in the Information Processing
Letters. (Zhang and Van de Velde (2010c))
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operation 𝑂𝑖𝑗 requires processing on machine 𝑀𝑖 during an uninterrupted non-

negative processing time 𝑝𝑖𝑗 (𝑖 = 1, 2; 𝑗 = 1, . . . , 𝑛). The sequence of operations

for each job is prescribed. Let 𝒥1 be the set containing all jobs for which 𝑂1𝑗 has

to be scheduled before 𝑂2𝑗 or 𝑂2𝑗 is missing (hence need not be scheduled), and

let 𝒥2 be the set containing all jobs for which 𝑂2𝑗 has to be scheduled before 𝑂1𝑗

or 𝑂1𝑗 is missing, where 𝑗 = 1, . . . , 𝑛. We have 𝒥 = 𝒥1 ∪ 𝒥2.

Either machine is available from time 0 onwards and can handle only one job

at a time. For each job 𝐽𝑗 there is a time lag 𝑙𝑗 required between the completion

of its first and the start of its second operation. All jobs have release times,

which means that the first operation of any job 𝐽𝑗 cannot be started before its

release time 𝑟𝑗 (𝑗 = 1, . . . , 𝑛). Preemption of jobs, that is, interrupting a job and

resuming in at a later point in time, is not allowed. The objective is to minimize

the maximum completion time 𝐶max, that is, to find a schedule of minimum

length or makespan. Following the standard three-field 𝛼∣𝛽∣𝛾 scheduling notation
Graham et al (1979)), we denote the problem as 𝐽2∣𝑜𝑗 ≤ 2, 𝑟𝑗 , 𝑙𝑗 ∣𝐶max, where 𝑜𝑗
is the number of operations of job 𝐽𝑗 (𝑗 = 1, . . . , 𝑛). If 𝒥

2 = ∅ or 𝒥1 = ∅, the
problem reduces to the corresponding two-machine flow shop problem, denoted

as 𝐹2∣𝑟𝑗 , 𝑙𝑗 ∣𝐶max.

Time lags have several practical interpretations. They can model the trans-

portation times between machines if the number of vehicles is not restrictive,

or if the jobs can travel by themselves, like for example barges sailing between

port terminals for loading and unloading containers. Time lags can also model

required heating or cooling down times.

The complexity of the off-line version of 𝐽2∣𝑜𝑗 ≤ 2, 𝑟𝑗 , 𝑙𝑗 ∣𝐶max, where all job

data are known a priori, is relatively well understood. It is strongly NP-hard, even

in the case of unit processing times, since the two-machine flow shop problem

𝐹2∣𝑝𝑖𝑗 = 1, 𝑙𝑗 ∣𝐶max is already strongly NP-hard (Yu (1996); Yu et al (2004)).

Dell’Amico (1996) showed that any instance of 𝐽2∣𝑜𝑗 ≤ 2, 𝑙𝑗 ∣𝐶max can be solved

by solving two instances of 𝐹2∣𝑙𝑗 ∣𝐶max. Therefore, if all time lags are equal or

if the solution of 𝐹2∣𝑙𝑗 ∣𝐶max is restricted to the class of permutation schedules,

the related two cases of 𝐽2∣𝑜𝑗 ≤ 2, 𝑙𝑗 ∣𝐶max are polynomially solvable (See Table

1.2). Panwalkar (1973) identified another well-solvable special case of the job shop

problem with time lags. As far as we know, no approximation algorithm has been

developed for the general 𝐽2∣𝑜𝑗 ≤ 2, 𝑙𝑗 ∣𝐶max problem.
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We study the on-line version, where the jobs dynamically arrive at a priori

unknown points in time (the so-called release times) and the job data are not

known a priori. We also do not know the number of jobs to be scheduled. In

particular, we study the non-clairvoyant variant, in which the processing time

of an operation is unknown until it has finished, and the required time lag is

unknown until it has elapsed.

The quality of an on-line algorithm is typically measured by its competitive

ratio, and an on-line algorithm is called 𝜌-competitive if the objective value of

the schedule produced by the on-line algorithm is at most 𝜌 times the value of an

optimal off-line solution, for any instance of the problem. An on-line algorithm

is called best possible if no one-line algorithm has a lower competitive ratio.

Results for on-line job shop and flow shop scheduling problems with time

lags are very scarce. For the case with unit execution time and arbitrary time

lags without release times, Rayward-Smith and Rebaine (2008) present (2− 3
𝑛+2)-

competitive algorithms for 𝐹2∣𝑜𝑛-𝑙𝑖𝑛𝑒, 𝑝𝑖𝑗 = 1, 𝑙𝑗 ∣𝐶max, where 𝑛 is the number

of jobs. The competitive ratio is proved to be tight, which means that the ratio

holds with equality for specific instances of the problem. For the case without

time lags, Sgall (1998) shows that no deterministic algorithm is better than 2-

competitive for 𝐹2∣𝑜𝑛-𝑙𝑖𝑛𝑒∣𝐶max. For the on-line two-machine open shop problem

with time lags, Zhang and Van de Velde (2010d) prove that any greedy algorithm

has a tight competitive ratio of 2 and this ratio is 5/3 in the case of small time

lags, that is, if the maximum time lag is no larger than the smallest processing

time. A greedy algorithm for an on-line scheduling problem with time lags assigns

to a machine any available operation as soon as the machine becomes available.

Zhang and Van de Velde (2010d) also prove that no on-line non-delay algorithm

can have a better competitive ratio. As far as delay algorithms are concerned,

that is, algorithms that allow a machine to be idle while an operation is available

for processing, no delay algorithm can do better than a greedy algorithm for the

non-clairvoyant variant of the problem. For the clairvoyant variant, no on-line

delay algorithm has a competitive ratio better than
√
2.

In this chapter, we analyze the performance of a greedy algorithm for the

on-line version of 𝐽2∣𝑜𝑗 ≤ 2, 𝑟𝑗 , 𝑙𝑗 ∣𝐶max that processes an available operation as

soon as possible. If there are more than two operations available, the algorithm
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processes one of them randomly. Accordingly, the resulting schedule is non-delay,

that is, no machine is kept idle while an operation is waiting to be processed.

We prove that the competitive ratio of any greedy algorithm is 2, this bound

is tight, and no on-line non-delay algorithm can do better. Using an adversary

strategy argument, we also prove that no on-line delay algorithm can have a

better performance guarantee for the non-clairvoyant variant of the problem. For

the clairvoyant version of the problem, we prove that no on-line delay algorithm

can have a better competitive ratio than
√

5+1
2 ≈ 1.618. We prove that these

results apply to 𝐹2∣𝑜𝑛-𝑙𝑖𝑛𝑒, 𝑟𝑗 , 𝑙𝑗 ∣𝐶max also.

2.2 Performance analysis of a greedy algorithm

Let 𝐺 be any greedy algorithm. We prove that 𝐺 is 2-competitive for the on-line

two machine job shop scheduling problem with time lags.

Let 𝑟𝑗 be the arrival time of job 𝐽𝑗 (𝑗 = 1, . . . , 𝑛). For a given instance, let 𝐶
∗
max

denote the optimized completion time of 𝑛 jobs and 𝐶𝐺
max denote the completion

time of the schedule given by the greedy algorithm 𝐺. Due to symmetry of the

argument, we can assume without loss of generality that machine 𝑀2 finishes

last. For the schedule constructed by 𝐺, let 𝑆𝑖𝑗 and 𝐶𝑖𝑗 denote the starting and

completing time of 𝑂𝑖𝑗 , respectively (𝑖 = 1, 2; 𝑗 = 1, . . . , 𝑛).

For any subset ℋ ⊆ {𝐽1, . . . , 𝐽𝑛}, we define

𝑟(ℋ) = min
𝐽𝑗∈ℋ

𝑟𝑗

𝑝1(ℋ) =
∑
𝐽𝑗∈ℋ

𝑝1𝑗

𝑝2(ℋ) =
∑
𝐽𝑗∈ℋ

𝑝2𝑗

𝐶(ℋ) = max
𝐽𝑗∈ℋ
(𝑟𝑗 + 𝑝1𝑗 + 𝑙𝑗 + 𝑝2𝑗).

Clearly, we have that

𝐶∗
max ≥ max

ℋ∈𝒥
{𝑟(ℋ) + 𝑝1(ℋ), 𝑟(ℋ) + 𝑝2(ℋ), 𝐶(ℋ)} (2.1)
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Lemma 1 If there is no idle time before 𝐶𝐺
max on machine 𝑀2, then 𝐶∗

max =

𝐶𝐺
max. □

Lemma 1 is obviously true. So, in the remainder we suppose machine 𝑀2 has

idle time before 𝐶𝐺
max.

Let 𝑇 denote the last point in time such that 𝑀2 is busy throughout the time

interval [𝑇,𝐶𝐺
max] but idle immediately before time 𝑇 . Consider now the jobs with

𝑆2𝑗 ≥ 𝑇 on machine 𝑀2. We divide these jobs into two disjoint subsets: subset 𝒳

contains all the jobs with 𝑟𝑗 < 𝑇 , and subset 𝒴 contains all the jobs with 𝑟𝑗 ≥ 𝑇 .
Lemma 2 If 𝒳 = ∅, we have 𝐶∗

max = 𝐶
𝐺
max.

Proof. Note that if 𝒳 = ∅, then 𝒴 cannot be empty, and hence we have that

𝐶𝐺
max = 𝑇 + 𝑝2(𝒴) ≤ 𝑟(𝒴) + 𝑝2(𝒴) ≤ 𝐶∗

max.

So, if 𝒳 = ∅, then the greedy algorithm 𝐺 has returned an optimal schedule. □

Lemma 3 If 𝒴 ∕= ∅, we have 𝐶𝐺
max ≤ 2𝐶∗

max.

Proof. In this case, we have that

𝐶𝐺
max = 𝑇 + 𝑝2(𝒳) + 𝑝2(𝒴) ≤ 𝑟(𝒴) + 𝑝2(𝒴) + 𝑟(𝒳) + 𝑝2(𝒳) ≤ 2𝐶∗

max,

and we are done. □

So, we need to analyze the case 𝒳 ∕= ∅ and 𝒴 = ∅ in the remaining discussion.
Let 𝑄 denote the completion time of machine 𝑀1, that is, the completion

time of the last job scheduled on 𝑀1. Note that we have assumed without loss

of generality that 𝑄 ≤ 𝐶𝐺
max. Let [𝐵𝑘, 𝐸𝑘] for 𝑘 = 1, . . . , ℎ, with 𝐵1 = 𝑟(𝒳)

and 𝐸ℎ = 𝑄, be the busy intervals of machine 𝑀1 (𝐵1 < 𝐵2 < ⋅ ⋅ ⋅ < 𝐵ℎ),

and correspondingly let [𝐸𝑘, 𝐵𝑘+1] for 𝑘 = 1, . . . , ℎ − 1 be the idle intervals of
𝑀1 between time 𝑟(𝒳) and time 𝑄. Let 𝒳

𝑘 = {𝐽𝑗 ∈ 𝒳∣𝐵𝑘 ≤ 𝑆1𝑗 < 𝐸𝑘} for
𝑘 = 1, . . . , ℎ; and let 𝛥𝑘 = 𝐵𝑘+1 − 𝐸𝑘, for 𝑘 = 1, . . . , ℎ − 1. If 𝑄 < 𝑇 , let

𝛥ℎ = 𝑇 − 𝑄; otherwise, let 𝛥ℎ = 0. For an illustration of these concepts, see

Figure 2.1.

Lemma 4 If 𝒳 ∕= ∅, 𝒴 = ∅, then 𝑟(𝒳) +
ℎ∑

𝑘=1

𝛥𝑘 + 𝑝2(𝒳) ≤ 𝐶∗
max.
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Fig. 2.1. The illustration of 𝛥𝑘, 𝑄, 𝑇 and busy periods.

Proof. We branch into two cases: (1) ℎ = 1; (2) ℎ > 1.

Case 1: ℎ = 1. Machine 𝑀1 is busy in the period [𝑟(𝒳), 𝑄] in this case. If

𝑄 ≥ 𝑇 , we have𝛥ℎ = 0. Due to (2.1), it holds that 𝑟(𝒳)+𝑝2(𝒳) ≤ 𝐶∗
max. If𝑄 < 𝑇 ,

we have 𝛥ℎ ≤ min
𝐽𝑗∈𝒳

𝑙𝑗 ; otherwise, at least one job in 𝒳 could has been started

before time 𝑇 on machine 𝑀2. Then it holds that 𝑟(𝒳) +𝛥ℎ + 𝑝2(𝒳) ≤ 𝐶∗
max.

Case 2: ℎ > 1. For any job 𝐽𝑗 ∈ 𝒳1 we have 𝑙𝑗 ≥
ℎ∑

𝑘=1

𝛥𝑘; otherwise, its

second operation could have been started before time 𝑇 on machine 𝑀2. Hence,

we have that 𝑆2𝑗 ≥ 𝑟(𝒳) +
ℎ∑

𝑘=1

𝛥𝑘 for any job 𝐽𝑗 ∈ 𝒳1. By the same token,

for any job 𝐽𝑗 ∈ 𝒳𝑖(𝑖 = 2, . . . , ℎ), we have 𝑙𝑗 ≥
ℎ∑

𝑘=𝑖

𝛥𝑘, otherwise, its second

operation could have been started before time 𝑇 on machine 𝑀2. On the other

hand, for each 𝐽𝑗 ∈ 𝒳𝑖 (𝑖 = 2, . . . , ℎ), 𝑟𝑗 ≥ 𝐵𝑖 ≥ 𝑟(𝒳) +
𝑖−1∑
𝑘=1

𝛥𝑘, and we have

𝑆2𝑗 ≥ 𝑟𝑗 + 𝑙𝑗 ≥ 𝑟(𝒳) +
𝑖−1∑
𝑘=1

𝛥𝑘 +
ℎ∑

𝑘=𝑖

𝛥𝑘 = 𝑟(𝒳) +
ℎ∑

𝑘=1

𝛥𝑘 for any job 𝐽𝑗 ∈ 𝒳𝑖

(𝑖 = 2, . . . , ℎ).

Accordingly, 𝑟(𝒳) +
ℎ∑

𝑘=1

𝛥𝑘 + 𝑝2(𝒳) is a lower bound on 𝐶
∗
max. □

Lemma 5 If 𝒳 ∕= ∅, 𝒴 = ∅, then 𝐶∗
max/𝐶

𝐺
max ≤ 2.

Proof. In this case, we have
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𝐶𝐺
max = 𝑟(𝒳) + (𝑇 − 𝑟(𝒳)) + 𝑝2(𝒳) ≤ 𝑟(𝒳) +

ℎ∑
𝑘=1

𝛥𝑙𝑘 + 𝑝1(𝒥) + 𝑝2(𝒳).

Using Lemma 9 and (3.1), we obtain 𝐶𝐺
max ≤ 2𝐶∗

max. □

Theorem 1 Any greedy algorithm 𝐺 is 2-competitive for 𝐽2∣𝑜𝑛-𝑙𝑖𝑛𝑒, 𝑜𝑗 ≤
2, 𝑟𝑗 , 𝑙𝑗 ∣𝐶max, this bound is tight, and no non-delay algorithm can do better.

Proof. For any instance of 𝐽2∣𝑜𝑛-𝑙𝑖𝑛𝑒, 𝑜𝑗 ≤ 2, 𝑟𝑗 , 𝑙𝑗 ∣𝐶max, a greedy algorithm

𝐺 generates a schedule for which Lemma 1, 2, 3 or 5 holds. Therefore, any greedy

algorithm is 2-competitive. To see that this bound is tight, consider the following

instance of the problem. At time 𝑡 = 0, job 𝐽1 ∈ 𝒥1 arrives with 𝑝11 = 1, 𝑙1 = 0

and 𝑝21 = 0; at time 𝑡 = 𝜖, job 𝐽2 ∈ 𝒥1 arrives with 𝑝12 = 𝜖, 𝑙2 = 0 and 𝑝22 = 1−𝜖,
for some 0 < 𝜖 < 1/2. Any non-delay algorithm gives a schedule of length 2, but

the optimal makespan is 1+ 2𝜖. Therefore, the ratio 2
1+2𝜖 is best possible for any

non-delay algorithm. Since 𝜖 may be arbitrarily small, the ratio can be arbitrarily

close to 2. □

Since we used an instance of 𝐹2∣𝑜𝑛-𝑙𝑖𝑛𝑒, 𝑟𝑗 , 𝑙𝑗 ∣𝐶max as an adversary example

in the proof of Theorem 1, we have the following corollary.

Corollary 1 Any greedy algorithm is 2-competitive for 𝐹2∣𝑜𝑛-𝑙𝑖𝑛𝑒, 𝑟𝑗 , 𝑙𝑗 ∣𝐶max,

this bound is tight, and no non-delay algorithm can do better. □

2.3 The worst-case performance of on-line delay algorithms

In this section, we analyze on-line delay algorithms. Kanet (1986) and Kanet

and Sridharan (2000)) showed that allowing tactical delays may lead to better

schedules. We consider two versions of the problem: the non-clairvoyant version

and the clairvoyant version.

Theorem 2 For the non-clairvoyant version of 𝐽2∣𝑜𝑛-𝑙𝑖𝑛𝑒, 𝑜𝑗 ≤ 2, 𝑟𝑗 , 𝑙𝑗 ∣𝐶max,

no on-line delay algorithm has a better competitive ratio than an on-line greedy

algorithm.

Proof. We use an adversary strategy against which any on-line delay algorithm

must perform poorly. Consider the following instance of the problem. At time
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𝑡 = 0, job 𝐽1 ∈ 𝒥1 arrives with 𝑝11, 𝑙1 = 0 and 𝑝21 = 0. Let algorithm 𝐻 be

any delay algorithm. Suppose algorithm 𝐻 imposes a deliberate delay 𝑆1 ≥ 0 to
schedule job 𝐽1.

If 𝑆1 > 0, let 𝑛 = 1 and 𝑝11 = 𝑆1. The minimum makespan is now 𝑆1, but

algorithm 𝐻 will finish the job at time 2𝑆1. Its competitive ratio is therefore at

least 2.

If 𝑆1 = 0, let 𝑛 = 2 and job 𝐽2 ∈ 𝒥1 arrives at time 𝑡 = 𝜖 with 𝑝12 = 𝜖, 𝑙2 = 0

and 𝑝22 = 1 − 𝜖. The instance then boils down to the one used in Theorem 1 to
prove the competitive ratio 2 for greedy algorithms, and algorithm 𝐻 does not

outperform a greedy algorithm. □

Accordingly, any greedy algorithm is a best possible algorithm for the non-

clairvoyant variant of the problem.

For the clairvoyant version, we prove that any on-line delay algorithm has a

competitive ratio of at least
√

5+1
2 ≈ 1.618. However, this results leaves open the

question whether an on-line delay algorithm has a better competitive ratio than

a greedy algorithm.

Theorem 3 For the clairvoyant version of 𝐽2∣𝑜𝑛-𝑙𝑖𝑛𝑒, 𝑜𝑗 ≤ 2, 𝑟𝑗 , 𝑙𝑗 ∣𝐶max, no

on-line delay algorithm has a competitive ratio better than
√

5+1
2 .

Proof. Consider the following instance of the problem. At time 𝑡 = 0, job 𝐽1 ∈
𝒥1 arrives with 𝑝11 = 1, 𝑙1 = 0 and 𝑝21 = 0. Let algorithm 𝐻 be any delay

algorithm, and suppose algorithm 𝐻 imposes a deliberate delay 𝑆1 ≥ 0 before
job 𝐽1. Suppose that either no further job arrives, or job 𝐽2 ∈ 𝒥1 arrives at time

𝑆1 + 𝜖, 0 < 𝜖 ≤ 1/2, with 𝑝12 = 𝜖, 𝑙2 = 0, and 𝑝22 = 1− 𝜖. In the former case, the
schedule given by 𝐻 has makespan 1+𝑆1, while in the latter case the makespan is

at least 2+𝑆1. The optimal makespans are 1 and 1+𝑆1+2𝜖, respectively. So, the

competitive ratio of algorithm 𝐻 is larger than or equal to max{1+𝑆1
1 , 2+𝑆1

1+𝑆1+2𝜖}.
The minimum of this expression is achieved for 𝑆1 =

√
5−1
2 , and the competitive

ratio is therefore at least
√

5+1
2 .

□

Since we used instances of 𝐹2∣𝑜𝑛-𝑙𝑖𝑛𝑒, 𝑟𝑗 , 𝑙𝑗 ∣𝐶max as adversary examples in the

proofs of Theorem 2 and 3, similar results hold for the corresponding flow shop

problem.
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2.4 Conclusions

We have proved that any greedy algorithm for the on-line two-machine job shop

scheduling problem with time lags has a tight competitive ratio of 2. For the non-

clairvoyant versions of these problems, any greedy algorithm is a best possible

algorithm. For the clairvoyant versions, any greedy algorithm is a best possible

non-delay algorithm; however, since we could prove a lower bound of only
√

5+1
2 ≈

1.618 on the competitive ratio in general, a delay algorithm may have a better

competitive ratio than a greedy algorithm. We have proved that these results also

apply to the on-line two-machine flow shop scheduling problem with time lags.





3

Two-Machine Open Shop1

Information is the resolution of uncertainty.

- Claude Elwood Shannon (1916-2001)

In this chapter, we analyze the performance of the greedy algorithm for the on-

line two-machine open shop scheduling problem of minimizing makespan, in which

time lags exist between the completion time of the first and the start time of the

second operation of any job. The competitive ratio for the greedy algorithm is 2,

and it can be reduced to 5/3 if the maximum time lag is less than the minimum

positive processing time of any operation. These ratios are tight. We also prove

that no on-line non-delay algorithm can have a better competitive ratio.

As far as delay algorithms are concerned, no algorithm can do better than

the greedy algorithm for the non-clairvoyant variant of the problem. For the

clairvoyant variant, no on-line delay algorithm has a competitive ratio better

than
√
2.

3.1 Introduction

We consider the two-machine open shop problem with time lags to minimize the

makespan. In such a system, there is a set 𝒥 of 𝑛 independent jobs 𝐽1, . . . , 𝐽𝑛 that

1 This chapter is based on a paper that has been published in the European Journal of
Operational Research. (Zhang and Van de Velde (2010d))
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need scheduling on two machines 𝑀1 and 𝑀2. Each job 𝐽𝑗 ∈ 𝒥 consists of two

operations 𝑂𝑖𝑗 (𝑖 = 1, 2), and operation 𝑂𝑖𝑗 requires processing on 𝑀𝑖 during an

uninterrupted processing time 𝑝𝑖𝑗 (𝑖 = 1, 2; 𝑗 = 1, . . . , 𝑛). The operations of a job

may be scheduled in either order, as long as their execution does not overlap.

The machines are available from time 0 onwards and can handle only one job at

a time. For each job 𝐽𝑗 , there is a time lag 𝑙𝑗 required between the completing

of its first and the starting of its second operation; accordingly, the time lag is

independent of the order in which the two operations are scheduled. Preemption

of jobs, that is, interrupting a job and resuming in at a later point in time, is not

allowed. The objective is to minimize the maximum completion time 𝐶max, that

is, to find a schedule of minimum length or makespan.

The off-line version of this problem, where all job data are known a priori and

all jobs are available at time zero, is NP-hard, even in the case of unit processing

times (Yu (1996)) and all time lags equal (Rayward-Smith and Rebaine (1992)).

Most of the research has therefore been focused on obtaining polynomial-time

approximation algorithms with constant performance guarantees. An approxima-

tion algorithm for a minimization problem is said to have performance guarantee

or performance ratio 𝜌 for some real 𝜌 > 1, if it always delivers a solution with

objective function value at most 𝜌 times the optimal value. It is then called a

𝜌-approximation algorithm. Strusevich (1999) presents an algorithm for this ba-

sic problem with performance ratio 3/2. Rebaine and Strusevich (1999) give a

8/5-approximation algorithm for the case of asymmetrical (or route-dependent)

time lags, that is, the case in which the time lag between the two operations of a

job depends on the order in which they are executed. They also study the prob-

lem with small time lags, in which any time lag is smaller than or equal to the

smallest processing time and show that this special case is solvable to optimality

in 𝑂(𝑛) time.

We study the on-line version, where the jobs dynamically arrive at a priori

unknown points in time (the so-called release times) and the job data are not

known a priori. In particular, we study the non-clairvoyant variant, in which the

processing time of either operation of a job is unknown until it finishes, and the

required time lag is unknown until it has elapsed.

The quality of an on-line algorithm is typically measured by its competitive

ratio, and an on-line algorithm is called 𝜌-competitive if the objective value of
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the schedule produced by the on-line algorithm is at most 𝜌 times the value of an

optimal off-line solution, for any instance of the problem. An on-line algorithm

is called best possible if no one-line algorithm has a lower competitive ratio.

Thus far, results are known only for on-line open shop makespan problems

without time lags. For the clairvoyant problem, Chen et al (1998) present 5/4-

and 3/2-competitive algorithms for the preemptive and non-preemptive version,

respectively; for the non-clairvoyant model, they present an algorithm with a

competitive ratio 3/2 for both the preemptive and non-preemptive version. All

algorithms are proved to be best possible. For the case in which only permutation

schedules are allowed, Chen et al (2001) propose a 1.848-competitive algorithm

for the non-preemptive problem and show that no permutation algorithm can

have a competitive ratio better than 1.754. They also develop a 27/19-competitive

algorithm for the preemptive three-machine problem, which is shown to be best

possible.

Ours is the first result on on-line open shop scheduling problem with time lags.

We analyze the performance of the greedy algorithm that processes an available

operation as soon as possible, with ties broken arbitrarily. Note that an opera-

tion is available for processing as soon as the corresponding job has arrived and

the other operation of this job either has not been processed yet, or has been

completed and sufficient time, that is, the required time lag, has elapsed since its

completion. Accordingly, the resulting schedule is non-delay, that is, no machine

is kept idle at a time when it could begin processing an operation.

We prove that the competitive ratio for the greedy algorithm is 2, this bound

is tight, and no on-line non-delay algorithm can do better. We also analyze a

special case of the problem introduced by Rebaine and Strusevich (1999), where

the maximum time lag is less than the minimum positive processing time of any

operation. This is in fact a semi-online problem, since the algorithm will have

further knowledge about the structure of the problem in advance (Pruhs and

Torng (1994)). We prove that the competitive ratio is 5/3, this ratio is tight, and

no non-delay algorithm can have a better competitive ratio.

Using an adversary strategy argument, we also prove that no on-line delay

algorithm, that is, an algorithm that allows a machine to be idle while an op-

eration is available for processing, can have a better performance guarantee for

the non-clairvoyant variant of the problem. For the clairvoyant version of the
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problem, we prove that no on-line delay algorithm can have a better competitive

ratio than
√
2.

3.2 Notations and preliminaries

In this section, we introduce notation and preliminaries that are useful for the

remainder of the chapter.

Definition

A greedy algorithm is an algorithm in which the available operations are processed

as soon as the machines become idle. Ties are broken arbitrarily.

Let 𝑟𝑗 be the arrival time of job 𝐽𝑗 (𝑗 = 1, . . . , 𝑛). For a given instance, let 𝐶
∗
max

denote the minimum makespan and 𝐶𝐺
max denote the makespan of the schedule

given by the greedy algorithm. Also, for the schedule constructed by the greedy

algorithm, let 𝑆𝑖𝑗 and 𝐶𝑖𝑗 denote the starting and completing time of 𝑂𝑖𝑗 , respec-

tively (𝑖 = 1, 2; 𝑗 = 1, . . . , 𝑛).

For any subset ℋ ⊆ {𝐽1, . . . , 𝐽𝑛}, we define

𝑟(ℋ) = min
𝐽𝑗∈ℋ

𝑟𝑗

𝑝1(ℋ) =
∑
𝐽𝑗∈ℋ

𝑝1𝑗

𝑝2(ℋ) =
∑
𝐽𝑗∈ℋ

𝑝2𝑗

𝐶(ℋ) = max
𝐽𝑗∈ℋ
(𝑟𝑗 + 𝑝1𝑗 + 𝑙𝑗 + 𝑝2𝑗).

Clearly, we have that

𝐶∗
max ≥ max

ℋ∈𝒥
{𝑟(ℋ) + 𝑝1(ℋ), 𝑟(ℋ) + 𝑝2(ℋ), 𝐶(ℋ)} (3.1)

Consider any schedule constructed by a greedy algorithm. Due to symmetry

of the argument, we can assume without loss of generality that machine 𝑀2

finishes last. If there is no idle time on𝑀2 before 𝐶
𝐺
max, then the greedy algorithm

produces an optimal schedule. So, in the remainder we suppose there is idle time

on 𝑀2.
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Let 𝑇 denote the last point in time such that 𝑀2 is busy in the time interval

[𝑇,𝐶𝐺
max] but idle immediately before time 𝑇 . Consider now the jobs with 𝐶2𝑗 ≥

𝑇 . We divide these jobs into two disjoint subsets: subset 𝒳 contains all the jobs

with 𝑟𝑗 < 𝑇 ; and subset 𝒴 contains all the jobs with 𝑟𝑗 ≥ 𝑇 .
Furthermore, note that if 𝒳 = ∅, then 𝒴 cannot be empty, and hence we have

that

𝐶𝐺
max = 𝑇 + 𝑝2(𝒴) ≤ 𝑟(𝒴) + 𝑝2(𝒴) ≤ 𝐶∗

max.

So, if 𝒳 = ∅, then the greedy algorithm has returned an optimal schedule. The
remainder of the analysis will therefore focus on the case that 𝒳 ∕= ∅.
Note that we must have

𝐶1𝑗 + 𝑙𝑗 ≥ 𝑇, for each 𝐽𝑗 ∈ 𝒳, (3.2)

for otherwise 𝑂2𝑗 would have been started before time 𝑇 .

We are now ready to proceed with the specific parts of the proofs.

3.3 Performance analysis of the greedy algorithm

3.3.1 On-line case

Theorem 4 The greedy algorithm has a competitive ratio of 2, this bound is

tight, and no non-delay algorithm can do better.

Proof. As indicated in the previous subsection, we may assume without loss of

generality that there is idle time on𝑀2 and 𝒳 ∕= ∅. We analyze two disjoint cases:
(i) 𝒴 ∕= ∅; and (ii) 𝒴 = ∅.
If 𝒴 ∕= ∅, we have that

𝐶𝐺
max = 𝑇 + 𝑝2(𝒳) + 𝑝2(𝒴) ≤ 𝑟(𝒴) + 𝑝2(𝒴) + 𝑝2(𝒳) ≤ 2𝐶∗

max,

and we are done.

If 𝒴 = ∅, then let 𝑂2𝑘 be the operation started at time 𝑇 ; hence, 𝑆2𝑘 = 𝑇 . We

also must have that 𝐶1𝑘 + 𝑙𝑘 = 𝑆2𝑘; after all, if 𝐶1𝑘 + 𝑙𝑘 < 𝑆2𝑘, then 𝑂2𝑘 would

have started before time 𝑇 . Accordingly, we must have that

𝐶𝐺
max = 𝑆1𝑘 + 𝑝1𝑘 + 𝑙𝑘 + 𝑝2𝑘 + 𝑝2(𝒳− 𝐽𝑘).
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Also, we know that both machines are busy in the interval [𝑟𝑘, 𝑆1𝑘] for otherwise

job 𝐽𝑘 would have started earlier. Since 𝑟𝑘 + 𝑝1𝑘 + 𝑙𝑘 + 𝑝2𝑘 ≤ 𝐶∗
max and (𝑆1𝑘 −

𝑟𝑘) + 𝑝2(𝒳− 𝐽𝑘) ≤ 𝑝2(𝒥) ≤ 𝐶∗
max, we have

𝐶𝐺
max = (𝑆1𝑘 − 𝑟𝑘) + 𝑟𝑘 + 𝑝1𝑘 + 𝑙𝑘 + 𝑝2𝑘 + 𝑝2(𝒳− 𝐽𝑘)

≤ 2𝐶∗
max.

Hence, any greedy algorithm is a 2-competitive algorithm.

To see that this bound is tight, consider the following instance of the problem.

At time 𝑡 = 0, jobs 𝐽1 = (𝑝11 = 1, 𝑙1 = 0, 𝑝21 = 0) and 𝐽2 = (𝑝12 = 0, 𝑙1 = 0, 𝑝22 =

1) arrive; at time 𝑡 = 𝜖, job 𝐽3 = (𝑝13 = 𝜖, 𝑙1 = 1− 2𝜖, 𝑝23 = 𝜖) arrives, with some

0 < 𝜖 ≤ 1/2. Any non-delay algorithm gives a schedule with length equal to 2,
but the optimal makespan is 1 + 2𝜖. Therefore, the ratio 2

1+2𝜖 is best possible

for any non-delay algorithm. Since 𝜖 may be arbitrarily small, the ratio can be

arbitrarily close to 2.

This completes the proof. □

3.3.2 Semi-online case

As Pruhs and Torng (1994) point out, on-line algorithms may typically behave

poorly because of a large variance of job parameters, which may be exceptional in

real life. It is therefore of interest to analyze special cases in which the algorithm

is fed additional knowledge about the structure of the problem in order to further

our understanding of the general problem. Such an algorithm is called a semi-

online algorithm. This consideration has motivated us to analyze the special case

introduced and justified by Rebaine and Strusevich (1999), in which the time lags

are relatively small for all jobs. Specifically, they assume that

𝑙𝑘 ≤ min
𝑖=1,2;1≤𝑗≤𝑛

𝑝𝑖𝑗 , for each 𝑘 = 1, . . . , 𝑛, and 𝑝𝑖𝑗 > 0, (3.3)

and show that the off-line version is solvable in 𝑂(𝑛) time. We consider the semi-

online setting of this problem, where the release times, processing times and

time lags are not known before the jobs arrive. Furthermore, we assume that

operations with zero processing time require no processing at all. We prove the

following result.
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Theorem 5 The greedy algorithm has a competitive ratio of 5/3 if condition

(3.3) is satisfied, this bound is tight, and no non-delay algorithm can do better.

Proof. Since 𝐶1𝑗 + 𝑙𝑗 ≥ 𝑇 for each 𝐽𝑗 ∈ 𝒳 together with condition (3.3), there

can be no more than two jobs in 𝒳.

Case 1. There is only one job in 𝒳, say, 𝐽𝑘.

We know that during the time interval [𝑟𝑘, 𝑆1𝑘] both machines are busy, oth-

erwise the algorithm would have started 𝐽𝑘 earlier. We split this case up in two:

Case 1.1 𝒴 ∕= ∅;
In this case, one or more jobs are released after time 𝑇 , and hence we have

𝐶𝐺
max = 𝑇 + 𝑝2𝑘 + 𝑝2(𝒴)

≤ 𝑟(𝒴) + 𝑝2(𝒴) + 𝑝2𝑘

≤ 𝐶∗
max + 𝑝2𝑘.

If 𝑝2𝑘 ≤ 2
3𝐶

∗
max, then 𝐶

𝐺
max ≤ 5

3𝐶
∗
max, and we are done.

Alternatively, if 𝑝2𝑘 >
2
3𝐶

∗
max, we must have that 𝑟𝑘 + 𝑝1𝑘 + 𝑙𝑘 <

1
3𝐶

∗
max,

because of (3.1). Furthermore, let 𝐼2 denote the total idle time on 𝑀2; note that

idle time on 𝑀2 must occur in the intervals [0, 𝑟𝑘] and [𝑆1𝑘, 𝑇 ]. Since 𝐶1𝑘 + 𝑙𝑘 =

𝑆1𝑘 + 𝑝1𝑘 + 𝑙𝑘 ≥ 𝑇 , we derive that

𝐼2 ≤ 𝑟𝑘 + 𝑇 − 𝑆1𝑘

≤ 𝑟𝑘 + 𝑝1𝑘 + 𝑙𝑘 (3.4)

<
1

3
𝐶∗

max.

Hence we have that

𝐶𝐺
max = 𝑝2(𝒥) + 𝐼2 <

4

3
𝐶∗

max.

Case 1.2 𝒴 = ∅.
In this case, it must be that 𝐶1𝑘+ 𝑙𝑘 = 𝑇 , since 𝐽𝑘 is the only job in 𝒳. Hence,

we have

𝐶𝐺
max = 𝑆1𝑘 + 𝑝1𝑘 + 𝑙𝑘 + 𝑝2𝑘 = (𝑆1𝑘 − 𝑟𝑘) + 𝑟𝑘 + 𝑝1𝑘 + 𝑙𝑘 + 𝑝2𝑘.
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If 𝑆1𝑘−𝑟𝑘 ≤ 2
3𝐶

∗
max, since 𝑟𝑘+𝑝1𝑘+ 𝑙𝑘+𝑝2𝑘 ≤ 𝐶∗

max, we have 𝐶
𝐺
max ≤ 5

3𝐶
∗
max, and

we are done. Therefore, we assume 𝑆1𝑘 − 𝑟𝑘 > 2
3𝐶

∗
max in the following discussion.

We define 𝒱 as the set of jobs that have operations finishing in the time interval

(𝑟𝑘, 𝑆1𝑘] on machine 𝑀1, that is, 𝒱 = {𝐽𝑗 ∣𝑟𝑘 < 𝐶1𝑗 ≤ 𝑆1𝑘}; remember that both
machines are busy during this time interval. Because of (3.1), we have that

𝑟(𝒱+ 𝐽𝑘) + 𝑝1(𝒱+ 𝐽𝑘) ≤ 𝐶∗
max. (3.5)

Assume that 𝑟𝜃 = 𝑟(𝒱) for some 𝐽𝜃 ∈ 𝒱. Inequality (3.5) boils then down to

𝑟𝜃 + 𝑝1(𝒱) + 𝑝1𝑘 ≤ 𝐶∗
max.

Since 𝑝1(𝒱) ≥ 𝑆1𝑘 − 𝑟𝑘 > 2
3𝐶

∗
max, we obtain that

𝑟𝜃 + 𝑝1𝑘 <
1

3
𝐶∗

max, (3.6)

and hence also that

𝑟𝜃 + 𝑙𝑘 <
1

3
𝐶∗

max. (3.7)

Apparently, it holds that 𝑟𝜃 ≤ 𝑟𝑘, and we need to branch into three subcases.
Case 1.2.1Machine𝑀1 is either busy during the period of [𝑟𝜃, 𝑟𝑘], or 𝑟𝜃 = 𝑟𝑘.

Let 𝐼1 denote the total idle time on𝑀1; note that idle time on𝑀1 must occur

in the intervals [0, 𝑟𝜃] and [𝐶1𝑘, 𝐶
𝐺
max]. Since 𝐶1𝑘 + 𝑙𝑘 = 𝑇 and 𝐶

𝐺
max = 𝑇 + 𝑝2𝑘,

we derive that

𝐼1 ≤ 𝑟𝜃 + 𝑙𝑘 + 𝑝2𝑘.

With 𝑝2𝑘 <
1
3𝐶

∗
max due to 𝑆1𝑘 − 𝑟𝑘 > 2

3𝐶
∗
max and (3.7), we have that

𝐶𝐺
max = 𝑝1(𝒥) + 𝐼1 <

5

3
𝐶∗

max.

Case 1.2.2 Machine 𝑀2 is busy during the period of [𝑟𝜃, 𝑟𝑘].

Let 𝐼2 denote the total idle time on𝑀2; note that idle time on𝑀2 must occur

in the intervals [0, 𝑟𝜃] and [𝑆1𝑘, 𝐶1𝑘 + 𝑙𝑘]. We derive that

𝐼2 ≤ 𝑟𝜃 + 𝑝1𝑘 + 𝑙𝑘.
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With 𝑙𝑘 <
1
3𝐶

∗
max due to 𝑝2𝑘 <

1
3𝐶

∗
max and (3.6), we have that

𝐶𝐺
max = 𝑝2(𝒥) + 𝐼2 <

5

3
𝐶∗

max.

Case 1.2.3 Both machines have idle time in the period [𝑟𝜃, 𝑟𝑘], that is, they

are not fully occupied in this interval.

In this case, the analysis is substantially more intricate. Since 𝑂1𝜃 is finished

in the period of [𝑟𝑘, 𝑆1𝑘] and job 𝐽𝜃 is released at 𝑟𝜃, 𝑂2𝜃 must start before 𝑂1𝜃 for

otherwise 𝑂1𝜃 would have started earlier on machine𝑀1, and 𝑂2𝜃 must end before

𝑟𝑘, for otherwise machine 𝑀2 would be fully occupied in the interval [𝑟𝜃, 𝑟𝑘]. Due

to 𝑆1𝑘 − 𝑟𝑘 > 2
3𝐶

∗
max, it holds that

𝑝2𝜃 + 𝑝2𝑘 <
1

3
𝐶∗

max, (3.8)

and hence

𝑙𝜃 + 𝑙𝑘 <
1

3
𝐶∗

max. (3.9)

During the period [𝑟𝜃, 𝑆2𝜃], both machines must be busy otherwise job 𝐽𝜃
would have started earlier. Define

𝛥𝜃 = max{𝑟𝑘 − (𝐶2𝜃 + 𝑙𝜃), 0}.

If 𝛥𝜃 = 0, we have 𝐼2 ≤ 𝑟𝜃 + 𝑙𝜃 + 𝑝1𝑘 + 𝑙𝑘. Using (3.7) and (3.9), we have

𝐶𝐺
max = 𝑃2(𝒥) + 𝐼2 ≤ 5

3𝐶
∗
max and we are done. Hence, we assume 𝛥𝜃 > 0 in the

following discussion.

If 𝛥𝜃 > 0, machine𝑀1 must be busy during the period [𝐶2𝜃+𝑙𝜃, 𝑟𝑘], otherwise

𝑂1𝜃 would have started earlier. Therefore, in this case, we have that

𝐼1 ≤ 𝑟𝜃 + 𝑝2𝜃 + 𝑙𝜃 + 𝑙𝑘 + 𝑝2𝑘, and (3.10)

𝐼2 ≤ 𝑟𝜃 + 𝑙𝜃 +𝛥𝜃 + 𝑝1𝑘 + 𝑙𝑘. (3.11)

We further branch this case into three subcases.

Case 1.2.3.1 There is an operation 𝑂1𝑎 finished before 𝐶2𝜃 + 𝑙𝜃 in machine

𝑀1.
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In this case, we have 𝑝1𝑎+𝛥𝜃+𝑝1𝑘 <
1
3𝐶

∗
max due to 𝑆1𝑘−𝑟𝑘 > 2

3𝐶
∗
max. Hence,

we get

𝑙𝜃 +𝛥𝜃 + 𝑝1𝑘 <
1

3
𝐶∗

max,

since 𝑙𝜃 ≤ 𝑝1𝑎 due to (3.3). Together with (3.7) and (3.11), we have 𝐶
𝐺
max =

𝑃2(𝒥) + 𝐼2 <
5
3𝐶

∗
max.

Case 1.2.3.2 There is an operation 𝑂2𝑏 finished before 𝑆2𝜃 in machine 𝑀2.

In this case, we have 𝑝2𝑏+𝑝2𝜃+𝑝2𝑘 <
1
3𝐶

∗
max due to 𝑆1𝑘−𝑟𝑘 > 2

3𝐶
∗
max. Hence,

we get

𝑙𝜃 + 𝑝2𝜃 + 𝑝2𝑘 <
1

3
𝐶∗

max,

since 𝑙𝜃 ≤ 𝑝2𝑏 due to (3.3). Together with (3.7) and (3.10), we have 𝐶
𝐺
max =

𝑃1(𝒥) + 𝐼1 <
5
3𝐶

∗
max.

Case 1.2.3.3 No operation finishes before 𝐶2𝜃 + 𝑙𝜃 on machine 𝑀1 and no

operation finishes before 𝑆2𝜃 on machine 𝑀2.

In this case, remember that there is idle time before 𝐶2𝜃 + 𝑙𝜃 on machine

𝑀1, and no job is released before 𝑟𝜃, for otherwise there would be an operation

finished either on machine 𝑀1 before 𝐶2𝜃 + 𝑙𝜃, or on machine 𝑀2 before 𝑆2𝜃.

Hence we have that

𝑟𝜃 + 𝑝1(𝒥) < 𝐶
∗
max.

Together with the maximal idle time on machine 𝑀1 after 𝑟𝜃, we have

𝐶𝐺
max ≤ 𝑟𝜃 + 𝑝1(𝒥) + 𝑝2𝜃 + 𝑙𝜃 + 𝑙𝑘 + 𝑝2𝑘.

Using the inequalities (3.8) and (3.9), we get 𝐶𝐺
max <

5
3𝐶

∗
max. This completes

the case with only a single job in 𝒳.

Case 2. We now consider the case that there are two jobs in 𝒳, say, 𝐽𝑢 and

𝐽𝑣. Assume without loss of generality that 𝐽𝑢 precedes 𝐽𝑣 on𝑀1. First of all, note

that no other job can be executed between 𝑂1𝑢 and 𝑂1𝑣. To see this, suppose

there is some other job, say, 𝐽𝑐, executed between them. Since the time lags are

small, see inequality (3.3), and since 𝑟𝑣 < 𝑇 , and 𝐶1𝑢 + 𝑙𝑢 ≥ 𝑇 , job 𝐽𝑐 would

delay the start of job 𝐽𝑣 on machine 𝑀1 to a time later than 𝑇 . In such a case,

however, the greedy algorithm would have scheduled 𝐽𝑣 on machine𝑀2 such that
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𝑆2𝑣 < 𝑇 and 𝐶2𝑣 ≥ 𝑇 , which contradicts the property that 𝑀2 is busy in the

time interval [𝑇,𝐶𝐺
max] but idle immediately before time 𝑇 .

Case 2.1 𝒴 ∕= ∅.
In this case, if we have 𝑝2𝑢 >

1
3𝐶

∗
max, we get 𝑟𝑢+ 𝑝1𝑢+ 𝑙𝑢 <

2
3𝐶

∗
max. Note that

the idle time in machine 𝑀2 is bounded by 𝐼2 ≤ 𝑟𝑢 + 𝑝1𝑢 + 𝑙𝑢, since 𝑀2 is busy

in the period [𝑟𝑢, 𝑆1𝑢] and after 𝐶1𝑢+ 𝑙𝑢. This immediately gives 𝐶
𝐺
max <

5
3𝐶

∗
max.

Therefore, we consider

𝑝2𝑢 ≤ 1
3
𝐶∗

max (3.12)

in the remainder of this case.

Accordingly, we have that

𝐶𝐺
max = 𝑇 + 𝑝2𝑢 + 𝑝2𝑣 + 𝑝2(𝒴). (3.13)

If 𝑝2𝑢 + 𝑝2𝑣 ≤ 2
3𝐶

∗
max, we obtain that

𝐶𝐺
max = 𝑇 + 𝑝2𝑢 + 𝑝2𝑣 + 𝑝2(𝒴) ≤ 𝑟(𝒴) + 𝑝2(𝒴) +

2

3
𝐶∗

max ≤ 5
3
𝐶∗

max,

and we are done. Hence, we assume 𝑝2𝑢 + 𝑝2𝑣 >
2
3𝐶

∗
max in this case. This implies

that

(𝑆1𝑣 − 𝑟𝑣) + 𝑝2(𝒴) <
1

3
𝐶∗

max, (3.14)

since both machines must be busy in the interval [𝑟𝑣, 𝑆1𝑣] and 𝑆1𝑣 < 𝑇 .

In addition, we have 𝑆1𝑣 + 𝑝1𝑣 + 𝑙𝑣 ≥ 𝑇 , since otherwise operation 𝑂2𝑣 would

have started before time 𝑇 . Substituting this in (3.13), we obtain

𝐶𝐺
max ≤ 𝑆1𝑣 + 𝑝1𝑣 + 𝑙𝑣 + 𝑝2𝑢 + 𝑝2𝑣 + 𝑝2(𝒴).

Together with 𝑟𝑣 + 𝑝1𝑣 + 𝑙𝑣 + 𝑝2𝑣 ≤ 𝐶∗
max, (3.12) and (3.14), it holds that 𝐶

𝐺
max <

5
3𝐶

∗
max and we are done.

Case 2.2 𝒴 = ∅.
In this case, it must be that 𝐶1𝑢 + 𝑙𝑢 = 𝑇 and 𝐶1𝑣 + 𝑙𝑣 ≤ 𝐶2𝑢, for otherwise

there would be idle time on𝑀2 between 𝑂2𝑢 and 𝑂2𝑣, contradicting our definition

of 𝑇 . Hence, we write 𝐶𝐺
max as
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𝐶𝐺
max = 𝑟𝑢 + (𝑆1𝑢 − 𝑟𝑢) + 𝑝1𝑢 + 𝑙𝑢 + 𝑝2𝑢 + 𝑝2𝑣, and (3.15)

𝐶𝐺
max = 𝑟𝑣 + (𝑆1𝑣 − 𝑟𝑣) + 𝑝1𝑣 + 𝑙𝑣 + (𝐶2𝑢 − (𝐶1𝑣 + 𝑙𝑣)) + 𝑝2𝑣. (3.16)

If (𝑆1𝑢 − 𝑟𝑢) + 𝑝2𝑣 ≤ 2
3𝐶

∗
max or (𝑆1𝑣 − 𝑟𝑣) + (𝐶2𝑢 − (𝐶1𝑣 + 𝑙𝑣)) ≤ 2

3𝐶
∗
max, then we

conclude from (3.15) or (3.16) that 𝐶𝐺
max ≤ 5

3𝐶
∗
max.

So, it only remains to consider the situation that (𝑆1𝑢 − 𝑟𝑢) + 𝑝2𝑣 >
2
3𝐶

∗
max

and (𝑆1𝑣 − 𝑟𝑣) + (𝐶2𝑢 − (𝐶1𝑣 + 𝑙𝑣)) >
2
3𝐶

∗
max.

These two inequalities imply that 𝑟𝑣 < 𝑆1𝑢; otherwise, 𝑀2 would have been

busy during the disjoint periods [𝑟𝑢, 𝑆1𝑢], [𝑟𝑣, 𝑆1𝑣], [𝑆2𝑣, 𝐶2𝑣] and [𝐶1𝑣 + 𝑙𝑣, 𝐶2𝑢],

and hence (𝑆1𝑢 − 𝑟𝑢) + 𝑝2𝑣 and (𝑆1𝑣 − 𝑟𝑣) + (𝐶2𝑢 − (𝐶1𝑣 + 𝑙𝑣)) cannot each be

greater than 2
3𝐶

∗
max at the same time. This means that machine𝑀2 must be busy

in the intervals [𝑟𝑢, 𝑆1𝑢] and [𝑆1𝑢, 𝐶1𝑢], for otherwise 𝑂2𝑣 would have started on

𝑀2 before time 𝐶1𝑢.

Let now 𝒲 = {𝐽𝑗 ∣ 𝐶2𝑗 > 𝑟𝑢}. We obtain that

𝑟(𝒲) + (𝑆1𝑢 − 𝑟𝑢) + (𝐶1𝑢 − 𝑆1𝑢) + 𝑝2𝑢 + 𝑝2𝑣 ≤ 𝐶∗
max,

since machine 𝑀2 is busy during the periods [𝑟𝑢, 𝑆1𝑢] and [𝑆1𝑢, 𝐶1𝑢]. Due to

(𝑆1𝑢 − 𝑟𝑢) + 𝑝2𝑣 >
2
3𝐶

∗
max, we get that

𝑟(𝒲) + 𝑝1𝑢 + 𝑝2𝑢 <
1

3
𝐶∗

max. (3.17)

Let now 𝐽𝜔 be a job with 𝑟𝜔 = 𝑟(𝒲). We analyze three further subcases:

Case 2.2.1 𝑂2𝜔 is scheduled before 𝑂1𝜔, or 𝑂1𝜔 is absent;

In this case,𝑀2 must be busy in the interval [𝑟𝜔, 𝑟𝑢]. For 𝐼2, the total idle time

on𝑀2, this implies that 𝐼2 ≤ 𝑟𝜔+𝑙𝑢, since the length of the idle time immediately
before time 𝑇 on machine𝑀2 must be smaller than or equal to 𝑙𝑢, as 𝑂1𝑣 is started

immediately after 𝑂1𝑢 and cannot be started earlier. Accordingly, by use of (3.3)

and (3.17), we obtain that

𝐶𝐺
max = 𝑝(𝒥) + 𝐼2 ≤ 𝐶∗

max + 𝑟𝜔 + 𝑙𝑢 ≤ 𝐶∗
max + 𝑟𝜔 + 𝑝1𝑢 + 𝑝2𝑢 <

4

3
𝐶∗

max.

Case 2.2.2 𝑂2𝜔 is scheduled after 𝑂1𝜔 and 𝐶1𝜔 + 𝑙𝜔 > 𝑟𝑣;

In this case, 𝐼1, the total idle time on machine 𝑀1, is bounded from above by
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𝐼1 ≤ 𝑟𝜔 + 𝑙𝜔 + 𝑝2𝑢 + 𝑝2𝑣, (3.18)

since 𝑀1 must be busy in the intervals [𝑟𝜔, 𝐶1𝜔] and [𝑟𝑣, 𝐶1𝑣]. From (𝑆1𝑣 − 𝑟𝑣) +
(𝐶2𝑢 − (𝐶1𝑣 + 𝑙𝑣)) >

2
3𝐶

∗
max and 𝑝2(𝒥) ≤ 𝐶∗

max, we derive that 𝑝2𝑣 <
1
3𝐶

∗
max.

This inequality together with inequalities (3.3), (3.17) and (3.18) imply that

𝐶𝐺
max = 𝑝1(𝒥) + 𝐼1 <

5
3𝐶

∗
max.

Case 2.2.3 𝑂2𝜔 is scheduled after 𝑂1𝜔 and 𝐶1𝜔 + 𝑙𝜔 ≤ 𝑟𝑣.
In this case, 𝐼1 is bounded from above by

𝐼1 ≤ 𝑟𝜔 + 𝑙𝜔 + (𝑟𝑣 − (𝐶1𝜔 + 𝑙𝜔)) + 𝑝2𝑢 + 𝑝2𝑣. (3.19)

It is known that period [𝐶1𝜔 + 𝑙𝜔, 𝑟𝑣] precedes period [𝑟𝑣, 𝑆1𝑣] and period

[𝐶1𝑣 + 𝑙𝑣, 𝐶2𝑢] precedes period [𝑆2𝑣, 𝐶2𝑣], and machine 𝑀2 is fully occupied in

these periods. From (𝑆1𝑣 − 𝑟𝑣)+(𝐶2𝑢− (𝐶1𝑣+ 𝑙𝑣)) >
2
3𝐶

∗
max and 𝑝2(𝒥) ≤ 𝐶∗

max, it

follows that 𝑝2𝑣 + (𝑟𝑣 − (𝐶1𝜔 + 𝑙𝜔)) <
1
3𝐶

∗
max. Using this inequality together with

(3.3), (3.17) and (3.19), we obtain that 𝐶𝐺
max = 𝑝1(𝒥) + 𝐼1 <

5
3𝐶

∗
max.

This concludes the case-by-case analysis to prove the competitive ratio for the

case with small time lags.

To conclude, we give an example to show that the bound is tight for non-delay

and non-preemptive schedules. Consider the following instance of the problem. At

time 𝑡 = 0, jobs 𝐽1 = (𝑝11 = 2, 𝑙1 = 0, 𝑝21 = 0) and 𝐽2 = (𝑝12 = 0, 𝑙1 = 0, 𝑝22 = 2)

arrive; at time 𝑡 = 𝜖, job 𝐽3 = (𝑝13 = 1, 𝑙1 = 1, 𝑝23 = 1) arrives, with some

0 < 𝜖 ≤ 1/2. Any non-delay and non-preemptive algorithm gives a schedule of
length 5, whereas the optimal makespan is 3 + 𝜖. Therefore, a ratio of 5

3+𝜖 is

best possible for any non-delay and non-preemptive algorithm. As 𝜖 could be

arbitrarily small, the ratio could be arbitrarily close to 5/3. □

3.4 The worst-case performance of on-line delay algorithms

Does a delay algorithm, that is, an algorithm that is willing to keep a machine

deliberately idle while an operation is available for processing, have a better com-

petitive ratio than the greedy algorithm, which is non-delay? After all, allowing

tactical delays may lead to better schedules (Kanet (1986); Kanet and Sridharan

(2000)). The answer is ”no” for the non-clairvoyant version of the problem, both



44 3 Two-Machine Open Shop

for the general case and for the case with small time lags, as we will prove in the

next theorem.

Theorem 6 For the non-clairvoyant version of the problem, no on-line delay

algorithm has a better competitive ratio than an on-line greedy algorithm.

Proof. We use an adversary strategy against which any on-line delay algo-

rithm must perform poorly. Consider the following instance of the problem. At

time 𝑡 = 0, jobs 𝐽1 = (𝑝11, 𝑙1 = 0, 𝑝21 = 0) and 𝐽2 = (𝑝12 = 0, 𝑙1 = 0, 𝑝22) arrive.

Let algorithm 𝐻 be any delay algorithm. Suppose algorithm 𝐻 imposes delib-

erate delays 𝑆1 and 𝑆2 to schedule jobs 𝐽1 and 𝐽2, respectively. Without loss of

generality, assume 𝑆2 ≥ 𝑆1 ≥ 0.
If 𝑆2 > 0, let 𝑛 = 2 and 𝑝11 = 𝑝22 = 𝑆2. The minimum makespan is now 𝑆2,

but algorithm𝐻 will finish the two jobs at time 2𝑆2. It has therefore a competitive

ratio at least 2.

If 𝑆2 = 0, let 𝑛 = 3 and job 𝐽3 arrives at time 𝑡 = 𝜖. For the general case, we

let 𝑝11 = 𝑝22 = 1 and 𝐽3 = (𝑝13 = 𝜖, 𝑙1 = 1 − 2𝜖, 𝑝23 = 𝜖), whereas for the case

with small time lags we let 𝑝11 = 𝑝22 = 2 and 𝐽3 = (𝑝13 = 1, 𝑙1 = 1, 𝑝23 = 1).

Since these two instances boil down to those used in Theorem 4 and Theorem 5

to prove the competitive ratios 2 and 5/3 for the greedy algorithm, algorithm 𝐻

does not outperform the greedy algorithm. □

Accordingly, the greedy algorithm is a best possible algorithm for the non-

clairvoyant variant of the problem.

For the clairvoyant problem, we prove that any on-line delay algorithm has a

competitive ratio of at least
√
2 ≈ 1.414. However, this results leaves open the

question whether an on-line delay algorithm has a better competitive ratio than

the greedy algorithm.

Theorem 7 For clairvoyant version of the problem, no on-line delay algorithm

has a competitive ratio better than
√
2.

Proof. Consider the following instance of the problem. At time 𝑡 = 0, jobs 𝐽1 =

(𝑝11 = 1, 𝑙1 = 0, 𝑝21 = 0) and 𝐽2 = (𝑝12 = 0, 𝑙2 = 0, 𝑝22 = 1) arrive. Let

algorithm𝐻 be any delay algorithm, and suppose algorithm𝐻 imposes deliberate

delays 𝑆1 and 𝑆2 for jobs 𝐽1 and 𝐽2, respectively. Without loss of generality, we

assume that 1 > 𝑆2 ≥ 𝑆1 ≥ 0. Suppose that either no further jobs arrive, or
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job 𝐽3 = (𝑝13 = 𝜖, 𝑙3 = 1 − 2𝜖, 𝑝23 = 𝜖) arrives at time 𝑆2 + 𝜖, 0 < 𝜖 ≤ 1/2. In
the former case, the schedule given by 𝐻 has 𝐶max = 1 + 𝑆2, while in the latter

case we have 𝐶max = 2 + 𝑆1. The optimal makespans are 1 and 1 + 𝑆2 + 2𝜖,

respectively. So, the competitive ratio of algorithm 𝐻 is greater than or equal

to max{1+𝑆2
1 , 2+𝑆1

1+𝑆2+2𝜖}. Accordingly, the minimum competitive ratio is equal to√
2, which is achieved for 𝑆1 = 0 and 𝑆2 =

√
2− 1. □

3.5 Conclusions

We have proven that the greedy algorithm for the on-line two-machine open shop

scheduling problem with time lags has a tight competitive ratio of 2; this ratio

is 5/3 in the case of small time lags. For the non-clairvoyant versions of these

problems, the greedy algorithm is a best possible algorithm. For the clairvoyant

versions, the greedy algorithm is a best possible non-delay algorithm; however,

since we could only prove a lower bound of
√
2 ≈ 1.414 on the competitive ratio

in general, a delay algorithm may have a better competitive ratio.

Other interesting avenues for further research are the problems with asym-

metric time lags and problems with other types of small time lags, such as

𝑙𝑘 ≤ min{𝑝1𝑘, 𝑝2𝑘} for all jobs 𝐽𝑘.
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4

Parallel Flow Shop1

Eventually everything connects - people, ideas, objects. The quality of the connec-

tions is the key to quality per se.

- Charles Eames (1907-1978)

We consider the NP-hard problem of scheduling 𝑛 jobs in 𝑚 two-stage parallel

flow shops so as to minimize the makespan. This problem decomposes into two

subproblems; assigning the jobs to parallel flow shops: and scheduling the jobs

assigned to the same flow shop by use of Johnson’s rule. For 𝑚 = 2, we present a
3
2 -approximation algorithm, and for 𝑚 = 3, we present a 1

5
7 -approximation algo-

rithm. Both these algorithms run in 𝑂(𝑛 log𝑛) time. These are the first approxi-

mation algorithms with fixed worst-case performance guarantees for the parallel

flow shop problem.

4.1 Introduction

Consider the problem of scheduling a set of 𝑛 independent jobs 𝒥 = {𝐽1, . . . , 𝐽𝑛},
in which each job 𝐽𝑗 consists of a chain of two operations (𝑂1𝑗 , 𝑂2𝑗) (𝑗 = 1, . . . , 𝑛),

in a hybrid flow shop, also called a flexible flow shop, so as to minimize the length

of the schedule, that is, the makespan. A hybrid flow shop is an extension of the

1 This chapter is based on a paper that has been submitted to the European Journal of
Operational Research.
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classical flow shop, where there are 𝑚1 identical machines 𝑀𝑖1 (𝑖 = 1, . . . ,𝑚1)

in stage 1 and 𝑚2 identical machines 𝑀𝑖2 (𝑖 = 1, . . . ,𝑚2) in stage 2. The first

operation 𝑂1𝑗 of any job 𝐽𝑗 needs first be processed on one of the machines in

stage 1 during an uninterrupted processing time 𝑝1𝑗 ≥ 0, and then the second
operation 𝑂2𝑗 needs to be processed on one of the machines in stage 2 during an

uninterrupted processing time 𝑝2𝑗 ≥ 0.
The hybrid flow shop problem of minimizing makespan has been well studied;

for an review of the literature, see Ruiz and Vazquez-Rodriguez (2010). Obviously,

if 𝑚1 = 𝑚2 = 1, then the problem is polynomially solvable in 𝑂(𝑛 log 𝑛) time by

Johnson’s rule Johnson (1954). However, if 𝑚1 ≥ 2, or by symmetry 𝑚2 ≥ 2, the
problem becomes strongly NP-hard (Hoogeveen et al (1996)). Many researchers

have focused on the special case with a single machine in one stage (Chen (1995)

and Gupta (1988), Gupta and Tunc (1991), Gupta et al (1997)). For a review

of the literature for the hybrid flow shop problem with a single machine in one

stage, see Linn and Zhang (1999) or Wang (2005). For the general case, Chen

(1994) and Lee and Vairaktarakis (1994) present 𝑂(𝑛 log 𝑛)-time heuristics with

worst-case performance guarantee ratio 2− 1/max{𝑚1,𝑚2}. If, for any instance
of the problem, the makespan of the schedule generated by some heuristic does

not exceed 𝜌 times the optimal makespan, where 𝜌 is a constant that is as small as

possible, then 𝜌 is the worst-case performance ratio of the heuristic. A heuristic

with a worst-case performance ratio of 𝜌 is called referred to as a 𝜌-approximation

algorithm.

A hybrid flow shop is a manufacturing system that offers much flexibility,

but as Vairaktarakis and Elhafsi (2000) point out, this superior performance

comes at the expense of sophisticated material handling systems, like automated

guided vehicles and automated transfer lines. As an alternative to the hybrid flow

shop, Vairaktarakis and Elhafsi (2000) introduced the parallel flowline design,

which is a flexible manufacturing environment with 𝑚 identical parallel two-stage

flow shops 𝐹1, . . . , 𝐹𝑚, each consisting of a series of two machines 𝑀1𝑖 and 𝑀2𝑖

(𝑖 = 1, . . . ,𝑚). Each job needs first to be assigned to one of the flow shops, and

once assigned, it will stay there for both operations. See Figure 4.1 for a hybrid

two-stage flow shop, where the arrows indicate the routes that the different jobs

may follow, and Figure 4.2 for a parallel two-stage flow shop. In the remainder,

we will refer to a parallel flowline design as a parallel flow shop.
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M11 M12

M21 M22

Mm1 Mm2

…

Stage 1 Stage 2 

Fig. 4.1. A hybrid two-stage flow shop.

Flow shop 1: M11 M12

Flow shop 2: M21 M22

Flow shop m: Mm1 Mm2

…

Fig. 4.2. A parallel two-stage flow shop.

The makespan parallel flow shop problem breaks down into two consecutive

subproblems; first assigning each job to one of the𝑚 flow shops, and then schedul-

ing the jobs in each flow shop so as to minimize the makespan. Whereas this sec-

ond problem can obviously be solved in polynomial time by Johsnon’s rule (John-

son (1954)), the first subproblem makes the problem NP-hard, as proved by

Vairaktarakis and Elhafsi (2000), who also presented an 𝑂(𝑛
∑𝑛

𝑗=1(𝑝1𝑗 + 𝑝2𝑗)
3)
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time dynamic programming algorithm for its solution. Qi (2008) gave a faster

algorithm, running in 𝑂(𝑛
∑𝑛

𝑗=1(𝑝1𝑗 + 𝑝2𝑗)
2) time.

Vairaktarakis and Elhafsi (2000) concluded empirically, on the basis of compu-

tational experiments with several heuristics for both problems, that the parallel

flow shop entails only a minor loss in throughput performance in comparison with

the hybrid flow shop; accordingly, it is an attractive alternative to the hybrid flow

shop, with its complicated routings. Other heuristics for the parallel flow shop

problem have been presented by Cao and Chen (2003) and Al-Salem (2004).

In contrast to the makespan hybrid flow shop problem, no approximation

results for the makespan parallel flow shop are known. In this chapter, we present

a 3/2-approximation algorithm for the parallel flow shop problem with 𝑚 = 2 in

Section 4.2. For 𝑚 = 3, we present a 12
7 -approximation algorithm in Section 4.3.

These results are the first polynomial-time algorithms with fixed worst-case ratios

for the parallel flow shop problem.

Section 4.4 ends the chapter with some conclusions, where we point out that

our algorithms and their worst-case performance guarantees also apply to the

parallel flow shop problem where each job 𝐽𝑗 after the completion of its first

operation may be transferred to another flow shop for the processing of its sec-

ond operation and where such a transfer requires a transportation time 𝑙𝑗 ≥ 0.
This transportation time effectively introduces a minimum time lag between the

completion time of the first operation and the start time of the second operation

of a job. Note that if 𝑙𝑗 = 0 for each 𝐽𝑗 , then the parallel flow shop problem

with transportation times boils down to the hybrid flow shop problem. For the

hybrid flow shop problem with 𝑚1 = 𝑚2 = 2, our approximation algorithm has

the same worst-case performance ratio as the one by Chen (1994) and Lee and

Vairaktarakis (1994), but our algorithm is less complicated. At the other extreme,

if 𝑙𝑗 = ∞ for each 𝐽𝑗 , then transfer between flow shops is effectively prohibited,
and we have the original parallel flow shop problem.

4.2 A 3
2
-approximation algorithm for 𝒎 = 2

In the remainder of the chapter, we assume that the job set 𝒥 = {𝐽1, . . . , 𝐽𝑛} has
been re-indexed according to Johnson’s rule; that is, for any pair of jobs (𝐽𝑖, 𝐽𝑗)

we have that 𝑖 < 𝑗 if and only if
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min{𝑝1𝑖, 𝑝2𝑗} ≤ min{𝑝1𝑗 , 𝑝2𝑖}.

For any instance of the 𝑚 parallel two-stage flow shop problem, we refer to the

Johnsonian schedule 𝜎 as the schedule that is obtained by assigning all the jobs

to the first flow shop 𝐹1 and processing them in order of Johnson’s rule. 𝐶max(𝒥)

denotes the makespan of the Johnsonian schedule for any job set 𝒥 = {𝐽1, . . . , 𝐽𝑛},
whereas 𝑆𝑖𝑗 and 𝐶𝑖𝑗 denote the completion and the start times of the operations

𝑂𝑖𝑗 in the Johnsonian schedule, respectively, for 𝑖 = 1, 2; 𝑗 = 1, . . . , 𝑛.

Lemma 6, which goes with no proof, specifies a simple lower bound on the

minimum makespan 𝐶∗
max for the 𝑚 parallel two-stage flow shop problem.

Lemma 6 We have that

𝐶∗
max ≥ max{ 1

𝑚

𝑛∑
𝑗=1

𝑝1𝑗 ,
1

𝑚

𝑛∑
𝑗=1

𝑝2𝑗 ,
1

𝑚
𝐶max(𝒥), max

1≤𝑗≤𝑛
{𝑝1𝑗 + 𝑝2𝑗}}. (4.1)

Roughly speaking, the core idea for the 3/2-algorithm is to judiciously cut a

Johnsonian schedule 𝜎 for 𝒥 into two parts. The first part is scheduled on 𝐹1,

the second part on 𝐹2. Both parts are scheduled according to Johnson’s rule in

order to minimize the makespan. The key question of course is where to cut the

schedule so as to guarantee the 3/2 performance ratio.

Let now 𝑇1 =
1
4𝐶max(𝒥) and 𝑇2 =

3
4𝐶max(𝒥). Initially, we try to cut the

Johnsonian schedule 𝜎 at time 𝑇2. We have then the following lemma.

Lemma 7 If there exists no job 𝐽ℎ with 𝑆2ℎ ≤ 𝑇2 ≤ 𝐶2ℎ, then let 𝒥1 =

{𝐽1, . . . , 𝐽𝑘−1} and 𝒥2 = {𝐽𝑘, . . . , 𝐽𝑛} with 𝐽𝑘 such that 𝑆1𝑘 ≤ 𝑇2 ≤ 𝐶1𝑘. We

then have that

max{𝐶max(𝒥
1), 𝐶max(𝒥

2)} ≤ 3
2
𝐶∗

max.

Proof. See Figure 4.3 for an illustration of how the two job sets are formed if

there is no job 𝐽ℎ such that 𝑆2ℎ ≤ 𝑇2 ≤ 𝐶2ℎ. By visual inspection of Figure 4.3

and by use of (1), it follows that

𝐶max(𝒥
1) ≤ 𝑇2 =

3

4
𝐶max(𝒥) ≤ 3

2
𝐶∗

max, and

𝐶max(𝒥
2) ≤ 𝐶max(𝒥)−𝑇2+𝑝1𝑘 ≤ 1

4
𝐶max(𝒥)+𝑝1𝑘 ≤ 3

2
𝐶∗

max. □
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0 )(
max

JCT1 T2

…

Jk

Fig. 4.3. Cutting the Johnsonian schedule as prescribed in Lemma 7.

The implication of Lemma 6 is that if there is no job 𝐽ℎ with 𝑆2ℎ ≤ 𝑇2 ≤ 𝐶2ℎ, then

we have indeed constructed a schedule with makespan no more than 3/2 times

the optimal makespan and we are done. Accordingly, we know need to investigate

the case where there such a job 𝐽ℎ does exist. We then have the following result.

Lemma 8 If there exists a job 𝐽ℎ with 𝑆2ℎ ≤ 𝑇2 ≤ 𝐶2ℎ and if 𝑆1ℎ ≥ 𝑇1 or

𝐶1ℎ = 𝑆2ℎ, then let 𝒥1 = {𝐽1, . . . , 𝐽ℎ−1} and 𝒥2 = {𝐽ℎ, . . . , 𝐽𝑛}. It then holds that

max{𝐶max(𝒥
1), 𝐶max(𝒥

2)} ≤ 3
2
𝐶∗

max.

Proof. Refer to Figure 4.4 for an illustration. Since 𝑆2ℎ ≤ 𝑇2, job 𝐽ℎ−1 is finished

before 𝑇2. We have therefore that

𝐶max(𝒥
1) < 𝑇2 ≤ 3

2
𝐶∗

max.

If 𝑆1ℎ ≥ 𝑇1, we have that

𝐶max(𝒥
2) ≤ 𝐶max(𝒥)− 𝑇1 = 𝑇2 ≤ 3

2
𝐶∗

max.

If 𝐶1ℎ = 𝑆2ℎ, then

𝐶max(𝒥
2) ≤ 𝑝1ℎ + 𝑝2ℎ + (𝐶max(𝒥)− 𝑇2) ≤ 3

2
𝐶∗

max.
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□

0 )(
max

JCT1 T2

  Jh

0 )(
max

JCT1 T2

  Jh

Fig. 4.4. Cutting the Johnsonian schedule as prescribed in Lemma 8.

Lemmata 7 and 8 do not cover the case where there exists a job 𝐽ℎ with

𝑆2ℎ ≤ 𝑇2 ≤ 𝐶2ℎ, 𝑆1ℎ < 𝑇1 and 𝐶1ℎ < 𝑆2ℎ. To analyze this case, we transform the

Johnsonian schedule 𝜎 into the schedule 𝜎′ by delaying all operations as much
as possible without changing the makespan. Hence, 𝜎′ has makespan 𝐶max(𝒥),

has no idle time between any two operations on machine 𝑀2, and all jobs are

sequenced in order of Johnson’s rule. We refer to 𝜎′ as the delayed Johnsonian

schedule. Let now 𝑆′
𝑖𝑗 and 𝐶

′
𝑖𝑗 denote the start and completion times of 𝑂𝑖𝑗 in 𝜎

′.
For 𝜎′, we have the following result.

Lemma 9 If 𝑆′
1ℎ ≥ 𝑇1 or 𝐶 ′

1ℎ = 𝑆′
2ℎ, then let 𝒥1 = {𝐽1, . . . , 𝐽ℎ−1}, 𝒥2 =

{𝐽ℎ, . . . , 𝐽𝑛}. It then holds that

max{𝐶max(𝒥
1), 𝐶max(𝒥

2)} ≤ 3
2
𝐶∗

max.

Proof. In this case, there is a job 𝐽ℎ with 𝑆2ℎ ≤ 𝑇2 ≤ 𝐶2ℎ, therefore we have

𝐶max(𝒥
1) = 𝐶2(ℎ−1) ≤ 𝑆2ℎ ≤ 𝑇2 ≤ 3

2
𝐶∗

max.

If 𝑆′
1ℎ ≥ 𝑇1 =

1
4𝐶max(𝒥), then

𝐶max(𝒥
2) ≤ 𝐶max(𝒥)− 𝑆′

1ℎ ≤ 3
4
𝐶max(𝒥) =

3

2
𝐶∗

max.

This case is illustrated in Figure 4.5, which shows both 𝜎 and 𝜎′.
If 𝑆′

1ℎ < 𝑇1 and we have 𝐶
′
1ℎ = 𝑆

′
2ℎ, then



56 4 Flexible Flow Shop

Jh

  Jh

T1 T20 )(
max

JC

Fig. 4.5. Cutting the delayed Johnsonian schedule as prescribed in Lemma 9 if 𝑆′
1ℎ ≥

𝑇1. The top schedule is the Johnsonian schedule 𝜎, the bottom schedule is the delayed
Johnsonian schedule 𝜎′.

𝐶max(𝒥
2) ≤ 𝑝1ℎ + 𝑝2ℎ + (𝐶max(𝒥)− 𝐶2ℎ) ≤ 𝐶∗

max +
1

4
𝐶max(𝒥) =

3

2
𝐶∗

max.

This case is illustrated by Figure 4.6. □

Jh

  Jh

T1 T20 )(
max

JC

Fig. 4.6. Cutting the delayed Johnsonian schedule as prescribed in Lemma 9 if 𝑆′
1ℎ < 𝑇1.

The top schedule is the Johnsonian schedule 𝜎, the bottom schedule is delayed Johnsonian
schedule 𝜎′.
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We have dealt now with many different subcases. The only case left to consider

is the one with a job 𝐽ℎ with 𝑆2ℎ ≤ 𝑇2 ≤ 𝐶2ℎ, 𝑆1ℎ < 𝑇1, 𝐶1ℎ < 𝑆2ℎ, 𝑆
′
1ℎ < 𝑇1

and 𝐶 ′
1ℎ < 𝑆

′
2ℎ. See Figure 4.7 for an illustration of this case. In what follows, we

will focus on this case.

Jh

  Jh

T1 T20 )(
max

JC

Fig. 4.7. Illustration of a Johnsonian schedule 𝜎 (the top schedule) and a delayed
Johnsonian schedule 𝜎′ (the bottom schedule) for a job 𝐽ℎ with 𝑆2ℎ ≤ 𝑇2 ≤ 𝐶2ℎ, 𝑆1ℎ <
𝑇1, 𝐶1ℎ < 𝑆2ℎ, 𝑆

′
1ℎ < 𝑇1 and 𝐶

′
1ℎ < 𝑆

′
2ℎ.

We then have the following lemma.

Lemma 10 If there is a job 𝐽ℎ with 𝑆2ℎ ≤ 𝑇2 ≤ 𝐶2ℎ, 𝑆1ℎ < 𝑇1, 𝐶1ℎ < 𝑆2ℎ,

𝑆′
1ℎ < 𝑇1 and 𝐶 ′

1ℎ < 𝑆
′
2ℎ, then machine 𝑀2 is completely busy during the period

[𝑇1, 𝑇2] in schedule 𝜎 and machine𝑀1 is completely busy during the period [𝑇1, 𝑇2]

in schedule 𝜎′.

Proof. If in schedule 𝜎 machine𝑀2 would not have been busy during the interval

[𝑇1, 𝑇2], then operation 𝑂2ℎ could have been started earlier. Similarly, if𝑀1 would

not have been busy during the interval [𝑇1, 𝑇2] in schedule 𝜎
′, then operation 𝑂1ℎ

could have been started later. □

We now separate all 𝑛 jobs into two subsets 𝒮1 and 𝒮2 with 𝒮1 = {𝐽𝑗 ∣𝑝1𝑗 ≤
𝑝2𝑗 , 𝑗 = 1, . . . , 𝑛} and 𝒮2 = {𝐽𝑗 ∣𝑝1𝑗 > 𝑝2𝑗 , 𝑗 = 1, . . . , 𝑛}. Since all jobs have been
indexed in order of Johnson’s rule, we can represent these two sets alternatively

as 𝒮1 = {𝐽1, . . . , 𝐽𝑢} and 𝒮2 = {𝐽𝑣, . . . , 𝐽𝑛} with 𝑣 = 𝑢 + 1. We branch into two
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cases:
∑𝑛

𝑗=𝑣 𝑝1𝑗 ≥ 𝑇1; and
∑𝑢

𝑗=1 𝑝2𝑗 ≥ 𝑇1. Since these two cases are symmetrical,

we analyze only the case with
∑𝑛

𝑗=𝑣 𝑝1𝑗 ≥ 𝑇1.

In this case, we need to find a job 𝐽𝑒 with 𝑒 ≥ 𝑣 such that
∑𝑒−1

𝑗=𝑣 𝑝1𝑗 < 𝑇1 ≤∑𝑒
𝑗=𝑣 𝑝1𝑗 and a job 𝐽𝑑 with 𝑑 < 𝑣 such that

∑𝑒−1
𝑗=𝑑+1 𝑝2𝑗 < 𝑇1 ≤ ∑𝑒−1

𝑗=𝑑 𝑝2𝑗 . If

𝑣 = 𝑒, we let
∑𝑒−1

𝑗=𝑣 𝑝1𝑗 = 0. If 𝑑 = 𝑒− 1, we let
∑𝑒−1

𝑗=𝑑+1 𝑝2𝑗 = 0.

Lemma 11 𝐽𝑒 and 𝐽𝑑 exist.

Proof. Since
∑𝑛

𝑗=𝑣 𝑝1𝑗 ≥ 𝑇1, job 𝐽𝑒 must exist. To show that 𝐽𝑑 exists, too,

we branch into two cases. Since machine 𝑀2 is busy in the period [𝑇1, 𝑇2] and

𝑆1ℎ ≤ 𝑇2 ≤ 𝐶2ℎ, we have
∑ℎ

𝑗=1 𝑝2𝑗 ≥ 𝑇2 − 𝑇1 > 𝑇1. If 𝐽ℎ ∈ 𝒮1, then 𝑣 > ℎ,

and we have that
∑𝑣−1

𝑗=1 𝑝2𝑗 ≥ ∑ℎ
𝑗=1 𝑝2𝑗 > 𝑇1. Hence, job 𝐽𝑑 exists. If 𝐽ℎ ∈ 𝒮2,

then 𝑣 ≤ ℎ. And since∑𝑒
𝑗=𝑣 𝑝1𝑗 ≥ 𝑇1 and

∑ℎ−1
𝑗=1 𝑝1𝑗 < 𝑇1 (because 𝑆1ℎ < 𝑇1), we

have that 𝑒 ≥ ℎ. Since 𝐶1ℎ < 𝑆2ℎ, we have
∑ℎ−1

𝑗=1 𝑝2𝑗 > 𝑝1ℎ > 𝑝2ℎ. Together with∑ℎ
𝑗=1 𝑝2𝑗 ≥ 𝑇2 −𝑇1 = 2𝑇1, we get

∑ℎ−1
𝑗=1 𝑝2𝑗 > 𝑇1. Therefore, job 𝐽𝑑 exists in this

case also. For an illustration, see Figure 4.8. □

0 )(
max

JCT1 T2

  Jv  Jd   Je

  Jd

Fig. 4.8. Illustration of the jobs 𝐽𝑢,𝐽𝑣,𝐽𝑑,𝐽𝑒, with 𝐽𝑢 = 𝐽𝑑 = 𝐽ℎ, as they occur in
Lemma 11.

We now divide the case
∑𝑛

𝑗=𝑣 𝑝1𝑗 ≥ 𝑇1 further into 5 different subcases and

deal with these subcases in Lemmata 12 to 16.

Lemma 12 If
∑𝑒

𝑗=𝑣 𝑝2𝑗 ≥ 𝑇1, let 𝒥
1 = {𝐽𝑣, . . . , 𝐽𝑒} and 𝒥2 = {𝒥∖𝒥1}. Then

max{𝐶max(𝒥
1), 𝐶max(𝒥

2)} ≤ 3
2
𝐶∗

max.
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Proof. In this case, we have
∑𝑒−1

𝑗=𝑣 𝑝1𝑗 < 𝑇1 ≤ ∑𝑒
𝑗=𝑣 𝑝1𝑗 ,

∑𝑒
𝑗=𝑣 𝑝2𝑗 ≥ 𝑇1, 𝒥

1 =

{𝐽𝑣, . . . , 𝐽𝑒} and 𝒥2 = {𝒥∖𝒥1}. This can be illustrated by Figure 4.9.

0 )(
max

JCT1 T2

  Jv   Je

  Je  Jv

Fig. 4.9. Cutting the Johnsonian schedule as prescribed in Lemma 12.

Let 𝐽𝑤 (𝑣 ≤ 𝑤 ≤ 𝑒) be the job for which 𝐶max(𝒥
1) =

∑𝑤
𝑗=𝑣 𝑝1𝑗 +

∑𝑒
𝑗=𝑤 𝑝2𝑗 .

This implies that

𝑤∑
𝑗=𝑣

𝑝1𝑗 +

𝑒∑
𝑗=𝑤

𝑝2𝑗 = max
𝑘

{
𝑘∑

𝑗=𝑣

𝑝1𝑗 +

𝑒∑
𝑗=𝑘

𝑝2𝑗},

and we refer to 𝐽𝑤 as the critical job of schedule 𝜎. Since 𝒥
1 ⊂ 𝒮2 = {𝐽𝑗 ∣𝑝1𝑗 > 𝑝2𝑗},

we must have that 𝑝2𝑒 ≤ 𝑝2𝑤 < 𝑝1𝑤 and
∑𝑤−1

𝑗=𝑣 𝑝1𝑗 +
∑𝑒

𝑗=𝑤+1 𝑝2𝑗 ≤ ∑𝑤−1
𝑗=𝑣 𝑝1𝑗 +∑𝑒−1

𝑗=𝑤 𝑝2𝑗 <
∑𝑒−1

𝑗=𝑣 𝑝1𝑗 < 𝑇1. It then holds that

𝐶max(𝒥
1) =

𝑤−1∑
𝑗=𝑣

𝑝1𝑗 +
𝑒∑

𝑗=𝑤+1

𝑝2𝑗 + 𝑝1𝑤 + 𝑝2𝑤 < 𝑇1 + 𝐶
∗
max ≤ 3

2
𝐶∗

max.

Let 𝜎2 be the minimum makespan schedule for the jobs in 𝒥2, obtained by

scheduling the jobs in order of Johnson’s rule. For 𝜎2, let 𝑆′′
𝑖𝑗 denote the start

time and 𝐶 ′′
𝑖𝑗 the completion time of operation 𝑂𝑖𝑗 (𝑖 = 1, 2; 𝑗 = 1, . . . , 𝑣 − 1, 𝑒+

1, . . . , 𝑛). We have 𝑆′′
𝑖𝑗 = 𝑆𝑖𝑗 , 𝐶

′′
𝑖𝑗 = 𝐶𝑖𝑗 , for 𝑗 = 1, . . . , 𝑢; and 𝑆

′′
𝑖𝑗 ≤ 𝑆𝑖𝑗 − 𝑇1,

𝐶 ′′
𝑖𝑗 ≤ 𝐶𝑖𝑗 −𝑇1, for 𝑗 = 𝑒+1, . . . , 𝑛, since job set 𝒥

1 = {𝐽𝑣, . . . , 𝐽𝑒} is not included
in 𝒥2 and

∑𝑒
𝑗=𝑣 𝑝1𝑗 ≥

∑𝑒
𝑗=𝑣 𝑝2𝑗 ≥ 𝑇1. We have

𝐶max(𝒥
2) = 𝐶 ′′

2𝑛 ≤ 𝐶max(𝒥)− 𝑇1 =
3

2
𝐶∗

max.
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□

Lemma 13 If
∑𝑣−1

𝑗=𝑑 𝑝1𝑗 ≥ 𝑇1, then let 𝒥1 = {𝐽𝑑, . . . , 𝐽𝑣−1} and 𝒥2 = {𝒥∖𝒥1}.
We then have that

max{𝐶max(𝒥
1), 𝐶max(𝒥

2)} ≤ 3
2
𝐶∗

max.

Proof. This case is illustrated in Figure 4.10.

0 T1 T2

  Jv

  Jd

  Jv-1

)(
max

JC

 Jv-1Jv Je

  Je  Jd

Fig. 4.10. Cutting the Johnsonian schedule as prescribed in Lemma 13.

Since 𝑝1𝑗 ≤ 𝑝2𝑗 for 𝑗 = 𝑑, . . . , 𝑣 − 1, we have
∑𝑣−1

𝑗=𝑑 𝑝2𝑗 ≥ ∑𝑣−1
𝑗=𝑑 𝑝1𝑗 ≥ 𝑇1. By

definition of job 𝐽𝑑, we get
∑𝑣−1

𝑗=𝑑+1 𝑝2𝑗 < 𝑇1. The case is then symmetric to the

case specified in Lemma 12. □

In the remaining analysis, we therefore assume that
∑𝑣−1

𝑗=𝑑 𝑝1𝑗 < 𝑇1.

Lemma 14 Assume
∑𝑣

𝑗=𝑑 𝑝1𝑗 ≥ 𝑇1 and
∑𝑣

𝑗=𝑑 𝑝2𝑗 ≥ 𝑇1. If 𝑣 < 𝑒, then let 𝒥1 =

{𝐽𝑑, . . . , 𝐽𝑣} and 𝒥2 = {𝐽1, . . . , 𝐽𝑑−1, 𝐽𝑣+1, . . . , 𝐽𝑛}. If 𝑣 = 𝑒, find a job 𝐽𝑘 with∑𝑒
𝑗=𝑘+1 𝑝2𝑗 < 𝑇1 ≤ ∑𝑒

𝑗=𝑘 𝑝2𝑗 and 𝑑 ≤ 𝑘 < 𝑒, and let 𝒥1 = {𝐽𝑘, . . . , 𝐽𝑒} and

𝒥2 = {𝒥∖𝒥1}. It then holds that

max{𝐶max(𝒥
1), 𝐶max(𝒥

2)} ≤ 3
2
𝐶∗

max.

Proof. First consider the case 𝑣 < 𝑒, illustrated by Figure 4.11.

If 𝐶max(𝒥
1) =

∑𝑣
𝑗=𝑑 𝑝1𝑗 + 𝑝2𝑣 =

∑𝑣−1
𝑗=𝑑 𝑝1𝑗 + 𝑝1𝑣 + 𝑝2𝑣, we have 𝐶max(𝒥

1) <

𝑇1 + 𝐶
∗
max <

3
2𝐶

∗
max. If 𝐶max(𝒥

1) = 𝑝1𝑑 +
∑𝑣

𝑗=𝑑 𝑝2𝑗 = 𝑝1𝑑 + 𝑝2𝑑 +
∑𝑣

𝑗=𝑑+1 𝑝2𝑗 ,

we have 𝐶max(𝒥
1) < 𝐶∗

max + 𝑇1 ≤ 3
2𝐶

∗
max. If 𝐶max(𝒥

1) =
∑𝑤

𝑗=𝑑 𝑝1𝑗 +
∑𝑣

𝑗=𝑤 𝑝2𝑗
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0 T1 T2

  Jv

  Jd

)(
max

JC

 Jv-1     Jv Je

  Je  Jd   Jv-1

Fig. 4.11. Cutting the Johnsonian schedule as prescribed in Lemma 14. (𝑣 < 𝑒)

and 𝑑 < 𝑤 < 𝑣, where 𝐽𝑤 is the critical job, we have 𝐶max(𝒥
1) =

∑𝑤
𝑗=𝑑 𝑝1𝑗 +∑𝑣

𝑗=𝑤 𝑝2𝑗 < 𝑇1 + 𝑇1 ≤ 𝐶∗
max, since

∑𝑣−1
𝑗=𝑑 𝑝1𝑗 < 𝑇1 and

∑𝑣
𝑗=𝑑+1 𝑝2𝑗 < 𝑇1. The

proof that 𝐶max(𝒥
2) ≤ 3

2𝐶
∗
max is similar to the proof of Lemma 12.

Now consider the case 𝑣 = 𝑒, which is illustrated by Figure 4.12.

0 T1 T2

  Je

  Jk

)(
max

JC

 Jv-1Je

  Jk   Jv-1

Fig. 4.12. Splitting of the Johnsonian schedule according to Lemma 14. (𝑣 ≥ 𝑒)

Since
∑𝑒−1

𝑗=𝑑 𝑝2𝑗 ≥ 𝑇1, job 𝐽𝑘 exists. In this case, we have
∑𝑒−1

𝑗=𝑘 𝑝1𝑗 < 𝑇1, which

follows from
∑𝑣−1

𝑗=𝑑 𝑝1𝑗 < 𝑇1 and 𝑑 ≤ 𝑘 < 𝑣 = 𝑒. Therefore, the proof is analogous
to the one for 𝑣 < 𝑒. □

In Lemma 14, we consider only the situation that
∑𝑣

𝑗=𝑑 𝑝1𝑗 ≥ 𝑇1 and∑𝑣
𝑗=𝑑 𝑝2𝑗 ≥ 𝑇1. If

∑𝑣
𝑗=𝑑 𝑝1𝑗 ≥ 𝑇1 and

∑𝑣
𝑗=𝑑 𝑝2𝑗 < 𝑇1, it must be that 𝑣 ≤ 𝑒 − 2.

Otherwise, if 𝑣 = 𝑒 or 𝑣 = 𝑒− 1, we would have that ∑𝑣
𝑗=𝑑 𝑝2𝑗 ≥ 𝑇1. If the sub-

case in Lemma 14 is not satisfied, we have Lemmata 15 and 16 to solve remaining

cases.
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Lemma 15 If
∑𝑒−1

𝑗=𝑑 𝑝1𝑗 ≥ 𝑇1, let 𝒥
1 = {𝐽𝑑, . . . , 𝐽𝑒−1} and 𝒥2 = {𝒥∖𝒥1}. It then

holds that

max{𝐶max(𝒥
1), 𝐶max(𝒥

2)} ≤ 3
2
𝐶∗

max.

Proof. If 𝑣 = 𝑒 or 𝑣 = 𝑒− 1, the result is correct due to Lemma 13 and Lemma
14. Hence, we need to consider only the case 𝑣 ≤ 𝑒 − 2, which is illustrated by
Figure 4.13.

0 T1 T2

  Jv

  Jd

)(
max

JC

 Jv-1     Jv     Je

  Jd  Jv-1  Je-1 Je

Fig. 4.13. Cutting the Johnsonian schedule as prescribed in Lemma 15.

Consider 𝐶max(𝒥
1). Let 𝐽𝑤 be the critical job in the minimum makespan

schedule for 𝒥1. If 𝐶max(𝒥
1) =

∑𝑤
𝑗=𝑑 𝑝1𝑗 +

∑𝑒−1
𝑗=𝑤 𝑝2𝑗 and 𝑑 ≤ 𝑤 < 𝑣, we must

have 𝑝1𝑑 ≤ 𝑝1𝑤 ≤ 𝑝2𝑤 and
∑𝑤−1

𝑗=𝑑 𝑝1𝑗 +
∑𝑒−1

𝑗=𝑤+1 𝑝2𝑗 ≤ ∑𝑒−1
𝑗=𝑑+1 𝑝2𝑗 < 𝑇1. Then,

𝐶max(𝒥
1) =

∑𝑤−1
𝑗=𝑑 𝑝1𝑗 +

∑𝑒−1
𝑗=𝑤+1 𝑝2𝑗 + 𝑝1𝑤 + 𝑝2𝑤 < 𝑇1 + 𝐶

∗
max =

3
2𝐶

∗
max.

If 𝐶max(𝒥
1) =

∑𝑤
𝑗=𝑑 𝑝1𝑗+

∑𝑒−1
𝑗=𝑤 𝑝2𝑗 and 𝑣 ≤ 𝑤 ≤ 𝑒−1, we have∑𝑒−1

𝑗=𝑤+1 𝑝2𝑗 −∑𝑒−1
𝑗=𝑤+1 𝑝1𝑗 ≤ 0, since {𝐽𝑤, . . . , 𝐽𝑒−1} ⊂ 𝒮2. This implies that

𝐶max(𝒥
1) =

𝑤∑
𝑗=𝑑

𝑝1𝑗 +

𝑒−1∑
𝑗=𝑤

𝑝2𝑗

=

𝑣−1∑
𝑗=𝑑

𝑝1𝑗 +

𝑒−1∑
𝑗=𝑣

𝑝1𝑗 + 𝑝2𝑤 +

𝑒−1∑
𝑗=𝑤+1

𝑝2𝑗 −
𝑒−1∑

𝑗=𝑤+1

𝑝1𝑗

≤
𝑣−1∑
𝑗=𝑑

𝑝1𝑗 +

𝑒−1∑
𝑗=𝑣

𝑝1𝑗 + 𝑝2𝑤.
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If
∑𝑣−1

𝑗=𝑑 𝑝1𝑗 + 𝑝2𝑤 ≥ 𝑇1, we have
∑𝑣

𝑗=𝑑 𝑝1𝑗 ≥ 𝑇1 and
∑𝑣

𝑗=𝑑 𝑝2𝑗 ≥ 𝑇1, since

𝑝2𝑤 ≤ 𝑝2𝑣 < 𝑝1𝑣 and
∑𝑣−1

𝑗=𝑑 𝑝1𝑗 ≤ ∑𝑣−1
𝑗=𝑑 𝑝2𝑗 . We have solved this case in Lemma

14. If
∑𝑣−1

𝑗=𝑑 𝑝1𝑗 + 𝑝2𝑤 < 𝑇1, we have that

𝐶max(𝒥
1) ≤

𝑣−1∑
𝑗=𝑑

𝑝1𝑗 + 𝑝2𝑤 +

𝑒−1∑
𝑗=𝑣

𝑝1𝑗 < 𝑇1 + 𝑇1 < 𝐶
∗
max.

Since we have
∑𝑒−1

𝑗=𝑑 𝑝1𝑗 ≥ 𝑇1 and
∑𝑒−1

𝑗=𝑑 𝑝2𝑗 ≥ 𝑇1 by definition, the proof of

set 𝒥2 is analogous to that of Lemma 12. □

Lemma 16 If
∑𝑒−1

𝑗=𝑑 𝑝1𝑗 < 𝑇1, let 𝐽𝑘 with 𝑑 ≤ 𝑘 < 𝑣 be such that
∑𝑒

𝑘+1 𝑝2𝑗 <

𝑇1 ≤ ∑𝑒
𝑘 𝑝2𝑗, and define 𝒥1 = {𝐽𝑘, . . . , 𝐽𝑒} and 𝒥2 = {𝒥∖𝒥1}. It then holds that

max{𝐶max(𝒥
1), 𝐶max(𝒥

2)} ≤ 3
2
𝐶∗

max.

Proof. For a visualization of this case, see Figure 4.14.

0 T1 T2

  Jk

)(
max
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 Jv-1 Jv Je

 Jk Jv-1  Jv  Je

Fig. 4.14. Cutting the Johnsonian schedule as indicated in Lemma 16.

Since
∑𝑒−1

𝑗=𝑑 𝑝2𝑗 ≥ 𝑇1, job 𝐽𝑘 exists. If 𝐶max(𝒥
1) =

∑𝑤
𝑗=𝑘 𝑝1𝑗 +

∑𝑒
𝑗=𝑤 𝑝2𝑗 and

𝑘 ≤ 𝑤 < 𝑣, we must have 𝑝1𝑘 ≤ 𝑝1𝑤 ≤ 𝑝2𝑤 and
∑𝑤−1

𝑗=𝑘 𝑝1𝑗 +
∑𝑒

𝑗=𝑤+1 𝑝2𝑗 ≤∑𝑒
𝑗=𝑘+1 𝑝2𝑗 < 𝑇1. Then, 𝐶max(𝒥

1) =
∑𝑤−1

𝑗=𝑑 𝑝1𝑗 +
∑𝑒

𝑗=𝑤+1 𝑝2𝑗 + 𝑝1𝑤 + 𝑝2𝑤 <

𝑇1 + 𝐶
∗
max =

3
2𝐶

∗
max.

If 𝐶max(𝒥
1) =

∑𝑤
𝑗=𝑘 𝑝1𝑗 +

∑𝑒
𝑗=𝑤 𝑝2𝑗 and 𝑣 ≤ 𝑤 ≤ 𝑒, we must have 𝑝2𝑒 ≤

𝑝2𝑤 < 𝑝1𝑤 and
∑𝑤−1

𝑗=𝑘 𝑝1𝑗 +
∑𝑒

𝑗=𝑤+1 𝑝2𝑗 ≤ ∑𝑒−1
𝑗=𝑘 𝑝1𝑗 ≤ ∑𝑒−1

𝑗=𝑑 𝑝1𝑗 < 𝑇1. Then,

𝐶max(𝒥
1) =

∑𝑤−1
𝑗=𝑘 𝑝1𝑗 +

∑𝑒
𝑗=𝑤+1 𝑝2𝑗 + 𝑝1𝑤 + 𝑝2𝑤 < 𝑇1 + 𝐶

∗
max =

3
2𝐶

∗
max.
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Since we have
∑𝑒

𝑗=𝑘 𝑝1𝑗 ≥
∑𝑒

𝑗=𝑣 𝑝1𝑗 ≥ 𝑇1 and
∑𝑒

𝑗=𝑘 𝑝2𝑗 ≥ 𝑇1, the proof of set

𝒥2 is analogous to that of Lemma 12. □

We are now done with the analysis of the case for which
∑𝑛

𝑗=𝑣 𝑝1𝑗 ≥ 𝑇1, and

for which there exists a job 𝐽ℎ with 𝑆2ℎ ≤ 𝑇2 ≤ 𝐶2ℎ, 𝑆1ℎ < 𝑇1, 𝐶1ℎ < 𝑆2ℎ,

𝑆′
1ℎ < 𝑇1 and 𝐶

′
1ℎ < 𝑆

′
2ℎ. If

∑𝑢
𝑗=1 𝑝2𝑗 ≥ 𝑇1, the case is symmetrical to the case∑𝑛

𝑗=𝑣 𝑝1𝑗 ≥ 𝑇1, and we can cut the Johnsonian schedule similarly.

Lemma 17 There is no case with both
∑𝑛

𝑗=𝑣 𝑝1𝑗 < 𝑇1 and
∑𝑢

𝑗=1 𝑝2𝑗 < 𝑇1.

Proof. If
∑𝑛

𝑗=𝑣 𝑝1𝑗 < 𝑇1 and
∑𝑢

𝑗=1 𝑝2𝑗 < 𝑇1, we get
∑𝑛

𝑗=𝑣 𝑝2𝑗 < 𝑇1 and∑𝑢
𝑗=1 𝑝1𝑗 < 𝑇1. Then we must have that

∑𝑛
𝑗=𝑣 𝑝1𝑗 +

∑𝑢
𝑗=1 𝑝2𝑗 +

∑𝑛
𝑗=𝑣 𝑝2𝑗 +∑𝑢

𝑗=1 𝑝1𝑗 < 𝐶max(𝒥), which is a contradiction. □

Using Lemmata 7-17, we have proved that we can split any set 𝒥 into two

disjoint subsets 𝒥1 and 𝒥2 and guarantee that the minimum makespan schedule

for either subset has makespan no larger than 3
2𝐶

∗
max. The full details of the

algorithm, referred to as Algorithm 𝑆𝑃𝐿𝑇1, can be found in Appendix A.

Theorem 8 Algorithm 𝑆𝑃𝐿𝑇1 is a 3
2 -approximation for minimizing makespan

on two parallel two-stage flow shops. □

4.3 A 15
7
-approximation algorithm for 𝒎 = 3

For 𝑚 = 3, we essentially design a similar approach as for Algorithm 𝑆𝑃𝐿𝑇1;

we start by cutting the Johnsonian schedule 𝜎 into two parts. We will do this

in such a way that the makespan of the first part is bounded from above by
4
7𝐶max(𝒥) ≤ 15

7𝐶
∗
max and the makespan of the second part is bounded from above

by 16
21𝐶max(𝒥) ≤ 22

7𝐶
∗
max; remember from Lemma 6 that 𝐶max(𝒥) ≤ 3𝐶∗

max if 𝑚 =

3. We then use algorithm 𝑆𝑃𝐿𝑇1 to cut the second part into two further parts

and guarantee that both these further parts can be scheduled with a makespan

smaller than 15
7𝐶

∗
max.

As before, let the Johnsonian schedule be 𝜎, and let 𝑆𝑖𝑗 and 𝐶𝑖𝑗 be the earliest

start and completion times of operations 𝑂𝑖𝑗 for 𝑖 = 1, 2 and 𝑗 = 1, . . . , 𝑛. We set

𝑇1 =
5
21𝐶max(𝒥), 𝑇2 =

16
21𝐶max(𝒥).
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Lemma 18 If there exists no job 𝐽ℎ with 𝑆1ℎ ≤ 𝑇1 ≤ 𝐶1ℎ, then let 𝒥1 =

{𝐽1, . . . , 𝐽𝑘} and 𝒥2 = {𝐽𝑘+1, . . . , 𝐽𝑛} with 𝐽𝑘 such that 𝑆2𝑘 ≤ 𝑇1 ≤ 𝐶2𝑘. We

then have that

𝐶max(𝒥
1) ≤ 15

7
𝐶∗

max 𝑎𝑛𝑑 𝐶max(𝒥
2) ≤ 22

7
𝐶∗

max.

Proof. Since there is no job 𝐽ℎ with 𝑆1ℎ ≤ 𝑇1 ≤ 𝐶1ℎ, machine 𝑀1 is idle after

𝑇1. Furthermore, there must exist a job 𝐽𝑘 with 𝑆2𝑘 ≤ 𝑇1 ≤ 𝐶2𝑘, otherwise

machine 𝑀2 would be idle after 𝑇1, too. We then let 𝒥
1 = {𝐽1, . . . , 𝐽𝑘}, and

𝒥2 = {𝐽𝑘+1, . . . , 𝐽𝑛}. This case is illustrated by Figure 4.15.

0 )(
max

JCT1 T2

  Jk

Fig. 4.15. Cutting the Johnsonian schedule as prescribed in Lemma 18.

Since 𝑆2𝑘 ≤ 𝑇1, we have 𝐶max(𝒥
1) = 𝑆2𝑘 + 𝑝2𝑘 ≤ 𝑇1 + 𝐶

∗
max =

5
21𝐶max(𝒥) +

𝐶∗
max ≤ 15

7𝐶
∗
max. And since 𝐶2𝑘 ≥ 𝑇1, we have 𝐶max(𝒥

2) ≤ 𝐶max(𝒥) − 𝐶2𝑘 ≤
16
21𝐶max(𝒥). □

Lemma 19 If there is a job 𝐽ℎ with 𝑆1ℎ ≤ 𝑇1 ≤ 𝐶1ℎ and 𝐶2ℎ ≤ 4
7𝐶max(𝒥) or

𝐶1ℎ = 𝑆2ℎ, let 𝒥
1 = {𝐽1, . . . , 𝐽ℎ}, and 𝒥2 = {𝐽ℎ+1, . . . , 𝐽𝑛}. We then have that

𝐶max(𝒥
1) ≤ 15

7
𝐶∗

max 𝑎𝑛𝑑 𝐶max(𝒥
2) ≤ 22

7
𝐶∗

max.

□

Proof. This case is visualized in Figure 4.16.The proof is similar to the one

of Lemma 8. □

Suppose now there is a job 𝐽ℎ with 𝑆1ℎ ≤ 𝑇1 ≤ 𝐶1ℎ for which 𝐶2ℎ >
4
7𝐶max(𝒥)

and 𝐶1ℎ < 𝑆2ℎ. Then machine 𝑀2 must be busy in the period [𝑇1,
4
7𝐶max(𝒥)], i.e.
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Fig. 4.16. Cutting the Johnsonian schedule as indicated in Lemma 19.

∑𝑛
𝑗=1 𝑝2𝑗 ≥ 4

7𝐶max(𝒥)− 5
21𝐶max(𝒥) =

1
3𝐶max(𝒥) > 𝑇1. We now delay all operations

𝑂𝑖𝑗 in 𝜎 as much as possible within the makespan 𝐶max(𝒥). Let 𝑆
′
𝑖𝑗 and 𝐶

′
𝑖𝑗 denote

the modified start and completion times of 𝑂𝑖𝑗 and let 𝜎
′ denote the modified

schedule.

Lemma 20 In schedule 𝜎′, find a job 𝐽𝑡 with 𝑆′
2𝑡 ≤ 𝑇2 ≤ 𝐶 ′

2𝑡. If 𝑆
′
1𝑡 ≥ 3

7𝐶max(𝒥)

or 𝐶 ′
1𝑡 = 𝑆

′
2𝑡, let 𝒥

1 = {𝐽𝑡, . . . , 𝐽𝑛}, and 𝒥2 = {𝐽1, . . . , 𝐽𝑡−1}. We then have that

𝐶max(𝒥
1) ≤ 15

7
𝐶∗

max 𝑎𝑛𝑑 𝐶max(𝒥
2) ≤ 22

7
𝐶∗

max.

Proof. If there is no such job 𝐽𝑡, we have
∑𝑛

𝑗=1 𝑝2𝑗 < 𝐶max(𝒥)− 𝑇2 = 𝑇1. Since

we have assumed there is a job 𝐽ℎ for which 𝑆1ℎ ≤ 𝑇1 ≤ 𝐶1ℎ and 𝐶2ℎ ≤ 4
7𝐶max(𝒥)

or 𝐶1ℎ = 𝑆2ℎ, we have already addressed this case in Lemma 19.

Hence, we may suppose such a job 𝐽𝑡 exists. This case is visualized in Figure

4.17.
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Fig. 4.17. Cutting the Johnsonian schedule as indicated in Lemma 20.

Since 𝑆′
2𝑡 ≤ 𝑇2, we have
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𝐶max(𝒥
2) = 𝐶2(𝑡−1) ≤ 𝑆′

2𝑡 ≤ 𝑇2 ≤ 16
21
𝐶max(𝒥).

If 𝑆′
1𝑡 ≥ 3

7𝐶max(𝒥), then 𝐶max(𝒥
1) ≤ 𝐶max(𝒥) − 𝑆′

1𝑡 ≤ 4
7𝐶max(𝒥) = 1

5
7𝐶

∗
max.

If 𝑆′
1𝑡 <

3
7𝐶max(𝒥), then we have 𝐶

′
1𝑡 = 𝑆

′
2𝑡, and hence 𝐶max(𝒥

1) ≤ 𝑝1𝑡 + 𝑝2𝑡 +

(𝐶max(𝒥)− 𝐶2𝑡) ≤ 𝐶∗
max +

5
21𝐶max(𝒥) = 1

5
7𝐶

∗
max. □

Lemma 18 to Lemma 20 have solved many different cases of this problem.

The one remaining case is where there exists a job 𝐽𝑡 with 𝑆
′
2𝑡 ≤ 𝑇2 ≤ 𝐶 ′

2𝑡,

𝑆′
1𝑡 <

3
7𝐶max(𝒥), 𝐶

′
1𝑡 < 𝑆

′
2𝑡, and a job 𝐽ℎ with 𝑆1ℎ ≤ 𝑇1 ≤ 𝐶1ℎ, 𝐶2ℎ >

4
7𝐶max(𝒥)

and 𝐶1ℎ < 𝑆2ℎ. This case is illustrated in Figure 4.18.

0 )(
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Fig. 4.18. The remaining case with jobs 𝐽ℎ and 𝐽𝑡.

In this remaining case, machine𝑀2 must be busy in the period [𝑇1,
4
7𝐶max(𝒥)]

in schedule 𝜎, for otherwise, operation 𝑂2ℎ could have been started earlier; in

schedule 𝜎′, machine 𝑀1 is busy in the period [
3
7𝐶max(𝒥), 𝑇2], for otherwise, op-

eration 𝑂1𝑡 could have been started later.

In what follows, we deal with the remaining case with jobs 𝐽ℎ and 𝐽𝑡 only. We

split the 𝑛 jobs into two subsets 𝒮1 = {𝐽1, . . . , 𝐽𝑢} = {𝐽𝑗 ∣𝑝1𝑗 ≤ 𝑝2𝑗 , 𝑗 = 1, . . . , 𝑛}
and 𝒮2 = {𝐽𝑣, . . . , 𝐽𝑛} = {𝐽𝑗 ∣𝑝1𝑗 > 𝑝2𝑗 , 𝑗 = 1, . . . , 𝑛}. We then branch into
two cases: the case

∑𝑛
𝑗=𝑣 𝑝1𝑗 ≥ 𝑇1, and the case

∑𝑢
𝑗=1 𝑝2𝑗 ≥ 𝑇1. Since they are

symmetrical, we analyze the first case only.

Since
∑𝑛

𝑗=𝑣 𝑝1𝑗 ≥ 𝑇1, we can find a job 𝐽𝑒 with 𝑒 ≥ 𝑣 such that
∑𝑒−1

𝑗=𝑣 𝑝1𝑗 <

𝑇1 ≤ ∑𝑒
𝑗=𝑣 𝑝1𝑗 . We have the following Lemma.

Lemma 21 If
∑𝑒

𝑗=𝑣 𝑝2𝑗 ≥ 𝑇1, then let 𝒥1 = {𝐽𝑣, . . . , 𝐽𝑒} and𝒥2 = {𝒥∖𝒥1}. Then
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𝐶max(𝒥
1) ≤ 15

7
𝐶∗

max 𝑎𝑛𝑑 𝐶max(𝒥
2) ≤ 22

7
𝐶∗

max.

Proof. This case is illustrated by Figure 4.19.
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Fig. 4.19. Cutting the Johnsonian schedule as indicated in Lemma 21.

Let 𝐶max(𝒥
1) =

∑𝑤
𝑗=𝑣 𝑝1𝑗 +

∑𝑒
𝑗=𝑤 𝑝2𝑗 and 𝑣 ≤ 𝑤 ≤ 𝑒. We must have 𝑝2𝑒 ≤

𝑝2𝑤 < 𝑝1𝑤 and
∑𝑤−1

𝑗=𝑣 𝑝1𝑗 +
∑𝑒

𝑗=𝑤+1 𝑝2𝑗 <
∑𝑒−1

𝑗=𝑣 𝑝1𝑗 < 𝑇1. Then, 𝐶max(𝒥
1) =∑𝑤−1

𝑗=𝑣 𝑝1𝑗 +
∑𝑒

𝑗=𝑤+1 𝑝2𝑗 + 𝑝1𝑤 + 𝑝2𝑤 < 𝑇1 + 𝐶
∗
max = 1

5
7𝐶

∗
max. The proof for

𝐶max(𝒥) is analogous to the proof of Lemma 12. □

If the condition in Lemma 21 is not satisfied, we need to find a job 𝐽𝑑 with

𝑑 < 𝑣 such that
∑𝑒−1

𝑗=𝑑−1 𝑝2𝑗 < 𝑇1 ≤ ∑𝑒−1
𝑗=𝑑 𝑝2𝑗 . If there is no such job 𝐽𝑑, we have

the following result.

Lemma 22 If there is no job 𝐽𝑑 with 𝑑 < 𝑣 such that
∑𝑒−1

𝑗=𝑑−1 𝑝2𝑗 < 𝑇1 ≤∑𝑒−1
𝑗=𝑑 𝑝2𝑗, we find a job 𝐽𝑘 with

∑𝑒
𝑗=𝑘+1 𝑝2𝑗 < 𝑇1 ≤ ∑𝑒

𝑗=𝑘 𝑝2𝑗 and 1 ≤ 𝑘 < 𝑒, and
we let 𝒥1 = {𝐽𝑘, . . . , 𝐽𝑒} and 𝒥2 = {𝒥∖𝒥1}. We then have that

𝐶max(𝒥
1) ≤ 15

7
𝐶∗

max 𝑎𝑛𝑑 𝐶max(𝒥
2) ≤ 22

7
𝐶∗

max.

Proof. This case is visualized in Figure 4.20, where 𝑘 = 𝑣 = 1. In this case,

we have 𝑒 ≥ ℎ, since
∑𝑒

𝑗=𝑣 𝑝1𝑗 ≥ 𝑇1 and
∑ℎ−1

𝑗=1 𝑝1𝑗 ≤ 𝑇1. Furthermore, we have

𝑘 < 𝑣, for otherwise we would have
∑𝑒

𝑗=𝑣 𝑝2𝑗 ≥ 𝑇1, which already has been

covered by Lemma 21. With 𝐶2ℎ >
4
7𝐶max(𝒥) and machine 𝑀2 being busy in the

period [ 5
21𝐶max(𝒥),

4
7𝐶max(𝒥)], we have

∑𝑒
𝑗=1 𝑝2𝑗 > 𝑇1. Therefore job 𝐽𝑘 exists.

Since
∑ℎ

𝑗=1 𝑝2𝑗 > 𝑇1 and
∑𝑒−1

𝑗=1 𝑝2𝑗 < 𝑇1, we have 𝑒 − 1 < ℎ. Since also 𝑒 ≥
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Fig. 4.20. Cutting the Johnsonian schedule as indicated in Lemma 22.

ℎ, we must have that 𝑒 = ℎ. Then we have
∑𝑒−1

𝑗=𝑘 𝑝1𝑗 ≤ ∑ℎ−1
𝑗=1 𝑝1𝑗 < 𝑇1. If

𝐶max(𝒥
1) =

∑𝑤
𝑗=𝑘 𝑝1𝑗 +

∑𝑒
𝑗=𝑤 𝑝2𝑗 and 𝑣 ≤ 𝑤 ≤ 𝑒, we must have 𝑝2𝑒 ≤ 𝑝2𝑤 < 𝑝1𝑤

and
∑𝑤−1

𝑗=𝑘 𝑝1𝑗 +
∑𝑒

𝑗=𝑤+1 𝑝2𝑗 ≤ ∑𝑒−1
𝑗=𝑘 𝑝1𝑗 < 𝑇1. Then, 𝐶max(𝒥

1) =
∑𝑤−1

𝑗=𝑑 𝑝1𝑗 +∑𝑒
𝑗=𝑤+1 𝑝2𝑗 + 𝑝1𝑤 + 𝑝2𝑤 < 𝑇1 + 𝐶

∗
max = 1

5
7𝐶

∗
max. If 𝐶max(𝒥

1) =
∑𝑤

𝑗=𝑘 𝑝1𝑗 +∑𝑒
𝑗=𝑤 𝑝2𝑗 and 𝑘 ≤ 𝑤 < 𝑣, we must have 𝑝1𝑘 ≤ 𝑝1𝑤 ≤ 𝑝2𝑤 and

∑𝑤−1
𝑗=𝑘 𝑝1𝑗 +∑𝑒

𝑗=𝑤+1 𝑝2𝑗 ≤ ∑𝑒
𝑗=𝑘+1 𝑝2𝑗 < 𝑇1. Then, 𝐶max(𝒥

1) =
∑𝑤−1

𝑗=𝑑 𝑝1𝑗 +
∑𝑒

𝑗=𝑤+1 𝑝2𝑗 +

𝑝1𝑤+𝑝2𝑤 < 𝑇1+𝐶
∗
max = 1

5
7𝐶

∗
max. Because of 𝑘 < 𝑣, we also have

∑𝑒
𝑗=𝑘 𝑝1𝑗 ≥ 𝑇1.

Since
∑𝑒

𝑗=𝑘 𝑝2𝑗 ≥ 𝑇1, the proof of 𝐶max(𝒥
2) is analogous to Lemma 12. □

If there exists a job 𝐽𝑒 with 𝑒 ≥ 𝑣 such that
∑𝑒−1

𝑗=𝑣 𝑝1𝑗 < 𝑇1 ≤ ∑𝑒
𝑗=𝑣 𝑝1𝑗 and a

job 𝐽𝑑 with 𝑑 < 𝑣 such that
∑𝑒−1

𝑗=𝑑−1 𝑝2𝑗 < 𝑇1 ≤ ∑𝑒−1
𝑗=𝑑 𝑝2𝑗 , we have the following

Lemmata 23 - 26. Their proofs are similar to those of Lemma 13 - 16.

Lemma 23 If
∑𝑣−1

𝑗=𝑑 𝑝1𝑗 ≥ 𝑇1, let 𝒥
1 = {𝐽𝑑, . . . , 𝐽𝑣−1} and 𝒥2 = {𝒥∖𝒥1}. We then

have that

𝐶max(𝒥
1) ≤ 15

7
𝐶∗

max 𝑎𝑛𝑑 𝐶max(𝒥
2) ≤ 22

7
𝐶∗

max.

□

Lemma 24 If
∑𝑣

𝑗=𝑑 𝑝1𝑗 ≥ 𝑇1 and
∑𝑣

𝑗=𝑑 𝑝2𝑗 ≥ 𝑇1, we have two cases. If 𝑣 < 𝑒,

let 𝒥1 = {𝐽𝑑, . . . , 𝐽𝑣} and 𝒥2 = {𝒥∖𝒥1}. If 𝑣 = 𝑒, find a job 𝐽𝑘 with
∑𝑒

𝑗=𝑘+1 𝑝2𝑗 <

𝑇1 ≤ ∑𝑒
𝑗=𝑘 𝑝2𝑗 and 𝑑 ≤ 𝑘 < 𝑒. Let 𝒥1 = {𝐽𝑘, . . . , 𝐽𝑒} and 𝒥2 = {𝒥∖𝒥1}. We then

have that

𝐶max(𝒥
1) ≤ 15

7
𝐶∗

max 𝑎𝑛𝑑 𝐶max(𝒥
2) ≤ 22

7
𝐶∗

max.

□
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Lemma 25 In the case of
∑𝑒−1

𝑗=𝑑 𝑝1𝑗 ≥ 𝑇1, let 𝒥1 = {𝐽𝑑, . . . , 𝐽𝑒−1} and 𝒥2 =

{𝒥∖𝒥1}. We then have that

𝐶max(𝒥
1) ≤ 15

7
𝐶∗

max 𝑎𝑛𝑑 𝐶max(𝒥
2) ≤ 22

7
𝐶∗

max.

□

Lemma 26 In the case of
∑𝑒−1

𝑗=𝑑 𝑝1𝑗 < 𝑇1, find a job 𝐽𝑘 with 𝑑 ≤ 𝑘 < 𝑣 such that∑𝑒
𝑘+1 𝑝2𝑗 < 𝑇1 ≤ ∑𝑒

𝑘 𝑝2𝑗, 𝒥
1 = {𝐽𝑘, . . . , 𝐽𝑒} and 𝒥2 = {𝒥∖𝒥1}. We then have that

𝐶max(𝒥
1) ≤ 15

7
𝐶∗

max 𝑎𝑛𝑑 𝐶max(𝒥
2) ≤ 22

7
𝐶∗

max.

□

Using Lemmata 21 - 26, we have solved the case
∑𝑛

𝑗=𝑣 𝑝1𝑗 ≥ 𝑇1. The algorithm

for the case
∑𝑢

𝑗=1 𝑝2𝑗 ≥ 𝑇1 is symmetrical. For the makespan parallel flow shop

problem with 𝑚 = 3, Lemma 17 still holds.

We have now developed an approximation algorithm, referred to as Algo-

rithm 𝑆𝑃𝐿𝑇2, for the parallel flow shop problem with 𝑚 = 3 with worst-case

performance guarantee 15
7 (see Appendix A for the exact step-wise description

of Algorithm 𝑆𝑃𝐿𝑇2). Algorithm 𝑆𝑃𝐿𝑇2 gives two job sets 𝒥1 and 𝒥2, with

𝐶max(𝒥
1) ≤ 15

7𝐶
∗
max and 𝐶max(𝒥

2) ≤ 22
7𝐶

∗
max. We can then apply Algorithm

𝑆𝑃𝐿𝑇1 to the job set 𝒥2, which gives two further job sets for which have makespan

bounded by 15
7𝐶

∗
max. Finally, we have therefore the following result.

Theorem 9 Algorithm 𝑆𝑃𝐿𝑇2 is a 15
7 -approximation for the problem of mini-

mizing makespan in three parallel two-stage flow shops. □

4.4 Conclusions

We have developed approximation algorithms with worst-case performance guar-

antees for scheduling jobs in a flexible manufacturing environment with two and

three two-stage parallel flow shops. The key idea is to judiciously cut the John-

sonian schedule in two and three parts, respectively, and schedule each part in a

different flow shop.
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Our results apply also to the makespan parallel flow shop problem with trans-

portation times, in which the operations of the same job can be performed in

different flow shops and where transporting job 𝐽𝑗 from one flow shop to another

requires a transportation time 𝑙𝑗 ≥ 0 (𝑗 = 1, . . . , 𝑛). This is so, since in our algo-
rithms transfer of jobs does not take place. If 𝑙𝑗 = 0 for each 𝑗, then the parallel

flow shop problem with transportation times reduces to the hybrid flow shop

problem, and our approximation algorithm has the same worst-case performance

guarantee as the algorithms by Chen (1994) and Lee and Vairaktarakis (1994)

when 𝑚1 = 𝑚2 = 2.

Appendix A: Algorithms for splitting the Johnsonian schedule

Algorithm 1 SPLT1

Step 1. (Initialization)

Let 𝑆11 = 0, 𝐶11 = 𝑆11 + 𝑝11, 𝑆21 = 𝐶11, 𝐶21 = 𝑆21 + 𝑝21.

For 𝑗 = 2 to 𝑛, do the following:

𝑆1𝑗 = 𝐶1(𝑗−1), 𝐶1𝑗 = 𝑆1𝑗+𝑝1𝑗, 𝑆2𝑗 = max{𝐶1𝑗 , 𝐶2(𝑗−1)}, 𝐶2𝑗 = 𝑆2𝑗+𝑝2𝑗.

Let 𝐶max(𝒥) = 𝐶2𝑛, 𝑇1 =
1
4𝐶max(𝒥), 𝑇2 =

3
4𝐶max(𝒥).

Step 2. Find the job max 𝐽 𝑙 with 𝑆2ℎ ≤ 𝑇2 ≤ 𝐶2ℎ. If job 𝐽ℎ does not exists,

find the job 𝐽𝑘 with 𝑆1𝑘 ≤ 𝑇2 ≤ 𝐶1𝑘, and let 𝒥1 = {𝐽1, . . . , 𝐽𝑘−1}, and 𝒥2 =

{𝐽𝑘, . . . , 𝐽𝑛}, stop; otherwise, go to Step 3 with 𝐽ℎ.

Step 3.If 𝑆1ℎ ≥ 𝑇1 or 𝐶1ℎ = 𝑆2ℎ, let 𝒥1 = {𝐽1, . . . , 𝐽ℎ−1}, and 𝒥2 =

{𝐽ℎ, . . . , 𝐽𝑛}, stop; otherwise, go to Step 4 with 𝐽ℎ.

Step 4. Let 𝐶 ′
1𝑛 = 𝑆2𝑛 and 𝑆′

1𝑛 = 𝐶
′
1𝑛 − 𝑝1𝑛.

For 𝑗 = (𝑛− 1) to 1, perform the following computations:

𝐶 ′
1𝑗 = min{𝑆′

1(𝑗+1), 𝑆2𝑗} and 𝑆′
1𝑗 = 𝐶

′
1𝑗 − 𝑝1𝑗, where 𝑆

′
1𝑗 and 𝐶 ′

1𝑗 are

the latest possible start and completion time of job 𝐽𝑗 in machine 𝑀1.

Step 5. If 𝑆′
1ℎ ≥ 𝑇1 or 𝐶 ′

1ℎ = 𝑆
′
2ℎ, let 𝒥

1 = {𝐽1, . . . , 𝐽ℎ−1}, 𝒥2 = {𝐽ℎ, . . . , 𝐽𝑛},
and stop; otherwise, go to Step 6.

Step 6. In schedule 𝜎, find the job 𝐽𝑢 with 𝑝1𝑢 ≤ 𝑝2𝑢 and 𝑝1(𝑢+1) > 𝑝2(𝑢+1),

and let 𝑣 = 𝑢 + 1. Therefore, in schedule 𝜎, we have 𝑝1𝑗 ≤ 𝑝2𝑗 for 𝑗 = 1, . . . , 𝑢

and 𝑝1𝑗 > 𝑝2𝑗 for 𝑗 = 𝑣, . . . , 𝑛. Then, we branch into the two cases.
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Case 1.
∑𝑛

𝑗=𝑣 𝑝1𝑗 ≥ 𝑇1. Find a job 𝐽𝑒 with 𝑒 ≥ 𝑣 such that
∑𝑒−1

𝑗=𝑣 𝑝1𝑗 < 𝑇1 ≤∑𝑒
𝑗=𝑣 𝑝1𝑗 and a job 𝐽𝑑 with 𝑑 < 𝑣 such that

∑𝑒−1
𝑗=𝑑+1 𝑝2𝑗 < 𝑇1 ≤ ∑𝑒−1

𝑗=𝑑 𝑝2𝑗. We

branch into five subcases.

Subcase 1.1
∑𝑒

𝑗=𝑣 𝑝2𝑗 ≥ 𝑇1. Let 𝒥
1 = {𝐽𝑣, . . . , 𝐽𝑒} and 𝒥2 = {𝒥∖𝒥1}. Stop.

Subcase 1.2
∑𝑣−1

𝑗=𝑑 𝑝1𝑗 ≥ 𝑇1. Let 𝒥
1 = {𝐽𝑑, . . . , 𝐽𝑣−1} and 𝒥2 = {𝒥∖𝒥1}. Stop.

Subcase 1.3
∑𝑣

𝑗=𝑑 𝑝1𝑗 ≥ 𝑇1 and
∑𝑣

𝑗=𝑑 𝑝2𝑗 ≥ 𝑇1. If 𝑣 < 𝑒, let 𝒥
1 = {𝐽𝑑, . . . , 𝐽𝑣}

and 𝒥2 = {𝒥∖𝒥1}. If 𝑣 = 𝑒, find a job 𝐽𝑘 with
∑𝑒

𝑗=𝑘+1 𝑝2𝑗 < 𝑇1 ≤ ∑𝑒
𝑗=𝑘 𝑝2𝑗 and

𝑑 ≤ 𝑘 < 𝑒. Let 𝒥1 = {𝐽𝑘, . . . , 𝐽𝑒} and 𝒥2 = {𝒥∖𝒥1}. Stop.
Subcase 1.4

∑𝑒−1
𝑗=𝑑 𝑝1𝑗 ≥ 𝑇1. Let 𝒥

1 = {𝐽𝑑, . . . , 𝐽𝑒−1} and 𝒥2 = {𝒥∖𝒥1}. Stop.
Subcase 1.5

∑𝑒−1
𝑗=𝑑 𝑝1𝑗 < 𝑇1. Find a job 𝐽𝑘 with 𝑑 ≤ 𝑘 < 𝑣 such that

∑𝑒
𝑘+1 𝑝2𝑗 <

𝑇1 ≤ ∑𝑒
𝑘 𝑝2𝑗, 𝒥

1 = {𝐽𝑘, . . . , 𝐽𝑒} and 𝒥2 = {𝒥∖𝒥1}. Stop.
Case 2.

∑𝑢
𝑗=1 𝑝2𝑗 ≥ 𝑇1. Find a job 𝐽𝑑 with 𝑑 ≤ 𝑢 such that

∑𝑢
𝑗=𝑑+1 𝑝2𝑗 <

𝑇1 ≤ ∑𝑢
𝑗=𝑑 𝑝2𝑗 and a job 𝐽𝑒 with 𝑒 > 𝑢 such that

∑𝑒−1
𝑗=𝑑+1 𝑝1𝑗 < 𝑇1 ≤ ∑𝑒

𝑗=𝑑+1 𝑝1𝑗.

We branch into five subcases.

Subcase 2.1
∑𝑢

𝑗=𝑑 𝑝1𝑗 ≥ 𝑇1. Let 𝒥
1 = {𝐽𝑑, . . . , 𝐽𝑢} and 𝒥2 = {𝒥∖𝒥1}. Stop.

Subcase 2.2
∑𝑒

𝑗=𝑢+1 𝑝2𝑗 ≥ 𝑇1. Let 𝒥
1 = {𝐽𝑢+1, . . . , 𝐽𝑒} and 𝒥2 = {𝒥∖𝒥1}. Stop.

Subcase 2.3
∑𝑒

𝑗=𝑢 𝑝1𝑗 ≥ 𝑇1 and
∑𝑒

𝑗=𝑢 𝑝2𝑗 ≥ 𝑇1. If 𝑑 < 𝑢, let 𝒥
1 = {𝐽𝑢, . . . , 𝐽𝑒}

and 𝒥2 = {𝒥∖𝒥1}. If 𝑑 = 𝑢, find a job 𝐽𝑘 with
∑𝑘−1

𝑗=𝑑 𝑝1𝑗 < 𝑇1 ≤ ∑𝑘
𝑗=𝑑 𝑝1𝑗 and

𝑑 < 𝑘 ≤ 𝑒. Let 𝒥1 = {𝐽𝑑, . . . , 𝐽𝑘} and 𝒥2 = {𝒥∖𝒥1}. Stop.
Subcase 2.4

∑𝑒
𝑗=𝑑+1 𝑝2𝑗 ≥ 𝑇1. Let 𝒥

1 = {𝐽𝑑+1, . . . , 𝐽𝑒} and 𝒥2 = {𝒥∖𝒥1}. Stop.
Subcase 2.5

∑𝑒
𝑗=𝑑+1 𝑝2𝑗 < 𝑇1. Find a job 𝐽𝑘 with 𝑢 < 𝑘 ≤ 𝑒 such that∑𝑘−1

𝑑 𝑝2𝑗 < 𝑇1 ≤ ∑𝑘
𝑑 𝑝2𝑗, 𝒥

1 = {𝐽𝑑, . . . , 𝐽𝑘} and 𝒥2 = {𝒥∖𝒥1}. Stop.
Algorithm 2 𝑆𝑃𝐿𝑇2

Step 1. (Initialization)

Let 𝑆11 = 0, 𝐶11 = 𝑆11 + 𝑝11, 𝑆21 = 𝐶11, 𝐶21 = 𝑆21 + 𝑝21.

For 𝑗 = 2 to 𝑛, perform the following computations:

𝑆1𝑗 = 𝐶1(𝑗−1), 𝐶1𝑗 = 𝑆1𝑗+𝑝1𝑗, 𝑆2𝑗 = max{𝐶1𝑗 , 𝐶2(𝑗−1)}, 𝐶2𝑗 = 𝑆2𝑗+𝑝2𝑗.

Let 𝐶max(𝒥) = 𝐶2𝑛, and 𝑇1 =
5
21𝐶max(𝒥), 𝑇2 =

16
21𝐶max(𝒥).

Step 2. Find a job 𝐽ℎ with 𝑆1ℎ ≤ 𝑇1 ≤ 𝐶1ℎ. If job 𝐽ℎ does not exist, find a job

𝐽𝑘 with 𝑆2𝑘 ≤ 𝑇1 ≤ 𝐶2𝑘. Let 𝒥1 = {𝐽1, . . . , 𝐽𝑘}, and 𝒥2 = {𝐽𝑘+1, . . . , 𝐽𝑛}. Stop;

otherwise, go to Step 3 with job 𝐽ℎ.

Step 3. For job 𝐽ℎ, if 𝐶2ℎ ≤ 4
7𝐶𝑚𝑎𝑥 or 𝐶1ℎ = 𝑆2ℎ, let 𝒥

1 = {𝐽1, . . . , 𝐽ℎ}, and
𝒥2 = {𝐽ℎ+1, . . . , 𝐽𝑛}. Stop; otherwise, go to Step 4.
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Step 4. Let 𝐶 ′
1𝑛 = 𝑆2𝑛 and 𝑆′

1𝑛 = 𝐶
′
1𝑛 − 𝑝1𝑛.

For 𝑗 = (𝑛− 1) to 1, perform the following computations:

𝐶 ′
1𝑗 = min{𝑆′

1(𝑗+1), 𝑆2𝑗} and 𝑆′
1𝑗 = 𝐶

′
1𝑗 − 𝑝1𝑗, where 𝑆

′
1𝑗 and 𝐶 ′

1𝑗 are

the latest possible start and completion time of job 𝐽𝑗 in machine 𝑀1.

Step 5. Find a job 𝐽𝑡 with 𝑆′
2𝑡 ≤ 𝑇2 < 𝐶

′
2𝑡. If job 𝐽𝑡 does not exists, we have

solved this case in Step 3. If 𝑆′
1𝑡 ≥ 3

7𝐶max(𝒥) or 𝐶
′
1𝑡 = 𝑆

′
2𝑡, let 𝒥

1 = {𝐽𝑡, . . . , 𝐽𝑛},
and 𝒥2 = {𝐽1, . . . , 𝐽𝑡}. Stop; otherwise, go to Step 6.

Step 6. In schedule 𝜎, find the job 𝐽𝑢 with 𝑝1𝑢 ≤ 𝑝2𝑢 and 𝑝1(𝑢+1) > 𝑝2(𝑢+1),

and let 𝑣 = 𝑢 + 1. Therefore, in schedule 𝜎, we have 𝑝1𝑗 ≤ 𝑝2𝑗 for 𝑗 = 1, . . . , 𝑢;

and 𝑝1𝑗 > 𝑝2𝑗 for 𝑗 = 𝑣, . . . , 𝑛. Then, we branch into the two cases.

Case 1.
∑𝑛

𝑗=𝑣 𝑝1𝑗 ≥ 𝑇1. Find a job 𝐽𝑒 with 𝑒 ≥ 𝑣 such that
∑𝑒−1

𝑗=𝑣 𝑝1𝑗 < 𝑇1 ≤∑𝑒
𝑗=𝑣 𝑝1𝑗 and a job 𝐽𝑑 with 𝑑 < 𝑣 such that

∑𝑒−1
𝑗=𝑑+1 𝑝2𝑗 < 𝑇1 ≤ ∑𝑒−1

𝑗=𝑑 𝑝2𝑗. We

branch into six subcases.

Subcase 1.1
∑𝑒

𝑗=𝑣 𝑝2𝑗 ≥ 𝑇1. Let 𝒥
1 = {𝐽𝑣, . . . , 𝐽𝑒} and 𝒥2 = {𝒥∖𝒥1}. Stop.

Subcase 1.2
∑𝑒−1

𝑗=1 𝑝2𝑗 < 𝑇1. Find a job 𝐽𝑘 with
∑𝑒

𝑗=𝑘+1 𝑝2𝑗 < 𝑇1 ≤ ∑𝑒
𝑗=𝑘 𝑝2𝑗

and 1 ≤ 𝑘 < 𝑒. Let 𝒥1 = {𝐽𝑘, . . . , 𝐽𝑒} and 𝒥2 = {𝒥∖𝒥1}. Stop.
Subcase 1.3

∑𝑣−1
𝑗=𝑑 𝑝1𝑗 ≥ 𝑇1. Let 𝒥

1 = {𝐽𝑑, . . . , 𝐽𝑣−1} and 𝒥2 = {𝒥∖𝒥1}. Stop.
Subcase 1.4

∑𝑣
𝑗=𝑑 𝑝1𝑗 ≥ 𝑇1 and

∑𝑣
𝑗=𝑑 𝑝2𝑗 ≥ 𝑇1. If 𝑣 < 𝑒, let 𝒥

1 = {𝐽𝑑, . . . , 𝐽𝑣}
and 𝒥2 = {𝒥∖𝒥1}. If 𝑣 = 𝑒, find a job 𝐽𝑘 with

∑𝑒
𝑗=𝑘+1 𝑝2𝑗 < 𝑇1 ≤ ∑𝑒

𝑗=𝑘 𝑝2𝑗 and

𝑑 ≤ 𝑘 < 𝑒. Let 𝒥1 = {𝐽𝑘, . . . , 𝐽𝑒} and 𝒥2 = {𝒥∖𝒥1}. Stop.
Subcase 1.5

∑𝑒−1
𝑗=𝑑 𝑝1𝑗 ≥ 𝑇1. Let 𝒥

1 = {𝐽𝑑, . . . , 𝐽𝑒−1} and 𝒥2 = {𝒥∖𝒥1}. Stop.
Subcase 1.6

∑𝑒−1
𝑗=𝑑 𝑝1𝑗 < 𝑇1. Find a job 𝐽𝑘 with 𝑑 ≤ 𝑘 < 𝑣 such that

∑𝑒
𝑘+1 𝑝2𝑗 <

𝑇1 ≤ ∑𝑒
𝑘 𝑝2𝑗, 𝒥

1 = {𝐽𝑘, . . . , 𝐽𝑒} and 𝒥2 = {𝒥∖𝒥1}. Stop.
Case 2.

∑𝑢
𝑗=1 𝑝2𝑗 ≥ 𝑇1. Find a job 𝐽𝑑 with 𝑑 ≤ 𝑢 such that

∑𝑢
𝑗=𝑑+1 𝑝2𝑗 <

𝑇1 ≤ ∑𝑢
𝑗=𝑑 𝑝2𝑗 and a job 𝐽𝑒 with 𝑒 > 𝑢 such that

∑𝑒−1
𝑗=𝑑+1 𝑝1𝑗 < 𝑇1 ≤ ∑𝑒

𝑗=𝑑+1 𝑝1𝑗.

We branch into six subcases.

Subcase 2.1
∑𝑢

𝑗=𝑑 𝑝1𝑗 ≥ 𝑇1. Let 𝒥
1 = {𝐽𝑑, . . . , 𝐽𝑢} and 𝒥2 = {𝒥∖𝒥1}. Stop.

Subcase 2.2
∑𝑛

𝑗=𝑑+1 𝑝1𝑗 < 𝑇1. Find a job 𝐽𝑘 with
∑𝑘−1

𝑗=𝑑 𝑝1𝑗 < 𝑇1 ≤ ∑𝑘
𝑗=𝑑 𝑝1𝑗

and 𝑢 < 𝑘 ≤ 𝑛. Let 𝒥1 = {𝐽𝑑, . . . , 𝐽𝑘} and 𝒥2 = {𝒥∖𝒥1}. Stop.
Subcase 2.3

∑𝑒
𝑗=𝑢+1 𝑝2𝑗 ≥ 𝑇1. Let 𝒥

1 = {𝐽𝑢+1, . . . , 𝐽𝑒} and 𝒥2 = {𝒥∖𝒥1}. Stop.
Subcase 2.4

∑𝑒
𝑗=𝑢 𝑝1𝑗 ≥ 𝑇1 and

∑𝑒
𝑗=𝑢 𝑝2𝑗 ≥ 𝑇1. If 𝑑 < 𝑢, let 𝒥

1 = {𝐽𝑢, . . . , 𝐽𝑒}
and 𝒥2 = {𝒥∖𝒥1}. If 𝑑 = 𝑢, find a job 𝐽𝑘 with

∑𝑘−1
𝑗=𝑑 𝑝1𝑗 < 𝑇1 ≤ ∑𝑘

𝑗=𝑑 𝑝1𝑗 and

𝑑 < 𝑘 ≤ 𝑒. Let 𝒥1 = {𝐽𝑑, . . . , 𝐽𝑘} and 𝒥2 = {𝒥∖𝒥1}. Stop.
Subcase 2.5

∑𝑒
𝑗=𝑑+1 𝑝2𝑗 ≥ 𝑇1. Let 𝒥

1 = {𝐽𝑑+1, . . . , 𝐽𝑒} and 𝒥2 = {𝒥∖𝒥1}. Stop.
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Subcase 2.6
∑𝑒

𝑗=𝑑+1 𝑝2𝑗 < 𝑇1. Find a job 𝐽𝑘 with 𝑢 < 𝑘 ≤ 𝑒 such that∑𝑘−1
𝑑 𝑝2𝑗 < 𝑇1 ≤ ∑𝑘

𝑑 𝑝2𝑗, 𝒥
1 = {𝐽𝑑, . . . , 𝐽𝑘} and 𝒥2 = {𝒥∖𝒥1}. Stop.
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Polynomial-Time Approximation Schemes1

If, from a stick a foot long, you every day take the half of it, it will not be exhausted

in a myriad ages.

- Chuang-Tzu (369BC-286BC)

In this chapter, we identify two classes of machine scheduling problems with

time lags that possess Polynomial-Time Approximation Schemes (PTASs). These

classes together, one for minimizing makespan and one for minimizing total com-

pletion time, include many well-studied time lag scheduling problems. The run-

ning times of these approximation schemes are polynomial in the number of jobs

but exponential in the number of machines and the ratio between the largest time

lag and the smallest positive operation time.

These classes constitute the first PTAS results for scheduling problems with

time lags.

5.1 Introduction

5.1.1 Problem description

Machine scheduling problems with time lags can arise both in multi-stage and

single-stage processing environments as long as the jobs to be processed consist

1 This chapter is based on a paper that has been accepted for publication in the Journal
of Scheduling. (Zhang and Van de Velde (2009))
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of multiple operations. A time lag, after all, specifies a minimum delay between

the execution of two consecutive operations of the same job. Time lags can model

the transportation times between machines when the number of vehicles is not

restrictive or when the jobs travel by themselves, like for example barges sailing

between container terminals along the river bank and trucks traveling between

pick up and delivery depots. Time lags can also model activities that require no

limited resources, like for instance cooling down times. These practical justifica-

tions explain why time lags are sometimes also referred to in the literature as

transportation times or delays.

We assume that there are 𝑚 machines 𝑀1, . . . ,𝑀𝑚 available from time zero

onwards for processing a set of 𝑛 jobs 𝐽1, . . . , 𝐽𝑛, each consisting of 𝑜 operations

(𝑂1𝑗 , . . . , 𝑂𝑜𝑗). Every operation 𝑂𝑖𝑗 (𝑖 = 1, . . . , 𝑜; 𝑗 = 1, . . . , 𝑛) needs to be pro-

cessed during an uninterrupted processing time 𝑝𝑖𝑗 ≥ 0 on a dedicated machine
𝜇𝑖𝑗 ∈ {𝑀1, . . . ,𝑀𝑚} and the operations of the same job cannot be processed
simultaneously. Each machine can handle only one operation at a time. Each job

𝐽𝑗 (𝑗 = 1, . . . , 𝑛) may have a release time 𝑟𝑗 before which no operation of 𝐽𝑗 can

be started.

We consider only the basic (and most common) time lag scheduling models

with exactly one machine per stage. We consider three such multi-stage scheduling

environments with 𝑜 = 𝑚: an open shop problem, where the operations of a job

can be processed in any order; a job shop problem, where the operations of every

job 𝐽𝑗 (𝑗 = 1, . . . , 𝑛) need to processed in the order 𝑂1𝑗 → 𝑂2𝑗 → . . . → 𝑂𝑜𝑗 ;

and a flow shop, which is essentially a job shop with the special condition that

𝜇𝑖𝑗 =𝑀𝑖 for each operation 𝑂𝑖𝑗 (𝑖 = 1, . . . ,𝑚; 𝑗 = 1, . . . , 𝑛). Hence in a flow shop,

all jobs pass through the machines in the same order 𝑀1 →𝑀2 → . . .→𝑀𝑚.

In the single-stage scheduling environment with time lags that we consider

there is only a single machine 𝑀1 available for processing jobs 𝐽1, . . . , 𝐽𝑛, each of

which consists of a chain of two operations (𝑂1𝑗 , 𝑂2𝑗) that need to be processed in

the order 𝑂1𝑗 → 𝑂2𝑗 for each 𝑗 (𝑗 = 1, . . . , 𝑛). Hence, in this environment we have

𝑚 = 1, 𝑜 = 2, and 𝜇1𝑗 = 𝜇2𝑗 =𝑀1 for each 𝑗 (𝑗 = 1, . . . , 𝑛). These problems are

commonly referred to as single machine coupled operations scheduling problems

(Potts and Whitehead (2007)).

In an open shop environment, time lags take the form 𝑙ℎ𝑖𝑗 (𝑗 = 1, . . . , 𝑛;ℎ, 𝑖 =

1, . . . ,𝑚), specifying the minimum required delay between the completion of oper-
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ation 𝑂ℎ𝑗 and the start of operation 𝑂𝑖𝑗 . If 𝑙ℎ𝑖𝑗 = 𝑙𝑖ℎ𝑗 for all jobs 𝐽𝑗 (𝑗 = 1, . . . , 𝑛)

and all operations 𝑂ℎ𝑗 and 𝑂𝑖𝑗 (ℎ, 𝑖 = 1, . . . ,𝑚;ℎ ∕= 𝑖), then the time lags are
called symmetrical. In flow shops, job shops, and single machine shops with cou-

pled operations, the order of the operations is fixed for every job, and hence the

given time lags are of the form 𝑙𝑖𝑗 , specifying the required minimum time lag be-

tween operation 𝑂𝑖𝑗 and 𝑂𝑖+1,𝑗 . Special time lag cases include the situation where

the time lags between operations of job 𝐽𝑗 are of the form 𝑙𝑗 for each 𝑗 = 1, . . . , 𝑛

and the situation where all times lags equal a given positive constant 𝑙.

A schedule specifies for every operation when it is executed such that all

constraints are satisfied; in other words, it specifies for every operation 𝑂𝑖𝑗 a

starting time 𝑆𝑖𝑗 and a completion time 𝐶𝑖𝑗 such that all conditions are met

(𝑖 = 1, . . . , 𝑜; 𝑗 = 1, . . . , 𝑛). In this chapter, we consider two scheduling objec-

tives; the minimization of the makespan, or length, 𝐶max of the schedule, and the

minimization of the sum of the job completion times or total flow time
∑
𝐶𝑗 ,

where 𝐶𝑗 denotes the completion time of the last processed operation of job 𝐽𝑗
(𝑗 = 1, . . . , 𝑛). Throughout this chapter, we follow the standard three-field 𝛼∣𝛽∣𝛾∣
scheduling notation (Graham et al (1979)). For instance, 𝐹2∣𝑙𝑗 ∣𝐶max denotes the

problem of minimizing makespan in a two-machine flow shop with job-dependent

time lags; 𝐽2∣𝑜𝑗 ≤ 2∣∑𝐶𝑗 denotes the problem of minimizing total completion

time in the two-machine job shop where 𝑜𝑗 ≤ 2 denotes that each job consists
of no more than two operations; 𝑂3∣𝑙ℎ𝑖𝑗 = 𝑙∣𝐶max denotes the problem of min-

imizing makespan in the three-machine open shop with equal time lags; and

1∣𝑜𝑗 = 2, 𝑙𝑗 ∣𝐶max denotes the single-machine problem of scheduling jobs with

exactly two coupled operations to minimize makespan subject to job-dependent

time lags.

5.1.2 Complexity

Scheduling problems with time lags are strongly NP-hard in their most general

forms, and hence it is very unlikely that they can be solved to optimality in

polynomial time. For makespan minimization problems, for instance, Yu et al

(2004) showed that 𝐹2∣𝑙𝑗 ∣𝐶max and 𝑂2∣𝑙𝑗 ∣𝐶max are NP-hard in the strong sense,

even if all processing times are equal to 1. From the first result, it follows of

course that 𝐽2∣𝑙𝑗 ∣𝐶max is NP-hard, too. Kern and Nawijn (1991) showed that

the problem 1∣𝑜𝑗 ≤ 2, 𝑙𝑗 ∣𝐶max is NP-hard; Gupta (1996) strengthened the result
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by proving that the problem is NP-hard in strong sense. Further NP-hardness

results are known for even more restrictive problems such as 𝑂2∣𝑙ℎ𝑖𝑗 = 𝑙∣𝐶max and

𝑂∣𝑝𝑖𝑗 = 1, 𝑙ℎ𝑖𝑗 = 𝑙𝑖ℎ𝑗 ∣𝐶max (Rayward-Smith and Rebaine (1992)), and 𝐹2∣𝑝1𝑗 =

𝑝2𝑗 , 𝑙𝑗 ∈ {𝑙1, 𝑙2}∣𝐶max, which is NP-hard in the strong sense (Yu (1996)).

As far as the total flow time objective is concerned, Garey et al (1976) and

Achugbue and Chin (1982) proved that 𝐹2∣∣∑𝐶𝑗 and 𝑂2∣∣
∑
𝐶𝑗 are strongly

-hard, respectively. The implication is that two-machine flow shop, job shop and

open shop problems to minimize total flow subject to time lags are NP-hard in

the strong sense, too, even if all time lags are the same. Brucker et al (2004) have

shown that the problem 𝐹2∣𝑝𝑖𝑗 = 𝑝, 𝑟𝑗 , 𝑙𝑗 ∣
∑
𝐶𝑗 is NP-hard, also.

The best well-known polynomially solvable problem is undoubtedly 𝐹2∣𝑙𝑗 ∣𝐶max

if the solution space is restricted to permutation schedules (Mitten (1959)). Other

polynomially solvable cases are more restrictive, such as 𝐹2∣𝑙𝑗 = 𝑙∣𝐶max, 𝑂2∣𝑝𝑖𝑗 =
𝑝, 𝑙𝑖𝑗 ∣𝐶max and 𝐹 ∣𝑝𝑖𝑗 = 𝑝, 𝑙𝑗 ∣

∑
𝐶𝑗 (Brucker et al (2004)).

5.1.3 Approximability

In this chapter, we are concerned with the approximability of scheduling models

with time lags. We define an approximation algorithm to have performance ratio

or worst-case ratio 𝜌, with 𝜌 > 1, if it always produces a solution with objective

value at most 𝜌 times the optimal solution value. If such an algorithm runs in

polynomial time, we call it a 𝜌-approximation algorithm. A Polynomial-Time Ap-

proximation Scheme (PTAS) is a family of polynomial time (1+𝜖)-approximation

algorithms over all 𝜖 > 0.

The approximability of scheduling problems with time lags, and in partic-

ular the design of PTASs, is largely uncharted territory. Approximability re-

sults are limited to makespan minimization and concern 𝜌-approximation results

only. For the two-machine flow shop environment, Dell’Amico (1996) provided

a 2-approximation algorithm for 𝐹2∣𝑙𝑗 ∣𝐶max. Karuno and Nagamochi (2003) im-

proved on this and gave an 11
6 -approximation algorithm. Ageev (2008) showed

that the worst case ratio could be improved to 3
2 if 𝑝1𝑗 = 𝑝2𝑗 for each job 𝐽𝑗

(𝑗 = 1, . . . , 𝑛).

For the two-machine open shop environment, Strusevich and Rebaine (1995)

presented a 7
4 -approximation algorithm for 𝑂2∣𝑙ℎ𝑖𝑗 = 𝑙𝑖ℎ𝑗 ∣𝐶max. This bound was

improved to 3
2 by Strusevich (1999). Rebaine and Strusevich (1999) presented
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an 8
5 -approximation algorithm for 𝑂2∣𝑙𝑖𝑗 ∣𝐶max. Rebaine (2004) presented a 2-

approximation algorithm for𝑂2∣𝑙ℎ𝑖𝑗 ∣𝐶max and a (
7
4− 1

2𝑛)-approximation algorithm

for 𝑂2∣𝑝𝑖𝑗 = 𝑝, 𝑙ℎ𝑖𝑗 ∣𝐶max.

5.2 Our contribution

As pointed out in the previous section, approximability of scheduling problems

with time lags is a largely unexplored area. In this chapter, we present the first

PTASs for scheduling problems with time lags, both for minimizing makespan

and minimizing total flow time. Specifically, we identify a class ℳ for makespan

minimization problems with time lags and a class for ℱ for total flow time mini-

mization problems with time lags with the property that every scheduling prob-

lem (P) in those classes has a PTAS.

Every problem (P) in class ℳ and class ℱ has the following properties:

(i) Problem (P) is a deterministic scheduling problem with time lags, with one

machine per manufacturing stage;

(ii) (P) is NP-hard or strongly NP-hard;

(iii) The counterpart problem without time lags, referred to as problem ¯(P) is

polynomially solvable or has a PTAS;

(iv)All time lags are finite, that is, there exists a real 𝜇 > 0 such that

𝑙max ≤ 𝜇𝑝min, (5.1)

where 𝑙max is the maximum time lag and 𝑝min is the smallest positive process-

ing time of any operation. The value 𝜇 is fixed, that is, it is not part of the

problem instance.

In addition to properties (i) - (iv), problems in classℳ have the further properties:

(v) The objective is to minimize makespan;

(vi)The scheduling environment is an 𝑚-machine flow shop (with 𝑚 fixed, that

is, 𝑚 is not part of the problem instance but given a priori), a two-machine

open shop, a two-machine job shop, or a single-machine shop with at most

two coupled operations;
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(vii) If the scheduling environment is a flow shop, then positive release times are

allowed; otherwise, 𝑟𝑗 = 0 for each job 𝐽𝑗 (𝑗 = 1, . . . , 𝑛);

(viii) If the scheduling environment is a flow shop with 𝑚 > 2 or positive release

times, then every job has at least one operation with a positive processing

time.

Table 5.1 lists some problems that belong to this class ℳ; the sign ′!′ indicates
that the problem is NP-hard in the strong sense, whereas 𝒫 indicates that the

problem is solvable in polynomial time.

Table 5.1. Some problems in class ℳ

Problem (P) Complexity (P) Complexity ¯(P)
𝐹2∣𝑙𝑗 ∣𝐶max ! (Yu (1996)) 𝒫 (Johnson (1954))
𝐹2∣𝑟𝑗 , 𝑙𝑗 ∣𝐶max ! (Yu (1996)) PTAS (Hall (1994),

& Kovalyov and Werner (1997))

𝐹𝑚∣𝑝𝑖𝑗 = 1, 𝑡𝑟𝑒𝑒, 𝑙𝑗𝑘𝑙∣𝐶max ! (Yu (1996)) 𝒫 (Bruno et al (1980))
𝑂2∣𝑙ℎ𝑖𝑗 ∣𝐶max ! (Dell’Amico and Vaessens (1995)) 𝒫 (Gonzalez and Sahni (1976))

𝐽2∣𝑜𝑗 ≤ 2, 𝑙𝑗 ∣𝐶max ! (Yu (1996)) 𝒫 (Jackson (1956))
𝐽2∣𝑝𝑖𝑗 = 1, 𝑟𝑗 , 𝑙𝑗 ∣𝐶max ! (Yu (1996)) 𝒫 (Timkovsky (1997))
1∣𝑜𝑗 = 2, 𝑙𝑗 ∣𝐶max ! (Gupta (1996)) 𝒫 (trivial)

In addition to properties (i) - (iv), problems in class ℱ have the following further

properties:

(ix) The scheduling objective is to minimize total flow time;

(x) The scheduling environment is an 𝑚-machine flow shop where 𝑚 is fixed;

(xi) Every job has at least one operation with a positive processing time.

Table 5.2 lists two earlier studied problems belonging to class ℱ.

5.3 PTAS for makespan problems in class 𝓜

Consider any makespan minimization scheduling problem (P) belonging to class

ℳ. We start with introducing some notation. Let 𝐶∗
max denote the optimal
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Table 5.2. Two earlier studied problems in class ℱ

Problem (P) Complexity (P) Complexity ¯(P)
𝐹2∣𝑝𝑖𝑗 = 1, 𝑟𝑗 , 𝑙𝑖𝑗 ∣

∑
𝐶𝑗 ! (Brucker et al (2004)) 𝒫 (Baptiste and Timkovsky (2004))

𝐹𝑚∣𝑙𝑖𝑗 ∣
∑
𝐶𝑗 ! (Garey et al (1976)) PTAS (Fishkin et al (2002))

makespan for problem (P), and 𝐶max(𝜋) denotes the minimum makespan of a

feasible schedule 𝜋 for problem (P). Finally, let 𝜀 > 0 be any positive real num-

ber.

Define 𝑃𝑘 =
∑

1≤𝑗≤𝑛,1≤𝑖≤𝑜∣𝜇𝑖𝑗=𝑀𝑘

𝑝𝑖𝑗 as the work content for machine 𝑀𝑘, for

𝑘 = 1, . . . ,𝑚. Clearly, we must have that

𝑃𝑘 ≤ 𝐶∗
max, for 𝑘 = 1, . . . ,𝑚. (5.2)

Next, we divide the 𝑛 × 𝑜 operations 𝑂𝑖𝑗 (𝑖 = 1, . . . , 𝑜; 𝑗 = 1, . . . , 𝑛) into 3𝑚

subsets in the following way:

∙ 𝒵𝑘 = {𝑂𝑖𝑗 ∣𝜇𝑖𝑗 = 𝑀𝑘 and 𝑝𝑖𝑗 = 0} for 𝑘 = 1, . . . ,𝑚; these are the zero opera-
tions.

∙ 𝒮𝑘 = {𝑂𝑖𝑗 ∣𝜇𝑖𝑗 = 𝑀𝑘 and 0 < 𝑝𝑖𝑗 ≤ 𝜀
𝜇(𝑜−1)𝑃𝑘} for 𝑘 = 1, . . . ,𝑚; these are the

small operations.

∙ ℒ𝑘 = {𝑂𝑖𝑗 ∣𝜇𝑖𝑗 =𝑀𝑘 and 𝑝𝑖𝑗 >
𝜀

𝜇(𝑜−1)𝑃𝑘} for 𝑘 = 1, . . . ,𝑚; these are the large
operations.

Note that all zero operations need to be scheduled and executed, although the

duration of their processing is zero. The number of large operations per machine

is bounded from above; indeed, we have that

∣ℒ𝑘∣ ≤ 𝜇(𝑜− 1)
𝜀

, for each 𝑘 = 1, . . . ,𝑚. (5.3)

To see that this is true, assume the opposite, that is, ∣ℒ𝑘∣ > 𝜇(𝑜−1)
𝜀 for some 𝑘

(𝑘 = 1, . . . ,𝑚). The work content induced by the large operations on machine

𝑀𝑘 would then be at least

∑
𝑖,𝑗∣𝑂𝑖𝑗∈ℒ𝑘

𝑝𝑖𝑗 ≥ ∣ℒ𝑘∣ 𝜀

𝜇(𝑜− 1)𝑃𝑘 > 𝑃𝑘,



82 5 Polynomial-Time Approximation Schemes

which would imply that the total processing time of the large operations on 𝑀𝑘

exceeds the total processing time of all operations on𝑀𝑘, which is a contradiction.

We now differentiate between two cases:
∑𝑚

𝑘=1 ∣𝒮𝑘∣ = 0 and
∑𝑚

𝑘=1 ∣𝒮𝑘∣ > 0.
If

∑𝑚
𝑘=1 ∣𝒮𝑘∣ = 0, then we have jobs with large and zero operations only,

and we can find an optimal solution for this case in time polynomial in 𝑛 but

exponential in 𝜇(𝑜−1)𝑚
𝜀 in the following way. First, we use explicit enumeration

to schedule all the jobs with at least one large operation, of which there are at

most
∑𝑚

𝑘=1 ∣ℒ𝑘∣ ≤ 𝜇(𝑜−1)𝑚
𝜀 by virtue of inequality (5.3). For 𝑚-machine flow shop

problems with𝑚 > 2 or flow shop problems where jobs have positive release times,

we are then done, since by definition of class ℳ and in particular by property

(viii), no job has zero operations only. For any other type of problem in class

ℳ, there may be jobs with zero operations only, and we insert those jobs into

the intermediate schedule in such a way that feasibility and optimality of the

schedule is maintained; this can easily be achieved, for instance, by scheduling all

first operations as early as possible and all second operations as late as possible.

Alternatively, if
∑𝑚

𝑘=1 ∣𝒮𝑘∣ > 0, then we have at least one operation 𝑂𝑖𝑗 with

𝜇𝑖𝑗 =𝑀𝑘 and 0 < 𝑝𝑖𝑗 ≤ 𝜀
𝜇(𝑜−1)𝑃𝑘, for some 𝑖, 𝑗, and 𝑘. Using (5.1) and (5.2), we

have

𝑙max ≤ 𝜇( 𝜀

𝜇(𝑜− 1)𝑃𝑘) ≤ 𝜀

𝑜− 1𝑃𝑘 ≤ 𝜀

𝑜− 1𝐶
∗
max. (5.4)

Let now problem ¯(P) be the counterpart problem of (P) without given time lags;

by definition of class ℳ, ¯(P) either is solvable in polynomial time or has a PTAS.

If ¯(P) is solvable in polynomial time, then let �̄�∗ denote an optimal schedule for
this problem. Otherwise, that is, if ¯(P) is NP-hard but has a PTAS, let �̄�𝜀 denote

a feasible schedule for ¯(P) with makespan at most (1+ 𝜖)𝐶∗
max, where 𝐶

∗
max is the

optimal makespan for problem ¯(P). Of course, we have that 𝐶∗
max ≤ 𝐶∗

max.

Let now 𝜎 be the schedule obtained from either �̄�∗ or �̄�𝜀, whichever is appro-
priate, by inserting as little idle time as possible between the different operations

to ensure that 𝜎 is a feasible schedule for problem (P). How much idle time needs

to be inserted, and subsequently, how good is 𝐶max(𝜎)?

First, suppose that ¯(P) is an 𝑚-machine flow shop problem. Then we need

to insert no more than 𝑙max idle time on each machine 𝑀2, . . . ,𝑀𝑚 to transform

either �̄�∗ or �̄�𝜀 into a feasible solution 𝜎 for problem (P). Accordingly, we have
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𝐶max(𝜎) ≤ 𝐶max(�̄�
∗)+(𝑚−1)𝑙max ≤ (1+𝜀)𝐶∗

max, if 𝜎 has been obtained from �̄�
∗,

and

𝐶max(𝜎) ≤ 𝐶max(�̄�
𝜀)+(𝑚−1)𝑙max ≤ (1+𝜀)2𝐶∗

max, if 𝜎 has been obtained from �̄�
𝜀.

Now suppose that ¯(P) is any other type of problem than a flow shop problem,

that, is suppose it is a two-machine job shop, two-machine open shop, or a single

machine shop with at most two coupled operations. We will first show that no

operation in schedule �̄�∗ or �̄�𝜀, whichever is appropriate, needs to be delayed by
more than 𝑙max time units to obtain a feasible schedule 𝜎 for problem (P). First,

suppose that ¯(P) is a two-machine job shop problem. Then we may assume with-

out loss of generality that in �̄�∗ or �̄�𝜀, whichever is appropriate, either machine
processes all first operations 𝑂1𝑗 before any second operation 𝑂2𝑘; if �̄�

∗ or �̄�𝜀 is
no such schedule we can easily transform it into an equivalent schedule with the

stated property. This property implies that we need to insert no more than 𝑙max

idle time on either machine to transform �̄�∗, or �̄�𝜀, into a feasible solution 𝜎 for
problem (P). Second, suppose that ¯(P) is a two-machine open shop problem. An

argument similar to the one used for the two-machine job shop problem applies;

we may assume without loss of generality that in �̄�∗ or �̄�𝜀 all first operations
precede all second operations on either machine. Accordingly, the second oper-

ations need to be delayed by at most 𝑙max time to transform �̄�∗, or �̄�𝜀, into a
feasible solution 𝜎 for problem (P). Finally, let ¯(P) be a single-machine problem

where jobs have at most two coupled operations. Again, we may assume that

all first operations precede all second operations, and hence we need to insert at

most 𝑙max time in between to guarantee that the resulting schedule 𝜎 is feasible

for problem (P). So indeed, if ¯(P) is any other problem than an 𝑚-machine flow

shop problem, we need to insert no more than 𝑙max idle time per machine to

obtain a feasible schedule 𝜎 for problem (P). This means that

𝐶max(𝜎) ≤ 𝐶max(�̄�
∗) + 𝑙max ≤ (1 + 𝜀)𝐶∗

max, if 𝜎 has been obtained from �̄�
∗,

and

𝐶max(𝜎) ≤ 𝐶max(�̄�
𝜀) + 𝑙max ≤ (1 + 𝜀)2𝐶∗

max, if 𝜎 has been obtained from �̄�
𝜀.
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In conclusion, if
∑𝑚

𝑘=1 ∣𝒮𝑘∣ > 0, then any makespan minimization problem (P)
in class ℳ has a PTAS, also. Now, we are ready to give a description of our

algorithm.

Algorithm I: PTAS for any problem (P) in class ℳ

Step 1. If
∑𝑚

𝑘=1 ∣𝒮𝑘∣ > 0, go to Step 2; otherwise go to Step 3.
Step 2. Find schedule 𝜎, to be obtained either from �̄�∗, if ¯(P) is polynomially
solvable, or from �̄�𝜀, if ¯(P) has a PTAS. Stop.

Step 3. Explicitly enumerate all possible sequences for the jobs with at least one

large operation. For jobs with zero operations only, we schedule those jobs by

scheduling all first operations as early as possible and all second operations as

late as possible. Find thus an optimal schedule 𝜎∗ for problem (P). Stop.

Theorem 10 Algorithm I is a Polynomial-Time Approximation Scheme for any

makespan minimization scheduling problem with time lags in class ℳ. The run-

ning time of the algorithm is polynomial in 𝑛 but exponential in 𝜇(𝑜−1)𝑚
𝜀 . □

5.4 PTAS for problems in class 𝓕

Let now (P) be any problem belonging to class ℱ, which consists of 𝑚-machine

flow shop total flow time minimization problems with time lags; see Section 2. Let

𝐹 ∗ denote the optimal solution value for problem (P), and let 𝜀 > 0 be any real
positive number. Let 𝑝𝑖[𝑗] denote the 𝑗-th smallest processing time on machine

𝑀𝑖 (𝑖 = 1, . . . ,𝑚; 𝑗 = 1, . . . , 𝑛) and define 𝑃𝑖𝑘 =
∑𝑘

𝑗=1 𝑝𝑖[𝑗]. We then have that

𝐹 ∗ ≥ 𝑃𝑖𝑛, for each 𝑖 = 1, . . . ,𝑚. (5.5)

Similar to the previous subsection, we divide the 𝑛×𝑚 operations into 3𝑚 subsets:
∙ 𝒵𝑖 = {𝑂𝑖𝑗 ∣ 𝑝𝑖𝑗 = 0} for 𝑖 = 1, . . . ,𝑚; these are the zero operations.
∙ 𝒮𝑖 = {𝑂𝑖𝑗 ∣ 0 < 𝑝𝑖𝑗 ≤ 𝜀

𝜇(𝑚−1)
𝑃𝑖𝑛
𝑛 } for 𝑖 = 1, . . . ,𝑚; these are the small opera-

tions.

∙ ℒ𝑖 = {𝑂𝑖𝑗 ∣ 𝑝𝑖𝑗 > 𝜀
𝜇(𝑚−1)

𝑃𝑖𝑛
𝑛 }, for 𝑖 = 1, . . . ,𝑚; these are the large operations.

If
∑𝑚

𝑖=1 ∣𝒮𝑖∣ > 0, we have at least one operation 𝑂𝑖𝑗 with 0 < 𝑝𝑖𝑗 <
𝜀

𝜇(𝑚−1)
𝑃𝑖𝑛
𝑛 .

With (5.1) and (5.5), we have
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𝑙max ≤ 𝜇( 𝜀

𝜇(𝑚− 1)
𝑃𝑖𝑛

𝑛
) ≤ 𝜀

𝑚− 1
𝑃𝑖𝑛

𝑛
≤ 𝜀

𝑚− 1
𝐹 ∗

𝑛
. (5.6)

Let now problem ¯(P) be the counterpart problem of (P) without given time

lags; accordingly, by definition of class ℱ, ¯(P) either is solvable in polynomial

time or has a PTAS. If ¯(P) is solvable in polynomial time, then let �̄�∗ denote
an optimal schedule for this problem. Otherwise, that is, if ¯(P) is NP-hard but

has a PTAS, let �̄�𝜀 denote a feasible schedule for ¯(P) with solution value at most

(1 + 𝜖)𝐹 ∗, where 𝐹 ∗ is the optimal solution value for problem ¯(P). Of course, we

have that 𝐹 ∗ ≤ 𝐹 ∗.
Let 𝜎 be the schedule obtained from either �̄�∗ or �̄�𝜀, whichever is appropriate,

by inserting as little idle time as possible between the different operations to

ensure that 𝜎 is a feasible schedule for problem (P). Then we need to insert no

more than 𝑙max idle time before each operation on each machine 𝑀2, . . . ,𝑀𝑚 to

transform either �̄�∗ or �̄�𝜀 into a feasible solution 𝜎 for problem (P). Accordingly,
the completion time of each job 𝐽𝑗 in 𝜎 is at most (𝑚 − 1)𝑙max time later than

the completion time of 𝐽𝑗 in �̄�
∗ or �̄�𝜀. Hence, using (5.6), we have

𝐹 (𝜎) ≤ 𝐹 (�̄�∗) + 𝑛(𝑚− 1)𝑙max ≤ (1 + 𝜀)𝐹 ∗, if 𝜎 has been obtained from �̄�∗,

and

𝐹 (𝜎) ≤ 𝐹 (�̄�𝜀) + 𝑛(𝑚− 1)𝑙max ≤ (1 + 𝜀)2𝐹 ∗, if 𝜎 has been obtained from �̄�𝜀.

So, if
∑𝑚

𝑖=1 ∣𝒮𝑖∣ > 0, then problem (P) has a PTAS.
Now consider the case that 𝒮𝑖 = ∅ for some 𝑖 (𝑖 = 1, . . . ,𝑚). We have then

the following lemma.

Lemma 27 If 𝒮𝑖 = ∅, then ∣ℒ𝑖∣ ≤ 2𝜇(𝑚−1)
𝜀 − 1; that is, if there are no small

operations on machine 𝑀𝑖, the number of large operations on machine 𝑀𝑖 is

bounded from above by 2𝜇(𝑚−1)
𝜀 − 1.

Proof. Suppose 𝑘 is the smallest index such that 𝑝𝑖[𝑘] >
𝜀

𝜇(𝑚−1)
𝑃𝑖𝑛
𝑛 , and hence

suppose there are 𝐾 = 𝑛 − 𝑘 + 1 large operations to be scheduled on 𝑀𝑖. This

implies that
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(𝐾)(𝐾 + 1)

2
𝑝𝑖[𝑘] ≤ 𝑃𝑖𝑛.

We also have that

𝐾(𝐾 + 1)

2
𝑝𝑖[𝑘] > (

𝐾(𝐾 + 1)

2
)(

𝜀

𝜇(𝑚− 1))(
𝑃𝑖𝑛

𝑛
).

Hence, we must have that

𝐾(𝐾 + 1)

2

𝜀

𝜇(𝑚− 1)
𝑃𝑖𝑛

𝑛
< 𝑃𝑖𝑛,

which implies that
𝐾(𝐾 + 1)

2𝑛
≤ 𝜇(𝑚− 1)

𝜀
.

Since 𝐾 ≤ 𝑛, we have 𝐾 < 2𝜇(𝑚−1)
𝜀 − 1. □

Lemma 27 implies that 𝑛 < (2𝜇(𝑚−1)
𝜀 − 1)𝑚, since each has job at least contains

one large one operation (see property (xi) of problems (P) in class ℱ; see Sec-

tion 2). Hence, for fixed 𝑚 and 𝜇, we can find the optimal schedule in polynomial

time by complete enumeration.

Now, we give a summary of our algorithm.

Algorithm II: PTAS for any problem (P) in class ℱ

Step 1. If
∑𝑚

𝑖=1 ∣𝒮𝑖∣ > 0, go to Step 2, otherwise go to Step 3.
Step 2. Find schedule 𝜎, to be obtained either from �̄�∗, if ¯(P) is polynomially
solvable, or from �̄�𝜀, if ¯(P) has a PTAS. Stop.

Step 3. Enumerate all possible sequences explicitly and find thus a schedule 𝜎∗

with minimum total flow time. Stop.

Theorem 11 Algorithm II is a Polynomial-Time Approximation Scheme for any

total flow time minimization scheduling problem with time lags in class ℱ. The

running time of the algorithm is polynomial in 𝑛 but exponential in (2𝜇(𝑚−1)𝑚
𝜀 −

𝑚). □
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5.5 Conclusions

In this chapter, we have presented the first PTASs for machine scheduling prob-

lems with time lags. Specifically, we have defined two classes of scheduling prob-

lems with time lags, one for minimizing makespan and one for minimizing total

completion time, such that each problem in those classes possesses a PTAS. Our

algorithms mark a step forward for time lag problems without earlier known

approximability results, such as 𝐹2∣𝑟𝑗 , 𝑙𝑗 ∣𝐶max and 𝐹𝑚∣𝑙𝑖𝑗 ∣
∑
𝐶𝑗 , as well as for

problems with known approximability results, such as 𝐹2∣𝑙𝑗 ∣𝐶max, if the time lags

are relatively restricted in size. For example, the best approximation algorithm

for the problem 𝐹2∣𝑙𝑗 ∣𝐶max has a worst-case ratio of
11
6 (Karuno and Nagamochi

(2003)). For 𝜇 ≤ 5, our algorithm either improves the ratio to 3
2 in 𝑂(𝑛 log 𝑛)

time, or finds the optimal solution by enumerating at most 10 large jobs. For

𝜇 ≤ 10, our algorithm either improves the ratio to 5
3 in 𝑂(𝑛 log 𝑛) time, or finds

the optimal solution by enumerating at most 15 large jobs.

Remember that no explicit enumeration is required if there is at least one job

with a small operation. This implies that for any problem (P) whose counterpart
¯(P) is polynomially solvable, we can find an 𝑛0 > 0 for any given 𝜇 > 0 and 𝜀 > 0

such that our algorithm requires no explicit enumeration if 𝑛 > 𝑛0. This 𝑛0 is

defined by the maximum number of jobs with large operations; accordingly, for

problems in class ℳ, 𝑛0 = 𝜇(𝑜 − 1)𝑚/𝜀 (see inequality (5.3)), and for problems
in class ℱ, 𝑛0 = (

2𝜇(𝑚−1)
𝜀 − 1)𝑚 (see Lemma 27). Take for example again the

problem 𝐹2∣𝑙𝑗 ∣𝐶max or the problem 𝑂2∣𝑙ℎ𝑖𝑗 ∣𝐶max, which has a known worst-case

ratio of 2 (Rebaine (2004)). For 𝜇 ≤ 10, our algorithm improves the worst-case
ratio to 6

5 in 𝑂(𝑛 log𝑛) time for any 𝑛 > 𝑛0 = 100 with no enumeration required.

For 𝜇 ≤ 25, our PTAS improves the worst-case ratio to 3
2 in 𝑂(𝑛 log 𝑛) time for

any 𝑛 > 𝑛0 = 100, also with no enumeration required.
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Fixed Interval Shop Scheduling

And so from that, I’ve always been fascinated with the idea that complexity can

come out of such simplicity.

- Will Wright (1960-)

We introduce and analyze the fixed interval shop scheduling problem, where the

objective is to maximize the weighted number of jobs that can be processed in a

two-stage machine shop, if each job has a fixed start and end time and requires

a given transportation time, a time lag, for moving from one stage to the other.

This problem is a natural extension of the parallel-machine scheduling problem

with fixed start and end times, which is relatively well understood. We prove

that the fixed interval two-machine flow shop problem is NP-hard in the strong

sense for general time lags, even in the case of unit processing times. The problem

is solvable in polynomial time if all time lags are equal. The fixed interval two-

machine job shop problem is solvable in 𝑂(𝑛3) time if the time lags are identical

and relatively small. For the fixed interval two-machine open shop problem, this

is true as well.

6.1 Introduction

We consider the problem of maximizing the weighted number of jobs that can be

processed by a two-stage machine shop, with one machine in each stage, if each

job has a fixed start time and fixed finish time, and the total processing time a
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job plus the time needed to transfer the job between the two stages of the shop

equals the length of the time interval between the job’s start and finish time.

Specifically, we assume that there is a set 𝒥 of 𝑛 independent jobs 𝐽1, . . . , 𝐽𝑛 that

can be processed in a two-stage machine shop, with machine𝑀1 in the first stage

and machine 𝑀2 in the second. No machine can process more than one job at a

time, and no job can be processed by more than one machine at a time. Each job

𝐽𝑗 (𝑗 = 1, . . . , 𝑛) consists of 2 operations 𝑂1𝑗 and 𝑂2𝑗 , operation 𝑂𝑖𝑗 (𝑖 = 1, 2)

requires processing on a pre-specified machine 𝜇𝑖𝑗 ∈ {𝑀1, . . . ,𝑀2} during an
uninterrupted processing time 𝑝𝑖𝑗 > 0, and the transportation time or traveling

time between machine 𝑀1 and 𝑀2 is 𝑙𝑗 . Furthermore, each job 𝐽𝑗 has a fixed

start time 𝑠𝑗 by which it needs to be started if 𝐽𝑗 is selected for processing and

a fixed finish time 𝑓𝑗 , by which it needs to be finished, if selected. Every job has

a value 𝑤𝑗 > 0, which reflects the benefit gained from processing this job. Each

job is to be processed once or not at all. The objective is to find a schedule that

maximizes the value of the jobs selected for processing. We refer to this problem

as the fixed interval shop scheduling problem. If 𝑂1𝑗 needs to be processed before

𝑂2𝑗 , 𝑂1𝑗 needs to be processed by machine 𝑀1 and 𝑂2𝑗 by machine 𝑀2 for every

job 𝐽𝑗 (𝑗 = 1, . . . , 𝑛), then the scheduling environment is called a flow shop. If

𝑂1𝑗 needs to be processed before 𝑂2𝑗 , then it is called a job shop. If there is

no restriction on which operation should be processed first, then the scheduling

environment is an open shop.

Mitten (1959) was the first to consider a scheduling problem with time lags,

in which jobs need to be processed by a number of non-bottleneck machines in

between those two bottleneck machines. The time required to complete produc-

tion on the intermediate machines may then be represented by certain time lag

and the problem is effectively equal to the 𝐹2∣𝑙𝑗 ∣𝐶max. Mitten (1959) shows that,

restricted to permutation schedules, an optimal schedule can be found in polyno-

mial time, where a permutation schedule is a schedule in which job sequences in

the first and the second machine are the same.

Our main motivation for studying this problem comes from the problem of

scheduling barges along container terminals in the Port of Rotterdam; see Douma

(2008). Specifically, each barge needs to call upon certain container terminals for

the unloading and loading of containers. Depending on the way containers haven

been stacked on the barge and the number of containers to be unloaded and
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loaded at each terminal, the routing along the container terminals may be fixed

in advance of may allow some degrees of freedom. Every barge operator submits a

proposed sailing plan to the container terminal operators to negotiate the arrival

and departure times. Such a sailing plan specifies the container terminals that

need to be called upon for unloading and loading containers, the order in which

this needs to be done, the times it likes to arrive at and depart from each terminal,

and the sailing times between the terminals, which take typically between 20

minutes and two hours. The barge operator’s main goal is to avoid possible delays

in the sailing schedule. The problem could be modeled as a fixed interval shop

scheduling problem, where the barges coming to the Port of Rotterdam are the

jobs, the container terminals, or more specifically the crane terminals, are the

machines, the times required by the terminal cranes for the unloading and loading

of containers as machine processing times, and the sailing times between the

different container terminals are the time lags. The objective of maximizing the

weighted number of jobs reflects the goal to change as few sailing plans as possible.

Other practical situations in which variants of this problem occur include the

coffee production process (Simeonov and Simeonovová (1997)) and the aircraft

maintenance and gate assignment process in airports (Kroon et al (1995) Kroon

et al (1997)).

In the parallel machine environment, the problem of scheduling jobs with

fixed start and finish times has been relatively well-studied. Arkin and Silverberg

(1987) analyze the problem of maximizing the value of 𝑛 jobs completed by 𝑘

identical machines, where jobs have fixed start and finish times, and give an

𝑂(𝑛2 log𝑛) time algorithm for its solution. They also prove that the problem is

NP-hard in the case of non-identical machines and show that for a fixed number

of nonidentical machines 𝑘, the problem can be solved in 𝑂(𝑛𝑘+1) time, which of

course is useful for relatively small 𝑘 only.

The fixed interval shop scheduling problem, while never been studied before, is

close to other well-studied problems. For instance, the fixed interval job shop and

the fixed interval flow shop problem are essentially the problems of minimizing

the weighted number of tardy jobs in a job shop and flow shop, respectively,

where every job has a release date 𝑟𝑗 and a deadline 𝑑𝑗 by which the job needs to

be finished, and 𝑑𝑗−𝑟𝑗 equals the total some of the processing and transportation
times for every job 𝐽𝑗 (𝑗 = 1, . . . , 𝑛).
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The fixed interval shop scheduling problem has also features of no-wait shop

scheduling problems (See Reddi and Ramamoorthy (1972), Hall and Sriskandara-

jah (1996)).

In this chapter, we focus on the fixed interval two-stage shop scheduling prob-

lem. Note that if in those practical situations mentioned above there are only

two bottleneck machines (container terminals, workstations, aircraft, gates), the

time required for the activities on the non-bottleneck machines between those two

bottleneck machines can be represented by (an increase in the) time lags. Accord-

ingly, results for the fixed interval two-stage shop scheduling problem contribute

significantly to the body of knowledge for this type of problem.

In Section 6.2, we prove that fixed interval flow shop problem with general

time lags is NP-hard in the strong sense, even for two machines, and present

an 𝑂(𝑛2) time dynamic programming algorithm for the problem where the time

lags are identical for all jobs. In Section 6.3, we give an 𝑂(𝑛3) time algorithm for

the fixed interval two-machine job shop scheduling problem and show that this

algorithm also applies if 𝑙𝑗 ≤ 𝑝min, where 𝑝min is the smallest processing time of

any operation. In Section 6.4, we study the fixed interval two-machine open shop

scheduling problem and show how the algorithm for the fixed interval job shop

problem can be modified for the open shop variant.

6.2 Fixed interval two-machine flow shop scheduling

Theorem 12 The fixed interval two-machine flow shop scheduling problem with

general time lags is NP-hard problem in the strong sense, even if 𝑝𝑖𝑗 = 1 for each

𝑖 = 1, . . . ,𝑚 and 𝑗 = 1, . . . , 𝑛.

Proof. The reduction is from Cubic Planar Monotone 1-in-3 SAT problem, which

is a restricted version of the Satisfiability problem (Garey and Johnson (1979)).

The proof is given in Appendix A. □

In the remainder of this section, we analyze a restricted variant of the fixed

interval flow shop scheduling problem where the time lags have the form 𝑙𝑗 = 𝑙

for 𝑗 (𝑗 = 1, . . . , 𝑛). We refer to this variant as the special case with equal time

lags.
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6.2.1 The case of equal time lags

Note that if 𝐽𝑗 is selected for scheduling, then it need to be processed in the

interval [𝑠𝑗 , 𝑠𝑗 + 𝑝1𝑗)] on machine 𝑀1 and in the interval [𝑠𝑗 + 𝑝1𝑗 + 𝑙, 𝑓𝑗 ] on

machine 𝑀2. Accordingly, any pair of jobs for which these fixed intervals overlap

cannot be selected both. Furthermore, since the time lags between the machines

are the same for all jobs, one job can never start before another job and yet finish

after it. Also, since the jobs have pre-fixed intervals in which they need to be

processed if selected, each feasible schedule can be fully codified by presenting

the jobs in order of non-decreasing start times.

These properties possessed by any feasible schedule allows us to develop a

forward dynamic programming algorithm that considers the jobs for scheduling

one by one in order of non-decreasing starting times. To this end, we re-index

the jobs accordingly. For notational convenience, we also introduce a dummy

zero-processing time job 𝐽0 with 𝑤0 = 0; furthermore, we assume that for this

particular job there is no travel time required between the two machines. In

our dynamic programming algorithm, we may therefore assume without loss of

generality that 𝐽0 is selected for scheduling.

When considering any other job, we have two possible decisions: either to select

it for scheduling, in which case it needs to be processed in its fixed interval, or to

reject it, in which case it requires no machine time. Our algorithm is predicated

upon the following optimality principle. Consider all schedules for the interval

scheduling problem defined on the jobs 𝐽0, . . . , 𝐽𝑗 subject to the condition that

job 𝐽𝑖 (0 ≤ 𝑖 ≤ 𝑗) was selected last. 𝐽𝑖 marks the tail of any such schedule, since
the equal time lags structure implies that one job can never start before another

job and yet finish after it, on any machine. Accordingly, we have that all such

schedules complete at time 𝑠𝑖 + 𝑝1𝑖 on 𝑀1, at time 𝑓𝑖 on machine 𝑀2. We define

such a schedule to be in state (𝑗, 𝑖). To schedule the remaining 𝑛−𝑗 jobs, we need
to consider only a schedule with maximum value among all schedules in state

(𝑗, 𝑖).

Let 𝐹𝑗(𝑖) denote the optimal solution value of any schedule in state (𝑗, 𝑖), and

let 𝜎𝑗(𝑖) be any schedule in state (𝑗, 𝑖) with solution value 𝐹𝑗(𝑖). By default, we

have that 𝐹𝑗(0) = 0 for each 𝑗 (𝑗 = 0, . . . , 𝑛) and we let 𝜎0(0) denote the empty

schedule.
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Consider now a schedule 𝜎𝑗(𝑖) with value 𝐹𝑗(𝑖) for some 0 ≤ 𝑖 ≤ 𝑗, 𝑗 ≥ 1.
Then there are two possibilities:

1. 𝑖 = 𝑗. In this case, job 𝐽𝑗 has been selected for scheduling, it finishes last

on all machines, and 𝜎𝑗(𝑗) has been obtained from some previous schedule

𝜎𝑗−1(ℎ) with value 𝐹𝑗−1(ℎ). For this job 𝐽ℎ, the job immediately preceding

𝐽𝑗 in 𝜎𝑗(𝑗), it must hold that

a) 𝑠ℎ + (𝑝1ℎ + 𝑙) ≤ 𝑠𝑗 and 𝑓ℎ ≤ 𝑠𝑗 + 𝑝1𝑗 + 𝑙; in other words, the fixed job

intervals of 𝐽ℎ and 𝐽𝑗 do not overlap each other; and

b) 𝐹𝑗(𝑗) = 𝐹𝑗−1(ℎ) + 𝑤𝑗 . This means that

𝐹𝑗(𝑗) = 𝐹𝑗−1(ℎ) + 𝑤𝑗 = max
𝑔:𝐽𝑔∈𝒜(𝑗)

{𝐹𝑗−1(𝑔) + 𝑤𝑗},

where 𝒜(𝑗) contains all jobs 𝐽𝑔 that can be scheduled before 𝐽𝑗 ; i.e.,

𝒜(𝑗) = {𝐽𝑔 ∣ 𝑠𝑔 + 𝑝1𝑔 + 𝑙 ≤ 𝑠𝑗 and 𝑓𝑔 ≤ 𝑠𝑗 + 𝑝1𝑗 + 𝑙}.
𝐹𝑗(𝑖) = 𝐹𝑗−1(𝑖).

We are now ready to present the dynamic programming recursion. The initializa-

tion is 𝐹𝑗(𝑖) = 0 for 𝑖 = 0, . . . , 𝑛 and 𝑗 = 0, . . . , 𝑛. For 𝑗 = 1, . . . , 𝑛, 𝑖 = 0, . . . , 𝑗,

we do the following

𝐹𝑗(𝑖) =

{
𝐹𝑗−1(𝑖) if 𝑖 ≤ 𝑗 − 1
max𝑔:𝐽𝑔∈𝒜(𝑗){𝐹𝑗−1(𝑔) + 𝑤𝑗} if 𝑖 = 𝑗.

The optimal solution value is then max0≤𝑖≤𝑛 𝐹𝑛(𝑖), and the optimal solution can

be found by backtracking. Hence, we have the following result.

Theorem 13 The fixed interval two-machine flow shop scheduling problem with

equal time lags is solvable in 𝑂(𝑛2) time and space. □

The same optimality principles work for the fixed interval flow shop scheduling

problem with equal time lags and a general number of machines, and hence the

dynamic programming algorithm can be extended to the 𝑚-machine case in a

straightforward way.

Corollary 2 The 𝑚-machine fixed interval flow shop scheduling problem with

equal time lags is solvable in 𝑂(𝑚𝑛2) time and 𝑂(𝑛2) space. □
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6.3 Fixed interval two-machine job shop scheduling

Let 𝒥1 contain all jobs that need to be processed first on machine 𝑀1 and then

on machine 𝑀2, whereas 𝒥
2 contains all jobs that need to be processed in the

reverse order. Again, without loss of generality, we assume for sake of notational

convenience that there is a dummy job 𝐽0, with parameters 𝑝10 = 𝑝20 = 𝑤0 = 0

for which no travel time between 𝑀1 and 𝑀2 is required.

In the flow shop problem, the dynamic programming algorithm leveraged the

property that if 𝑠ℎ < 𝑠𝑖 then job 𝐽ℎ needs to precede job 𝐽𝑖 on both machines, if

we decide to select them both. This property in fact still holds for the two sets 𝒥1

and 𝒥2 separately. The complicating design factor is that we can have an optimal

schedule with a job 𝐽ℎ ∈ 𝒥1 and a job 𝐽𝑖 ∈ 𝒥2, in which 𝑂1ℎ precedes 𝑂2𝑖 on one

machine, whereas 𝑂2ℎ precedes 𝑂1𝑖 on the other. This situation, however, can

happen if and only if the intervals [𝑠ℎ, 𝑠ℎ+𝑝1ℎ] and [𝑠𝑖+𝑝1𝑖+ 𝑙, 𝑓𝑖] do not overlap

on machine 𝑀1 and the intervals [𝑠𝑖, 𝑠𝑖+ 𝑝1𝑖] and [𝑠ℎ+ 𝑝1ℎ+ 𝑙, 𝑓ℎ] do not overlap

on machine 𝑀2. In such a situation, we refer to such jobs 𝐽ℎ and 𝐽𝑖 as crossing

jobs. See Figure 6.1 for an illustration of this concept.

Fig. 6.1. 𝐽ℎ and 𝐽𝑖 are crossing jobs. The arrows represent the equal time lags 𝑙 > 0.

If 𝑙 = 0, that is, if there are no time lags, two jobs 𝐽ℎ and 𝐽𝑖 can be crossing, if

and only 𝑠ℎ+𝑝1ℎ = 𝑠𝑖+𝑝1𝑖 and 𝐽ℎ ∈ 𝒥1 and 𝐽𝑖 ∈ 𝒥2, or vice versa. See Figure 6.2

for an illustration.

Clearly, our dynamic programming algorithm would have to accommodate

this possibility. To this end, we again re-index the jobs in order of non-decreasing

starting times 𝑠𝑗 , setting ties in an arbitrary fashion, but now we need to store

the last two selected jobs in our dynamic programming recursion. Specifically, we
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Fig. 6.2. Crossing jobs for the case 𝑙 = 0.

define a schedule to be in state (𝑗, ℎ, 𝑖) if it is a feasible schedule for the fixed

interval scheduling problem defined on the jobs 𝐽0, . . . , 𝐽𝑗 , in which 𝐽𝑖 is the last

selected job and 𝐽ℎ is the last but one selected job, where 0 ≤ ℎ < 𝑖 ≤ 𝑗. By

default, a schedule in state (𝑗, 0, 0) is an empty schedule. By tracking the last two

selected jobs, we can check whether the first operation 𝑂1,𝑗+1 of the next job to

be considered for selection, 𝐽𝑗+1, can be scheduled after 𝐽𝑖, in case 𝐽ℎ and 𝐽𝑖 are

not crossing, after 𝐽𝑖 and 𝐽ℎ in case they are, or in the gap between 𝐽ℎ and 𝐽𝑖
on machine 𝜇1,𝑗+1, which is of course possible only if 𝐽ℎ and 𝐽𝑖 are not crossing

jobs and the gap between 𝐽ℎ and 𝐽𝑖 is big enough.

Let 𝐹𝑗(ℎ, 𝑖) denote the optimal solution value for the interval scheduling prob-

lem for the jobs 𝐽0, . . . , 𝐽𝑗 subject to the condition that 𝐽𝑖 has been selected last

and 𝐽ℎ has been selected last but one. Let 𝜎𝑗(ℎ, 𝑖) be any schedule with min-

imum objective value 𝐹𝑗(ℎ, 𝑖). Considering the optimality principle of dynamic

programming, we know that a schedule 𝜎𝑗(ℎ, 𝑖) (0 ≤ ℎ ≤ 𝑖 ≤ 𝑗) with value

𝐹𝑗(ℎ, 𝑖) must have been obtained from some previous schedule �̄� = 𝐹𝑗−1(𝑎, 𝑏) for

some jobs 𝐽𝑎 and 𝐽𝑏.

If 𝑙 ≤ 𝑝min = min𝑖=1,2;1≤𝑗≤𝑛 𝑝𝑖𝑗 , then we can use the same logic, and we can

design a dynamic programming algorithm with the same states as for 𝑙 = 0, and

the same optimality principle. To see why this is so, note that it is crucial that

for such relatively small 𝑙 there can never be more than one operation 𝑂1,𝑗+1

scheduled in the gap between 𝐽ℎ and 𝐽𝑖 on machine 𝜇𝑗+1, for any 𝑗 + 1 > 𝑖 > ℎ.

Accordingly, it suffices to track the last two selected jobs as long as 0 ≤ 𝑙 ≤ 𝑝min.

In what follows, we assume exactly this.
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As said, we know that a schedule 𝜎𝑗(ℎ, 𝑖) (0 ≤ ℎ ≤ 𝑖 ≤ 𝑗) with value 𝐹𝑗(ℎ, 𝑖)

must have been obtained from some previous schedule �̄� = 𝐹𝑗−1(𝑎, 𝑏) for some

jobs 𝐽𝑎 and 𝐽𝑏. We can distinguish the following cases:

1. 𝑗 > 𝑖. Then 𝜎𝑗(ℎ, 𝑖) must have been obtained from �̄� = 𝜎𝑗−1(ℎ, 𝑖) by rejecting

𝐽𝑗 . In this case, we have 𝐹𝑗(ℎ, 𝑖) = 𝐹𝑗−1(ℎ, 𝑖).

2. 𝑗 = 𝑖. In this case 𝜎𝑗(ℎ, 𝑗) must have been obtained from some previous

schedule �̄� = 𝜎𝑗−1(𝑔, ℎ) for some 0 ≤ 𝑔 ≤ ℎ, either by appending 𝐽𝑗 to the

end of schedule, or by inserting 𝐽𝑗 , or at least its first operation, between 𝐽ℎ
and 𝐽𝑖 on machine 𝜇1,𝑗+1 and scheduling 𝐽𝑗 concurrently with 𝐽ℎ. Let now

𝒜(𝑗, ℎ) be the set of all such feasible previous schedules 𝜎𝑗−1(𝑔, ℎ). In what

follows, we characterize this set 𝒜(𝑗, ℎ).

a) 𝑔 = ℎ = 0. In this particular case, 𝜎𝑗(0, 𝑗) was obtained from the empty

schedule 𝜎𝑗−1(0, 0).

b) 𝑔 = 0, ℎ ≥ 1, and 𝐽ℎ ∈ 𝒥1. We differentiate between three subcases:

i. 𝐽𝑗 ∈ 𝒥1. In this case, 𝐽𝑗 can be scheduled after 𝐽ℎ both on 𝑀1 and

𝑀2, if and only if 𝑠𝑗 ≥ 𝑠ℎ + 𝑝1ℎ and 𝑠𝑗 + 𝑝1𝑗 + 𝑙 ≥ 𝑓ℎ.
ii. 𝐽𝑗 ∈ 𝒥2 and 𝑠𝑗 ≥ 𝑓ℎ. This means that 𝐽𝑗 can be scheduled after 𝐽ℎ
both on 𝑀1 and 𝑀2.

iii. 𝐽𝑗 ∈ 𝒥2, 𝑠𝑗 + 𝑝1𝑗 ≤ 𝑠ℎ + 𝑝1ℎ + 𝑙 and 𝑠𝑗 + 𝑝1𝑗 + 𝑙 ≥ 𝑠ℎ + 𝑝1ℎ. In this

case, 𝐽ℎ and 𝐽𝑗 can be processed concurrently.

c) 𝑔 = 0, ℎ ≥ 1, and 𝐽ℎ ∈ 𝒥2. We differentiate between three subcases:

i. 𝐽𝑗 ∈ 𝒥1 and 𝑠𝑗 ≥ 𝑓ℎ. This means that 𝐽𝑗 can be scheduled after 𝐽ℎ
both on 𝑀1 and 𝑀2.

ii. 𝐽𝑗 ∈ 𝒥1, 𝑠𝑗 + 𝑝1𝑗 ≤ 𝑠ℎ + 𝑝1ℎ + 𝑙 and 𝑠𝑗 + 𝑝1𝑗 + 𝑙 ≥ 𝑠ℎ + 𝑝1ℎ. In this

case, 𝐽𝑗 can be processed concurrently with 𝐽ℎ on different machines.

iii. 𝐽𝑗 ∈ 𝒥2. In this case, if 𝑠𝑗 ≥ 𝑠ℎ + 𝑝1ℎ and 𝑠𝑗 + 𝑝1𝑗 + 𝑙 ≥ 𝑓ℎ, 𝐽𝑗 can be
scheduled after 𝐽ℎ, both on 𝑀1 and 𝑀2.

d) 𝐽𝑔 ∈ 𝒥1, 𝐽ℎ ∈ 𝒥1. Accordingly, 𝐽ℎ is scheduled after 𝐽𝑔. We have then the

following subcases:

i. 𝐽𝑗 ∈ 𝒥1. In this case, 𝐽𝑗 can be added if and only if 𝑠𝑗 ≥ 𝑠ℎ + 𝑝1ℎ and

𝑠𝑗 + 𝑝1𝑗 + 𝑙 ≥ 𝑓ℎ, in which case 𝐽𝑗 is scheduled after 𝐽ℎ, both on 𝑀1

and 𝑀2.

ii. 𝐽𝑗 ∈ 𝒥2 and 𝑠𝑗 ≥ 𝑓ℎ. This means that 𝐽𝑗 can be scheduled after 𝐽ℎ
both on 𝑀1 and 𝑀2.
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iii. 𝐽𝑗 ∈ 𝒥2, 𝑠𝑗 + 𝑝1𝑗 ≤ 𝑠ℎ+ 𝑝1ℎ+ 𝑙, 𝑠𝑗 ≥ 𝑓𝑔, and 𝑠𝑗 + 𝑝1𝑗 + 𝑙 ≥ 𝑠ℎ+ 𝑝1ℎ. In

this case, the first operation of 𝐽𝑗 can be processed on 𝑀2 in the gap

between 𝐽𝑔 and 𝐽ℎ, and 𝐽𝑗 can be scheduled concurrently with 𝐽ℎ.

e) 𝐽𝑔 ∈ 𝒥1, 𝐽ℎ ∈ 𝒥2, and 𝑠ℎ ≥ 𝑓𝑔. In this case, 𝐽ℎ is scheduled after 𝐽𝑔 both

on 𝑀1 and 𝑀2. We identify the following subcases:

i. 𝐽𝑗 ∈ 𝒥1 and 𝑠𝑗 ≥ 𝑓ℎ. This means that 𝐽𝑗 can be scheduled after 𝐽ℎ
both on 𝑀1 and 𝑀2.

ii. 𝐽𝑗 ∈ 𝒥1, 𝑠𝑗+𝑝1𝑗 ≤ 𝑠ℎ+𝑝1ℎ+ 𝑙, 𝑠𝑗 ≥ 𝑠𝑔+𝑝1𝑔, and 𝑠𝑗+𝑝1𝑗+ 𝑙 ≥ 𝑠ℎ+𝑝1ℎ.

In this case, the first operation of 𝐽𝑗 can be processed on 𝑀1 in the

gap between 𝐽𝑔 and 𝐽ℎ, and 𝐽𝑗 can be scheduled concurrently with 𝐽ℎ.

iii. 𝐽𝑗 ∈ 𝒥2. In this case, 𝐽𝑗 can be added if and only if 𝑠𝑗 ≥ 𝑠ℎ + 𝑝1ℎ and

𝑠𝑗 + 𝑝1𝑗 + 𝑙 ≥ 𝑓ℎ, in which case 𝐽𝑗 is scheduled after 𝐽ℎ, both on 𝑀1

and 𝑀2.

f) 𝐽𝑔 ∈ 𝒥2 and 𝐽ℎ ∈ 𝒥2. We have the following three subcases:

i. 𝐽𝑗 ∈ 𝒥1 and 𝑠𝑗 ≥ 𝑓ℎ. This means that 𝐽𝑗 can be scheduled after 𝐽ℎ
both on 𝑀1 and 𝑀2.

ii. 𝐽𝑗 ∈ 𝒥1, 𝑠𝑗 + 𝑝1𝑗 ≤ 𝑠ℎ+ 𝑝1ℎ+ 𝑙, 𝑠𝑗 ≥ 𝑓𝑔, and 𝑠𝑗 + 𝑝1𝑗 + 𝑙 ≥ 𝑠ℎ+ 𝑝1ℎ. In

this case, the first operation of 𝐽𝑗 can be processed on 𝑀1 in the gap

between 𝐽𝑔 and 𝐽ℎ, and 𝐽𝑗 can be processed concurrently with 𝐽ℎ.

iii. 𝐽𝑗 ∈ 𝒥2. In this case, 𝐽𝑗 can be added if and only if 𝑠𝑗 ≥ 𝑠ℎ + 𝑝1ℎ and

𝑠𝑗 + 𝑝1𝑗 + 𝑙 ≥ 𝑓ℎ, in which case 𝐽𝑗 is scheduled after 𝐽ℎ, both on 𝑀1

and 𝑀2.

g) 𝐽𝑔 ∈ 𝒥2 and 𝐽ℎ ∈ 𝒥1. There are three subcases to consider:

i. 𝐽𝑗 ∈ 𝒥1. Then, 𝐽𝑗 can be added if and only if 𝑠𝑗 ≥ 𝑠ℎ + 𝑝1ℎ and

𝑠𝑗 + 𝑝1𝑗 + 𝑙 ≥ 𝑓ℎ, in which case 𝐽𝑗 is scheduled after 𝐽ℎ, both on 𝑀1

and 𝑀2.

ii. 𝐽𝑗 ∈ 𝒥2 and 𝑠𝑗 ≥ 𝑓ℎ. This means that 𝐽𝑗 can be scheduled after 𝐽ℎ
both on 𝑀1 and 𝑀2.

iii. 𝐽𝑗 ∈ 𝒥2, 𝑠𝑗+𝑝1𝑗 ≤ 𝑠ℎ+𝑝1ℎ+ 𝑙, 𝑠𝑗 ≥ 𝑠𝑔+𝑝1𝑔, and 𝑠𝑗+𝑝1𝑗+ 𝑙 ≥ 𝑠ℎ+𝑝1ℎ.

In this case, the first operation of 𝐽𝑗 can be processed on 𝑀2 in the

gap between 𝐽𝑔 and 𝐽ℎ, and 𝐽𝑗 can be processed concurrently with 𝐽ℎ
on 𝑀1.

h) 𝐽𝑔 ∈ 𝒥1 and 𝐽ℎ ∈ 𝒥2, and 𝐽𝑔 and 𝐽ℎ are scheduled concurrently. We have

two subcases:
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i. 𝐽𝑗 ∈ 𝒥1. Then adding 𝐽𝑗 is possible if and only if 𝑠𝑗 ≥ 𝑓ℎ, and 𝑠𝑗 +

𝑝1𝑗 + 𝑙 ≥ 𝑓𝑔.
ii. 𝐽𝑗 ∈ 𝒥2. Adding 𝐽𝑗 is then possible if and only if 𝑠𝑗 ≥ 𝑓𝑔, and 𝑠𝑗 +

𝑝1𝑗 + 𝑙 ≥ 𝑓ℎ.
i) 𝐽𝑔 ∈ 𝒥2 and 𝐽ℎ ∈ 𝒥1, and 𝐽𝑔 and 𝐽ℎ are scheduled concurrently. Again, we

have two subcases to consider:

i. 𝐽𝑗 ∈ 𝒥1. Appending 𝐽𝑗 is then possible if and only if 𝑠𝑗 ≥ 𝑓𝑔, and

𝑠𝑗 + 𝑝1𝑗 + 𝑙 ≥ 𝑓ℎ.
ii. 𝐽𝑗 ∈ 𝒥2, Appending 𝐽𝑗 is then possible if and only if 𝑠𝑗 ≥ 𝑓ℎ, and

𝑠𝑗 + 𝑝1𝑗 + 𝑙 ≥ 𝑓𝑔.
The dynamic programming recursion is then as follows. The initialization is

𝐹𝑗(ℎ, 𝑖) = 0 for 𝑗 = 0, . . . , 𝑛, ℎ = 0, . . . , 𝑛, 𝑖 = 0, . . . , 𝑛, and for 𝑗 = 1, . . . , 𝑛,

𝑖 = 0, . . . , 𝑗, ℎ = 0, . . . , 𝑖, we do the following:

𝐹𝑗(ℎ, 𝑖) =

{
𝐹𝑗−1(ℎ, 𝑗), if 𝑗 > 𝑖,

max𝑔:𝜎𝑗−1(𝑔,ℎ)∈𝒜(𝑗,ℎ) 𝐹𝑗−1(𝑔, ℎ) + 𝑤𝑗 , if 𝑗 = 𝑖.

The optimal solution value is then max0≤ℎ≤𝑖,ℎ+1≤𝑖≤𝑛 𝐹𝑛(ℎ, 𝑖), and the optimal

solution can be found by backtracking. Hence, we have the following result.

Theorem 14 The fixed interval two-machine job shop scheduling problem with

equal time lags 𝑙 and 0 ≤ 𝑙 ≤ 𝑝min is solvable in 𝑂(𝑛3) time and space. □

6.4 Fixed interval two-machine open shop problem

In the two-machine open shop problem, the scheduler has for every job 𝐽𝑗 (𝑗 =

1, . . . , 𝑛) a choice; either scheduling the operation that needs to be processed by

𝑀1 first and then scheduling the other operation on𝑀2, or the other way around.

Either way, if we assume equal time lags, then each job still has its fixed interval

[𝑠𝑗 , 𝑠𝑗 + 𝑝1𝑗 + 𝑙+ 𝑝2𝑗 ] in which it needs to be processed. In what follows, we again

consider the case that 0 ≤ 𝑙 ≤ 𝑝min.

To a large extent, we apply the same logic as used for the fixed interval two-

machine job shop problem to cope with the fixed interval two-machine open shop

problem. To this end, we first re-index the jobs in order of non-decreasing start

times and then transform an instance for the open shop problem with 𝑛 jobs into
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an instance for the job shop problem with 2𝑛 jobs by creating for each job 𝐽𝑗
two copies, job 𝐽 ′

2𝑗−1 and job 𝐽
′
2𝑗 (𝑗 = 1, . . . , 𝑛), and by imposing the restriction

that at most one of these copies may be selected for scheduling. Each job with

an odd index has fixed routing 𝑀1 → 𝑀2 and each job with an even index has

fixed routing 𝑀2 → 𝑀1. The jobs with the first type of routing belong to the

job set 𝒥1), the others to the job set 𝒥2. Accordingly, each 𝐽 ′
2𝑗−1 (𝑗 = 1, . . . , 𝑛)

requires first processing during a time 𝑝′1,2𝑗−1 = 𝑝1𝑗 on 𝑀1 and then during a

time 𝑝′2,2𝑗−1 = 𝑝2𝑗 on 𝑀2, whereas 𝐽
′
2𝑗 (𝑗 = 1, . . . , 𝑛) requires first processing

during a time 𝑝′1,2𝑗 = 𝑝2𝑗 on 𝑀2 and then during a time 𝑝
′
2,2𝑗 = 𝑝1𝑗 on 𝑀1. Both

copies have the same weight 𝑤𝑗 . Any instance of the fixed interval two-machine

open shop problem is then equivalent to this transformed instance of the fixed

interval two-machine job shop problem subject to the condition that at most one

copy of each original job 𝐽𝑗 can be selected.

We define a schedule to be in state (𝑗, ℎ, 𝑖) if it is a feasible schedule for the

transformed fixed interval two-machine job shop scheduling problem defined on

the jobs 𝐽0, . . . , 𝐽𝑗 (𝑗 = 1, . . . , 2𝑛), in which 𝐽𝑖 is the last selected job, 𝐽ℎ is the

last but one selected job. Let 𝐹𝑗(ℎ, 𝑖) denote the maximum objective value of any

schedule in state (𝑗, ℎ, 𝑖), and let 𝜎𝑗(ℎ, 𝑖) be any schedule with minimum objective

value 𝐹𝑗(ℎ, 𝑖).

Based on the optimality principle of dynamic programming, we know that

𝜎𝑗(ℎ, 𝑖) must have been obtained from some schedule 𝜎
′ that is optimal for a

previous state. Specifically, we have the following situations:

1. if 𝑗 is odd, and if 𝑗 > 𝑖, then 𝜎𝑗(ℎ, 𝑖) must have been obtained from either

𝜎𝑗−1(ℎ, 𝑖) or, if 𝑗 ≥ 3, from 𝜎𝑗−2(ℎ, 𝑖), in both cases by not selecting 𝐽𝑗 for

scheduling.

2. if 𝑗 is odd, and if 𝑗 = 𝑖, then 𝐽𝑗 has been selected for scheduling, and then

𝜎𝑗(ℎ, 𝑗) must have been obtained from either 𝜎𝑗−1(𝑔, ℎ) for some 𝐽𝑔 (𝑔 =

1, . . . , 2𝑛) or, if 𝑗 ≥ 3, from 𝜎𝑗−2(𝑓, ℎ) for some 𝐽𝑓 (𝑓 = 1, . . . , 𝑛), in both

cases by either scheduling 𝐽𝑗 after 𝐽ℎ or, scheduling it concurrently with 𝐽ℎ.

3. if 𝑗 is even and if 𝑗 > 𝑖, then 𝜎𝑗(ℎ, 𝑖) must have been obtained from either

𝜎𝑗−2(ℎ, 𝑖), or, if 𝑗 ≥ 4, from 𝜎𝑗−3(ℎ, 𝑖), in both cases by not selecting 𝐽𝑗 for

scheduling.

4. if 𝑗 is even, and if 𝑗 = 𝑖, then 𝐽𝑗 has been selected for scheduling, and

then 𝜎𝑗(ℎ, 𝑗) must have been obtained from either 𝜎𝑗−2(𝑔, ℎ) for some 𝐽𝑔
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(𝑔 = 1, . . . , 2𝑛) or, if 𝑗 ≥ 4, from 𝜎𝑗−2(𝑓, ℎ) for some 𝐽𝑓 (𝑓 = 1, . . . , 𝑛), in

both cases by either scheduling 𝐽𝑗 after 𝐽ℎ, or scheduling it concurrently with

𝐽ℎ.

The above transitions exclude the possibility that both copies of any original

job are selected. Furthermore, the conditions under which a schedule 𝜎𝑗(ℎ, 𝑗) can

be derived from a previous schedule 𝜎𝑗−1(𝑔, ℎ) or 𝜎𝑗−2(𝑓, ℎ) in case 𝑗 is odd or

from a previous schedule 𝜎𝑗−2(𝑔, ℎ) or 𝜎𝑗−3(𝑓, ℎ) in case 𝑗 is even can be derived

in exactly the same way as we did for the fixed interval two-machine job shop

problem in Section 2.2. For easy of notation, let 𝒜(𝑗, ℎ) denote the set of feasible

previous schedules from which 𝜎𝑗(ℎ, 𝑗) can be obtained.

The initialization of the dynamic programming algorithm is 𝐹𝑗(ℎ, 𝑖) = 0 for

𝑗 = 0, . . . , 𝑛, ℎ = 0, . . . , 𝑛, 𝑖 = 0, . . . , 𝑛, and the recursion is to calculate the

following for 𝑗 = 1, . . . , 𝑛, 𝑖 = 0, . . . , 𝑗, ℎ = 0, . . . , 𝑖:

𝐹𝑗(ℎ, 𝑖) =

⎧⎨
⎩

0, if 𝑗 = 1, 2 and 𝑖 > 𝑗,

𝑤𝑗 , if 𝑗 = 1, 2 and 𝑖 = 𝑗,

max{𝐹𝑗−1(ℎ, 𝑖), 𝐹𝑗−2(ℎ, 𝑖)}, if 𝑗 > 𝑖, 𝑗 ≥ 3, and 𝑗 is odd,
max{𝐹𝑗−2(ℎ, 𝑖), 𝐹𝑗−3(ℎ, 𝑖)}, if 𝑗 > 𝑖, 𝑗 ≥ 4, and 𝑗 is even,
max

{
max𝑔:𝜎𝑗−1(𝑔,ℎ)∈𝒜(𝑗,ℎ) 𝐹𝑗−1(𝑔, ℎ) + 𝑤𝑗 ,

max𝑔:𝜎𝑗−2(𝑔,ℎ)∈𝒜(𝑗,ℎ) 𝐹𝑗−2(𝑔, ℎ) + 𝑤𝑗 ,

}
if 𝑖 = 𝑗, 𝑗 ≥ 3, and 𝑗 is odd,

max

{
max𝑔:𝜎𝑗−2(𝑔,ℎ)∈𝒜(𝑗,ℎ) 𝐹𝑗−2(𝑔, ℎ) + 𝑤𝑗 ,

max𝑔:𝜎𝑗−3(𝑔,ℎ)∈𝒜(𝑗,ℎ) 𝐹𝑗−3(𝑔, ℎ) + 𝑤𝑗 ,

}
if 𝑖 = 𝑗, 𝑗 ≥ 4, and 𝑗 is even.

The optimal solution value is then max0≤ℎ≤𝑖,ℎ+1≤𝑖≤𝑛 𝐹𝑛(ℎ, 𝑖), and the optimal

solution can be found by backtracking. Hence, we have the following result.

Theorem 15 The fixed interval two-machine open shop scheduling problem is

solvable in 𝑂(𝑛3) time and space. □

6.5 Conclusions

In this chapter, we have introduced the fixed interval shop scheduling problem,

and we have shown that the problem is solvable in polynomial time in a flow

shop environment if the time lags are the same for every job but NP-hard in the

strong sense for general time lags, even in the case of unit-processing times. The
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fixed interval two-machine job and open shop problems are shown to be solvable

in polynomial time if the time lags are equal and smaller than the processing

time of any operation.

There are several open problems, notably the complexity of the fixed interval

two-machine job and open shop problems for general equal time lags.

Another related type of problem, much in the spirit of the objective function

analyzed by Arkin and Silverberg (1987) and Kroon et al (1997), is to minimize

the number of machines in each stage of the shop in order to be able to process

all available jobs.

Appendix A: Fixed Interval Flow Shop Scheduling is NP-hard

We prove that the fixed interval scheduling problem in the two-machine flow shop

with general time lags is strongly NP-hard, even in the case of unit processing

times. The proof proceeds by reduction from the Cubic Planar Monotone 1-in-3

SAT problem, which is a restricted version of the Satisfiability problem (SAT, for

short) and known to be strongly NP-hard.

We follow the notation used in Garey and Johnson (1979).

Let 𝑈 = {𝑢1, 𝑢2, . . . , 𝑢𝑚} be a set of Boolean variables. A truth assignment

for 𝑈 is a function 𝑡 : 𝑈 → {𝑇, 𝐹}. If 𝑡(𝑢) = 𝑇 , we say that 𝑢 is ”true” under
𝑡; if 𝑡(𝑢) = 𝐹 we say that 𝑢 is ”false.” If 𝑢 is a variable in 𝑈 , then 𝑢 and 𝑢 are

literals over 𝑈 . A clause over 𝑈 is a set of literals over 𝑈 , such as {𝑢1, 𝑢3, 𝑢8}. It
represents the disjunction of those literals and is satisfied by a truth assignment if

and only if at least one of its members is true under that assignment. A collection

𝐶 of clauses over 𝑈 is satisfiable if and only if there exists some truth assignment

for 𝑈 that simultaneously satisfies all the clauses in 𝐶. Such a truth assignment

is called a satisfying truth assignment for 𝐶.

The SAT problem is defined as follows: given a set 𝑈 of variables and a collec-

tion 𝐶 = {𝑐1, 𝑐2, . . . , 𝑐𝑚} of clauses over 𝑈 , is there a satisfying truth assignment
for 𝐶? The problem was proved to be NP-complete by Cook (1971).

A 3-SAT problem is a restricted version of a SAT problem, which includes the

constraints of ∣𝑐𝑖∣ = 3, for 1 ≤ 𝑖 ≤ 𝑚, i.e., there are exactly 3 literals in each

clause. The problem is still NP-complete. (Garey and Johnson (1979))
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A monotone 1-in-3 SAT problem is a restricted version of a 3-SAT problem.

It is required that each clause in 𝐶 has exactly one true literal, so called 1-in-3.

The monotone means that no 𝑐 ∈ 𝐶 contains a negated literal. The problem is
proved to be NP-complete by Schaefer (1978).

A cubic planar monotone 1-in-3 SAT problem is a further restricted version

of a monotone 1-in-3 SAT problem. The cubic version of the problem means that

every variable has exactly three occurrences. We can think of the instance as a

graph, with a vertex for each variable and each clause, and an edge connecting

a variable to a clause if it occurs (positively or negatively) in that clause. In

planar 1-in-3 SAT, this graph is assumed to be planar. The cubic planar version

of monotone 1-in-3 SAT problem was proved to be NP-complete by Moore and

Robson (2001).

Theorem 16 The fixed interval two-machine flow shop problem with general

time lags is NP-hard in the strong sense, even in the case of unit processing

times.

Proof. We show that the cubic planar monotone 1-in-3 SAT problem could

be polynomially reduced to this problem. Given an instance of a cubic planar

monotone 1-in-3 SAT problem. We have a set of clauses 𝐶 = {𝑐1, 𝑐2, . . . , 𝑐𝑛}.
There are three literals in each clause and all the literals are not negative. Be-

cause every variable has exactly three occurrences, we have exactly 𝑛 variables

𝑢1, 𝑢2, . . . , 𝑢𝑛 that appear in the clauses set 𝐶, i.e., we have three 𝑢𝑗 in 𝐶 for

𝑗 = 1, . . . , 𝑛. We could replace each occurrence of 𝑢𝑗 in 𝐶 with 𝑢𝑗1, 𝑢𝑗2, 𝑜𝑟 𝑢𝑗3
respectively for 𝑗 = 1, . . . , 𝑛, such that all literals in 𝐶 are not equal, and add

additional constrains of 𝑢𝑗1 = 𝑢𝑗2 = 𝑢𝑗3 to ensure the problem remains the same.

We define a function of 𝑓(𝑢𝑗𝑘) = 𝑙 to indicate that 𝑢𝑗𝑘 belongs to clause 𝑐𝑙 in 𝐶,

for 𝑙 = 1, . . . , 𝑛.

Now consider an instance of the two-machine flow shop problem with two

kinds of jobs, among which there are 3𝑛 SAT jobs 𝐽𝑆
𝑗𝑘, for 𝑗 = 1, . . . , 𝑛 and 𝑘=1,

2, 3, and 2𝑛 auxiliary jobs 𝐽𝐴
𝑗𝑘, for 𝑗 = 1, . . . , 𝑛 and 𝑘=1, 2. SAT jobs need to be

processed in both machines and auxiliary jobs need to be processed on machine

𝑀2 only. We have unit operations time on each machine for all jobs.

The release time for SAT jobs are defined as 𝑟𝑆𝑗𝑘 = 𝑓(𝑢𝑗𝑘) − 1, the deadline
for SAT jobs are defined as 𝑑𝑆𝑗𝑘 = 𝑛 + 3(𝑗 − 1) + 𝑘, and the time lags between
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Fig. 6.3. An instance of fixed interval two-machine flow shop scheduling problem with
time lags.

two operations for SAT jobs are 𝑙𝑆𝑗𝑘 = 𝑑
𝑆
𝑗𝑘 − 𝑟𝑆𝑗𝑘 − 2 = 𝑛+3𝑗 + 𝑘+ 𝑓(𝑢𝑗𝑘)− 6, for

𝑗 = 1, . . . , 𝑛 and 𝑘=1, 2, 3.

The release time for auxiliary jobs are defined as 𝑟𝐴𝑗𝑘 = 𝑑
𝑆
𝑗𝑘− 1

2 and the deadline

for auxiliary jobs are defined as 𝑑𝐴𝑗𝑘 = 𝑟
𝐴
𝑗𝑘 + 1 = 𝑑

𝑆
𝑗𝑘 +

1
2 , for 𝑗 = 1, . . . , 𝑛 and

𝑘=1, 2.

The value of each SAT job is set to 2 and that of auxiliary job is set to 1.5.

The instance of the flow shop problem could be illustrated by Figure 6.3. In that

figure, SAT jobs are marked with 𝑢𝑗𝑘 and auxiliary jobs are marked with 𝑥𝑗𝑘.

In machine 𝑀1, all SAT jobs need to be processed in 𝑛 unit-time-slots, while in

machine 𝑀2, all SAT jobs need to be processed in 𝑛 3-unit-intervals.

We first show that if the instance of the cubic planar monotone 1-in-3 SAT

problem has a satisfying truth assignment, the instance of two-machine flow shop

with time lags would have an objective value of 4𝑛. If 𝑢𝑗 is set to true in the

satisfying truth assignment, we have 𝑢𝑗1 = 𝑢𝑗2 = 𝑢𝑗3 = 1 and select 𝐽
𝑆
𝑗𝑘 from

SAT jobs for processing on both machines. Because there is only one variable

which is set to true in each clause, there are exactly 𝑛 SAT jobs selected. These

𝑛 SAT jobs will contribute 2𝑛 to the objective function. On the other hand, all

the 𝑛 SAT jobs are clustered on machine 𝑀2. They occupied one third of the 𝑛

3-unit-intervals. In the rest two-third of 𝑛 3-unit-intervals in the period of [𝑛, 4𝑛],
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we can at most process 4
3𝑛 auxiliary jobs, which contribute another 2𝑛 to the

objective function.

We next show that if this fixed interval two-machine flow shop scheduling

problem with time lags is solved with objective value of 4𝑛, the instance of the

cubic planar monotone 1-in-3 SAT problem has a satisfying truth assignment. Let

schedule 𝑆 be a feasible schedule of the instance of two-machine flow shop. Let

𝑥 be the total number of SAT jobs which are processed in the schedule. Because

the maximum number of SAT jobs that could be process in this two-machine

problem is bounded by 𝑛 unit-time-slots in machine 𝑀1, we have 𝑥 ≤ 𝑛. Then

the maximum total time units left in machine 𝑀2 for auxiliary jobs is bounded

by 3𝑛 − 𝑥. Within these time slots, the total values produced by auxiliary jobs
are also bounded by 3𝑛 − 𝑥 because there are at most two auxiliary jobs could
be finished in every three time slots and each auxiliary jobs contribute 1.5 to

the value function. Therefore the total value of any schedule 𝑆 is bounded by

2𝑥+ 3𝑛− 𝑥 = 3𝑛+ 𝑥. If we have a schedule with objective value of 4𝑛, then we
have 𝑥 = 𝑛 and the number of auxiliary jobs which are processed is exactly 4

3𝑛.

To process 𝑛 SAT jobs, we will use 𝑛 time units on both machines respectively.

To process 4
3𝑛 auxiliary jobs, we only have 2𝑛 time units in machine𝑀2. Because

the minimum requirement for auxiliary job is 1.5 time units (the 0.5 time units

before or after each auxiliary job are useless for both kinds of jobs), any pair

of jobs 𝐽𝐴
𝑗1 and 𝐽

𝐴
𝑗2 must be processed or discarded together. Otherwise, these

auxiliary jobs could not be processed within 2𝑛 time units. Therefore, a schedule

with objective value 4𝑛 means that each clause has exactly one true literal, where

𝑢𝑗𝑘 is set to true if 𝐽
𝑆
𝑗𝑘 is processed and 𝑢𝑗1 = 𝑢𝑗2 = 𝑢𝑗3 are ensured because

jobs 𝐽𝑆
𝑗1, 𝐽

𝑆
𝑗2, and 𝐽

𝑆
𝑗3 are processed or discarded together for 𝑗 = 1, . . . , 𝑛 and

𝑘 = 1, 2, 3, i.e., the cubic planar monotone 1-in-3 SAT problem has a satisfying

truth assignment.

This completes the proof. □

Consider now the fixed interval single-machine scheduling problem, where each

job consists of two coupled operations with a pre-specified time lag between the

completion of the first and the start of the second operation. That is, the first

operation of each job 𝐽𝑗 (𝑗 = 1, . . . , 𝑛) needs to be processed in the interval

[𝑠𝑗 , 𝑠𝑗 + 1] and the second operation in the interval [𝑓𝑗 − 1, 𝑓𝑗 . The time lag
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between the two coupled operation is then 𝑙𝑗 = 𝑓𝑗 − 𝑠𝑗 − 2. The above proof can
then be adjusted to prove the following result.

Corollary 3 The fixed interval single-machine scheduling problem, where each

job consists of two coupled operations, is strongly NP-hard, even in the case of

unit processing times. □

This corollary nicely supplements a result of Potts and Whitehead (2007)

who show that the single-machine problem of minimizing makespan for jobs with

coupled operations is strongly NP-hard.
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Conclusions and Future Directions

We know accurately only when we know little, with knowledge doubt increases.

- Johann Wolfgang von Goethe (1749-1832)

7.1 Conclusions

This thesis contributes to the body of knowledge of both on-line and off-line

machine scheduling problems with time lags.

On-line problems

As far as on-line problems are concerned, we have considered the two-machine

flow shop, job shop and open shop scheduling problem with minimal time lags so

as to minimize the makespan. For these on-line problems, we have analyzed two

variants: the non-clairvoyant and the clairvoyant variant. In the non-clairvoyant

variant, we have no information about the processing time of either operation of

a job until it finishes, while in the clairvoyant variant, we know the processing

times of a job’s operations as soon as the job arrives. We have shown that the

greedy algorithm is the best possible algorithm for the first variant and that

its competitive ratio is 2 for the flow shop, job shop and open shop problem.

Furthermore, no non-delay algorithm can do better than the greedy algorithm.

As far as delay algorithms are concerned, we have shown that no on-line delay

algorithm has a competitive ratio better than
√

5+1
2 ≈ 1.618 for the flow shop and
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job shop problem, and that no on-line delay algorithm has a competitive ratio

better than
√
2 for the open shop problem. However, these results leave open

the question whether an on-line delay algorithm has a better competitive ratio

than the greedy algorithm. For the open shop problem, we have also shown that

if the time lags are no larger than the maximum positive processing time, the

competitive ratio of the greedy algorithm improves to 5
3 .

Off-line problems

As far as off-line machine scheduling problems with time lags are concerned,

our contribution is threefold. First, we have presented the first approximation

algorithms with fixed worst-case performance guarantees for scheduling𝑚 parallel

two-stage flow shops to as to minimize the makespan for 𝑚 = 2 and 𝑚 = 3.

This NP-hard problem decomposes into two subproblems: first, assigning each

job to one of the parallel flow shops, and then scheduling the jobs assigned to

the same flow shop by use of Johnson’s rule. For 𝑚 = 2, we have presented a
3
2 -approximation algorithm, and for 𝑚 = 3, a 1

5
7 -approximation algorithm. Both

algorithms run in 𝑂(𝑛 log𝑛) time. Our results also apply to the parallel flow shop

problem with time lags, which arise when jobs are transported between different

flow shops for their processing.

Our second contribution is the identification of two classes of machine

scheduling problems with time lags that possess Polynomial-Time Approximation

Schemes (PTASs). One class concerns the objective of minimizing the makespan,

the other minimizing total completion time. The running times of these approx-

imation schemes are polynomial in the number of jobs but exponential in the

number of machines and the ratio between the largest time lag and the small-

est positive processing time. These results constitute the first PTAS results for

scheduling problems with time lags.

Our third contribution was the introduction and analysis of the fixed interval

shop scheduling problem, where the objective is to maximize the weighted number

of jobs that can be processed in a two-stage flow, job, or open shop, if each job

has a fixed start and finish time and requires a given transportation time, a time

lag, for moving from one stage to the other. This problem is a natural extension of

the parallel-machine scheduling problem with fixed start and completion times,

which is relatively well understood. We prove that the fixed interval two-machine
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flow shop problem is NP-hard in the strong sense for general time lags, even in

the case of unit processing times. The problem is solvable in polynomial time

if all time lags are equal. The fixed interval two-machine job shop problem is

solvable in 𝑂(𝑛3) time if the time lags are identical and relatively small. For the

fixed interval two-machine open shop problem, this is true as well.

7.2 Directions for future works

On-line problems

A vexing open question for the clairvoyant on-line two-machine shop scheduling

problem with time lags is whether there exists a delay algorithm with a better

competitive ratio that the greedy algorithm. Other interesting questions include:

(1) is the greedy algorithm still the best possible algorithm for 𝑚-machine

problems (𝑚 ≥ 3) when the on-line environment is clairvoyant or no deliberate
delays are allowed?

(2) is the greedy algorithm still the best possible algorithm for other objective

functions?

(3) when both minimal and maximal time lags are involved, can we find on-line

algorithms with fixed competitive ratios?

(4) if the on-line paradigm is changed to one in which the jobs are presented

one by one, according to some list, can we find on-line algorithms with fixed

competitive ratios?

Besides these questions, there are many other on-line scheduling problems

with time lags remaining untouched, which could be research topics in future.

Off-line problems

For the parallel flow shop problem, open questions include:

(1) do algorithms exist with betters worst-case performance guarantees?

(2) can we design similar algorithms with similar worst-case performance guar-

antees for the parallel 𝑚-stage flow shop problem, if 𝑚 ≥ 4?
(3) how can we leverage the possibility of transporting jobs between flow shops

to find improved approximation algorithms?
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As to the Polynomial-Time Approximation Schemes for scheduling with

bounded time lags, relevant open questions are:

(1) does a PTAS exist if there is no upper bound on the time lags?

(2) do any PTAS results exist for other objective functions besides makespan

and total completion time?

(3) can we develop algorithms with fixed worst-case performance guarantees

for these problems?

For the fixed interval scheduling problems, our algorithms have been developed

for two-machine problems to maximize the total weighted number of jobs that

can be processed. The following extensions may be of interest:

(1) what are the complexity status of fixed interval two-machine job shop and

open shop problems in the case of general time lags?

(2) can we develop efficient algorithm to minimize the number of machines in

each stage of the shop in order to be able to process all available jobs?

(3) for fixed interval two-machine shop problems with general time lags, can we

develop approximation algorithms with fixed worst-case performance guarantees?

Finally, for each these off-line problems, the corresponding on-line problem is

also interesting.

In this thesis, we have only tackled a limited set of machine scheduling prob-

lems with time lags. Many problems are still left unsolved. Let’s end the thesis

with Confucius’ (551BC-479BC) wisdom: to know what you know and what you

do not know, that is true knowledge.
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Summary

Scheduling is the allocation of limited resources to activities, or jobs to be done,

over time. The applications of scheduling theory can be found in many manu-

facturing and service industries, where production, transportation, distribution,

procurement, information processing and communication are restricted by lim-

ited resources. This thesis focuses on a subset of scheduling problems where time

lags play a role. Time lags are job characteristics, specifying the minimum time

delay required between the execution of two consecutive operations of the same

activity. Time lags can represent transportation delays, activities that require no

limited resources, or intermediate processes between two bottleneck machines.

The problems addressed in this study are motivated by the scheduling of barges

that sail between terminals in a port area to load and unload cargos.

The research in this thesis addresses two types of problems, the on-line schedul-

ing problems and the off-line scheduling problems. In on-line problems, the de-

cision maker does not have complete information of the problem instance and

therefore has to react to new job scheduling requests with a partial knowledge

of the problem instance only. In off-line problems, the decision maker has all

information available prior to making any scheduling decision.

The thesis presents the first results on on-line scheduling problems with time

lags. For the basic on-line two-machine flow shop, job shop and open shop prob-

lems to minimize makespan, we show that the greedy algorithm has competitive

ratio 2 and that the greedy algorithm is a best possible algorithm, if non-delay

is required or the environment is non-clairvoyant. For the case that the environ-
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ment is clairvoyant and deliberate delays are allowed, we give lower bounds on

the best possible competitive ratios of any on-line algorithm for these problems.

This raises the question whether there exists a delay algorithm with a better

competitive ratio than the greedy algorithm for the clairvoyant variant.

For the open shop problem, we also analyze a semi-online case, where each

time lag is smaller than any positive processing time. We show that the greedy

algorithm is a best possible algorithm with competitive ratio 5
3 .

We analyze three sets of off-line scheduling problems with time lags. First, we

analyze the NP-hard parallel flow shop problem with transportation delays to

minimize the makespan. We design a 3
2 -approximation algorithm for the case of

two parallel two-stage flow shops and a 12
7 -approximation algorithm for the case of

three parallel two-stage flow shops. Second, we consider scheduling problems with

time lags with the objective to minimize the makespan or total completion time,

and we prove that for such problems Polynomial-Time Approximation Schemes

can be developed if ratio between the largest time lag and the minimum positive

processing time is bounded from above by a given fixed constant. These are the

first PTAS results for scheduling problems with time lags. Third, we analyze

the fixed interval shop scheduling problem, where the objective is to maximize

the weighted number of jobs that can be processed by a shop, if each job has

an a priori given interval in which it needs to be scheduled if it is selected for

scheduling. We show that the problem is solvable in polynomial time in a flow shop

environment in the case of equal time lags but NP-hard in the strong sense for

general time lags, even in the case of unit-processing times. The fixed interval two-

machine job and open shop problems are shown to be solvable in polynomial time

if all time lags are equal and smaller than the processing time of any operation.



Summary in Dutch

Planning het toewijzen van een beperkte verzameling hulpmiddelen aan een verza-

meling van activiteiten over de tijd heen. Hulpmiddelen worden gewoonlijk aange-

duid als machines en activiteiten als taken. Het doel daarbij is het vinden van een

toegelaten, optimaal of bijna optimaal schedule voor een van te voren gespeci-

ficeerde doelstellingsfunctie. Een schedule is een toewijzing van taken aan ma-

chines over de tijd heen zodanig dat geen enkele machine meer dan een taak

tegelijkertijd uitvoert, geen enkele taak op verschillende machines tegelijkertijd

wordt verricht, en taken binnen de van te voren vastgestelde tijdvensters worden

gedaan.

Planningsvraagstukken doen zich voor in haast alle organisaties, op het gebied

van productie, dienstverlening, transport, distributie, inkoop, inzet van person-

eel, of verwerking van informatie. Hulpmiddelen kunnen dan machines, vracht-

wagens, computers, of mensen zijn. In dit proefschrift richten we ons op plan-

ningsvraagstukken met minimaal vereiste vertragingen tussen twee opeenvolgende

taken. Deze vraagstukken worden gemotiveerd door planningsvraagstukken die

optreden bij het plannen van het laden en lossen van binnenvaartschepen (de

taken) bij container terminals (de hulpmiddelen) in de Haven van Rotterdam,

waarbij de minimaal vereiste vertragingen de vaartijden tussen container termi-

nals vormen.

Het onderzoek in dit proefschrift richt zich op planningsvraagstukken met

vertragingen in zowel statische als dynamische omgevingen. Een omgeving heet

statisch als alle activiteiten en de daarbij behorende informatie van te voren
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bekend zijn. Dit leidt tot zogenaamde off-line problemen. Een omgeving heet

dynamisch als niet alle activiteiten van te voren bekend zijn. Dit leidt tot zo-

genaamde on-line problemen. We zijn met name geinteresseerd in de prestatie-

garantie van oplossingsmethoden. Een oplossingsmethode heeft prestatiegarantie

𝜌 als het voor iedere willekeurige instantie van het probleem een schedule

genereert waarvan de doelstellingswaarde gegarandeerd niet meer dan 𝜌 maal

de doelstellingwaarde van een optimaal schedule is.

Dit proefschrift presenteert de eerste prestatiegrantieresultaten voor on-line

planningsvraagstukken met vertragingen. Voor het minimaliseren van de lengte

van een schedule in een on-line omgeving met minimaal vereiste vertragingen laten

we zien dat een zogenaamde greedy oplossingsmethode prestatiegarantie 2 heeft,

voor zowel een flow shop, als een job shop, als een open shop met twee machines.

We bewijzen dat een dergelijke greedy oplossingsmethode een beste mogelijke

oplossingsmethode is; dat wil zeggen, voor deze vraagstukken bestaat er geen

oplossingsmethode met een betere prestatiegarantie als een binnenkomende taak

direct gealloceerd dient te worden of als we bij binnenkomst van de taak niet bek-

end wordt hoeveel tijd de taak vergt. Indien een taak niet direkt gealloceerd dient

te worden en de duur van een taak bij binnenkomst wel bekend wordt, geven we

algemene ondergrenzen op de prestatiegarantie. Geen enkele oplossingsmethode

kan dan een lagere prestatiegarantie hebben. We kunnen echter niet uitsluiten dat

er in deze situatie een oplossingsmethode bestaat die een lagere prestatiegarantie

heeft dan de greedy oplossingsmethode. Voor het open shop probleem analy-

seren we ook de speciale situatie waarbij de lengte van elke vertraging kleiner of

gelijk is aan de kleinste positieve verwerkingstijd van een taak. In dit geval is de

prestatiegarantie van een greedy oplossingsmethode 5
3 .

We behandelen drie off-line planningsvraagstukken met vertragingen.

Allereerst analyseren we het NP-lastige probleem om de lengte van een schedule

te minimaliseren in zogenaamde parallel flow shops. We ontwerpen een oploss-

ingsmethode met prestatiegarantie 3
2 voor de situatie met twee parallelle flow

shops die beiden uit twee machines bestaan. Voor de situatie met drie paral-

lelle flow shops elk bestaand uit twee machines, geven we een oplossingsmethode

met prestatiegarantie 12
7 . Ten tweede, laten we zien dat voor een ruime klasse

van planningsvraagstukken met vertragingen om of de lengte van een schedule

of om de gemiddelde doorlooptijd te minimaliseren zogeheten Polynomial-Time
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Approximation Schemes (PTAS) bestaan, indien de ratio tussen de grootste ver-

traging en de minimale positieve verwerkingstijd wordt begrensd door een vooraf

bepaalde constante wordt begrensd. Een PTAS is een familie van benaderende

oplossingsmethoden die een polynomiale hoeveel tijd vergen die voor elk van

te voren vastgestelde foutenmarge 𝜖 > 0 een schedule geeft waarvan de doel-

stellingswaarde gegarandeerd niet meer dan (1 + 𝜖) maal de doelstellingwaarde

van een optimaal schedule is. Onze resultaten vormen de eerste PTAS resultaten

voor planningsvraagstukken met vertragingen. Ten slotte, bekijken we het zoge-

naamde fixed interval shop planningsvraagstuk, waarbij elke taak een tijdvenster

heeft waarin het dient uitgevoerd te worden en waarbij de lengte van het tijd-

venster gelijk is aan de verwerkingstijd van de taak. Het doel is het aantal taken,

gewogen naar hun mate van belangrijkheid, te maximaliseren. We tonen aan dat

het probleem oplosbaar is indien alle vertragingen gelijk zijn, maar dat het NP-

lastig is in de sterke zin in geval van algemene vertragingen, zelfs in het geval van

gelijke verwerkingstijden.
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l)SCHEDULING WITH TIME LAGS

Scheduling is essential when activities need to be allocated to scarce resources over
time. Motivated by the problem of scheduling barges along container terminals in the Port
of Rotterdam, this thesis designs and analyzes algorithms for various on-line and off-line
scheduling problems with time lags. A time lag specifies a minimum time delay required
between the executions of two consecutive operations of the same job. Time lags may be
the result of transportation delays (like the time required for barges to sail from one
terminal to the next), the duration of activities that require no resources (like drying or
cooling down), or intermediate processes on non-bottleneck machines between two
bottleneck machines.

For the on-line flow shop, job shop and open shop problems of minimizing the
makespan, we analyze the competitive ratio of a class of greedy algorithms. For the off-
line parallel flow shop scheduling problem with time lags of minimizing the makespan, we
design algorithms with fixed worst-case performance guarantees. For two special subsets
of scheduling problems with time lags, we show that Polynomial-Time Approximation
Schemes (PTAS) can be constructed under certain mild conditions. For the fixed interval
scheduling problem, we show that the flow shop problem is solvable in polynomial time in
the case of equal time lags but that it is NP-hard in the strong sense for general time lags.
The fixed interval two-machine job shop and open shop problems are shown to be
solvable in polynomial time if the time lags are smaller than the processing time of any
operation.
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