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Abstract

Strategic airline fleet planning is one of the major issues addressed through newly
initiated decision support systems, designed to assist airlines and aircraft manufactur-
ers in assessing the benefits of the emerging concept of dynamic capacity allocation.
We present background research connected with such a system, which aims to explic-
itly account for the stochastic nature of passenger demand in supporting decisions
related to the fleet composition problem. We address this problem through a scenario
aggregation based approach and present results on representative case studies based
on realistic data. Our investigations establish clear benefits of a stochastic approach
as compared with deterministic formulations, as well as its implementation feasibility
using state-of-the-art optimization software.

Keywords: airline fleet composition, fleet assignment, dynamic capacity allocation,
stochastic programming, scenario aggregation

1 Introduction

Airlines around the world are facing nowadays steadily declining passenger yields. As
competition intensified, owing to liberalisation and deregulation, airlines were forced to
cut costs and uphold revenues, while their marginal profits came under tremendous pres-
sure. One of the major factors contributing to the problems in airlines operations is the
stochastic nature of passenger demand. While seasonal variations in demands are usu-
ally taken into account, there are also typical random demand fluctuations all over airline
network, which generally lead to (relatively) low average load factors and a significant
number of not accepted passengers (spill). A newly envisioned concept to deal with this
high variability is the dynamic allocation of airline fleet capacity. Essentially, this emerg-
ing new operating philosophy aims to use the most recent estimates of customers demands
for accordingly updating the assignments of aircrafts to the flight schedule, shortly before
the actual operations, in order to better match the available capacity to the demands and
boost the total operating profit over the entire network (see for instance the discussion on
Demand Driven Dispatch in Berge and Hopperstad (1993)).

Presently some airlines manually swap aircraft assignments at various stages in re-
sponse to demand variation. However, a systematic application of the dynamic capacity
∗e-mail: listes@few.eur.nl
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allocation concept on a structural basis would imply major reorganization changes for the
airlines. In order to provide insight into the concept benefits and the necessary changes
it would trigger, prospective studies and appropriate decision support systems started
to emerge. ORTEC Consultants B.V., The Netherlands, initiated the Dynamic Capac-
ity Management (DCM) system, designed to assist airlines and aircraft manufacturers
throughout this process. In this system a strategic and an operational level are distin-
guished. The strategic tool addresses the airline fleet planning and its impact on the net-
work dynamics. Despite advanced mathematical optimization techniques, the approaches
to date are deterministic in nature.

The purpose of this paper is to present background research connected with the DCM
system, aiming to come up with an approach which accounts for the random demand
fluctuations when deciding upon airline fleet composition. Our guiding idea was to search
for a fleet composition which appropriately supports dynamic allocation, depending on
the flight schedule under consideration and the associated stochastic demands on its flight
legs. Owing to this strong dependency, such an approach should support strategic fleet
planning in a model based way and should be applicable to various networks and schedule
scenarios. We believe that not only the fleet operation, but also the decision process
of fleet composition planning should already be placed into the perspective of applying
a dynamic allocation of its capacity on a structural basis. From this perspective, the
design of a strategic support tool should incorporate explicit means for determining a fleet
composition flexible enough for the successful implementation of the dynamic allocation
concept.

The remainder of the paper is organized as follows. Section 2 describes the fleet prob-
lem under consideration as well as our various assumptions and research questions. The
mathematical modelling of the described problem is further elaborated in Section 3. In
Section 4 we discuss our implementation of the involved algorithms in a suite of applica-
tions, called FleetComp. Case study results on representative networks are presented in
Section 5. Finally, Section 6 formulates our documented conclusions.

The findings of our investigations show promise in providing conceptually more robust
solutions than deterministic formulations. Moreover, they clearly assess the potential
benefits of using a stochastic approach and the feasibility of its implementation within a
practice-oriented decision support system.

2 The fleet composition problem

Given a flight schedule and a set of aircraft types, the fleet composition problem - concisely
formulated - is to determine the number of aircrafts of each type the fleet should consist
of in order to be the most profitable when assigned to the schedule. The various factors
and assumptions considered for this problem are subsequently specified.

Weekly flight schedules given as a list of flight legs are considered here, where the
corresponding index week is supposed to offer a representative worth of flights for the
airline’s operations. For each flight leg in the schedule the following data are given: the
origin airport, the destination airport, the departure time, the arrival time, the (expected)
demand for each fare class (economy, business) and the flight distance. Demands for
seats are assumed to follow independent normal distributions (truncated at zero), with
the variability specified as the K-factor (the ratio of the standard deviation to the mean).
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Each aircraft type is defined by its fixed costs (per week), its operational costs, its capacity
for each fare class, its range capability and its family indicator. An aircraft type may be
assigned to a flight leg only if its range is greater than the flight distance, so that certain
type/leg combinations are prohibited. Types allowed to perform a leg are assumed to have
the same flying time and this to be exactly the one required by the flight specifications.
Moreover, we assume that all the aircraft types considered have identical turn-around-time
over the whole network (this assumption can be easily relaxed, leading to type-dependent
flight connections). When demand for a fare class exceeds the corresponding capacity of
a type, the excess demand is spilled and the spilled passengers not recaptured afterwards.
For a given schedule there exists a constant representing the minimum total number of
airplanes (independent of type) needed to carry out the whole schedule, which can be
easily computed (see the modeling section). Only fleet compositions with this minimum
total number of airplanes are taken into consideration.

The main measure of fleet performance is expressed in terms of the profit it can generate
by operating the schedule from which the fixed costs of its aircrafts have to be subtracted.
This profitability measure, which results from the dynamic interaction between the actual
demand values and the aircrafts’ characteristics, especially their capacities, is driving both
the search process for an appropriate fleet composition as well as the evaluation of any
established fleet configuration. More precisely, once a fleet composition has been specified,
the quantification of its performance can be achieved by means of demand simulation, fleet
reassignment and calculation of average scores. Such an evaluation follows essentially the
same macro-flow structure as the Demand Driven Dispatch method proposed by Berge
and Hopperstad (1993). This structure forms the conceptual basis for implementing oper-
ational support systems for dynamic aircraft assignment. However, the manner in which
the stochastic nature of demands could be taken into account for actually determining a
suitable fleet composition remains to be investigated and it’s dealt with in this paper. Our
investigations were driven by the need to answer the following questions:

1. By which mathematical optimization techniques could the stochastic nature of passen-
ger demands be taken into account in the fleet composition problem ?
2. To what extent would the solution given by such an approach be more robust as com-
pared with a deterministic solution ?
3. Could such an approach determine an appropriate composition for an interchangeable
fleet (which allows swapping assignments of planes within an aircraft family) ?

Answers to these questions are provided based on the models and their solution method-
ology presented in the next section.

3 Modeling

The fleet composition problem can be formulated as a multicommodity flow problem based
on the construction of a space-time network, customarily used for the fleet assignment (see
Berge and Hopperstad (1993), Hane et al. (1995)). The stream of arrivals and departures
in the schedule is translated into activity time lines, one such line for each airport. Each
leg adds its departure time to the time line of its departure airport and its arrival time
to the time line of its arrival airport. At this point the arrival times incorporate also the
turn-around-times resulting in actual ready-to-takeoff times, such that proper connections
are established. A node in the network represents an airport during a block of time,
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comprising consecutive arrivals followed by consecutive departures. An arc in the network
is either a flight arc between two nodes from two airports or a ground arc between two
consecutive nodes from the same airport. We augment the network with one source and
one sink for each time line and consider the following additional ground arcs: one ground
arc from a source to the first actual node of the corresponding line, representing the initial
number of aircraft at that airport (before the schedule is carried out), and one ground
arc from the last actual node of a time line to the corresponding sink, representing the
final number of aircraft at that airport (after the schedule is carried out). This allows
for model formulations with or without restrictions on the number of aircrafts at airports
at the beginning and/or at the end of the planning period. With these conventions the
activity time line at an airport can be represented as in Figure 1.

Figure 1: Time line of activity at airport l

The constructed network enables an efficient formulation of the underlying mathe-
matical model, which is discussed in subsection 3.1. For any pre-specified set of demand
values, with the associated profits for the potential assignments, the model searches for
the corresponding optimal fleet composition. For instance, the expected values of demand
may be used in this sense. Clearly, such an approach does not account for the impact
of demand variability on the assignments profit. A reasonable alternative is to compute
beforehand for any allowed assignment type/leg the expected profit based on demand dis-
tribution and to run the deterministic model with these expected profits as parameters.
We will refer to this second variant as the deterministic approach to our problem. While
apparently this approach uses more information from demand distributions, the profit of
any potential assignment type/leg remains however a priori fixed. Thus, using only the
deterministic model in either variant has the drawback that it looks for a fleet compo-
sition without reflecting the profits variability as a major determinant factor. Drawing
on a single set of parameters, the deterministic approach rather corresponds to a static
allocation of airline’s capacity. The need arises for an approach to explicitly account for
the information offered by demand distribution while searching for a fleet which is robust
with respect to the variability of the actual profits. A way to achieve this is to generate
a set of representative demand scenarios consistent with the known distributions and to
address the composition of the fleet through a stochastic programming approach which
accounts for these scenarios. Since the scenarios may be as well interpreted as multiple
demand realisations over a number of (consecutive) weeks, such a stochastic approach
better reflects the decision process which pursues maximum fleet flexibility for dynamic
capacity allocation. The modeling of this point of view is explained in subsection 3.2, after
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the introduction of the deterministic model in the next subsection. Subsequently, subsec-
tion 3.3 presents a method for tackling the proposed stochastic model. The envisioned
scenario generation method is described later in subsection 3.4. The last subsection of this
modeling section discusses the evaluation of fleet performance and the terms of comparison
between solutions.

3.1 The underlying deterministic model

The set of flight legs in the schedule is denoted by N and the set of potential aircraft types
by K. For each flight i ∈ N we denote by Ki the set of aircraft types which may perform
flight i and similarly, for each type k ∈ K we denote by Nk the set of flights which may
be performed by type k. The set of airports serviced by the schedule is denoted by L.
Also, we denote by V the set of all the nodes (except sources and sinks) and by G the set
of all the ground arcs in the space-time network. We make a small abuse of notation for
simplicity and use N to denote also the flight arcs in the network. Consequently arr(v)
and dep(v) denote the flights arriving at and respectively departing from node v. In the
same vein we use l ∈ L to denote also the first actual node of the time line of airport l,
such that g|in l represents the first ground arc at airport l.

The model parameters are fk, the fixed cost of a plane type k and pki , the profit of the
assignment of aircraft type k to the flight leg i. The computation of revenues, costs and
profit functions for the allowed assignments is discussed in the Appendix.

When type k is allowed to perform flight i, the decision variable xki has value 1 if
aircraft type k flies the flight leg i and 0 otherwise. For each type k, the variables ykg count
the number of aircraft of this type on every ground arc g ∈ G. They may be defined as
continuous variables, because in any solution with integral assignments x, the y variables
are forced by the model formulation to be integral as well. The variables zk represent the
total number of planes type k in the fleet (also defined as continuous).

Using this notation the underlying deterministic model for the fleet composition prob-
lem states as

(P ) max
∑
k∈K

(−fk)zk +
∑
k∈K

∑
i∈Nk

pki x
k
i

s.t.
∑
k∈Ki

xki = 1 ∀ i ∈ N (1)

ykg|in v − ykg|out v +
∑

i∈ arr(v)∩Nk

xki −
∑

i∈ dep(v)∩Nk

xki = 0 ∀ k ∈ K, ∀ v ∈ V (2)

zk −
∑
l∈L

ykg|in l = 0 ∀ k ∈ K (3)

zk ≥ 0 ∀ k ∈ K (4)

ykg ≥ 0 ∀ k ∈ K, ∀ g ∈ G (5)

xki ∈ {0, 1} ∀ k ∈ K, ∀ i ∈ Nk (6)
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This formulation corresponds to a mixed integer multicommodity flow problem on
the constructed space-time network, where the commodities correspond to the aircraft
types. Constraints (1), called cover rows, force each flight leg to be performed by exactly
one aircraft type. The balance constraints (2) assure the conservation of flow of each
aircraft type at each node. Constraints (3) determine the fleet composition by counting
the number of aircraft of each type on the ground before the actual schedule is carried
out. They are added to the model for the clarity of the formulation and for easing some
integer programming extensions. For example if the number of aircraft of a type k must
be within certain limits, upper and/or lower bounds can be imposed on zk. When all the
variables zk are fixed, this results in the fleet assignment problem for that particular fleet
composition. The model may be extended to include a fixed start location of the aircrafts
in a given fleet, by fixing the first ground arcs variables ykg|in l for the time line of each
airport l and for every aircraft type k. Moreover, if the start location and the end location
of the planes must be the same, constraints equaling the first ground arc variable to the
last ground arc variable for each time line and each aircraft type may be added. When at
least 3 aircraft types are considered, this problem is proven to be NP-hard (see Gu et al.
(1994)).

The minimum number of planes (independent of type) necessary to fly the whole
schedule can be easily determined by running formally the above model with fk = 1 for
every k and pki = 0 for every k and every i.

While this deterministic model and its extensions capture the basic features of the
problem, it has obvious limitations when it comes to cope with fluctuating customer
demands in deciding upon the fleet composition. For this purpose we present a more
advanced model in the next subsection.

3.2 A robust fleet composition

As suggested previously, deciding upon a robust fleet composition can be achieved by
accounting for a number of demand scenarios, which may be generated as explained in
subsection 3.4. Once the uncertainty of demand is modeled by, say, S representative
scenarios, one may find a solution (zs, ys, xs) to the individual scenario s problem, concisely
written as:

(Ps) max f(z, y, x, s)
s.t. (z, y, x) ∈ Cs

We remark that in the model formulation considered here only the objective function f
depends on the scenario, the feasible set Cs is actually the same Cs = C for every scenario s
and it is convex and closed. A solution to (Ps) would generate a fleet composition zs
appropriate for scenario s.

When all the scenarios are considered and a probability ps is assigned to each scenario s,
we are interested in a solution of the form (z, (ys, xs) for every s) to the stochastic pro-
gramming problem:

(SP ) max
∑
s

ps f(z, ys, xs)

s.t. (z, ys, xs) ∈ C ∀ s
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with the fleet composition z as first stage decision (it must not depend on s) and the
assignments (y, x) as second stage decisions (depending on s). That is, we want to find
now just one fleet composition which maximizes the expected profit over a number of
possible future situations with respect to the uncertain demand. Such a solution represents
a possible decision and therefore it is called an implementable solution. The difficulty is
of course that problem (SP ) is in general much larger than individual scenario problems
(Ps) and therefore much harder to solve. Since (Ps) is already a hard problem, it’s clear
that (SP) can’t be tackled directly, except the case when the deterministic version has a
particularly limited size.

Preliminary tests in solving small stochastic fleet composition problems to integrality
showed that a large number of assignments become integer in the solution of the linear
relaxation of (SP), denoted by (LSP). This is in agreement with previous reports con-
cerning the deterministic fleet assignment problem (see Subramanian et al. (1994), Hane
et al. (1995), Rushmeier and Kontogiorgis (1997)), where fixing a significant part of the
(integer) variables after solving the linear relaxation is an essential step in the solution
methodology. Moreover, when we solve the stochastic problem our interest is mainly fo-
cused on the fleet composition, that is on the first stage decisions, which are by the nature
of this problem very few (the number of potential aircraft types is limited). Yet they
depend on the large number of second stage variables (the potential assignments) in such
a way that expectedly the contribution of few (fractional) assignments to the determining
of the whole fleet composition is quite minor. Therefore a solution to (LSP) will already
give good insight into the candidate integer configurations for a robust fleet. This encour-
aged us to pursue the strategy of finding first a solution to the linear relaxation (LSP) of
the stochastic problem and then to use a simple rounding procedure to generate integer
fleet compositions. As practically also (LSP) can’t be tackled directly due to its over-
whelming dimensionality and computer memory requirements, we resorted to the scenario
aggregation technique described in the next subsection.

3.3 The scenario aggregation based approach

Scenario aggregation was developed as a decomposition-type of method for multi stage
stochastic programming problems (see Rockafellar and Wets (1991), Wets (1989)), which
is not directly related to the well-known Dantzig-Wolf decomposition principle. The idea
is to aggregate successive solutions of perturbed scenario problems in successive overall
solutions that are implementable and converge to the solution of the stochastic problem.
This technique gives a reliable mathematical basis for solutions derived from individual
scenarios and can be applied to linear problems in order to improve on pure scenario
analysis. We apply it here in order to find (a good estimate for) the solution to (LSP), as
the first step suggested above.

3.3.1 The scenario aggregation algorithm

First we describe the algorithmic part of the method and then we formulate the comments
which are in place. The principal set-up of the scenario aggregation algorithm for the
(linear relaxation of the) stochastic fleet composition problem states as follows:
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Step 0. Set ẑ0 = 0 and ŷ0
s = 0, x̂0

s = 0 for every s.
Set w0

s = 0 for every s.
Choose ρ > 0 and set ν = 1.

Step 1. For each scenario s, solve the perturbed scenario problem

max fν(z, y, x, s) subject to x ∈ C

where

fν(z, y, x, s) = f(z, y, x, s)− wν−1
s z − 1

2ρ ||(z, y, x)− (ẑν−1, ŷν−1
s , x̂ν−1

s )||2

Let (zνs , y
ν
s , x

ν
s) denote the solution vector.

Step 2. Calculate ẑν =
∑
s

psz
ν
s and set ŷνs = yνs , x̂

ν
s = xνs .

For every s, update the perturbation term

wνs = wν−1
s + ρ(zνs − ẑν)

Return to Step 1 with ν = ν + 1.

At each iteration ν = 1, 2, ... one generates an admissible decision (zνs , y
ν
s , x

ν
s) for each

scenario s, as a solution to the perturbed problem for scenario s having as objective the
augmented Lagrangian fν(z, y, x, s). These solutions are blended into an implementable
solution (ẑν , (ŷνs , x̂

ν
s) for every s), which is not necessarily admissible, in the sense that

the ”assignments” ŷνs and x̂νs are not necessarily feasible for the ”fleet” ẑν in scenario s.
Besides the multipliers wν−1

s and the fixed parameter ρ corresponding to the quadratic
term, the augmented Lagrangian fν(z, y, x, s) also involves the implementable solution
ẑν−1 and ŷν−1

s , x̂ν−1
s resulted from the previous iteration. On the basis of scenario solu-

tions and the aggregated solution, the multipliers w are updated for the next iteration.
These multipliers are interpreted as information prices that can be associated with the im-
plicit constraints that the feasible solutions must be implementable, that is the individual
scenario solutions must generate afterwards the same fleet composition. What typically
happens is a ”fight” between the scenario solutions zνs and the aggregated solution ẑν ,
the individual solutions trying to pull away from the implementable one. This tendency
is ”corrected” by updating w multipliers and when they become properly adjusted the
scenario solutions will agree with the implementable solution. The stopping criteria must
reflect a measure of this agreement. We use in this sense the conditional variance of the
error with respect to z variables, θν :=

∑
s

ps||zνs − ẑν ||2. According to the convergence

results in Rockafellar and Wets (1991), θν converges to 0, so the algorithm may stop when
θν ≤ ε for a given tolerance ε > 0. In the fleet composition problem, such a tolerance may
be expressed as a given small percentage of the minimum total number of planes.

So the scenario aggregation algorithm generates a sequence {ẑν , ν = 1, 2, ...} of esti-
mates of the optimal first stage decision z? of the relaxed stochastic problem (LSP), by
insisting progressively that the scenario solutions must be implementable, that is they pro-
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duce the same fleet composition. A great advantage of this approach in our case is that we
can capture already at an early stage the direction in which the sequence {ẑν , ν = 1, 2, ...}
moves. Moreover, since we are actually interested in an integer solution to (SP), it be-
comes clear that we don’t need at all to pursue the search for an optimal solution of the
relaxation to the end, but rather to stop with a reliable estimate, which we have always
at hand in the last ẑν generated.

3.3.2 A rounding procedure

Although the best available estimated first stage solution to (LSP) consists of fractional
values, through the progressive hedging effect of the scenario aggregation algorithm it pro-
vides already good insight into the candidate integer fleet configurations to be considered.

Suppose that z = (z1, z2, ..., zm) is a fractional first stage solution with
m∑
k=1

zk = M , where

M denotes the (constant) total number of planes. For any real number u we denote by [u]
the integer part of u, that is the largest integer smaller then or equal to u and by {u} the
fractional part of u, that is {u} = u− [u]. Suppose c is a constant between 0 and 0.5. For
each k = 1, ...,m, zk can be rounded to an integer ak as follows: if {zk} < c then ak = [zk];
if {zk} > 1− c then ak = [zk] + 1; if c ≤ {zk} ≤ 1− c then ak = [zk] or ak = [zk] + 1. The
constant c can be defined as a value deemed relevant for the structure of z (for instance 0.2
or 0.25 appear to work well in most cases). The higher is c, the fewer rounding possibilities
will result and vice versa. We consider all the integer vectors a = (a1, a2, ..., am) which

result as possible combinations of these individual ak, k = 1, ...,m, such that
m∑
k=1

ak = M .

Clearly, some of the vectors a represent a rounding of z which are intuitively more jus-
tified than others. Therefore we order these integer vectors a in increasing order of the
euclidian distance to z. Our typical experience when evaluating these potential integer
fleet compositions over the scenarios is that only a limited number of configurations from
the beginning of the list give a significant improvement of the total expected profit. More-
over, as we go further in the list the total expected profit decreases considerably. So the
number of fleet compositions from the list to be checked can be decided (or alternatively
pre-specified) in each case at hand, based on its characteristics and practical considera-
tions. From the evaluated configurations we retain that fleet composition which generates
the maximum expected profit over the scenarios and we refer to it as the solution of the
scenario aggregation based approach.

3.4 Scenario generation

The random demand parameters are originally assumed to follow continuous (independent)
distributions. However, the modeling needs to reflect the dynamic interaction between
actual demand values and the aircrafts capacities. In order to achieve this through a
reduced but yet representative set of scenarios, we select the demand realisations and their
mutual combinations by using the descriptive sampling method (Saliby (1990), Jönsson
and Silver (1996)). Descriptive sampling is based on a purposive selection of the sample
values - aiming to achieve the closest fit with the represented distribution - and the random
permutations of these values. It is therefore relevant for problems where the sample
sequence plays a major role, such as in our situation.
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Suppose for simplicity that only one payload class is available in each aircraft type. The
demand for seats of each flight leg i = 1, 2, ..., N is assumed to follow a normal distribution
di ∼ N(µi, σi) with probability distribution function Fi (the demands are assumed to be
independent). We specify in advance the number of scenarios we wish to generate, say S.
Then exactly S values di[1], di[2],..., di[S] are sampled from distribution i and they are
set at equally spaced quantiles of the distribution, that is

di[j] = F−1
i (

j − 0.5
S

), j = 1, 2, ..., S

The idea is that in this way we generate more sample values from a range where the
distribution has higher density and less values from low density regions. Since the inverse
of the distribution function Fi is not available analytically, we use accurate numerical
approximations generated with the Newton-Raphson method. Subsequently, a random
permutation of the values di[j], j = 1, 2, ..., S, is generated for each i = 1, 2, ..., N . Then
each vector (d1[j], d2[j], ..., dN [j]), j = 1, 2, ...S represents a scenario which is assigned
probability 1

S . So we maintain the sample variability by a random combining of the
S values of each distribution with each other. This is of particular interest in the fleet
composition problem since the dynamic allocation concept tries to improve marginal profits
based on adjusting the available capacity to the demand fluctuations on connecting flights.

When two payload classes (economy, business) are considered for each aircraft type,
values can be generated by descriptive sampling for each class, either assuming that the
two classes are independent or assuming some dependency between them (for instance,
positive correlation).

3.5 Fleet performance evaluation

The evaluation of fleet performance can be achieved by simulating demands with random
sampling from the given distributions, assigning the fleet to the schedule in the optimal
way for each drawn set of values and finally calculating its average scores. Namely, we
record the average estimates for the following performance indicators: the load factor,
the spill percentage, the total revenues, the total operational costs and the total profit
(which also accounts for the fixed costs of the component aircrafts). In order to reflect the
fleet capabilities for dynamic use, we place the conceptual evaluation flow above in two
specific settings. The first variant aims to assess the generic fleet flexibility with respect
to demand fluctuations as resulting from its capacity distribution only, irrespective to the
family affiliation of its aircrafts. The second setting focuses more specifically on the fleet
interchangeability within families in order to adjust its capacity to the actual demands.
We describe subsequently either variant in turn.

The generic fleet flexibility is evaluated as follows. We make a number of random draws
for demand values and at every draw the fleet is completely reassigned to the schedule in
the best possible way. By complete reassignment we mean that there are no constraints
related to the start location or the family of any plane and the assignment at each draw
is made independently. The average indicators recorded with such a scheme can give
reasonable insight into the appropriateness of the fleet capacity distribution among types
for the typical demand variations in the schedule.

The fleet interchangeability within families has to be assessed relatively to an existing
fleet assignment. Therefore we make first one random draw of demands and record the
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optimal fleet allocation based on these drawn values. We refer to this as the fixed assign-
ment of the given fleet. Subsequently we make a number of random draws. At each draw
the fleet is again reassigned in the best way to the schedule, but subject to the following
extra constraints: 1) the start location of the tails is identical with the one in the fixed
assignment; 2) an aircraft type k is allowed to perform a flight leg i only if leg i is flown in
the fixed assignment by a type k0(i) belonging to the same family as type k. Given these
extra constraints as well as the original flow conservation constraints, the reassignment of
the fleet generates in this case actual swaps of its planes within families, relatively to the
fixed assignment, in such a way that the overall profit is maximized for each drawn set
of demand values. The undertaken steps admit the following interpretation. The fixed
assignment corresponds to an initial capacity allocation for the index week, based on the
forecasted demands (cast by the first draw) at a relevant planning point in time, preceding
the week’s operations. As this initial capacity assignment also determines the scheduling
of the crews, whose dynamic assignment would be both difficult and expensive, it is re-
quired that the actual operation of each flight to be done by an airplane belonging the
same family the assigned crew is certified to fly. As the time comes closer, more accurate
information about the actual demands is accumulated and the initially assigned capacity
is to be adjusted. Each subsequent draw captures a possible state of the world shortly be-
fore the index week operation. Where possible, the planes are swapped in order to better
match their capacities to the actual demands, increase the passenger loads, decrease the
spill and improve the operating profits.

In either case, the fleet composition given by the deterministic approach based on ex-
pected profits (EP) and the fleet composition given by the scenario aggregation based ap-
proach (SA) can be compared on the basis of the average performance indicators achieved.

4 Implementation issues

The numerical analysis of the case studies was performed on a Windows NT-based 933MHz
Pentium III PC with 256MB RAM using our own FleetComp suite of C applications with
the CPLEX Callable Library version 7.1 (see ILOG (2000)). The components of the
FleetComp suite are schematically illustrated in Figure 2.

Based on the data red in the Input module, the DynNetGen module generates the
dynamic space-time network of flights as described in the Modelling section, which further
serves for all models formulations within FleetNet, FleetSA and FleetSim modules. The
fleetnet application can address the deterministic model either based on profit parameters
corresponding to particular demand values or based on the expected profits for each al-
lowed type/leg combination. It can be run with the fleet composition to be determined
as well as with a pre-specified fleet configuration. The fleetstoch application solves the
stochastic model in extensive form; it is only useful for small cases in order to validate the
scenario aggregation based method.

The main scenario aggregation algorithm is implemented in the fleetsa application. In
this context, two issues need to be clarified. The first is the choice of the ρ perturbation
parameter. Following the argument in Rockafellar and Wets (1991) and after appropriate
numerical experiments, we decided to use low values between 50 and 100 for ρ in order
to encourage progress in the primal sequence {ẑν} (instead of the dual sequence {wν}).
The second issue concerns the value of the ε tolerance for the θν convergence measure. We
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Figure 2: FleetComp suite components

set this tolerance to a small percentage (3%) of the minimum total number of planes in
each particular case. This means for instance that if a total of 100 planes were required,
the scenario aggregation procedure would stop when the sum of the deviations of all (first
stage) scenario solutions from the implementable solution (weighted by scenario probabil-
ities) is no more than 3. Although not our main concern here, the scenario aggregation
algorithm greatly facilitates parallel computation, such that its execution can potentially
be spread out to utilize all available computational power, leading to substantial running
time reduction. The rounding application implements the rounding procedure with an
adjustable c rounding constant. The candidate fleets from the resulted ordered list are
passed further for evaluation over scenarios to the fleeteval application. The advantage
of using fleeteval is that it evaluates a given configuration over the descriptive sampling
based scenarios, which are more limited, and it avoids therefore the application of the
computationally much more expensive simulation too many times. This way, the fleetsim
application can be finally used to assess the actual performance of few fleets with typical
characteristics. It can address the complete reassignment studies as well as the plane
swapping studies starting from a fixed assignment generated by the fixassign application.

The perturbed scenario problems within the scenario aggregation procedure take the
form of concave quadratic programming problems and are solved using CPLEX Barrier
Optimizer. The other model based applications make use of the branch-and-cut algorithm
exploited by the CPLEX Mixed Integer Optimizer with several tuning options, which are
specified in turn below.

In order to avoid overly tight optimality criteria and speed up the computation pro-
cess, we used relative mip gap tolerances between 0.02% and 0.04%. The presolver and
aggregator were set on at all the times. The setting we found most robust uses the CPLEX
Barrier LP solver for the relaxation at the root of the branch-and-bound tree followed by
dual crossover for obtaining an optimal basis, before entering the branching phase. Of-
ten CPLEX automatically performed objective costs perturbation in order to avoid dual
degeneracy. Moreover, in our experiments CPLEX fixed a significant number of integer
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variables after solving the root relaxation and before performing the crossover. Further-
more, the heuristic supported by CPLEX Mixed Integer Optimizer seemed to be very
effective, especially when invoked at the root, after an optimal basis was found. For the
LP relaxations at nodes the experiments led us to finally choose the dual simplex solver
with the steepest edge pricing strategy.

An option to use the assignment constraints as prioritized Type I Special Ordered
Sets (SOS) was implemented. This option could complementarily improve performance
on many fleet assignment instances, especially where the default branching rules required
more time. For its implementation the aircraft types were sorted in increasing order of
their total capacity and an initial priority was computed for each assignment constraint i

as prior(i) =
√∑
k∈Ki

(pkai − pki )2 , where ka is the type preceding type k allowed to fly leg i

and the summation starts with the second type in Ki. That is, prior(i) gives a measure
of variability in the objective coefficients corresponding to leg i. The interval between the
minimum and the maximum initial priority was then divided in a number of equal intervals
and legs belonging to the same interval were assigned the same (final) priority. The number
of priority classes is easily adjustable through the program. The node selection strategy
we chose emphasized feasibility and preferred more recently created nodes until an integer
feasible solution was found. An upper limit (500) was set on the number of nodes in the
tree, but usually the tree was pruned without exhausting it.

Of great effectiveness during the branching phase appeared to be the Gomory fractional
cuts. Therefore they were often encouraged at the nodes of the tree. Actually, on the
type of mixed integer programming models involved, they made a great difference in the
CPU-time between CPLEX software release 7.1 we finally used and our trials with the
previous versions. Finally, we would remark that especially the fleet assignment model
exploited in fleeteval and fleetsim showed a great variety of instances resulting from various
combinations of a given fleet with particular demand realizations, such that encountering
also some problematic instances was inevitable. In spite of this, the tuning options chosen
provided good trade-offs for most instances, resulting in reasonable overall running times.

5 Case study results

The benefits of the presented method were established through application to several case
studies based on realistic data, set up in agreement with ORTEC airline consultant. We
summarize these benefits by discussing two representative cases: a small case in which we
validated the method and a large case which better shows the extent to which our method
improves on the deterministic approach.

For simplicity, we assume in both cases the same K-factor for all flight legs, specific
only to each fare class, namely 0.5 for economy and 0.6 for business. The yield multiplier
and the yield exponent (see appendix) equal 1.7 and 0.35 for the business class, respectively
1.5 and 0.40 for the economy class. Up to 9 aircraft types from 3 families A, B, C, denoted
by A1, A2, A3, A4, B1, B2, C1, C2, C3, were considered. They range in capacity from 70
to 175 seats with 40% business seats and 60% economy seats. A minimum turn around
time of 25 minutes was considered for all aircraft types at all airports.

Initially, it was thought that in principle increasing the number of scenarios would
generally produce significantly better results. Therefore, we experimented with stochastic
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models based on 50, 80 and respectively 100 scenarios in the case presented in the next
subsection. Such experience reveals that a reasonable number of scenarios generated by
descriptive sampling suffice for capturing demand variations which actually impact the
fleet composition and no significant gain results from excessively increasing the number of
scenarios relative to the corresponding computational effort.

5.1 A small case and method validation

The low sized hub-spoke system considered in this case provided early feedback to validate
the solution method. The network consists of 342 flight legs per week serving 18 airports
with a fleet of 15 airplanes. The stochastic models discussed in this case are based on a
number of 50 scenarios. In both studies presented below the scenario aggregation based
approach generated a fleet composition which turned out to be the optimal (first stage)
solution of the stochastic model, as verified by solving the deterministic equivalent to
optimality. Moreover, most of the alternative fleets from the top of the list constructed
by our method generated profits close to the optimal when evaluated over the scenarios.

5.1.1 Generic fleet flexibility study

For this study all the 9 aircraft types were considered. This setting translates into a
deterministic model with 5,068 variables, 2,430 constraints and 12,783 non-zero’s, whose
solving required 2 seconds. The corresponding stochastic model with 50 scenarios has
252,959 variables, 121,500 constraints and 639,150 non-zero’s. Solving its extensive form
to optimality required almost 2 hours of computation. By comparison, the scenario ag-
gregation procedure stopped after 12 minutes by satisfying the stopping criterion and the
rounding procedure generated 10 candidate fleet compositions, each of them requiring ap-
proximately 1 minute for evaluation over scenarios. The third fleet from the list turned
out to be the optimal one. The expected profits generated by the first 5 candidate con-
figurations from the top of the list were significantly better than those generated by the
last 3 fleets in the list. The fleet composition given by the deterministic approach (EP)
and the fleet composition generated by the scenario aggregation based approach (SA) are
given in Table 1.

Aircraft types
Fleet A1 A2 A3 A4 B1 B2 C1 C2 C3
EP 1 0 5 0 6 0 2 1 0
SA 2 2 1 2 4 1 1 1 1

Table 1: Fleet composition with 9 aircraft types (small case)

The performance of each of these configurations was established through a simulation
run with 200 draws and complete reassignment, requiring 3 minutes (EP), respectively 5
minutes (SA). Their average performance indicators based on weekly figures are presented
in Table 2.

In the EP fleet some aircraft types (such as A3 and B1) are preferred, because their
capacities render themselves more profitable when related to the (fixed) expected profits
of the flight legs. However, when actual varying profits are cast in scenarios and the
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EP fleet SA fleet SA – EP (% of EP)

Load factor (%) 67.34 68.97 1.63
Spill (%) 6.04 3.64 −2.40

Revenues($) 2,543,799 2,584,269 40,470 (1.59%)
Operating costs($) 1,487,056 1,498,223 11,167 (0.75%)
Fleet cost($) 915,500 928,500 13,000 (1.42%)

Profit($) 141,243 157,546 16,303 (11.54%)

Table 2: Fleet performance with 9 aircraft types and complete reassignment (small case)

overall expected profit over these scenarios is aimed to be maximized, these types are
partly replaced in the SA fleet by several other types with various capacities. This change
results in 1.4% increase in the fixed costs of the planes and likewise, a relatively small
increase in operating costs. However, the SA fleet generates a higher average load factor
with an impressive simultaneous decrease in the average spill, accounting for a much more
significant increase in revenues. This increase not only covers the extra investment and
operational costs, but moreover, it makes a substantial bottom line contribution in such
a way that the SA fleet achieves overall 11.54% improvement in the average total profit.
Translating this improvement to a yearly basis would result in about $56,500 added per
airplane per year.

5.1.2 Fleet interchangeability within families

Since aircraft types from different families can hardly be swapped without directly impact-
ing crews rosters, it is assumed that when fleet interchangeability is aimed for, aircraft
types from fewer families would consequently be acquired. Therefore only the 6 aircraft
types from A and B families were considered in this study and planes were allowed to
be exchanged only within family as explained in the Modeling section. The deterministic
model with 3,340 variables, 1,734 constraints and 8,406 non-zero’s required 1 second for
solving in this case. The stochastic model with 50 scenarios has 166,706 variables, 86,700
constraints and 420,300 non-zero’s and was solved to optimality (in its extensive form)
in 21 minutes of computation. The scenario aggregation procedure required 8 minutes.
Subsequently, 9 candidate fleet configurations were generated by the rounding procedure,
each fleet requiring about 30 seconds in order to be evaluated over scenarios. The second
fleet in the list turned out to be the optimal one. The first 4 fleets from the top of the list
generated significantly better total expected profits than the last 3 fleets in the list. The
EP fleet and the SA fleet compositions are presented in Table 3.

The performance of each of these fleet compositions was established through a sim-
ulation run with 200 draws and plane swapping relative to a fixed assignment, a priori
generated by one draw. The simulation runs required 1 minute for the EP fleet, respec-
tively 1 1/2 minutes for the SA fleet. The average performance indicators recorded are
given in Table 4 (weekly figures).
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Aircraft types
Fleet A1 A2 A3 A4 B1 B2
EP 3 1 5 0 6 0
SA 3 2 2 2 4 2

Table 3: Fleet composition with 6 aircraft types (small case)

EP fleet SA fleet SA – EP (% of EP)

Load factor (%) 65.76 67.10 1.34
Spill (%) 6.87 4.93 −1.94

Revenues($) 2,496,191 2,529,469 33,278 (1.33%)
Operating costs($) 1,481,805 1,493,187 11,382 (0.77%)
Fleet cost($) 913,000 924,000 11,000 (1.20%)

Profit($) 101,386 112,282 10,896 (10.75%)

Table 4: Fleet performance with 6 aircraft types and plane swapping (small case)

The EP fleet with 6 types rather little differs from the EP fleet with 9 types and it is
still based on aircraft types tailored on the (fixed) expected profits of the flight legs. The
3 planes of C family from the SA fleet with 9 types are replaced in the SA fleet with 6
types by 2 different planes of A family and 1 plane of B family. The increase in operational
costs is roughly the same as in the previous case, but the difference in fixed costs between
the SA fleet and the EP fleet is somewhat smaller in this case. However, while there
are only limited potential swapping possibilities within the planes of A family in the EP
fleet, the SA fleet composition offers clearly more potential swapping opportunities within
both A and B families. These differences are directly reflected in the average performance
indicators achieved: the higher load factor and the lower spill of the SA fleet translate
into a significant revenues increase, which covers the extra costs and contributes further
to the bottom line for an overall 10.75% improvement in the average total profit. On a
yearly basis this improvement would add about $37,800 per airplane per year.

5.2 A case study on a large network

The large network with multiple hubs addressed in this case allows a better assessment
of the benefits of our method as compared with the deterministic approach. The system
operates 1978 flight legs per week, serving 50 airports with a total of 68 planes. The
stochastic models applied in this case are based on 25 scenarios.

5.2.1 Generic fleet flexibility study

For this study we considered again all the 9 aircraft types. The deterministic model con-
tains in this case 27,078 variables, 11,806 constraints and 70,497 non-zeros. Its solving
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required 2 minutes. The stochastic model with 25 scenarios would consist of 676,734 vari-
ables, 295,150 constraints and 1,762,425 non-zeros. Clearly, such a large-scale model can
not be tackled directly, but the scenario aggregation algorithm generated a (fractional)
first-stage estimated solution within the prescribed accuracy in 4 1/2 hours of computa-
tion. The rounding procedure generated 12 integer fleets, whose evaluation over scenarios
required on average 10 minutes per fleet. The first fleet from the list produced the highest
profit over scenarios and was retained as the scenario aggregation based solution. How-
ever, we have to remark that in this case, owing to more flexibility conferred by the larger
total number of planes, as many as the first 7 candidate configurations from the top of
the list generated comparable expected profits over scenarios (in a range from 0.05% to
0.1% less than the best of them). The EP fleet composition and the SA fleet composition
resulted in this study are given in Table 5.

Aircraft types
Fleet A1 A2 A3 A4 B1 B2 C1 C2 C3
EP 6 13 7 0 15 0 20 7 0
SA 10 6 8 6 16 5 8 6 3

Table 5: Fleet composition with 9 aircraft types (large case)

The two fleet compositions were compared by means of a simulation run with 75 draws,
with complete reassignment at each draw. The simulation run required 3 hours 40 minutes
for the EP fleet, respectively 12 hours 20 minutes for the SA fleet. The corresponding
average performance parameters (weekly figures) are presented in Table 6.

EP fleet SA fleet SA – EP (% of EP)

Load factor (%) 68.22 70.81 2.59
Spill (%) 6.78 3.46 −3.32

Revenues($) 13,960,397 14,268,352 307,955 (2.21%)
Operating costs($) 8,749,105 8,878,502 129,397 (1.47%)
Fleet cost($) 4,186,500 4,216,000 29,500 (0.70%)

Profit($) 1,024,792 1,173,850 149,058 (14.55%)

Table 6: Fleet performance with 9 aircraft types (large case)

The larger scale network from this case offers more opportunities to exploit the ad-
vantages of dynamic allocation. Although these network opportunities would potentially
favour both fleets, the SA fleet clearly proves itself more appropriate for dynamic use, as
reflected by the almost 15% increase in the average total profit when compared with the
EP fleet. Here again the improvement is achieved with an expanded fleet, but which incurs
in this case a smaller relative extra investment and a somehow larger relative increase in
operating costs. In exchange, the SA fleet capacity is distributed over all aircraft types, in-
cluding significant number of planes from types which are totaly absent from the EP fleet.
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Through this typical adjustment, the SA fleet more effectively matches its capacity to the
various demands. Therefore it considerably increases the overall load factor and reduces
the average spill in an even more impressive manner. This way it accounts for a revenues
increase which contributes with almost $150,000 added to the bottom line average profit
per week. On a yearly basis this would add $114,000 per airplane per year.

5.2.2 Fleet interchangeability within families

For this plane swapping study we restrict again the aircraft types to the A and B families.
The deterministic model contains in this case 17,816 variables, 8,530 constraints and 46,290
non-zeros and was solved in 30 seconds. The stochastic model based on 25 scenarios would
consist of 445,256 variables, 213,250 constraints and 1,157,250 non-zeros. The estimated
first-stage solution to this model was generated by the scenario aggregation procedure
within 2 hours of computation. The 8 candidate configurations subsequently given by the
rounding routine required for evaluation over scenarios in average 5 minutes per fleet. The
second fleet from the top of the list generated the highest expected profit over scenarios
and was retained as the SA fleet. Table 7 illustrates this fleet composition as well as the
EP fleet resulted in this case.

Aircraft types
Fleet A1 A2 A3 A4 B1 B2
EP 22 24 7 0 15 0
SA 15 13 11 7 16 6

Table 7: Fleet composition with 6 aircraft types (large case)

The fleets were evaluated through a simulation run with 75 draws, where the plane
swapping setting was applied. The simulation run required 7 minutes for the EP fleet,
respectively 20 minutes for the SA fleet. In Table 8 the resulted average performance
indicators are given (weekly figures).

EP fleet SA fleet SA – EP (% of EP)

Load factor (%) 66.58 68.26 1.68
Spill (%) 7.42 5.08 −2.34

Revenues($) 13,497,134 13,774,628 277,494 (2.06%)
Operating costs($) 8,698,664 8,849,680 151,016 (1.73%)
Fleet cost($) 4,181,000 4,232,000 51,000 (1.21%)

Profit($) 617,470 692,948 75,478 (12.22%)

Table 8: Fleet performance with 6 aircraft types and plane swapping (large case)

The multiple hubs system addressed in this case involves situations where more planes
belonging to the same family are simultaneously on the ground at a hub airport and the
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plane swapping is more prevalent. While swapping opportunities are restricted to 3 types
from A family in the EP fleet, the capacity distribution of the SA fleet enables it to more
effectively profit from swapping combinations within both A and B families. Besides the
expectable capital investment increase, this change also incurs a higher percentage increase
in operational costs in this case. However, these extra costs are by far compensated by
the over 2% increase in the average revenues, mainly based on spill reduction, but also
on significant load factor increase. Moreover, the revenues increase accounts further for
over 12% increase in the bottom line profit. Translating this extra profit to a yearly basis
would result in $57,700 added per airplane per year.

6 Conclusions

The investigations presented in this paper emphasize that the stochastic nature of pas-
senger demands should be explicitly taken into account in the airline fleet composition
problem, approached from the perspective of applying a dynamic allocation of its capac-
ity to the flight schedule. Acquiring suitably distributed aircraft capacity, depending on
the involved network and its dynamics, is crucial for the successful implementation of the
dynamic allocation concept. From this point of view a stochastic approach as ours can
generate significantly more robust solutions than deterministic formulations. Given its
balanced search between representative demand scenarios, this approach is able to detect
situations where it is more profitable to expand the fleet as well as cases where the fleet
based on deterministic estimates should be actually downsized in order to increase prof-
itability in a dynamic environment. Therefore the scenario aggregation based approach
properly quantifies the effects of fluctuating passenger flows on the fleet planning process,
generating flexible fleet configurations which better support dynamic assignments. Such
robust compositions showed in our case studies a potential increase of the load factors up to
2.6%, with a simultaneous potential spill decrease up to 3.3%. Moreover, our approach can
find an appropriate fleet composition in order to facilitate interchanging of planes within
families. A significant pay-off would be achieved with such a fleet if the plane swapping
concept was applied. In such settings our results show up to 1.7% higher load factors and
up to 2.3% less turned away passengers. Given the typically low operating profit margins
from the total operating revenues, such improvements can lead to a substantial increase
in the bottom line profits (between 10% and 15% in the presented cases).

Besides the clear utility of the scenario aggregation based approach, the feasibility
of its implementing has also been proven using realistic data. Although the primary
objective of our implementation was to build a tool in a proof-of-approach sense, the
solution procedures performed very well for models involving up to 2000 flights and 9
aircraft types and there is clear indication of their applicability to even larger instances.
In such cases, we are confident that further improvement in the efficiency of the various
routines can be achieved through motivated future research. Moreover, this methodology
offers great opportunity for parallel computations, which could dramatically impact the
overall running times, bringing it even closer to a point of potential integration into a
practice-oriented decision support system.
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Appendix

The revenues, costs and profit functions

The profit parameters pki used in the description of the underlying model depend on
the capacity of the aircraft type k and on the customers demand for seats for the flight
leg i, as well as on the operational costs incurred by the assignment of type k to flight i.
We use the following functions:

pki =
∑
j

rkji − c
k
i

rkji = rpji ×min(demj
i , cap

j
k)

rpji = mj × (di)1−ej

cki = cck + cgk × di
where

pki = profit of assigning aircraft type k to flight leg i
rkji = revenue of flight i from payload class j when carried out by type k
cki = operational costs of performing flight i by type k
rpji = revenue per passenger in payload class j of flight i
demj

i = demand for seats class j for flight i
capjk = capacity for class j of aircraft type k
mj = yield multiplier of class j
ej = yield exponent of class j
di = distance of flight leg i
cck = constant costs of using aircraft type k on one flight leg
cgk = variable costs of using aircraft type k per unit distance
j = payload class index (economy, business)

When the demands for seats demj
i follow normal distributions N(µji , σ

j
i ) (truncated at

zero) the expected profit of assigning aircraft type k to flight leg i is given by

E[pki ] =
∑
j

E[rkji ]− cki

E[rkji ] = rpji × ( E[demj
i | 0 ≤ dem

j
i ≤ cap

j
k] + capjk × P(capjk < demj

i ) )
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