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Abstract 

 

We present new lower bounds for the Capacitated Lot Sizing Problem with Set Up 

Times. We improve the lower bound obtained by the textbook Dantzig-Wolfe 

decomposition where the capacity constraints are the linking constraints. In our 

approach, Dantzig-Wolfe decomposition is applied to the network reformulation of 

the problem. The demand constraints are the linking constraints and the problem 

decomposes into subproblems per period containing the capacity and set up 

constraints. We propose a customized branch-and-bound algorithm for solving the 

subproblem based on its similarities with the Linear Multiple Choice Knapsack 

Problem. Further we present a Lagrange Relaxation algorithm for finding this lower 

bound. To the best of our knowledge, this is the first time that computational results 

are presented  for this decomposition and a comparison of our lower bound to other 

lower bounds proposed in the literature indicates its high quality.  
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1. Introduction 

 

We consider the Capacitated Lot Sizing Problem with Set Up Times (CLST). Let P be 

the set of products {1,…,n} with index i and T  the set of time periods {1,…,m} with 

index t. We have the following parameters: itd  is the demand of product i in period t; 

itksd  is the sum of the demand of product i from period t until period k; ithc  is the 

holding cost for product i in period t; itsc  is the set up cost for product i in period t; 

itvc  is the variable production cost for product i in period t; fci is the cost for initial 

inventory for product i; itst  is the set up time for product i in period t; itvt  is the 

variable production time for product i in period t and tcap  is the capacity in period t. 

We have the following decision variables: itx  is the amount of production of product i 

in period t; ity  = 1 if there is a set up for product i in period t, = 0 otherwise and sii is 

the amount of initial inventory for item i. The mathematical formulation of the CLST 

is then as follows: 

 Min   ( )∑ ∑∑
∈ ∈ ∈

+++
Pi Pi Tt

ititititititii shcxvcyscsifc   (1) 

s.t. 1,1,1, iiii sdxsi +=+  ∀ i ∈ P (2.1) 

 itititti sdxs +=+−1,  ∀ i ∈ P, ∀ t ∈  T\{1} (2.2) 

 { } ititmitittit ysdvtstcapx ,/)(min −≤  ∀ i ∈ P, ∀ t ∈  T  (3) 

 ( ) t
Pi

itititit capxvtyst ≤+∑
∈

 ∀ t ∈ T  (4) 

 ity ∈  {0,1}, itx  ≥ 0, sit ≥ 0, si i ≥ 0  ∀ i ∈ P, ∀ t ∈  T  (5) 

 

The objective function (1) minimizes the total costs, consisting of the initial inventory 

cost, the set up cost, the variable production cost and the inventory holding cost. 

Constraints (2.1) and (2.2) are the demand constraints. To deal with infeasible 

problems, we allow for initial inventory which is available in the first period at a large 

feasibility cost of fci. Constraint (3) is the set up forcing constraint: if there is any 

positive production in period t, a set up is enforced. In order to make the formulation 

stronger, we limit the production for each item by both the remaining demand and the 

maximum possible production with the available capacity minus the set up time. Next, 

there is a constraint on the available capacity in each period (4). If we have a set up, 
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the set up time is properly accounted for. Finally, there are the non-negativity and 

integrality constraints (5). Let CLSTv  be the optimal objective value for problem (1)-(5) 

and CLSTv  for its LP relaxation. This problem can be reformulated using the variable 

redefinition approach of Eppen and Martin [6]. Define the following parameters: 

 itkcv  : total production and holding cost for producing item i in 

period t to satisfy demand for the periods t until k, 
 

 
  

∑∑
+=

−

=

+=
k

ts

s

tu
isiuitkit dhcsdvc

1

1

,  

 itci  : total production and holding cost for initial inventory for 

product i to satisfy demand from period 1 up to period t, 
 

   ∑∑
=

−

=

+=
t

s

s

u
isiutii dhcsdfc

2

1

1
1 .  

We also have the following new variables in our model: 

 itkzv  : fraction of the production plan for product i where production in 

period t satisfies demand from period t to period k, 

 itw  : fraction of the initial inventory plan for product i where demand is 

satisfied for the first t periods. 

The network reformulation is then as follows: 

 Min ( )∑∑ ∑∑∑
∈ ∈ ∈ ∈ =

++
Pi Tt Pi Tt

m

tk
itkitkitititit zvcvwciysc   (6) 

s.t. 1 = ( )∑
∈

+
Tk

kiik zvw ,1,  ∀ i ∈  P (7) 

 ∑ ∑
−

= =
−− =+

1

1
1,1,

t

k

m

tk
itktikti zvzvw  ∀ i ∈  P, ∀ t ∈ T\{1} (8) 

 ∑
=

≤
m

tk
ititk yzv  ∀ i ∈  P, ∀ t ∈ T (9) 

 ∑ ∑∑
∈ ∈ =

≤+
Pi Pi

m

tk
titkitkititit capzvsdvtyst  ∀ t ∈  T (10) 

 { }1,0∈ity , 0≥itw  ∀ i ∈  P, ∀ t ∈ T (11) 

 0≥itkzv  ∀ i ∈  P, ∀ t ∈ T, ∀ k ∈ T, k ≥ t (12) 

 

The objective function (6) minimizes the sum of the set up cost, initial inventory cost 

and regular production and holding costs. Constraints (7) and (8) define the flow 



 4

constraints for the shortest path network. For each product, a unit flow is sent through 

the network, imposing that the demand for each product has to be satisfied without 

backlogging. Figure 1 represents the network for a three period problem for a specific 

item i.  

 

Figure 1. Network representation for one item and 3 periods   

 
 

 

 

 

 

 

 

Constraint (9) defines the set up forcing for each item. The capacity constraints (10) 

limit the sum of the total set up times and production times to the available capacity in 

each period. The set up decision is binary (11). Let EMv  be the optimal objective 

value of the Eppen and Martin reformulation (6)-(12) and EMv  the LP relaxation value.  

 

 

2.  Decomposition Approaches 

 

2.1. Overview of Different Bounds 

 

In the traditional textbook Dantzig -Wolfe decomposition for CLST, the capacity 

constraints are the linking constraints and the demand and set up constraints and the 

integrality conditions are put in the subproblem. The problem decomposes into 

uncapacitated lot sizing subproblems per item. For the regular formulation (1)-(5), this 

gives us the lower bound 1CLDv  [5,9]. We discuss a new decomposition, where the 

demand constraints are the linking constraints. The problem decomposes into 

subproblems per time period containing the capacity and set up constraints and the 

integrality conditions. The columns are production plans per period, indicating for 

each period which products are produced and in what quantities. All these production 
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zvi13 zvi23 
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plans are feasible with respect to the capacity constraint. To the best of our knowledge, 

Diaby et al. [4] are the only researchers to test such a decomposition per time period, 

but they start from the formulation (1)-(5), giving the lower bound 2CLDv . From their 

computational tests, they conclude that the decomposition per item is superior to the 

decomposition per time period. In this paper, we start from the network formulation 

and applying the decomposition per time period results in the lower bound 2EMDv . 

This bound is discussed, without computational results, for the Capacitated Lot Sizing 

Problem (CLSP) without Set Up Times in Chen and Thizy [3]. An overview of these 

different lower bounds is given in Table 1. Propositions 1, 2 and 3 state the 

relationship between these bounds. Note that 1CLDv  is also equal to the regular 

formulation (1)-(5) plus the (l,S)-inequalities [1]. 

 

Table 1.  Overview of different lower bounds for CLST 

 No decomposition Decomposition 1 

(per item) 

Decomposition 2 

(per time period) 

Regular formulation 

(1)-(5) 
CLSTv  1CLDv  2CLDv  

Network formulation 

(6)-(12) 
EMv  1EMDv  2EMDv  

 

Proposition 1 : 211 EMDEMDEMCLDCLST vvvvv ≤==≤  

Proof: The first inequality follows from the fact that applying Dantzig-Wolfe 

decomposition to a minimization problem can never decrease the lower bound. The 

subproblem is the single item uncap acitated lot sizing problem [15] and the regular 

formulation of this problem in the ),,,( ititiit yssix -space does not have the integrality 

property. The equivalence between 1CLDv  and EMv  is established by the fact that both 

formulations describe the convex hull of the single item uncapacitated lot sizing 

problems. Further, applying the decomposition per item to the network reformulation 

will not improve the lower bound, as the subproblem is the network reformulatio n of 

the single item uncapacitated lot sizing problem and it has the integrality property [6]. 

This establishes the equivalence between EMv  and 1EMDv . Finally, applying the 
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decomposition per period to the network formulation will lead to an equal or better 

lower bound, as the subproblem does not have the integrality property.   Q.E.D. 

 

Proposition 2: 22 EMDCLDCLST vvv ≤≤  

Proof:  The first inequality follows from the fact that applying Dantzig-Wolfe 

decomposition to a minimization problem can never decrease the lower bound and the 

subproblem does not have the integrality property. The proof for the second inequality 

is similar to a proof provided by Chen and Thizy [3] for the Capacitated Lot Sizing 

Problem without Set Up Times. A feasible point ),,( itititk ywzv of the network model 

with the decomposition per period satisfies the network constraints (7) and (8) and is 

contained in the convex hull of (9)-(12). The corresponding point in the 

),,,( ititiit yssix -space will satisfy the demand constraints (2.1) and (2.2) and will be 

contained in the convex hull of (3)-(5). The reverse is not true. Details of this proof 

can be found in the appendix.  Q.E.D. 

 

Proposition 3: The bound 1CLDv  does not dominate 2CLDv  or vice versa. 

Proof: Chen and Thizy [3] provide an example that the bound 1CLDv  does not 

dominate 2CLDv  or vice versa for the CLSP without set up times, which is a special 

case of the general problem with set up times.   Q.E.D. 

 

 

2.2. Dantzig-Wolfe Reformulation and Lagrange Relaxation 

 

We focus on the decomposition of the network reformulation into subproblems per 

time period, containing the set up and capacity constraints. For this new 

decomposition, define tS  as the set of all the extreme point production plans of the 

subproblem for period t. The variable tqzt  is associated with production plan q for 

period t. The master program is then as follows: 

 ∑∑ ∑ ∑
∈ ∈ ∈ ∈

+
Pi Tt Tt Sq

tqtqitit
t

ztctwciMin    (13) 

s.t. 
1 = ∑ ∑

∈ ∈








+

Tk Sq
qkqiik ztaw

1

11  
∀ i ∈ P 1iπ  (14) 
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∑ ∑ ∑∑

−

= = ∈∈
−− =+

1

1
,1,1,

t

k

m

tk Sq
tqitkq

Sq
kqqtikti

tk

ztaztaw

 

∀ i ∈ P, ∀ t ∈ T\{1} itπ  (15) 

 1=∑
∈ tSq

tqzt  ∀ t ∈ T tµ  (16) 

 0≥iqzt    (17) 

 

The objective function (13) minimizes the total cost of the initial inventory and the 

cost of the production plans chosen in each period. Constraints (14) and (15) are the 

flow constraints and correspond to the constraints (7) and (8) in  the original 

formulation. The flow constraints have a dual price itπ . The convexity constraints 

(16) have a dual price tµ . The constraint coefficient parameters itkqa  and the cost 

parameter tqct  of the tqzt  variables are defined by the solution of the subproblem. In 

the subproblems, the objective function minimizes the reduced cost. For each time 

period t, except for the last one, we have the following objectiv e function: 

 ∑∑∑∑∑ ∑∑
∈

−

=
+

∈ =∈ ∈ =

−+−+
Pi

t

m

tk
itkki

Pi

m

tk
itkit

Pi Pi

m

tk
itkitkitit zvzvzvcvyscMin µππ

1

1,  (18) 

After rearranging the terms in the objective function, the subproblem for period t can 

be stated as follows: 

 t
Pi

itmititm
Pi Pi

m

tk
itkkiititkitit zvcvzvcvyscMin µπππ −−++−+ ∑∑ ∑∑

∈∈ ∈

−

=
+ )()(

1

1,  (19) 

s.t. ∑ ∑∑
∈ ∈ =

≤+
Pi Pi

m

tk
titkitkititit capzvsdvtyst   (20) 

 ∑
=

≤
m

tk
ititk yzv  ∀ i ∈  P (21) 

 { }1,0∈ity , 0≥itkzv  ∀ i ∈  P, ∀ k ∈ T, k ≥ t (22) 

 

The constraints in the subproblem are the capacity constraint (20), set up constraints 

(21) and integrality constraints (22) for period t. The objective function for the 

subproblem of the final period is as follows: 

 ∑ ∑
∈ ∈

−−+
Pi Pi

mimmimimmimim zvcvyscMin µπ )(   (23) 
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During the column generation process, we generate the columns as they are needed. 

Let ( )** , itkit zvy  be the optimal solution for the subproblem for period t. The column 

prices out if the minimum reduced cost (19) is smaller than zero. The new column 

tSq ∈  has the following parameters:  

 *
itkitkq zva =  ∀ i ∈ P, ∀ k ∈ T, k ≥ t (24) 

 ∑ ∑∑
∈ ∈ =

+=
Pi Pi

m

tk
itkitkitittq zvcvyscct **   (25) 

 

The lower bound of this new Dantzig-Wolfe decomposition can also be approximated 

by Lagrange relaxation. In the Lagrange relaxation reformulation, the network 

constraints (7) and (8) are dualized in the objective function (6) with non-negative 

dual multipliers p it. : 

 

( )

∑ ∑ ∑∑

∑ ∑∑

∑∑ ∑∑∑

∈ ∈

−

=
−−

=

∈ ∈∈

∈ ∈ ∈ ∈ =









−−−








 −+−

++

Pi Tt

t

k
tikti

m

tk
itkit

Pi Tk
ki

Tk
iki

Pi Tt Pi Tt

m

tk
itkitkitititit

zvwzvp

zvwp

zvcvwciyscMin

}1\{

1

1
1,1,

,1,1 1  (26) 

After rearranging the terms in the objective function, the Lagrange problem becomes: 

 
∑∑∑∑ ∑ ∑

∑∑ ∑∑∑

∈∈ ∈∈ ∈

−

=
+

∈∈ ∈
+

∈ ∈

+−++−+

−++−+

Pi
i

Pi Tt
itmititm

Pi mTt

m

tk
itkkiititk

Pi
imiim

Pi mTt
ittiiit

Pi Tt
itit

pzvpcvzvppcv

wpciwppciyscMin

1
}\{

1

1,

1,
}\{

1,1,

)()(

)()(

 (27) 

s.t. (9), (10), (11), (12).  

 

The Lagrange problem decomposes into separate subproblems for each period t: 

 ∑∑ ∑∑
∈∈ ∈

−

=
+ −++−+

Pi
itmititm

Pi Pi

m

tk
itkkiititkitit zvpcvzvppcvyscMin )()(

1

1,  (28) 

s.t. (20), (21), (22)  

The last period objective function has a special form: 

 ∑ ∑
∈ ∈

−+
Pi Pi

immimimmimim zvpcvyscMin )(   (29) 
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The itw  variables are present in the overall Lagrange objective function (27), but not 

in the objective function of the separate subproblems (28) because they do not appear 

in the constraints of the subproblem. To minimize the overall Lagrange objective 

function (27), the value of each itw  variable is determined according to the following 

decision ru le: 

 1=itw  if 0)( 1,1, <+− +tiiit ppci , 0=itw  otherwise, }{\, mTtPi ∈∀∈∀  (30) 

 1=imw  if 0)( 1, <− iim pci , 0=imw  otherwise.  Pi ∈∀  (31) 

Further, we implicitly consider constraint (7) by setting, for each item, only the initial 

inventory variable with the most negative objective coefficient equal to one. 

In the Lagrange relaxation algorithm [7], a Lagrange problem is solved during several 

iterations and the Lagrange dual prices p it are updated by a standard subgradient 

optimization scheme (32) and (33). Let r
itp  be the dual prices at iteration r and let 

( )r
it

r
itk

r
it wzvy ,,  the optimal solution for the Lagrange problem at step r. The optimal 

objective value (27) for the Lagrange problem at step r is )( r
itEMLR pv . In the 

calculation of λ  (34), UB is the best known upper bound for the original problem (1)-

(5) and ω  is initially set to  two and is decreased whenever the Lagrange solution 

)( r
itEMLR pv  has failed to improve in a specified number of steps.  

 

 )}1(,0max{ ,1,1
1

1 −+−= ∑ ∑
∈ ∈

+

Tk Tk

r
ki

r
ik

r
i

r
i zvwpp λ  Pi ∈∀  (32) 

 })(,0max{
1

1
1,1,

1 ∑ ∑
=

−

=
−−

+ −−−=
m

tk

t

k

r
tik

r
ti

r
itk

r
it

r
it zvwzvpp λ  }1{\, TtPi ∈∀∈∀  (33) 

 2

}1\{

1

1
1,1,

2

,1, 1

))((

∑ ∑ ∑ ∑∑ ∑ ∑
∈ ∈ =

−

=
−−

∈ ∈ ∈









−−+








−+

−
=

Pi Tt

m

tk

t

k

r
tik

r
ti

r
itk

Pi Tk Tk

r
ki

r
ik

r
itEMLR

zvwzvzvw

pvUBω
λ  

(34) 

 

For any set of positive multipliers pit it holds that the value )( itEMLR pv  provides a 

lower bound on the optimal value EMv . The best possible Lagrange lower bound is 

called the Lagrange Dual: ))((max
0

itEMLR
p

EMLD pvv
it ≥

= . The value of this Lagrange Dual 

EMLDv  is equal to the Dantzig-Wolfe lower bound 2EMDv . We observe the similarities 

between Dantzig -Wolfe decomposition and Lagrange relaxation. The Lagrange 
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subproblem has exactly the same structure as the column generation subproblem. The 

only difference is the way the dual multipliers are obtained. The itπ  multipliers are 

the dual prices given by the current master of the Dantzig-Wolfe reformulation and 

the itp  multipliers in the Lagrange relaxation are updated with subgradient 

optimization. As there is no guarantee for convergence and no clear stopping criterion 

for the Lagrange algorithm, the bound that we obtain with Lagrange Relaxation is 

only an approximation of the Dantzig -Wolfe lower bound.  

 

 

3.  Solving the Subproblem 

 

Next we develop a customized branch-and-bound algorithm for solving the 

subproblem (19)-(22). The relaxation of the subproblem can be solved with an 

algorithm for the Linear Multiple Choice Knapsack Problem. The Multiple Choice 

Knapsack Problem is an extension of the Binary Knapsack Problem where the items 

are divided into several disjoint classes. The problem is to choose exactly one item 

from each class so that the total profit is maximized without exceeding the capacity of 

the knapsack. The relaxation of this problem is called the Linear Multiple Choice 

Knapsack Problem (LMCKP). Sinha and Zoltners [13] and Pisinger [11] present some 

basic definitions and properties of the problem. The relaxation of our subproblem 

(19)-(22) is a LMCKP. The set up constraint (21) becomes an equality constraint in 

the relaxation as the set up variables have a positive cost scit and positive set up time 

stit in this minimization problem. Therefore we can substitute out the set up variables. 

The subproblem for period t now contains the capacity constraint (36) and the simple 

upper bound of one on the variables yit (37): 

 ∑∑∑
∈∈

−

=
+ −+++−+

Pi
itmititmit

Pi

m

tk
itkkiititkit zvcvsczvcvscMin )()(

1

1, πππ  (35) 

 ∑∑
∈ =

≤+
Pi

m

tk
titkitkitit capzvsdvtst )(   (36) 

 ∑
=

≤
m

tk
itkzv 1  Pi∈∀  (37) 

 0≥itkzv  tkTkPi ≥∈∀∈∀ |,  (38) 
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The classes in LMCKP correspond to the different items. The inequality constraint 

(37) can be transformed into a multiple choice equality constraint by including an 

artificial variable in each class with weight and capacity usage equal to zero. This 

variable is essentially the slack variable of the original constraint (37).  

 

We develop a branch-and-bound algorithm to solve the subproblem (19)-(22). At each 

node a problem of the LMCKP type is solved. We use a greedy algorithm [13], which 

solves the LMCKP optimally. The LMCKP structure remains after branching. Define: 

 B1 : Set of items for which the set up variable is set to one during branching, 

 B0 : Set of items for which the set up variable is set to zero during branching, 

 NB : Set of items for which no branching decision has been made yet, 

 = )01{\ BBP ∪ . 

After branching, the problem looks as follows: 

 

∑∑∑

∑∑∑∑

∈∈

−

=
+

∈∈

−

=
+

∈

−+++−++

−++−+

NBi
itmititmit

NBi

m

tk
itkkiititkit

Bi
itmititm

Bi

m

tk
itkkiititk

Bi
it

zvcvsczvcvsc

zvcvzvcvscMin

)()(

)()(

1

1,

11

1

1,
1

πππ

πππ
 (39) 

s.t. ∑∑∑ ∑∑
∈∈ = ∈ =

−≤++
11

)()(
Bi

it
Bi

m

tk NBi

m

tk
titkitkitititkitkit stcapzvsdvtstzvsdvt  (40) 

 ∑
=

≤
m

tk
itkzv 1  1Bi∈∀ , NBi∈∀  (41) 

 ∑
=

≤
m

tk
itkzv 0  0Bi∈∀  (42) 

 0≥itkzv  tkTkPi ≥∈∀∈∀ |,  (43) 

 

For the set up variables of the items for which no branching decision has been made 

yet ( NBi ∈ ), the value of the set up variable is calculated according to: ∑
=

=
m

tk
ititk yzv . 

In an optimal solution of the LMCKP there is at most one class with variables that 

have a fractional value, called the fractional class, and at most two variables are 

fractional in that class [13]. Therefore, there is at most one fractional ity  variable at 

any node of the B&B tree. If there is such a fractional ity  variable, we first investigate 

the branch where we set the fractional ity  variable equal to one. In the twin we set the 
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ity  variable, and hence all the production variables in that class, to zero. We 

backtrack if we find an integer solution. A depth-first strategy is used for selecting the 

next node. Our problem has some special properties that help to speed up the 

algorithm: 

1. The capacity usage coefficients itkitsdvt  and itkitit sdvtst + in (40) are always 

positive. For the minimization of (39)-(43) at any node of the branch-and-

bound tree, all variables with a positive objective value coefficient can be set 

to zero. 

2. In the first step of the greedy algorithm, we have to order the variab les in each 

class by increasing capacity usage. However, the variables itkzv within a class i 

for period t, are already ordered by weakly increasing capacity usage:  

 1, ++≤+ kititititkitit sdvtstsdvtst        mktTk <≤∈∀ |  

3. In a further step of the greedy algorithm, we have to determine for each class 

the set of LP-dominated variables, i.e. variables which will have a value of 

zero in the optimal LP solution. For the remaining variables in each class, we 

calculate the slope between adjacent variables in each class using the cost and 

capacity coefficients. These calculations are done at the root node, but this 

information is stored and can be re-used further down in the tree. Only when 

we branch the set up variable of a specific item to one, the cost and capacity 

coefficients are changed and we have to do these calculations again for this 

class.  

 

 

4.  Computational Results 

 

4.1 Lower Bound Calculation with Lagrange Relaxation  

 

We implement a Lagrange relaxation scheme where the dual prices are updated by 

subgradient optimization, as described in the previous section. We test our procedure 

on the F and G test sets from Trigeiro et al. [14]. The F test set contains 70 problems 

with 6 products and 15 periods. The G set contains 71 problems with 6, 12 and 24 

products and 15 and 30 periods. There are 5 problems for each combination, except 

for the combination of 6 products and 15 periods for which there are 46 problems. 



 13

Our algorithm is coded in Fortran and the tests are done on a Pentium 750 MHz 

computer. We initialize the dual prices at zero ( 0
itp =0). Further we set ω  in equation 

(34) equal to two, and decrease it by multiplying it with the parameter rf, which was 

set at 0.9, if the Lagrange solution )( r
itEMLR pv  did not improve in the last 50 iterations. 

We use the Trigeiro et al. [14] (TTM) heuristic to quickly obtain an upper bound (UB) 

which we use in the updating formula (34). The subproblem is solved with our 

specialized branch-and-bound algorithm. Table 2 reports the gap which is calculated 

as 
boundlower

boundlowerboundupper −
*100 . The upper bounds we use are obtained 

separately from an algorithm using column generation with the first decomposition, 

i.e. per item, as described in Jans [8]. As we use the same upper bounds, the 

differences in the gaps are only due to the differences in the lower bounds. In the 

column TTM, we report the gap compared to the lower bound obtained by the 

Trigeiro et al. algorithm [14], which uses Lagrange relaxation dualizing the capacity 

constraints in formulation (1)-(5). The column DW1 refers to the gap of the upper 

bound relative to 1CLDv , the lower bound obtained with the first decomposition on the 

original formulation, as reported in [8]. The other columns give the gap with the best 

Lagrange lower bound for the new decomposition after 500, 1000, 2000, 3000, 4000 

and 5000 iterations. For the problems with 15 time periods, we need 2000 iterations 

before we obtain a gap which is better than the gap with the lower bound of the first 

decomposition. For the problems with 30 products we need 3000 iterations, and even 

4000 for the most difficult set, before we obtain better gaps. In the column ‘% change’ 

we report the relative decrease in gap after 5000 Lagrange iterations, compared to 

DW1. It seems that the relative improvement in the gap decreases as we increase the 

number of products and periods. For problems with many products, the first 

decomposition already gives a good lower bound [9], so there might be less 

opportunity for improvement.  
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Table 2.  Comparison of gaps (%)  
 TTM 500 1000 2000 3000 4000 5000 DW1 % 

change 

F6-15 3.60 6.80 4.34 3.26 3.05 2.99 2.98 3.55 16.13 

G6-15 4.88 8.62 5.46 4.19 3.93 3.86 3.84 4.73 18.78 

G12-15 1.11 2.13 1.29 1.02 0.96 0.95 0.95 1.07 11.92 

G24-15 0.36 0.67 0.45 0.35 0.33 0.32 0.32 0.36 11.51 

G6-30 3.22 12.09 5.10 3.33 2.97 2.89 2.86 3.22 11.03 

G12-30 1.15 5.28 2.34 1.26 1.10 1.05 1.04 1.15 9.57 

G24-30 0.24 4.14 1.40 0.37 0.26 0.23 0.22 0.24 7.57 

 

In Table 3, we give the CPU times for TTM, for performing the new Lagrange 

relaxation with 500, 1000, 2000, 3000, 4000 and 5000 iterations and for DW1. 

Remark that the CPU times for the new Lagrange relaxation and DW1 include the 

time for performing the TTM heuristic. We observe that the CPU time increases with 

increasing number of periods and products. The CPU times for the Lagrange 

decomposition per period are considerably higher compared the Lagrange and 

Dantzig-Wolfe decomposition per item. Further we implemented the Lagrange 

relaxation using the LINDO solver [12] to optimize the subproblems and the CPU 

times for the F test set with this implementation are given in the row F-lindo, 

indicating the superiority of our subproblem algorithm.  

 

Table 3.  Comparison of CPU times in seconds  

 TTM 500 1000 2000 3000 4000 5000 DW1 

F6-15 0.16 0.78 1.65 3.82 6.36 9.11 11.92 0.28 

G6-15 0.17 0.70 1.41 3.24 5.45 7.85 10.34 0.33 

G12-15 0.29 1.78 4.16 10.67 19.29 29.01 39.09 0.56 

G24-15 0.55 6.41 17.01 45.13 82.24 125.07 171.00 1.10 

G6-30 0.65 1.86 3.65 8.40 14.27 20.78 27.53 1.06 

G12-30 1.28 3.95 8.67 23.12 43.74 69.00 97.19 2.12 

G24-30 2.52 7.39 15.73 45.10 93.34 159.76 245.07 4.66 

F-lindo - 21.04 50.60 133.21 246.86 379.55 519.95 - 

 

We also experimented with some other settings for the initial dual prices and the rf 

parameter. Initializing the dual prices at the set up cost ( 0
itp  = sci) gives results that 

are very similar to the case where the initial dual prices are zero. Initializing the dual 
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prices with the following formula, 0
itp  = sci *(m-t+1) increases the CPU time while 

the quality of the gap decreases. Except for the simplest problems with 6 products and 

15 periods, we cannot improve the lower bound of the first decomposition. Initializing 

the dual prices at zero ( 0
itp  = 0) but decreasing the multiplier rf to 0.8 slightly 

increases both the CPU time and the gap. Decreasing rf further to 0.7 increases the 

final gaps even further. Also increasing rf to 0.95 or 0.99 results in worse gaps after 

5000 iterations. Faster initial convergence in the first 500 iterations can be obtained 

by changing the rf parameters to 0.5 and changing the stepsize if no improvement is 

obtained in the last 20 steps. However, in later iterations the solution does not 

improve anymore as the stepsize becomes too small. 

 

 

4.2.  Comparison with Other Lower Bounds in the Literature 

 

Finally, in Table 4 we give specific lower bound results for the 6 data sets that are 

used in Belvaux and Wolsey [2] and Miller et al. [10]. For the data set with 6 products 

and 15 periods, G30 is the original data set with fractional variable production times 

as used by Trigeiro et al. [14], whereas G30b is this data set with unit variable 

production times as used by Belvaux and Wolsey. All the other data sets have unit 

variable production times. First we report the Lagrange lower bound, as obtained after 

300 iterations of the Trigeiro et al. algorithm (TTM). Next, DW1 is the Dantzig-

Wolfe lower bound of the first decomposition on the regular formulation, where the 

problem decomposes into subproblems per item. These results are taken from Jans [8]. 

Belvaux and Wolsey (BW) present a branch-and-cut algorithm, consisting of both 

general cutting planes and specific lot sizing inequalities. Compared to DW1, they 

obtain better bounds for the smaller problems and the same bounds for the larger 

problems. Miller et al. [10] (MNS) derive cuts for the ‘Single Period relaxation with 

Preceding Inventory’. This is a one period model, taking into account the demand for 

all items in that period and the capacity constraint. They improve the lower bounds 

obtained by Belvaux and Wolsey, and their bounds are, to the best of our knowledge, 

the best lower bounds for this problem reported in the literature so far. Finally, we 

give the results for the second decomposition on the network reformulation, where the 

problem is decomposed into subproblems per period. We present the lower bounds 
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obtained by Lagrange Relaxation (LAG2). The Lagrange lower bounds domin ate the 

MNS lower bounds on these test problems. We also calculated the optimal lower 

bound with Dantzig -Wolfe decomposition and column generation (DW2). These last 

results (DW2) are taken from Jans [8]. However, this algorithm is only able to solve 

the smallest problems successfully.  

 

Table 4.  Comparison of lower bounds 

 

 TTM DW1 BW MNS LAG2 DW2 

Tr6-15 (G30) 37,102.8 37,103.1 - - 37,426.9 37,431.4 

Tr6-15(G30b) 37,198.6 37,201.2 37,213.3 37,319 37,380.3 37,382.0 

Tr6-30 (G62) 60,946.1 60,946.2 60,979.4 61,150 61,189.1 61,204.8 

Tr12-15 (G53) 73,756.8 73,847.9 73,858.2 73,929 73,942.7 73,944.5 

Tr12-30 (G69) 130,176.9 130,177.2 130,177 130,292 130,330.4 130,337.7 

Tr24-15 (G57) 136,363.7 136,365.7 136,366 136,388 136,417.9 - 

Tr24-30 (G72) 287,753.2 287,753.4 287,753 287,811 287,824.3 - 

 

In Table 5, we also give the CPU times for calculating the lower bounds with the 

different methods. Belvaux and Wolsey and Miller et al. do not report the individual 

CPU times for calculating their lower bounds at the root node, but Miller et al. state 

that the time for calculating this lower bound never exceeds a few seconds on a 350 

MHz computer for these test problems. We observe that the CPU times for the second 

decomposition are much larger compared to the first decomposition. This is true for 

both the Lagrange implementation and the Dantzig-Wolfe decomposition.  

 

Table 5.  CPU times for lower bounds 

 TTM DW1 BW MNS LAG2 DW2 

Tr6-15 (G30) 0.22 0.33 - - 8.49 1.44 

Tr6-15(G30b) 0.20 0.38 - - 14.93 1.64 

Tr6-30 (G62) 0.66 0.88 - - 16.71 9.1 

Tr12-15 (G53) 0.38 0.82 - - 30.63 25.58 

Tr12-30 (G69) 1.49 1.82 - - 74.50 374.57 

Tr24-15 (G57) 0.72 0.99 - - 194.04 - 

Tr24-30 (G72) 3.41 3.85 - - 290.49 - 
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5.  Conclusions 

 

We present a Dantzig-Wolfe reformulation that gives an eq ual or better lower bound 

compared to the textbook decomposition approach for the Capacitated Lot Sizing 

Problem with Set Up Times. The network reformulation of the lot sizing problem is 

decomposed into subproblems per time period, whereas the textbook dec omposition 

on the original formulation leads to uncapacitated subproblems per item. In the new 

decomposition, the subproblems contain the setup constraints and a capacity 

constraint. We develop a specialized branch-and-bound algorithm for the subproblem 

using properties of the Linear Multiple Choice Knapsack Problem. Computational 

experiments confirm that we obtain improved lower bounds. A comparison with the 

literature indicates that these bounds are better than both the bounds obtained by 

Belvaux and Wolsey [2] and Miller et al. [10] for the data sets reported in these papers. 

The experiments also show that the CPU time for obtaining these bounds is 

considerable.  
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Appendix: Proof of proposition 2: 22 EMDCLD vv ≤  

 

We first prove that a feasible solution of the decomposition of the network model per 

period corresponds to a feasible solution of the decomposition per period of the 

regular formulation with the same objective value. Next we prove that the reverse is 

not necessarily true. The proof is similar to the one given in [3] for the CLSP without 

set up times. 

Let ),,( itititk ywzv be a feasible solution of the decomposition model per period of the 

network formulation. This implies that the solution 1) satisfies the network constraints 

(7) and (8) and 2) it is contained in the convex hull defined by the constraints (9)-(12). 

Let Et be the set of all the extreme points ),( e
it

e
itk yzv of the convex hull of (9)-(12) for 

period t. The feasible solution ),,( itititk ywzv  can then be expressed as a convex 

combination of these extreme points: 

∑
=

=
tE

e

e
itkteitk zvzv

1

λ  and ∑
=

=
tE

e

e
itteit yy

1

λ , with 0,1
1

≥=∑
=

te

E

e
te

t

λλ   

∀ i ∈ P, ∀ t ∈ T, ∀ k ∈  T, k ≥ t 

For the feasible point ),,( itititk ywzv  we can find the according solution in the 

),,,( ititiit yssix -space as follows [6]: 

∑ ∑∑
= ==











==

m

tk
itk

E

e

e
itkte

m

tk
itkitkit sdzvsdzvx

t

1

λ   ∀ i ∈ P, ∀ t ∈ T 

itit yy =       ∀ i ∈ P, ∀ t ∈ T 

∑
=

=
m

k
kiiki sdws

1
1      ∀ i ∈ P 

∑
=

−+=
t

k
ikikiit dxss

1

)(      ∀ i ∈ P, ∀ t ∈ T 
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For each of the extreme points ),( e
it

e
itk yzv  of the convex hull of (9)-(12), we can also 

find the according solution in the ),( itit yx -space in the same way: 

∑
=

=
m

tk
itk

e
itk

e
it sdzvx , e

it
e
it yy =  

The solu tion ),( e
it

e
it yx  satisfies constraint (3)-(5), as the original solution ),( e

it
e
itk yzv  

satisfies (9)-(12).  

Now we have that ∑∑∑
== =

==
tt E

e

e
itte

m

tk

E

e
itk

e
itkteit xsdzvx

11

λλ  and ∑
=

=
tE

e

e
itteit yy

1

λ . The solution 

),,,( ititiit yssix  is in the convex hull of constraints (3)-(5), as it is a convex 

combination of feasible solutions ),( e
it

e
it yx  satisfying (3)-(5). As the original solution 

),,( itititk ywzv  satisfies the flow equations, the according solution ),,,( ititiit yssix  

satisfies the demand equations (2.1) and (2.2). Therefore ),,,( ititiit yssix  is a feasible 

solution for the decomposition per period of the regular formulation. The definition of 

the cost coefficients in the network reformulation ensures that both solutions have the 

same objective value.  

Chen and Thizy [3] give an example where 2CLDv < 1CLDv  and from Proposition 1 we 

know that 21 EMDCLD vv ≤ . Hence a feasible point ),,,( ititiit yssix  for the decomposition 

model per period of the regular formulation is not necessarily feasible for the 

decomposition model per period of the network formulation.   Q.E.D. 
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