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Abstract

Multidimensional scaling aims at reconstructing dissimilarities be-
tween pairs of objects by distances in a low dimensional space. How-
ever, in some cases the dissimilarity itself is unknown, but the range
of the dissimilarity is given. Such fuzzy data fall in the wider class
of symbolic data (Bock & Diday, 2000). Denœux and Masson (2002)
have proposed to model an interval dissimilarity by a range of the
distance defined as the minimum and maximum distance between two
rectangles representing the objects. In this paper, we provide a new
algorithm called SymScal that is based on iterative majorization. The
advantage is that each iteration is guaranteed to improve the solution
until no improvement is possible. In a simulation study, we investi-
gate the quality of this algorithm. We discuss the use of SymScal on
empirical dissimilarity intervals of sounds.
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1 Introduction

Classical multidimensional scaling, MDS, represents the dissimilarities among
a set of objects as distances between points in a low dimensional space. The
aim of these MDS methods is to reveal relationships among the objects and
uncover the dimensions giving rise to the space. Many of the applications
of MDS revolve around the analysis of proximity data collected in studies
related to the social sciences or to fields like product marketing and develop-
ment (e.g., the objects studied may be acoustical sounds, consumer products,
etc.). The goal in these studies is to visualize the objects and the distances
among them and to discover the dimensions underlying the dissimilarity rat-
ings.

Sometimes the proximity data are collected for n objects yielding a single
dissimilarity matrix with the entry for the i-th row and the j-th column
being the dissimilarity between the i-th and j-th object (with i = 1, . . . , n
and j = 1, . . . , n). Techniques for analyzing this form of data (two way one
mode) have been developed by Kruskal (1964a, 1964b), see also Winsberg
and Carroll (1989) or Borg and Groenen (1997). Sometimes the proximity
data are collected from K sources such as a panel of K judges or under K
different conditions, yielding three way two mode data and an n×n×K array.
Techniques have been developed to deal with this form of data permitting the
study of individual or group differences underlying the dissimilarity ratings
(see, for example, Carroll, 1972; Carroll & Winsberg, 1995; Winsberg &
DeSoete, 1993; Winsberg & De Soete, 1997).

All of these MDS techniques require that each entry of the dissimilarity
matrix be a single numerical value. However, it may be interesting to collect
dissimilarity data where the dissimilarity between object i and object j is
fuzzy then it might be represented by an interval of values rather than a
single value; consequently the ij-th entry of the n × n dissimilarity matrix
is an interval of values, [δ

(L)
ij , δ

(U)
ij ], where δ

(U)
ij in the upper bound of the

interval, and δ
(L)
ij is the lower bound. For example, it may be that a judge

prefers to indicate a range of values of dissimilarity to express the difference
between object i and object j. The extent of the range may vary from object
pair to object pair, because he or she wishes to capture the relative precision
of his individual judgment. Note that this feature cannot be reflected by a
single value of dissimilarity. Or it may be that the objects in the set under
consideration are of such a complex nature that the dissimilarity between
each pair of them is better represented by a range or an interval of values,
rather than a single value. In this latter case, the dissimilarity between
object i and object j is intrinsically unrepresentable by a single value so it
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must be represented by an interval of values. In addition, if the number of
objects under study becomes very large, it may be unreasonable to collect
pairwise dissimilarities from each judge and one may wish to aggregate the
ratings from many judges where each judge has rated the dissimilarities from
a subset of all the pairs. In such cases, rather than using an average value
of dissimilarity for each object pair the researcher may wish to retain the
information contained in the range of dissimilarities obtained for each pair
of objects. In all of these circumstances, the resulting entry of the n × n
dissimilarity matrix would be an interval of values [a, b] corresponding to

[δ
(L)
ij , δ

(U)
ij ] rather than a single value. Of course, if a given entry of the

matrix was single-valued, it could be represented in interval form as [a, a].
Denœux and Masson (2002) have developed an MDS technique that treats

dissimilarity matrices composed of interval data. This technique yields a
representation in which each object is represented by a hyperbox (hypercube)
in a low dimensional space. They have used a hypersphere representation
as well (see also Masson & Denœux, 2002). In this paper, we develop a
technique which yields a representation of the objects as hyperboxes in a low-
dimensional Euclidean space rather than hyperspheres because the hyperbox
representation is reflected as a conjunction of p properties where p is the
dimensionality of the space.

This representation as a conjunction is appealing for two reasons. The
first is linguistic. In everyday language, if we have objects consisting of
repeated sound bursts differing with respect to loudness and the number of
bursts per second, a given sound or a group of sounds might be referred to
as having a loudness lying between 2 and 3 dbSPR and a repetition rate
corresponding to between 300 and 400 milliseconds between bursts, that is,
as a conjunction of two properties. We would not refer to a sound as a
hypersphere with a loudness and repetition rate centered at 2.5 dbSPR and
350 msec and a radius of a given value to be expressed in just what units. We
note that perceptually a sound might not have a precise loudness or repetition
rate to a listener. Second, since one of the principal aims of MDS is to reveal
relationships among the objects in terms of the underlying dimensions, it is
most useful for this type of data to express the location of each object in
terms of a range of each of these underlying attributes or dimensions.

We are able to represent the results of our MDS analyses in two ways.
The first is a plot for each pair of dimensions displaying each object as a
rectangle. The second is a graph for each underlying dimension displaying
the location and range for each object on that dimension.

The representation of an object as a conjunction of properties fits within
a data analytic framework concerning symbolic data and symbolic objects,
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which has proven useful in dealing with large databases. More and more we
are required to conduct a statistical analysis on a huge data set. In fact,
these data sets may be so large that it is necessary to preprocess the data by
classifying or reorganizing it into classifications or classes where the number of
classes is much smaller than the number of individuals in the original data set.
Then, the resulting data set, after the preprocessing will most likely contain
symbolic data rather than classical data values. We refer to symbolic data
when instead of having a specific, or single value for an observed variable, an
observed value, for a given variable, say yj, may be multivalued (for example,
yj = {16, 21, 35, 40} or yj = {yellow, white, pink}), it may be interval-valued
(e.g., yj = [10, 20]), or it may be modal-valued (e.g., yj = {1 with probability
0.1, 0 with probability 0.9}). For example, if one is dealing with fuzzy data
where the observed variable(s) are represented by an interval of values, then
this data would be symbolic data. For any of such symbolic data, it may be
inappropriate to use existing data analytic techniques developed for single-
valued data.

An inherent part of symbolic data analysis is the definition of a symbolic
object. A symbolic object is a model for an entity, which could be either
a concept or it might be an individual from the real world. This symbolic
object is equipped with the means to compare its description to that of an
individual observation. It is defined by (i) a description D, say loudness [2, 3]
dbSPR and repetition rate between bursts of [300, 400] msec (ii) a binary
relation R, allowing the comparison of the description with the entire set of
descriptions, e.g., R may be one of the relations in {=,≡,≤,⊆}, and (iii) a
function, or mapping, a, providing a means of evaluating the result of the
comparison, (using R), of the description of an individual in the set of all
individuals Ω, to the description D. The extent of a symbolic object, a, is
the set of individuals who fit the description. A symbolic object is defined
by the triple s = (a, R,D), where a depends on the relation R and the
description D. Since interval data are a type of symbolic data, we could
have a symbolic object s be defined as a(ω) = [loudness(ω) ∈ [2 dbSPR, 3
dbSPR]] ∧ [repetition rate(ω) ∈ [500 msec, 600 msec]].

In this paper, we will focus above all on interval-type symbolic data; that
is on fuzzy dissimilarity data represented by an interval of values. For a
detailed description of symbolic objects and symbolic data we refer to Bock
and Diday (2000). The remainder of this paper is organized as follows. In
the next section, we propose the SymScal algorithm for MDS of interval dis-
similarities based on iterative majorization. Then, we investigate the quality
of this algorithm by looking at the local minimum problem and a small simu-
lation study. We also discuss an empirical data set on interval dissimilarities
of sounds. We end the paper with a discussion of the results and conclusions.
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Figure 1: Example of distances in MDS for interval dissimilarities where the
objects are represented by rectangles.

2 MDS of Interval Dissimilarities

To develop MDS for interval dissimilarities, the ranges of dissimilarities must
be represented by ranges of distances. Here, we choose to represent the
objects by rectangles and approximate the upper bound of the dissimilarity
by the maximum distance between the rectangles and the lower bound by
the minimum distance between the rectangles. Figure 1 shows an example
of rectangle representation and how the minimum and maximum distance
between two rectangles is defined.

Not only the distances are represented by ranges, the coordinates them-
selves are also ranges. Let the rows of the n × p matrix X contain the
coordinates of the center of the rectangles, where n is the number of objects
and p the dimensionality. The distance from the center of rectangle i along
axis s, denoted the spread, is represented by ris. Note that ris ≥ 0. The
maximum Euclidean distance between rectangles i and j is given by

d
(U)
ij (X,R) =

( p∑

s=1

[|xis−xjs|+ (ris + rjs)]
2

)1/2

(1)

5



and the minimum Euclidean distance by

d
(L)
ij (X,R) =

( p∑

s=1

max[0, |xis−xjs| − (ris + rjs)]
2

)1/2

. (2)

Even though Euclidean distances are used between the hyperboxes, the lower
and upper distances change when the solution is rotated. The reason is that
the hyperboxes are are defined with respect to the axes. For a dimensional in-
terpretation, the property rotational uniqueness can be seen as an advantage
of symbolic MDS. Of course, if R all hyperboxes shrink to points and then
symbolic MDS simplifies into ordinary MDS, which can be freely rotated.

The objective of symbolic MDS for interval dissimilarities is to represent
the lower and upper bounds of the dissimilarities by minimum and maxi-
mum distances between rectangles as well as possible in least-squares sense.
The Stress-Sym loss function that models this objective and needs to be
minimized over X and R is given by

σ2
sym(X,R) =

n∑

i<j

wij

[
δ
(U)
ij − d

(U)
ij (X,R)

]2

+
n∑

i<j

wij

[
δ
(L)
ij − d

(L)
ij (X,R)

]2
, (3)

where δ
(U)
ij is the upper bound of the dissimilarity of objects i and j, δ

(L)
ij is

the lower bound , and wij is a given nonnegative weight.
Below, we derive a majorization algorithm called SymScal to minimize

Stress-Sym for two reasons. First, iterative majorization is guaranteed to
reduce Stress-Sym in each iteration from any starting configuration until a
stationary point is obtained that, in practice, almost always coincides with
a local minimum. Second, as in each iteration the algorithm operates on a
quadratic function in X and R it is easy to impose constraints that have
well known solutions for quadratic functions. This property can be useful for
extensions of SymScal that require constraints.

2.1 A majorization algorithm

In this section, we develop a majorization algorithm to minimize (3) over
X and R. The basic idea of iterative majorization is that the original loss
function is replaced in each iteration by an auxiliary function that is easier
to handle. The auxiliary function, the so called majorizing function, needs to
satisfy two requirements: (i) the majorizing function is equal to the original
function at the current estimate, and (ii) the majorizing function is always
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larger than or equal to the original function. Usually, the majorizing function
is linear or quadratic so that the minimum of the majorizing function can
be calculated easily. From the requirements it can be derived that (a) the
loss of the majorizing function and the original loss function is equal at the
current estimate, (b) at the update the majorizing function is smaller than
at the current estimate, so that (c) the original loss function is smaller at
the update since the original loss function is never larger than the majorizing
function. This reasoning proves that if the conditions (i) and (ii) are satisfied,
the iterative majorization algorithm yields a series of nonincreasing function
values. For more details on iterative majorization, we refer to De Leeuw
(1994), Heiser (1995), Kiers (2002) or, for an introduction, to Borg and
Groenen (1997, Chapter 8) and Hunter and Lange (2004).

In what follows, we shall derive inequalities to find a majorizing function
of σ2

sym(X,R). To do this, we expand (3) as

σ2
sym(X,R) =

n∑

i<j

wij[δ
(U)
ij ]2 +

n∑

i<j

wij[d
(U)
ij (X,R)]2 − 2

n∑

i<j

wijδ
(U)
ij d

(U)
ij (X,R)

n∑

i<j

wij[δ
(L)
ij ]2 +

n∑

i<j

wij[d
(L)
ij (X,R)]2 − 2

n∑

i<j

wijδ
(L)
ij d

(L)
ij (X,R). (4)

Because wij, δ
(U)
ij , and δ

(L)
ij are nonnegative, (4) can be considered as a weighted

sum of [d
(U)
ij (X,R)]2, −d

(U)
ij (X,R), [d

(L)
ij (X,R)]2, and −d

(L)
ij (X,R). Thus, to

find a majorizing function for (4) it suffices to find a majorizing function
for each of the distance terms. In Appendix A, we derive for each of these
terms a quadratic or linear majorizing function in the parameters. Once we
have obtained the four majorizing functions, these majorizing functions are
substituted in (4) which gives the overall majorizing function of σ2

sym(X,R)
that is quadratic in the parameters X and R. We shall derive majorizing
functions of the form α(xis−xjs)

2 − 2β(xis−xjs)(yis−yjs) + γ for the center
coordinates X (where Y is a known current estimate of X). For the width
parameters R we look for majorizing functions of the form αr2

is − 2βris + γ.
We shall prove that the majorization algorithm automatically finds values of
R, (where Q is the current estimate of R) that are nonnegative.

There are four terms in (4) that need to be majorized. The majorization
of each of these terms is discussed in Appendix A.
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2.2 Combining the majorization results

In the first appendix to this paper, we have derived majorizing functions
for each of the terms in (4). To obtain an overall majorizing function, we
combine the majorizing results from Appendix A with (4). Substituting each
of the terms in (4) by (23), (28), (32), and (36) gives the overall majorizing
inequality

σ2
sym(X,R) ≤

p∑

s=1

∑

i<j

(α
(1)
ijs + α

(3)
ij )(xis−xjs)

2

−2
p∑

s=1

∑

i<j

(β
(1)
ijs + β

(3)
ijs + β

(5)
ijs)(xis−xjs)(yis−yjs)

+
p∑

s=1

∑

i<j

(α
(2)
ijs + α

(4)
ijs + α

(5)
ijs)r

2
is

+
p∑

s=1

∑

i<j

(α
(2)
jis + α

(4)
jis + α

(5)
jis)r

2
js

−2
p∑

s=1

∑

i<j

(β
(2)
ijs + β

(4)
ijs)(ris + rjs)

+
p∑

s=1

∑

i<j

(γ
(1)
ijs + γ

(2)
ijs). (5)

We first consider the terms that are linear and quadratic in X. Let A(1)
s be

a matrix with elements

a
(1)
ijs = −(α

(1)
ijs + α

(3)
ij ) if i 6= j (6)

a
(1)
iis = −∑

j 6=i

a
(1)
ijs. (7)

Note that α
(1)
ijs and α

(3)
ij are only dependent on the known current estimates

Y and Q. It may be verified that

p∑

s=1

∑

i<j

(α
(1)
ijs + α

(3)
ij )(xis−xjs)

2 =
p∑

s=1

x′sA
(1)
s xs.

In a similar way, the linear term can be easily written in matrix algebra by
defining matrix B(1)

s with elements

b
(1)
ijs = −(β

(1)
ijs + β

(3)
ijs + β

(5)
ijs) if i 6= j (8)

b
(1)
iis = −∑

j 6=i

bijs (9)
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so that

p∑

s=1

∑

i<j

(β
(1)
ijs + β

(3)
ijs + β

(5)
ijs)(xis−xjs)(yis−yjs) =

p∑

s=1

x′sB
(1)
s ys.

We now turn to a compact expression for the terms with r2
is and ris. The

first thing to notice is that

∑p
s=1

∑
i<j(α

(2)
ijs + α

(4)
ijs + α

(5)
ijs)r

2
is +

∑p
s=1

∑
i<j(α

(2)
jis + α

(4)
jis + α

(5)
jis)r

2
js =

∑p
s=1

∑n
i=1 r2

is

∑
j 6=i(α

(2)
ijs + α

(4)
ijs + α

(5)
ijs).

Let A(2)
s be a diagonal matrix with diagonal elements a

(2)
iis =

∑
j 6=i(α

(2)
ijs +

α
(4)
ijs + α

(5)
ijs), so that

p∑

s=1

n∑

i=1

r2
is

∑

j 6=i

(α
(2)
ijs + α

(4)
ijs + α

(5)
ijs) =

p∑

s=1

r′sA
(2)
s rs

where rs is column s of R. For the terms linear in ris, we note that

p∑

s=1

∑

i<j

(β
(2)
ijs + β

(4)
ijs)(ris + rjs) =

p∑

s=1

s∑

i=1

ris

∑

j 6=i

(β
(2)
ijs + β

(4)
ijs).

Define b(2)
s as a vector with elements

∑
j 6=i(β

(2)
ijs + β

(4)
ijs) so that we may write

p∑

s=1

n∑

i=1

ris

∑

j 6=i

(β
(2)
ijs + β

(4)
ijs) =

p∑

s=1

r′sb
(2)
s .

The reformulation above allows us to write the right hand side of (5) as

σ2
sym(X,R) ≤

p∑

s=1

(x′sA
(1)
s xs − 2x′sB

(1)
s ys)

+
p∑

s=1

(r′sA
(2)
s rs − 2r′sb

(2)
s ) +

p∑

s=1

∑

i<j

(γ
(1)
ijs + γ

(2)
ijs). (10)

From (10), a dimensionwise update for X and R can be derived. Since the
right hand side of (10) is quadratic in X, a minimum is obtained by equating
the gradient to zero, i.e.,

2A(1)
s xs − 2B(1)

s ys = 0, or, equivalently A(1)
s xs = B(1)

s ys. (11)

To solve the linear system (11) we need a generalized inverse of A(1)
s , since it

is not of full rank. We use the Moore-Penrose inverse A(1)
s

+
which equals here
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A(1)
s

+
= (A(1)

s + n−111′)−1 − n−111′ with 1 a vector of ones of appropriate
length. The update for xs is defined by

xs = A(1)
s

+
B(1)

s ys. (12)

The update for rs is found in a similar fashion as

rs = A(2)
s

−1
b(2)

s , or, equivalently ris =
b
(2)
is

a
(2)
iis

. (13)

The restriction on ris is that it is nonnegative. It may be verified that all
terms that make up a

(2)
iis and b

(2)
is are nonnegative, so that (13) automatically

yields an update that is also nonnegative thereby satisfying the restrictions.

2.3 The SymScal Algorithm

The SymScal algorithm based on iterative majorization can be described
as follows.

1 Set X0 to some initial matrix for the coordinate centers and
set R0 to some matrix of nonnegative values for the width.
Set iteration counter k := 0. Set X−1 := X0 and R−1 := R0.
Set the convergence criterion ε to a small positive value, for
example, 10−6.

2 While σ2
sym(Xk−1,Rk−1)− σ2

sym(Xk−1,Rk−1) ≤ ε or k = 0
3 k := k + 1
4 Set Y := Xk−1 and Q := Rk−1.
5 For s = 1 to p
6 Compute A(1)

s by (7) and B(1)
s by (9).

7 Compute the update of xs by (12).
8 Compute A(2)

s and b(2)
s .

9 Compute the update of rs by (13).
10 End for
11 Set Xk := X and Rk := R.
12 End

3 Investigating the Quality of the Majoriza-

tion Algorithm

To validate the SymScal algorithm, we have analyzed several artificial data
sets. First, we investigated the local minimum problem. The algorithm
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permits considering both the rational start described in the Appendix B and
many random starts and then chooses the best global solution. We generated
artificial data with random values from the uniform distribution for x from 0
to 1 for each coordinate, and random values from the uniform distribution for
r from 0 to 0.2 for each coordinate. Upper and lower values of the distance
were calculated from (1) and (2) and these values were used as the upper

bound of the dissimilarities δ
(U)
ij and the lower bound δ

(L)
ij . If there are no local

minima and only a single global minimum, then the majorization algorithm
should be able to find zero σ2

sym to recover these data perfectly. In this study,
we chose n = 20 and p = 2. To see how bad the local minimum problem is,
we performed 1000 random starts on these perfect data and additionally the
rational start from Appendix B.

The results of the study are shown in the histograms of Figure 2, where
the left panel shows the entire distribution of σ2

sym values and the right panel
zooms in on those values smaller than .15. From this figure, we see that a
lot of different local minima were found. Apparently, the loss function of
σ2

sym has a severe local minimum problem. However, the majority of the σ2
sym

values are close to zero indicating that the majorization algorithm combined
with the random start strategy is indeed able to reconstruct perfect data.
The rational start yielded Stress-Sym values close to the global minimum
of zero. In the sequel, we shall apply the majorization algorithm always
in conjunction with the multistart strategy (that is the rational start com-
bined with random starts) to avoid bad fitting local minima. Preliminary
experimentation suggested that about 50 random starts is usually enough to
circumvent local minima problems, when using the multistart strategy.

In the second study, we investigate how well our algorithm performs for a
variety of artificial data sets. These data sets were generated artificially for
two values of n (n = 10, 20), for three error levels (no error, error variance
5% of the total variance, and error variance 15% of the total variance), and
for two values of p (p = 2, 3). All of these factors were crossed in our study
and 10 data sets were generated for each combination using the following
procedure: random values of X and R were generated as described above,
upper and lower values for the distance were calculated using (1) and (2),
and then normally distributed error was added to these distance values to
obtain the dissimilarity matrix. To ensure that the lower and upper bounds
of the dissimilarities were nonnegative and that the lower bound is not larger
than the upper bounds, we enforced the restrictions 0 ≤ δ

(L)
ij ≤ δ

(L)
ij for all

ij.
To measure the ability of our algorithm to recover the true object config-

uration, we computed the root mean square deviation between the true and
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Figure 2: Distribution of σ2
sym obtained by 1000 random starts followed by

the majorization algorithm for symbolic MDS. The ‘*’ indicates the position
of σ2

sym obtained by the rational start discussed in the appendix followed by
the majorization algorithm.

recovered coordinates. This measure called DEL, is defined for the centers
of the objects, by

DELX = [(np)−1
n∑

i=1

p∑

s=1

(x̂is − xis)
2]1/2, (14)

where x̂is is the true value of the center for object i for the s-th coordinate,
and xis is the recovered value and p is the number of dimensions. We also
define a measure DEL for the spreads of the objects by,

DELR = [(np)−1
n∑

i=1

p∑

s=1

(r̂is − ris)
2]1/2 (15)

Finally we define a measure DEL for the recovery of size of the objects by

DELSIZE =


n−1

n∑

i=1

[ p∏

s=1

(2r̂is)−
p∏

s=1

(2ris)

]2



1/2

(16)

A DEL value of 0 is clearly the ideal and indicates perfect recovery.
To measure how well the method is able to reconstruct the true upper

and lower bounds of the dissimilarities (d̂
(U)
ij and d̂

(L)
ij ), we calculate Tucker’s
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Table 1: Recovery values for the simulations. Each cell has 10 replications.
For these replications, the mean and the standard deviation (within paren-
theses) are reported.

error n p λ(L) λ(U) DELX DELR DELSIZE ×10−7

.00 10 2 .9987 (.0020) .9998 (.0002) .0062 (.0086) .0013 (.0016) 101.2 (92.9)

.00 10 3 .9988 (.0008) .9998 (.0001) .0183 (.0141) .0034 (.0020) 8.2 (9.9)

.00 20 2 .9998 (.0001) .9999 (.0000) .0003 (.0003) .0001 (.0001) 7.6 (13.8)

.00 20 3 .9985 (.0015) .9998 (.0002) .0101 (.0104) .0013 (.0013) 3.2 (3.4)

.05 10 2 .9949 (.0034) .9989 (.0005) .0047 (.0050) .0019 (.0015) 319.1 (325.5)

.05 10 3 .9956 (.0022) .9987 (.0002) .0194 (.0121) .0050 (.0018) 9.4 (7.2)

.05 20 2 .9987 (.0003) .9996 (.0001) .0003 (.0001) .0003 (.0001) 49.3 (45.7)

.05 20 3 .9972 (.0012) .9993 (.0002) .0085 (.0075) .0015 (.0007) 3.4 (3.4)

.15 10 2 .9903 (.0046) .9964 (.0009) .0118 (.0092) .0037 (.0018) 554.0 (491.5)

.15 10 3 .9911 (.0038) .9963 (.0009) .0272 (.0173) .0093 (.0034) 16.0 (9.6)

.15 20 2 .9967 (.0008) .9987 (.0003) .0009 (.0006) .0007 (.0002) 103.0 (43.8)

.15 20 3 .9944 (.0019) .9983 (.0004) .0107 (.0069) .0032 (.0010) 7.2 (4.2)

coefficient of congruence, λ(U) and λ(L) of the true and reconstructed vectors
of upper and lower bounds. For the upper bounds, Tucker’s coefficient of
congruence, λ(U) is defined by

λ(U) =

∑
i<j d̂

(U)
ij d

(U)
ij

[
∑

i<j(d̂
(U)
ij )2

∑
i<j(d

(U)
ij )2]1/2

. (17)

Note that Tucker’s coefficient of congruence can be viewed as a correlation
coefficient without subtracting the mean. Therefore, this measure is always
between -1 and 1, but since distances are positive by definition, λ(U) and λ(L)

will be between 0 and 1.
The results of the simulation study are presented in Table 1. Each value

in the table is the average of 10 simulations for that case, followed by in
parentheses the standard deviation obtained. We note that for DELSIZE
one cannot compare values obtained for two dimensions with those obtained
for three dimensions without realizing that errors in the ris’s are multiplied
when determining the size of an object.

The values in the table indicate excellent recovery of the true values using
our algorithm. We note that for example Tucker’s coefficient of congruence
decreases slightly when error is increased as would be expected. Also the
lower bounds appear to be recovered better than the upper bounds. DELX
and DELR and consequently DELSIZE also increase slightly with increasing
error. All measures of fit improve with increasing n. DELX and DELR are
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both recovered better for the 2 dimensional case than for the 3 dimensional
case.

4 Symbolic MDS for Empirical Data

We now consider two real data sets where the entries in the dissimilarity
matrix are an interval of values. The objects in the study are ten sounds
differing with respect to only two physical parameters: the spectral center of
gravity and log attack time. Previous studies of musical timbre have shown
that these two physical parameters are highly correlated with the perceptual
axes found when dissimilarity judgments are collected for sounds from dif-
ferent musical instruments playing the same note at the same loudness for
the same duration. Until about 35 years ago timbre was considered to be
a perceptual parameter of sound that was complex and multidimensional,
defined primarily by what it was not, that is, what distinguishes two sounds
presented in a similar manner equal in pitch, subjective duration, and loud-
ness (see Plomp, 1970). MDS studies have shown that these two attributes
of sound, namely spectral center of gravity and log attack time explain the
factors we use to distinguish, say, middle C on the piano from middle C
on some other instrument (see, e.g., McAdams, Winsberg, Donnadieu, De
Soete, & Krimphoff, 1995; McAdams & Winsberg, 1999). So when middle C
is sounded on the piano the sound has some unidimensional attributes such
as pitch, corresponding to the frequency of the fundamental, loudness, and
duration. In addition, it is characterized by its timbre, that is, it is a note
from a piano not some other instrument. This last attribute is perceptually
multidimensional with two important underlying dimensions related to spec-
tral center of gravity and log attack time. The spectral center of gravity is
the weighted average of the harmonics generated when the note is sounded
averaged over the duration of the tone with a running time window of, say,
12ms and is higher say for the harpsichord than it is for the piano. The log
attack time is the logarithm of the rise time measured from the time the
amplitude envelope reaches a threshold of 2% of the maximum amplitude to
the time it takes to reach the maximum amplitude and is longer for a wind
instrument like the trumpet than it is for a string instrument like the harp.
The sounds in this study were artificially generated to represent the range of
values found in natural instruments according to the design in Figure 3. The
data represents dissimilarity judgments from the same expert listener taken
on two occasions, see Table 2. On each occasion the expert listened to each
pair of sounds and indicated a range of dissimilarity for each pair on a slider
scale going from very similar to very different.
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Figure 3: Design of the ten sounds according to spectral center of gravity
(vertical axis) and log attack time (horizontal axes).

Table 2: Interval dissimilarities of ten sounds judged by an expert at occa-
sions 1 (lower triangle) and 2 (upper triangle).

Tone 1 2 3 4 5 6 7 8 9 10
1 [ –, –] [62,81] [82,95] [ 6,22] [62,87] [58,87] [67,81] [64,77] [ 0,13] [48,61]
2 [73, 88] [ –, –] [39,59] [53,68] [ 3,16] [68,92] [17,41] [45,57] [40,66] [92,98]
3 [93,100] [ 6,21] [ –, –] [48,74] [51,78] [ 0, 8] [ 0,11] [23,56] [46,69] [33,61]
4 [ 7, 25] [46,66] [60,72] [ –, –] [51,68] [17,41] [72,92] [44,55] [ 0,20] [31,42]
5 [95,100] [ 4,36] [38,58] [63,74] [ –, –] [34,54] [ 0, 5] [ 3,23] [68,79] [45,70]
6 [73, 90] [37,63] [16,22] [33,46] [ 1, 8] [ –, –] [ 9,26] [ 8,37] [42,54] [22,54]
7 [90,100] [49,71] [ 4,13] [87,98] [10,21] [28,46] [ –, –] [21,42] [47,77] [77,91]
8 [64, 79] [ 7,36] [10,26] [36,54] [26,45] [28,50] [32,60] [ –, –] [54,79] [18,33]
9 [ 0, 8] [37,63] [58,78] [ 8,19] [66,81] [71,84] [76,90] [29,46] [ –, –] [ 3,18]

10 [35, 44] [78,88] [49,75] [ 0, 7] [69,82] [65,81] [75,91] [75,88] [20,53] [ –, –]
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Figure 4: SymScal solutions for the sound data in Table 2. Panel (a) gives the
results for Occasion 1 with Stress-sym .02861128 and Panel (b) for Occasion 2
with Stress-sym .04893295.

The data in Table 2 where analyzed by SymScal for both occasions sepa-
rately using 1000 random starts. The resulting solutions are given in Figure
4. Visual examination of the two solutions reveals the following. The hori-
zontal axis represents log attack time and the vertical axes the spectral center
of gravity. Without imposing any restrictions, SymScal seems to be able to
reconstruct the physical space. The results for the second occasion in Figure
4b reflect the physical space quite well. Notice the groupings 10, 9, 4, 1 and
2, 5, 7 and 3, 6, 8 reflect well how these stimuli are grouped in the physical
space. Moreover the relation of these groups to one another approximates
their disposition in the physical space reasonably well. However, the solution
from the first occasion shows some deviations from the physical space: 8, 3,
6 are too far to the left, 3 is too low, 7 is too far to the left, and 1 is too far to
the right. It is interesting to note that these differences from one occasion to
another are greater than the range of uncertainty reflected in the solutions.
The improved results on the second occasion indicate that the task is better
performed with some practice and with greater familiarity with the group of
sounds. It also appears from the figures that sounds with long attack times
are more difficult to localize. This type of data with the SymScal solution
might possibly be used to establish norms which could then be used to detect
people with specific types of hearing impairment.
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5 Discussion and Conclusions

We have presented an MDS technique for symbolic data that deals with
fuzzy dissimilarities consisting of an interval of values observed for each pair
of objects. In this technique each object is represented as a hyperbox in
a p dimensional space. By representing the objects as hypercubes, we are
able to convey information contained when the dissimilarity between the
objects or for any object pair needs to be expressed as a range of values not
a single value. It may be so, moreover, that the precision inherent in the
dissimilarities is such that the precision in one recovered dimension is worse
than that for the other dimensions. Our technique is able to tease out and
highlight this kind of information.

We proposed the SymScal algorithm for doing symbolic MDS of inter-
val dissimilarities. This algorithm is based on iterative majorization. The
advantage is that each iteration yields better Stress-sym until no improve-
ment is possible. Simulation studies have shown that SymScal combined with
multiple random start and a rational start yields good quality solutions.

Denœux and Masson (2002) discuss an extension that allows the upper
and lower bounds to be transformed. Although it is technically feasible
to do so in our case, we do not believe that transformations are useful for
symbolic MDS with interval or histogram data. The reason is that by having
the available information of a given interval for each dissimilarity, it seems
unnatural to destroy this information. Therefore, we recommend to apply
symbolic MDS without any transformation and perform it directly on the
upper and lower bounds.

Moreover, we are easily able to extend our method to deal with the
case in which the dissimilarity between object i and object j is an em-
pirical distribution of values or, equivalently, a histogram. For example,
we may have enough detailed information so that we can represent the
empirical distribution of the dissimilarity as a histogram, for example by
.10[0, 1], .30[1, 2], .40[2, 3], .20[3, 4], where the first number indicates the rela-
tive frequency and values between the brackets define the bin. Then, each
object is represented in the MDS plane by a series of embedded rectangles,
one for each bin.

As the SymScal algorithm is based on iterative majorization, each ma-
jorizing function is quadratic in the parameters. Therefore, restrictions as
symbolic MDS for histogram data or the extension of symbolic MDS to three-
way data (by, for example, the weighted Euclidean model) can be easily
derived combined with the SymScal algorithm. We intend to pursue these
extensions in future publications.
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A Majorizing the Terms in Stress-Sym

A.1 Majorizing [d
(U)
ij (X,R)]2

The square of the upper bound of the distance [d
(U)
ij (X,R)]2 can be written

as

[d
(U)
ij (X,R)]2 =

p∑

s=1

[(xis−xjs)
2 + (ris + rjs)

2 + 2|xis−xjs|(ris + rjs)]. (18)

The term (xis−xjs)
2 is standard in MDS and is quadratic in X. The product

|xis−xjs|(ris + rjs) can be seen as the product of two functions, i.e., a1a2.
Consider the following inequality:

(
a1

b1

− a2

b2

)2

≥ 0 (19)

with strict equality if a1 = b1 and a2 = b2. Expanding (19) gives

0 ≤ a2
1

b2
1

+
a2

2

b2
2

− 2
a1a2

b1b2

2
a1a2

b1b2

≤ a2
1

b2
1

+
a2

2

b2
2

2a1a2 ≤ b2

b1

a2
1 +

b1

b2

a2
2. (20)

Note that (20) only holds when b1 > 0 and b2 > 0. If b1 = 0 (or b2 = 0) then
we shall replace it by a small ε. Note that this adaptation violates restriction
(i) of the requirements of a majorizing function, but by making ε small
enough, it should not distort the convergence properties of the majorizing
algorithm. In the sequel, we shall use this adaptation implicitly whenever
necessary.

Let Y and Q be the current known estimates of X and R. Then, substi-
tuting |xis−xjs| for a1, (ris + rjs) for a2, |yis−yjs| for b1, (qis + qjs) for b2 into
(20) gives

2|xis−xjs|(ris + rjs) ≤ qis + qjs

|yis−yjs|(xis−xjs)
2

+
|yis−yjs|
(qis + qjs)

(ris + rjs)
2. (21)

To get rid of the crossproduct term 2risrjs in (ris +rjs)
2, we apply (20) again:

2risrjs ≤ qjs

qis

r2
is +

qis

qjs

r2
js. (22)
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Combining (18), (21), and (22), and multiplying by wij gives the majoriz-
ing inequality

wij[d
(U)
ij (X,R)]2 ≤

p∑

s=1

[α
(1)
ijs(xis−xjs)

2 + α
(2)
ijsr

2
is + α

(2)
jisr

2
js]. (23)

with α
(1)
ijs = wij[1+(qis+qjs)/|yis−yjs|] and α

(2)
ijs = wij[|yis−yjs|+(qis+qjs)]/qis.

A.2 Majorizing −d
(U)
ij (X,R)

Minus the upper bound of the distance, −d
(U)
ij (X,R), can be written as

−d
(U)
ij (X,R) = −

( p∑

s=1

[|xis−xjs|+ (ris + rjs)]
2

)1/2

. (24)

This term is concave in the parameters X and R and hence can be majorized
by a linear function in X and R. Consider the Cauchy-Schwarz inequality
‖a‖‖b‖ ≥ a′b. Dividing both sides of the inequality by −‖b‖ (assuming that
‖b‖ > 0) gives

−‖a‖ ≤
{
−a′b/‖b‖ if ‖b‖ > 0,
0 if ‖b‖ = 0.

(25)

Note that the inequality −‖a‖ ≤ 0 if ‖b‖ = 0 does not violate any of the

majorization requirements. Applying (25) to −d
(U)
ij (X,R) gives

−d
(U)
ij (X,R) ≤


−

∑p

s=1
[|xis−xjs|+(ris+rjs)][|yis−yjs|+(qis+qjs)]

d
(U)
ij (Y,Q)

if d
(U)
ij (Y,Q) > 0,

0 if d
(U)
ij (Y,Q) = 0.

(26)

Applying (25) to the single term −|xis−xjs| gives

−|xis−xjs| ≤
{ − (xis−xjs)(yis−yjs)

|yis−yjs| if |yis−yjs| > 0,

0 if |yis−yjs| = 0
(27)

(Kiers & Groenen, 1996). Combining the results of (26) and (27) and multi-

plying by wijδ
(U)
ij gives the majorizing inequality

−wijδ
(U)
ij d

(U)
ij (X,R) ≤ −

p∑

s=1

[β
(1)
ijs(xis−xjs)(yis−yjs) + β

(2)
ijs(ris + rjs)] (28)
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with

β
(1)
ijs =





wijδ
(U)
ij [|yis−yjs|+(qis+qjs)]

|yis−yjs|d(U)
ij (Y,Q)

if |yis−yjs| > 0 and d
(U)
ij (Y,Q) > 0,

0 if |yis−yjs| = 0 or d
(U)
ij (Y,Q) = 0,

β
(2)
ijs =





wijδ
(U)
ij [|yis−yjs|+(qis+qjs)]

d
(U)
ij (Y,Q)

if d
(U)
ij (Y,Q) > 0,

0 if d
(U)
ij (Y,Q) = 0.

A.3 Majorizing [d
(L)
ij (X,R)]2

To majorize [d
(L)
ij (X,R)]2, we start by considering a majorizing function for

max[0, |xis−xjs|−(ris +rjs)]
2. Let a1 = |xis−xjs|, a2 = ris +rjs, b1 = |yis−yjs|,

and b2 = qis + qjs. Then max[0, |xis−xjs| − (ris + rjs)]
2 = max[0, a1 − a2]

2.
To simplify notation even further, we use a = a1− a2 and b = b1− b2 so that
max[0, a1 − a2]

2 = max[0, a]2. To majorize max[0, a]2, we need to consider
two cases, i.e., b ≥ 0 and b < 0. For b ≥ 0 the function max[0, a]2 = a2, so
that max[0, a]2 can be majorized by a2. For b < 0, the function min[0, a]2

can be majorized by the function (a− b)2. Summarizing these majorization
results and resubstituting gives,

max[0, a1 − a2]
2 ≤

{
(a1 − a2)

2 if b1 − b2 ≥ 0,

[(a1 − a2)− (b1 − b2)]
2 if b1 − b2 < 0.

(29)

It can be verified that (29) satisfies the requirements of a majorizing function.
Working out both conditions of (29) yield terms a2

1, a
2
2, a1, a2, and −2a1a2.

The only complicating term is the product −2a1a2 for which we derive a
majorizing function. Consider the following inequalities

0 ≤ [(a1 + a2)− (b1 + b2)]
2

0 ≤ (a1 + a2)
2 + (b1 + b2)

2 − 2(a1 + a2)(b1 + b2)

0 ≤ a2
1 + a2

2 + 2a1a2 + (b1 + b2)
2 − 2(a1 + a2)(b1 + b2)

−2a1a2 ≤ a2
1 + a2

2 + (b1 + b2)
2 − 2(a1 + a2)(b1 + b2). (30)

Thus, (30) is the majorization inequality for majorizing minus the product
of two functions. Combining (29) and (30) gives

max[0, a1 − a2]
2 ≤{

2(a2
1 + a2

2)− 2(a1 + a2)(b1 + b2) + (b1 + b2)
2 if b1 ≥ b2,

2(a2
1 + a2

2)− 4a1b1 − 4a2b2 + 2(b2
1 + b2

2) if b1 < b2.
(31)
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Note that (31) has terms with −a1 that after resubstitution yields a term
with −|xis−xjs| that can be majorized by (27). Also, a2

2 equals after re-
substitution r2

is + r2
js + 2risrjs. The crossproduct term 2risrjs is majorized

by (22). Combining all results and multiplying by wij gives the following
majorization inequality:

wij[d
(L)
ij (X,R)]2 ≤
p∑

s=1

[α
(3)
ij (xis−xjs)

2 + α
(4)
ijsr

2
is + α

(4)
jisr

2
js

−2β
(3)
ijs(xis−xjs)(yis−yjs)− 2β

(4)
ijs(ris + rjs) + γ

(1)
ijs ] (32)

with

α
(3)
ij = 2wij

α
(4)
ijs = 2wij(1 + qjs/qis)

β
(3)
ijs =





wij [|yis−yjs|+(qis+qjs)]

|yis−yjs| if |yis−yjs| ≥ qis + qjs and |yis−yjs| > 0,

2wij if |yis−yjs| < qis + qjs and |yis−yjs| > 0,
0 if |yis−yjs| = 0,

β
(4)
ijs =

{
wij[|yis−yjs|+ (qis + qjs)] if |yis−yjs| ≥ qis + qjs,
2wij(qis + qjs) if |yis−yjs| < qis + qjs,

γ
(1)
ijs =

{
wij[|yis−yjs|+ (qis + qjs)]

2 if |yis−yjs| ≥ qis + qjs,
2wij[|yis−yjs|2 + (qis + qjs)

2] if |yis−yjs| < qis + qjs.

A.4 Majorizing −d
(L)
ij (X,R)

To find a majorizing function for minus the lower bound of the distance,
−d

(L)
ij (X,R), we can make use of the majorization inequality (25) based on

Cauchy-Schwarz. This allows us to write

−d
(L)
ij (X,R) ≤




∑p
s=1−max[0,|xis−xjs|−(ris+rjs)]max[0,|yis−yjs|−(qis+qjs)]

d
(L)
ij (Y,Q)

if d
(L)
ij (Y,Q) > 0,

0 if d
(L)
ij (Y,Q) = 0.

(33)

Thus, (33) yields a function of the sum of −max[0, |xis−xjs| − (ris + rjs)].
Using the same notational simplification as in the previous subsection, this
can be rewritten as −max[0, a1 − a2]. This function can be majorized as
follows:

−max[0, a1 − a2] ≤
{
−(a1 − a2) if b1 ≥ b2,
0 if b1 < b2.

(34)
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Again we majorize the terms −a1 (which is equal to −|xis−xjs| after re-
substitution) by (27). The term +a2 leads after resubstitution to a term
(ris + rjs). For algorithmic reasons it is better to only have linear terms that
are negative. For this reason, we apply another majorization step to +ris

(and rjs), i.e.,

ris ≤ 1
2

r2
is

qis

+ 1
2
qis. (35)

Combining these results and multiplication by wijδ
(L)
ij yields the majorizing

function

−wijδ
(L)
ij d

(L)
ij (X,R) ≤

p∑

s=1

[1
2
α

(5)
ijsr

2
is + 1

2
α

(5)
jisr

2
js − β

(5)
ijs(xis − xjs)(yis − yjs) + 1

2
γ

(2)
ijs ] (36)

with

α
(5)
ijs =





wijδ
(L)
ij max[0,|yis−yjs|−(qis+qjs)]

qisd
(L)
ij (Y,Q)

if |yis−yjs| ≥ qis + qjs,

0 if |yis−yjs| < qis + qjs,

β
(5)
ijs =





wijδ
(L)
ij max[0,|yis−yjs|−(qis+qjs)]

|yis−yjs|d(L)
ij (Y,Q)

if |yis−yjs| ≥ qis + qjs

and |yis−yjs| > 0,
0 if |yis−yjs| < qis + qjs

or |yis−yjs| = 0,

γ
(2)
ijs =





wijδ
(L)
ij (qis+qjs)max[0,|yis−yjs|−(qis+qjs)]

d
(L)
ij (Y,Q)

if |yis−yjs| ≥ qis + qjs,

0 if |yis−yjs| < qis + qjs.

B Rational Start for MDS of Interval Data

It is well known that classical scaling (Torgerson, 1958; Gower, 1966) has
a duality property with standard or classical principal components analysis,
PCA, when the dissimilarities are Euclidean distances. To avoid local mini-
mum problems we propose to use a rational start, using InterScal (Rodŕiguez,
2000), an algorithm for MDS of interval data that produces results similar
to the vertices method for PCA of interval data, developed by Chouakria,
Cazes, and Diday (2000, pages 200–212). The interval data for n objects on
m variables can be described by two matrices: the n×m matrices H(U) and
H(L) with the upper and lower bounds. The trick in the vertices method is
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that each object can be thought of as being somewhere in a hyperbox defined
by all the intervals on the m variables. Therefore, the vertices method for
PCA represents each object by all its vertices in the 2m ×m matrix Mi. An
example of Mi with m = 3 variables is given by

Mi =




h
(L)
i1 h

(L)
i2 h

(L)
i3

h
(L)
i1 h

(L)
i2 h

(U)
i3

h
(L)
i1 h

(U)
i2 h

(L)
i3

h
(L)
i1 h

(U)
i2 h

(U)
i3

h
(U)
i1 h

(L)
i2 h

(L)
i3

h
(U)
i1 h

(L)
i2 h

(U)
i3

h
(U)
i1 h

(U)
i2 h

(L)
i3

h
(U)
i1 h

(U)
i2 h

(U)
i3




(37)

The vertices method for PCA proceeds by applying standard PCA to the
2mn×m matrix M that has all matrices Mi stacked underneath each other,
that is,

M =




M1

M2

M3
...

Mn




.

It is well known that there exists a duality property between PCA and
classical MDS (Gower, 1966). Let the singular value decomposition of M be
given by M = PΦQ′ with P′P = Q′Q = I and Φ a diagonal matrix with
nonnegative singular values ordered from large to small. Then, the rank p
approximation of H in PCA solution is given by PpΦpQ

′
p = XQ′

p, where the
subscript p denotes that the first p columns are used for P and Q and the
first p rows and columns of Φ.

To see the equivalence between classical MDS and PCA, we need a com-
pact expression of the matrix of squared distances D of squared distances
between the rows of M, that is,

D = a1′ + 1a′ − 2MM′, (38)

where a is the vector with the diagonal elements of MM′. Let J = I −
n−111′ be the centering matrix so that J1 = 0 and 1′J = 0′. Pre- and post
multiplying (38) by J and also multiplying by the factor −1

2
gives

MM′ = −1
2
JDJ. (39)
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Classical MDS minimizes ‖XX′−(−1
2
JDJ)‖2 by computing the eigendecom-

position −1
2
JDJ = PΦ2P′ and choosing X = PpΦp. The above proves that

classical MDS on the matrix of squared Euclidean distances between the rows
of M is the same as PCA on M directly. Classical MDS can also be used
directly on a dissimilarity matrix ∆. In this case, the eigendecomposition of
−1

2
J∆(2)J is taken, where ∆(2) denotes the matrix of squared dissimilarities.
To get a Symbolic MDS method that has a duality property with Vertices

PCA, when dissimilarity is modelled by an Euclidean distance, we need as
input the dissimilarities between all 2mn rows of the matrix M defined above,
because Vertices PCA effects a classical PCA of the matrix M. Thus, we
would need as input a matrix ∆ of size 2mn×2mn but it is clearly impossible
to construct a matrix of this size, because we only have two dissimilarities,
that is the maximum and the minimum, for each pair of objects. So it seems
impossible to find a Symbolic MDS method that has a duality property with
Vertices PCA. Therefore, we propose to find an approximate solution.

The idea, then, is to carry out an MDS of the distance matrix ∆̃ defined
below. For each hypercube (thus for each object i), the matrix ∆̃ has two
rows. In the first row, we use the minimum dissimilarity and the maximum
dissimilarity among a hypercube and itself, whereas we use the dissimilar-
ity minimum and the average dissimilarity among each different couple of
hypercubes, that is to say, we use 2m dissimilarities. In the second row of
the matrix ∆̃, we use the maximum dissimilarity and the minimum dissim-
ilarity among a hypercube and itself, and we use the average dissimilarity
and the maximum dissimilarity among each different couple of hypercubes,
in this row we also use 2n dissimilarities, but as the average dissimilarities
were already employed we really use n dissimilarities, therefore for each hy-
percube we use 3n dissimilarities. Then, since d(x, y) = d(y, x), in total we
use (3/2)n(n + 1) > n(n + 1) dissimilarities. Note that ∆̃ is a symmetric
matrix and its size is 2n × 2n. Since for each hyperbox we have two rows,
we can compute a coordinate minimum and maximum, that is, coordinates
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of interval type. The matrix ∆̃ is given by

∆̃ =




0 0 δ
(L)
12 δ12 δ

(L)
13 δ13 · · · δ

(L)
1m δ1m

0 0 δ12 δ
(U)
12 δ13 δ

(U)
13 · · · δ1m δ

(U)
1m

δ
(L)
21 δ21 0 0 δ

(L)
23 δ23 · · · δ

(L)
2m δ2m

δ21 δ
(U)
21 0 0 δ23 δ

(U)
23 · · · δ2m δ

(U)
2m

δ
(L)
31 δ31 δ

(L)
32 δ32 0 0 · · · δ

(L)
3m δ3m

δ31 δ
(U)
31 δ32 δ

(U)
32 0 0 · · · δ3m δ

(U)
3m

...
...

...
...

...
...

. . .
...

...

δ
(L)
m1 δm1 δ

(L)
m2 δm2 δ

(L)
m3 δm3 · · · 0 0

δm1 δ
(U)
m1 δm2 δ

(U)
m2 δm3 δ

(U)
m3 · · · 0 0




, (40)

where δij = (δ
(L)
ij + δ

(U)
ij )/2.

The InterScal Algorithm for rational start for MDS of interval-value dis-
similarity data is performed as follows:

1 Obtain the dissimilarities δ
(L)
ij and δ

(U)
ij for all i, j = 1, 2, . . . , n.

2 Compute the matrix ∆̃ according to (40).

3 Find the matrix B = −1
2
J∆̃

(2)
J with J the centering matrix.

4 Find the eigenvalues Φ2 and eigenvectors P of B.

5 Compute the coordinates of the 2n points in p dimensions using the
formula

yis = pisφss for i = 1, 2, . . . , 2n and s = 1, 2, . . . , p.

6 Construct the center coordinates X and the spread R of the hypercube
for object i by for each dimension s

xis = (y2i,s + y2i−1,s)/2,

ris = |y2i,s − y2i−1,s|/2.

Note that the solution for X is not unique as B = PΦ2P′ = YTT′Y′

for any TT′ = I. Any rigid rotation is an example of matrix of type T. We
choose the solution corresponding to principal axes. The first axis maximizes
the variance of the vertices of the hypercube. However, since any rotation is
also a solution, one may wish to rotate the principal axes solution in order
to obtain axes which are more interpretable.
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Let us consider the special case when all the intervals of of the dissimilar-
ities are zero, that is, δ

(L)
ij = δ

(U)
ij = δij. In this case, δij also equals δij. Then

∆̃ has blocks of 2× 2 matrices for all combination ij with all four elements
equal to δij. Then, INTERSCAL is exactly equal to classical scaling on the
n × n matrix of dissimilarities with elements δij, except that each object
appears twice, hence the intervals collapse to points.
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données symboliques. Unpublished doctoral dissertation, Université
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