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Chapter 1: Introduction 
 
1.1 Background and motivation 
Electricity as a flow commodity is unique. Together with oil and gas, it is the most 
commonly used energy source that our society depends on. A distinctive feature that 
makes electricity different from oil and gas is that electricity cannot be stored. Given the 
absence of storage capacity in electricity markets, inventories cannot function as a buffer 
between supply and demand mismatches. As a result, it is crucial that there is a perfect 
balance between the amount of electricity that is generated by the power producers and 
injected on the network for transmission (supply-side), and the amount of power drained 
from the grid by distributors, who sell the power to the end-users (demand-side). Usually a 
single national transmission system operator ensures the integrity of the power system in a 
country (e.g. activities can include monitoring security of supply, maintenance and 
providing balancing services). These parties need to accurately forecast demand and/or 
supply to secure the equilibrium. Electricity is a vital commodity for the economy we live 
in. Millions of industrial and residential end-users depend on it (e.g. power consumption 
for office IT systems or microwave) at every precise moment of the day. As a result, 
demand is a rather inelastic function of price. All these imply that electricity delivered at 
different moments (hours, days, week, months and seasons) is perceived as a distinct 
commodity. More than a decade ago, this distinct feature would not matter for the 
determination of power prices. Back then, the worldwide electricity sector was vertically 
integrated. Regulators fixed prices that reflected generation-, transmission and distribution 
costs, and these power prices changed seldom.  
The 1990s has seen the start of the worldwide deregulation process in the electricity 
industry. Since then, electricity prices were soon to be based on the market rules of supply 
and demand. New players entered the industry, and exchanges were introduced where 
participants could trade in contracts that met their needs. The energy world that 
traditionally consisted of a few producers and a dozen of distributors, would never be the 
same. In order to exploit the wider range of choices, lowest prices and the best services 
provided by the suppliers, end-users now have to act. They have to make purchase 
decisions in line with their cost and risk preferences. Surveys on the Dutch and UK market 
indicate that (in particular private) end-users have difficulties with doing that: they switch 
rarely from supplier. And when they do, the chance that they end up with a more expensive 
one is roughly the same as choosing a cheaper one (Van Damme, 2005). As a result of the 
liberalization trajectory, risk has been transferred from the supply side to the end-user. 
Electricity prices are characterized by a unique feature that cannot be observed in any other 
market: extreme price movements that occur frequently and stem from the aforementioned 
non-storability of electricity. A comparison of daily volatility figures (measured as 
standard deviation of returns) between the electricity market and ‘traditional’ commodity- 
and financial markets gives a first impression of the volatile market conditions that 
electricity market participants face: T-bills less than 0.5%. Stock indices 1% -1.5%. 
Commodities like oil and gas 1.5%-4%. Volatile stocks >4%. Electricity >50%. (Weron, 
2004). This has triggered the demand among electricity market participants for derivative 
contracts, as futures and alike, in order to insulate themselves from electricity spot price 
risk. With price risk, the uncertainty is meant that is embedded in the price process of 
electricity. Similar to other commodities, contracts designed to trade electricity along for 
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immediately delivery, or on a pre-specified future moment and price1, are respectively 
referred to as spot-, and derivative contracts. Because the electricity spot price path is non-
standard (i.e. price spikes, time-varying volatility, seasonality and regional behavior) from 
the spot price processes observed in traditional markets, the value of an electricity future 
cannot be easily replicated in terms of the underlying spot price path. Although academic 
research on valuation of derivatives2 is well-established, little is known about the valuation 
of electricity derivative contracts (Bessembinder and Lemmon, 2002). This is due to the 
fact that electricity is non-storable. As storability is a crucial assumption in most derivative 
valuation models (i.e. Black-Scholes option theory3), these methodologies cannot be 
meaningfully applied. It is therefore of the utmost importance to gain understanding about 
alternative methodologies in order to suggest additions to traditional pricing and portfolio 
models.  
 
There are three generic types of electricity markets: (i) futures and forwards markets, (ii) 
day-ahead markets and (iii) real-time markets. Figure 1.1 depicts the symbiotic 
relationship of these markets.  
 
 
 
 
 
 
 
 
 
 

                                                           
1 While traditional assets such as stocks and bonds can be only settled financially, commodity 
derivatives can be settled both financially and physically. Here financially means that the contract 
secures the exchange of cash flows rather than the physical underlying instrument itself, in a pre-
specified point in time (generally at maturity).  
2 In the 18th century the first derivative, back then referred to as ‘to-arrive’ contract but nowadays 
known as a future contract, was traded by grain farmers who wanted to sell their crops against a fixed 
price ahead. In this way, he ensures cash flows that otherwise would be subject to the variation of the 
harvest price on spot, and can finance the production process.  
After the successful launch of a trading place, where market participants could exchange 
standardized contracts, commodity derivative markets flourished ever since. The exchange 
standardizes contracts in term of quantity, quality, maturity as well as the trade-, settlement-, and 
delivery procedures.  
3 Here it is assumed that the underlying spot instrument can be continuously traded. This makes it 
possible to continuously replicate the derivative out of a combination of the underlying spot 
contracts. Hence, it implies that the option value can be derived from this replicating portfolio, which 
should be updated continuously to keep it risk neutral. Because electricity cannot be stored, the 
replicating portfolio lasts only for a very short moment in time (Geman, 2005).  
 

NB: d = days before delivery (expiration of contract). 
         *Contracts are also traded with a maturity horizon > 365 days.                              

Textbox 1.1: Planning horizon and symbiotic relationship between the market places 

(i) 
Futures and 

forward market 

(ii) 
Day-ahead 

market 

(iii) 
Real-time 

market 

Delivery period 

365d*                                              1d               1/96d      
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(i) Futures and forward markets 
In 1993, the Nordic Power Exchange was the first exchange to trade electricity futures. It 
was not until 1996 that a U.S based exchange, the New York Merchantile Exchange started 
offering power derivative products. In 2004, four of the six most active electricity 
derivative exchanges worldwide are located in Europe: the Nordic Power Exchange 
(NPX), European Energy Exchange (EEX), Amsterdam Power Exchange (APX)4 and the 
Paris Power Exchange (PPX)5. Soon after the introduction of electricity futures its 
popularity decreased steadily among investors. Currently the Over-The-Counter (OTC) 
forward contracts are by far the most actively traded derivative contracts offered on the 
electricity exchanges, followed by futures and options (Eydeland, 2003). Unlike electricity 
future contracts, electricity forward contracts are not standardized by the exchange but by 
an intermediate party, and therefore can be structured to the needs of the contract parties 
(e.g. delivery in certain hours or days, or at a certain geographical location). Another 
difference is that forward contracts do not require margin deposits for order placement and 
daily marked-to-market payments, which also enables individuals or firms who have 
limited access to daily cash to become a contract party. The high operational and financial 
flexibility explains why OTC contracts have soon become the main cash cow of electricity 
derivatives exchanges worldwide.  
A point worth emphasizing is that forward prices and future prices are very close to each 
other in practice, despite above-mentioned differences. This is because the price variation 
in the underlying asset is the most important explanatory variable (Geman, 2005). We 
therefore make no distinction in this research between the two contract types when we 
model their price behavior (See Chapter 5). We therefore will use both terms in this Thesis  
interchangeably.  
 
(ii) Day-ahead markets 
Most exchanges organize both a derivative market and a spot market. This ‘spot’ market is 
actually a day-ahead market. Here agents submit their 24 hours bidding scheme to the 
exchange for physical delivery for one, more or each hour on the following day. After 
market closure time the exchange quotes separate market prices for each specific hour in 
the next day. Hence, in electricity markets the delivery does not take place on ‘spot’ 
(meaning immediately after the transaction), but in a minimum time span given the 
technical constraints between trade and delivery. This is a typical one-day horizon, since 
the independent system operator needs this time-span to guard the integrity of the power 
system (Geman, 2005).  
 
There is a close relationship between the derivative market and spot market, and most 
exchanges have both trading platforms. For instance, on the EEX (based in Frankfurt) a 
range of futures with different delivery periods (month(s)-ahead, quarter(s)-ahead and so 
forth) are traded, all with the daily day-ahead price index as underlying instrument.  
 
 

                                                           
4 In 2002, the European Energy Derivative Exchange (ENDEX) acquired the derivative activities 
from the APX. Since then, the APX focuses on day-ahead contract trading only.  
5 Geman (2005) 
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 Year of 
establishment

Capacity 
(Giga Watt)

Conventional 
thermal Nuclear Hydro & 

other 

APX (Netherlands) 1999 21 95% 4% 1% 

EEX (Germany) 2000 127 62% 31% 7% 

NPX (Scandinavia) 1993 91 28% 24% 48% 

PPX (France) 2001 116 30% 51% 19% 

Conventional thermal fuelled capacity: oil, gas, coal and lignite.  
Hydro fuelled capacity: reservoir and river. Other fuelled capacity: wind and solar.  

Table 1.1: Capacity figures of EU countries with most active wholesale power markets 
                     Source: Speck and Mulder (2003)  

 
These futures all settle financially (which means in cash) on a monthly basis6. The 
exchange offers the participants the possibility to place (hourly) bids on the spot market 
corresponding with the futures position, to ensure physical settlement for the delivery 
period under consideration (Geman, 2005). In table 1.1 we have listed some characteristics 
of the four most liquid markets in Europe: APX, EEX, NPX and PPX.  
 
 (iii)Real-time markets 
The real-time or balancing markets have the shortest planning horizon of the market places 
depicted in textbox 1.1. This market is used for balancing short-term deficits and surpluses 
of electricity on the grid. Typically the transmission system operator is responsible for the 
balancing activities, which include injecting power into the grid when suppliers are short 
of electricity. It also includes the disposal of excess power when customers take less power 
than expected, or generators supply more than expected. The design of the balancing 
system (i.e. market- or regulative-based system) varies between countries.  
 
There is symbiotic relationship between the market places (i, ii, and iii) displayed in 
textbox 1.1. The planning horizon of these markets (and the maturity horizons of the 
contracts) is perfectly complementary, which allows suppliers to meet their delivery 
obligation in three phases: Long before maturity, let’s say a year, a substantial percentage 
of the expected demand is met by a portfolio of futures- or OTC contracts purchased in (i), 
In the second phase, let’s say a week to a day before maturity, the actual demand can be 
more accurately forecasted and the supplier readjusts her position accordingly by 
purchasing OTC contracts and spot contracts on respectively (i) and (ii) that secure the 

                                                           
6 Essentially, also yearly and quarterly contracts settle on a monthly basis. This is because these 
contracts are split into contracts with a shorter delivery period just before they mature: i.e. a year-
ahead contracts is split into three monthly contracts with exact complementary delivery months for 
the first quarter, and three quarterly contracts for the remaining part of the year. Then at the end of 
the first quarter, the quarterly contracts that are about to mature, will be split into three monthly 
contract as well. This procedure is called cascading. The financial settlement price quoted on the last 
trading day of the month equals the monthly average Phelix price of that delivery month (Geman, 
2005).     
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delivery of power a week- or day-ahead. The closing phase starts on the supply day itself, 
and the delivery obligation is fully met via the outstanding load being purchased or sold 
via (iii). In this way, electricity price risk can be significantly reduced by allocating the 
risk over the contracts available in the three symbiotic market places. 
 
On today’s derivative markets three types of participants are active: (1) Hedgers is the 
traditional group of participants. They take a derivative position in order to insulate 
themselves from fluctuations in spot prices. (2) A second group is the speculators, who try 
to exploit their ability to forecast spot price movements. They take a derivate position 
accordingly, and hope to generate income from it. (3) Arbitrageurs are the third class of 
participants who exploit mispricing in the markets. Their strategy entails simultaneously 
entering positions in two or more markets, and hereby locking in a risk-free profit. In 
derivative pricing theory, fair prices of derivative instruments are based on the assumption 
of no-arbitrage opportunities. Due to the non-storability of electricity, the no-arbitrage 
condition cannot be meaningfully implied; electricity forward- or future traders cannot 
make their portfolio risk neutral by trading these derivatives on one side while maintaining 
a position in the underlying commodity for the time until delivery on the other side. Note 
that certain types of arbitrage strategies can be implemented in electricity.7 
Observe that each group of market participants has its own unique function in the market 
system. In particular, (1) brings risk to the market, (2) brings cash and expectations, and 
(3) brings price efficiency.   
 
1.2 Research objectives   
The overall aim of this thesis is to address important empirical and methodological issues 
that are central to price modeling and portfolio management across the spectrum of 
electricity markets (textbox 1.1.). Due to the short existence of wholesale spot and 
derivative power markets, the number of empirical studies that examine these issues are 
still relatively small. We contribute to the existing literature by providing empirical tests 
for untested hypotheses, propose alternative methodologies for price modeling and show 
how traditional portfolio theory can be applied to electricity markets with the proper 
modifications. The research consists of empirical studies using time-series analysis, 
extreme value theory and panel data methodology in order to suggest additions to 
traditional price models for spot- and derivative contracts, and portfolio theory.   
 
1.2.1 Electricity spot price modeling 
Day-ahead and real-time markets play a key role in the performance of a balancing system 
in today’s deregulated markets, but only a very few studies have examined the price 
relationship on these two markets. Chapter 2 studies the historical development of 
imbalance prices, volumes and the spread between imbalance prices and day-ahead prices, 
to disclose changes that are consistent with the increase of allocative efficiency imposed 
by the liberalization. In Chapter 3 we focus on a method to capture the price spikes 
observed in day-ahead electricity markets through the selection of a distribution function. 
We propose the Student-t distribution as an alternative to the normal distribution as it is 

                                                           
7 E.g. time-arbitrage strategies; involve taking simultaneous positions in electricity spot contracts that 
secure electricity delivery in baseload hours (all hours of the day) and peakload hours (certain hours 
of the day).    
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}

capable of incorporating fat-tailed behavior of a distribution (here the tails reflect the the 
occurrence of price spikes) through its number of degrees of freedom. Prior research fails 
to provide a satisfactory empirical framework to describe the dynamics on an hourly (intra-
day) basis. Chapter 4 therefore concentrates on a modeling framework that exactly matches 
the market microstructure of day-ahead markets. It advances a unique panel data 
framework to modeling the dynamics of hourly day-ahead prices, being hourly-varying 
mean price levels and hourly-varying mean reversion. 
 
1.2.2 Electricity derivative price modeling 
Any forward-, or future price can be decomposed out a spot price forecast component and 
a risk premium component. Fama (1984) proposed a model for joint measurement of these 
components embedded in derivative prices. Following Fama (1984) we concentrate on the 
existence of these components in electricity derivative prices. In Chapter 5, we attempt to 
disclose how these components embedded in electricity forward- and future prices change 
over the different contract maturities.   
 
1.2.3 Electricity portfolio management 
As discussed in the previous section, the deregulation has led to a risk transfer within the 
industry chain. In today’s electricity markets, end-users can switch from one supplier to 
the other. Hence, they have to decide what portfolio strategy goes in line with their cost-
risk preference. In Chapter 6 we consider an end-user who wants to allocate her risk over a 
combination of market contracts with different maturity horizons. We test whether the 
concept of mean-variance portfolio theory, with some proper modifications, can help the 
end-user to derive the optimal portfolio strategy. 
 
1.3 Structure of thesis   
Figure 1.2 illustrates the linkages between the Chapters. The remaining part of this thesis is 
structured into Chapters according to the above-discussed research issues.   
 
 
 
 
 
 
 
 
 
 
 

Textbox 1.2: Outline research and symbiotic relationship between Chapters 

Chapter 5:  
Futures & forward price 

modeling 

Chapter 2, 3 and 4: 
Spot price modeling 

Chapter 6 
Electricity portfolio management 

Chapter 7:  
Conclusions 
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Chapter 2: More efficiency through liberalization8  
-Empirical study on Dutch real-time market- 

 
 
2.1 Introduction 
As of 1 July 2004, the Dutch power market has been liberalized. Households and 
companies can now choose their own electricity supplier. The liberalization is part of EU 
policy to create an internal competitive market. The design of these reforms started a 
decade ago and is documented in the 96/92 EC Directive.9 The aim is to increase the 
efficiency in the power supply chain, while safeguarding security of supply. To accomplish 
this, it necessitates various reforms, such as allocative changes in property rights for 
national regulatory authorities, network and transmission operators, the power producers, 
wholesalers, consumers and other market participants in each EU member state.  
 
The continuing academic debate in privatisation theory regarding industries that are of 
vital importance for the social welfare and involve public goods, such as the gas and 
electricity sector, centers around the proper level of government regulation and the level of 
efficiency gains that can be achieved by the choice of governance structure. Megginson 
and Netter (2001) provide empirical evidence that privatized firms are on average 2% 
percent more efficient than state-owned firms. According to them, the efficiency increase 
can be addressed to the use of less employees, reduced dependency on government 
subsidies, lower production costs and less financial debt on the firm’s balance sheet. It is 
expected that liberalization of the energy market will lead to lower electricity prices. Hall 
(2001) notes that in early liberalizing EU countries, such as the United Kingdom, Finland 
Norway and Sweden, the end-users in the business sector predominantly benefited from 
these price reductions.     
In this Chapter, we examine to what extent the recent liberalization has led to a change in 
efficiency on the Dutch power market. We do this by examining the historical 
development of electricity prices on the day-ahead market and electricity prices and 
electricity volumes on the real-time market, often referred to as the balancing market. 
While the day-ahead market secures delivery of electricity on hours in the next day, the 
balancing market is used for balancing short-term deficits and surpluses of electricity on 
the grid over a 15 minutes horizon10. Until now, only a few studies have concentrated on 
the historical development of prices on day-ahead and real-time markets. Longstaff and 
Wang (2004) concentrate on the price difference observed between these markets in the 
U.S. (in particular, the PJM11 market), and attribute it to consumption-based risk factors. 
Boogert and Dupont (2005) study the opportunity to exploit the price difference observed 
between the Dutch day-ahead and real-time market, and conclude that there are no 

                                                           
8 Part of this chapter is based on: R. Huisman and C. Huurman (2004), “Meer efficiëntie door 
liberalisering electriciteitsmarkt” Economisch Statistische Berichten, 89 (4445), pp. 510 – 512. We 
thank participants of European Electricity Markets conference in Lodz (20-22 September 2004) for 
valuable comments.   
9 The 03/54 EC Directive is currently effective, and is an updated version of the 96/92 EC Directive.   
10 See Chapter 1 for discussion on the symbiotic relationship between these markets . 
11 The PJM (Pennsylvania New Jersey Maryland) market is the world’s largest energy exchange in 
terms of trading volume (capacity: 164 GW). Source: www.pjm.com  
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profitable trading strategies on the Dutch market. We also study this price development on 
the Dutch market, but attempt to shed light on the issue whether the liberalization process 
has led to an efficiency change, and formulate hypotheses to test for that on the Dutch 
power market. To our best knowledge this has not been done before. A point worth 
emphasizing is that the design of the balancing market varies from EU member state to 
member state.12 The balancing market in the Netherlands is one of the few13 national 
markets in the EU where balancing charges are set by the market itself (opposed to a 
regulative-based mechanism) and there is no single dominant balancing generator. We find 
evidence of price and volume changes observed on the Dutch power markets that are in 
accordance with a higher level of allocative efficiency. This result provides at least partial 
evidence of a successful liberalisation process of the Dutch electricity market.  
 
The Chapter is structured as follows. In section 2.2 we discuss the concept of efficiency in 
light of social welfare theory and EU- and Dutch policy. Section 2.3 sets out the Dutch 
balancing market model. It presents the hypotheses to test for changes in balancing prices, 
and volumes that are consistent with increased efficiency in this market. Section 2.4 
presents the empirical results. Section 2.5 concludes this Chapter.  
 
2.2. The concept of efficiency 
Below we examine the concept of efficiency, as formulated by EU- and Dutch policy 
makers (section 2.2.1), and as defined in the existing economic literature (section 2.2.2).  
 
2.2.1 Efficiency: A central objective for policy makers 
The 96/92 EC Directive concerning the creation of an internal gas and electricity market in 
the EU has been effective since December 1996. It functions as the blueprint for the 
current ongoing market liberalisation trajectory.14 Note 4 of this Directive reads as:   

“Establishment of the internal market in electricity is particularly important in 
order to increase efficiency in the production, transmission and distribution of this 
product, while reinforcing security of supply and the competitiveness of the 
European economy and respecting environmental protection.” 

And the policy report published in 2002 by the Dutch Ministry of Economic Affairs states: 
 “Efficiency is a central goal in the creation of an internal market…..The freedom 
of choice for both suppliers and consumers is an important incentive to achieve 
economic efficiency. 

Hence, economic efficiency and supply security are central policy objectives. The Dutch 
liberalization trajectory is part of the EU policy to create a free internal energy market that 
should result in the achievement of these objectives.   
The European Commission has recognised the need for a framework to monitor the 
development of this process with respect to the objectives formulated. Therefore the  
special European committee EG DG TREN has been established to design a sound 

                                                           
12 The EU member states that implement the 2003/54 EC Directive and have a balancing market are 
Austria, Belgium, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Ireland, 
Italy, Luxembourg, The Netherlands, Portugal, Spain, Sweden, United Kingdom, Norway, Estonia, 
Latvia, Lithuania, Poland and Slovakia.  
13 Others are the United Kingdom and Spain.  
14 Currently, its successive legal act 2003/54/EC is effective.  
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monitoring system. They publish annual benchmarking reports. These documents disclose 
that monitoring is a non-trivial task due to the lack of consistent data and lack of 
harmonisation between existing data in the Member state countries. Market indicators that 
are used for monitoring efficiency and supply security include historical prices and 
volumes observed at the day-ahead and real-time markets, and the level of reserve capacity 
that is traded on the real-time electricity markets.15 Van Werven and Scheepers (2004) 
rank a set of indicators along criteria as validity, availability and reliability and conclude 
that balancing prices and volumes score overall high as monitoring indicators.  
 
2.2.2 Efficiency: perspectives from economic literature 
Welfare economics deals with the efficient use of resources. It attempts to answer the 
question whether the market allocates resources among their competing users in such a 
way that maximum welfare is reached. Prior literature from welfare economics offers 
differing theoretical perspectives on the concept of economic efficiency: (i) allocative 
efficiency; (ii) x-efficiency. (i) A large volume of research was developed upon the 
neoclassical theory, which concentrates on deviations from the idyllic picture of an 
allocative efficient market economy. In these studies potential factors such as the degree of 
competition (monopoly versus competition) and tariffs are identified to explain resource 
misallocation. Harberger (1954) states that optimal resource allocation is reached when all 
firms are operating on their long-term cost curves in such a way that each firm generates 
an equal return on its invested capital, and markets are cleared. Markets are then efficient 
when it allocates supply to demand in such a way that the bid of the producer (supply) with 
the lowest marginal costs structure is matched with the purchase order of the distributor or 
end-user (demand). (ii) The strand of research on X-efficiency has evolved into a 
respectable discipline in applied economics. The theoretical back-up of X-efficiency 
follows the study of Leibenstein (1966). Leibenstein argues that the empirical findings of 
allocative gains in the neoclassical studies are marginal as compared to the efficiency gains 
from a difference source that he found in his study, which he name as X-efficiency gains. 
This type of efficiency is rooted in the internal operation of the firm. For instance, Button 
and Weyman-Jones (1992) mention that nuclear-based power generators offer more 
prestige to management than gas-based power plants. This would typically not be 
recognized as an indicator for efficiency in the neoclassical stream.  
Both studies offer very little guidance on how to measure X-efficiency empirically. 
Megginson and Netter (2001) provide an excellent review of empirical studies that 
investigate the potential welfare gains that arise from privatization trajectories that have 
been initiated by many governments worldwide during the 1980s and early 1990s in 
various industries (but not the electricity industry). The fraction of empirical literature that 
studies the potential welfare gains that arise from liberalization trajectories is far less 
developed.  
Wolfram (1999) sheds light on the issue of welfare gains in a deregulated British (spot) 
power market. She utilizes measures of marginal costs that reflect the market power in the 
industry to examine the generators’ cost-price mark-ups. She finds that the prices charged 
by generators’ are above the marginal costs but not up to the level predicted from 
theoretical models. This could be explained by strategic behaviour to deter entry of a 
potential entrant, or regulatory constraints. Her analysis also shows that in an allocative 

                                                           
15 Policy report Ministery of Economic Affairs (2002), EnergieNed (2003).  
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efficient market, the cheapest generators produce the most, and the more expensive 
generators only produce when demand is high.  
 
Our definition of allocative efficiency is closest to the definition as given in neoclassical 
studies and goes in line with the observation of Wolfram (1999) that in efficient power 
markets the cheapest generators meet most of the demand volume and the more expensive 
generators only produce when demand is high. In this Chapter we do not aim to measure 
efficiency changes that stem from the liberalization process in electricity markets. Instead 
we test hypotheses on changes in balancing price and balancing volume that are in 
accordance with a higher level of allocative efficiency. 
 
2.3. The Dutch wholesale power markets 
Below we discuss the characteristics of the Dutch day-ahead market and balancing market 
(section 2.2.1) and its price mechanism (section 2.2.2). In the closing subsection, we 
present the hypotheses that we will test in this study (section 2.3.3).  
 
2.3.1 The day-ahead market and balancing market 
From the early 1970s onwards, cooperative agreements constituted the basis for a closed 
system of supply. Costs were pooled between four state-owned production companies, and 
reflected the average production, generation and distributional costs. This system lasted for 
the next 25 years. Under the 1986 OVS agreement, this cost-pooled based system resulted 
in standard prices that were equally charged to all local distributional companies. When the 
Dutch government effectuated the 1998 Electricity Act as part of the EU policy, several 
reforms were soon to follow in the Dutch wholesale market. This can be seen from textbox 
2.1. We now discuss the bold-faced textbox 2.1.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Textbox 2.1: Dutch liberalisation reforms from 1998-2003 
Source: EnergieNed (2003), Newbery et al. (2003), Speck and Mulder (2003) 
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In 1998, TenneT was established in 1998 as the national state-owned transmission system 
operator (TSO). TenneT is responsible for the national high-voltage grid that connects both 
to the regional and European grids. In particular, TenneT monitors the reliability (e.g. 
maintenance) and continuity of the electricity supply. A year later the first electronic 
exchange in continental Europe for trades in day-ahead electricity contracts was 
established, being the Amsterdam Power Exchange (APX). In 2001, TenneT acquired the 
APX. Currently the APX accounts for 15% to 20% of the net electricity consumption in 
The Netherlands.  
 
On the balancing market, TenneT categorizes offered residual capacity into balance-
management capacity that is actually used to offset the power deficit and power surplus 
positions within a PTU, and reserve capacity, which serves as a buffer in case the level of 
balance-management capacity is insufficient. On this market, program-responsible (PR) 
companies, who supply power to and consume power from the grid network, can offer 
residual capacity to the balancing markets on a 15 minutes basis, a so-called program time 
unit (PTU). Each PR firm reports to TenneT in an energy program the amount of 
electricity to be supplied to and consumed from the grid for the 96 PTU’s on the following 
day. Whilst balance-management capacity should be available for TenneT within 15 
minutes, it is either contracted in advance or offered on a voluntary basis via the balancing 
market. PR firms with more than 60 MW of capacity are obliged to offer reserve capacity 
to the balancing market. In particular, on the imbalance market, TenneT act as a single- 
buyer or seller. In cases of balancing deficits, PR companies balancing residual capacity 
offer price quotes to TenneT. TenneT purchases the volume needed against the best prices. 
The price of this balancing volume is charged to the PR that caused the deficit the day 
after. In cases of balancing surpluses, TenneT sells power to PR companies against quoted 
ask prices. Therefore, TenneT reports two balancing prices, one price for volume deficits 
and one for power surpluses.  
 
2.3.2 The balancing market price mechanism 
In textbox 2.2a we have illustrated the traditional system where prices were regulated. For 
the sake of illustration we assume a world that consists of two types of plants: power 
generators (G1) with low marginal cost (MC=1), and more expensive power generators 
(G2) with high marginal costs (MC=5). Before the deregulation was imposed, prices  
reflected the weighted16 average costs of generation, transmission and distribution. This is 
in contrast with the current market system, which reflects the marginal cost curves of the 
individual suppliers (see textbox 2.2b): Economic theory states that in a competitive 
market, the market delivers prices close to short-run marginal costs. 17 A change in the 
allocation system due to the imposed deregulation will therefore be directly observable in 
the dynamics of prices.  

                                                           
16 Weighted relative the total installed production capacity. 
17 Only in a perfect competitive market prices equal marginal costs. It is a well-known fact that in 
oligopolistic markets (with few dominant suppliers but many consumers, such as the electricity 
industry), prices cannot be fully explained by its fundamentals (i.e marginal cost curves). A 
substantial fraction of the academic research on price behavior in power markets has concentrated on 
the presence of market power (e.g. when suppliers would exercise market power, prices would be 
higher than suggested by the marginal cost curves).    
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To see why this is true, let us examine the market allocation system of the APX. Here 
power suppliers deliver their bidding scheme to the exchange, in which they specify that 
they are willing to offer against different prices for next-day delivery of power. When 
prices are low, only the bids of suppliers that can generate power against low marginal 
costs (or suppliers that have previously entered into purchasing contracts that secure them 
the power delivery against low prices) are confronted with purchase orders. The supplied 
volume increases when the price rises to a level that is higher than the short-term marginal 
costs of the first upcoming supplier in the merit-order. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 : G1 power plant, subscripts B,(P); Base, (Peak) 
 : G2 power plant, P: Prices, Q: Quantity,  
   D: Demand MC (/MR): Marginal Costs   
    (/Revenues) Bl:Balancing              

  2.2a. Regulated price agreements 2.2b. APX, balancing market 

Textbox 2.2: Dutch market mechanisms from 1998-2003 
 (corresponding with bold blocks of textbox 2.1) 

 
The merit-order ranks suppliers based on their offered capacity in such a way that the bids 
of suppliers with the lowest short-term marginal costs are confronted with demand first. If 
a market becomes more allocative efficient, the merit-order18 on the day-ahead market 
implies that the cheaper generation facilities generate most of the consumption needed.  
Also on the balancing market this allocation principle is effective: The transmission system 
operator collects the bids and ranks them on increasing price level. The market price is set 
equal to the highest bid for the total capacity needed to offset the unbalanced position.19 
Balancing volumes are traded on the balancing market that operates on the day of delivery, 
thus one day after the prices on the day-ahead market have been set. Hence, in allocative 
                                                           
18 See the website of TenneT (www.tennet.nl) and the APX (www.apx.nl) for more details about the 
merit-order based pricng system that is implemented on both the day-ahead and balancing market.   
19 This allocation system applies two both sides (deficit and surplus side) of the bid price ladder. 
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efficient markets, the unbalance deficit volume, i.e. the volumes needed to overcome 
shortages, should come from the more expensive production facilities as the cheaper ones 
already operate fully due to the merit order of the day-ahead market. If the Dutch power 
market becomes more allocative efficient, then we expect the deficit prices on the 
balancing market to show an upward trend as the more expensive generators are allocated 
to deliver electricity via the balancing market, in case imbalance on the power grid. The 
merit-order system of the market implies that the bidder with the lowest marginal costs 
gets the purchase order, hence this mechanism is in accordance with the principle of 
allocative efficiency as defined in the previous section.  
 
2.3.3 Hypotheses 1 and 2 
From textbox 2.2b we see that if the Dutch power market becomes more allocative 
efficient, the deficit prices on the balancing market are expected to increase over time as 
the more expensive power plants are allocated to deliver power via the balancing market.    
Our first hypothesis reads as: 
H1: “the deficit prices on the balancing market are expected to increase over time”  
 
In order to test this hypothesis we analyse the dynamics of the deficit prices over time. We 
estimate the parameters from the following equation:  

P(t) = α+β P(t-1) + γt + ε(t),    ε(t) ~ IID (0, 1) (2.1)

From equation 2.1, we can see that we model the dynamics of the deficit price level P(t) as 
an AR(1) process with a trend variable t that equals 1 for the first 15 minutes in our 
sample, 2 for the second 15 minutes and so forth. We use price levels instead of natural 
logarithms as unbalancing prices can become negative. We included the trend term to test 
directly for a price increase over time, by interpreting the estimate for γ. Evidence that γ is 
significant and positive, would imply that hypothesis 1 is empirically supported.   
 
We also control for the possibility of fuel price increases (e.g. gas, oil or coal price 
increase) that may drive prices on both the APX and balancing market to higher levels. We 
therefore replace the dependent variable P(t) in equation 2.1 by the variable PD. To do this, 
we calculate PD as the difference between the balance deficit price and the APX price. 
Since the deficit prices are quoted on a 15 minutes frequency, we convert these prices to 
daily averaged prices. We denote this daily average price over 96 balancing price 
observation as P’(t). An important point worth emphasizing is that the APX price is 
realized on the day before delivery. By testing our hypothesis also on the price spread, we 
also correct for these fuel price effects. We rewrite 2.1 as: 

PD(t) = α+β PD(t-1) + γt + ε(t), where PD = P’(t) - APX (t-1) , ε(t) ~ IID (0, 1) (2.2) 

 
Evidence that γ is significant and positive, would imply that hypothesis 1 is empirically 
supported.   
We now focus on the balancing volumes, which are indicators for security of supply as 
discussed in section 2.2.1. The existence of the day ahead APX and real-time balancing 
market makes that the incentives are created for accurate supply-demand matching for 
expected demand and unexpected demand. If the markets become more allocative efficient, 
energy firms have improved capabilities to make demand expectations. This should lead to 
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lower unbalance volumes. If the Dutch market becomes more allocative efficient, we 
expect balancing volumes to decline. The second hypothesis in our study is:  
H2: “the volumes on the balancing market are expected to decrease over time”  
We estimate the parameters in a similar model as in equation 2.1. We replace the  
dependent variable in equation 2.1 by V(t). Here V(t) is the unbalance volume, 
respectively surplus, deficit, absolute or net balance volume. 
We estimate the parameters from the following equation:  

V(t) = δ+λV(t-1) + θt + ε(t),    ε(t) ~ IID (0, 1) (2.3)

 
2.4 Sample and data description 
We obtain balancing prices and volumes from the TenneT website (www.tennet.nl).  
 

 Price  Volume  

 Surplus Deficit Surplus Deficit Absolute Net 

Mean 4.244 82.29 48.33 61.46 109.8 13.13 

Median 7.150 45.45 40.24 54.16 97.25 12.53 

Std deviation 38.19 113.3 36.31 38.81 62.36 41.95 

Minimum -222.0 -100.0 0.005 0.019 19.02 -327.3 

Maximum 1754 1984 583.2 574.1 1106 405.5 

Skewness 9.449 6.591 3.695 3.696 5.023 0.333 

Kurtosis 370.8 77.80 31.05 29.72 51.61 9.808 

Absolute (unbalance) is the sum of the surplus and deficit volumes. 
 Net (balance) is the difference between deficit and surplus volumes.  
Table 2.1: Descriptive statistics of balancing prices (€/MWh) and  
                 volumes (MW) in 2002 – 2003. 

 
TenneT started with publishing this data as of the year 2002. Our sample therefore consists 
of 70080 observations of 15 minutes observations from 1 January 2002 to 31 December 
2003.  
From table 2.1, we can see that on average the surplus prices are lower than the deficit 
prices. In cases of power deficits, TenneT purchases on average against a price of €82 
p/MWh, whereas it sells in cases of surplus against €4 p/MWh. The standard deviation of 
the price levels equals €38 p/MWh in cases of surpluses and €113 p/MWh in cases of 
deficit. Note that negative prices exist as can be seen from the minimum price levels. This 
is due to the fact that PR companies have to pay large fees for serious surpluses or deficits. 
They are willing to pay any price below the fee level to overcome paying the fee. The 



 

 15 

average surplus volume is lower than the average deficit volume, which leads to an 
average net positive unbalance. 
 
The descriptive statistics of the daily averaged deficit price P’(t), the daily APX prices and 
the price spread PD, are listed in table 2.2.  
P’(t) is calculated as the daily average over 96 quarter-hourly deficit price observations. 
The data now consists of 730 observations from aforementioned sample period. 
 

 P’(t)  APX  PD(t)   

Mean 74.60 58.23 36.40  

Median 61.08 28.77 29.30  

Std deviation 54.70 44.17 54.74  

Minimum 16.91 8.599 -521.83  

Maximum 820.3 660.34 801.14  

Skewness 5.799 8.590 2.694  

Kurtosis 62.88 107.26 73.08  

Table 2.2: Descriptive statistics of daily average deficit price, APX price 
                 and price spread (€/MWh) in 2002 - 2003. 

 
From table 2.2 we can see that PD(t) has a positive mean value equal to €36.40 p/MWh. 
This is consistent with our reasoning that the cheaper power generators are allocated to the 
APX, while the more expensive generators deliver electricity on the imbalance market the 
following day.  
 
2.5 Results 
An informal look at the aggregated deficit imbalance prices of the year 2002 and 2003, 
suggests that the allocative efficiency on the Dutch power market has increased; this price 
was €63 p/MWh in 2002 and €102 p/MWh in 2003, which is an increase of 60%. In 
addition, the net imbalance volume decreased with 40% from 16.4 MW in 2002 to 9.9 MW 
in 2003. Although these figures give a first indication that efficiency increased, we still 
need to formally test the hypotheses that we proposed in section 2.2.3. We do this by 
modeling the imbalance prices and volumes by equation 2.1 to 2.3.       
 
2.5.1 Results for hypothesis 1 
Table 2.3 provides the OLS estimation results for equations 2.1 and 2.2.  
We observe the positive and significant estimate for the parameter γ that is the coefficient 
for the trend variable in equation 2.1. The estimated value of 0.0001 is low, but reflects the 
average price increase over 15 minutes intervals over a two-year time period. We 
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furthermore see that the trend variable γ in equation 2.2, when correcting for the APX price 
to control for changes in the generators’ fuel mix, is positive and significant. The value of 
0.0439 implies that the increase is €0.0439 per day. 
 

 Equation 2.1 Equation 2.2 

α 5.0298 
(1.09749)*** 

13.889 
(2.23272)*** 

β 0.8670 
(0.02012)*** 

0.1239 
(0.07084)* 

γ 0.0001 
(0.00002)*** 

0.0493 
(0.00939)*** 

Adjusted R2 0.7762 0.0612 

ADF test statistic -26.9993***  -12.8721***  

Number of obs. 70080 730 

Newey-West standard errors are in parentheses. Significant at: ***99%, **95%,  
*90% confidence level. Critical value of ADF tests is -3.434 (equation 2.1)  
and -3.442 (equation 2.2).   

Table 2.3 Ordinary Least Squares results for equations (2.1) and (2.2)     

 
This confirms our hypothesis (H1) that the deficit prices in the unbalance markets have 
increased over time due to improving allocative efficiency. In order to examine whether 
the ε(t) exhibit high-order serial correlation, we apply the Ljung-Box autocorrelation test. 
The Ljung-Box Q-statistic at lag k is a test statistic for the null hypothesis that there is no 
autocorrelation up to order k. Under the null hypothesis it is asymptotically distributed as a 
Chi-square distribution with the degrees of freedom equal to the number of 
autocorrelations. The Ljung-Box test results obtained from the residuals of equation 2.1 
disclose that the residuals do exhibit autocorrelation20. From the Ljung-Box test result 
obtained from the residuals of equation 2.2 we conclude that the residuals are not serial 
autocorrelated (up to lag 1)21. Note that we report the standard errors proposed by Newey 
and West (1987) to control for both serial correlation and heteroskedasticity in the error 
term. 
 
To guard against the possibility of interpreting misleading results, we must be sure that the 
residual process of equation 2.1 is not a random walk. We therefore employ the 
Augmented Dickey Fuller (ADF)-test to find evidence for the existence of a random walk 

                                                           
20 The Ljung-box Q statistics for lag 1 to 4 are: 100.1 (0.000), 212.6 (0.000), 218.8 (0.000) and 369.7 
(0.000). P-values are in parentheses. Here we report Q statistics up to lag 4, which translate to a one-
hour time lag.     
21 The Ljung-box Q statistic for lag 1 is: 0.279 (0.597). Here we report a Q statistic up to lag 1, which 
translate to a one-day time lag.     
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in the error process ε(t). Evidence of a unit root implies that the residuals are non-
stationary, henceforth this would imply that we can not rely on the estimates provided.  
From the table, we can see that the ADF test statistics are both lower than the critical 
values at the 99% confidence level. We reject the null-hypothesis that the error processes 
in equation 2.1 and equation 2.2 have a unit-root. This implies that the results provided are 
statistically reliable.   
 
2.5.2 Results for hypothesis 2 
If the markets become more allocative efficient, energy firms have improved capabilities to 
make demand expectations. This should lead to lower unbalance volumes. A decreasing 
trend in balancing volumes goes in line with improved allocative efficiency. We therefore 
test hypothesis by modeling equation 2.3. The results are provided in table 2.4. 
 
Table 2.4 shows the negative and significant coefficient for the trend variable θ, for all 
volumes V(t) considered.  
 

 V(t) Surplus V(t) Deficit V(t) Absolute V(t) Net 

δ 6.1717*** 
(0.156626) 

10.1707*** 
(0.69085) 

8.2972*** 
(0.753369) 

5.3847*** 
(0.306795) 

λ 0.8929*** 
(0.001701) 

0.8734*** 
(0.010099) 

0.9399*** 
(0.00635) 

0.7633*** 
(0.00954) 

θ -0.00003*** 
(0.000003) 

-0.00007*** 
(0.000004) 

-0.00004*** 
(0.000003) 

-0.00006*** 
(0.000006) 

Adjusted R2 0.8017 0.7817 0.8913 0.5899 

ADF test statistic -37.5714*** -33.228*** -28.553*** -49.484*** 

Newey-West standard errors are in parentheses. Significant at: ***99%, **95%,  
*90% confidence level. Critical value of ADF test is –3.4337. Number of observations: 70080 

Table 2.4 Ordinary Least Squares results for equations (2.3)     

 
Although the levels are low, reflecting the average decline over a 15 minutes interval over 
a two-year time period, it is observed that all unbalance volumes decrease over time.  
From the ADF test on the V(t) series we reject a unit root at the 99% confidence level in 
the error term of each individual estimation, which implies that we can seriously interpret 
the provided results. The Ljung-Box Q-statistic at lag k is a test statistic for the null 
hypothesis that there is no autocorrelation up to order k.  
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We employ the Ljung-Box test on the residuals of each of the four volume time series, 
which show that each of the four noise terms exhibit autocorrelation22. Note that we report 
the standard errors proposed by Newey and West (1987) to control for both serial 
correlation and heteroskedasticity in the error term. 
This result confirms our hypothesis (H2) that unbalance volumes should decline due to 
increasing allocative efficiency. The decreased dependency from the imbalance market is 
an indication for increased security of supply in the Dutch power market. 
 
2.6 Concluding remarks  
This Chapter provides evidence that the balancing price- and volume trends observable on 
the Dutch power markets are in accordance with a higher level of allocative efficiency.  
We find that unbalanced prices increased and that unbalance volumes declined. The price 
increase can be explained by allocative efficiency as cheaper production facilities are 
allocated in the merit-order of the day-ahead market and that only more expensive 
production facilities are available for unbalance volume. The volume decrease can be 
explained by improved demand forecasts of energy firms, which leads to fewer shocks to 
the system. This has a positive effect on the security of supply as long as a minimum 
reserve level is maintained. Although our analysis covers only part of the market, we claim 
that the documented result provides at least partial evidence of a successful liberalisation 
process of the Dutch electricity market.   
 

                                                           
22 The Ljung-box Q statistics for lag 1 to 4 are 451.9 (0.000), 1837.1 (0.000), 1952.1 (0.000), 11458 
(0.000) for the V(t) deficit noise term. 762.6 (0.000), 3035.0 (0.000), 3327.0 (0.000) and 9259.8 
(0.000) for the V(t) surplus noise term. 1321.2 (0.000), 3169.7 (0.000), 3205.7 (0.000) and 5461.9 
(0.000) for the V(t) all noise term. 638.8 (0.000), 1257.9 (0.000), 2321.8 (0.000), 3753.8 (0.000) for 
the V(t) net noise term. P-values are in parentheses. Here we report a Q statistics up to lag 4, which 
translate to a one-hour time lag.       
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Chapter 3: Fat tails in daily electricity spot prices23 
-Empirical study on the Dutch day-ahead market- 

 
3.1 Introduction 
In this Chapter, we focus on the daily day-ahead electricity prices obtained from the Dutch 
APX market. As discussed in the previous chapter, on the APX separate prices are quoted 
for delivery in each specific hour in the next day; the daily average is then the average over 
the 24 hours. Many day-ahead markets distinguish daily average baseload prices, which 
refer to the average price over all 24 hours. On some markets, such as Australia, New 
Zealand and the United Kingdom, prices are even quoted on a half-hourly basis.  
It is commonly known that electricity market prices for day-ahead delivery exhibit mean 
reversion, seasonality and spikes. These stylised facts affect all market participants in their 
risk exposure to spot prices. Appropriate pricing and risk management models should 
incorporate these facts.  
The traditional models24 for electricity spot price dynamics focus mostly on mean 
reversion and seasonal patterns. Spot prices of electricity are modelled as the sum of a 
deterministic component that captures seasonality and a stochastic component that captures 
mean reversion and a noise term. This error term is mostly assumed to be normally 
distributed or at least to be independently and identically distributed (IID). These models 
do not capture one of the most important characteristics of power prices being the frequent 
occurrence of spikes. For example, the average Dutch price of electricity was about 
€30/MWh in 2002 and a maximum price has occurred in 2002 of €701/MWh between 
noon and 3 pm on August 21st, 2002. In 2001, the maximum baseload price equalled 
€220/MWh. Graph 2.1 presents the daily prices of baseload electricity (whole day 
delivery) for 2002.  
Monte Carlo simulations based on the traditional models do not resemble the actual price 
patterns of spot power. As practitioners frequently use these simulations for risk 
management and valuation purposes, it is clear that researchers should improve upon the 
traditional models.  
Motivated for reasons discussed above, models have been introduced recently that focus 
more closely on the spike characteristics. For example, jump processes and switching 
regime models have been introduced to model spikes in spot prices, thereby directly 
affecting the third and fourth moment of the noise term: See Deng (1999), de Jong and 
Huisman (2002) and Huisman and Mahieu (2003) among others. The advantage of these 
approaches is that they explicitly model the spikes and therefore allow for non-normal 
characteristics. Furthermore, switching regime models have the advantage of not affecting 
the estimates of the level of mean reversion as these models disentangle the mean-
reversion from spikes from normal periods. However, in switching regime models more 
parameters are needed (compared to any of the aforementioned models) to describe the 
price dynamics accurately.     
In this Chapter, we concentrate on the tail characteristics of the error term. We apply 
extreme value theory (EVT) to assess the level of tail fatness. EVT investigates the 

                                                           
23This Chapter is based on: R. Huisman and C. Huurman, 2003, “Fat tails in power prices”, ERIM 
Report Series, July, Rotterdam. We thank participants at the Quantitative Methods in Finance 
Conference in Sydney (9 – 13 December 2003) for valuable comments.   
24 Examples are discussed in Pilipovic (1998) and Lucia and Schwartz (2002) among others. 
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extreme movements in tails of the price change distribution, in our study the tails of the 
noise term. Applications can be found in the areas of engineering and finance among 
others.25 We test whether EVT can directly be applied to replace the normality assumption 
for a different distribution. We propose the Student-t distribution as an alternative, and 
then demonstrate how to apply this distribution for Monte Carlo simulations. The 
advantage of the Student-t distribution compared with the normal distribution is that it 
captures tail fatness through its degrees of freedom parameter that can be calibrated by 
EVT. In this method, spikes are captured through the selection of the distribution function. 
Our simulation results clearly improve upon the ones from the normal distribution, as the 
Student-t price patterns resemble more closely the true price pattern of daily power spot 
prices. 
The remaining part of this Chapter is structured as follows. In section 3.2 we discuss the 
methodology. Section 3.3 provides the data. In section 3.4 we present and discuss the 
results. Section 3.5 concludes.  
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Figure 3.1: Baseload prices for Dutch day-ahead delivery of electricity for 2002 

 
3.2 Methodology 
In this study we employ the EVT tail estimator proposed by Huisman et al. (2001) that has 
the advantage compared to other often-used estimators that it is unbiased in small samples. 
The rationale to adopt their estimator is due to the observation that competitive electricity 
markets exists since recently. In section 3.2.1, we provide a concise summary of the tail 
estimator methodology of Huisman et al (2001). We refer to that study for more details on 

                                                           
25 See Embrechts et al (1997).  
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the econometric considerations. In section 3.2.2 we present the electricity price model 
from which we derive the noise term. Henceforth, this model provides the input for our 
EVT analysis. 
 
3.2.1 Extreme value theory  
The major advantage of applying EVT on electricity price model residuals is that we can 
directly model the extreme price movements that we can observe in electricity markets.  
EVT namely allows us to model the tails directly, hence not as an indirect result of 
modelling the whole distribution. In addition, when an investor is interested in the chance 
of occurrence of an extreme price event (as part of her risk assessment), the information 
obtained from the variance of the price distribution may be insufficient; a price series that 
is characterized by a tranquil price path that embeds only a few very extreme price events 
may have a higher volatility parameter than a price series that incorporates more frequent 
extreme price movements. 
It is a well-known fact that distributions of many financial assets exhibit tail fatness. 
Hence, this distributional feature is not only observable in power prices.26 
The classic EVT puts forward an ideal framework to identify tail fatness. It can be divided 
into two streams: (1) the block-maxima method, which divides the data into consecutive 
blocks and focusing on the series maximum values in these blocks (Embrechts et al., 
1997). (2) Alternatively the extreme price observations (in our case model residuals) can 
be modelled over a certain threshold. This approach is known as the peak-over-threshold 
method (Balkema and De Haan, 1974). We assess the level of tail fatness of the model’s 
residuals by using the latter mentioned method.  
 
Huisman et. al. (2001) estimator  
The Hill (1975) is a widely used estimator for the tail-index. The tail index is a measure for 
the amount of tail fatness of the distribution under investigation and may also be looked 
upon as an indicator for the pace with which the tail moves to zero. The fatter the tail, the 
slower the speed and the lower the tail index given. The Hill estimator reads as: 

 γ(k) = 1/ k ∑
=

−+− −
k

j
knjn xx

1
1 )ln()ln(   (3.1) 

Here γ(k) is the tail-index that is a function of the number of tail observations k, and n is 
the number of sample observations. Note that the inverse of γ(k), equals the maximum 
number of existing finite moments α. The Hill estimator, and many other EVT tail 
estimators that have been introduced since Hill’s epic work, suffer from a small sample 
bias (For an overview see Pictet et. al., 1996). The bias in these estimators is caused by the 
fact that the choice of the amount of tail observations (k) to include in the estimation is 
arbitrary: On the one hand when one includes too few observations, the estimate is 
unbiased but becomes inaccurate. That is, the variance of the estimate becomes too high. 
On the other hand, inclusion of too many observations may lead to an estimator that is 
derived by partly using center observations, which we are clearly not interested in. 
Huisman et. al. (2001) show that the bias in the Hill estimator can be approximated by a 
linear function of the tail observations (k) used in the estimation. Here the threshold level k 
                                                           
26 See Huisman et al. (1998) for bond and stock portfolios, Boothe and Glassman (1987) for 
exchange rates, and Campbell and Huisman (2003) for credit spreads. 
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is chosen such that linearity applies. Following Huisman (2001), we set k equal to half of 
the sample size (this is to ensure that the estimator is robust). The estimator that they 
propose is a weighted average of a set of traditional Hill estimators. The weights are 
estimated by using weighted least squares techniques. Their estimator proves to be robust 
for a sample as small as 100 observations.  

 γ(k) =  β0 + β1k + ε(k)  (3.2) 

Here β1 yields the unbiased tail estimate. The inverse of this estimate equals the true tail 
index α. The tail index has the attractive feature that it is equal to the number of existing 
moments of the distribution and thus can be used to parameterise the Student-t distribution. 
 
Student-t distribution 
Huisman et al (2001) propose to use the Student-t distribution as an alternative to the 
normal distribution as its shape is taller in the middle and as it is capable of incorporating 
fat tails. Following Huisman et al (2002), we examine to what extent the Student-t 
distribution would provide a better fit than the normal distribution function. In order to 
examine the appropriateness of the Student-t distribution, we have to estimate the degrees 
of freedom parameter α. The standardized Student-t distribution is a symmetric distribution 
and it’s being shaped by one parameter: the degrees of freedom α. The standardized 
Student-t distribution has zero mean and its variance equals α / (α-2). An important 
property of the Student-t distribution is that it converges to the normal distribution for α 
→∞. The degrees of freedom α equals the number of existing moments and α is directly 
related to the tails of the distribution function. For high values of α, the distribution has 
tails that corresponds closely with the normal distribution, but the lower α gets, the fatter 
the tails become. Huisman et al. (2002) show that α is between 3 and 8 for different 
exchange rates. The procedure that we follow involves estimating the tail index from the 
empirical distribution. Before we can formally test whether the Student-t distribution 
provides a better fit than the normal distribution, we first need to re-scale the standard 
deviation of the residual distribution. The variance of the standardized Student-t 
distribution is namely not equal to 1, in contrast with the variance of the normal 
distribution. Let x be the residual under consideration. To fit the student-t-distribution we 
assume that y = φ(x – ρ) is Student-t distributed with α degrees of freedom. Here ρ is a 
location parameter that equals the residuals mean, which is zero. The scale parameter φ is a 
function of the variance (var):   

 Var (y) = α / (α – 2) = φ2 var(x) (3.3) 

When we rearrange the terms of equation (3.3), we get:  

 φ = √(α / (α – 2) var (x))  (3.4) 

To formally test the hypothesis that the fitted Student-t distribution is a good 
approximation for the unconditional empirical distribution of the residuals obtained from 
the price model (we will present our electricity price model in the next subsection), we 
apply the goodness of fit-test following Boothe and Glassman (1987) and Huisman et. al. 
(2002). The goodness-of-fit test compares the observed and expected number of 
observations in c intervals over which the data is divided as follows: 
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Here oj and ej are the observed and expected number of (tail-quantile exceedness) 
observations in interval j. The test statistic G is Chi-squared distributed with (c-1) degrees 
of freedom. The intervals (except the first in the left tail and the last in the right tail that 
range to minus or plus infinitely respectively) are chosen such that they are of equal length. 
Note that each interval has at least five expected observations, which is to ensure that the 
Chi-squared approximation is accurate. 
 
3.2.2 Day-ahead power price model  
Following Lucia and Schwartz (2002) and Huisman and Mahieu (2003), we model daily 
electricity prices by decomposing the log day-ahead power price s(t) at time t (t = 1,2,…,T) 
as the sum of two independent components: A deterministic component, f(t), and 
stochastic component, x(t):   

s(t)= f(t) + x(t)  (3.6) 

Introducing ∆ as the differencing operator, we can write the daily changes in the log price 
of power as: 

∆s(t)= ∆f(t) + ∆x(t) (3.7) 

The component f(t) is a deterministic function of time and models predictable regularities, 
such as periodic behaviour and trends. Let f(t) account for the fact that the price for 
electricity delivered on weekend days is lower than the price on an average working day. 
To do so, we introduce two dummy variables: D1(t) equals 1 on Saturdays and 0 on other 
days and D2(t) equals 1 on Sundays and 0 on other days. We therefore specify f(t) as 
follows: 

f(t) = µ + β1 D1(t) + β2 D2(t) (3.8) 

In equation (3.9), the parameter µ reflects the average log price level.  
As mentioned earlier, electricity prices observed in some markets exhibit seasonal 
behavior.27 Although no rationale exists for expecting seasonality in Dutch power prices 
(mild climate and no season-dependent generation28), we test for seasonal behavior. The 
results of this seasonality test can be found in the Appendix (A.3.2, A3.3). Based on these 
results, we rely on equation (3.8) as an accurate description of the predictable regularities 
in this market. The stochastic component x(t) in equation (3.7) reflects the movement of 
the electricity price out of its deterministic behaviour at time t. One important 
characteristic is mean reversion. Following Pilipovic (1998), let α be the speed with which 
the spot price of power reverts back to its long term mean. As the long-term mean µ is 

                                                           
27 For instance, power prices in the Scandinavian market exhibit seasonality (Lucia and Schwartz, 
2002). Here, seasonality stems from the fact that this is a hydro-power market. Water is stored in 
reservoirs and the water level rises in the summer when snow is melting. As a result, power prices 
are lower in summer than in winter. In other markets, seasonality in power prices is due to seasonal 
behavior on the demand-side; i.e. the use of air-conditioning systems (Eydeland, 2003).  
28 See table 1.1: 95% conventional thermal generation in The Netherlands.  
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captured by the deterministic component in equation (3.8), we model mean reversion in the 
stochastic part as reversion due to a deviation from 0: 

∆x(t) = -α x(t-1) + σ ε(t),  ε(t) ~ IID (0, 1) (3.9)

Here ε(t) represents the noise term and σ the standard deviation of this noise term. After 
substituting equations (3.9) and (3.8) into equation (3.7), we come to the following model 
for daily log price changes of power: 

∆s(t) = αµ + β1 {D1(t) + (α-1) D1(t-1)} + β2 {D2(t)  + (α-1) D2(t-1)}- α s(t-1) + σ ε(t) (3.10)

Above equation did not generate white noise model residuals (white noise means a noise 
term that is homoskedastic and exhibits no autocorrelation); we find that autocorrelation is 
clearly apparent for the 7th lag, which can be explained as a weekly pattern in power prices. 
We therefore have included an autoregressive term in equation (3.11) to control for this. 
Now equation (3.10) becomes:  
∆s(t) = αµ + β1 {D1(t)  + (α - 1) D1(t-1)} + β2 {D2(t)  + (α - 1) D2(t-1)}- α s(t-1)  
            + θ∆s(t-7) + σ ε(t) (3.11)

We will report the parameter estimates of equation (3.10) in Appendix (A.3.3), and the 
model (3.11) coefficient in the next section, since only latter mentioned model is used for 
the data-generating process in our study. We apply non-linear least squares (NLS) to 
estimate the parameter value, since equation 3.11 is non-linear in its parameters. 
 
Limit of proposed method 
The two-steps method (we first estimate the NLS parameters of equation 3.11 and then 
impose a Student-t distribution on the models residuals) that we propose in this section can 
be considered as a diagnostic test to show that the Student-t distribution is capable of 
correctly capturing the fat tailed behaviour of electricity prices opposed to the often-
assumed normal distribution. We are aware that re-estimation of the parameters of 
equation 3.11 by using maximum likelihood techniques that allows us to impose a Student-
distribution on the residuals directly, would yield conclusive results of our proposed 
methodology. 29  
 
3.3 Data and sample description 
The data used in this Chapter is derived from the Amsterdam Power Exchange (APX).   
We use baseload prices from 1 January 2001 through 22 July 2003 being 933 daily price 
observations. Table 3.1 provides an overview of summary statistics of this data in price 
levels, log prices and log price changes. Table 3.1 discloses the non-normal characteristics 
of the data being the positive skewness and excess kurtosis. Positive skewness is due to the 
fact that the occurrence that power prices are extremely high is more probable than the 
chance of occurrence of low extreme prices. The kurtosis estimate value is around 7 for log 
power prices and is significantly higher than 3, the kurtosis value of a normal distribution. 
This implies that extreme price movements are more likely to occur than indicated by the 
normal distribution. Both characteristics are well-documented facts of day-ahead power 
prices.30  
                                                           
29 In our proposed method we implicitly assume that the t-distributed noise term is uncorrelated with 
the other model parameters.   
30 See a.o. Pilipovic (1998) and Bessembinder and Lemmon (2002).  
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 Price level Log price Log price changes 

Mean 32.69 3.338 0.004 

Median 26.92 3.293 -0.023 

Std. deviation 25.04 0.500 0.477 

Minimum 1.480 0.392 -2.372 

Maximum 263.1 5.573 2.769 

Skewness 4.679 0.638 0.687 

Exc. kurtosis 32.22 7.182 7.192 

Table 3.1: Descriptive statistics for daily APX baseload prices (€/MWh)  
 
3.4 Results  
Below we present the empirical results.  
 
3.4.1 Model estimates   
In table 3.2 we provide the equation (3.11) NLS parameter estimates. We apply non-linear 
least squares (NLS) to estimate the parameter value, since the equation is non-linear in its 
parameters. Note that the standard errors are based on the estimator of the covariance 
matrix proposed by Newey and West (1987) and therefore controls for both serial 
correlation and heteroskedasticity in the error term. 
 

µ  3.479 (0.033)***  θ 0.080 (0.032)**  Jarque-Bera 1034.3 

β1 -0.303 (0.030)***  σ 0.324  White 9.481 

β2 -0.646 (0.030)***  Adj  
R2 

0.515    

α 0.360 (0.026)***  SIC 0.622    
Newey-West standard errors are in parentheses. Significant at: ***99%, **95%, *90% 

confidence level. The estimate for µ of 3.479 relates to a long-term average price of 
€32.43/MWh. SIC (Schwartz Information Criterion). Number of observations: 933 

Table 3.2: NLS parameter estimates and residual characteristics for equation (3.12). 
 
From table 3.2, we observe a long-term average log price of 3.479, which is 0.303 lower 
on Saturdays and 0.646 lower on Sundays. The estimate for the speed of mean reversion 
equals 0.36 and is significant. From table 3.2 we observe the significance of the lagged 
term (indicated by significant θ coefficient). Let us now concentrate on the characteristics 
of the noise term. The Jarque-Bera statistic is a test for normality. Under the null 
hypothesis it is distributed as a Chi-square distribution with two degrees of freedom. The 
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Jarque Bera test statistic that we find is much higher than its critical value of 5.99 (95% 
confidence level). Therefore, we reject the hypothesis of normally distributed residuals. 
The White statistic is the outcome of a White test on homoskedasticity of the residuals 
(including cross-terms). The critical value at the 95% confidence level is 15.51. The lower 
value of 9.481 for White makes that we cannot reject the null-hypothesis of 
homoskedasticity for the residuals. In order to examine whether the residuals exhibit high-
order serial correlation, we apply the Ljung-Box autocorrelation test. The Ljung-Box test 
for autocorrelation does reject the hypothesis that the residuals exhibit autocorrelation31. 
We conclude that the residuals of equation 3.11 are IID but not normal. This is in contrast 
with many proposed models that are being used especially for Monte Carlo simulations. In 
these cases, one assumes a data-generating model for the spot price development over time 
(such as model 3.11), in which the daily innovations ε(t) are drawn from a particular 
distribution. In many cases, the normal distribution is chosen for reasons of convenience. 
But the drawback of this convenience can be enormous as one has an erroneous assessment 
of the true risks faced because of the fact that he or she neglects the non-normal properties 
of the innovations. Especially for electricity prices, these non-normal properties are 
pronoun.  
Figure 3.2 shows the histogram of the residuals and the fitted normal distribution function. 
The figure shows clearly that the normal distribution provides a poor fit to the histogram of 
the residuals. Not only in terms of tail fatness, but also for the probability mass in the 
middle as we see that the frequencies in the middle are much higher for the actual data than 
what the normal distribution would imply. 
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Figure 3.2: Histogram of the residuals from equation (3.11) and the fitted normal distribution. 

                                                           
31 The Ljung-box Q statistics for lag 1 to 7 are: 1.602 (0.109), 1.904 (0.168), 1.975 (0.373), 3.611 
(0.307), 5.531 (0.239), 8.131 (0.149) and 8.466 (0.206). P-values are in parentheses.   
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3.4.2 Tail index estimates   
As said, the tail index is a measure for the amount of tail fatness of the distribution under 
investigation. The index can be regarded as an indicator for the pace with which the tail 
moves to zero: the fatter the tail the slower the speed and the lower the tail index given. 
Table 3.3 shows the tail index parameter estimates for the residuals from equation (3.11). 
    

Both tails 3.182 (0.003) 

Left tail only 3.142 (0.005) 

Right tail only 3.331 (0.004) 

Standard errors are in parentheses 

Table 3.3: Tail index estimates for the residuals of equation (3.11) 
 
3.4.3 Goodness-of fit test  
Now we have estimated the degrees of freedom parameter α, we investigate whether the 
Student-t distribution is able to provide a better fit than the normal distribution to the 
residuals of equation (3.11). First we re-scale the σ of the residual distribution by using 
equation 3.4, to make comparison between both distributions possible. We then apply the 
obtained tail index to parameterize the Student-t distribution. We set the degrees of 
freedom parameter equal to 3.142 (taken from table 3.3), and φ equal to 5.113 (obtained 
from equation (3.4). We then can plot the histogram of the residuals and the Student-t fit, 
which is depicted in figure 3.3.  
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Figure 3.3: Histogram of the residuals from equation (3.11) 
                   and the fitted Student-t distribution. 
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At first glance, the student-t distribution seems to graphically fit the complete empirical 
distribution of residuals very well for the residuals. Compared with the fit from the normal 
distribution shown in figure 3.2, we obtain a better fit for the tails and for the central part 
of the distribution. To formally test the hypothesis that the fitted Student-t distribution is a 
good approximation for the unconditional empirical distribution of the residuals, we apply 
the goodness of fit-test given by equation (3.6).  
Table 3.4 contains the goodness of fit results for the normal distribution and the Student-t 
distribution. According to the goodness-of-fit results in table 3.4, we cannot reject the 
hypothesis that the Student-t distribution provides a good fit to the residuals at the 99% 
confidence level, as the test statistics does not exceed the 99% critical value. For the 
normal distribution, we do reject the hypothesis of a good fit of the residuals. Based on 
these results we conclude that the Student-t provides a much better fit to the residuals of 
equation (3.12) than the normal distribution function. 
 

Normal distribution 194.16 (24.73) 

Student-t distribution 26.02 (26.22) 

Chi-squared critical values for n-1 (number of intervals) at the 99% confidence level are 
in parentheses. Here n =12 for Normal distribution, and n=13 for Student-t distribution.32 
Reject the null-hypothesis that the Student-t is a good approximation for the noise term 

if the reported goodness-of-fit statistic exceeds the corresponding critical value. 
Table 3.4: Goodness-of-fit-results for the residuals of equation (3.11) 

 
3.4.4 Monte-Carlo simulation  
The result from the previous section has important implications for risk management and 
derivatives valuation. For both applications it hold that many use the normal distribution 
function to generate random numbers from in Monte Carlo (MC) simulations. As we have 
seen in the previous section, this is an erroneous assumption. As these MC simulations are 
used to calculate portfolio Value at Risk type of risk statistics (discussed in Chapter 6), and 
to valuate options or forwards for which the underlying is the day-ahead power price, one 
will underestimate the probability of very small and extreme price changes, and will 
overestimate the probability of medium price changes. This is clearly visible after 
comparing the histograms and the distributional fits in the figures 3.2 and 3.3. In order to 
show the difference for MC simulations of day-ahead power prices, we show the outcomes 
of such a simulation in the following figure. We use equation (3.11) as our data-generating 
model. We simulate two series for the APX time series: one where the residuals are 
normally distributed and the other where the residuals are Student-t distributed. Here the 
number of degrees of freedom is set equal to 3.182. In both cases we assume the 
innovations to be IID and to have equal variance as indicated in table 3.2. We set the 
number of simulated observations equal to 933, being the number of APX prices that we 
have available. Figure 3.4 shows graphs of the simulated time series. As we expected, it 
can be easily observed that the Student-t simulated prices resemble more closely the true 
price path of power prices than the normal simulated prices. 

                                                           
32 Boothe and Glassmann use 14 intervals (1987).     
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Figure 3.4: Simulated APX base load day-ahead prices based on equation (3.11) 
                        with normal innovations (top left), Student-t innovations (top right), 
                         and the actual APX prices (bottom left). 

 
In table 3.5 we provide the descriptive statistics of the simulated APX base load day-ahead 
prices based on equation (3.11) with normal innovations and Student-t innovations, 
together with the statistics from the actual price series (see also table 3.1).  
 

 Price level Normal level Student-t level 

Mean 32.69 36.21 37.59 

Median 26.92 35.02 34.97 

Standard deviation 25.03 26.94 29.33 

Skewness 4.675 1.339 2.682 

Excess kurtosis 32.22 5.487 21.41 

Table 3.5: Descriptive statistics of APX baseload prices based on equation (3.12)  
with normal innovations, Student t innovations, and the actual prices. Prices are in €/MWh. 
 
From the mean and median estimates listed in table 3.5, we can see that around the center 
of the distribution both methods perform equally well.33 For the higher-order moments 
                                                           
33 The median is a robust estimator of the center of the distribution, as it is less sensitive to outliers 
than the mean. 
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(skewness and excess kurtosis) however, the Student-t method (2.682 and 21.41) more 
closely resembles the true price pattern (4.675 and 32.22) than the normal based method 
(1.339 and 5.487). Note that the kurtosis estimate of the Student-t simulate price path is 
still lower than the kurtosis estimate from the actual price series, which indicates that the 
probability of extreme price values to occur is higher in reality than is dictated from the 
Student-t simulated series. An important point worth emphasizing is that the two displayed 
simulated price paths presented above, are randomly chosen from 1000 MC simulations 
with normal innovations and 1000 MC simulations with Student-t innovations. The 
summary statistics of all simulations are given in Appendix A3.4. The results are fairly 
similar to the provided empirical evidence.   
 
3.5 Concluding remarks 
In this Chapter we demonstrate that assuming normal innovations in Monte Carlo 
simulations for risk management purposes can have serious consequences for the true 
amount of risk faced. We propose the Student-t distribution as an alternative to the normal 
distribution as it is capable of incorporating the fat tailed behaviour of electricity prices. 
We assess the amount of tail fatness of electricity price model residuals using extreme 
value theory and use its results directly to parameterise the Student-t. It is then shown that 
the Student-t provides a much better fit than the normal distribution. A fact that becomes 
especially clear when one observes the differences in simulation outcomes for the normal 
based method and the Student-t method. Therefore, the normality assumption that 
researchers and practitioners often make in their simulation or valuation method can lead 
to erroneous conclusions. The method that we proposed in this study is an easy to 
implement alternative for using the normal distribution as the density function for 
innovations in Monte Carlo simulations. In this method, spikes are captured through the 
selection of distribution function. We claim this method to be a candidate to model the 
non-normal behaviour of electricity prices in addition to other models such as jump 
diffusion models or switching regimes models.  
 
3.6 Appendix 
 

µ  3.482 (0.035)*** α 0.385 (0.048)*** SIC 0.665 

β1 -0.293 (0.031)*** σ 0.333 Jarque-Bera 1099.2 

β2 -0.644 (0.033)***   R2 0.512 White 16.53 
Newey-West standard errors are in parentheses. Significant at: ***99%, **95%, 

*90% confidence level. The estimate for µ of 3.482 relates to a long-term average 
price of  €35.52 p/MWh. SIC (Schwartz Information Criterion). Number of 

observations: 933 

Table A.3.1: NLS parameter estimates and residual characteristics for equation (3.11) 
 
Seasonality 
We include sinusoidal terms in equation 3.11, to take into account seasonality effects:  
∆s(t) = αµ + β1{D1(t)+(α-1) D1(t-1)} + β2 {D2(t) + (α-1) D2(t-1)}-αs(t-1) 
            + γ cos*((2πt)/365) + δsin((2πt)/365) + θ∆s(t-7) σε(t), ε t ~IID  (A.3.2) 
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The parameter estimates are given in table A3.3. We find weak evidence of seasonality. 
We select our model based on the Bayesian Information Criterion (SIC). Models with 
lower SIC values are usually preferred (Verbeek, 2004). Based on the lower SIC value of 
equation 3.11 (see table 3.2), we do not include a sinusoïdal term in our model.    
 

µ  3.498 (0.032)***  γ 0.017 (0.016)  Adj.  R2 0.516 

β1 -0.303 (0.029)***  δ -0.056 (0.032)*  SIC 0.625 

β2 -0.645 (0.029)***  θ 0.071 (0.032)**  Jarque-
Bera 959.5 

α 0.379 (0.026)***  σ 0.323  White 6.287 
Newey-West standard errors are in parentheses. Significant at: ***99%, **95%,  
*90% confidence level. The estimate for µ of 3.479 relates to an long-term average 
price of 32.43 euro per MWh. Number of observations: 933 

Table A3.3: NLS parameter estimates and residual characteristics for equation (3.11). 
 
1000 MC simulations 
The descriptive statistics obtained from the MC simulations of figure 3.4 (presented in 
table 3.5) should not be interpreted in isolation. Therefore we provide the summary 
statistics over all 1000 MC simulations with normal innovations. We do the same for the 
1000 MC simulated series with a Student-t distributed noise term in our data-generating 
model. The statistics are given below.   
 

 Summary statistics  

 Mean Median Std. dev Skew Ex. kurt. 

Normal 37.82 34.05 30.02 1.497 6.739 

Student-t 39.68 32.21 35.90 6.093 58.13 

Actual 32.69 26.92 25.04 4.679 32.22 

Table A3.4: Descriptive statistics of 1000 MC simulated APX baseload prices based on  
Equation (3.11) with normal innovations, Student t innovations. Prices are in €/MWh 

 
When we compare the statistics from table A3.4 with the statistics listed in table 3.5, we 
can conclude that the results are similar except for the standard deviation (respectively 
58.13 versus 21.14) and kurtosis estimate (respectively 35.90 versus 29.33) of the 1000 
MC simulated Student-t price paths. This can be explained by the fact that in some of the 
1000 Student-t simulated price paths, extreme positive values were generated relatively 
often, with maximum values up to €1100/MWh, that pushed the overall values of the 
mean, standard deviation estimates and excess kurtosis to this high level. We 
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Chapter 4: Hourly electricity spot prices34 
-Empirical study in international day-ahead markets- 

 
4.1 Introduction 
Since the worldwide structural reforms and market liberalization that started in the early 
1990’s, market places have been created, on which market participants can trade electricity 
forward contracts for different delivery periods. Typically, short-term contracts are traded 
on day-ahead markets that involve delivery of electricity in the next day and on intra-day 
markets that involve delivery in 15 or 30 minutes after the transaction (See Chapter 2 and 
3). Note that the delivery periods of these markets are complementary.  
In this Chapter, we focus on the hourly dynamics of electricity prices in day-ahead 
markets. Due to the non-storability of electricity, day-ahead prices exhibit specific 
characteristics such as mean-reversion, seasonality, spikes and a complex time-varying 
volatility structure. Many of these results were obtained from studying the time series of 
daily average prices (See also previous Chapter). An overview of the different models can 
be obtained from Bunn and Karakatsani (2003), Escribano et al. (2002), Huisman and 
Mahieu (2003), Lucia and Schwartz (2002) and Pilipovic (1998). The dynamics of daily 
prices are extremely important as these prices are used as reference point for marking to 
market valuations and serve as a base for option contracts such as callable options. 
However, the average prices mentioned above are indeed averages and do not meet the 
micro-structure of the day-ahead market itself.  
The models developed for daily average prices cannot be directly applied to describe 
dynamics in hourly prices. For example, if hourly prices revert to an hourly specific mean 
level, then the daily average model with a daily mean will not suffice. Other questions are 
whether the level of mean-reversion is constant over the day or different per hour and 
whether the volatility structure is constant throughout the day. In addition, what is the 
correlation pattern between specific hours? These questions are relevant as many agents in 
the electricity markets are exposed to hourly variation. Power generation plants let their 
nomination depend on the expected prices for electricity delivery throughout the day. 
Companies that use electricity in a certain profile through the day that cannot be resembled 
by standard baseload and peakload contracts might have a demand for contracts that 
deliver only in a few hours of the day. To valuate these contracts market makers need to 
assess the expectations and risks for those specific hours and cannot rely on daily average 
prices only. Other applications can be found in power risk management, contract 
structuring and derivative pricing; E.g. hourly power options are currently traded in the US 
markets, and to a lesser extent in the European market35.    
 
A few studies have recognized the need for higher frequency modeling and have addressed 
some interesting issues. Borenstein et. al (2002) and Saravia (2004) find a spread between 
day-ahead and real-time hourly prices on the U.S. power markets, and attribute it to market 
power and speculation activity. Longstaff and Wang (2004) study the day-ahead hourly 
risk premium, calculated as the difference between the day-ahead price and the expected 

                                                           
34 This Chapter is based on: R. Huisman, C. Huurman and R. Mahieu (2006), “Hourly electricity 
prices in day-ahead markets” forthcoming in: Energy Economics. We thank participants at 
Energyforum conference in London (15-17 November 2005) for valuable comments.  
35 See Eydeland and Wolyniec (2003) for an overview on electricity option contracts. 
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real time price. They find that premiums are affected by demand, sales and price variation. 
Furthermore they study time variation in premiums by specifying a system of VAR’s for 
each of the 24 hours in which ex-ante measures of risk (demand load and sales) are used as 
explanatory variables for unexpected price changes. Wolak (1997) studies the hourly price 
formation of the deregulated day-ahead electricity markets of England and Wales, 
Scandinavia, Australia and New Zealand. Wolak applies a Principal Component Analysis 
to the error covariance matrix obtained from a VAR hourly (or half hourly) price system to 
gain insight in the intra-day correlation of the errors terms. Wolak finds that the ‘Anglo-
Saxon’ prices are difficult to forecast (i.e. 22 principal components explain 90% of 
variation in England and Wales data) compared to the NPX prices (5 principal components 
explain 90% of variation). Nogales et. al. (2002) use price- and demand load data obtained 
from the Spanish and U.S. market to forecast next-day electricity prices by time series 
models. Li and Flynn (2004) examine the hourly rate of price changes in 14 deregulated 
markets. Knittel and Roberts (2005) fit a range of traditional financial models and less 
conventional electricity price models to an hourly time series of real-time Californian 
electricity prices. They find that forecasting performance of traditional models is poor and 
can be substantially improved when they address the unique electricity price features are 
taken into account. Ramsay and Wang (1997) and Szkuta et. al (1999) do not rely on 
parametric modeling, and propose a neural network approach.    
Some of these studies above, model each hour separately or assume some correlation 
pattern between the hours. Others stack the hourly prices and treat them as a time-series. 
An important difference between modeling daily average prices and modeling hourly 
prices is that hourly prices cannot be seen as a pure time series process. Time-series 
assume that the information set is updated by moving from one observation to the next in 
time. This assumption is not valid for hourly prices as the market microstructure does not 
allow for continuous trading. Many day-ahead markets are structured such that agents 
submit their bids and offers for delivery of electricity in all hours in the next day before a 
certain market closing time; hourly prices for next day delivery are determined at the same 
time. The information set used for setting the price of delivery in hour 23 is the same as the 
information set used to set the price for delivery in hour 5. Therefore, the information set is 
constant within the day and updates over the days. Applying directly a time-series 
approach is not sound from a methodological perspective and we propose a panel model to 
examine hourly price characteristics. A panel framework combines a time-dimension for 
the price movements from one day to the next, and a cross section dimension for the intra-
day (hourly price) movements, which are set on the same moment in time!     
This Chapter examines the dynamics in day-ahead hourly prices using a panel model. Data 
is obtained from the the APX (The Netherlands), EEX (Germany) and Powernext 
(hereafter PPX) from France. The empirical results show that hourly prices in day-ahead 
markets mean-revert around an hourly specific mean level, that the speed of mean-
reversion is different over the hours (especially in super peak hours) and that a block 
structured cross-sectional correlation pattern is apparent. We extend the existing energy 
economics literature by disclosing that electricity prices revert back to an hourly mean 
level with varying mean-reversion rates, and we find evidence of a block structured cross-
sectional correlation pattern between the hours. From the discussion above we conclude 
this has not been done before; i.e. Wolak (1997) does not take into account hourly varying 
means, nor focuses on the cross-sectional correlation pattern between the hours, and most 
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importantly proposes a VAR framework that not by definition matches the market 
microstructure to the extent that our panel framework does.  
 
This Chapter is structured as follows. Section 4.2 sets out the panel methodology and 
focuses on the observed characteristics of hourly electricity prices. Section 4.3 provides an 
overview of our dataset. Section 4.4 discusses the empirical results. Section 4.5 concludes. 
 
4.2 Panel methodology 
In financial literature, panel models have been applied to exchange rates for instance. Each 
day, news affects the prices in the FX market and has a simultaneous impact on different 
exchange rates. For instance, news about the U.S. economy is likely to affect exchange 
rates that are denoted in terms of the U.S. Dollar. Therefore, the cross-section of U.S 
Dollar denoted exchange rates behave over time and their quotes respond to the same news 
factors (but perhaps to a different extent)36. To model hourly prices, observe that hourly 
prices can be seen as cross-sectional individuals (as their prices are quoted on the same 
time) whose price change over the day. Therefore, the panel framework exactly matches 
the micro-structure of day-ahead markets. We will now propose a general hourly price 
model, and three restricted versions of it. The set-up of these models is in the panel 
literature referred to as a fixed time-effects model37.  
 
4.2.1 General model 
As discussed above, hourly electricity prices in day-ahead markets do not follow a time-
series process but are in fact a panel of 24 cross-sectional hours that vary from day to day. 
This is because the market microstructure of many day-ahead markets are quoted at the 
same moment on a day. For instance, the Dutch APX requires that bids and offers for each 
hour in the next day to be submitted before 11 a.m., and that these prices are published 
around noon. A trader uses exactly the same information to set the price for hour h as she 
uses to set the price for hour s (h being different from s). Proceeding to the next day, the 
information set updates, but it updates simultaneously for hour 1 through hour 24. 
Therefore, hourly prices within a day behave cross-sectionally and hourly dynamics over 
days behave according to time-series properties. To introduce the model, let sh(t) be the 
natural logarithm of the day-ahead price observed on day t for the delivery of one MW 
electricity in hour h of the following day t+1. Following Lucia and Schwartz (2002) and 
Huisman and Mahieu (2003), the day-ahead price is the sum of two independent 
components: a deterministic fh(t) and a stochastic component xh(t): 

sh(t) = fh (t) + xh(t) (4.1) 

The deterministic component fh(t) accounts for predictable regularities, such as mean price 
levels and other periodic behaviour. The deterministic consists of a mean price level µ0 and 
and hourly deviations from mean price level to allow for differences in mean price levels 
over the hours, µh.for h = 1….23 (µ24 equals 0 to prevent from multicollinearity). The 
deterministic component also allows for different price levels for different weekdays of the 

                                                           
36 See Huisman et al. (1998) for an application of a panel data model to describe the dynamics of 
change in exchange rates.    
37 Baltagi (1995) provides an overview of different panel model applications in economics.   
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week. To model this, Id(t) is a dummy that equals 1 if the delivery day t+1 is weekday d (d 
= 1 corresponds with a Saturday, d =2 corresponds with a Sunday, ….d = 7 corresponds 
with a Friday), and let βd be the difference from the mean price level (β7 equals zero to 
prevent from multicollinearity). The expression for the deterministic component therefore 
becomes: 

 fh (t) = µ0 + µh + Σd βd Id(t) (4.2) 

The stochastic component in equation 4.1 accounts for the variation of the hourly day-
ahead price around the deterministic component. The stochastic part may account for 
characteristics that electricity prices exhibit such as mean-reversion, time-varying volatility 
and spikes. In this study, the stochastic component is a mean-reverting process. To model 
this, let αh be the rate of mean-reversion for hour h; it reflects the speed with which the 
price moves back to its hourly fundamental component when the price deviated from that 
value yesterday. The expression for the stochastic component becomes: 

 xh (t) = -αhxh (t-1) + εh(t) (4.3) 

In equation (4.3), εh(t) is the error term. The equations (4.2) and (4.3) disclose the 
combination of cross-sectional variation and time-series dynamics in the panel framework.  
The price for delivery in hour h of day t depends on the price for that hour on the previous 
day and not on the price in the previous hour.  
The error term in equation (4.3), εh(t), is assumed to be independent over the days but it 
allows for cross-sectional covariance between the hours. Allowing for cross-sectional 
correlation is important, as when a trader submits her quote delivery in hour h in the next 
day, she will let this quote depend on the information she has for all other hours observed 
at the time of quotation. Let εh(t) be the (24 x 1) vector containing the hourly error term 
εh(t) in row h and let Σ be the (24 x 24) hourly cross sectional covariance matrix that 
describes the dependence between hours in the same day (h = 1 through 24): 

 ε(t) ~ IID(0, Σ). (4.4) 

Equation (4.4) shows that one can disentangle cross-sectional dependence from time-series 
dependence. The covariance matrix Σ can be specified. In this study, the covariance matrix 
is not specified in order to examine the cross-sectional patterns that are embedded in the 
prices. The parameters in the model are estimated using the seemingly unrelated (SUR) 
method. SUR estimates the parameters of the 24 hourly time series, accounting for 
heteroskedasticity and contemporaneous correlations in the errors across the time series. 
We refer to Baltagi (1995) for an overview of panel models and their applications and for 
details on SUR.  
    
4.2.2 Restricted models 
We restrict the general model described in section 4.2.1, in three ways. We namely want to 
gain insight whether hourly price dynamics can be best described by a panel model that 
accounts for hourly varying mean-reversion rates only (i), hourly varying mean price 
levels only (ii), or neither of these characteristics (iii). An important point worth 
emphasizing is that the restricted models are nested in the general model.  
(i) Let us first impose a restriction on the deterministic component described in equation 
(4.2) by assuming that µh equals zero. Then equation (4.2) becomes: 
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 fh (t) = µ0 + Σd βd Id(t) (4.5) 

This restriction implies that we do not allow for differences in mean price levels over the 
hours. Observe that the deterministic component (4.5) still allows for different price levels 
for different days of the week. The stochastic component remains unchanged from the 
general model. Hence, the deterministic component and stochastic component of the 
restricted model (i) are respectively given by (4.3) and (4.5). We use SUR to estimate the 
parameters of the model.  
(ii) We now leave the deterministic component in the general model unchanged. We 
impose a restriction on the stochastic component described in equation (4.3.) We assume 
that prices moves back with a daily constant rate α0 to its hourly price mean level described 
in equation (4.2). Then (4.3) can be rewritten as: 

 xh (t) = -α0 (t-1) + εh(t) (4.6) 

The deterministic component and stochastic component of the restricted model (ii) are 
respectively given by (4.2) and (4.6). The error term in equation (4.6) ), εh(t), is given by 
equation (4.4). We use SUR to estimate the parameters of the model. In this model the 
deterministic component allows for different price levels for different weekdays of the 
weeks and hours of the day, but prices move back to the hourly mean price level with a 
constant speed, reflected by α0.  
(iii) This restricted model combined the aforementioned restrictions on the deterministic 
and stochastic component. We now assume that the price on hour h of day t is given by the 
sum of equation (4.5) and equation (4.6). The error term in equation (4.6) is given by 
equation (4.4). We perform SUR to obtain estimates for the parameters in equations (4.5) 
and (4.6). Although we only seem to exploit the time-series dimension of the panel, it is 
worth emphasizing that this is not true. We still allow for cross-sectional covariance 
between the hours through modeling the error covariance matrix Σ of (4.4). As mentioned 
earlier, this is important since a trader can let her quote for hour h on the next day depend 
on the information that she has for all other hours observed at the time of quotation. 
 
4.2.3 Model specification tests 
To formally test whether the general model is a better model specification than the 
restricted versions we employ a likelihood ratio test. This test compares the log-likelihood 
(LL) values of two nested models. The likelihood ratio (LR) test statistic is computed as:    

 LR = 2*(LLgeneral - LLrestricted) (4.7) 

 
The LR test statistic is Chi-square distributed under the null-hypothesis of correctly 
imposed restrictions. The number of degrees of freedom is set equal to the number of 
exclusion restrictions (Verbeek, 2004).  
 
4.3 Sample and data description 
We use day-ahead prices from the year 2004 for three day-ahead markets: the Amsterdam 
Power Exchange (APX), the European Energy Exchange (EEX; Germany) and Powernext 
(PPX; France). The APX is the first electronic power-trading platform that is established in 
continental Europe for day-ahead trades. The EEX is a result of a merger in mid-year 2002, 
between the Leipzig Power Exchange (founded in August 2000) and the European Energy 
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Exchange of Frankfurt. Since then the EEX has developed as the second most liquid (after 
the Scandinavian Nordic Power Exchange) market in Europe. The day-ahead power 
market of Powernext has been established in the end of 2001. These three markets have the 
same day-ahead market structure on hourly power contracts in common. Traders on the 
APX, EEX and PPX markets are required to submit all their bids and offers before 
respectively 11:00am, 12:00am and 11:00am for the next day delivery. Market prices are  
published around noon. For each market, we have 8784 observations (24 hours times 366 
days). Table 4.1 provides an overview of descriptive statistics of this data in price levels 
and log prices.  
  
 

 APX EEX PPX 

 Price Log price Price Log price Price Log price 

Mean 31.58 3.315 28.52 3.261 28.13 3.251 

Median 28.70 3.357 28.17 3.338 28.01 3.333 

Std deviation 22.26 0.563 10.80 0.470 10.41 0.459 

Minimum 0.010 -4.605 0.450 -0.799 0.000 -3.219 

Maximum 800.0 6.685 150.0 5.010 100.0 4.605 

Skewness 10.46 -2.717 0.502 -1.609 0.210 -1.834 

Exc. kurtosis 239.1 36.10 6.236 8.022 13.90 3.567 

(8784 observations for each market). 

Table 4.1: Descriptive statistics of APX-, EEX-, and PPX day-ahead prices for 2004. 
Source: www.apx.nl (APX), www.eex.de (EEX) and www.powernext.fr (PPX) 

 
Table 4.1 discloses the non-normal characteristics of the data being the positive skewness 
and excess kurtosis. From figure 4.1, we observe some well-documented stylized facts of 
power prices. We observe high volatility that seems to cluster over the days but not 
between hours. Compare for example the graphs of hour 19 and hour 20 in the month of 
March. 
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The top left graph represents the time-series of log day-ahead prices for hour 1.  
The bottom right graph represents the time-series of log day-ahead prices for hour 24. 

Figure 4.1: Natural logarithm of day-ahead prices for EEX market in 2004. 

 
All hours clearly exhibit mean reversion that moves price back to a certain price level 
when a price shock has occurred. Furthermore we can clearly see that volatility patterns 
differ over the hours and the occurrence of positive and negative spikes. Note that negative 
spikes predominantly occur during night hours. This can be explained by the relatively 
high competition on the supply-side during these off-peak hours, when electricity is 
offered at discount prices in order to avoid costs for ramping down and ramping up later 
(Bunn and Karakatsani, 2003). We observe similar price patterns on the APX and PPX.  
 
4.4 Results 
We now present and discuss the empirical results obtained from the general hourly price 
model (section 4.4.1) and the restricted versions of the model (section 4.4.2.).       
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4.4.1. Results general model 
The tables 4.2 (APX), 4.3 (EEX) and 4.4 (PPX) contain the SUR estimates for the 
parameters in equations 4.2, 4.3 and 4.4. 
 

µ 0 3.290 (0.020)***  µ19 0.340 (0.026)***  α15 0.770 (0.024)*** 

µ1 -0.134 (0.011)***  µ20 0.283 (0.020)***  α16 0.771(0.024)*** 

µ2 -0.342 (0.017)***  µ21 0.221 (0.016)***  α17 0.650 (0.029)*** 

µ3 -0.471(0.020)***  µ22 0.144 (0.010)***  α18 0.441 (0.029)*** 

µ4 -0.572 (0.024)***  µ23 0.100 (0.009)***  α19 0.446 (0.028)*** 

µ5 -0.573 (0.023)***  α1 0.787 (0.025)***  α20 0.487 (0.026)*** 

µ6 -0.410 (0.033)***  α2 0.778 (0.024)***  α21 0.509 (0.028)*** 

µ7 -0.288 (0.045)***  α3 0.745 (0.023)***  α22 0.633 (0.028)*** 

µ8 -0.054 (0.051)  α4 0.820 (0.027)***  α23 0.818 (0.031)*** 

µ9 0.189 (0.029)***  α5 0.781 (0.023)***  α24 0.742 (0.028)*** 

µ10 0.368 (0.024)***  α6 0.854 (0.034)***  β1 -0.171(0.020)*** 

µ11 0.458 (0.024)***  α7 0.941 (0.028)***  β2 -0.359 0.023)*** 

µ12 0.530 (0.025)***  α8 0.931 (0.028)***  β3 0.031 (0.024)*** 

µ13 0.382 (0.017)***  α9 0.869 (0.023)***  β4 0.084 (0.023)*** 

µ14 0.367 (0.020)***  α10 0.832 (0.025)***  β5 0.063 (0.023)*** 

µ15 0.283 (0.020)***  α11 0.770 (0.024)***  β6 0.062 (0.020)*** 

µ16 0.220 (0.020)***  α12 0.703 (0.026)***  Adj.R2 0.941 

µ17 0.208 (0.023)***  α13 0.766 (0.026)***  Durbin 
Watson 2.060 

µ18 0.428 (0.049)***  α14 0.811 (0.023)***  Log-
LH -8645.5 

Standard errors are in parentheses. Significant at: ***99%, **95%,  
*90% confidence level. Number of observations: 8784 

Table 4.2: SUR parameter estimates for the general model for APX prices  
 
We first focus on the estimates for the deterministic component in equation 4.2. In the 
tables, β1 represents a Saturday, β2 stands for a Sunday, β3 is a Monday and so forth. Both 
β1 and β2 are negative for all markets indicating the lower prices for electricity delivered 
on weekend days. The β parameters are all significant and are in line with results from 
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µ 0 3.236(0.020)***  µ19 0.321 (0.016)***  α15 0.776 (0.018)*** 

µ1 -0.111 (0.016)***  µ20 0.293 (0.014)***  α16 0.774 (0.018)*** 

µ2 -0.316 (0.021)***  µ21 0.264 (0.014)***  α17 0.721 (0.020)*** 

µ3 -0.448 (0.027)***  µ22 0.196 (0.012)***  α18 0.601 (0.022)*** 

µ4 -0.535 (0.029)***  µ23 0.153 (0.008)***  α19 0.541 (0.022)*** 

µ5 -0.501 (0.027)***  α1 0.832 (0.030)***  α20 0.536 (0.023)*** 

µ6 -0.267 (0.025)***  α2 0.811 (0.026)***  α21 0.599 (0.023)*** 

µ7 -0.132 (0.030)***  α3 0.757 (0.025)***  α22 0.651 (0.022)*** 

µ8 0.118 (0.029)***  α4 0.744 (0.024)***  α23 0.712 (0.025)*** 

µ9 0.231 (0.026)***  α5 0.708 (0.025)***  α24 0.787 (0.031)*** 

µ10 0.326 (0.018)***  α6 0.784 (0.028)***  β1 -0.209 (0.019)*** 

µ11 0.384 (0.016)***  α7 0.830 (0.023)***  β2 -0.356 (0.022)*** 

µ12 0.469 (0.018)***  α8 0.867 (0.023)***  β3 -0.001 (0.022)*** 

µ13 0.378 (0.015)***  α9 0.841 (0.021)***  β4 0.039 (0.022)*** 

µ14 0.337 (0.017)***  α10 0.829 (0.018)***  β5 0.038 (0.021)*** 

µ15 0.269 (0.018)***  α11 0.814 (0.018)***  β6 0.069 (0.019)*** 

µ16 0.219 (0.018)***  α12 0.693 (0.024)***  Adj.R2 0.955 

µ17 0.208 (0.018)***  α13 0.741 (0.020)***  Durbin 
Watson 2.052 

µ18 0.274 (0.018)***  α14 0.805 (0.021)***  Log-
LH -8331.0 

Standard errors are in parentheses. Significant at: ***99%, **95%,  
*90% confidence level. Number of observations: 8784 

Table 4.3: SUR parameter estimates for the general model for EEX prices  
 
Huisman and Mahieu (2003) among others. The average mean log price level µ0 vary 
between 3.236 (€25.43) for the EEX and 3.300 (€27.11) for the PPX. The values for µ1 
through µ23 reflect the hourly deviation from the mean price level. The estimates for µh are 
negative for hours 1 through 7 indicating the lower prices for off-peak delivery of power. 
Prices then increase for later hours and decrease late in the evening. These estimates make 
sense as demand for power is low in weekend and off-peak hours on weekdays and high in 
peak hours. The estimates for the mean-reversion parameters αh in the stochastic 
component in equation (4.3) show some differences over the hours. 
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µ 0 3.300 (0.020)***  µ19 0.274 (0.016)***  α15 0.753 (0.020)*** 

µ1 -0.196 (0.015)***  µ20 0.263 (0.013)***  α16 0.804 (0.022)*** 

µ2 -0.322 (0.019)***  µ21 0.187 (0.010)***  α17 0.758 (0.025)*** 

µ3 -0.429 (0.021)***  µ22 0.134 (0.009)***  α18 0.614 (0.022)*** 

µ4 -0.566 (0.023)***  µ23 0.096 (0.006)***  α19 0.479 (0.021)*** 

µ5 -0.684 (0.033)***  α1 0.779 (0.027)***  α20 0.436 (0.020)*** 

µ6 -0.404 (0.023)***  α2 0.761 (0.024)***  α21 0.546 (0.020)*** 

µ7 -0.241 (0.034)***  α3 0.699 (0.023)***  α22 0.600 (0.022)*** 

µ8 0.011 (0.027)***  α4 0.659 (0.024)***  α23 0.641 (0.022)*** 

µ9 0.169 (0.024)***  α5 0.666 (0.025)***  α24 0.715 (0.023)*** 

µ10 0.265 (0.017)***  α6 0.773 (0.027)***  β1 -0.226 (0.020)*** 

µ11 0.312 (0.015)***  α7 0.808 (0.029)***  β2 -0.403 (0.024)*** 

µ12 0.364 (0.0315)***  α8 0.790 (0.023)***  β3 -0.048 (0.025)*** 

µ13 0.319 (0.013)***  α9 0.865 (0.021)***  β4 0.051 (0.024)*** 

µ14 0.282 (0.013)***  α10 0.800 (0.019)***  β5 0.046 (0.023)*** 

µ15 0.223 (0.014)***  α11 0.773 (0.020)***  β6 0.045 (0.020)*** 

µ16 0.170 (0.016)***  α12 0.700 (0.022)***  Adj.R2 0.942 

µ17 0.154 (0.018)***  α13 0.702 (0.021)***  Durbin 
Watson 2.065 

µ18 0.216 (0.016)***  α14 0.749 (0.019)***  Log-LH -8239.5 

Standard errors are in parentheses. Significant at: ***99%, **95%,  
*90% confidence level. Number of observations: 8784 

Table 4.4: SUR parameter estimates for the general model for PPX prices  

 
The estimates are in the range of 0.65 and 0.95 until hour 17 and then fall to values in the 
range of 0.40 and 0.65 for the hours 18 through 22. Clearly, mean-reversion is not stable 
over the day; super-peak hours (18 through 22) exhibit significant less mean-reversion. 
This can be explained by the higher demand for power in these hours resulting in less 
reserve production capacity and therefore an increased probability of shortages and spikes. 
Prices in these hours are less predictable. This result is important. Forward and options 
contracts in super peak hours should not be valuated based on models that use data for 
baseload and/or peakload forward contracts as those prices will overestimate the true 
amount of mean-reversion. In nomination schemes, one should be careful assuming any 
price dependencies in the super peak hours. As discussed in section 4.1, studying the time 
series of daily average prices has been done extensively in energy economics literature. 
Huisman and Mahieu (2003) observe mean-reversion estimates for the APX of 
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approximately 0.37 (for the years 2001 and 2002). Our result indicates that mean-reversion 
is not constant throughout the day. The level of mean-reversion is significantly lower in 
the super peak hours. From the tables 4.2, 4.3 and 4.4, we see that the Durbin-Watson test 
statistics are all around 2, which implies that the hourly APX, EEX and PPX price series 
exhibit no serial correlation. We note that the autocorrelation correlograms (not reported) 
indicate that there is a small level of autocorrelation at certain daily time lags.38 A point 
worth emphasizing is that the adjusted R2 can be subject to spurious interpretation, since 
this criterion is only appropriate for evaluating the model’s fit for OLS estimations. We 
will therefore rely on the log-likelihood figures reported in the tables (noted as Log-LH), 
when we examine and compare the fit of the different models used in this study.  
 
Other interesting observations on hourly stochastic patterns show up in the (24 x 24) 
estimates cross-sectional correlation matrix. For the EEX the estimates are listed in table 
4.5a, 4.5b and 4.5c. Since the format of this booklet does not allow us to display the matrix 
as a whole, we cut the matrix in three parts, noted as a, b and c as is shown in textbox 4.1.  
Let’s use the notation m and n for respectively the rows and columns of the (24h x 24h) 
cross-sectional error correlation matrix Here part a are the elements (m,n), where m= 1 to 
12, and n = 1 to 12. Part b are the elements (m,n), where m= 1 to 12, and n = 13 to 24. And  
Part c are the elements (m,n), where m= 13 to 24, and n = 13 to 24 
 

  
 

 
The estimated cross-sectional correlation matrix of the other markets are shown in the 
Appendix (A4.1-A4.6).   

                                                           
38 Autocorrelation is apparent at lag 1 and 7 in all three datasets, which could be partly successfully 
removed (only for lag 7 through inclusion of AR (7) term). We note that the Durbin-Watson test for 
fixed effects panel data models, as specified by Bhargava et al. (1982) who provide theoretical 
guidance on the Durbin-Watson tests in panel data model), is not feasible since the upper and lower 
bounds for the Durbin-Watson test statistics are not known for a large T (in our panel T =365).      

The dimensions of the (m x n) correlation matrix are 24h x 24h,  
as can be seen from the x-axis and y-axis. 
Textbox 4.1 Display scheme of the elements of the cross-sectional error correlation  
matrix shown in table 4.5a, 4.5b and 4.5c. 

1 
…… 

… 
12 
… 
…. 

24 

 
    a 
 

 
 

                   c  
 
    b 

1……………12………………24
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In the tables 4.5 (a, b and c), the correlation numbers bigger than 0.5 are reported 
boldfaced; non-significant correlations are left blank39. The tables 4.5 (a,b and c) show 
evidence for a clear cross-sectional correlation structure in hourly electricity prices.   
 
Firstly, observe the high correlations ranging between 0.732 (between hour 20 and 21) and 
0.964 (between hour 15 and 16) between two adjacent hours. An explanation for this effect 
is that consumption and capacity flows over the hours; if reserve capacity is low in one 
hour it will probably be low in the next hour as well and if demand is high in one hour it 
will probably be high in the next hour as well. Secondly, observe the block-structure of 
correlations. The first block is identified by the hours 1 to 6 (table 4.5a) and hour 24 (table 
4.5.c). Prices in these off-peak hours exhibit high cross-sectional correlations. The second 
block shows up in the peak hours from hour 6 through hour 19. Again prices in these hours 
are highly correlated. There is evidence for a clear peak off-peak correlation structure but, 
interestingly, the boundaries of the peak block do not perfectly match the market definition 
of peak hours40. A possible explanation for the relatively low correlation between peak 
hours and off-peak hours is that the difference in reserve capacity between the two blocks. 
The lower reserve capacity in the peak hours implies that the prices in those hours are 
more volatile and exhibit more spikes than prices in off-peak hours.    
The empirical results from the general panel model show that hourly prices in day-ahead 
markets mean-revert around an hourly specific mean price level, that the speed of mean-
reversion is different over the hours (especially in super-peak hours) and that a block-
structured cross-sectional correlation pattern is apparent.   
 
4.4.2. Results restricted models 
We now will present and discuss the results for the restricted models (i), (ii) and (iii).  
in equations 4.2, 4.3 and 4.4. The estimation results for the cross-sectional correlation  
matrices of the error term are not shown here, but show similar patterns to those reported 
for the general model (see table 3.5 and the Appendix A4.1 – A4.6). 
 
Restricted model (i) 
The tables 4.6 (APX), 4.7 (EEX) and 4.8 (PPX) contain the SUR estimates for the 
parameters in equations (4.3) and (4.5). 

                                                           
39 The Fisher-transformation is a common way to test whether the correlation coefficient is 
significantly different from zero. The correlation coefficient r is transformed as: z =√(ln 1+ r / 1-r). 
Here z is approximately normally distributed with standard error 1 / √(N-3), where N is the sample 
size. We use a 99% confidence interval (critical value is 2.575).     
40 Note that the definition of peak hours differs per market: At the EEX and Powernext peak hours 
are from 8.00 am to 20.00 pm. At the APX peak hours are from 7.00am to 23.00 pm.   
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µ0 3.306 (0.018)***  α12 0.415 (0.019)***  α24 0.659 (0.029)*** 

α1 0.693 (0.026)***  α13 0.393 (0.019)***  β1 -0.152 (0.020)*** 

α2 0.564 (0.021)***  α14 0.540 (0.020)***  β2 -0.345 (0.023)*** 

α3 0.496 (0.019)***  α15 0.545 (0.021)***  β3 0.065 (0.024)*** 

α4 0.561 (0.022)***  α16 0.597 (0.023)***  β4 0.070 (0.024)*** 

α5 0.486 (0.019)***  α17 0.553 (0.026)***  β5 0.056 (0.023)*** 

α6 0.694 (0.031)***  α18 0.359 (0.025)***  β6 0.049 (0.020)*** 

α7 0.831 (0.028)***  α19 0.295 (0.023)***  Adj.R2 0.935  

α8 0.848 (0.029)***  α20 0.329 (0.022)***  Durbin 
Watson 2.196 

α9 0.696 (0.025)***  α21 0.305 (0.024)***  Log-LH -8713.7 

α10 0.587 (0.023)***  α22 0.426 (0.025)***    

α11 0.502 (0.020)***  α 23 0.666 (0.030)***    

Standard errors are in parentheses. Significant at: ***99%, **95%,  
*90% confidence level. Number of observations: 8784 

Table 4.6: SUR parameter estimates for the restricted model (i) for APX prices  
 

µ0 3.411 (0.017)***  α12 0.428 (0.019)***  α24 0.600 (0.026)*** 

α1 0.644 (0.028)***  α13 0.464 (0.017)***  β1 -0.199 (0.019)*** 

α2 0.602 (0.022)***  α14 0.617 (0.020)***  β2 -0.347 (0.022)*** 

α3 0.566 (0.022)***  α15 0.665 (0.018)***  β3 -0.001 (0.023)*** 

α4 0.505 (0.020)***  α16 0.696 (0.018)***  β4 0.041 (0.023)*** 

α5 0.424 (0.019)***  α17 0.649 (0.020)***  β5 0.038 (1.743)*** 

α6 0.553 (0.024)***  α18 0.514 (0.020)***  β6 0.064 (0.019)*** 

α7 0.606 (0.023)***  α19 0.422 (0.020)***  Adj.R2 0.945 

α8 0.766 (0.023)***  α20 0.432 (0.021)***  Durbin 
Watson 2.162 

α9 0.753 (0.021)***  α21 0.465 (0.022)***  Log-LH -8375.9 

α10 0.657 (0.019)***  α22 0.554 (0.023)***    

α11 0.557 (0.018)***  α 23 0.605 (0.026)***    

Standard errors are in parentheses. Significant at: ***99%, **95%,  
*90% confidence level. Number of observations: 8784 

Table 4.7: SUR parameter estimates for the restricted model (i) for EEX prices  
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µ0 3.385 (0.019)***  α12 0.471 (0.018)  α24 0.528 (0.024) 

α1 0.600 (0.025)***  α13 0.468 (0.017)  β1 -0.021 (0.019) 

α2 0.559 (0.022)***  α14 0.571 (0.017)  β2 -0.389 (0.023) 

α3 0.449 (0.019)***  α15 0.660 (0.019)  β3 -0.041 (0.025) 

α4 0.378 (0.016)***  α16 0.728 (0.022)  β4 0.070 (0.024) 

α5 0.411 (0.019)***  α17 0.701 (0.025)  β5 0.063 (0.023) 

α6 0.649 (0.021)***  α18 0.520 (0.021)  β6 0.052 (0.019) 

α7 0.661 (0.025)***  α19 0.386 (0.018)  Adj.R2 0.933 

α8 0.757 (0.022)***  α20 0.340 (0.017)  Durbin 
Watson 2.191 

α9 0.650 (0.031)***  α21 0.427 (0.019)  Log-LH -8249.4 

α10 0.650 (0.019)***  α22 0.475 (0.022)    

α11 0.556 (0.018)***  α 23 0.511 (0.022)    

Standard errors are in parentheses. Significant at: ***99%, **95%,  
*90% confidence level. Number of observations: 8784 

Table 4.8: SUR parameter estimates for the restricted model (i) for PPX prices  
 
The estimates presented in the tables 4.6, 4.7 and 4.8 correspond with the restricted model 
(i). This model allows for hourly-varying mean reversion rates. In contrast to the general 
framework we have restricted the hourly-varying mean price level, such that µh=0 
(h=1….24). Hence, an important difference between the general model and this restricted 
version is that hourly prices revert back to a constant mean price level throughout the day.  
When we compare the estimates for the mean-reversion parameters αh of the general model 
with the restricted version (i) we observe the following difference: the αh estimates of the 
restricted model are overall in a lower range, which can be explained by the fact that prices 
revert back to a constant mean-price level throughout the day. Ignoring the price 
characteristic of power prices that mean price levels vary between hours, leads to 
underestimation of the true mean-reversion levels. An important point worth emphasizing 
when we examine the mean-reversion parameters of the restricted model in light of the µh 

estimates reported for the general model, is that the highest values of αh are reached in the 
hours (hours 6 to 9, and hours 16 and 17), when the change in value between the µh 
estimate on hour h, and the estimate µh+1 on the adjacent hour h+1, is the highest. This 
implies that the rate of mean reversion on h+1 has to be higher, in order to pull back the 
price to the level in hour h+1. 
 
Restricted model (ii) 
The estimates presented in the tables 4.9, 4.10 and 4.11 correspond with restricted model 
(ii).  
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µ0 3.298 (0.020)***  µ 12 0.530 (0.023)***  α0 0.760 (0.010)*** 

µ 1 -0.134 (0.012)***  µ13 0.382 (0.017)***  β1 -0.180 (0.021)*** 

µ2 -0.342  (0.017)***  µ14 0.367 (0.021)***  β2 -0.366 (0.024)*** 

µ3 -0.471  (0.020)***  µ15 0.284 (0.020)***  β3 0.045 (0.024)*** 

µ4 -0.572  (0.024)***  µ16 0.220 (0.020)***  β4 0.070 60.024)*** 

µ5 -0.573 (0.024)***  µ17 0.208 (0.021)***  β5 0.052 (0.011)*** 

µ6 -0.410  (0.037)***  µ18 0.428 (0.034)***  β6 0.051 (0.021)*** 

µ7 -0.287  (0.055)***  µ19 0.341 (0.019)***  Adj.R2 0.941 

µ8 -0.050  (0.062)  µ20 0.284 (0.014)***  Durbin 
Watson 2.091 

µ9 0.191  (0.033)***  µ21 0.222 (0.011)***  Log-
LH -8631.3 

µ10 0.369  (0.026)***  µ 22 0.145 (0.008)***    

µ11 0.458  (0.024)***  µ23 0.010 (0.010)***    

Standard errors are in parentheses. Significant at: ***99%, **95%,  
*90% confidence level. Number of observations: 8784 

Table 4.9: SUR parameter estimates for the restricted model (ii) for APX prices  
 

µ 0 3.236 (0.020)***   µ 12 0.469 (0.018)***  α0 0.745 (0.010)*** 

µ 1 -0.110 (0.018)***  µ13 0.378 (0.015)***  β1 -0.198 (0.019)*** 

µ2 -0.316 (0.023)***  µ14 0.337 (0.018)***  β2 -0.354 (0.021)*** 

µ3 -0.448 (0.028)***  µ15 0.269 (0.019)***  β3 0.028 (0.022)*** 

µ4 -0.535 (0.029)***  µ16 0.218 (0.019)***  β4 0.044 (0.022)*** 

µ5 -0.501(0.026)***  µ17 0.207 (0.018)***  β5 0.045 (0.021)*** 

µ6 -0.268 (0.026)***  µ18 0.273 (0.017)***  β6 0.061 (0.019)*** 

µ7 -0.133 (0.034)***  µ19 0.321 (0.015)***  Adj.R2 0.958 

µ8 0.119 (0.033)***  µ20 0.293 (0.013)***  Durbin 
Watson 2.082 

µ9 0.231 (0.029)***  µ21 0.264 (0.013)***  Log-
LH -8348.9 

µ10 0.327 (0.020)***  µ 22 0.196 (0.011)***    

µ11 0.385 (0.017)***  µ23 0.154 (0.008)***    

Standard errors are in parentheses. Significant at: ***99%, **95%,  
*90% confidence level. Number of observations: 8784 

Table 4.10: SUR parameter estimates for the restricted model (ii) for EEX prices  
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µ0 3.278 (0.021)***  µ 12 0.363 (0.016)***  α0 0.707 (0.010)*** 

µ 1 -0.193 (0.017)***  µ13 0.319 (0.013)***  β1 -0.184 (0.022)*** 

µ2 -0.319 (0.020)***  µ14 0.281 (0.014)***  β2 -0.373 (0.025)*** 

µ3 -0.425 (0.021)***  µ15 0.223 (0.015)***  β3 0.022 (0.025)*** 

µ4 -0.560 (0.022)***  µ16 0.171 (0.018)***  β4 0.082 (0.025)*** 

µ5 -0.676 (0.031)***  µ17 0.155 (0.019)***  β5 0.072 (0.025)*** 

µ6 -0.401 (0.025)***  µ18 0.215 (0.015)***  β6 0.052 (0.022)*** 

µ7 -0.240 (0.039)***  µ19 0.271 (0.013)***  Adj.R2 0.943 

µ8 0.014 (0.029)  µ20 0.262 (0.011)***  Durbin 
Watson 2.083 

µ9 0.172 (0.028)***  µ21 0.189 (0.009)***  LogLH -8208.5 

µ10 0.266 (0.018)***  µ 22 0.136 (0.008)***    

µ11 0.312 (0.016)***  µ23 0.098 (0.006)***    

Standard errors are in parentheses. Significant at: ***99%, **95%,  
*90% confidence level. Number of observations: 8784 

Table 4.11: SUR parameter estimates for the restricted model (ii) for PPX prices  

 
This model restricts the freedom of the hourly-varying mean-reversion rate (such that αh = 
0 (h=1….24)) as specified in the stochastic component of the general model. When we 
compare the reported values of µh for the general model and the reported parameter values 
of this restricted model, the values are roughly the same. Furthermore, the pattern is 
similar. The estimates for µh are negative for hours 1 through 7 indicating the lower prices 
for off-peak delivery of power. Then prices for later hours and eventually prices decrease 
later in the evening. In this model, hourly prices revert back to their hourly mean price 
level with a constant speed throughout the day. The mean reversion rate level varies 
between the 0.707 for the PPX and 0.760 for the APX.  
 
Restricted model (iii) 
In tables 4.12, 4.13 and 4.14 we provide the estimates corresponding with the restricted 
model (iii). Here, the freedom of the hourly-varying parameters in the general model are 
restricted, such that µh=0 and αh = 0 (h=1….24). The intra-day (hourly) dimension is in this 
model thus shows up in the hourly cross-sectional covariance matrix described by equation 
(4.4). From the αh parameters listed in the tables, we observe that prices in weekends are 
lower than in weekdays, which is indicated by the negative β1 and β2 coefficient that are 
roughly around respectively -0.15 and -0.35. This implies that prices on the markets are on 
Saturdays €1.2 lower than the average price, and on Sunday even €1.4 lower. The value of 
the mean-level price estimate µ0 is roughly around 3.4 across markets, which reflects an 
average price of €30 for 1 MWh of electricity.  
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µ0 3.413 (0.019***  β3 0.031 (0.026)  Adj.R2 0.936 

α0 0.585 (0.010)***  β4 0.082 (0.026)***  Durbin 
Watson 2.132 

β1 -0.153 (0.021)***  β5 0.064 (0.025)***  Log-LH -8788.0 

β2 -0.360 (0.025)***  β6 0.051 (0.021)***    

Standard errors are in parentheses. Significant at: ***99%, **95%,  
*90% confidence level. Number of observations: 8784 
Table 4.12: SUR parameter estimates for the restricted model (iii) for APX 
prices  

 
µ0 3.408 (0.019)***  β3 0.010 (0.025)***  Adj.R2 0.939 

α0 0.551 (0.010)***  β4 0.052 (0.025)***  Durbin 
Watson 2.152 

β1 -0.181 (0.020)***  β5 0.047 (0.024)***  Log-LH -8383.9 

β2 -0.350 (0.024)***  β6 0.064 (0.019)***    

Standard errors are in parentheses. Significant at: ***99%, **95%,  
*90% confidence level. Number of observations: 8784 
Table 4.13: SUR parameter estimates for the restricted model (iii) for EEX 
prices  

 
µ0 3.366 (0.022)***  β3 -0.012 (0.028)  Adj.R2 0.926 

α0 0.495 (0.009)***  β4 0.088 (0.028)***  Durbin 
Watson 2.199 

β1 -0.170 (0.022)***  β5 0.067 (0.026)***  Log-LH -8277.6 

β2 -0.374 (0.026)***  β6 0.047 (0.022)**    

Standard errors are in parentheses. Significant at: ***99%, **95%,  
*90% confidence level. Number of observations: 8784 
Table 4.14: SUR parameter estimates for the restricted model (iii) for PPX 
prices  

 
4.4.3. Results model specification tests 
To formally test whether the general model is a better model specification than either of the  
restricted versions we employ the likelihood ratio (LR) test given by equation (4.7). In 
table 4.15 we provide the results of testing the general model against all the restricted 
nested versions individually. The LR test statistic is Chi-square distributed under the null-
hypothesis of correctly imposed restrictions. The number of degrees of freedom is set equal 
to the number of exclusion restrictions. Therefore the degrees of freedom that corresponds 
to the LR test statistic for testing the restricted version of model (i) and (ii) against the 
general specification, equals 23. The number of degrees of freedom corresponding to the 
LR test employed on the general model and the restricted version (iii), equals 46.   
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 APX EEX PPX 

General model vs. Restricted (i)  136.4*** 89.80** 19.80 

General model vs. Restricted (ii) -28.40 35.80** -62.00 

General model vs. Restricted (iii) 264.4*** 105.8*** 76.20*** 

The LR test statistic is Chi-square distributed. The critical values of the Chi-square 
distribution with 23 degrees of freedom at the ***99%, **95% and *90% confidence levels are 
respectively 41.64, 35.17 and 32.00. The critical values of the Chi-square distribution with 46 
degrees of freedom at the ***99%, **95% and *90% confidence levels are 71.20, 62.83 and 
58.64. 

Table 4.15: LR model specification test: general model versus restricted nested models 
 
From the LR test statistics reported in the bottom row of table 4.15, we can conclude that 
we have to reject the null-hypothesis of correctly imposed restrictions as specified in 
restricted model (iii). This implies that dropping the hourly varying parameters from the 
general model, as is done in the restricted (iii) version, leads to erroneous results. From the 
left column we can see that a panel model that allows for hourly-varying mean price levels 
and has a covariance matrix specified by equation (4.4), describes the APX hourly price 
dynamics the best (compared to the restricted model provided in this Chapter). The LR test 
statistics obtained from testing the general model against the restricted version (ii) show 
that the hourly mean-reversion parameters in the general model are not important to 
describe the hourly dynamics in the APX market. From the middle column in the table, we 
can see that the general model describes the EEX power price characteristics relatively the 
best. From the right column in the table, we can conclude that dropping out either the 
hourly-mean reversion parameters or the hourly mean level parameters from the general 
model, does not lead to a fall in the log-likelihood value that is large enough to conclude 
that the dropped variables are important for modeling hourly price dynamics in the PPX 
market. 
    
4.5 Concluding remarks 
This Chapter proposes a panel framework to model the dynamics in hourly electricity 
prices in day-ahead markets. We have examined the characteristics of hourly prices for 
day-ahead delivery of electricity in the APX, EEX and PPX markets. 
As many researchers have concentrated mainly on daily average prices, we present a 
framework to describe the dynamics on an intra-day basis. Hourly electricity prices do not 
follow a time series process but are in fact a panel of 24 cross-sectional hours that vary 
from day to day. This is due to the microstructure of many day-ahead, where prices for all 
hours are quoted at the same moment on a day.  
The empirical results show that hourly electricity prices in day-ahead markets mean-revert 
around an hourly specific mean price level and that a block structured cross-sectional 
correlation pattern is apparent. We also provide evidence obtained from one market in our 
analysis (EEX) that the speed of mean-reversion is different over the hours (especially in 
super-peak hours). Examination of the cross-sectional pattern between hourly prices 
discloses that prices in peak-hours correlate highly among each other and the same holds 
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for prices in off-peak hours. There is much less correlation between peak and off-peak 
hours. This effect can be explained by the differences in reserve capacity between the two 
blocks. The lower reserve capacity in the peak hours implies that the prices in those hours 
are more volatile and exhibit more spikes than prices in off-peak hours.    
Understanding the characteristics of hourly prices is important as many agents in the 
electricity markets are exposed to hourly variation. Power generation plants let their 
nomination depend on the expected prices for electricity throughout the day. Companies 
that use electricity in a certain profile through the day that cannot be resembled by standard 
baseload and peakload contracts might have a demand for contracts that deliver only in a 
few hours of the day. To valuate these contracts market makers need to assess the 
expectations and risks for those specific hours and cannot rely on daily average prices only. 
Other applications of the hourly price model can be found in risk management, contract 
structuring and derivative pricing (e.g. hourly power options are currently traded in the 
U.S. markets, and to a lesser extent in the European markets). The general model can be 
used for making simulations and the importance of having different mean-reversion levels 
and the correlation matrix helps to get a better assessment of the risks faced from 
exposures to dynamics in specific hours. 
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Chapter 5: Electricity futures and forward prices41  
-Empirical evidence on forecast power, risk premia and time-to-maturity effect- 

 
5.1 Introduction 
The cost-of-carry relationship42 that links the spot price of an underlying storable asset to 
its forward- or future price cannot be used for deriving the fair value of power derivatives. 
The inability to link the spot and derivative price as a no-arbitrage condition stems from 
the non-storability of electricity; electricity forward- or future traders cannot make their 
portfolio risk neutral by trading these derivatives on one side while maintaining a position 
in the underlying commodity for the time until delivery on the other side. Note that 
throughout this Chapter we do not distinguish between forward and futures prices, as these 
prices are very close to each other in practice. 
In this Chapter, we adopt an alternative approach that relies on an equilibrium argument to 
link spot prices with forward-, or futures prices simultaneously: the forward price of 
electricity represents the sum of the expected future spot price in the delivery period, and a 
risk premium. The first term embeds expectations about the future spot price, as the 
forward is in fact a forward-looking contract that locks in the future price of the underlying 
spot. The second term, the premium, could be thought of as a compensation component 
that is captured in the forward price for the spot price movements (price risk) that both 
parties insulate themselves from by entering into the contract (Hull, 2002). Here the risk 
premium is defined as the difference between the current forward price and the expected 
future spot price.   
Recently, several papers have examined the risk premium in power forward and future 
contracts. Bessembinder and Lemmon (2002) postulate an equilibrium model in which 
different agents are exposed to economic risks (i.e. price and demand risks). They 
document evidence from the Pennsylvania, New-Jersey, Maryland (PJM) market that the 
forward price increases with average demand load and find a positive premium for power 
delivery in summer months. Longstaff and Wang (2004) provide evidence consistent with 
the findings of Bessembinder and Lemmon (2002), by conducting a high-frequency 
analysis on the U.S. market. They show that the day-ahead risk premia vary throughout the 
day and can be explained by economic risk factors such as volatility in demand, revenues 
and spot prices. Karakatsani and Bunn (2005) provide insight in risk premiums in the 
British market and find that positive risk premiums are dominant in peak hours 
(compensating flexible generators for bearing spot price risk) and negative premia in off-
peak hours. Karakatsani and Bunn (2005) explain that the negative risk premia are caused 
by the less flexible baseload power generators that need to comply to strict technical 

                                                           
41 This Chapter is partly based on: R. Huisman and C. Huurman (2006) “Risk premiums in power 
forwards”, Working paper RSM Erasmus University. We thank participants at Energy Markets 
Group seminar at London Business School (6 October 2005) for valuable comments. Furthermore, 
we thank Eric de Koning for processing part of the data.     
42 The cost-of-carry relationship shows that the price of a standard derivative contract today, for 
example a next-month delivery forward, should be equal to the costs of an investment strategy in 
which the investor decides to borrow money against the interest rate, buy the underlying commodity 
today, and store it. Then in the next month from t, the commodity will be sold in the market in order 
to pay back the loan including interest, with the income on the underlying commodity (Hull, 2002). 
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regulations and sell their output in off-peak hours at a discount in order to avoid costs for 
ramping down and ramping up later.  
In this Chapter, we do not focus on potential factors that affect (the size and sign of) 
forward premia. We make an attempt to disclose to what extent observed electricity 
forward-, and futures prices can be interpreted as a risk premium and as an expectation of 
the spot price in the delivery period, and how these components evolve over time. This 
issue is relevant, as market makers need to assess how the fractions of expectations and 
risks incorporated in the prices of contracts with different maturities evolve over time 
To do so, we follow the framework proposed by Fama (1984) that allows for joint 
measurement of both the forecast component and premium component. We apply the Fama 
model on price data of forward-, and future contracts with different maturity horizons. In 
this study we attempt to shed light on the relationship between time-to-maturity and the 
risk premium component and forecast component embedded in electricity forward prices.  
In particular, the reported empirical evidence that we obtain from monthly electricity 
forward prices of contracts with a time-to maturity ranging from one-month up to six-
months, discloses that the risk premium component increases with maturity when the 
contracts rolls to the expiration date as close as one month. This time to maturity pattern is 
consistent with commodity derivative price theory (Samuelson (1965)).   
We also we apply the Fama model to disentangle the time-to-maturity effect embedded in 
the premium-, and forecast component embedded in daily electricity forward prices. We do 
this for the contracts in our sample with the shortest horizon, being month-ahead contracts. 
We disclose that the fraction of the spot price forecast component increases when we roll 
from one trading day to the next up to a few trading days before expiration, which goes in 
line with the derivative price theory that forward prices converge to its underlying spot 
price very close to expiration and in the delivery period (Hull, 2002).       
We obtain both price data for the abovementioned forward contract maturities and spot 
price data of day-ahead contracts from three markets: The European Energy Exchange  
(EEX) in Frankfurt, the European Energy Derivatives Exchanges (ENDEX) and 
Amsterdam Power Exchange (APX) in Amsterdam, and the Nordic Power Exchange 
(NPX) in Oslo.  
The Chapter is structured as follows. Section 5.2 sets out the Fama methodology and 
presents the hypotheses to test for the time-to-maturity effect in forward prices. Section 5.3 
presents the data set. Section 5.4 provides the estimation results. Section 5.5 concludes.   
  
5.2 Disclosing the time-to-maturity pattern in electricity futures and forward prices  
In this section we outline the methodology to gain insight whether the fractions of risk 
premium and price predictive power to future spot prices are significant, and disclose a 
time-to-maturity pattern that goes in line with derivative price theory.  
 
5.2.1 Fama model 
Let FT(t) be the forward price per MWh quoted at time t for delivery of 1 MWh power in 
each hour of the future delivery period T. Let Et(ST) be the expectation at time t that 
representative traders have for the spot price in the delivery period T. Let RPT(t) be the risk 
premium per MWh for delivery of power in period T quoted at time t. The forward price 
observed at time t equals: 

FT(t) =  Et(ST)+ RPT(t) (5.1) 
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To gain insight in the informational content of forward prices, we subtract the current spot 
price (observed at time t) from both sides in equation (5.1). If S(t) represents the current 
spot price of power, we obtain the following expression: 

FT(t) – S(t) =  Et(ST) – S(t) + RPT(t)= [Et(ST) – S(t)] + [FT(t) –  Et(ST)]  (5.2) 

Equation (5.2) shows that the forward basis observed at time t (on the left-hand side of the 
equation), can be decomposed in two components that are denoted in square brackets on 
the right-hand side of the equation: the expected change in the spot price and the realized 
risk premium.  
Fama applies the following regression models to disentangle risk premia and spot price 
expectations on future price data:   

ST – S(t) = α0 + β0 (FT(t) – S(t)) + σ0θt, where θt ~IID (0, 1) (5.3) 

FT(t) – ST = α1 + β1 (FT(t) – S(t)) + σ0ωt, where ωt ~IID (0, 1) (5.4) 

Evidence that the slope coefficient estimate β0 in equation (5.3) is positive and significant 
would imply that the basis contains information about the expected change in the spot 
price. Evidence that the slope coefficient estimate β1 in equation (5.4) is positive and 
significant would imply that the basis contains information about the realized risk 
premium. Power to forecast ex-post risk premia is evidence of time-varying ex-ante 
premia. Because the independent variables of the equations add up to the basis, the α‘s and 
β’s add up to respectively 0 and 1. Henceforth, in equations (5.3) and (5.4), basis variation 
is by definition allocated to (a mix) of the dependent variables in equation (5.3) and 
equation (5.4). This can yield statistically unreliable results. In particular, this typically 
occurs when basis variation is low relative to the variation of the dependent variables of 
model (5.3) and model (5.4) (Fama, 1984). Before estimating the regressions, we first have 
to examine the relative magnitude of the standard deviation estimates of the model’s 
variables.   
 
A point worth emphasizing is that in electricity markets, the delivery under the forward- or 
future contracts is typically uniformly spread over the delivery period. For instance, next-
month baseload (peakload) contracts secure the delivery of 1 MWh of electricity in each 
baseload (peakload) hour in the first upcoming month from the observation date t. 
Therefore the holder of the contract is exposed to the differential between the baseload 
(peakload) forward price and the arithmatic average of the hourly spot prices in the 
delivery month.  We therefore use the average day-ahead price calculated over all baseload 
(peakload) hours in the delivery month, when we construct the basis-, expected spot price 
change-, and risk premium observations that correspond with the forward contract under 
consideration.   
 
What to expect?  
Fama (1984) reports empirical evidence, obtained from nine forward exchange rates 
(Japan, Canada, UK and six major European currencies), that variation in forward rates 
predominantly stems from variations is premiums. In Fama and French (1987) the 
framework has been applied to assess the forecast power and risk premia embedded in 
futures prices obtained from twenty-one different (storable) commodities. The empirical 
findings of Fama and French (1987) may provide us with more insights what we can 
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expect from the extent of explanatory value of the electricity forward basis. They discuss 
what economic features explain the differences in basis variation across a wide range of 
(storable) M2, M6 and M10 commodity forward contracts (delivers on respectively 2nd , 6th 
and 10th month from observation date): ten agricultural-, five animal- two wood-, and four 
metal products.  
They show that forward contracts on metals primarily track the interest rates, while basis 
variation in the agricultural- and wood contracts is predominantly driven by the 
warehousing and convenience yields. High inventory levels closely relate to low variation 
in the basis and expected spot price changes, simply because inventory functions as a 
buffer for demand and supply shocks. Therefore, the regression model fails to identify the 
source (the realized risk premia or expected spot price changes) of the nonzero basis 
variation for all metals. In contrast, animal products and some agricultural products, have 
high storage costs due to bulk and decay ability, which may lead to lower levels of 
inventory and therefore high basis variation. Since basis variation is substantial, the 
regressions have a good chance of reliably assigning basis variation to either spot price 
forecast and/or expected premia. They indeed find a clear distinction between risk premia 
and expected spot changes for these products. Since in electricity markets inventory levels 
cannot be used to smoothen out demand and supply shocks as well, it is logical to expect 
high variation in the basis variation and expected spot price changes.  We therefore believe 
that the equations (5.3) and (5.4) have a good chance of reliably assigning basis variation 
in electricity forwards to either spot price forecast and/or expected premia. Therefore our 
best bet is to find empirical evidence that indicates that the electricity forward basis 
incorporates either strong forecasting power or strong expected risk premia. 
Note that most commodity contracts examined in Fama and French (1987) typically have a 
delivery period of three to four weeks. They assume that it matures on the first trading day 
of the delivery month. Furthermore they use future prices of maturing contracts as a proxy 
for spot prices since good spot price data is not available, contrary to our case. 
A final point worth emphasizing is that Fama and French report weak statistical evidence 
for the explanatory power of the basis to spot price forecasts and expected risk premia; 
only two commodities show significant forecast power and expected risk premia. In an 
attempt to increase the statistical power of the test, Fama and French combine commodities 
into portfolios. They don’t find strong empirical evidence of risk premia and forecast 
power in the portfolio setting either. They argue that the marginal evidence that they 
provide is due to the relatively small series43 of available data. This argument is 
questionable, because for some commodities Fama and French report empirical evidence 
of good forecast power embedded in forward prices, while the sample used to obtain this 
evidence is as small as 35 observations.   
  
5.2.2 Hypotheses 1 and 2 
As discussed in the previous section, we apply the equations (5.3) and (5.4) for joint-
measurement of the explanatory value of the risk premium and forecast component 
embedded in electricity forward prices. We do this for different contract maturities, and 
attempt to gain understanding whether we can disclose a time-to-maturity pattern in the 

                                                           
43 In a small sample, shocks in spot prices will yield high variation in the basis compared to any 
forward risk premium, hence this results in low statistical power in small samples (Bessembinder and 
Lemmon, 2002).    
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size of these components that is consistent with derivative price theory. We will now 
formulate the hypotheses that we have constructed based on the theory.    
 
Samuelson effect 
Samuelson (1965) shows that when spot prices are mean-reverting and arbitrage 
opportunities are absent, the return volatility of forward contracts rises when the contracts 
rolls to its expiration date. This effect has become known as the Samuelson effect, and 
several studies have documented (weak to strong) evidence in support of the existence of 
this pattern in many commodity prices: See Bessembinder et al (1996) for an excellent 
critical review. In figure 5.1 we can observe this effect in electricity markets. From the 
figure we can see the prices of forward contracts that secure delivery in the month August 
2005, which we obtain from the EEX forward curve.     

 
 

Figure 5.1 EEX baseload spot prices, and EEX baseload futures prices  
for contracts that mature in August 2005.  

 
We can observe that the day-ahead EEX prices, also displayed in the figure, are more 
volatile compared with the futures prices. This figure reflects a general development of 
(monthly) futures prices. We see that when the time-to-maturity is about five to six 
months, the futures prices do not seem to react to the spot prices. However, when the time 
to delivery is approached, the forward price responses more accurately to the spot prices. 
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This behaviour can be addressed to the mean-reverting behaviour44 of the underlying spot 
price process, and has been documented for many other commodities than power.  
Let’s assume that today is a certain day in February 2005. Would a spot price shock around 
this period affect our expectation about the price level six months from now in August 
2005? It is well-known that spot price shocks in electricity die out quickly (Pilipovic, 
1998), hence the expectation around February is that the price has moved back to the long-
term equilibrium mean by the time the expiration date of an M6 contract is approached. 
When we get closer to expiration however, the chance that the spot price oscillates around 
its mean will be lower. To compensate for the rise in the price volatility when the contract 
rolls to his expiration date maturity, the investors in the forward contract expect a higher 
risk premium. Note that in most financial markets, a longer time horizon implies that 
investors require a higher risk premium when the spot price process is assumed to follow a 
random walk instead of a mean-reverting process. This can be explained by the fact that 
when the price path is given by a random walk process, the price is more uncertain one 
month in the future than a day in the future. However, when a mean-reverting price process 
is assumed, the uncertainty incorporated in the price one month-ahead and one day-ahead 
is roughly the same.  
 

When we examine the one-factor, and two-factor mean-reverting models to price power 
derivatives along in Lucia and Schwartz (2002), we observe the presence of the 
Samuelson-effect in the price models. In particular, we can split the risk neutral forward 
price into a risk-neutral expected value of the maturity spot price, and a risk premium 
component that decreases with time to maturity (see Appendix A5.1-A.5.3 for derivation). 
Finding evidence in support of the existence of the Samuelson effect in electricity markets, 
is therefore also consistent with the Lucia and Schwartz model. We can formulate the 
following hypothesis: 
H1: “The risk premium embedded in electricity forwards decreases with time to maturity” 
 
Price convergence  
In standard derivative pricing theory spot prices are linked to forward prices as a no-
arbitrage condition. Let’s consider a representative agent. Her motive is to exploit arbitrage 
opportunities (make risk-free profit) in the market. Furthermore consider scenario (i): the 
futures price is above the spot price price during the delivery period. And consider scenario 
(ii): the futures price is below the spot price price during the delivery period. The 
following strategy would yield a risk-free profit in (i): (1) Sell a futures/ forward contract, 
(2) buy the underlying asset and (3) make delivery to close the position. The opposite 
trading strategy would yield a risk-free profit in (ii). When arbitrageurs recognize this 
opportunity and act upon it, the futures price will fall in (i), rise in (ii), and the opportunity 
will be traded away. Therefore the derivative price is expected to converge to the spot price 
of the underlying asset when the delivery period is reached (Hull, 2002).45  

                                                           
 44 The tendency of the spot price to return to it’s long-term mean after a price shock has occurred.  
45 Observe that when there exists a time gap between step (2) and (3) such that the underlying asset 
needs to be stored, the above strategies cannot been implemented for a non-storable commodity as 
electricity. As a result, the no-arbitrage condition cannot be meaningfully applied. The question 
arises what mechanism keeps electricity spot and forward prices in incomplete markets. In 
incomplete markets, one can by definition not obtain risk-free prices through the no-arbitrage 
condition.   
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We can now formulate the following hypothesis: 
H2: “The electricity forward price converges to the underlying spot price”. 
 
5.3 Sample and data description 
We study the relationship between forward prices and day-ahead prices from three 
different national markets. We derive price data from the German EEX, the Dutch APX 
(day-ahead contracts only) and ENDEX (forward contracts only), and the Scandinavian 
exchange NPX.46 We refer to Chapter 1, for a general introduction on these markets.  
 
5.3.1 Monthly sample to test hypothesis 1 
The German and Dutch forward data is obtained for the respective periods 1 July 2002 to 1 
September 2005, and 3 February 2003 to 1 July 2005. From the EEX market, we include 
forward price data from six contract maturities in our sample: M1, M2, ….to M6 contracts. 
The forward price sample obtained from ENDEX, consists of price observations of M1, 
M2 and M3 contracts. The length in forward curve between the Dutch and German forward 
price sample differs because M4, M5 and M6 contracts were traded on ENDEX as of July 
2004, hence the number of price observations is too small to include for the regression 
analysis employed on the individual maturity samples (10 or less price observations for 
each contract maturity). The sample that we examine consists of the closing prices on the 
first trading days47 of each month in our sample. From the EEX we obtain daily day-ahead 
prices over the period 1 June 2002 to 31 October 2005, being 1188 daily day-ahead prices. 
From the APX we obtain 974 daily price observations from 1 February 2003 to 31 August 
2005, being 974 daily price observations. We use this data to calculate for each month the 
average day-ahead price in baseload and peakload hours. Since baseload (peakload) M-
contracts secure the delivery of 1 MWh for the derivative price FT(t) in each baseload 
(peakload) hour of the delivery month T, we assume this average price to be a good proxy 
for the expected spot price ST in equation (5.3). Using the same line of reasoning, we use 
the average day-ahead price over a 30-day period starting from day t-30 to t, as a proxy for 
S(t) in the basis. Hence, in this way we created an EEX sample of 39 baseload and 39 
peakload M1 basis-, M1 risk premia- and M1 expected spot price change observations. The 
APX/ENDEX sample consists of 30 baseload and 30 peakload M1 basis-, M1 risk premia- 
and M1 expected spot price change observations. Because the time to maturity increases 
with one month when we move from M1 contracts, to M2 contracts to the next, the number 
of observations decreases with one accordingly in the sample.   
In the tables 5.1 to 5.9, we provide the descriptive statistics of the variables in the Fama 
equations (5.3) and (5.4), for the German data (table 5.1 to 5.6) and Dutch data (table 5.7 -
5.9). From the tables 5.1 to 5.9 we clearly observe the differences between baseload and 
peakload contracts. The average basis and realized risk premia of peak load contracts are, 
as expected, higher for the peak load forwards relative to base load contracts reflecting the 
higher variance of day-ahead prices in peak hours.  
 
 

                                                           
46 Data is available at www.eex.de, www.apx.nl, www.endex.nl and www.nordpool.no. Until 
recently, data of the Dutch market could be downloaded from the website without subscription.    
47 Forward contracts are only traded on weekdays. In the weekend the derivative exchange is closed.   
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 Baseload Peakload 

 ST – S(t) FT(t) – S(t) FT(t) – ST ST – S(t) FT(t) – S(t) FT(t) – ST 

Mean 0.791 1.574 0.782 0.806 8.525 7.719 
Std. 

Deviation 6.657 5.161 7.079 9.121 7.973 10.68 

Number of observations: 39. Data is in €/MWh. 

Table 5.1: Descriptive statistics of monthly EEX M1 price data 
 

 Baseload Peakload 

 ST – S(t) FT(t) – S(t) FT(t) – ST ST – S(t) FT(t) – S(t) FT(t) – ST 

Mean 0.845 1.220 0.375 0.926 8.490 7.564 
Std. 

Deviation 6.738 6.259 7.057 9.212 9.785 10.99 

Number of observations: 38. Data is in €/MWh. 

Table 5.2: Descriptive statistics of monthly EEX M2 price data 
 

 Baseload Peakload 

 ST – S(t) FT(t) – S(t) FT(t) – ST ST – S(t) FT(t) – S(t) FT(t) – ST 

Mean 0.708 0.492 -0.215 0.798 7.720 6.922 
Std. 

Deviation 6.777 6.738 7.226 9.305 10.61 11.22 

Number of observations: 37. Data is in €/MWh. 

Table 5.3: Descriptive statistics of monthly EEX M3 price data 
 

 Baseload Peakload 

 ST – S(t) FT(t) – S(t) FT(t) – ST ST – S(t) FT(t) – S(t) FT(t) – ST 

Mean 0.762 -0.378 -1.140 0.901 6.743 5.842 
Std. 

Deviation 6.865 6.588 7.052 9.416 10.13 10.53 

Number of observations: 36. Data is in €/MWh. 

Table 5.4: Descriptive statistics of monthly EEX M4 price data 
. 
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 Baseload Peakload 

 ST – S(t) FT(t) – S(t) FT(t) – ST ST – S(t) FT(t) – S(t) FT(t) – ST 

Mean 0.695 -0.742 -1.437 -0.506 5.581 6.087 
Std. 

Deviation 10.42 9.611 6.339 14.53 13.97 9.853 

Number of observations: 35. Data is in €/MWh. 

Table 5.5: Descriptive statistics of monthly EEX M5 price data 
… 

 Baseload Peakload 

 ST – S(t) FT(t) – S(t) FT(t) – ST ST – S(t) FT(t) – S(t) FT(t) – ST 

Mean 1.801 0.078 -1.723 0.810 6.808 5.998 
Std. 

Deviation 10.03 8.547 5.935 14.02 13.00 9.263 

Number of observations: 32. Data is in €/MWh. 

Table 5.6: Descriptive statistics of monthly EEX M6 price data 
. 

 Baseload Peakload 

 ST – S(t) FT(t) – S(t) FT(t) – ST ST – S(t) FT(t) – S(t) FT(t) – ST 

Mean 0.978 2.258 1.280 0.353 12.34 11.99 
Std. 

Deviation 22.75 21.42 15.52 33.45 32.73 23.89 

Number of observations: 30. Data is in €/MWh. 

Table 5.7: Descriptive statistics of monthly APX/ENDEX M1 price data 
 

 Baseload Peakload 

 ST – S(t) FT(t) – S(t) FT(t) – ST ST – S(t) FT(t) – S(t) FT(t) – ST 

Mean 1.862 2.533 0.671 1.354 12.64 11.29 
Std. 

Deviation 23.39 20.74 15.05 34.17 30.72 22.71 

Number of observations: 29. Data is in €/MWh. 

Table 5.8: Descriptive statistics of monthly APX/ENDEX M2 price data 
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 Baseload Peakload 

 ST – S(t) FT(t) – S(t) FT(t) – ST ST – S(t) FT(t) – S(t) FT(t) – ST 

Mean 2.616 1.801 -0.815 2.161 11.00 8.840 
Std. 

Deviation 25.84 20.03 14.90 38.29 28.86 21.73 

Number of observations: 28. Data is in €/MWh. 

Table 5.9: Descriptive statistics of monthly APX/ENDEX M3 price data 
 
In the previous section we mentioned that because variation in the basis is by definition 
allocated to (a mix) of the dependent variables in equation (5.3) and (5.4), this can yield 
statistically unreliable results. As said, this occurs when basis variation is low relative to 
the variation in spot price change (ST – S(t)), and realized risk premium (FT(t) – ST). 
From the tables 5.1 to 5.9, we observe that the standard deviations of the basis, the ex-post 
risk premium and the spot price change are substantial and of the same magnitude. We 
conclude from these estimates, that the equations (5.3) and (5.4) can reliably assign basis 
variation to either spot price changes or time-varying risk premia.  
 
5.3.2 Daily sample to test hypothesis 2 
From the EEX we obtain closing prices of M1 baseload- and peakload futures contracts for 
the sample period 1 July 2002 to 30 September 2005. Note that we extend the monthly 
EEX sample analyzed above, with market data observed on all other trading days of the 
month as well. From the NPX we derive closing prices of M1 baseload forward contracts 
for the sample period 1 July 2002 to 30 September 2005.  Note that the NPX does not 
distinguish peakload prices from baseload prices.    
In order to investigate the convergence of the electricity forward price to the expected spot 
price through employing the joint regression equation (5.3) and (5.4) simultaneously, we 
split our three (EEX baseload-, EEX peakload-, and NPX sample) samples into 17 subsets 
each of which represents observations on the nth trading day of each month. As mentioned 
before, the EEX and NPX are closed during weekends. We estimate the parameters of 
equation (5.3) and (5.4) on the sub sample data of the first-trading day of the month 
observations only, the second trading day of the month observations only etcetera. Here n 
= 1, 2,..17. We have excluded the price observations of the 18th trading day in the month of 
our analysis, because the sample size is too small. We calculated for each month the 
average day-ahead price in base load and peak load hours. We use the average day-ahead 
price over the period t-30 to t as a proxy for the current spot price S(t). Here t represents 
the trading day of the month. In this way the basis reflects the fact that the information set 
of an agent updates from one day to another (a 30 day moving window). In this way we 
created an EEX baseload (peakload) sample of 39 baseload (peakload) basis, 39 risk 
premia and 39 expected spot price change observations for each of the 17 subsets. Hence, 
the EEX sample consists of 663 baseload and 663 peakload basis, risk premia and expected 
spot price change observations. The NPX sample consists of 23 basis-, 23 premium- and 
23 expected spot price change observations for each of the 17 subsets. The NPX sample 
size is 391 basis, premium and expected spot price change observations.  
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In the table below we provide the descriptive statistics of the basis, risk premia and 
expected spot price change observations for the EEX sample (table 5.10) and for the NPX 
sample (table 5.11).    
 

 Baseload Peakload 

 ST – S(t) FT(t) – S(t) FT(t) – ST ST – S(t) FT(t) – S(t) FT(t) – ST 

Mean 0.473 1.583 1.111 0.469 8.723 8.254 
Std. 

Deviation 6.610 4.941 6.613 9.021 7.886 10.44 

Number of observations: 663. Data is in €/MWh. 

Table 5.10: Descriptive statistics of daily EEX M1 price data 
. 

 ST – S(t) FT(t) – S(t) FT(t) – ST 

Mean 1.506 10.86 9.353 
Std. 

Deviation 25.05 23.14 26.83 

Number of observations: 391. Data is in NOK/MWh. 

Table 5.11: Descriptive statistics of daily NPX M1 price data 
 
From table 5.10, we see that the average basis and realized risk premia of peak load 
contracts are, as expected, higher for the peak load forwards relative to base load contracts. 
This stems from the fact that the variance of day-ahead prices in peak hours is higher. The 
standard deviation estimates reported in the table are of similar magnitude, which means 
that the equations (5.3) and (5.4) can reliably assign basis variation to either one, or a 
combination of the sources.  
In table 5.11 we provide the descriptive statistics of the basis, risk premia and expected 
spot price change observations for the NPX sample.  
 
5.4 Results  
We will now present the main findings and the conclusions that can be drawn from these 
results.  
  
5.4.1 Results for hypothesis 1: monthly sample  
 
EEX 
In order to examine whether forward prices incorporate information value of price 
forecasts and premia and how these fractions are affected by time to maturity, we split our 
EEX forward contract sample in six, according to the contracts maturity horizon.  
In table 5.12 we provide the OLS estimation results of equation (5.3) and (5.4) regressed 
on the baseload contract data sets.     
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 M1 M2 M3 M4 M5 M6 

α0 0.176 
(0.963) 

0.304 
(1.158) 

0.496 
(1.226) 

0.940 
(1.270) 

1.419 
(0.134) 

1.686 
(1.338) 

β0 0.391 
(0.242) 

0.444 
(0.176)*** 

0.431 
(0.148)*** 

0.470 
(0.145)*** 

0.460 
(0.135)*** 

0.490 
(0.146)*** 

Adj. R2
0 0.067 0.147 0.160 0.180 0.199 0.213 

α1 -0.176 
(0.963) 

-0.304 
(1.158) 

-0.496 
(1.226) 

-0.940 
(1.270) 

-1.419 
(0.134) 

-1.686 
(1.338) 

β1 0.608 
(0.244)*** 

0.556 
(0.176)*** 

0.569 
(0.148)*** 

0.530 
(0.145)*** 

0.540 
(0.135)*** 

0.509 
(0.146)*** 

Adj. R2
1 0.175 0.222 0.261 0.223 0.261 0.227 

ADF -4.970*** -4.472*** -4.317*** -4.181*** -3.884*** -3.810*** 

LB-Q 3.571 
(0.059) 

12.61 
(0.000) 

13.92 
(0.000) 

13.12 
(0.000) 

11.23 
(0.001) 

13.26 
(0.000) 

Newey-West Heteroskedasticity and Autocorrelation (HAC) robust standard errors are in 
parentheses. ***99%, **95%, *90% confidence level.  
Augmented Dickey Fuller (ADF) tests statistic for θt and ωt.  Unit root rejected at ***99% 
confidence level, critical values: -3.617 (M1), -3.623 (M2), -3.629 (M3), -3.636 (M4), -
3.642 (M5) and -3.650 (M6). Ljung Box Q-statistics (LB-Q) for the null hypothesis that 
there is no autocorrelation up to order k. Here k=1 and P-values are in parentheses. 
Table 5.12: Ordinary Least Squares results Fama model for EEX baseload data 

… 
From table 5.12, we can observe that almost all β estimates are positive and significant at 
the 99% confidence level, which implies that the basis contains information about future 
spot price changes. Only the β0 estimate of the next-month maturity contract is not 
significantly different from zero, which implies that the M1 basis incorporates no 
information value about future day-ahead price changes. We can see that respectively 39%, 
44%, 43%, 47%, 46% and 49% of the basis observed M1-, M2-, M3-, M4-, M5- and M6 
EEX baseload contracts account for future changes in the spot price. The percent of 
explanatory value of the basis to forecast the expected spot price change increases 
gradually with maturity. Because of the adding-up constraint of our joint-regression model, 
we see an opposite and declining pattern of the information value of forward prices to the 
expected risk premium with increasing time to maturity: the baseload M1 basis explains 
61% of the variation in ex-post premia. 
We see a declining trend in the size of the explanatory power of the basis about the risk 
premium to be realized in the delivery period for higher maturities (M1→ M6) up to 5.3%. 
The adjusted R2

 coefficients are in a range of 7% to 23% across all contract maturities, 
which suggest that the equations (5.3) and (5.4) provide a rather poor fit to the data. As 
discussed before, this is not uncommon for employing the Fama model to commodity 
futures data: see Fama and French (1987).  
In table 5.12 the test statistics of the Augmented Dickey Fuller (ADF) test are reported, 
together with the critical values for testing at the 99% confidence level. This is a test 
statistic for the random walk hypothesis, which we employ on the residual processes θt and 
ωt to guard against the possibility of interpreting misleading results, we must be sure that 
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the residual processes are no random walk. Evidence of a unit root implies that the 
residuals are non-stationary, henceforth this would imply we can not rely on the estimates 
provided. The ADF tests indicate that none of the residual processes of the maturity sample 
series are a random walk. The Ljung-Box Q-statistics at lag k is a test statistic for the null 
hypothesis that there is no autocorrelation up to order k. Under the null hypothesis it is 
asymptotically distributed as a Chi-square distribution with the degrees of freedom equal to 
the number of autocorrelations. From the LB-Q statistics reported in table 5.12 we 
conclude that the noise terms of the model equations (5.3) and (5.4) equations obtained for 
most maturity contract sample are autocorrelated, except for the M1 contract sample. Note 
that the standard errors are based on the estimator of the covariance matrix proposed by 
Newey and West (1987) and therefore controls for both serial correlation and 
heteroskedasticity. 
    
In table 5.13 we provide the results of equation (5.3) and (5.4) estimated on the EEX 
peakload data. The results are slightly different from those reported for baseload contracts. 
From table 5.13 we can see that all β estimates are positive and significant at the 99% 
confidence level. This means that the basis contains significant information about both 
future spot price changes, as well as the risk premium to be realized in the delivery period. 
From the β0 values, we conclude that respectively 26%, 31%, 33%, 39%, 39% and 42% of 
the basis observed M1-, M2-, M3-, M4-, M5- and M6 EEX peakload contracts reflect 
future changes in the spot price. The forecast power of the electricity futures contract 
increases with maturity. Because of the adding-up constraint of our joint-regression model, 
we find that the size of the explanatory value embedded in the futures basis about the 
expected risk premium decreases, when time-to-maturity increases. This pattern can be 
derived from the β1 values reported in table 5.13.  
Another interesting point worth noting is that when we compare the level of β1 coefficients 
obtained from baseload data (table 5.12) with the level of β1 peakload estimates, we can 
see note that the fraction that relates to the risk premium is higher in peakload contracts. 
This can be explained by the higher variance of day-ahead prices in those hours.  
The ADF tests indicate that none of the residual processes of the maturity sample series are 
a random walk. From the LB-Q statistics reported in table 5.13 we conclude that the noise 
terms of the model equations (5.3) and (5.4) equations obtained for each maturity contract 
sample are autocorrelated, except for the M1 contract sample. 
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 M1 M2 M3 M4 M5 M6 

α0 -1.380 
(1.700) 

-1.731 
(1.548) 

-1.717 
(1.516) 

-1.738 
(1.585) 

-1.314 
(1.560) 

-1.365 
(1.672) 

β0 0.256 
(0.241) 

0.313 
(0.188) 

0.326 
(0.147)*** 

0.391 
(0.131)*** 

0.392 
(0.120)*** 

0.422 
(0.122)*** 

Adj. R2
0 0.025 0.086 0.113 0.153 0.179 0.191 

α1 1.380 
(1.700) 

1.731 
(1.548) 

1.717 
(1.516) 

1.738 
(1.585) 

1.314 
(1.560) 

1.365 
(1.672) 

β1 0.744 
(0.241)*** 

0.687 
(0.188)*** 

0.674 
(0.147)*** 

0.609 
(0.131)*** 

0.608 
(0.120)*** 

0.578 
(0.122)*** 

Adj. R2
1 0.289 0.357 0.390 0.323 0.362 0.320 

ADF -5.479*** -5.070*** -4.731*** -4.458*** -4.193*** -4.236*** 

LB-Q 3.407 
(0.065) 

10.28 
(0.001) 

18.25 
(0.000) 

11.27 
(0.001) 

9.354 
(0.002) 

11.82 
(0.001) 

Newey-West Heteroskedasticity and Autocorrelation (HAC) robust standard errors are in 
parentheses. ***99%, **95%, *90% confidence level.  
Augmented Dickey Fuller (ADF) tests statistic for θt and ωt.  Unit root rejected at ***99% 
confidence level, critical values: -3.617 (M1), -3.623 (M2), -3.629 (M3), -3.636 (M4), -
3.642 (M5) and -3.650 (M6). Ljung Box Q-statistics (LB-Q) for the null hypothesis that 
there is no autocorrelation up to order k. Here k=1 and P-values are in parentheses. 
Table 5.13: Ordinary Least Squares results Fama model for EEX peakload data  

 
In figure 5.2 we plot the β0 and β1 coefficients against the contract’s time to maturity. We 
can clearly observe the downward slope of the β1 values with time to maturity (see dotted 
line in figure 5.2). This means that the risk premium component incorporated in the basis 
of electricity futures contracts decreases with the time to maturity, which is consistent with 
the Samuelson effect. The results obtained from the EEX market confirm our hypothesis 
(H1) that the risk premium embedded in electricity forward contracts decreases with time 
to maturity.  
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Figure 5.2: Monthly spot price forecast- and risk premia results for EEX futures curve 

 
APX/ENDEX 
In table 5.14 we provide the OLS estimation results of joint-regression test for the 
APX/ENDEX baseload and peakload data. Before examining the β-estimates that we are 
primarly interested in, it is worth considering ADF-test results first. These statistics are in a 
range of –1.35 and –2.96, and are higher than the critical values that are in a range of –2.97 
and –2.99. We therefore cannot reject the null hypothesis that the error terms in model 
(5.3) and model (5.4) follow a random walk. Hence, the results obtained for these contract 
maturities are misleading results. Desk research at the Dutch power market learns us that 
two incidents in the second half of 2003 have caused extreme price shocks, which might 
drive the above-discussed erroneous results. The first event takes place in on 10 August 
2003. On that day, the Dutch government issues a red alert code that implied that power 
generators weren’t allowed to use river water for cooling purposes48. This resulted in 
baseload prices of Euro €660.3 p/MWh on 11 August, €368.8 p/MWh on 12 August and 
€637.4 p/MWh on 13 August. The average baseload price in August 2003 is €83.98/MWh, 
and amounts €117.0/MWh for peakload delivery. Note that this monthly average price is 
used as a proxy for ST in equation (5.3).  

                                                           
48 The Dutch production park mainly consists of coal and gas generators, which need river water for 
cooling purposes. Since the river temperature the weeks preceding 10 August reached the critical 
temperature of 23 degrees Celcius due to a very hot second half of July 2003, it was expected that 
cooling water that was used by the generators and brought back into the river would lead to river 
temperatures that would exceed the critical level of 30 degrees Celsius. Hence this would damage the 
river’s ecological system. The previous time a code red was issued was in 1995.       
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The second extreme price event is the spot price quote on the first trading day of the month 
in November 2003; on 3 November 2003 the baseload price is €122.6/MWh, and the 
peakload price is equal to €177.3/MWh. These prices are clearly outliers, when we 
consider the descriptive statistics of both the baseload and peakload price distribution.49 
We have performed an outlier test, of which the results are given in the Appendix (See 
A5.4-A5.7). Based on these results, we conclude that these outliers drive the results 
presented in table 5.14 (See Appendix for discussion).  
 

 Baseload Peakload 

 M1 M2 M3 M1 M2 M3 

α0 8.067 
(4.243)* 

-0.349 
(4.039) 

0.714 
(4.143) 

-2.695 
(7.153) 

-9.329 
(7.551) 

-9.903  
(5.833) 

β0 1.143 
(0.130)*** 

0.873 
(0.245)*** 

1.056 
(0.130)*** 

1.122 
(0.145)*** 

0.845 
(0.259)*** 

1.097 
(0.144)*** 

Adj. R2
0 0.756 0.599 0.669 0.756 0.562 0.683 

α1 -8.067 
(4.243)* 

0.349 
(4.039) 

-0.714 
(4.143) 

2.695 
(7.153) 

9.329 
(7.551) 

9.903  
(5.833) 

β1 -0.143 
(0.130) 

0.127 
(0.245) 

-0.056 
(0.130) 

-0.122 
(0.145) 

0.155 
(0.259) 

-0.097 
(0.144) 

Adj. R2
1 0.012 0.000 -0.032 0.000 0.008 -0.022 

ADF -1.480 -3.224** -1.812 -1.354 -2.957 -2.733 

LB-Q 0.000 
(0.979) 

3.931 
(0.047) 

5.168 
(0.023) 

0.068 
(0.579) 

3.851 
(0.050) 

5.709 
(0.017) 

Newey-West Heteroskedasticity and Autocorrelation (HAC) robust standard errors are in 
parentheses. ***99%, **95%, *90% confidence level.  
Augmented Dickey Fuller (ADF) tests statistic for θt and ωt.  Unit root rejected at ***99% 
confidence level, critical values: -3.689 (M1); -3.738 (M2);-3.711 (M3). 
Unit root rejected at **95% confidence level, critical values: -2.972 (M1);  -2.975 (M2); -
2.981 (M3). Ljung Box Q-statistics (LB-Q) for the null hypothesis that there is no 
autocorrelation up to order k. Here k=1 and P-values are in parentheses. 
Table 5.14: Ordinary Least Squares results Fama model for APX/ENDEX data 

 
Re-estimation model 
We exclude the two extreme price differential observations from our M1, M2 and M3 
sample, and re-estimate the model (5.3) and (5.4). The results are provided in table 5.15.  
From table 5.15 we can see that all β0 estimates are positive and significant at the 99% 
confidence level.  
 
 

                                                           
49 The mean, standard deviation and maximum value of the baseload forward price series, are 
respectively equal to 38.81, 20.31 and 122.6. For the peakload forward price series these descriptive 
statistics have values of respectively 48.55, 29.74 and 177.3. 
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 Baseload Peakload 

 M1 M2 M3 M1 M2 M3 

α0 -1.380 
(1.701) 

-1.002 
(2.093) 

0.393 
(2.394) 

-7.396 
(2.747)* 

-7.838 
(3.181)** 

-7.502 
(3.495)** 

β0 0.697 
(0.143)*** 

0.884 
(0.224)*** 

0.796 
(0.189)*** 

0.587 
(0.169)*** 

0.743 
(0.230)*** 

0.798 
(0.242)*** 

Adj. R2
0 0.499 0.490 0.493 0.426 0.422 0.499 

α1 1.380 
(1.701) 

1.002 
(2.093) 

-0.393 
(2.394) 

7.396 
(2.747)** 

7.838 
(3.181)** 

7.502 
(3.495)** 

β1 0.303 
(0.143)*** 

0.116 
(0.224) 

0.204 
(0.189) 

0.412 
(0.169)*** 

0.257 
(0.230) 

0.202 
(0.242) 

Adj. R2
1 0.126 -0.022 0.021 0.257 0.051 0.021 

ADF -4.589*** -3.003** -3.200** -4.888*** -3.386** -3.132** 

LB-Q 0.074 
(0.795) 

6.196 
(0.013) 

6.570 
(0.010) 

0.003 
(0.973) 

3.827 
(0.050) 

5.691 
(0.017) 

Number of observations for each individual regression is 28 (for M1), 27 (for M2) and 26 
(for M3). Newey-West Heteroskedasticity and Autocorrelation (HAC) robust standard 
errors are in parentheses. ***99%, **95%, *90% confidence level.  
Augmented Dickey Fuller (ADF) tests statistic for θt and ωt.  Unit root rejected at ***99% 
confidence level, critical values: -3.699 (M1); -3.738 (M2);-3.711 (M3). 
Unit root rejected at **95% confidence level, critical values: -2.976 (M1);  -2.992 (M2); -
2.981 (M3) Ljung Box Q-statistics (LB-Q) for the null hypothesis that there is no 
autocorrelation up to order k. Here k=1 and P-values are in parentheses. 
Table 5.15: Ordinary Least Squares results Fama model for APX/ENDEX outlier-free 
data 

 
This implies that the basis incorporates information about changes in future prices 
observed at the day-ahead markets. In particular, we observe that the baseload basis for 
M1, M2 and M3 contracts captures respectively 69.7%, 88.4% and 79.6% of the expected 
day-ahead price change.  
The percentages are somewhat lower for the peakload basis: 58.7% (for M1), 74.3% (for 
M2) and 79.8% (M3). This result is consistent with the empirical findings reported for the 
EEX market (see table 5.12 and 5.13). As can be seen from the table, the β1 coefficients are 
not significantly different from zero, except for the estimate derived from both the M1 
baseload and M1 peakload data.   
 
From the ADF statistics listed in table 5.15, we observe that the model residuals, which we 
obtain from estimating the joint regression equations on the individual contract maturities, 
follow a stationary process. In particular, we see that the values of the ADF test statistics 
for all three maturities are lower than the ADF critical values at the 95% and/or 99% 
confidence level.  Hence, the removal of outliers from the sample has yielded results that 
can be interpreted meaningfully. From the LB-Q statistics reported in table 5.15 we 
conclude that the noise terms of the model equations (5.3) and (5.4) equations obtained for 
each maturity contract sample are autocorrelated, except for the M1 contract sample. 
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Figure 5.3: Monthly spot price forecast (β0) and risk premium (β1) outcomes for  
APX/ENDEX forward curve 

 
In figure 5.3 we display the spot price forecast and risk premium pattern over the ENDEX 
baseload and peakload forward curve, by plotting the β0 and β1 percent values against the 
time to maturity. As we can see from figure 5.3, the relationship between the explanatory 
value of the basis relative to spot price forecasts (and expected risk premia) is curvilinear 
increasing (decreasing) with time to maturity. Although the results obtained from the 
Dutch market reflect the time-to-maturity pattern over three contract maturities only, we 
can conclude that the evidences provides at least a degree of support that the risk premia 
incorporated in forward prices shows a downward trend over the time to maturity of the 
contract. We therefore conclude that hypothesis 1 is supported.  
 
5.4.2 Results for hypothesis 2: daily sample  
We now report the model (5.3) and (5.4) outcomes estimated on the daily EEX and NPX 
sample. We only provide the values and standard errors of the β0 and β1 estimates, since 
these are the only explanatory variables in equation (5.3) and (5.4) that potentially embed 
information value over the spot price changes and risk premia in forward- and future  
prices.    
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EEX 
Note that the estimates reported in the top row of table 5.16 are also in table 5.12, which 
makes sense as these results are derived from estimating the Fama model on the same 
dataset: EEX next-month (M1) delivery baseload price data observed on the first-trading-
day-of-the-month (n=1).  
From table 5.16 we can furthermore see that as from the beginning of the month that the 
derivative exchange quotes M1 future prices (n = 1 to 5), the value of the β0 is not 
significantly different from zero. Hence, we conclude that there is no evidence of a forecast 
component that embeds information about the future day-ahead price change in the M1 
basis. When we move closer to the expiration date (n= 6 → expiration), we see that the 
value of the β0 parameter becomes significantly different from zero, and interestingly 
shows an increasing trend. Apparently, the basis of M1 baseload contracts only 
incorporates information value over the expected spot prices when we roll closer to the 
expiration day. In particular, we see that the basis fraction observed at the 6th trading day of 
the month that represents the power to forecast spot price changes equals 40%, and this 
percentage steeply increases in the subsequent trading days and eventually stabilises to a 
level of 60% on the 17th trading day of the month. Note that a percentage of 100% would 
imply that the forward price is an unbiased predictor of the spot price.  
The β1 values reported in table 5.16, are all significantly different from zero at the 99% 
confidence level. We see an initially increasing trend in the size of the risk premium 
component embedded in the M1 basis observed at the first trading days of the month (n=1 
to 5). But when we move closer to maturity, we observe that the basis fraction observed at 
the 6th trading day of the month that reflects the variation in the to be realized risk premium 
equals 60%, and this percentage decreases in the next trading days to a level of 40% a few 
days before expiration. We now perform the Augmented Dickey Fuller (ADF) to test for 
the existence for a unit-root in the disturbance terms. Evidence of a unit root implies that 
the residuals are non-stationary, henceforth the estimation results are worthless (spurious 
regression). The critical value of this test is -3.753 (99% confidence level). The ADF 
statistics that we find for all of the 17 individual regressions are well below the critical 
value of -3.620. We therefore conclude that the residual processes θt and ωt are stationary, 
which means that the results presented in table 5.16 are not subject to spurious 
interpretation.  
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n β0 Adj. 
R2

0 
β1 Adj. 

R2
1 

ADF 

1 0.391 (0.244) 0.067 0.609 (0.244)*** 0.175 -4.159*** 

2 0.343 (0.299) 0.039 0.657 (0.299)*** 0.178 -4.338*** 

3 0.356 (0.276) 0.051 0.644 (0.276)*** 0.191 -4.568*** 

4 0.231 (0.261) 0.004 0.769 (0.261)*** 0.234 -4.687*** 

5 0.271 (0.829) 0.020 0.729 (0.214)*** 0.238 -4.871*** 

6 0.403 (0.105)*** 0.124 0.597 (0.105)*** 0.255 -4.421*** 

7 0.394 (0.173)*** 0.059 0.606 (0.173)*** 0.157 -5.036*** 

8 0.499 (0.141) 0.104 0.500 (0.141)*** 0.105 -4.948*** 

9 0.579 (0.116)*** 0.148 0.421 (0.116)*** 0.074 -4.921*** 

10 0.626 (0.110)*** 0.180 0.374 (0.110)*** 0.058 -4.696*** 

11 0.663 (0.104)*** 0.210 0.337 (0.104)*** 0.047 -4.769*** 

12 0.689 (0.117)*** 0.232 0.311 (0.117)*** 0.039 -4.725*** 

13 0.635 (0.126)*** 0.184 0.365 (0.126)*** 0.054 -5.085*** 

14 0.662 (0.147)*** 0.196 0.338 (0.147)** 0.042 -4.775*** 

15 0.643 (0.157)*** 0.172 0.357 (0.157)** 0.044 -4.772*** 

16 0.609 (0.202)*** 0.150 0.391 (0.202)* 0.054 -4.877*** 

17 0.603 (0.150)*** 0.179 0.397 (0.150)** 0.074 -4.822*** 

N: Nth trading day of the month.  Number of observations for each 
individual regression is 39.  
Newey-West heteroskedasticity and autocorrelation consistent standard 
errors are in parentheses. ***99%, **95%, *90% confidence level. 
Augmented Dickey Fuller (ADF) test: Unit root rejected at ***99% 
confidence level (critical value: -3.620) 
Table 5.16: Ordinary Least Squares results Fama model for daily EEX 
baseload data 

 
In table 5.17 we provide the peakload results. As can be seen from the table, the β 
estimates for the EEX peakload contracts show a similar pattern as we have reported for 
the baseload contracts, but results are slightly different. Compared to the baseload results, 
we observe that the fraction that relates to the risk premium is higher in peakload contracts 
throughout all trading days of the month. This can be explained by the higher variance of 
spot prices in those hours. Again we see an initially upward pattern (from 74% on the 1st 
trading day to 101% on the 5th trading day) followed by a strong declining pattern in the 
risk premium level in the subsequent five trading days; from 84% on the 6th trading day to 
45% on the 12th trading day.  
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N β0 Adj. 

R2
0 

β1 Adj. 
R2

1 
ADF 

1 0.256 (0.241) 0.025 0.744 (0.241)*** 0.289 -5.479*** 

2 0.183 (0.298) -0.004 0.817 (0.298)*** 0.299 -5.680*** 

3 0.155 (0.287) -0.007 0.845 (0.287)*** 0.348 -5.733*** 

4 -0.041 (0.263) -0.026 1.040 (0.263)*** 0.464 -6.405*** 

5 -0.016 (0.227) -0.027 1.016 (0.227)*** 0.493 -6.471*** 

6 0.156 (0.194) 0.003 0.844 (0.194)*** 0.455 -4.857*** 

7 0.068 (0.268) -0.023 0.932 (0.268)*** 0.387 -5.929*** 

8 0.277 (0.198) 0.022 0.723 (0.198)*** 0.235 -5.480*** 

9 0.369 (0.163)** 0.058 0.631 (0.163)*** 0.187 -5.411*** 

10 0.455 (0.158)*** 0.106 0.545 (0.158)*** 0.153 -5.097*** 

11 0.510 (0.133)*** 0.141 0.490 (0.133)*** 0.130 -5.140*** 

12 0.552 (0.141)*** 0.175 0.448 (0.141)*** 0.115 -5.030*** 

13 0.496 (0.149)*** 0.137 0.504 (0.149)*** 0.142 -5.287*** 

14 0.530 (0.180)*** 0.159 0.470 (0.180)** 0.126 -5.092*** 

15 0.436 (0.190)** 0.096 0.564 (0.190)*** 0.164 -5.312*** 

16 0.433 (0.229) 0.064 0.567 (0.229)*** 0.243 -5.611*** 

17 0.430 (0.179)* 0.087 0.570 (0.179)*** 0.302 -3.959*** 
N: Nth trading day of the month.  Number of observations for each individual 
regression is 39.  
Newey-West heteroskedasticity and autocorrelation consistent standard 
errors are in parentheses. ***99%, **95%, *90% confidence level. 
Augmented Dickey Fuller (ADF) test: Unit root rejected at ***99% 
confidence level (critical value: -3.620) 
Table 5.17: Ordinary Least Squares results Fama model for daily EEX 
peakload data 

 
The risk premium fraction embedded in the future price, then stabilizes around 57% close 
to expiration of the contract. From the ADF test that we perform on the the residual 
processes θt and ωt of all 17 regressions, we conclude that the estimation results provided 
in table 5.17 are not subject to spurious interpretation. 
In figure 5.4 we display the β0 slope coefficients reported in table 5.16 and 5.17 against the 
trading days of the month N. Evidence that β0 is positive means that the basis embeds 
power to forecast future day-ahead price changes.   
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Figure 5.4: Price forecast results for EEX M1 contracts  

 
From figure 5.4 we can observe the upward slope in the β0 value when we move from the 
first trading day of the month to the expiration date. The fraction of the future prices 
incorporated in the baseload (peakload) basis eventually stabilizes around a level of 60% 
(40%). Hence, the futures price does not perfectly converge to the day-ahead price. Also 
the risk premium fraction does not completely evaporates out of the futures price. 
However, we can observe an upward sloping convergence pattern. A point worth 
emphasizing is that because the delivery of electricity under month-ahead contracts is 
uniformly spread over the month (1 MWh in each baseload or peakload hour), the holder 
of the forward / futures contract is exposed to the differential between the forward / futures 
price and the average of the day-ahead prices inside the delivery period. Therefore the 
electricity derivative price may not exactly converge to the day-ahead price, henceforth the 
convergence assumption is valid only on average. 
 
NPX 
In table 5.18 the equation (5.3) and (5.4) outcomes are given for the NPX data. 
From table 5.18, we conclude that the M1 base load contracts traded on the NPX clearly 
show a convergence of forward prices to spot price expectations when maturity is 
approached; on the first trading day the spot price expectation is not significantly different 
from zero but gradually increases from a basis fraction equal to 26% on the 7th trading day 
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up 77% on the 17th trading day. The β1 values reported in table 5.17, are all significant at  
the 99% confidence level. We see an initially increasing trend in the size of the risk 
premium component embedded in the M1 basis observed at the first trading days of the 
month (n=1 to 5). But when we move closer to maturity, we observe that the basis fraction 
observed at the 6th trading day of the month that represents information value about the 
expected risk premium embedded in the forward basis equals 78%, and this percentage is 
gradually decreases when we roll closer to the expiration date up to a level of 24%. We 
employ the ADF test on the noise terms θt and ωt in the Fama model (5.3) and (5.4).  
 

N β0 Adj. 
R2

0 
Β1 Adj. 

R2
1 

ADF 

1 0.177 (0.266) 0.025 0.823 (0.266)*** 0.296 -3.672** 

2 0.244 (0.244) 0.014 0.756 (0.244)*** 0.271 -3.548** 

3 0.290 (0.230) 0.026 0.710 (0.230)*** 0.244 -3.594** 

4 0.188 (0.237) 0.113 0.812 (0.237)*** 0.330 -3.703** 

5 0.109 (0.237) 0.159 0.891 (0.237)*** 0.320 -3.881*** 

6 0.218 (0.223) 0.142 0.782 (0.223)*** 0.334 -3.820*** 

7 0.262 (0.173)* 0.108 0.738 (0.173)*** 0.365 -3.935*** 

8 0.306 (0.156)** 0.046 0.694 (0.156)*** 0.346 -3.993*** 

9 0.307 (0.145)* 0.007 0.693 (0.145)*** 0.326 -4.171*** 

10 0.361 (0.134)** -0.002 0.639 (0.134)*** 0.298 -4.302*** 

11 0.413 (0.128)** -0.020 0.587 (0.128)*** 0.287 -4.323*** 

12 0.432 (0.126)** -0.030 0.568 (0.126)*** 0.266 -4.478*** 

13 0.454 (0.144)** -0.019 0.546 (0.144)*** 0.259 -4.768*** 

14 0.594 (0.169)*** -0.010 0.406 (0.169)** 0.108 -4.717*** 

15 0.599 (0.179)*** -0.009 0.401 (0.179)* 0.101 -4.935*** 

16 0.797 (0.201)*** -0.003 0.203 (0.174) -0.012 -4.549*** 

17 0.765 (0.150)*** -0.006 0.235 (0.150) 0.013 -4.627*** 
N: Nth trading day of the month.  Number of observations for each individual 
regression is 29. 
Newey-West heteroskedasticity and autocorrelation consistent standard errors 
are in parentheses. ***99%, **95%, *90% conf. level.  
Augmented Dickey Fuller (ADF) test: Unit root rejected at ***99% (critical 
value: -3.770) confidence level, **95% confidence level (critical values: -
3.005). 
Table 5.18: Ordinary Least Squares results Fama model for daily NPX data 



 

 83 

 
For all of the 17 individual regressions, we find ADF statistics that are well below the 
critical value of -3.005. We conclude that the estimation results provided in table 5.17 are 
not subject to spurious interpretation. In figure 5.5 we delineate the β0 slope coefficients 
against the trading days of the month N. 

 

Figure 5.5: Price forecast results for NPX M1 contracts 

 
From figure 5.5, we can clearly observe the upward slope of the β0 values when we roll 
(from one trading day to the next) to the expiration date. There is a degree of price 
convergence to expected spot prices observable in the NPX market. The pattern depicted in 
above diagram is even more convincing evidence in support of the spot price convergence 
of electricity forward prices, as observed in the EEX market (compare figure 5.4 with 
figure 5.5). The reported evidence is consistent with the classical derivative pricing theory: 
the derivative price converges to the spot price of the underlying asset and eventually 
approximates the spot price close when the delivery period is reached (Hull, 2002). 
We have provided empirical evidence from two of the most active derivative exchanges in 
the world that electricity derivative prices have explanatory power to forecast future price 
changes. Furthermore we show that this fraction incorporated in the basis of the derivative 
shows an upward slope when we roll to the expiration date of the contract. As expected, we 
do not report evidence consistent with perfect price convergence. However, these results 
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provide evidence that there is a degree of derivative price convergence50 to expected spot 
prices in electricity markets. Based on the provided empirical evidence obtained from two 
international electricity derivative markets, we conclude that hypothesis 2 is supported.  
  
5.5 Concluding remarks  
Electricity derivative prices exhibit significant information about risk premiums and 
expected changes in forward prices on the day-ahead markets. From monthly electricity 
forward prices of contracts with a time-to-maturity ranging from six-months up to one-
month, we disclose that the size of these components changes in a way that is consistent 
with commodity derivative price theory (Samuelson effect), when the contracts rolls to the 
expiration date as close as one month. This time-to-maturity pattern that has been 
documented for many commodity prices other than electricity forward prices, can be 
explained by mean-reverting behavior of the underlying spot process. Far from maturity, 
the chance that a spot price will revert back to its long-term mean will be high, but this 
chance decreases when we roll from derivative contracts with a long time-to-maturity to a 
shorter maturity horizon. To compensate for the rise in price volatility when the contract 
rolls closer to her expiration date, the investors in the forward contract expect a higher risk 
premium. We also study the time-to-maturity effect for one month-ahead contracts, when 
we roll from one trading day to the next up to a few trading days before expiration.  We 
disclose that the fractions of the premium and forecast component change in a way that is 
consistent with the theory that forward prices converge to its underlying spot price very 
close to expiration. This is an important finding because the standard assumption in  
derivative pricing theory is that the threat of arbitrage keeps the spot price and future price 
in line with each other. Because the non-storability of electricity means that the no-
arbitrage condition cannot be applied to link spot and forward prices, it is interesting to 
report evidence that suggests that forward prices and spot prices are linked together in a 
way that goes in line with it. The documented results might give traders and risk managers 
insight in the risk premiums and might help to assess price expectations when they 
evaluate the forward price curve. One typical application of our result is setting mean price 
levels in simulation models that produce potential price patterns for future time periods.  
 
5.6 Appendix  
Risk premium and maturity relationship  
The forward/futures pricing model that Lucia and Schwartz (2002) propose reads as:  

FT(t) =E0*(ST)= f(T) + X0e-kT +[α*(1-e-kT)] (A.5.1) 

From equation (A.5.1), we can see that the expected spot price in T, under the risk neutral 
probability measure, noted as E0*(ST), is equal to the sum of a deterministic process f(T), a 
stochastic process X0e-kT term, and a component that can be looked upon as a risk premium 
term, RPT (t), noted in square brackets. Thus:  

RPT (t) = α*(1-e-kT), where α*=-λσ/κ. (A.5.2) 

                                                           
50 As discussed in section 5.2, according to classicical derivative pricing theory, the derivative price 
converges to the spot price of the underlying asset and eventually approximates the spot price close 
when the delivery period is reached.  
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λ is the market price per unit risk, κ is the mean-reverting rate and σ represents the spot 
price volatility. Since the values of these Greeks are all positive, the term in square 
brackets is decreasing in T. Introducing ∆ as the differencing operator, we can write the 
first-order derivative of RPT as:  

∆RPT/∆T=- λσe-kT (A.5.3) 

From equation (A.5.3), we conclude that the risk premium decreases with time to maturity.   
 
Outlier test 
- The average baseload (peakload) price in August 2003 is €83.98/MWh (€117.0/MWh).  
- The baseload (peakload) price on 3 Nov. 2003 is €122.6/MWh (€177.3/MWh (peakload). 
We introduce the dummy Daug that equals 1 in the month August 2003, and 0 in the other 
months. We introduce the dummy Dnov that equals 1 in the month November 2003, and 0 
in the other months. Then (5.3) and (5.4) becomes:   

ST – S(t) = α0 + β0 (FT(t) – S(t)) +  γ0Daug + δ0Dnov +  σ0 θt, where θt ~IID (0, 1) (A.5.4) 

FT(t) – ST = α1 + β1 (FT(t) – S(t)) +  γ1Daug + δ1Dnov + σ1 ωt, where ωt ~IID (0, 1) (A.5.5) 

The estimation results are listed in table A5.6 (baseload data) and A5.7 (peakload data): 
 

α0 β 0 γ0 δ0 
-0.428 
(1.257) 

0.789 
(0.104)*** 

45.82 
(3.016)*** 

-28.97 
(7.486)*** 

    

α1 β 1 γ1 δ1 
0.428 

(1.257) 
0.211 

(0.104)** 
-45.82 

(3.016)*** 
28.97 

(7.486)*** 
Table A5.6: ENDEX baseload data 

 

α0 β 0 γ0 δ0 
-3.587*** 

(1.013) 
0.652 

(0.096)*** 
63.12 

(3.016)*** 
-44.50 

(7.062)*** 
    

α1 β1 γ1 δ 1 
3.587*** 
(1.013) 

0.348 
(0.096)** 

-63.12 
(3.016)*** 

44.50 
(7.062)*** 

Table A5.7: ENDEX peakload data 
 
From table A5.6 and table A5.7, we can see that the coefficients γ and δ are significant at 
the 99% confidence level. Hence, the extreme price events observed in August 2003 and 
November 2003 influence the dependent variables in equation A5.4 and A5.5, being 
respectively the expected spot price change (ST – S(t)) and the expected risk premium 
(Ft(T) – ST).  



 

86 86

Chapter 6: Electricity Portfolio management51  
 

6.1 Introduction  
The worldwide liberalisation process in the energy markets has generated serious risk in 
the price of electricity products. As a result of the liberalization trajectory, risk has been 
transferred through the industry chain from the supply side to the end-user. The energy 
world of the end-user changed dramatically. She cannot rely anymore on one regulated 
power price (that hardly changed) for their consumption. The economic law of supply and 
demand requires that she has to act (e.g. change from supplier), in order to exploit the 
lowest price or best service offered by suppliers on the market. Also, market places have 
been created on which market participants can trade electricity forward contracts for 
different delivery periods. Hence, besides choosing the supplier that provides in her needs, 
the end-user also needs to think about what purchasing strategy for delivery of power (on 
spot or in future) she prefers. Hence, this strategy is chosen in such a way that her future 
consumption is met by a combination of spot- and forward contracts, which matches her 
risk preference. A typical purchasing strategy, commonly referred to as a tender strategy, 
among end-users is to buy ones a year (or a few times a percentage of) the annual 
consumption for the next calendar year forward. Obviously a tender strategy is profitable 
when the end-user is able to time the moment of purchase in such a way that it turns out to 
be the minimum cost strategy. But this is wisdom with hindsight. The question that is 
relevant is how the end-user can select her portfolio out of the many strategies (the tender-
strategy is just one of them), that matches her risk appetite. 
  
In this Chapter we are interested whether the portfolio theory proposed by Markowitz 
(1952) can be applied to electricity markets. This conceptual framework allows an investor 
to select the portfolio that matches her risk appetite, and has been widely applied to 
portfolios consisting of a wide range of assets (e.g. stocks, bonds, exchange rates, 
commodities and so forth). Interestingly, various empirical studies have concentrated on 
the Markowitz framework in other recently deregulated industries (pension industry) that 
have seen a similar risk-transfer as described above: e.g. Boyle et al (2006) study the 
portfolio selection problem of employees regarding contribution pension plans. But so far, 
this has not been done in electricity markets. It is therefore interesting to shed light on the 
applicability of the Markowitz (1952) framework in electricity markets, since it enables the 
end-user to derive her optimal purchasing strategy. We do this for a static52 two-asset 
electricity portfolio problem: The end-user can hedge her portfolio cost risk over a 
combination of day-ahead and one-month ahead forward contracts. Finding optimal hedge 
ratios for the position different contract maturities (day-ahead and one-month ahead), is 
evidence that the Markowitz framework structures the sourcing. 

                                                           
51 This Chapter is based on: R. Huisman, and C. Huurman (2006), “Electricity purchasing strategies: 
Applying portfolio theory in power markets” Working paper RSM Erasmus University. We thank 
participants of Energyforum conference in Rotterdam (10-11 May 2006) for valuable comments.    
52 Static means that once the hedge ratio is decided, it cannot be changed. 
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Although academic research on portfolio selection models is well-established and includes 
classical works of Ederington (1979) and Stulz (1984)53, these models cannot be directly 
applied to electricity markets. This is due to electricity price- and load dynamics. Only a 
very few studies have addressed the static portfolio selection problem in electricity 
markets. Fleten et. al (2000) use a 256 scenario model to solve the portfolio selection 
problem of a hydro power producer who allocates production uncertainty (that stems from 
inflow to reservoirs) over a combination of electricity day-ahead and forward contracts. 
Vehviläinen and Keppo (2003) convert the stochastic utility portfolio problem (for 
producers and end-users) set in continuous time, into a deterministic non-linear 
programming problem. This two-step methodology is proposed because there are no 
analytical formulas for electricity derivatives due to the complex spot price process and 
they therefore rely on numerical approximation. Vehviläinen and Keppo claim that the 
Monte Carlo method is superior to a Markowitz approach, but they don’t provide evidence 
to support that. In fact, they solve the portfolio selection problem in a basic setting 
(although they claim that their method is capable of identifying the optimal combination 
for complex power portfolios), similar to ours.54  
In this study we use data obtained from the Dutch power market. From the national 
transmission system operator TenneT (See Chapter 2, for a discussion on TenneT), we 
obtain load schemes from industrial end-users. From the Amsterdam Power Exchange 
(APX) we derive hourly day-ahead prices, and from the European Energy Derivatives 
Exchange (ENDEX) we get next-month (M1) forward prices. We extend the empirical 
literature by showing that the Markowitz framework, with some proper modifications, can 
be meaningfully applied for optimal portfolio selection in electricity markets. Our 
proposed method provides a framework for mapping the risk appetite to market contracts, 
and constitutes a first step for formulating a strategic benchmark for portfolio holders who 
wish to manage the sourcing mix over a certain time horizon.  
 
The remainder of this Chapter is structured as follows. Section 6.2 describes mean-
variance portfolio theory and safety-first models, and derives the mean-variance equations 
needed to solve the portfolio optimization problem. Section 6.3 discusses the data used in 
this study. Section 6.4 conducts the empirical analysis. Section 6.5 concludes.  
 
6.2 Portfolio theory in electricity markets: Markowitz and beyond 
In this section we discuss the Markowitz portfolio theory, and additions to his model that 
have been proposed since he published his work in 1952. Markowitz introduced mean and 
variance as meaningful measures of the expected return and risk55 of a portfolio that is held 
by an investor who prefers more over less, and is risk averse. The investor is assumed to be 
                                                           
53 Ederington uses a basic portfolio model to hedge the foreign exchange risk exposure of a financial 
security portfolio. Stulz (1984) does essentially the same, only considers a stochastic underlying asset 
position.      
54 Vehviläinen and Keppo (2003) obtain the weekly expected prices of the spot price forecast from 
fitting a smooth curve continuously through the NPX forward quotes for the period 1996 to 2000. 
Here they assume that the expected spot price equals the forward price, hence the existence of 
nonzero risk premium in the forward price is ignored. 
55 Risk can be defined as the volatility of unexpected outcomes. It is best measured in terms of 
probability distribution functions (Jorion, 1997). Earlier academic works on expectations and 
probability theory date back as far as the 16th century.      
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mean-variance optimizer. Hence, that when two portfolios have the same expected 
outcome, she chooses the portfolio with the lowest risk. Or alternatively, she would choose 
the portfolio with the highest expected return (or lowest expected costs), when the choice is 
between two portfolios that are exposed to the same amount of risk. Other assumptions are 
that the investors’ utility functions are quadratic and returns are normally distributed (For 
an excellent overview of mean-variance portfolio theory, see Elton et al. (2003)). 
Markowitz defined standard deviation56 as the appropriate risk measure for portfolio 
selection. The above-defined mean-variance framework has been the standard in the 
financial industry ever since.  
Roy (1952) introduces an alternative methodology (that circumvents the cumbersome 
expected utility calculations in Markowitz (1952)). Roy advocates the criterion that the 
optimal portfolio is the portfolio that has the smallest probability of producing a return 
below a prespecified level. Hence, this approach concentrates on the returns below the 
mean, while the standard deviation measures the possibility of returns below and above the 
mean. Roy’s downside risk criterion appeals to the investor’s true interpretation of risk. 
The well-known Value-at-risk (VaR) methodology, which has become the standard risk 
measure in the banking world as of the 1980s57, stems from Roy’s downside risk 
methodology. VaR tells the investor that he can be x% confident that his loss will not 
exceed VaR over a pre-specified period. Hence, the investor can set the confidence level 
(x%) and time horizon, and this method translates the portfolio risk to a single number 
(amount of money), being the VaR. Campbell et. al (2001) build on Roy’s safety first 
theorem, and empirically test a framework for selection of a portfolio consisting of two 
risky assets (stocks and bonds), using a VaR constraint that allows for incorporating non-
normal properties of the portfolio’s return distribution.  
Many financial series such as stock returns, exchange rates (but also power prices, as we 
have seen in Chapter 3) namely exhibit properties such as tail fatness or skewness and in 
these cases the standard deviation is an inadequate risk measure. However, the benefits of 
applying VaR should not be overestimated. Bawa (1975) has shown that when a 
distribution that is given by it’s expectation and standard deviation, ranking portfolios by 
VaR will lead to the same optimal portfolio as ordering portfolios by the standard 
deviation. VaR can be considered (in these cases) as a multiple of the standard deviation. 
Hence, the additional information that is provided by applying VaR should always be 
carefully examined. We therefore view the above discussed approaches merely as 
insightful additions to the traditional conceptual framework proposed by Markowitz. 
 
As mentioned in the previous section, when mean-variance portfolio theory is applied to 
solve the optimization problem for a portfolio consisting of financial assets, the solution 
space is a return-risk space. Since electricity is a non-storable ‘asset’, the concept of 
returns cannot be meaningfully applied. We therefore have to analyse our portfolio 

                                                           
56 Variance, calculated as the square of the standard deviation, introduced by Fisher (1918).   
57 Value-at-Risk is the widely accepted downside risk measure for financial institutions, and is that 
popular because the advantage of quantifying the portfolio risk by VaR is that you have a single 
number/amount of money, VaR limit, that measures the total risk in the institution’s portfolio of 
financial assets. The VaR level that is recommended by the Basle Committee for Banking 
Regulation, tells us that the maximum loss incurred over a pre-specified period, should only exceed 
VaR once every hundred (1%) cases.  
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problem in a profit-risk space, or alternatively a cost-risk space, instead. We choose for a 
cost-risk space because we do not want to make any assumptions about the sales price / or 
profit margin corresponding to a portfolio that is needed to derive the portfolios profit 
(defined as the difference between sales and costs). Studies that concentrate on selecting 
optimal purchasing strategies through applying mean-variance analysis, date back as far as 
the 1970s. Most studies in the areas of management science, operation research and 
accountancy have examined the newsvendor problem; the newsvendor has to order a 
certain amount of newspapers to satisfy a stochastic demand. Note that in a wide variety of 
industries that deal with limited-useful-life products (i.e. flight- or hotel bookings, mobile 
phones), decision-makers face the same demand uncertainties as the newsboy. An often-
referred study is Magee (1975), who presented one of the first extended Cost-Volume-
Profit models to assess the newsboy problem by using capital asset pricing theory.  
 
6.3 Towards a strategic portfolio 
Let us consider an end-user who would like to meet her future electricity consumption V 
with a combination of forward contracts with different delivery periods. Let’s assume for 
simplicity that she can choose between contracts that secure the delivery of load X in the 
first (M1), second (M2) and third (M3) upcoming month from the observation date. The 
long-range strategy that the end-user chooses is the following: 90% of the load V should be 
met in the first upcoming month of the observation day (day t), 70% of V in the second 
upcoming month from day t, and 40% in the third month from day t. She regards this 
purchasing strategy as her strategic benchmark, of which the sourcing mix can be managed 
over time (strategic portfolio management). Note that many other competing strategies 
exist. In textbox 6.1 we display the strategic benchmark (left-hand figure).   
 
 

 
 
 
 
 
 
 
 
 
 
 

Textbox 6.1. Strategic benchmark to meet load V 

 
Let’s consider an end-user who implements above-described purchasing strategy and can 
re-adjust her electricity derivative portfolio (in order to meet her consumption V) on every 
last trading day of each month in accordance with her benchmark (See figure 6.1). So on, 
let’s say January 31, she follows her benchmark by entering into M1-, M2- and M3 
contracts in such a way that respectively 90% of the demand load V is met by M1 
contracts, 70% by M2 contracts and 40% by M3 contracts. She now has allocated her 
future consumption completely over these contracts. When she moves to the end of next 
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month, let’s say February 27, she will purchase sourcing contracts in line with her strategic 
benchmark: In order to meet her strategic benchmark she has to purchase an additional 
20% of the demand load in March through M1 contracts, in addition to the extent of V that 
has already been met in the previous month (70%) by the M2 purchase, in order to meet 
her consumption in March. This is depicted in the right-hand figure by the semi-transparent 
grey box.  
In the same way, we can derive the amount that needs to be covered by what are now M2 
contracts (previously M3 contracts), to cover the load obligation in April (not displayed). 
The percentages are the hedge ratios, as these tell us the extent to which the demand load V 
is met by M1, M2 and M3 contracts. Obviously the end-user can deviate from her strategic 
benchmark (e.g. she wants to exploit certain market opportunities), which is known in 
portfolio management literature as tactical asset management. The strategic portfolio 
structure consists of hedge ratios for the position different contract maturities. A point 
worth emphasizing is that today’s day-ahead and forward markets provide end-users with 
the opportunities (i.e wide variety of market contracts) to implement a purchase strategy as 
discussed above. The key issue is to select the optimal purchase strategy (hence, the 
optimal hedge ratios) that matches the risk preferences of the end-user. We are interested 
whether the Markowitz theorem helps us to derive this strategy.   
 
6.3.1 Model setting  
Following the assumptions underlying the Markowitz framework, we assume that the 
participant is a mean-variance optimizer, who prefers fewer costs to more and can quantify 
her risk preference (see section 6.2, for a discussion on the key assumptions underlying this 
model). We apply the framework to a static one-period setting: Once the hedging position 
is decided, it is not changed after that during the whole investment horizon. Our model 
setting closely resembles the static one-period two-assets hedging framework examined in 
Vehviläinen and Keppo (2003). An important difference between the example described 
earlier and our model in this section, is that we consider a one-period model following 
Vehviläinen and Keppo (2003)58. This implies that we don’t rebalance the position in the 
next month. We concentrate on the question whether portfolio theory can provide the end-
user with the optimal hedge ratio (θ) that matches the risk preferences of the end-user.  
As can be seen from textbox 6.2, the end-user in our model can allocate her consumption 
load V (expressed in MW) over two contracts: day-ahead contracts and M1 baseload 
contracts. V(h,t) denotes the consumption on every hour h of day t in the first upcoming 
month from day t = 0. The end-user makes her purchase decision on day t = 0. The delivery 
period starts on hour h = 1 of day t1 =1 and ends on hour h = 24 of day t2 =31. An M1 
baseload contract secures the delivery of 1 MWh at every baseload hour (all 24 hours of 
the day) in the first upcoming month from the observation date, against a fixed price F. 
 
 
 
 
 
 

                                                           
58 We do not consider dynamic hedging strategies because of liquidity issues. A dynamic rebalancing 
setting would require that electricity spot and derivative markets offers sufficient opportunities of 
trade on every precise moment. 
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Textbox 6.2. Strategic benchmark to meet to meet load V(h,t) 

 
We let the hedge ratio, θ, account for the extent that load V(t,h) is met by the M1 forward 
position. This position is noted as N, and expressed in units MW. We express θ as a 
percentage, where 0%≤ θ≤ 100%. When on any hour h of any day t in the delivery period 
V(h,t) has not been met by M1 contracts, the remainder is purchased (in case of deficit) or 
sold (in case of surplus) on spot, in the day-ahead market. Day-ahead spot contracts that 
secure the delivery of 1 MW power on a specific hour h of the next day against a price 
S(h,t). In this study it is assumed that the amount of electricity that needs to be purchased/ 
sold to meet V(h,t) is valued against the prices observed at the day-ahead market. This is a 
reasonable assumption, since the minimum time span given the technical constraints 
between trade and delivery is typically a one-day horizon (For more details, see Chapter 1 
section 1).  The day-ahead position is noted as Q(h,t), and expressed in units MW. In our 
model, we distinguish two load scenarios:  
(i) constant load scenario; V(h,t) = Vc  
(ii) time-varying load scenario V(h,t), with finite expectation E0(V(h,t)) and variance 
σ2(V(h,t)) over the delivery period. Here the expectation E0 is taken at time t = 0, which 
denoted by the subscript.  
It is important to emphasize that although the load profile V(h,t) can vary over time, the 
amount of electricity that is being delivered under the forward position is fixed, once the 
end-user sets θ. This is because we set N equal to the extent of the expected demand load 
E0(V(h,t)) that the end-user wants to be met by the forward position N. Since the end-user 
selects sets the hedge ratio at t = 0, the forward price F and volume purchased at the 
forward market are determined at the exact same moment. We will denote this with the 
subscript 0, hence use the notation N0 and F0.  
Another point worth noting is that the size of V(h,t) that has not been met by N, must be 
met by the spot position Q(h,t) that is also expressed in units MW. This means that any 
shortage or surplus amount of power is respectively purchased or such that V(h,t) is 
perfectly hedged on any precise moment. While the amount of power purchased on the 
forward market is fixed once the hedge ratio is set, this is not necessarily the case for the 
position Q(h,t). That depends on whether we assume a time-varying or constant load 
V(h,t).  
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We now can formulate the cost function of the purchase strategy. Let I(h,t) (θ) represent 
the cost function I(h,t) of the selected portfolio with hedge ratio (θ). It consists of a forward 
position component and day-ahead position component as can be seen here: 

I(h,t)(θ) = N0F0 + Q(h,t)S(h,t)  where 0% ≤ θ≤ 100%     (6.1) 

 
6.3.2 Optimising electricity portfolio   
We will now derive the mean-variance equations for both load scenarios. 
(i) Constant load  
When the demand load is constant, noted as Vc, the expected volume over the delivery 
period, noted as E0 (V(h,t)), can be given by this single number, the constant Vc. The 
position on the forward market reads as:     

N0 = θ E0 (V(h,t)) = θ Vc (6.2) 

The remaining volume of that has not been purchased on the forward market, is purchased 
on the day-ahead spot market. Here represents Q(h,t)  this position. We can write:    

Q(h,t)  = Qc =(1- θ) Vc      (6.3) 

From equation (6.2) and equation (6.3) we can observe that once the hedge ratio θ is 
determined, both the size of the forward position N and the spot position Q(h,t), are known 
and constant over the delivery period. To illustrate that the spot position Q is constant on 
any time (h,t) in the delivery period, we replace the notation (h,t) by subscript c (see (6.3)). 
The portfolio cost function I(h,t)(θ) is:   

I(h,t)(θ) = N0F0 + Qc S(h,t)  = θVc * (F0-S(h,t))+ Vc S(h,t) (6.4) 

From equation (6.4) we can observe the term (F0-S(h,t)) on the right hand side of the 
equation. This term looks similar to the forward basis examined in Chapter 5, but differs in 
as subtle way as in equation 6.4 the forward price is observed at t = 0, henceforth we do 
not consider the contemporaneous price differential between spot price and forward price. 
The expectation E0 and the variance (var) of the portfolio costs I(h,t)(θ) are given by:   

E0 [I(h,t)(θ)] = µθ       =
1

1
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           =
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=
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[Vc S(h,t) + θVc* (F0 - S(h,t))]  

(6.5) 

We can see from equation 6.5 that when the electricity market participant decides to hold a 
long position in the forward (θ > 0), she pays a forward risk premium (herafter RP0) for 
insulating herself for variation in electricity prices (price risk). When θ 1, the impact of 
the forward risk premium on the expected portfolio costs increases with the extent that the 
load obligation is covered by the forward position N0, which is modeled by the constant 
volume θVc. 
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var [E0 (I(h,t)(θ))] = σθ2 =
1
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(6.6) 

An important point worth emphasizing when examining equation (6.6) is that the constant 
Qc can equal zero in one special case: when the hedge ratio is set equal to 100%. As can be 
seem from 6.6, the portfolios variance (σθ2) will be zero as well. This implies that by fully 
hedging the price risk on the forward market, the price risk can be completely eliminated. 
In all other cases (when θ > 0%), the portfolios variance (σ2

θ) equals the spot price variance 
multiplied by constant Qc. From equation (6.5) and equation (6.6) we can recognize the 
trade-off that the investor faces: It involves the question whether the ex-post risk premium 
paid is worth offsetting the variation in portfolio costs, which stem from one source of risk 
only: the variation in price S(h,t). Any variation in portfolio costs arises from price risk. 
When we would assume load dynamics instead of a constant load profile, we will see that 
this will contribute to the variation in portfolio costs as well, besides price risk.   
 
(ii) Load dynamics 
Again we set N0 equal to the extent of the expected demand load E0 (V(h,t)) that the 
electricity market participants wants to cover by the forward position. Then N becomes:  

N0 = θ E0 (V(h,t)) , where 0% ≤ θ≤ 100%     (6.7) 

We will use the average demand load as a proxy for E(V(h,t)). 
Since the expectation E0(V(h,t)) can be different from V(h,t) on any precise hour h of day t, 
the remainder of the size of the outstanding V(h,t) that has not been covered by N0, is 
covered by the spot volume Q(h,t) that can vary on every precise moment.  Q(h,t) reads as:    

Q(h,t)  = V(h,t) - N0= V(h,t) - θ E0 (V(h,t)) (6.8) 

From equation (6.8) we can observe how the oscillation of V(h,t) around it’s expected level 
E0(V(h,t), affects the spot volume Q(h,t) on any precise moment. It can be seen that the 
hedge ratio θ scales the size of the spot volume Q(h,t), but does not affect the variation that 
is embedded in the demand load V(h,t) since it is a constant over the investment horizon. 
The variation in V(h,t) is likely to be higher on certain hours h (peak hours) and /or certain 
days t (weekdays), when demand load uncertainty is higher. On off-peak times (night 
hours, weekends and holidays) the spread around the expected load will be lower, as will 
demand load uncertainty. Hence, these fluctuations embedded in the deterministic demand 
load V(h,t) are effectively hedged on the day-ahead spot market with an hourly-varying 
volume Q(h,t).  
In the following equation we read the cost function of the portfolio costs I(h,t)(θ):    

I(h,t)(θ) = N0F0 + Q(h,t)*S(h,t) (6.9) 

We can see from equation (6.9) that the second term on the right-hand side of the equation 
is accounts for load dynamics that have been introduced: Hence, a time-varying volume of 
size Q(h,t) needs to be purchased against day-ahead price S(h,t).  
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When we examine (6.9), two points are worth emphasizing: When V(t,h) is time-varying 
and oscillates around the expected level E0 (V(h,t)), there exists no hedge ratio (i.e. θ = 
100%) that the electricity market participants can select to fully eliminate the portfolio risk. 
We do not impose sale constraints, which implies that when the volume of the forward 
position N0 exceeds the actual demand load this volume surplus can be sold against S(h,t)  
 
We now derive the expected purchase costs E [I(h,t)(θ)]:    

E0 [I(h,t)(θ)] = µθ       =
1

1

12 +− tt ∑
=

2

1

t

tt
Σ
=

24

1h
[N0F0 + Q(h,t)S(h,t)]    

           =
1

1

12 +− tt ∑
=

2

1

t

tt
Σ
=

24

1h
[V(h,t)S(h,t) + θE0 (V(h,t)) * (F0 - S(h,t))] 

(6.10) 

To see how the price and loead profile affects the variance (var) of I(h,t)(θ), we examine:  

var [E0 (I(h,t)(θ))] = σ2
θ = 1

1

12 +− tt ∑
=

2

1

t

tt
Σ
=

24

1h
 var [Q(h,t) S(h,t)]  

                                      =
1

1

12 +− tt ∑
=

2

1

t

tt
Σ
=

24

1h
 var [ Q(h,t) S(h,t]  

(6.11) 

 
We can see from equation (6.11) that the portfolio variance estimate σ2

θ, equals the 
variance in day-ahead market costs Q(h,t)S(h,t). An important difference between the 
mean-variance expressions of this scenario and scenario (i), is that now there does not 
exists a hedge ratio θ by which the portfolio cost risk (proxied by σ2

θ) can be completely 
eliminated. This is because Q(h,t) is a time-varying variable, hence contributes to 
portfolios variance.  
 
Measuring electricity cost risk 
In order to use a VaR-like measure as a risk constraint to select the optimal portfolio along, 
I(h,t)(θ) should have a finite expectation and variance. We have seen that this applies for 
the portfolio cost function in both load scenarios (i) and (ii). An important condition to 
write the portfolio risk in terms of VaR is that the tail area of the I(h,t)(θ) distribution can 
be assessed accurately. This can be done for a variety of distributions: i.e. Student-t 
distribution, normal distribution or lognormal distribution.  
In this study we examine the costs of electricity purchase strategies from an end-user 
perspective. Several studies have been published that examine the portfolio distribution 
from the perspective from the counterparty, hence these studies concentrate on the 
distribution of electricity sales strategies. The special edition Vol. 9 (1) of the Journal of 
Econometrics (1979) gives an excellent overview of this stream in the energy economics 
literature. We are not aware of any empirical studies that examine the electricity ‘costs’ or 
electricity ‘sales’ in the post-privatisation era. Also studies on modeling electricity loads 
are very scarce. Nowicka-Zagrajek and Weron (2001) concentrate on electricity hourly 
load dynamics in the Californian power market in the period 1998 to 2001, and find that 
the distribution of deseasonalized hourly power loads exhibit excess kurtosis. A point 
worth noting is that part of the data sample overlaps the Californian power crisis in 1999 
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and 2000, which could influence their results. Studies on electricity price modeling 
dominate this field of academic research; Pilipovic (1998), Lucia and Schwartz (2002), 
Bessembinder and Lemmon (2002) have documented empirical evidence obtained from 
major power markets around the world, that electricity day-ahead prices have a positively 
skewed distribution, which typically exhibit high excess kurtosis. The assumption that the 
price distribution around the expected electricity spot price value follows a lognormal 
distribution, is being imposed to the power portfolio selection problem studied in 
Vehviläinen and Keppo (2003).   
The lognormal distribution is a monotonic transformed version of the normal distribution. 
This means that a random variable X is lognormal when its natural logarithm, noted as ln 
(X), is normal. The lognormal distribution can be described by a parameter to measure its 
arithmetic mean µ and a parameter σ for estimating the spread around the mean. The 
minimum value of a lognormal distribution is zero, and it has a positively skewed bell 
shape form.  We argue that these characteristics are arguments in favor for assuming that 
the cost distribution I(h,t)(θ) follows a log-normal process. First, as we only need ensure 
that the expectation and variation of the costs function are finite we can solve our portfolio 
problem in a two-dimensional mean-variance space. Second, the fact that the minimum 
value of the lognormal distribution is zero, resembles the distribution features of the cost 
function I(h,t)(θ) since costs can never be smaller than zero. We will empirically test 
whether this assumption holds. 
 
We transform I(h,t)(θ)  to its lognormal value, noted as Ī(h,t) (θ)  value, such that:    

Ī(h,t) (θ)  = ln (I(h,t) (θ)), where Ī(h,t)  ~ IID (µ, σ) (6.12) 

Here ln stands for natural logarithm. Then we can write for the cumulative distributional 
function F (cdf) of Ī (h,t) (θ):  

F (Ī (h,t) (θ)) = P (Ī (h,t) (θ)  ≤ πh,t) = c    ⇒   πh,t = F-1 (c) = q (c) (6.13) 

Here P stands for the probability of occurrence and q refers to the quantile at c of the cdf.  
Then P is given by the cth quantile of cdf Ī (h,t) (θ) namely such that:    

P (Ī (h,t) (θ) ≥VaR) = c (6.14) 

Here P stands for the probability of occurrence and q refers to the quantile at c of the cdf. 
A VaR p/day value of €x implies that the market participant can be (100-c)% certain that 
the costs in excess of the daily average costs are equal to €x. Then P is given by the cth 
quantile of cdf Ī (h,t) (θ) namely such that:    

µθ = VaR+ q(c)σθ (6.15) 

We observe from equation (6.15) that when we assume that the cdf of I(h,t) (θ) can be 
approximated by a lognormal distribution, the quantile estimate is merely a multiple of 
standard deviations. In this framework we can easily express the investor’s choice for the 
optimal hedge ratio that results in the portfolio that minimizes (Minθ) the expected 
portfolio costs subject to VaR as described in equation (6.13). For the function Ī (h,t)(θ) it 
should hold that:  

Minθ {E [Ī (h,t) (θ)|  P (I(h,t) (θ)) ≥VaR = c }  = Minθ VaR+ q(c) σθ   (6.16) 
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We note that the equation only holds when q(c) is smaller than zero, which is the case 
when the confidence level c is very small. In this study we set c equal to 1% or 5%, hence 
we set our risk limits respectively at the 95%VaR and 99% VaR. Furthermore note that 
Ī(h,t)(θ) can be easily transformed to the actual value I(h,t) (θ), by taking the exponential of 
Ī (h,t) (θ).  
 
6.4 Data and sample description 
We use hourly price and load data from the Dutch wholesale power market for the month 
January 2004, being 744 observations each. From Tennet we obtain the load profile 
scheme for this month. In this scheme, the load fractions forecasts for the month January 
2004 are specified on a 15 minutes basis, being 2976 observations in total. The fractions 
add up to 1.   
Tennet distributes these schemes to all the Program Responsible (PR) firms59. PR firms are 
using the load profile schemes as a measure for the electricity demand of small parties with 
an installed capacity that is equal or smaller than 100 KW. A small commercial building 
typically uses 100 KW (Bunn, 2004). For parties connected to the grid, which have an 
installed capacity higher than 0.1 MW, the PR firms generally rely on installed systems 
measure the electricity consumption/supply on a 15 minutes basis. However, installment 
and maintenance of this measurement equipment is not always economically feasible, so 
even for this group of customers it is not uncommon to use the load profile schemes as a 
measurement tool for their consumption. We use the load fractions to derive a time-varying 
load function V(h,t) that we use in this study. We assume that the electricity market 
participant has a contractual obligation to deliver 100 MW per hour, which we refer to as 
the index. When we multiply the hourly fraction with the index, we get the time-varying 
load function V(h,t). Therefore the expectation of the demand load E(V(h,t)), proxied by 
the average demand load, and the constant demand load Vc, both equal the index.   
 
In figure 6.1 you can see the constructed load dynamic function V(h,t) for the month 
January. From the figure, we observe that the demand load in the night and morning hours 
are low and typically varies between 50 MWh and 100 MWh. In the hours 18 to 22, often 
referred to as the super peak hours, electricity consumptions is highest and around 140 
MWh to 160 MWh.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                           
59 We refer to Chapter 2 section 3.1, for a discussion on PR firms in the Dutch power market system. 
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Figure 6.1: Load dynamics V(h,t) in MW for Dutch market (1 to 7 January 2004).    

 
 
 

From the Amsterdam Power Exchange we obtain hourly day-ahead baseload prices for the 
month January 2004. In table 6.1, we provide the descriptive statistics of the hourly 
volumes V(h,t) and hourly prices S(h,t) in January 2004. From table 6.1, we observe that 
the average hourly base load is 100 MWh. Note that we have multiplied the hourly 
fractions obtained from the load schemes, which add up to 1 over all 744 hours in the 
delivery period, with this amount. In particular, we have assumed that the hourly load 
obligation is equal to 100 MWh. Therefore it directly follows that the average base demand 
load is (74400 MW/ 744 hours=) 100 Mwh.  
Note that we set the expected monthly load E(V(t,h)) equal to this estimate in the scenarios 
under consideration. From the standard deviation estimates listed in table 6.1, we can see 
that the dispersion of the load V(h,t) around it’s expected value of 100 MW is higher than 
the dispersion of the price S(h,t) around it’s expected value of €30.86 p/MWh. When we 
would consider the standard deviation estimates as meaningful measures for the variation 
in price and load profile, we conclude that the contribution of the ‘volume risk’ to the total 
portfolio risk is highest. From the skewness estimates that are close to zero, and negative 
excess kurtosis estimates we conclude that the distribution of V(h,t) has no fatter tails than 
the normal distribution. 
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 Load V(h,t) (MW) Price S(h,t) (€/MWh) 

Mean 100.0 30.86 

Median 101.9 28.09 

Std deviation 34.93 21.67 

Minimum 49.22 0.050 

Maximum 168.1 396.1 

Skewness 0.112 8.177 

Exc. Kurtosis -0.994 117.5 

Table 6.1: Descriptive statistics of demand load and  
spot prices on Dutch market for January 2004 

 
The high positive skewness and excess kurtosis of the price S(h,t), disclose the non-normal 
characteristics of hourly price data discussed in Chapter 3. The comovement between the 
price S(h,t) and load V(h,t), as measured by the  correlation coefficient equals 0.12 in 
January 2004 (and 0.11 in year 2004).60  
 
As mentioned earlier, the end-user makes her portfolio selection choice on day t = 0, 
before the delivery period starts (on hour 1 of January 1, 2004). We set t = 0 equal to 30 
December 2003, which is the last trading day of this month that forwards are traded. On 
this day, the M1 baseload forward price is €48.72. This price is close to the average M1 
forward price in that month, being €47.86. This forward contract secures the delivery of 1 
MWh on each hour of the day. The daily base forward premium RP0 equals €428.6 
(€17.86*24h) for delivery of 24MWh, which is calculated as the difference between the 
forward price and the monthly averaged hourly day-ahead price that equals €30.86 (See 
table 6.1).  
 
6.5 Results  
In section 6.5.1 we construct the efficient frontiers for scenario (i) and (ii) from solving our 
extended Markowitz equation framework that we have developed in section 6.3. We refer 
to Appendix A6.1 for the cost-risk measure statistics. We elaborate on the implications that 
can be drawn from these results. In section 6.5.2 we show and discuss the results of the 
optimal portfolio choice when the end-user sets her VaR-like preference.  
  

                                                           
60 A similar degree of comovement is observable between the day-ahead prices and day-ahead 
trading volumes observed in the APX market in that period. That is, a negative correlation coefficient 
of 0.17 in January (and -0.07 in year 2004). 
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6.5.1 Delineating efficient frontiers 
In figure 6.2 we display the efficient frontiers corresponding to the two load scenarios (i) 
and (ii), which are delineated in an expected cost - risk space. Here we have chosen the 
confidence level for our VaR limit at 95%. Any cost-risk measure (Total I(h,t)(θ), µθ p/day, 
σθ p/day, VaR p/day) mentioned in this section, can be found in the tables A6.1 and A6.2 of 
the Appendix.    
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Figure 6.2: Efficient frontiers scenarios (i) and (ii) - 95%VaR -             

 
Each of the two efficient frontiers displayed in figure 6.4, extends from the minimum risk 
portfolio (most left point on frontier) to the minimum cost portfolio (most right point on 
frontier). These are respectively the ENDEX portfolio (θ = 100%) and APX portfolio (θ = 
0%). The ENDEX portfolio is the most expensive portfolio and the APX portfolio the 
cheapest along the efficient frontier.  
From the negative slope of both efficient frontiers, we can conclude that a higher risk 
appetite is rewarded with lower expected costs.61 This result is important. The downward 
trend of expected portfolio costs with risk is consistent with the Markowitz portfolio 
theory. We can see from the efficient frontier corresponding with scenario (i) that the 
ENDEX portfolio is risk-free. This portfolio with hedge ratio θ = 100% has a daily VaR 
that equals €0 p/day, hence the portfolio cost risk can be completely eliminated. A VaR 
p/day value of €0.00 implies that the end-user who selects the portfolio (θ = 100%) can be 
                                                           
61 The choice for a higher confidence level for the VaR limit (e.g. 99%VaR) does not affect this 
conclusion. The increase of the confidence level of VaR implies that the portfolio VaR increases. 
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certain that the costs in excess of the daily average costs of €116928 are equal to €0.00. 
These figures can be found in table A6.2 of the Appendix.  
From equation (6.6) we have seen that the source of portfolio risk in scenario (i) is price 
variation on the spot market. We can see from the efficient frontier corresponding with 
scenario (ii) that there exists no such efficient portfolio (θ) when the demand load V(h,t) is 
time-varying. This is because the introduction of load dynamics into the model, implies 
that an additional source (besides portfolio price risk that stems from S(h,t)) of risk is 
introduced in the mean-variance framework. This risk essentially stems from the load 
profile V(h,t) (see equation 6.11). In contrast with scenario (i), risk cannot be completely 
eliminated (only reduced) through investing in the ENDEX portfolio in scenario (ii). The 
daily average costs of this purchase strategy equal €124212 and the daily 95%VaR 
(99%VaR) equals €60422 (€61394) p/day. Hence, the end-user can be 95% (99%) certain 
that the costs in excess of the daily average costs are equal to €60422 (€61394) per day. 
The horizontal move62 of the efficient frontier to a higher risk space that we observe when 
we move from scenario (i) to (ii), thus stems from the fact that in scenario (i) the day-ahead 
spot position Qc is constant over time, while in scenario (ii) this position is time-varying 
Q(h,t). Observe that there exists no efficient portfolio (θ) in both scenarios with the exact 
same cost-risk profile. Also observe that the slope of the efficient frontiers is the same and 
amounts a daily average costs (µθ p/day) of €428.6 per percent increase in θ. This is equal 
to the daily risk premium that the holder of an M1 contract pays per contract, namely: 
RPt(T)*24h = €17.86*24. The end-user’s motivation to pay the forward premium is to 
insulate herself from portfolio cost risk. This explains the increase in portfolio costs that 
we observe in figure 6.4, when we move along the frontier such that θ 100%.  
 
An important point that has not been examined yet is whether the lognormality assumption 
imposed on our empirical distribution I(h,t)(θ) holds. We therefore plot the quantiles of the 
Ī (h,t) (θ) distribution (the lognormal transformation of I(h,t)(θ)) against the quantiles of a 
normal distribution (Q-Q plot). In Appendix A6.4 and A6.5, we provide the Q-Q diagrams 
that corresponds with the cost distributions of the portfolios that lie on the efficient 
frontiers that are displayed in figure 6.2. These diagrams suggest that the VaR measure is 
subject to possible under- or overestimation of the true risk faced. 
 
6.5.2 Results optimal portfolio selection  
The final step in the sourcing allocation process is to choose the portfolio from the efficient 
frontier displayed in figure 6.4, which meets the VaR-like preference of the market 
participant. For the sake of illustration, let’s assume that the end-user can quantify her 
portfolio risk appetite in VaR terms and sets her daily (100-c)% VaR limit equal to €75000 
p/day. Here c equals 1 or 5%. This implies that she wants to be 95% or 99% certain that the 
                                                           
62 This move is not completely horizontal. The level of portfolio costs (µθ p/day)  is slightly higher in 
scenario (ii) than in (i), as can be seen from the Appendix (compare results A6.1 and A6.2). This can 
be explained by the fact that that in scenario (ii) the spot-volume Q(h,t) can be different on every 
precise moment. In scenario (i) the spot-volume is constant (Qc). Especially on moments when a 
relatively large amount of power needs to be purchased on the spot market against a relatively high 
price S(h,t), these costs have a relatively higher contribution on total portfolio costs. We note that the 
low value of correlation between S(h,t) and V(h,t), being 0.12, the chance of occurrence is rather 
low.   
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costs in excess of the daily average costs are equal to €75000. This VaR level is chosen 
randomly.63 
 

 Scenario (i) Scenario (ii) 

 95% VaR 99% VaR 95% VaR 99% VaR 

Optimal (θ) 18% 20% 81% 83% 

µθ p/day €81948 €82846 €115951 €116725 

σθ p/day 8664 8442 8454 8293 

Table 6.2: Optimal portfolio under Value-at Risk like measure (Equation (6.16)) 

 
From table 6.2 we can see that when the end-user has a constant consumption pattern and 
wants to be 95% or 99% certain that her costs in excess of the daily average costs will not 
exceeds €75000 per day, she selects a portfolio with hedge ratio of respectively 18% or 
20%. When the end-user has a time-varying consumption profile, she selects a portfolio 
with a hedge ratio of 81% (95% VaR) or 83% (99% VaR). The choice for a higher 
confidence level translates to a higher proportion of the demand load V(h,t) that needs to  
met by the riskless forward position, in order to satisfy the same VaR limit set by the end-
user (€75000 p/day).     
 
6.6 Concluding remarks 
Today’s spot and derivative markets provide end-users with the opportunities to implement 
a purchase strategy that is consistent with their risk appetite. In this Chapter we provide 
empirical evidence obtained from a basic portfolio model that the theory of efficient 
portfolios proposed by Markowitz (1952), and additions that incorporate a Value-at-Risk 
based risk measure, can help her to do that. We provide an empirical analysis using two 
different market contracts and assume a deterministic load profile. Our results demonstrate 
that mean-variance portfolio theory structures the sourcing, in such a way that is consistent 
with her risk appetite. This result is important. We claim that our proposed method 
provides a framework for mapping the risk appetite to market contracts. Firms that use 
electricity in a certain profile can select a purchase strategy that is consistent with their risk 
aversion level. The proposed method for electricity portfolio selection structures the 
sourcing. As such, the framework can be regarded as an important step towards the 
formulation of a strategic portfolio that can function as an independent benchmark that 
traders may use to evaluate their tactical deviations (e.g. trader might decide to exploit her 
timing skills) along.  
 

                                                           
63 The objective of this study namely is to show that mean-variance portfolio theory can be applied to 
find optimal hedge ratios in electricity markets.    
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6.7 Appendix 
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Figure A6.1: Efficient frontiers scenarios (i) and (ii) - 99%VaR -             
 

Portfolios on efficient frontier scenario (i) in Figure 6.2 
Selection is based on a step-size of 10% for θ.   
 

 Equation  θ = 0% θ = 10% θ = 20% θ = 30% θ = 40% θ = 50% 

µθ p/day (6.5)  74064 78350 82637 86923 91209 95496 

σθ p/day (6.6)  10617 9555 8494 7432 6370 5309 

95%VaR p/day (6.20)  94208 83121 73473 64070 54784 45565 

99%VaR p/day (6.15)  98557 85915 75496 65529 55813 46261 
         

   θ = 60% θ = 70% θ = 80% θ = 90% θ = 100%  

µθ p/day (6.5)  99782 104069 108355 112642 116928  

σθ p/day (6.6)  4247 3185 2123 1062 0  

95%VaR p/day (6.15)  36390 27247 18131 9045 0  

99%VaR p/day (6.15)  36829 27494 18243 9074 0  

Table A6.2: Cost risk measures for efficient portfolios in scenario (i)  
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Portfolios on efficient frontier scenario (ii) in Figure 6.2 
Selection is based on a step-size of 10% for θ.   
 

 Equation  θ = 0% θ = 10% θ = 20% θ = 30% θ = 40% θ = 50% 

µθ p/day (6.10)  81355 85641 89926 94212 98498 102783 

σθ p/day (6.11)  16356 15339 14327 13324 12330 11348 

95%VaR p/day (6.15)  151400 138733 128625 119090 109890 100945 

99%VaR p/day (6.15)  161154 145607 134047 123455 113432 103824 
         

   θ = 60% θ = 70% θ = 80% θ = 90% θ = 100%  

µθ p/day (6.10)  107069 111355 115640 119926 124212  

σθ p/day (6.11)  10383 9437 8520 7639 6811  

95%VaR p/day (6.15)  92232 83763 75581 67760 60422  

99%VaR p/day (6.15)  94569 85652 77101 68977 61394  

Table A6.3: Cost risk measures for efficient portfolios in scenario (ii) 

 
Q-Q plot 
The shape of this Q-Q plot should be a straight line if the theoretical distribution correctly 
describes the empirical distribution Ī (h,t) (θ). If they don’t, there is a mismatch: a concave 
(convex) shape indicates that the empirical distribution is positively (negatively) skewed. If 
the diagram has a straight line in the middle and curves upward (downward) at the left end 
downward (upward) at the right, it would indicate that the empirical distribution has 
thicker (thinner) tails than the normal distribution. 
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A6.4 Q-Q plot scenario (i)  
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Figure A6.4. Quantiles of Ī (h,t) (θ) distribution against quantiles normal distribution 
                      for scenario (i). Corresponding with portfolios (θ) in table A6.2 

 

A6.5 Q-Q plot scenario (ii)  
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Figure A6.5. Quantiles of Ī (h,t) (θ) distribution against quantiles normal distribution 
                      for scenario (ii). Corresponding with portfolios (θ) in table A6.3 
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Chapter 7: Conclusions 
 

7.1 Concluding remarks 
The single main conclusion that can be drawn from the research issues outlined in the 
previous chapters, is that the introduction of competitive wholesale power markets has 
resulted in price modeling and portfolio management puzzles that share both features 
observed in traditional markets, and distinct features that are unique for this market. 
Therefore the empirical studies discussed in this thesis, suggest additions to the traditional 
models of the financial markets, to make them applicable for electricity markets. The main 
conclusions and implications that can be drawn from the findings presented in this Thesis, 
will be discussed in this Chapter.  
 
7.1.1 Electricity spot price modeling 
Since the worldwide deregulation of the power industry that started in the early 1990’s, 
market places have been created on which market participants can trade electricity for 
different delivery periods in future or in real-time. In Chapter 2 we concentrate on two of 
these market platforms, the day-ahead market and balancing market. These markets play an 
essential role in ensuring the real-time balance between supply and demand at every 
precise moment in time. We examine whether the historical development of price and 
volumes obtained from these markets are consistent with the increase of efficiency 
imposed by the liberalization. A central objective of the EU policy is to establish a free 
internal energy market through liberalization by increasing efficiency. We shed light on 
this issue by examing part of the market. We obtain data from the Dutch power market, 
and find that both imbalance prices and the spread between this price and the day-ahead 
price increase, and that unbalance volumes decline. The price increase can be explained by 
allocative efficiency as cheaper production facilities are better allocated in the merit order 
of the day-ahead market and that only more expensive production facilities are available 
for unbalance volume. The volume decrease can be explained by improved demand 
forecasts of energy firms, which leads to fewer shocks to the system. This has a positive 
effect on the security of supply as long as a minimum reserve level is maintained. The 
provided evidence indicates that the energy resources are better allocated in terms of 
production costs and that energy firms have improved their forecasts on consumer demand. 
Although our study covers only part of the market, the results are promising in light of the 
EU objective to increase efficiency in the electricity system.   
In Chapter 3 and 4 we examine the price dynamics of day-ahead contracts that secure the 
delivery of electricity on the next day. Understanding these dynamics is essential to explain 
the risks and rewards to which participants in today’s deregulated industry are exposed. In 
Chapter 3 we focus on the dynamics of the daily average of these prices. The dynamics of 
daily prices are important as these prices are used as reference point for marking to market 
valuations and serve as a base for option contracts such as callable options. In this Chapter, 
we concentrate on the extreme events. Here ‘extreme’ refers to the chance of occurrence 
that an extreme price movement occurs and is captured by the tails of a return distribution, 
in our study the distribution of the residuals of a mean-reverting price model. The fatter the 
tail, the more tail probability mass, henceforth the higher the risk that market participants 
will face. We use the tail fatness estimator proposed by Huisman et. al (2001) that is one of 
the very few estimators that has proven to be unbiased in small samples. It therefore 
ensures us to assess the amount of tail fatness correctly in small samples, which are typical 
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for electricity prices (due to the short market existence). We then use this information to 
parameterize a Student-t distribution. We propose the Student-t distribution as an 
alternative to the normal distribution as it is capable of capturing the fat tailed behaviour of 
electricity prices. We demonstrate that assuming normal innovations in Monte Carlo 
simulations for risk management purposes can have serious consequences for the true 
amount of risk faced. We consider our method an easy-to-implement alternative to other 
power price models proposed in literature, such as jump diffusion models or switching 
regimes models that also explicitly model extreme events and allow for incorporating 
additional risk that stems from non-normal characteristics. Our proposed method enables 
risk managers and portfolio managers to assess the true price risk that they face in today’s 
volatile electricity markets. The average prices examined in Chapter 3 are indeed averages 
and do not meet the market microstructure of the day-ahead market itself. Chapter 4 
therefore provides a satisfactory empirical framework to describe the dynamics on an 
hourly (intra-day) basis, and more importantly, exactly matches the market microstructure 
of day-ahead markets. Prior research has failed to do that. The results, obtained from our 
proposed panel framework, show clearly that hourly electricity prices vary throughout the 
day: In the midnight-, morning-, and evening hours during weekdays, and all hours in the 
weekend, prices are below the daily average mean. Prices are higher than the daily average 
prices for on-peak delivery of power (power delivery in business hours). These estimates 
make sense as demand for power is low in weekend and off-peak hours on weekdays, and 
high in peak hours. This finding implies that a price model with a daily average mean will 
not suffice, hence will lead to erroneous conclusions. Other important findings on hourly 
stochastic patterns show up in the cross-sectional correlation matrix of the error term of our 
hourly price model: We find a strong correlation between prices of two adjacent hours. An 
explanation for this effect is that when reserve capacity is low in one hour it will probably 
be low in the next hour as well and if demand is high in one hour it will probably be high 
in the next hour as well. A second major finding is the intra-dayblock correlation structure 
between hours. The first block is identified in the morning-, and midnight hours. Prices in 
these off-peak hours exhibit high cross-sectional correlations. The second block shows up 
in the peak hours from hour 6 through hour 19. Again prices in these hours are highly 
correlated. There is evidence for a clear peak versus off-peak correlation structure but, 
interestingly, the boundaries of the peak block do not perfectly match the market definition 
of peak hours. These findings have important implications for market participants on both 
the supply and demand side: e.g. Power generation plants let their nomination depend on 
the expected prices for electricity delivery throughout the day. Firms that use electricity in 
a certain profile through the day that can’t be resembled by standard base- or peakload 
contracts might have a demand for contracts that deliver only in a few hours of the day. To 
valuate these contracts market makers need to assess the expectations and risks for those 
specific hours and cannot rely on daily average prices only. Applications of our proposed 
panel framework can be found in power risk management and derivative pricing.  
 
7.1.2 Electricity derivative price modeling 
In Chapter 5, we follow a modeling approach that allows us to jointly measure the fractions 
of risk premia and forecast power to day-ahead prices changes embedded in forward-, or 
future prices. We do this for a range of different month-ahead contract maturity horizons. 
We find that the premium component follows a downward trend with maturity, while the 
forecast component follows an opposite time-to-maturity pattern. This can be explained by 
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the mean-reverting behavior of the underlying spot price process: for forward-, or future 
contracts with long maturities, its price is not likely to react on the underlying spot price, 
since the day-ahead price expectation will be around the long-term mean. Therefore the 
forward-, or future price is an almost unbiased predictor of the day-ahead price, hence the 
forecast component (risk premium) component is large (small).  However, when we roll to 
the expiration date as close to one-month before expiration, the chance of occurrence that 
the spot price will be close to the long-term mean decreases. The holder of a forward- or 
future contract requires a higher compensation for the increased uncertainty, which 
translates in a higher risk premium component (and lower forecast component) embedded 
in the forward-, or future price of short maturity contracts. This evidence is consistent with 
the well-known Samuelson effect observed in many commodity derivative prices that tells 
us that when there is a mean-reverting spot price process, the return volatility of a 
derivatives contract monotonically rises when the contract approaches its expiration date.  
Another main finding is that forward-, and future prices convergence (to a certain degree) 
to spot price expectations when the expiration day is approached. This is an important 
result because the threat of arbitrage that keeps the forward-, or future price in line with the 
underlying spot price is absent in electricity markets (due to the non-storability of 
electricity). Further research should provide conclusive results whether market makers 
valuate electricity contracts as if the no-arbitrage condition still applies. Our findings have 
important implications for agents who need to assess risk premia and price expectations: 
E.g. agents that have a certain future demand load, may want to prefer to hedge against 
price risk by taking positions in contracts with long maturities (opposed to short maturity 
contracts), since these contracts embed a relatively low premium component. The 
documented results give traders and risk managers insight in the risk premia and might 
help to assess price expectations. One typical application of our result is setting mean price 
levels in simulation models that produce potential price patterns for future time periods. A 
fraction of the forward price can be used as a good predictor for future prices as it reflects 
the market expectation on the change in day-ahead prices. Here the size of this fraction is a 
function of the time to maturity of the contract.  
 
7.1.3 Electricity portfolio management 
As a result of the worldwide liberalization in electricity markets, risk has been transferred 
through the industry chain from the supply side to the end-user. While she used to rely on 
one regulated power price that seldom changed, she now has to deal with the economic law 
of demand. This requires that she has to act in order to exploit the lowest price, find the 
best service offered by suppliers, or select the best purchase strategy for electricity delivery 
on spot or in a future delivery period ahead. Hence, in today’s markets she needs to assess 
her risks and expectations, and in Chapter 6 we concentrate on a conceptual framework 
that can help her to do that. We address the question of an end-user who wants to define an 
optimal purchasing strategy to allocate her future electricity demand load over a 
combination of day-ahead contracts and forward contracts, in such a way that this strategy 
matches her risk preference. Prior research has failed to provide a satisfactory empirical 
framework that considers hedging the electricity load dynamics with static forward 
strategies. We test whether a Markowitzian based optimization framework can be applied 
to derive the optimal hedge ratio for the position different contract maturities. Here the 
mean is considered as a meaningful measure for the expected portfolio costs, and the 
portfolio risk is quantified by a Value-at-Risk (VaR) like measure that allows for 
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incorporation of additional risk that results from any non-normal behavior in the power 
portfolio cost distribution. The degree of risk aversion is set according to the VaR limit 
chosen by the agent. The portfolio is then selected by minimizing the expected portfolio 
costs subject to the level of risk, hence yields the efficient portfolio. We use this 
framework to delineate the efficient frontiers for a basic load profile, which extend from 
the minimum risk portfolio (most left point on frontier) to the minimum cost portfolio 
(most right point on frontier). From this we can conclude that a higher risk appetite is 
rewarded with lower expected costs. Our main finding is that our Markowitzian portfolio 
selection approach structures the sourcing, henceforth matters.  
These findings have important implications for agents who want to select a power portfolio 
strategy that is consistent with their risk appetite: the proposed method provides a 
framework for mapping the individual risk appetite of the agent to market contracts. 
Companies that use electricity in a certain profile can select a purchase strategy that is 
consistent with their risk aversion level. The proposed method for electricity portfolio 
selection structures the sourcing. As such, our approach can be regarded as an important 
step towards the formulation of a performance measure that can function as a strategic 
benchmark for portfolio investors who want to manage the sourcing mix over time. The 
activity of tracking the index, known as indexation, is widely used by investors in the 
traditional financial asset (e.g. bond or stocks) area.    
 
7.2 Further research 
The deregulation that has been imposed by many governments on the electricity industry of 
their country has been a complex task, due to the unique characteristics of electricity and 
its price behavior. For instance, the fact that in many countries only a few players dominate 
the market, influences the extent to which the market rules of demand and supply are 
implemented fairly. A considerable fraction of the empirical literature has examined this 
issue (referred to as market power).  
 
In Chapter 2 we have tested whether certain price and volume trends could be observed on 
the real-time markets that were consistent with the market system (i.e. merit-order) that 
was imposed by the regulator. In Chapter 4 we have modelled the prices that we observe 
on several international day-ahead markets, using an econometric model that is consistent 
with the market microstructure of this particular type of spot market. Hence, in both 
Chapters we answer research questions, which essentially stem from the way the spot 
markets have been designed by the decision-makers (regulators and governments). Other 
questions on market design that has not been resolved yet are for instance the question 
whether the deregulated markets are structured in such a way that the power firms have the 
incentives to continue to invest in the supply security (e.g. California crisis stems from 
poor market structure).  The stochastic day-ahead price models that have been introduced 
in Chapter 3 and 4 can be further explored, for instance by examining the forecasting 
performance of these models. Knittel and Roberts (2005) claim that models that include 
factors to control for weather effects (next to the factors that control for seasonal and 
mean-reverting behavior in traditional models (e.g. equation A3.2)) perform rather well. 
However, they do not conduct out-of sample tests to substantiate this claim. Hence, it 
would be interesting to investigate the forecast power of next-day weather forecasts for 
predicting power prices observed on the day-ahead markets (NB: the literature on weather 
forecast and electricity sales is well-documented). The ongoing deregulation has also 
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triggered the incentive among players that are active on the international energy markets to 
study the opportunities of cross-hedging on their power portfolio (such as the portfolio 
discussed in chapter 6). Such a hedge involves entering into opposite forward contracts in 
two distinct but spot price correlated markets, and reselling on the spot markets on of these 
markets during the delivery period of the forward contract. The objective of a cross-hedge 
is that anytime the marketer enjoys (suffers) a profit (loss) on his portfolio position in one 
market, this is (partially) offset by the loss (profit) encountered on the spot-forward 
position in the other market. Questions that have not been resolved yet are: Is the market 
(let’s say the European markets examined in this thesis) complete enough to erode the 
benefits of a cross-hedge? Could an international investor build up an almost perfect hedge 
for his power portfolio by using one market as a reference point (wheelspinning market)? 
What imposes risk premiums in one market to be different from other one? Why would 
spot price forecasts in one market be different from other market? Prior research fails to 
provide a satisfactory empirical framework to describe the cross-hedge opportunities in 
power markets (Woo et al, 2001). We could build upon the cross-hedge theorem 
introduced by Anderson and Danthine (1981), and use the the Fama (1984) framework 
discussed in Chapter 5 to disentangle risk premiums and spot price expectations from the 
forward basis observed in the cross-hedge markets.   
 
7.3 Reflection   
It is noted that the findings in this thesis are subject to certain limitations. The 
generalisation of its findings is reduced by the use of a relatively small sample size in 
empirical studies presented in this thesis. The small sample size is caused by the recent 
deregulation of the power markets, and the limited (public) availability on market data.   
A serious limit in Chapter 2 is that we on one hand do not (attempt to) measure the change 
in market efficiency, while on the other hand we argue that we observe a trend in the 
market that goes in line with what we would expect from increased market efficiency. The 
research method proposed in Chapter 3, along we show that the Student-t distribution is 
capable of correctly capturing the fat-tailed behaviour of electricity prices  should be 
regarded as a diagnostic test. Therefore, the results are only preliminary (but not 
conclusive) evidence that our proposed method is a candidate to model the non-normal 
behaviour of electricity prices in addition to other models such as jump diffusion models or 
switching regimes models. Furthermore, the research design employed in the panel data 
study (Chapter 4) has not provided a way to control for seasonality and price shocks. The 
results reported in Chapter 5 and 6 are conditional to the assumptions being made on price- 
or investor behavior, which are common in finance studies (representative investor, mean-
variance optimizer and so forth).  
 
Recently, techniques have been introduced in statistics, commonly referred to as functional 
data analysis (Ramsay and Silverman, 1997), that treat observations as functions rather 
than values (in classical methods, variation in an observed variable is attributed to other 
observed variables). These extensions to the classical statistical methods employed in this 
Thesis can provide additional insights, for instance when the data is highly dimensional 
(e.g. when price data would be not equally spaced). Finally, the fact that market structure 
differs substantially across markets, makes it difficult (caution should be exercised) to 
generalize the documented evidence to other markets than those studied in this Thesis.   



 

110 110

Nederlandse samenvatting (Summary in Dutch) 
 
Electriciteit heeft een aantal unieke kenmerken die haar doen verschillen van andere 
energie producten zoals olie en gas, waarvan onze economie afhankelijk is. Zo is er geen 
volwaardig substituut voor electriciteit, hetgeen de de geringe prijselasticiteit van de vraag 
verklaart. Daarnaast zijn er geen mogelijkheden om electriciteit op te slaan wat tot gevolg 
heeft dat er continu evenwicht tussen vraag en aanbod dient te bestaan. Electriciteit dient 
dus nadat het geproduceerd is direct geconsumeerd te worden. Omdat het verbruik van 
electriciteit door consumenten grillig is, bijvoorbeeld door weersinvloeden en door 
variaties in het consumptiepatroon, speelt het tijdsapect een cruciale rol in de waardering 
van het product electriciteit. Een andere belangrijke factor in de waardebepaling is dat de 
flexibiliteit om snel in te spelen op vraagveranderingen per type productiecentrale 
(gebaseerd op type brandstof: fossiel, nucleair, water) verschilt. Zo zijn de productiekosten 
van electriciteit afkomstig uit fossiele centrales relatief hoog (in vergelijking met nucleaire 
centrales), maar daarentegen kunne ze relatief snel worden ingeschakeld naar hogere 
capaciteitsniveau’s om bijvoorbeeld op piekvraag in te spelen. Electriciteit geleverd op elk 
tijdstip of over verschillende perioden wordt daarom beschouwt als een apart product.  
 
Traditioneel werden stroomprijzen bepaald door de toezichthouder van het stroomnetwerk 
of werd stroom verkocht op basis van bilaterale contracten tussen centrales en 
energiedistributiebedrijven die de stroom doorverkochten aan klanten. Toen waren prijzen 
vrijwel constant, en daarom speelden genoemde karakteristieken geen rol van betekenis in 
het prijsproces. Nu echter wel. Sinds 1990 hebben verschillende landen wereldwijd, elk in 
hun eigen tempo en fasesysteem, hun electriciteitsindustrie gedereguleerd: Verschillende 
electronische beurzen zijn gecreëerd met een vaak op elkaar aanluitende 
beleggingshorizon, wat het mogelijk maakt om vraag en aanbod tot op zeer korte termijn 
(half uur of tot op het kwartier) bij elkaar te brengen. Hier worden biedingen gedaan door 
bijvoorbeeld producenten of handelaren voor stroomlevering in een toekomstige periode 
die afhangt van de beleggingshorizon van de beurs. Deze biedingen worden gekoppelt met 
geplaatste inkooporders. De wet van vraag en aanbod bepaalt dus tegenwoordig de 
stroomprijs. 
    
Het moge duidelijk zijn dat de door de introductie van marktwerking, de stroomprijzen 
voor onmiddelijke levering (de zogenaamde spotprijzen) vanwege de afwezigheid van 
stroomvoorraden die als buffer kunnen dienen voor mismatches tussen vraag en aanbod, 
gekarakteriseerd worden door onder meer plotselinge schokken en tijdsafhankelijke 
schommelingen. De mate van deze fluctuaties zien we niet terug in spotprijzen op andere 
commoditeitsmarkten of financiële markten. De noodzaak voor marktparticipanten om zich 
middels de handel in korte-, middellange-, en langetermijncontracten tegen het uniek hoge 
spotprijsrisico te beschermen, en daarmee de leveringsverplichting op overeenkomstige 
investeringshorizon af te dekken, is evident. De afgelopen jaren zijn een scala van deze 
termijncontracten op de electriciteitsbeurzen geïntroduceerd, ook wel derivaten genoemd. 
‘Derivaat’ betekent ‘afgeleide’, en de waarde van een dergelijk contract is afgeleid van  
een onderliggend instrument. In het geval van forwards (bilateraal contract), futures en 
opties (beiden beurscontracten), de bekendste type derivaten, is dit het spotprijsproces. Een 
belangrijke functie van derivaten is dat de handel hierin de mogelijkheid biedt om 
spotprijsrisico te reduceren of te elimineren. Deze activiteit wordt hedgen genoemd. 
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Derivaten voor de meeste onderliggende instrumenten, zoals bijvoorbeeld 
graantermijncontracten (graantermijncontracten worden sinds de 18e eeuw verhandelt), 
kennen een lange historie. Dit geldt eveneens voor de ‘cost-of-carry’ theorie ontwikkeld in 
de jaren 1930 door gerenommeerde economen zoals Keynes om bijvoorbeeld futures en 
forwards te waarderen, of de optieprijstheorie van Black en Scholes uit 1972, welke hen 
een kwart eeuw later de Nobelprijs opleverde. In beide waarderingsmodellen wordt 
verondersteld dat het onderliggende instrument opgeslagen kan worden, hetgeen niet geldt 
voor electriciteit. Daarnaast maken de genoemde spotprijskarakteristieken van electriciteit, 
het repliceren van het derivaat in termen van het onderliggende spotprijsproces geen 
eenduidige exercitie, hetgeen veelal wèl het geval is voor derivaten op andere 
onderliggende instrumenten zoals olie, gas, goud, aardappelen, aandelen of obligaties. 
Repliceren wil zeggen dat stroomderivaten handelaren hun portfolio risiconeutraal 
(‘risicovrij’) kunnen maken door het innemen van derivaten aan de ene kant, en aan de 
andere kant (de replicatiestrategie) het (ver)kopen en vervolgens vasthouden van de 
onderliggende hoeveelheid stroom tot de in het derivatencontract vastgelegde periode 
waarop stroomlevering moet plaatsvinden (hetgeen ook gedaan wordt om zo de positie te 
sluiten). Door de afwezigheid van opslagmogelijkheden voor stroom kan dit echter niet.   
We kunnen concluderen dat we niet zomaar kunnen vertrouwen op de traditionele theorie, 
wanneer het gaat om het modelleren van electriciteits spotprijzen en het waarderen van 
stroomderivaten. Het verkrijgen ven inzicht in spot -en derivatenprijzen en het  beheren 
van een portfolio van deze contracten over de tijd heen (ook wel portfoliomanagement 
genoemd), vormt daarom de motivatie van de studies die in dit proefschrift zijn gebundeld.  
 
Vanwege de korte historie van stroomspot- en derivatenmarkten is het aantal empirische 
studies relatief klein. Het grootste gedeelte van het empirisch werk moet nog gedaan 
worden. We leveren een bijdrage aan de empirische literatuur door het formuleren en 
toetsen van niet eerder geteste hypothesen, het aandragen van alternatieve methodologiëen 
voor prijsmodellering, en we laten zien hoe traditionele prijs, -en portfolio theorie met de 
juiste aanpassingen kan worden toegepast in electriciteitsmarkten.   
Het onderzoek bestaat uit empirische studies waarin tijdreeksanalyse, extreme 
waardetheorie en paneldatamethodologie wordt toegepast om daarmee alternatieven of  
toevoegingen aan te dragen naast de traditionele spotprijs-, derivatenprijs-, en 
portfoliomanagement theorie. Data is verkregen van vier van de zes meest actieve 
stroomderivatenbeurzen wereldwijd: de Nordic Power Exchange (NPX), European Energy 
Exchange (EEX), Amsterdam Power Exchange (APX) en Paris Power Exchange (PPX).  
 
Modelleren van electriciteits spotprijzen  
Day-ahead beurzen en real-time beurzen, ook wel onbalansmarkten genoemd, spelen een 
cruciale rol in het goed functioneren van een onbalanssysteem in de huidige 
geliberaliseerde electriciteitsmarkt. Een beperkt aantal studies heeft zich bezig gehouden 
met het prijsverschil tussen beide beurzen. Sommige studies schrijven dit prijsverschil toe 
aan consumptiegerelateerde factoren (Longstaff en Wang, 2004). Anderen richten zich op 
de mogelijkheden die dit prijsverschil biedt om hieruit winst te behalen, bijvoorbeeld door 
het herkennen en vervolgens implementeren van winstgevende stroominkoopstrategiёen 
(Boogert en Dupont, 2005). Wij echter, onderzoeken of de electriciteitsmarkt efficiёnter is 
geworden, door de te verwachten trend van genoemd prijsverschil toe te schrijven aan 
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efficiёntietoename (als gevolg van de liberalisatie). Zoals bekend is de vergroting van de 
efficiёntie de belangrijkste doelstelling van het EU beleid om tot een vrije interne 
energiemarkt te komen. Door de liberalisering van de energiemarkt worden lagere prijzen 
verwacht als gevolg van verbeterde concurrentie en een efficiënter gebruik van 
grondstoffen en productiecapaciteit.  
 
Hoofdstuk 2 toont de resultaten van een onderzoek naar de veranderingen in efficiëntie van 
de Nederlands electriciteitsmarkt. We onderzoeken de historische ontwikkeling  van 
genoemd electriciteitsprijsverschil, en de stroomprijs- en stroomvolumetrend op de  
zogenoemde onbalansmarkt. Omdat het verbruik van electriciteit door consumenten grillig 
is, zijn er twee markten waarop energiebedrijven electriciteit op de korte en zeer korte 
termijn kunnen inkopen: De APX en de onbalansmarkt. Op de APX kan stroom worden 
verkocht die de volgende dag wordt geleverd in een specifiek uur. De onbalansmarkt kent 
een beleggingshorizon van slechts 15 minuten, en deze beurs wordt gebruikt om korte 
termijn tekorten en -overschotten glad te strijken. In veel EU-landen is de transmissie 
systeem operator verantwoordelijk voor de balansactiviteiten op het landelijke 
stroomnetwerk. In Nederland is dat TenneT. Alle bedrijven die aangesloten zijn op het 
electriciteitsnet dienen bij TenneT energieprogramma’s in te leveren. Hierin staan de 
verwachte consumptie van stroom en levering van stroom aan het net voor elk kwartier van 
de dag. Deze verantwoordelijkheid kan worden uitbesteed aan een door TenneT erkende 
programmaverantwoordelijke. Onbalans ontstaat wanneer TenneT een verschil tussen de 
gerapporteerde en werkelijk geconsumeerde of geleverde hoeveelheid stroom constateert.  
In situaties van negatieve (positieve) onbalans koopt (verkoopt) TenneT stroom van (aan) 
producenten via de onbalansmarkt en verrekend deze prijs met de veroorzaker van de 
onbalans. In de economische literatuur wordt een markt als allocatief efficiënt beschouwd 
wanneer elke inkooporder met die overeenkomstige bieding geconfronteerd (waaruit de 
marktprijs ontstaat) wordt die afkomstig is van de producent met de laagste marginale 
kostenstructuur; zie o.m. Smith (1962) voor een uiteenzetting.    
Sinds het baanbrekende werk van Smith zijn talrijke welvaartsstudies verschenen die 
geliberaliseerde markten bestudeerden. De studies hebben vaak onoverkomenlijke 
problemen met elkaar gemeen betreffende de validiteit en beschikbaarheid van de data: 
allocatieve efficiëntie verbeteringen zijn nu eenmaal lastig te kwantificeren (zie onder meer 
Boles de Boer en Evans, 1996). Alhoewel onze studie niet direct allocatieve efficiëntie 
meet en niet de gehele markt beslaat, kunnen we een verandering in de allocatie van 
centrales zien, door de dynamiek van APX en onbalans te analyseren. Op de APX geven 
aanbieders van stroom aan welke volume zij bereid zijn te leveren tegen verschillende 
prijzen. Het op de APX aangeboden volume neemt alleen toe als de prijs stijgt tot boven 
het niveau van de kostprijs van de eerstvolgende electriceitscentrale die tegen die prijs 
bereid is te leveren, enzovoorts. De volgorde waarin de verschillende centrales worden 
ingezet, de zogenoemde merit-order, zorgt ervoor dat dat de producent die tegen de laagste 
kosten stroom kan produceren het grootste volume afzet. In een efficiënte stroommarkt 
produceren de goedkoopste centrales het meest.  
Dure centrales zullen alleen produceren als er veel vraag naar stroom is (Wolfram, 1999). 
Aangezien de goedkoop producerende centrales al ingezet zijn als gevolg van de merit-
order op de APX, zullen alleen de dure centrales nog capaciteit beschikbaar hebben.  
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Onze eerste hypothese luidt dan ook dat naarmate de markt allocatief efficiënter wordt de 
onbalansprijzen toenemen. Voor de liberalisering kocht TenneT immers de stroom in tegen 
een gewogen gemiddelde kostprijs (gewogen naar geïnstalleerde productiecapaciteit). 
Merk op dat doordat we tevens onderzoeken of het prijsverschil tussen APX en 
onbalansmarkt een positieve trend laat zien, we impliciet rekening houden met 
prijstoenames in de brandstofmix van producerende centrales die actief zijn op beide 
beurzen. De tweede hypothese heeft betrekking op de onbalansvolumes, en toetst of de 
volumeverandering overeenkomt met de trend die je zou verwachten bij een hogere mate 
van efficiëntie. In een geliberaliseerde markt zullen de onbalansvolumes dalen omdat 
energiebedrijven het risico van prijsschommelingen op de onbalansmarkt willen beperken. 
Hiermee wordt de prikkel vergroot om efficiënter het verbruik van hun klanten te 
voorspellen. Daarnaast is inzicht in de dynamiek van onbalansvolumes belangrijk omdat 
een dalende trend in onbalansvolume resulteert in minder schokken in het balanssysteem. 
Zolang de door TenneT bepaalde minimale hoeveelheid reservecapaciteit is gegarandeerd, 
verbetert hierdoor de leveringszekerheid van electriciteit.  
De in hoofdstuk 2 gerapporteerde resultaten laten duidelijk een significant positieve trend 
zien van de onbalansprijzen en het prijsverschil tussen APX en onbalansmarkt, terwijl de 
onbalansvolumes significant zijn gedaald. We concluderen dat de Nederlandse 
electriciteitsmarkt efficiënter is geworden.  
 
Hoofdstuk 3 concentreert zich op het modelleren van het gedrag van dagelijkse basislast 
day-ahead stroomprijzen. Zoals gezegd, worden op verscheidene day-ahead beurzen 
prijzen gequoteerd voor stroomlevering op een specifiek uur van de volgende dag. Het 
dagelijks gemiddelde is dan de gemiddelde prijs over 24 uur, ook wel basislast uren 
genoemd. De prijsdynamiek van deze gemiddelde prijzen is van groot belang, omdat deze 
prijsserie wordt gebruikt als referentiepunt van zogenaamde marking-to-market 
waarderingen, en kan dienen als basis voor optiecontracten zoals callable opties.  
Verscheidene studies laten zien dat deze day-ahead prijzen over de tijd heen gedrag 
vertonen zoals mean-reversion(de tendens van een prijs om na een schok weer terug te 
keren naar het lange-termijn gemiddelde), seizoensafhankelijkheid en plotselinge 
schokken. In eerste instantie werden prijsmodellen geïntroduceerd die mean-reversion, en 
seizoensinvloeden van day-ahead prijzen beschreven; zie o.m. Pilipovic (1998). Maar al 
gauw richten studies zich op het modelleren van de frequente prijsschokken die day-ahead 
prijzen zo kenmerken, zoals Deng (1999) en meer recent Huisman en Mahieu (2003). In 
deze studies worden zogenaamde jump diffusie procesmodellen (Deng), en switching 
regime modellen (Huisman en Mahieu) geïntroduceerd voor het modelleren van extreme 
prijsbewegingen, waarbij het derde moment (skewness: geeft indicatie van de mate van 
symmetrie rond het gemiddelde van de verdeling) en vierde moment (kurtosis: geeft 
indicatie van de staartdikte van de verdeling) van de prijsverdeling direct wordt 
meegenomen. Het voordeel van deze methoden is dat ze dus naast het beschrijven van de 
prijsschokken, ook prijsgedrag kunnen beschrijven dat afwijkt van de in statistiek 
gehanteerde normaliteit veronderstelling van de ruisterm; de ruisterm in het prijsmodel 
wordt veelal normaal verdeelt of tenminste IID verondersteld. Helaas zijn genoemde 
methodieken niet eenvoudig toepasbaar, zoals het switching regime model welke vanwege 
de niet direct observeerbare regimes, de schattingen van meerdere parameters omvat. We 
richten ons op de staartverdeling van de ruisterm van een day-ahead prijsmodel en we 
passen extreme waarde theorie toe om de staart-index, een expliciete maatstaf voor de 
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staartdikte te schatten. We willen weten of de extreme waarde theorie geschikt is om, net 
als jumpdiffusie-, en switching regime modellen, extreme prijsbewegingen te modelleren. 
Het voordeel van het toepassen van extreme waardetheorie op de ruisterm is dat we direct 
de extreme prijsschommelingen kunnen beschrijven, zonder dat we ons druk hoeven te 
maken over de karakteristieken van de gehele verdeling. Dikke staarten, althans dik t.ov. 
de staarten van de normale verdeling, reflecteren een hogere kans dat extreme 
prijsbewegingen voorkomen. Dit betekent dat marktparticipanten te maken krijgen met 
hoger dan ‘normaal’ risico. Toch wordt de normaliteitveronderstelling gemakshalve 
toegepast in Monte Carlo prijs simulaties, -en derivatenprijsmodellering, hetgeen kan 
leiden tot onderschatting van de werkelijke hoeveelheid prijsrisico die marktparticipanten 
kunnen tegenkomen. We stellen de Student-t verdeling als alternatief voor, temeer omdat 
deze verdeling makkelijk geparameteriseerd kan worden door de op extreme waardetheorie 
gebaseerde staartindex.     
In de literatuur zijn er vele staartindexen geïntroduceerd, waarvan degene door Hill (1975) 
de bekendste is. De staartindex is een maat voor de staartdikte van de verdeling (in ons 
geval de verdeling van de ruisterm van een stroomprijsmodel): Hoe dikker de staart, hoe 
groter de kans op een extreme prijsbeweging, hoe lager de snelheid waarmee de index naar 
nul beweegt, en des te lager de waarde van staartindex. We passen de staartindex toe van 
Huisman e.a. (2001) (hierna HKKP schatter), omdat deze in tegenstelling tot andere 
staartindex schatters zoals de Hill staartindex, wèl corrigeert voor afwijkingen in kleine 
steekproeven. Zie Pictet (1996) een uitstekend overzicht van diverse staartindex schatters. 
Merk op dat door de korte historie van geliberaliseerde stroommarkten kleine steekproeven 
van day-ahead stroomprijsseries inherent zijn, hetgeen het gebruik van de HKKP schatter 
aantrekkelijk maakt. De methode die we in hoofdstuk 3 voorstellen om extreem 
stroomprijsgedrag op de APX beurs te beschrijven is eenvoudig in drie stappen te 
implementeren: (1) middels niet lineaire kleine kwadratenmethode schatten we de 
parameters van een day-ahead prijsmodel zoals gebruikt in Lucia en Schwartz (2002) en 
Mahieu en Huisman (2003). De prijs is hier de som van een deterministische- en 
stochastische component, die respectievelijk  voorspelbare trends en mean reversion 
modelleren. (2) Vervolgens wordt de HKKP index geschat op de ruis term verdeling, en 
wordt deze index gebruikt om de Student-t verdeling te parameteriseren. Een groot 
voordeel van de Student-t verdeling is namelijk dat de vrijheidgraden parameter, welke de 
vorm van deze symmetrische verdeling bepaalt, direct gerelateerd is aan de staartdikte van 
de verdelingsfunctie. We tonen de resultaten van een zogeheten goodness-of-fit test die 
aantoont dat de ruis term wel beschreven kan worden met de Student-t verdeling, maar niet 
door de normale verdeling.  (3) Tenslotte tonen we middels Monte Carlo simulaties aan 
(welke vaak gebruikt worden in risicomanagement technieken als Value-at Risk), dat 
wanneer we willekeurige innovaties trekken uit een Student-t veronderstelde ruis 
verdeling, het gesimuleerde prijsproces de werkelijke APX tijdreeks benaderd. We laten 
zien dat dit niet het geval is wanneer we de normale verdeling zouden hanteren. We 
kunnen dezelfde conclusie trekken op basis van de gerapporteerde skewness- en kurtosis 
schattingen voor beide prijsprocesssen. We claimen dat de gepresenteerde methodologie 
een eenvoudig te implementeren methodiek is om niet-normaal prijsgedrag goed te 
beschrijven, naast de jump diffusie en switching regime modellen.  
 
In hoofdstuk 4 wordt, net als voorgaand hoofdstuk, het prijsgedrag van de day-ahead markt 
nader belicht. Alleen ditmaal richten we ons niet op het gedrag van de dagelijkse 
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gemiddelde prijzen, maar op de afzonderlijke uurprijzen die gequote worden voor 
stroomlevering op de volgende dag. Veel markten onderscheiden dagelijks gemiddelde 
basislast prijzen en gemiddelde pieklast prijzen. Laatstgenoemde prijzen worden 
gemiddeld over door de beurs gedefinïeerde piekuren, welke in het algemeen de uren 
gedurende werkkdagen betreft wanneer de economische activiteit hoog wordt 
verondersteld. De modellen ontwikkeld voor dagelijks gemiddelde prijzen (voor een 
overzicht: zie Bunn en Karakatsani, 2003), kunnen niet direct gebruikt worden om inzicht 
te krijgen in uurprijsdynamiek. Neem bijvoorbeeld het geval dat uurprijzen bewegen rond 
een uurspecifiek gemiddelde (‘mean-reversion’). Dan zal een prijsmodel met een dagelijks 
gemiddelde niet voldoen. Men kan zich afvragen of volatiliteitstructuur en/of het niveau 
van mean-reversion constant over de dag is of varieert per uur. En hoe zit het eigenlijk met 
het correlatiepatroon tussen verschillende uren? Deze vragen zijn relevant omdat veel 
agenten in day-ahead markten blootgesteld worden aan schommelingen in uurprijzen. 
Electriciteitsproducenten laten hun nominatie schema’s afhangen van de verwachte prijzen 
voor stroomprijslevering gedurende de volgende dag. Ondernemingen die stroom 
consumeren volgens een patroon dat niet kan worden afgedekt met standaard basislast en 
pieklast contracten, zullen behoefte hebben aan contracten die leveren op enkele uren van 
de dag. Om deze contracten te waarderen, kunnen market makers niet alleen vertrouwen op 
dagelijkse gemiddelde prijzn, maar zullen ook inzicht moeten hebben in verwachtingen en 
risico’s behorend bij specifieke uurprijzen.  
Enkele studies hebben de noodzaak aan het modelleren van uurpijsdynamiek 
onderschreven. In de eerdergenoemde studie van Saravia (2003), wordt het prijsverschil 
tussen day-ahead en  real-time uurprijzen toegeschreven aan marktmacht en 
speculatieactiviteiten. Longstaff en Wang (2004) bestuderen eveneens genoemd 
prijsverschil (zij noemen dit de day-ahead risicopremie) in de Amerikaanse markt, en 
relateren dit aan consumptiefactoren (zoals vraag, omzet). Zij specificeren een zogenaamd 
Vector Autoregressie (VAR) systeem voor elk van de 24 uur, waarbij genoemde ex-ante 
consumptiegerelateerde risicomaatstaven de verklarende variabelen voor onverwachte 
prijsveranderingen zijn. Op deze manier proberen ze inzicht te verschaffen in 
uurprijsdynamiek. Wolak (1997) concenteert zich op uurprijsdynamieken in verscheidene 
stroommarkten wereldwijd. Hij past zogenaamde principale componenten analyse toe op 
de covariantie matrix van de ruisterm, verkregen uit een VAR systeem van (half) uur 
prijzen. Wolak’s bevindingen tonen aan dat soms wel meer dan 20 risicofactoren nodig 
zijn om 90% van de prijsvariatie te kunnen verklaren.  
In genoemde studies, worden uurprijzen soms elk apart gemodelleerd of wordt soms een 
correlatiepatroon tussen de uren verondersteld. Anderen ‘stapelen’ de uurprijzen en passen 
methodieken toe alsof het een tijdreeks betreft. Een belangrijk verschil tussen het 
modelleren van dagelijkse gemiddelde day-ahead prijzen en het modelleren van day-ahead 
uurprijzen is dat uurprijzen echter niet gezien kunnen worden als een puur tijdreeksproces. 
Tijdreeks modellen veronderstellen namelijk dat de informatie set wordt geupdate wanneer 
we van een observatie naar de volgende observatie gaan in de tijd. Deze veronderstelling is 
echter niet geldig voor uurprijzen aangezien de markt microstructuur van day-ahead 
markten niet voorziet in de mogelijkheid tot continue handel. Op veel day-ahead markten 
leveren agenten hun 24-uurs biedschema rond het middaguur; uurprijzen worden dus 
vastgesteld op hetzelfde moment. Daarom kan men voor het bestuderen van 
uurprijsdynamiek niet zomaar vertrouwen op een tijdreeksbenadering, zoals gedaan wordt 
in sommige eerdergenoemde studies.  
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In dit hoofdstuk stellen we voor om uurprijzen te modelleren middels een paneldata 
raamwerk, welke wèl perfect bij de microstructuur van day-ahead markten. Paneldata 
modellen beschrijven de dynamieken van een cross-sectie van individuen over de tijd heen 
(eerste dimensie), en zijn veelvuldig toegepast in de financiële literatuur. Merk op dat de 
stroomuurprijzen gezien kunnen worden als cross-sectionele individuen, omdat prijzen 
gequote worden op hetzelfde moment. De tweede dimensie van een panelraamwerk, de 
tijdsdimensie, ondervangt de dagelijkse prijsdynamiek die onstaat doordat de day-ahead 
markt dagelijks 24 prijzen quote. We schatten de parameters van een algemeen 
paneldatamodel dat bestaat uit een deterministische- en stochastische component, die 
respectievelijk  voorspelbare trends en mean reversion modelleren. Merk op dat dit 
generieke model, in essentie hetzelfde model is als geïntroduceerd in hoofdstuk 3. Alleen 
nu wordt het model geschat op uurdata, welke wordt verkregen van drie Europese day-
ahead markten: de APX, EEX en PPX. Naast het algemene model worden er drie 
panelmodel varianten geïntroduceerd, waarbij óf de uurspecifieke gemiddelde parameter, 
óf de uurspecifieke mean-reversie parameter, óf beiden worden gerestricteerd. Merk op dat 
in de laatstgenoemde variant, de paneldata dimensie alleen tot uitdrukking in de 
covariantiematrix van de ruisterm. Merk op dat deze matrix belangrijke informatie bevat 
voor een handelaar, omdat ze hieruit kan aflezen hoe haar bieding voor levering van 
stroom op uur h in de volgende dag afhangt van de ‘omliggende’ uren op het moment van 
de bieding. Op basis van de resultaten van een modelspecificatie test, concluderen we dat 
zowel het algemene model als de variant op dit model met een uurspecifieke parameter 
voor de gemiddelde prijs maar met een constante mean-reversie parameter, de 
uurprijsdynamiek het beste beschrijven.    
De resultaten die we in hoofdstuk 4 presenteren, laten duidelijk zien dat uurprijzen in day-
ahead markten, bewegen rond een uurspecifiek gemiddelde, en dat ze terugkeren naar hun 
gemiddelde met een snelheid, de zogenaamde mean-reversion rate, die per uur verschilt. 
Zo laten de super pieklast uren van 18 uur tot 20 uur veel minder mean-reversion zien. Dit 
is te verklaren door de hogere vraag in deze uren, welke leidt tot minder beschikbare 
reservecapaciteit met als gevolg een toenemende kans tot prijspieken. Dit betekent dat de 
waarde van derivaten die leveren in super pieklast uren, niet gebaseerd dienen te worden 
op modellen die gebruik maken van basislast en/of pieklast derivaten, aangezien deze 
prijzen de werkelijke mate van mean-reversion overschatten. Wat verder opvalt is dat er 
een blokstructuurachtige cross-sectioneel correlatiepatroon tussen de uurprijzen valt waar 
te nemen. Prijzen in pieklast uren correleren sterk met elkaar, en datzelfde geldt voor de 
correlatie tussen basislast uren. Dit effect kan verklaart worden door verschillen in de 
reservecapaciteit tussen de twee blokken. De lagere reservecapaciteit in de pieklast uren, 
betekent dat de prijzen in deze uren meer prijsschommelingen vertonen dan prijzen in de 
uren buiten de pieklast om.  
Toepassingen van de in dit hoofdstuk gepresenteerde panelmethodologie om uurprijzen te 
modelleren kunnen gevonden worden in electriciteits risicomanagement, contract 
structurering, en stroomderivatenwaardering. Zo worden er momenteel worden 
uurprijsopties in de Amerikaanse markten verhandeld.   
 
Modelleren van electriciteits futures-, en forwardprijzen  
In hoofdstuk 5 besteden we aandacht aan het klassieke issue hoe futures-en forward prijzen 
en spotprijzen met elkaar gerelateerd zijn. Alhoewel forward- en futurescontracten in een 
aantal opzichten sterk van elkaar verschillen hebben ze een belangrijk kenmerk gemeen; 



 

 117 

het onderliggende prijsproces is de belangrijkste verklarende variabele voor de vaststelling 
van de waarde van het (forward of futures) contract (Geman, 2005). Daarom maken we 
geen onderscheid tussen beide in dit proefschrift wanneer we ingaan op futures -en 
forwardprijzen. Hierna spreken we gewoonweg over futuresprijzen. Zoals gezegd kan de 
cost-of-carry relatie niet worden toegepast om risiconeutrale electriciteits futures prijzen af 
te leiden uit onderliggend spotprijsproces. Om toch spot- en futuresprijzen gelijktijdig te 
modelleren wordt veelal de prijsmethodologie uit de rentestructuur-, of opslaanbare 
goederen literatuur toegepast. Zo wordt het risconeutrale prijsproces verklaart in termen 
van rente-, opslag-, en conveniencekosten, of  risicopremies. Men construeert dan een 
theoretische futurescurve geconstrueerd, die overigens in het algemeen niet overeenkomt 
met geobserveerde prijzen. Voorbeelden zijn te vinden in Deng (1999) en Lucia en 
Schwartz (2002). Anderen, zoals Clewlow en Strickland (1998) en Koekebakker en Ollmar 
(2005), nemen juist de futures curve geobserveerd in de markt als gegeven, en leidden 
middels arbitrage-, of ‘faire’-waarde principes derivatenprijzen af. In onze studie nemen 
we de geobserveerde futuresprijzen ook als gegeven. We definiëren de futuresprijs als de 
som van twee componenten: de verwachte spotprijs over de leveringsperiode, en de 
risicopremie. We zijn niet zozeer geïnteresseerd in het afleiden van ‘faire’ of risiconeutrale 
waarden voor futures, maar concentreren ons op de vraag in hoeverre futuresprijzen gezien 
kunnen worden als voorspeller van spotprijzen, en risicopremie. Deze twee componenten 
worden uitgedrukt in percentages van de basis van het futurescontract. Dit is het 
prijsdifferentieel tussen de futures -en spotprijs geobserveerd op dezelfde dag.  
We volgen het model van Fama (1984) voor gezamenlijke schatting van de voorspellings- 
en premie component in futuresprijzen. Dit model, dat in Fama is toegepast om inzicht te 
krijgen in de opbouw van  futuresprijzen in de wisselkoersmarkt, en is in Fama en French 
(1987) gebruikt om de voorspelkracht en risicopremies in commodityfutures te verklaren. 
Om inzicht te krijgen in de ontwikkeling van de voorspelkracht en risicopremie over de tijd 
heen, schatten we de modelparameters die de verklarende waarde van beide componenten 
reflecteren op marktdata van contracten met elk hun eigen beleggingshorizon. Zo krijgen 
we schattingsresultaten van de dataset van contracten die stroom leveren in de basislast 
eerstvolgende maand na het moment van observatie (kortweg M1 contracten), in de tweede 
maand na het moment van observatie (M2 contracten), enzovoort. De theorie 
geïntroduceerd door Samuelson (1965) geeft ons enige houvast wat we kunnen 
verwachten: Hij toont aan dat wanneer het onderliggende spotprijsprocess mean-reverting 
is, de volatiliteit van het futureprijs  rendement, toeneemt naarmate het contract dichter bij 
de expiratiedatum komt. Inmiddels is in verschillende commodity markten (opslaanbare 
energie-, metaal-, agriculturele goederen) het Samuelson effect in meerdere of mindere 
mate waargenomen (voor een overzicht: zie Bessembinder e.a., 1996). Wanneer de  
beleggingshorizon van het contract langer is, wordt ook wel gesproken over een toename 
van de ‘time-to-maturity’ van het contract.64 
Voor de empirische analyse gebruiken we data van de Nederlandse en Duitse markt, 
respectievelijk: APX voor spotdata en ENDEX (European Energy Derivatives Exchange) 
M1, M2 en M3 forwarddata. En de EEX voor M1 tot M6 futuresdata. We gebruiken alleen 
maandelijkse data, dat wil zeggen: noteringen op de eerste handelsdag van de maand. We 

                                                           
64 Forward-, en futures contracten kennen ook verschillende lengte van leveringsperioden 
(bijvoorbeeld maand, kwartaal, jaar). In deze studie richten we ons op maandcontracten, omdat dit 
veruit de meest liquide contracten zijn.  
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leveren bewijs dat de grootte van de risicopremie component in de basis significant 
toeneemt naarmate de time-to-maturity van het contract afneemt, hetgeen betekent dat de 
prijs van electriciteitsderivaten een trend laat zien die overeenkomt met het time-to-
maturity patroon beschreven door Samuelson. Tegelijkertijd zien we een significant 
stijgende trend in het percentage dat de  voorspellingscomponent uitmaakt van de forward-
en futures basis, naarmate de beleggingshorizon (time-to-maturity) langer wordt. De 
gevonden resultaten zijn consistent met de 1-factor-, en 2-factor mean-reverting 
stroomprijsmodellen die Lucia en Schwartz (2002) gebruiken om NPX spot -en futures 
prijzen te modelleren. We laten zien dat uit hun modellen, de negatieve relatie tussen de 
grootte van de risicopremie component en de time to maturity direct kan worden afgeleidt. 
  
Vervolgens passen we dezelfde analyse toe, alleen ditmaal gebruiken we dagelijkse 
prijsdata van M1 contracten. We willen namelijk meer inzicht krijgen in het issue van 
prijsconvergentie. Volgens de literatuur convergeert de prijs van een derivaat naar de 
spotprijs van het onderliggend instrument, op het moment dat de we heel dichtbij de dag 
van expiratie van het derivaat komen (zie Hull, 2002). Een simpel voorbeeld kan dit 
duidelijk maken. Laten we de arbitragemogelijkheden (de kans om een risicovrije winst te 
behalen door bepaalde derivatenpositie in te nemen) van een handelaar bekijken in de 
volgende twee scenarios: (i) de forward-, of futureprijs ligt boven de spotprijs tijdens de 
leveringsperiode van het futurescontract. (ii) de futuresprijs ligt onder de spotprijs tijdens 
de leveringsperiode van het futurescontract. De volgende strategie lijdt tot een risicovrije 
winst in (i), ook wel arbitragewinst genoemd: Verkoop het futurescontract, koop het 
onderliggend instrument en lever vervolgens het instrument aan de tegenpartij van het 
contract om zo de positie te sluiten. Merk op dat de tegengestelde strategie in (ii), de 
handelaar een arbitragewinst zou opleveren. Een belangrijk punt om te benadrukken is dat 
wanneer de prijsscenarios (i) en (ii) niet tijdens maar voor de leveringsperiode 
plaatshebben we de abitragestrategieën voor een onderliggend instrument als electriciteit 
opeens niet meer kunnen implementeren. Dit komt omdat we electriciteit niet kunnen 
opslaan, en dus geen manier hebben om het moment tussen (ver)koop en levering van 
electriciteit te overbuggen. De vraag rijst dus welke mechanisme spotprijzen en 
futuresprijzen met elkaar verbindt in electriciteitsmarkten. Voor dit deel van de empirische 
analyse gebruiken we dagelijkse data verkregen van de EEX markt en NPX markt, als 
input voor het Fama raamwerk. We rapporteren bewijs dat de risicopremie component in 
de M1 basis na een korte stijging in de eerste handelsdag geleidelijk aan daalt tot een 
niveau van 40% (60%) voor EEX basislast (pieklast) contracten en 20% voor NPX 
contracten, naarmate de handelsdag dichter bij de expiratiedag van het contract komt. Dit 
betekent dat de electriciteits futuresprijzen een patroon laten zien van geleidelijke 
(overigens niet perfecte) convergentie van de futureprijs naar de spotprijsverwachting toe.  
 
De gedocumenteerde resultaten dragen op twee manieren bij aan het inzicht in het 
klassieke issue van de relatie tussen spot -en futuresprijzen in de derivatenliteratuur. Niet 
alleen tonen we aan hoe het time-to-maturity patroon verloopt in electriciteitsfutures. We 
laten ook zien hoe dit patroon verloopt voor de voorspellingswaarde -en risicopremies in 
electriciteitsfutures. De gevonden resultaten relevant voor handelaren en risico managers. 
Ze geven namelijk inzicht in de ontwikkeling van risicopremies, en in het maken van 
spotprijsverwachtingen. Een typische toepassing van onze resultaat is het vaststellen van 
gemiddelde prijsniveau’s in Monte-Carlo simulaties. Een fractie van de futures basis kan 
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dan gebruikt worden als voorspeller voor toekomstige prijzen, aangezien ze de 
marktverwachting van de verandering in day-ahead prijzen reflecteert.  
 
Electriciteits portfoliomanagement  
De liberalisatie van de energiemarkten heeft de de kosten-risico afweging die traditioneel 
bij de producenten en distributeurs ligt verplaatst naar de eindgebruiker. Voorheen was de  
energiewereld van de eindgebruiker eenvoudig: er was slechts 1 gereguleerde prijs, welke 
de (marginale) kosten van de productie-, transport- en distributieactiviteiten reflecteerden. 
Maar dit alles is dankzij de liberalisatie veranderd. De afnemer kan nu vrij kiezen. Blijft ze 
bij de huidige leverancier of niet? Koopt ze van tevoren electriciteit in tegen vaste prijs? En 
zo ja, hoevaak per jaar en hoever van tevoren? Om te kunnen profiteren van een lagere 
prijs of een beter aanbod, is dus een actieve houding van de afnemer vereist. Om zich in de 
markt staande te houden zal ze moet nadenken over haar consumptiepatroon en vervolgens 
een passende inkoopstrategie kiezen. Uit onderzoek van Van Damme (2005) blijkt dat met 
name de privéeindgebruikers een afwachtende hourding inneemt, en als ze al van  
leverancier wisselen ze even zo vaak kiezen voor een duurdere leverancier als voor een 
goedkopere. Maar ook de zakelijke gebruikers die meer van leverancier verandert (deels 
omdat hij prijsgevoeliger is), hanteren soms strategieën waarbij men zich kan afvragen of 
deze in lijn is met haar eigen risicopreferentie. Zo is de zogenaamde tender strategie, 
waarbij eens per jaar electriciteit van te voren wordt ingekocht een gebruikelijke strategie. 
Maar wat als blijkt dat een maand langer wachten aanzienlijker gunstiger had uitgepakt. 
Kan een onderneming dat eigenlijk wel veroorloven?      
Eenzelfde kosten-risico afweging maken eindgebruikers echter al wel op de financiële 
markten: zo kiezen werknemers ervoor om een deel van hun pensioen tegen laag risico te 
beleggen, of kunnen mensen kiezen voor een passende ziektekostenverzekering. 
Een conceptueel raamwerk dat veel in de financiële wereld gebruikt wordt om een kosten-
risco afweging te maken is de zogenaamde Markowitz portfolio optimalisatie (voor een 
recente empirische toepassing portfolioprobleem bij pensioenspaarplankeuze werknemers, 
zie: Boyle e.a., 2006). Hier verwijst de term portfolio naar een combinatie (groep) van 
activa of bezittingen. De theorie ontwikkeld door Markowitz biedt de investeerder de 
mogelijkheid een portefeuille samen te stellen die overeenkomt met de gewenste 
hoeveelheid risico van de investeerder.  
In hoofdstuk 6 richten we ons zo’n investeerder op de electriciteitsmarkt, en wel de 
eerdergenoemde eindgebruiker. Deze afnemer wenst zich te beschermen (‘hedgen’) tegen 
genoemd inkooprisico (kosten) door een portefeuille samen te stellen van spot -en 
derivatencontracten. We willen inzicht krijgen of de portfolio-optimalisatie theorie 
gebaseerd op het standaardwerk van Markowitz (1952), de eindgebruiker kan helpen in het 
selecteren van de voor optimale portefeuille. In algemene zin willen we dus weten of het 
Markowitz raamwerk, net als in vele andere markten, ook toepasbaar is in de  
electriciteitsmarkt. In Markowitz wereld zijn het verwachte rendement, en de 
standaarddeviatie van de portfoliorendementen betekenisvolle parameters voor het 
rendement en risico van de portfolio, en daarmee de twee citeria voor portfolioselectie. De 
door ons gehanteerde optimalisatiemethode is een variant op zijn raamwerk, omdat we niet 
de standaarddeviatie als risicomaatstaf gebruiken, maar een Value-at-Risk-achtige 
maatstaf. Value-at-Risk (VaR) deed in de jaren 1980 zijn intrede in de bancaire wereld, en 
werd oorspronkelijk gebruikt om de kredietwaardigheid van banken vast te stellen (voor 
een overzicht: Zie Jorion, 1997). Zo is de VaR-limiet voorgesteld door de Basel 
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Commissie van Bank Regulatie, vastgesteld als het maximaal verlies dat geleden wordt 
over een van te voren vastgestelde periode, éénmaal in de 100 gevallen mag voorkomen 
(kortweg 1% VaR).     
Value-at-Risk neemt dus, in tegenstelling tot de standaarddeviatie, alleen de neerwaartse 
beweging ten opzichte van het gemiddelde mee, en dus niet de opwaartse beweging die als 
gunstig kan worden ervaren. Roy (1952) is de grondlegger van portfolio optimalisatie 
onder een dergelijke neerwaarts risicomaatstaf, welke de Markowitz’ maatstaf vervangt. 
Sindsdien zijn verscheidene van deze portfolio optimalisatiemodellen geïntroduceerd 
(bijvoorbeeld Arzac en Bawa (1977), ook wel safety-first modellen genoemd, en ook 
empirisch getest zoals in Campbell e.a. (2001). In hun studie wordt de oplossing van het 
optimalisatieprobleem van een investeerder, gevonden in een vlak, gedefinieerd door de 
twee parameters gemiddeld rendement en VaR. Merk op dat in ons portfolio 
selectieprobleem geen portfoliorendementen maar portfoliokosten centraal staan, hetgeen 
betekent dat we onze oplossing vinden in een vlak gedefinieerd door een verwachte 
verwachte-kosten dimensie, en VaR-achtige dimensie. We spreken in onze studie van een 
Value-at-Risk achtige maatstaf, omdat het in onze studie dus draait om verwachte kosten 
en geen verwacht rendement, en daarom om opwaarts risico in plaats van neerwaarts risico.    
Een bijkomend voordeel ten favuere van het toepassen van VaR in het stroomportfolio 
selectieprobleem in vergelijking met de standaarddeviatie, is dat met deze maatstaf  
additioneel portfoliorisico meegenomen kan worden als gevolg van mogelijke niet-normale 
eigenschappen van de kostenverdeling (zie hoofdstuk 1 voor discussie niet-normaal 
verdeelde stroomprijsveranderingen).  
 
Een beperkt aantal studies heeft zich beziggehouden met het eerder beschreven 
stroomportfolio selectieprobleem, waarbij moet worden opgemerkt dat we uitsluitend die 
studies bekijken die een statische65 setting veronderstellen. (zodra de optimale combinatie 
contracten is bepaalt, kan hier op een later tijdstip binnen de beleggingshorizon niet meer 
van worden afgeweken) veronderstellen: Fleten e.a. (2000), en Vehviläinen en Keppo 
(2003), gebruiken respectievelijk een scenario-, en Monte Carlo raamwerk. We hanteren 
daarentegen het Markowitz raamwerk, dat middels een VaR achtige maatstaf is uitgebreid. 
Vehviläinen en Keppo, die eveneens de VaR maatstaf gebruiken voor de kwantificering 
van risico, claimen dat hun Monte Carlo-gebaseerde methode superieur is aan de 
Markowitz techniek, omdat deze de marktparticipant in staat stelt het selectieprobleem 
voor complexe portfolio’s op te lossen. Echter, ze presenteren geen bewijs dat deze claim 
ondersteunt: zo testen ze hun model niet empirisch op uurdata maar weekdata, en 
veronderstellen ze geen  stroomlast dynamieken maar een constante leveringslast, hetgeen 
wij daarentegen wel doen. 
 
We beschikken over consumptieprofielen (stroomlastdata) van zakelijke eindgebruikers, 
spot-, en forwardprijsdata van de Nederlandse markt verkregen van respectievelijk 
TenneT, de APX en ENDEX. We passen portfolio theorie toe om voor zowel een constant 
als tijdsvariërend consumptiepatroon de efficiënte set van portfolio’s te identificeren die 

                                                           
65 Statisch houdt in dat zodra de optimale combinatie contracten is bepaalt, hier op een later tijdstip 
binnen de beleggingshorizon niet meer van kan worden afgeweken Het alternatief, een dynamische 
setting, impliceert dat electriciteitsspot -en derivatenbeurzen liquide zijn, om het herbalanceren van 
het portfolio mogelijk te maken. Dit is echter niet het geval in de huidige electriciteitsmarkt.  
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voldoen aan kosten-risicopreferentie van de marktparticipant. Wanneer we de ligging van 
de twee efficiënte grenslijnen met elkaar vergelijken, valt op dat de introductie van een 
variërend consumptieprofiel, het totale portfolio risico aanmerkelijk vergroot. We leveren 
empirisch bewijs dat optimale hedge ratio’s zijn te identificeren, hetgeen betekent dat 
moderne portfolio theorie ook in electriciteitsmarkten kan worden toegepast. De in dit 
hoofdstuk voorgestelde portfolio optimalisatie benadering biedt een raamwerk om de 
risicopreferentie van de electriciteitsmarktparticipant te verbinden aan de keuze van stroom 
spot- en termijn contracten en is daarom een eerste stap naar de formulering van een 
strategische benchmark voor investeerders die hun portfoliomix willen managen over een 
bepaalde beleggingshorizon.  
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Dealing with Electricity Prices
The 1990’s witnessed the start of a worldwide deregulation process in
the electricity industry. Since then, electricity prices have been based
on the market rules of supply and demand. The non-storability of
electricity, absence of substitutes, inelastic supply and patterns in
electricity consumption, make power prices subject to mean-reversion,
seasonality, frequent jumps and a complex time-varying volatility
structure. Many of these characteristics cannot be observed in other
commodity- or financial markets. Reforms have triggered the demand
for electricity derivatives, and have led to the introduction of electronic
market places where electricity can be traded on spot or forward.
These markets enable market participants to allocate the price risk
that they are exposed to, by selecting portfolios consisting of spot- and
derivative contracts in accordance with their risk appetite. Although
academic research on valuation of derivatives and portfolio theory is
well-established, little is known about its applicability in electricity
markets due to the aforementioned stylized facts. The scientific
contribution of this research is to propose alternative methodologies
for (spot- and derivative) price modelling and portfolio management
in power markets. We do so by using time-series analysis, extreme
value theory, panel data models and portfolio theory. Data is
obtained from the most active electricity exchanges in the world. We
hereby provide answers to yet unresolved issues on market efficiency,
spot price dynamics, time-to-maturity effects in forward prices and
structuring of the sourcing portfolio.

ERIM
The Erasmus Research Institute of Management (ERIM) is the Research
School (Onderzoekschool) in the field of management of the Erasmus
University Rotterdam. The founding participants of ERIM are RSM
Erasmus University and the Erasmus School of Economics. ERIM was
founded in 1999 and is officially accredited by the Royal Netherlands
Academy of Arts and Sciences (KNAW). The research undertaken by
ERIM is focussed on the management of the firm in its environment,
its intra- and inter-firm relations, and its business processes in their
interdependent connections. 
The objective of ERIM is to carry out first rate research in manage-
ment, and to offer an advanced graduate program in Research in
Management. Within ERIM, over two hundred senior researchers and
Ph.D. candidates are active in the different research programs. From a
variety of academic backgrounds and expertises, the ERIM community
is united in striving for excellence and working at the forefront of
creating new business knowledge.
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