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Despite the huge advances made in the understanding of type 
II diabetes and coronary heart disease (CHD), these diseases still constitute 
a major health problem. Since the 1950s, epidemiologists focused on chronic 
disorders, including type II diabetes and CHD. Major aims of their research 
were to find predisposing factors and to reveal their pathophysiology. In 
the following decades, multiple traits and life-style behavioral factors were 
introduced and referred to as “risk factors”. The so called traditional risk factors 
could explain part of the diseased cases, but a proportion of cases remained 
unexplained. For instance, obesity was identified as a major risk factor for type 
II diabetes, but not all patients were overweight. Similarly, it was estimated that 
at least 50% of CHD events were not caused by the traditional CHD risk factors1. 
These observations together with the needs for widening our knowledge on 
the pathogenesis of type II diabetes and CHD and better accuracy of disease 
prediction, called for moving beyond the known risk factors. In this thesis, we 
made an attempt to further study two novel risk factors.    

C-reactive protein (CRP)
We studied inflammation as a novel risk factor both for type II diabetes and 

CHD. Chronic alteration of inflammatory function is related to insulin resistance 
and predisposes people to atherosclerosis. Inflammatory markers, likewise, 
predict the risk of type II diabetes3 and CHD4. The causal role of CRP, a general 
marker of inflammation, in developing CHD has been highly discussed in recent 
years. 

CRP was originally discovered by William Tillett and Thomas Francis, 
investigators from the Rockefeller University. They described a third fraction or 
“Fraction C”, that could be isolated from patients infected with pneumococcus5. 
CRP was described as an “acute phase reactant” in 19476 and was found to 
be related to myocardial infarction in 19547. Despite these early findings, it 
was not until the 1990s that cardiovascular interest in CRP was revitalized. In 
1997, Ridker et al showed in a prospective study that baseline CRP levels were 
significantly higher among those who subsequently experienced myocardial 
infarction or stroke. Soon after that, prospective studies showed that CRP is also 
associated with the risk of type II diabetes3. 

Uric acid
Uric acid was initially discovered in the urine by Scheele in 177612. A few 

years later, Wollastone extracted uric acid from a gouty tophus and speculated 
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on the relation between uric acid and gout12. In 1848, Garrod established the 
relation by showing that uric acid levels are high in gout patients13. 

Uric acid is the final product of purine metabolism and is mainly excreted by 
the kidneys. It has historically been viewed as a waste product, however, recent 
studies show that uric acid may have a wide range of actions, including being 
both a pro- and anti-oxidant14, a neurostimulant15, an inducer of inflammation16 
and an activator of the innate immune response17. 

At the end of 1980s, a new entity, the “metabolic syndrome”, was 
incorporated into the medical terms and substituted the “X syndrome” which 
was described by Reaven. The metabolic syndrome was supposed to be the 
common root for type II diabetes and CHD. Hyperuricemia has been debated 
for a while as a potential component of the metabolic syndrome. Several 
studies showed that high serum uric acid is associated with components of the 
metabolic syndrome8-11. 

The impact of a risk factor on disease risk
How much of the incidence of a disease is due to a certain risk factor, 

and how many cases could be prevented if a risk factor is eliminated? The 
answer to these questions would reveal the impact of a risk factor on disease 
risk. Knowing the impact of most or all risk factors would help public health 
authorities to prioritize their actions18. This might also be of interest from an 
etiologic point of view. High impact risk factors are more likely to pinpoint to a 
crucial pathway in the pathogenesis of the disease. 

The impact of risk factors on a disease could be estimated by calculating the 
population attributable risk (PAR). The PAR was originally calculated based on 
the incidence of the disease in the presence and the absence of the risk factor. 
Since such information is scarce, alternative formulas are developed based on 
the relative risk and the prevalence of the risk factor. The stronger and the more 
prevalent the risk factor, the larger is the PAR19,20. 

Genome-wide association studies
Connecting diseases with genes and discovering a new mechanism is the 

fundamental goal of human genetic studies. Genetic studies traditionally used 
candidate gene or family-based linkage studies to search for novel genes. 
Candidate gene studies rely on our partial understanding of the biologic 
pathways that relate genes to phenotypes. Though many studies can be found 
in the literature that used this approach, many of the reported findings fail to be 
replicated in a subsequent study21. Family-based linkage studies were successful 
in identifying genes for Mendelian diseases with large effects, however, 
achieved only little success in identifying genes for common diseases such as 
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type II diabetes and CHD22. Low power and lack of replication is also a problem 
with linkage studies. 

In recent years, two fundamental breakthroughs helped the advent of a 
revolutionary and powerful approach in genetic epidemiology, the genome-
wide association (GWA) study. The completion of the Human Genome Project 
and the International HapMap Project provided the possibility to select a set of 
genetic variants that nearly cover the whole variation in the human genome23. 
Furthermore, recent developments in genotyping technologies made it possible 
to assay hundreds of thousands of single-nucleotide polymorphisms (SNPs) in a 
short time for a reasonable price. 

The strength of the genome-wide association study approach is the ability to 
investigate the genetic component of common diseases without relying on prior 
knowledge. This “hypothesis free” search of the whole genome for evidence 
of association with common variants promised to open up new avenues of 
research, through discovery of new genes for diseases24. 

Scope of the thesis
In this thesis, we aimed at expanding the knowledge on novel risk factors for 

type II diabetes and CHD. We focused on two risk factors that received attention 
in recent years, serum CRP and serum uric acid. We examined the contribution 
of these risk factors to the risks of type II diabetes and CHD. These studies were 
conducted in the Rotterdam Study. Moreover, we used the novel approach of 
GWA analysis to seek genetic factors that affect their levels. The GWA studies 
were performed within the framework of the Cohorts for Heart and Aging 
Research in Genomic Epidemiology (CHARGE) consortium, a consortium of 
population-based follow-up studies with genome-wide scan data. 

In chapter 2, we focused on novel risk factors for type II diabetes. In 
chapter 2.1, we studied the association of serum CRP with risk of diabetes. 
We conducted a meta-analysis to clarify the role of obesity in the association 
between serum CRP and type II diabetes. Furthermore, we studied the 
association of variations in the CRP gene with the risk of diabetes. In chapter 
2.2, we estimated the PAR of high CRP for type II diabetes. In chapter 2.3, we 
investigated the association of serum uric acid with type II diabetes. 

Chapter 3 focuses on risk of CHD. In chapter 3.1, we estimated the proportion 
of CHD risk attributable to high serum CRP and traditional risk factors. In 
chapter 3.2, we examined the association of a genetic variation that was found 
to increase the risk of CHD by previous GWA studies, with risk of CHD in the 
Rotterdam Study. 

In chapter 4, we report three large meta-analyses using the powerful approach 
of GWA study to identify genetic loci related to levels of CRP, uric acid and 
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fibrinogen. In chapter 4.1, we aimed to identify genetic loci related to serum 
CRP using GWA scans from six population-based cohort studies. In chapter 4.2, 
we conducted GWA studies for uric acid and gout in 11,847 individuals from the 
Framingham Heart Study and the Rotterdam Study and replicated the findings 
in 14,867 individuals from the Atherosclerosis Risk in Communities (ARIC) 
Study.  In chapter 4.3, we performed a meta-analysis of GWA studies for levels 
of fibrinogen in 22,096 individuals from six population-based studies.  

In chapter 5, we discuss the main findings of this thesis are placed in a 
broader context. We also address the methodological considerations, potential 
clinical implications and directions for future research. 
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C-reactive protein levels and incidence of type II diabetes

Abstract

Background 
C-reactive protein (CRP) has been shown to be associated with type II 

diabetes but whether CRP has a causal role is not yet clear. We examined the 
association in the Rotterdam Study, a population-based, prospective cohort 
study. 

Method
The association of baseline serum CRP and incident diabetes during follow-

up was investigated and a meta-analysis was conducted on the BMI adjusted 
relation of CRP and diabetes. Furthermore, the association of CRP haplotypes 
with serum CRP and risk of diabetes was assessed. 

Results 
The age and sex adjusted hazard ratio (HR) for diabetes was 1.41 

(95%CI=1.29-1.54) per 1 standard deviation increase in Ln CRP, and 1.88, 2.16 
and 2.83 for the second, third and fourth quartiles of CRP respectively compared 
to the first quartile. The risk estimates attenuated but remained statistically 
significant after additional adjustment for obesity indexes, which agreed with 
the results of the meta-analysis. The most common genetic haplotype was 
associated with a significantly lower CRP level compared to the three other 
haplotypes. The risk of diabetes was significantly higher in the haplotype 
with the highest serum CRP level compared to the most common haplotype 
(OR=1.45; 95%CI=1.08-1.96). 

Conclusion
 These findings support the hypothesis that serum CRP enhances the 

development of diabetes.
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Introduction

Prospective studies have shown that C-reactive protein (CRP), which is a 
general marker of systemic inflammation, is associated with the risk of diabetes 
mellitus1-9. CRP is produced by hepatocytes and its gene expression is regulated 
by tumor necrosis factor alpha (TNFα) and interleukin-6, which are secreted 
by adipocytes10. As a result, obese individuals who have more and larger 
adipocytes, have higher baseline serum CRP. Since diabetes is more common in 
obese individuals, an association is expected between serum CRP and diabetes. 
However, some of studies found that obesity does not explain the association 
of CRP with diabetes completely and suggested an independent role for CRP in 
development of diabetes1,5,9. 

Twin and familial studies have shown a substantial hereditability for CRP 
level 11 and a recent study  found a strong association of serum CRP with genetic 
variations in the CRP promoter region12. Four haplotypes broadly represent the 
CRP gene variation in the European population13. Therefore, an association of 
CRP haplotypes with serum CRP and the incidence of diabetes may point at a 
contribution of CRP in the development of diabetes.

 We studied the association of serum CRP with risk of diabetes in the 
Rotterdam Study, a prospective population-based cohort study among 
participants aged 55 years and older. Furthermore, we conducted a meta-
analysis, which included our own study, to clarify whether CRP serum level is 
associated with diabetes, independent of obesity indexes. Finally, to investigate 
a potential role of CRP in the development of diabetes, we studied the 
association of genetic CRP haplotypes with the risk of diabetes. 

Methods
Study Population 

The study was conducted within the framework of the Rotterdam Study, an 
ongoing prospective, population-based cohort study on determinants of several 
chronic diseases. The Rotterdam Study has been described in detail elsewhere14. 
In brief, all inhabitants of Ommoord, a district of Rotterdam in the Netherlands, 
who were 55 years or over, were invited to participate in this study. Of all 10275 
eligible individuals, 7983 agreed to participate (78%). 

Participants were visited at home for an interview. Subsequently, they came 
to the research center for blood sampling and further examinations. Follow-up 
started at baseline and examinations were carried out periodically. In addition, 
participants were continuously monitored for major events through automated 
linkage with files from general practitioners and pharmacies working in the 
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study district of Ommoord. Information on vital status was obtained regularly 
from the municipal health authorities in Rotterdam. For the present study, 
follow-up data were present until October 1, 2005. Written informed consent 
was obtained from all participants and the Medical Ethics Committee of Erasmus 
University Rotterdam approved the study. 

Diabetes
At baseline, prevalent cases of diabetes were diagnosed and excluded. 

Prevalent diabetes was defined as use of anti-diabetic medication, and/or 
abnormal non-fasting glucose, and/or an abnormal oral glucose tolerance test 
(OGTT). A non-fasting or post-load glucose level of 11.1 mmol/l or over was 
considered abnormal.15

During follow-up, incident cases of diabetes were diagnosed by use of 
information from the general practitioners, the pharmacies’ databases, and 
our follow-up examinations. Based on guidelines of the American Diabetes 
Association16 and WHO17 we defined incident diabetes as follows: fasting 
plasma glucose level >= 7.0 mmol/l and/or random (non-fasting) plasma 
glucose level >= 11.1 mmol/l and/or use of oral anti-diabetic medication and/or 
use of insulin and/or treatment by diet and registered by a general practitioner 
as having diabetes. 

Measurement of CRP serum levels
At baseline, serum levels of CRP were measured in 6658 out of 7129 

participants who visited the research center. Non-fasting serum samples were 
collected. The samples were immediately put on ice and were processed within 
30 minutes, after which they were kept frozen at -20 °C until measurement of 
CRP in 2003-2004. High-sensitivity CRP was measured using Rate Near Infrared 
Particle Immunoassay (Immage® Immunochemistry System, Beckman Coulter, 
USA). This system measures concentrations from 0.2 to 1440 mg/l, with a 
within-run precision <5.0%, a total precision <7.5% and a reliability coefficient 
of 0.995.

Genotyping
The Seattle SNPs Program for Genomic Applications has identified four 

haplotypes covering the CRP gene based on 18 SNPs that had a frequency of 
more than 5%, in 23 unrelated individuals of European descent from the CEPH 
pedigrees13. Results in these 23 individuals showed that each of these four 
haplotypes could be identified by a single tagging SNP. Hence, by determining 
three non-overlapping tagging SNPs we were able to infer all four haplotypes.

Genotyping for the three tagging SNPs 1184C/T, 2042C/T, and 2911C/G 
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was done for 5460 out of 7059 participants, whose blood was sampled during 
the baseline visit. The polymorphisms are described in relation to the start of 
the coding sequence of exon 1 using the Human May 2004 assembly (http://
genome.ucsc.edu). These polymorphisms have also been described at http://
www.ncbi.nlm.nih.gov/projects/SNP/ under identification numbers rs1130864 
(1184C/T), rs1205 (2042C/T) and rs3093068 (2911C/G). CRP genotypes were 
determined in our study population in 2-ng genomic DNA with the Taqman 
allelic discrimination assay (Applied Biosystems, Foster City, California). We 
used the SNP assay-by-design service of Applied Biosystems to optimize the 
Primer and probe sequences (for details, see http://store.appliedbiosystems.
com). Reactions were performed with the Taqman Prism 7900HT 384 wells 
format.

Statistical Analysis
A Cox regression analysis was used to assess the association of CRP with 

incident diabetes. We tested the proportional hazards assumption by using “log-
minus-log” plots. A log transformation of serum CRP (LnCRP) was used since 
serum CRP had a right-skewed distribution. To examine the relation between 
CRP and incident diabetes, we computed the increase in hazard ratio (HR) 
per one standard deviation (SD) increase in Ln (CRP) level. We defined four 
quartiles of CRP level based on the population distribution (< 0.88, 0.88 – 1.80, 
1.81 – 3.5, > 3.5 mg/l). In addition, a sensitivity analysis was done to assess the 
effect of adjustment for fasting blood sugar. Fasting blood sugar is measured in 
the third periodical examination of the Rotterdam Study. For this analysis, we 
used the third examination as the baseline measurement.

For the meta-analysis, previously published data were obtained by MEDLINE 
searches and scanning the reference lists until December 2005. Nine studies 
were found to be relevant and we added our results of the Rotterdam Study. No 
scoring system was used to qualify the studies. The effect estimates extracted 
were mostly HRs and incidence rate ratios (IRR). In one study, we used the 
odds ratio (OR) as an acceptable estimate of the risk ratio4. The effect estimates 
extracted were based on CRP tertiles, quartiles or quintiles, each stating the 
risk of diabetes in a specific range of serum CRP levels, compared to a reference 
group. To group the most relevant risk ratios for a corresponding serum CRP 
range, we defined three CRP level intervals. An effect estimate was allocated 
to an interval when its accredited CRP range was completely covered by that 
interval (0.5-1.8, 1-3.7, >2.6). The intervals overlap to allow more risk estimates 
to be allocated. Some effect estimates were not used because the CRP range they 
were based on did not fit in any of the defined intervals. Packages “meta”18 and 
“rmeta”19, running for “R”20 was used to analyze the data. A random effects 
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model was used to weight the HRs. A weighted HR was calculated for each 
interval. Firstly, age and sex adjusted HRs and secondly, age, sex, and body 
mass index (BMI) adjusted HRs were used. We investigated whether race is 
a source of heterogeneity in the association of serum CRP and diabetes by 
performing a meta-regression using the SAS PROC MIXED21. 

We used the Haplo.Stats package running for R20, to estimate the CRP 
haplotypes and to investigate the association of inferred haplotypes with 
serum CRP and risk of diabetes22. This method assigns the probability for each 
haplotype pair in each individual and then models an individual’s phenotype as 
a function of each inferred haplotype pair, weighted by their estimated posterior 
probability so as to account for haplotype ambiguity. Haplo.glm function was 
used to calculate adjusted odds ratios for each haplotype. Haplo.glm is based 
on a generalized linear model and can be modeled for additive, dominant, 
or recessive effect of haplotypes23,24. We restricted the analysis to haplotypes 
with an inferred frequency of more than 0.02. The first haplotype, which was 
most frequent and was associated with the lowest serum CRP, was used as the 
reference group. To find the inheritance model (dominant, or recessive) that fits 

Table 1 – Baseline characteristics of all participants and cases with incident type II 
diabetes  

Characteristics All 
participants* 

Incident type II 
diabetic

P value†

Number 5901 544 -
Age, mean (SD), y 69.1 (9.1) 68.7 (8.1) 0.01
Men, (%) 2388 (40.5) 274 (43.5) 0.13
Body mass index, mean (SD), kg/m2 26.2 (3.7) 28.2 (3.8) < 0.001
Waist circumference, mean (SD), cm 90.2 (11.1) 95.0 (11.0) < 0.001
Systolic blood pressure, mean (SD), mm Hg 138.5 (22.1) 143.2 (20.6) < 0.001
Diastolic blood pressure, mean (SD), mm Hg 73.8 (11.6) 75.6 (11.2) < 0.001
Hypertension, (%) 1872 (32.3) 253 (46.4) < 0.001
History of coronary artery disease, (%) 669 (12.1) 64 (13.7) 0.28
Total cholesterol, mean (SD), mmol/L 6.6 (1.2) 6.6 (1.2) 0.80
HDL cholesterol, mean (SD), mmol/L 1.4 (0.36) 1.3 (0.33) < 0.001
Alcohol Intake, median (Interquartile range), g/d** 7.1 (1.5 – 19.3) 6.2 (1.4 – 17.7) 0.47
Current smoker, (%) 1320 (22.9) 131 (24.4) 0.22Former smoker, (%) 2425 (42.1) 235 (43.8)
Postmenopausal hormone therapy, (%)‡ 1187 (20.1%) 102 (18.9) 0.47
C-reactive protein, median (Interquartile range), mg/L 1.8 (0.9 – 3.5) 2.3 (1.3 – 4.2) < 0.001

* Contains both healthy participants and incident type 2 diabetic patients
†Cases are compared wit non-diabetic participants. T test for normally distributed continuous variables, Mann-
Whitney for non-normally distributed covariates and Chi-square test for categorical variables
‡ History of use in women
**In drinkers



25

C
ha

pt
er

 2
.1

best to the data, we used the Likelihood Ratio test (LR test) carried out on the 
variation of the log likelihood between two models.

Results
Serum CRP and diabetes in the Rotterdam Study

We compared 5901 participants who had CRP measurements with those 1034 
participants whose serum CRP measurements were missing. Compared with the 
population used for analysis, participants with missing values were significantly 
older and more frequently female but had similar mean values for BMI, weight, 
waist circumference, cholesterol level, systolic and diastolic blood pressure, 
and daily alcohol consumption (data not shown). Table 1 shows the baseline 
characteristics of 5901 participants and individuals with incident diabetes. CRP 
ranged from 0.2 mg/l to 247 mg/l with a right skewed distribution. Median CRP 
was 1.86 mg/l in men and 1.78 mg/l in women (P<0.001). Age, BMI, weight, 
waist circumference, systolic and diastolic blood pressure, and HDL-cholesterol 
were significantly correlated with serum CRP. Except for HDL-cholesterol, the 
correlations were positive. The highest correlation coefficient was 0.27 for waist 
circumference.

During a mean follow-up of 9.8 years in 5901 participants, diabetes developed 
in 544 (incidence = 9.4 per 1000 person years).  The age and sex adjusted HR 
for diabetes per 1 SD increase in Ln (CRP) was 1.41 (95% CI1.29 – 1.54). The 
HR attenuated to 1.24 (95%CI = 1.12 - 1.37) after adjustment for BMI and waist 
circumference.  After further adjustment for systolic blood pressure, diastolic 
blood pressure, and HDL cholesterol, the HR slightly decreased to 1.19 (95%CI 
= 1.07 - 1.31) (Table 2).  Considering the lowest CRP quartile as the reference 

Table 2 – Hazard ratios for diabetes according to level of C-reactive protein

Quartile 
(level in mg/l)

Participants 
(cases)

HR (95% CI) 

Model 1 Model 2 Model 3
1 (< 0.88) 1463 (77) 1.00 (Reference) 1.00 (Reference) 1.00 (Reference)
2 (0.88 – 1.8) 1485 (141) 1.88 (1.42 – 2.48) 1.59 (1.19 – 2.11) 1.51 (1.13 – 2.03)
3 (1.81 – 3.5) 1475 (153) 2.16 (1.64 – 2.84) 1.70 (1.27 – 2.27) 1.54 (1.15 – 2.06)
4 (> 3.5) 1478 (173) 2.83 (2.16 – 3.70) 1.94 (1.45 – 2.59) 1.73 (1.29 – 2.33)
P for trend < 0.001 < 0.001  < 0.001
Per SD Ln (CRP) 5901 (544) 1.41 (1.29 – 1.54) 1.24 (1.12 – 1.37) 1.19 (1.07 – 1.31)

Model 1: adjusted for age and sex
Model 2: adjusted for age, sex, BMI and waist circumference 
Model 3: adjusted for age, sex, BMI, waist circumference, systolic and diastolic blood pressure and HDL-
cholesterol

HR = Hazard ratio, SD = Standard deviation, CRP = C-reactive protein 
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group, age and sex adjusted HRs were 1.88, 2.16 and 2.83 for the second, 
third and fourth quartiles of CRP respectively (P for trend < 0.001). Further 
adjustment for the above-mentioned covariates attenuated the HRs in model 2 
and 3 (Table 2). 

Sensitivity analysis 
Exclusion of subjects with a history of hormone therapy had a minimal effect 

on the association. In the age and sex adjusted model, the HR for 1 SD increase 
in CRP attenuated to 1.37 (95% CI = 1.25 – 1.51). To evaluate the effect of 
adjustment for fasting blood sugar, we selected the third periodical examination 
of the Rotterdam Study as the baseline measurement. The mean follow-up 
time reduced to 5.34 years and the number of incident diabetes cases to 319 
individuals. Serum CRP was significantly associated with diabetes in an age and 
sex adjusted model (HR for 1 SD Ln (CRP)=1.53; 95% CI=1.26-1.86). When we 
additionally adjusted the model for BMI, waist circumference, and fasting blood 
sugar the association attenuated (HR for 1 SD Ln (CRP)=1.39; 95% CI=1.13-1.71). 

Meta-analysis
Ten studies were included in the meta-analysis. The studies had been 

conducted in the US, Europe, and Mexico. All studies showed a positive 
association between serum levels of CRP and incident diabetes. For the CRP 
intervals 0.5 - 1.8 mg/l, 1 - 3.7 mg/l, and 2.6 mg/l or higher, weighted age 
and sex adjusted risk ratios (95%CI) were 1.63 (1.35 - 1.98), 2.16 (1.81 - 2.57), 
and 4.00 (2.83 - 5.65), respectively. After additional adjustment for BMI, the 
weighted risks decreased to 1.44 (1.16 - 1.78), 1.72 (1.42 - 2.08), and 2.37 (1.57 - 

Table 3 – Published studies on serum CRP and risk of diabetes 
Study name Study design Diabetes 

/ Non-
diabetes*

Cardiovascular Heart Study (CHS) Follow-up 45 / 4436
Women’s Health Study (WHS) Nested Case Control 188 / 362
West of Scotland Coronary Prevention Study (WOSCOPS) Follow-up 127 / 5118
Japanese Americans Study Follow-up 122 / 825
Nurses’ Health Study (NHS) Nested case control 737 / 785
Mexico City Diabetes Study Follow-up 86 / 1158
Insulin Resistance Atherosclerosis Study (IRAS) Follow-up 144 / 903
Atherosclerosis Risk in Communities Study (ARIC) Case Cohort 581 / 572
Monica Augsburg Cohort Study (MONICA) Follow-up 101 / 1951

* Non-diabetes states the number of controls in the case-control studies. In cohort studies, it does not contain the 
diabetic cases
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3.58) (Figure 2, 3). Figure 3 shows that the association was more pronounced in 
Caucasians than other ethnic groups, although the slope was not significant in 
our regression (b= 0.01, 95%CI= -0.05 – 0.03). 

CRP gene haplotypes, serum CRP and diabetes in the Rotterdam Study
We compared 6157 participants who had CRP genotypes with the 1826 

participants whose CRP gene information were missing. Participants with 
missing values were older (5.3 years) and more frequently female. They had a 
lower weight (1.5 kg) and higher HDL cholesterol level (0.03 mmol/l). However, 
compared with the population used for analysis, there was no difference in their 
BMI, waist circumference, systolic and diastolic blood pressure, daily alcohol 
consumption and serum CRP level.  

Genotype distributions of the three tagging SNPs were found to be in Hardy-
Weinberg equilibrium. We estimated six allele-specific haplotypes with the 
Haplo.Stats program. Two of the haplotypes were present in <0.001% of the 
chromosomes and were therefore not used in our analyses. We coded the other 4 
haplotypes from 1 to 4 according to decreasing population frequency. (Table 4) 

Geometric mean of serum CRP level was 1.50 mg/l for carriers of haplotype 1. 
Mean serum CRP increased per copy of other haplotypes relative to haplotype 1. 
This increase was 0.3 mg/l for haplotype 2, 0.15 mg/l for haplotype 3 and 0.46 
mg/l for haplotype 4. Serum CRP level was significantly higher in participants 
with haplotype 4 compared to the carriers of haplotype 1 (P value < 0.001). 
Elimination of the CRP levels over 10 mg/l did not materially change the results 
(data not shown). A nearly significant higher risk for diabetes was found for 
carriers of haplotype 4 compared to carriers of haplotype 1. In an additive model 
the odds ratio was 1.30 (95%CI = 0.99 – 1.71). Based on the log likelihood ratio 
test, none of the inheritance models (dominant or recessive) improved the fit of 
the model significantly. Other haplotypes did not change the risk of diabetes 
significantly (Table 5).  

Table 4 – CRP haplotypes and their frequencies in the Rotterdam study and published 
studies

The Rotterdam Study Miller et al.25 Carlson et al.12 Timpson et al.26

Haplotype Freq. Haplotype Freq. Haplotype Freq. Haplotype Freq.

H1 (CTC)* 0.33 H4 0.07 H1 0.06 GGT 0.07
H3 0.27 H2 0.28 CGT 0.26

H2 (TCC)* 0.32 H2 0.29 H4 0.28 CAC 0.30
H3 (CCC)* 0.29 H1 0.27 H5 0.29 CGC 0.37H4 (CCG)* 0.06 H5 0.06 H7 0.06

* Coding from 1184C/T, 2042C/T and 2911C/G respectively  
Freq. = Frequwency
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After adjustment for BMI, waist circumference, systolic and diastolic blood 
pressure, and HDL-cholesterol, the association increased in strength (OR = 
1.45; 95%CI = 1.08 – 1.96). When the age and sex adjusted estimate was further 
adjusted for serum CRP, the odds ratio decreased (OR = 1.20; 95%CI = 0.89 – 
1.60). Using the Mendelian randomization approach, the expected odds ratio for 
carriers of haplotype 4 compared to carriers of haplotype 1was 1.09 and was not 
significantly different from the observed odds ratio.

Discussion
The results of our population based cohort study and the meta-analysis 

showed that serum CRP is associated with risk of diabetes independently of 
obesity. We identified a genetic variant in the human CRP locus that associates 
with a high serum CRP and an increased risk of diabetes. The latter association 
reduced after adjustment for serum CRP. These findings support the hypothesis 
that CRP is etiologically involved in the pathogenesis of diabetes. 

In our study including 544 cases with incident diabetes, we showed that 
the association of serum CRP with diabetes remains significant not only after 
adjustment for obesity indexes but also after adjustment for blood pressure and 
cholesterol. We adjusted for the latter variables as surrogates of the metabolic 
syndrome, which could confound the association. Adjustment for obesity 
indexes in other studies has provided controversial results. The Cardiovascular 
Heart study (CHS), the Women’s Health Study, the West of Scotland Coronary 
Prevention Study, and the Nurses’ Health Study (NHS) showed significant 
associations between CRP and incident diabetes even after adjustment for 
obesity indexes1,5,7,9. In contrast, the Atherosclerosis Risk in Communities 
Study (ARIC), the Monica Augsburg Cohort Study, and the Insulin Resistance 
Atherosclerosis Study (IRAS) showed non-significant associations after 
adjustment for obesity indexes3,8,9. To summarize these controversial results, we 

Table 5 – Odds ratios for diabetes in different CRP haplotypes

CRP haplotypes Number 
of alleles 
(diabetic 
alleles)

Age and sex 
adjusted

Multivariate 
adjusted *

Age, sex and 
CRP adjusted

Haplotype 1 (ref) 3490 (317) 1 1 1
Haplotype 2 3340 (327) 1.09 (0.92 – 1.28) 1.10 (0.92 – 1.32) 1.07 (0.90 – 1.27)
Haplotype 3 3198 (308) 1.06 (0.90 – 1.25) 0.99 (0.82 – 1.19) 1.03 (0.86 – 1.23)
Haplotype 4 624 (72) 1.30 (0.99 – 1.71) 1.45 (1.08 – 1.96) 1.20 (0.89 – 1.60)

* Adjustments were done for age, sex, BMI, waist circumference, systolic and diastolic blood pressure, and HDL-
cholesterol
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Figure 1. 
Age and sex adjusted risk ratios for diabetes in different categories of CRP levels compared 
to the reference category (<0.5mg/l) - Weighted RR (95% CI) was 1.64 (1.35 - 1.98) for the 
first interval, 2.16 (1.81 - 2.57) for the second interval, and 4.00 (2.83 - 5.65) for the third 
interval.  

performed a meta-analysis. Weighted risk ratios showed a significant obesity-
adjusted association between serum CRP and diabetes. We believe that the 
negative result in the three latter papers could be explained by several factors. 
The IRAS and the Monica Study had fewer diabetic cases and consequently had 
less power. In addition, in the ARIC Study, nearly one third of the participants 
were non-Caucasian. We observed in our meta-analysis that, although not 
significant, the association was more pronounced in Caucasians than other 
ethnic groups (figure 3). 

We showed that serum CRP is significantly different in carriers of different 
haplotypes. Several studies have used haplotypes describing the total variation 
of the CRP gene to examine the issue. Miller et al resequenced 192 individuals 
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Figure 2. 
BMI, age and sex adjusted risk ratios for diabetes in different categories of CRP levels 
compared to the reference category (<0.5mg/l) - Weighted RR (95% CI) was 1.44 (1.16 - 
1.78) for the first interval, 1.72 (1.42 - 2.08) for the second interval, and 2.37 (1.57 - 3.58) 
for the third interval. 
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The percent of population 
comprised of white 
ethnicity and the risk ratio 
comparing highest with the 
lowest category of CRP in 
the meta-analysis

to identify a comprehensive set of common SNP variants. Later, they studied 
the association of the gene variation with serum CRP level in subsets of three 
cohorts. The haplotypes that Miller et al found is comparable to ours25. In our 
study, three of the haplotypes are the same. Haplotype 3 and 4 constitute our 
haplotype 1 and we have not identified their haplotype 6, which was present 
in 2.1% of their population.  Miller et al found their haplotype 2 and 5 to be 
associated with higher CRP and their haplotype 1, 3 and 4 to be associated with 
lower CRP. This is in agreement with our findings. Carlson et al also defined 
all common genetic variation across the human CRP locus by resequencing 
the region in a multiethnic variation discovery panel, and selected haplotype 
tagging SNPs for genotyping in a larger panel (CARDIA study). Furthermore, 
they investigated the associations between common haplotypes and serum 
CRP, rendering significant results12. Although they used an approach similar 
to our study, Carlson et al investigated a mixed population, partly European 
and partly African-American, while the Rotterdam Study cohort is of almost 
exclusively European descent. As a result, Carlson et al found three haplotypes, 
which were not present in the European descent populations. The other 
haplotypes identified by Carlson et al were similar to the haplotypes we 
defined in the Rotterdam Study12. Timpson et al selected four SNPs based on 
published reports. They constructed 4 haplotypes by use of a genetic data 
analysis program, named SIMHAP. Their haplotypes (CGT, GGT, CAC, CGC) 
were close to the haplotypes that we used in our study. (Table 4) Timpson et 
al found a significant association between haplotypes and serum CRP. Their 
results were comparable to those of our study26. Several other studies observed 
a relation between genetic variation in the human CRP locus and serum CRP. 
For instance, Szalai et al constructed their haplotypes based on the bi-allelic 
–409G/A (rs3093032) and tri-allelic –390C/T/A (rs3091244) CRP gene promoter 
polymorphisms. Interesting to note is that these haplotypes affect transcription 
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factor binding, alter transcription activity, and influence the variation of the 
serum CRP27. The T and A allele of the tri-allelic –390C/T/A polymorphism 
is present in participants with haplotype 2 and 4 in our study13. Thus, these 
functional SNPs may partly explain the higher serum CRP in carriers of these 
two haplotypes in our study. Other studies that examined the association of CRP 
gene haplotypes and serum CRP are not comparable with our study since they 
used different SNPs to build up their haplotypes, or used different populations 
in terms of health status, race or age28-30. 

We showed that participants carrying haplotype 4 have a significantly higher 
risk of diabetes. Thus, genetic susceptibility to high serum CRP increases the 
risk of diabetes. Our findings show that the association of genetic susceptibility 
with diabetes was independent of BMI and waist circumference, suggesting that 
obesity indexes do not explain the genetic susceptibility. Moreover, in a model 
adjusted for age, sex, and CRP, the association diminished suggesting that the 
effect of haplotype 4 is likely to be explained by the variation in serum CRP 
level.

 We found no significant difference between the observed odds ratio and 
the one calculated based on Mendelian randomization. This provides evidence 
on an independent role of CRP in developing diabetes. The Mendelian 
randomization approach is a tool to assess the nature of associations. Since 
gene alleles that influence the intermediate phenotype are inherited at random, 
potential confounders for the association will be evenly distributed in those 
who do, and those who do not have the alleles. Consequently, any difference 
between these two groups should be free of confounding by environmental 
factors. Furthermore, regression dilution and reverse causation are not probable 
to occur since the genotype is constant over time and is determined before 
the onset of disease31. However, this approach has certain limitations such 
as the potential for confounding the gene-phenotype association by linkage 
disequilibrium with other genes. Similarly, population origin can confound the 
gene-disease association32. In addition, pleiotropic effects of the SNP in more 
than one biological pathway can violate one of the assumptions of Mendelian 
randomization. 

Studies that found independent association between CRP and diabetes 
suggested various pathways. Many studies argued that the association reflects 
the effects of cytokines, such as IL-6 and TNFa on insulin resistance2,5,8,33,34.  
Some others explained the association through oxidative stress or innate 
immune system6,7. Nevertheless, none of the proposed mechanisms provide 
a causal role for CRP. A recent study, which investigated the association of 
CRP and metabolic syndrome pointed to the direct harmful effects of CRP on 
vessel walls, which may alter endothelial permeability and eventually lead to 
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insulin resistance35. However, further studies are necessary to find a reasonable 
mechanism.  

To our knowledge, this is the first study in which the association between 
diabetes and serum CRP was partly explained by variations in the CRP gene.  
Wolford et al. showed that variation within the CRP locus might play a role 
in diabetes susceptibility in Pima Indians36. Their findings, in line with our 
study, were consistent with the hypothesis that CRP may play an etiologic role 
in the development of diabetes. In a recent study, Timpson et al. investigated 
the causal role of CRP in development of metabolic syndrome and reported 
that their findings provide evidence for CRP not to be causally involved in the 
pathogenesis of the metabolic syndrome. We believe that their study is not in 
contrast with our study. Timpson et al. combined haplotype 4 and haplotype 
3 as the CGC haplotype, while we found an association exclusively with 
haplotype 4. Haplotype 4 is a rare allele and grouping it with another common 
haplotype, dilutes the effect26. Furthermore, diabetes has a well-defined nature 
compared to the metabolic syndrome, which may have resulted a stronger 
association. However, replication of our finding is necessary to establish the 
relationship. 

The strengths of our study include a large sample size, a long follow-up 
period, a considerable number of incident diabetes cases, and the availability 
of detailed genotype information. Haplotypes provide more information on 
genetic variation compared to single SNPs. In addition, we used   information 
on the gene and the protein together in one study. However, several limitations 
need to be discussed. In the Rotterdam Study, we screened the cohort for 
prevalent diabetes at baseline by use of a non-fasting glucose level and OGTT. 
Our baseline measurements revealed 10.8 percent of prevalent diabetes that is 
similar to the expected prevalence of diabetes in our population37. The studies 
included in the meta-analysis all used different categories of CRP and the 
geometric mean of the CRP level in the reference category ranged from 0.23 to 
1.41 mg/l. To group the risk ratios, we allocated the risk estimates to 3 different 
CRP intervals but variation in mean CRP level within categories remained.  
However, we believe that this minor variation did not result in a sizeable under 
or overestimation of our results. 

In conclusion, our meta-analysis showed that serum CRP is a risk factor for 
diabetes, independent of obesity. Furthermore, genetic variation in CRP was 
associated with the level of CRP and the risk of diabetes. These results support 
the hypothesis that CRP plays a role in the pathogenesis of diabetes.
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Abstract

Objective 
To calculate the population attributable risk (PAR) of C-reactive protein (CRP) 

and other risk factors for type II diabetes. 

Research design and methods 
 The Rotterdam Study is a population-based, prospective follow-up study 

among 7983 participants aged 55 years and older. Risk factors including serum 
CRP were determined at baseline. Participants with diabetes at baseline were 
excluded and the cohort was followed for a mean of 10.8 years. The hazard ratio 
(HR) and the PAR for diabetes were computed for all studied risk factors. 

Results 
Serum CRP >1mg/l (HR=1.67, PAR=0.33), body mass index > 25 kg/m2 

(HR=2.51, PAR=0.51), waist circumference > 102 for men and > 88 for women 
(HR=1.36, PAR=0.14), current smoking (HR=1.16, PAR=0.03), age > 65 years 
(HR=1.35, PAR=0.15), and family history of diabetes (HR=1.87, PAR=0.16), 
were related to diabetes and contributed to the risk of the disease. Serum CRP 
was a greater contributor to the risk of diabetes in women than in men (PAR 
values of 0.37 versus. 0.28, respectively). Age, and current smoking PARs were 
not statistically significantly contributing to the risk of diabetes in women. 
Combined PAR was 0.80 (95% CI: 0.74, 0.85) for all six studied risk factors and 
0.71 (95% CI: 0.64, 0.78) for modifiable risk factors (serum CRP, BMI, waist 
circumference, and current smoking).

Conclusion 
High CRP is one of the major contributors to the risk of type II diabetes. The 

contribution of modifiable risk factors to the risk of diabetes is considerable. 
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Introduction

There is a growing body of evidence that low-grade systemic inflammation 
enhances the risk of type II diabetes mellitus1. Furthermore, anti-inflammatory 
medication may prevent diabetes or delay the onset of the disease2. Whether 
inflammation is a major contributor to the risk of diabetes is not yet clear. 

To judge the public health impact of different risk factors, the population 
attributable risk (PAR) is a relevant measure3. The PAR of a risk factor for a 
disease is the proportion of those with the disease that is due to that risk factor. 
The PAR depends on both the relative risk estimate and the prevalence of the 
risk factor. 

C-reactive protein (CRP), a marker of inflammation, is independently 
associated with the development of diabetes1,4,5 and can be reduced by the use of 
anti-inflammatory medications6. Therefore, the PAR of serum CRP for diabetes 
can be used to estimate the contribution of inflammation to the risk of diabetes.

To our knowledge there is no previously published study on the PAR of high 
serum CRP for diabetes. We sought to quantify the contribution of a number of 
risk factors including serum CRP to the risk of diabetes in the Rotterdam Study, 
a large population-based prospective cohort study in Caucasians 55 years or 
over. 

Methods
Study Population

The study was conducted within the framework of the Rotterdam Study, 
an ongoing prospective, population-based cohort study on determinants of a 
number of chronic diseases. The Rotterdam Study has been described in detail 
elsewhere7. In brief, all inhabitants of Ommoord, a district of Rotterdam in the 
Netherlands who were 55 years or over, were invited to participate in this study. 
Of all 10275 eligible individuals, 7983 agreed to participate (78%). 

The baseline examinations took place from 1990-1993. Follow-up for clinical 
events started at baseline and follow-up examinations were carried out 
periodically in 1995–1996, 1997–1999, and 2000-2005. In addition, participants 
were continuously monitored for major events through automated linkage with 
files from general practitioners and pharmacies working in the study district of 
Ommoord. Information on vital status was obtained regularly from municipal 
health authorities in Rotterdam. For the present study, follow-up data were 
available until October 1, 2005. Written informed consent was obtained from all 
participants and the Medical Ethics Committee of the Erasmus Medical Center 
approved the study. 
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Serum CRP
High sensitivity CRP was measured in non-fasting serum samples kept 

frozen at -20 °C by use of Rate Near Infrared Particle Immunoassay (Immage® 
Immunochemistry System, Beckman Coulter, USA). This method has 
been described in more detail elsewhere1. Serum samples were stored for 
approximately 10 years at −20°C until the measurements were carried out in 
2003-2004. We compared these CRP measurements with CRP measurements 
in the serum samples stored at −80°C in a random sample of 29 participants. 
The Spearman correlation coefficient was 0.99 between the CRP serum level 
measurements carried out on samples kept in −20°C and −80°C (P<0.001).

Diabetes
At baseline, participants were defined as prevalent cases with type II diabetes, 

when they had non-fasting glucose > 11.1 mmol/l, oral glucose tolerance test 
(OGTT) > 11.1 mmol/l, or when they were using anti-diabetic medication.  

Incident cases of type II diabetes were diagnosed based on fasting plasma 
glucose level >= 7.0 mmol/l or random (non-fasting) plasma glucose level >= 
11.1 mmol/l or use of oral anti-diabetic medication or use of insulin or treatment 
by diet and registered by a general practitioner as having diabetes 1.

Population for analysis
We excluded 861 prevalent diabetic participants and 187 participants who did 

not provide any information on their glucose levels at baseline. The population 
for analysis consisted of 6935 participants. Of these, serum CRP level was 
available in 5901, BMI in 6136, waist circumference in 5837, and smoking status 
in 6765 of participants. 

Statistical Analysis 
High serum CRP1,4, overweight8, truncal fat distribution9,10, physical 

inactivity11, smoking12-14, aging, and family history of diabetes15 have been 
reported as risk factors for diabetes. Established cutoff points were used to 
dichotomize continuous covariates into normal and elevated levels. On this 
basis, serum CRP >= 1 mg/l, BMI >= 25 kg/m2, waist circumference >= 102 
cm for men and >= 88 cm for women, and age >= 65 years, were considered as 
risk factor for diabetes. Smoking was assessed as current smoking versus non-
smoking, and family history of diabetes was considered positive in the presence 
of diabetes in parents, children or any of the siblings. A Cox regression analysis 
was used to investigate the association of risk factors with incidence of diabetes. 

Population attributable risks (PAR) and 95% confidence intervals were 
calculated by the use of Interactive Risk Assessment Program (IRAP) developed 
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by Dr Mitchell Gail (US national Cancer Institute 2002)16-19. A PAR adjusted for 
confounding is estimated by

PAR � 1 � �
i�1

I �
j�1

J
� ijRi�j

� 1

where the relative risk is

Ri�J �

PR(D � 1X � � i,C � cj)

Pr(D � 1X � �1,C � cj)

and � i�j � Pr(X � � i,C � cj�D � 1)

given D=1 denoting presence of disease, X denoting exposure with I levels , 
and C denoting a confounder C with J levels . The relative risk is estimated from 
a multivariate Poisson model18. The bootstrap procedure was used to estimate 
the variance and 95% confidence interval of the PAR19.

The PAR for a combination of risk factors corresponds with the proportion 
of the disease that can be attributed to any of the studied risk factors. The 
combined PAR is not a simple product of summing up the single PARs. A 
diseased case can simultaneously be attributed to more than one risk factor. As 
a result, the fraction of the population that is attributed to or prevented by each 
risk factor overlaps with other risk factors. Hence, the combined PAR is usually 
lower than the sum of individual PARs. 

To estimate the proportion of the disease that is exclusively attributed to a 
specific risk factor, we calculated the combined PAR in the presence and absence 
of this risk factor. The difference is the so-called “extra attributable risk” which 
indicates the proportion of the disease that can be attributed exclusively to this 
specific risk factor20.  

To provide a similar study population for different analysis and to 
increase the statistical power, we imputed missing data using the expectation 
maximization method in SPSS 11.0, which is based on the correlations between 
each variable with missing values and all other variables. 

Results
Table 1 shows the baseline characteristics of the studied population in tertiles 

of serum CRP. 
	 During a mean follow-up time of 9.9 years (Interquartile range 6.5–13.2 

years), diabetes developed in 645 persons (incidence rate 9.4 per 1000 person 
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years). Table 2 shows the proportion of the participants who were exposed to 
each risk factor and their association with risk of type II diabetes. BMI (> 25 
kg/m2), and family history of diabetes, were the strongest risk factors. High 
serum CRP (>1 mg/l) had a greater HR in women (1.77) than in men (1.42) and 
current smoking had a greater HR in men (1.37) than women (1.10). However, 
the differences between HRs were not significant. The association between age 
(>65years) and diabetes was stronger in men (HR = 1.64) than in women (HR = 
1.15) and the difference between HRs was significant (p for interaction <0.05). 

Multivariate adjusted PAR was 0.33 (95%CI: 0.21-0.46) for high serum CRP. 
The PAR of high serum CRP for diabetes was 0.17 (95% CI: 0.08-0.25) and 
0.08 (95%CI: 0.02-0.15) when cutoff points of 2 mg/l, and 3 mg/l were used, 
respectively. Moreover, the PAR was 0.17 for the highest vs. the lowest and 0.32 
for the top two tertiles vs. the lowest tertile of serum CRP.  High BMI (>25 kg/
m2) was the main contributor to the risk of diabetes (PAR=0.51; 95%CI: 0.41-0.60) 
(table 3).  

Collectively, studied risk factors contributed to 80% (95% CI: 74%-85%) of the 
risk of diabetes. Modifiable risk factors (serum CRP, BMI, waist circumference, 
and current smoking) contributed to 71% of the risk, suggesting that more than 
two third of incident diabetes cases might have been prevented if all the above 
risk factors were eliminated (table 4). Moreover, we estimated the combined 
PAR for modifiable risk factors in the absence of each risk factor to estimate the 
extra attributable risk. Exclusion of serum CRP decreased the combined PAR 
from 0.71 to 0.58 indicating that the extra attributable risk was 0.13 for high 
serum CRP (table 4).

Table 1 -  Baseline characteristics of participants in different categories of serum CRP

Risk factor Serum CRP P value

< 1mg/l 1 – 3 mg/l > 3 mg/l
Number 1717 2702 2516 -
Men (%) 40.5 64.5 57.2 < 0.001
Body mass index, means (SD), kg/m2 24.9 (3.2) 26.5 (3.4) 26.9 (3.6) < 0.001
Waist circumference, means (SD), cm 85.9 (10.4) 90.1 (10.2) 93.4 (9.5) < 0.001
Current smoking (%) 16.6 19.5 28.7 < 0.001
Age, means (SD), years 67.3 (8.5) 68.5 (8.8) 72.9 (9.9) < 0.001
Family history of diabetes (%) 21.3 21.3 19.8 0.37
HDL cholesterol, means (SD), mmol/L 1.44 (0.39) 1.36 (0.36) 1.29 (0.35) < 0.001
Systolic blood pressure, means (SD), mm Hg 134.0 (21.4) 139.0 (21.7) 142.0 (22.3) < 0.001
Diastolic blood pressure, means (SD), mm Hg 72.8 (11.3) 74.2 (11.3) 74.1 (11.9) < 0.001
Hypertension (%) 23.5 33.7 42.7 < 0.001

Data are means±SD, and n (%) 
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Table 2 -  Percent exposed and multivariate adjusted* hazard ratio (HR) of diabetes associated 
with risk factors 

Risk factor Exposed (%) Hazard ratio (95% CI) for diabetes

Men Women All participants Men Women
CRP > 1 mg/L 74.8 75.9 1.67 (1.34 - 2.09) 1.42 (1.11 - 2.12) 1.77 (1.30 - 2.40)
BMI > 25 kg/m2 61.2 67.0 2.51 (2.00 - 3.16) 2.57 (1.86 - 3.56) 2.44 (1.76 - 3.39)
High waist 
circumference † 17.6 53.4 1.36 (1.14 - 1.63) 1.43 (0.97 - 1.68) 1.47 (1.14 - 1.88)

Current smoking 29.7 17.2 1.16 (0.96 - 1.40) 1.37 (0.93 - 1.56) 1.10 (0.84 - 1.44)
Age > 65 years 60.7 67.9 1.35 (1.14 - 1.59) 1.64 (1.26 - 2.11) 1.15 (0.92 - 1.42)
Family history of 
diabetes 18.8 22.0 1.87 (1.59 - 2.20) 1.86 (1.44 - 2.40) 1.88 (1.52 - 2.33)

* Multivariate adjusted model is adjusted for: C-reactive protein, body mass index, waist circumference, current 
smoking, age, and family history
† Waist circumference > 102 cm for men and > 88 cm for women 
CRP: C-reactive protein; BMI: Body mass index

Discussion

In this study, we found that high serum CRP is a major contributor to the risk 
of type II diabetes independent of the other established risk factors. In addition, 
we observed that established risk factors account for a large proportion (80%) of 
the risk of type II diabetes in the general population more than 55 years old.

Our study underscores chronic inflammation, as a major contributor to 
the risk of diabetes, by showing that one third of the cases with diabetes are 
attributed to high serum CRP. Serum CRP, a marker of chronic low-grade 
inflammation, is a novel risk factor for diabetes. PAR is mostly estimated for 

Table 3 -  Multivariate adjusted* population attributable risks (PAR) and 95% confidence 
interval of different risk factors for diabetes

All participants Men Women

CRP (3rd vs. 1st tertile) 0.17 (0.11 - 0.23) 0.16 (0.06 - 0.26) 0.18 (0.10 - 0.25)
CRP (2nd & 3rd vs. 1st tertile) 0.32 (0.22 - 0.42) 0.23 (0.8 - 0.39) 0.39 (0.26 - 0.530
C-reactive protein > 1 mg/l 0.33 (0.21 - 0.46) 0.28 (0.10 - 0.47) 0.37 9 0.20 - 0.53)
Body mass index > 25 0.51 (0.41 - 0.60) 0.50 (0.37 - 0.63) 0.51 (0.37 - 0.64)
High waist circumference † 0.14 (0.06 - 0.22) 0.07 (- 0.01 - 0.14) 0.22 (0.08 - 0.35)
Current smoking 0.03 (-0.01 - 0.07) 0.05 (- 0.02 - 0.13) 0.02 (-0.03 - 0.06)
Age > 65 years 0.15 (0.06 - 0.24) 0.25 (0.13 - 0.37) 0.06 (-0.07 - 0.19)
Family history of diabetes 0.16 (0.11 - 0.20) 0.15 (0.08 - 0.21) 0.16 (0.10 - 0.23)

* The model is adjusted for all present covariates: C-reactive protein, body mass index, waist circumference, 
current smoking, age, and family history
† Waist circumference > 102 cm for men and > 88 cm for women
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the risk factors of which a causal role is evidenced. High serum CRP predicts 
diabetes and a growing body of evidence supports the causal role of CRP1,2,4. 
Hence, it would be logic to attribute a part of the risk of diabetes to chronic low-
grade inflammation. However, estimation of PAR for a new risk factor when the 
causal role is not yet widely accepted illustrates the potential impact of the risk 
factor, were it later accepted to be causal20.   

Serum CRP is a marker of inflammation but is also closely related to 
adiposity. This may raise doubt whether CRP is a marker of inflammation or 
adiposity. We believe that even the variation of serum CRP, correlated with 
obesity, indicates an inflammatory state. The increased level of serum CRP 
in obese individuals is due to increased secretion of Il-6 and TNF-alpha in 
adipocytes, which regulate CRP production in hepatocytes and induce a chronic 
inflammatory state21. 

We adjusted the association for age, BMI and waist circumference as potential 
confounders. However, the covariates were dichotomized and dichotomization 
increases the likelihood of residual confounding. To estimate the magnitude of 
the residual confounding we introduced age, BMI and waist circumference as 
covariates with 10 categories to the model. Estimated PAR for high serum CRP 
slightly attenuated to 0.32 (95% CI = 0.20–0.45). Therefore, residual confounding 
by age and obesity in our findings should be trivial. 

To obtain a reasonable estimate of the PAR, one should use a cutoff point 
that could be achieved in practice22. For serum CRP, however, no cutoff point 
has been recommended in relation to the risk of diabetes. The American 
Heart Association (AHA) suggests two cutoff points of 1 mg/l and 3 mg/l 
in relation to cardiovascular risk23. When we used the cutoff point of 1 mg/l 
to dichotomize serum CRP, 75% of our population was exposed, which may 
seem to be overestimating. However, where more than 61% of men and 67% of 

Table 4 -  Combined PAR (95% CI) of all modifiable risk factors* and combined of all risk 
factors with one of them deleted

Risk factor All participants Men Women
Combined PAR 0.80 (0.74 - 0.85) 0.79 (0.71 - 0.87) 0.80 (0.73 - 0.87)
Modifiable risk factors* 0.71 (0.64 - 0.78) 0.65 (0.57 - 0.79) 0.75 (0.66 - 0.83)

D
el
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ed
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C-reactive protein > 1 mg/l 0.58 (0.50 - 0.66) 0.55 (0.43 - 0.67) 0.61 (0.51 - 0.71)
Body mass index > 25 0.44 (0.33 - 0.55) 0.39 (0.22 - 0.55) 0.51 (0.37 - 0.66)
High waist circumference † 0.68 (0.59 - 0.76) 0.66 (0.54 - 0.78) 0.69 (0.58 - 0.80)
Current smoking 0.70 (0.63 - 0.84) 0.67 (0.55 - 0.78) 0.74 (0.66 - 0.83)

* CRP, BMI, waist circumference, and current smoking are entered to the model. The results are also adjusted for 
age and family history of diabetes. 
† Waist circumference > 102 cm for men and > 88 cm for women  
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women were overweight or obese, it is not too far to consider serum CRP, which 
is highly correlated with BMI, to be high in 75% of our population in regard to 
diabetes. 

A disease can simultaneously be attributed to or prevented by more than 
one risk factor. Therefore, the fractions of the disease, which are attributed to 
different risk factors, overlap with each other and cannot be simply summed up. 
To estimate the proportion of the disease that is attributed to a certain number 
of risk factors, combined PAR should be estimated. Our combined PAR showed 
that the majority of diabetes cases are preventable. This finding is in agreement 
with other studies. Hu and colleagues reported that 91% of diabetes cases in 
women can be attributed to overweight, poor diet, lack of exercise, smoking, 
and abstinence from alcohol24. Hu and colleagues studied diet and physical 
activity, which were not present in our study and their study was restricted to 
women. These may explain why they found a slightly higher estimate for the 
combined PAR. However, they did not study any marker of inflammation. 

Extra attributable risk was 0.13 for high serum CRP. This should not be 
confused with the single adjusted PAR, which was 0.33 for high serum CRP. 
Single PAR indicates the fraction of cases that can be prevented by lowering 
serum CRP, assuming that the other risk factors remain unchanged. However, 
extra attributable risk suggests that if a hypothetical prevention program has 
eliminated all other studied risk factors, lowering serum CRP still can prevent 
13% of incident diabetes cases. The difference between the single PAR and the 
extra attributable risk is due to those cases that were alternatively attributed to 
high serum CRP and other risk factors. These risk factors may act in the same 
pathway with CRP, leading to the development of diabetes. For instance, recent 
studies suggest that at least a part of the association of obesity4 and smoking25,26 
with diabetes may be through low-grade chronic inflammation.

Caution should be taken in interpreting the PAR in practice. In computing 
PAR, we assume that all participants who are labeled as exposed will shift to the 
non-exposed group without causing any change in the risk factor distribution 
in the non-exposed group. Moreover, we assume that the risk of the disease 
decreases instantly after the intervention. In practice, however, the effect of an 
intervention is likely to be different. Firstly, a part of the population succeeds to 
modify the risk factor but cannot avoid it. Secondly, the risk factor distribution 
will change in the non-exposed population. Thirdly the risk of the disease does 
not decrease instantly after removing the risk factor. Therefore, one should be 
careful in translating the PAR from such studies into practice. Furthermore, 
a high combined PAR does not mean that no additional risk factors can be 
detected for diabetes. The diabetes cases that are attributed to the current risk 
factors can alternatively be attributed to a novel risk factor, when the novel risk 
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factor interacts with the currently known risk factors.
Our study has the advantage of having a large sample size, a long follow-

up period, and a considerable number of incident diabetes cases. However, a 
limitation is that physical activity was not measured in our study at baseline. 
Inclusion of physical activity in the models will probably modify the hazard 
ratio and the PAR of other risk factors. One other limitation was that our 
study population was over 55 years old, which may raise a debate on the 
generalizability of our results. To examine the issue we divided the population 
to subgroups of < 65 and > 65 years old. The PAR estimates were nearly 
the same for both groups (32.3% vs. 32.9%). This is not surprising since the 
association between serum CRP and diabetes was stronger in subjects <65 
years old, and high serum CRP (> 1 mg/L) was more prevalent in > 65 years 
old subjects. This shows that PAR estimates are not modified by age and our 
findings can be extrapolated to other age groups.

In conclusion, high CRP is a major contributor to the risk of type II diabetes. 
The modifiable risk factors studied contribute to two thirds of the risk of 
diabetes. A large part of the diabetes cases can be prevented if the modifiable 
risk factors were eliminated. 



47

C
ha

pt
er

 2
.2

References
1.	 Dehghan A, Kardys I, de Maat MPM, Uitterlinden AG, Sijbrands EJG, Bootsma AH, 

Stijnen T, Hofman A, Schram MT, Witteman JCM. Genetic Variation, C-Reactive 
Protein Levels, and Incidence of Diabetes. Diabetes. 2007;56:872-878.

2.	 Deans KA, Sattar N. “Anti-inflammatory” drugs and their effects on type 2 diabetes. 
Diabetes Technol Ther. 2006;8:18-27.

3.	 Northridge ME. Public health methods--attributable risk as a link between causality 
and public health action. Am J Public Health. 1995;85:1202-4.

4.	 Pradhan AD, Manson JE, Rifai N, Buring JE, Ridker PM. C-reactive protein, 
interleukin 6, and risk of developing type 2 diabetes mellitus. Jama. 2001;286:327-34.

5.	 Hu FB, Meigs JB, Li TY, Rifai N, Manson JE. Inflammatory Markers and Risk of 
Developing Type 2 Diabetes in Women. Diabetes. 2004;53:693-700.

6.	 Albert MA, Danielson E, Rifai N, Ridker PM. Effect of statin therapy on C-reactive 
protein levels: the pravastatin inflammation/CRP evaluation (PRINCE): a 
randomized trial and cohort study. Jama. 2001;286:64-70.

7.	 Hofman A, Grobbee DE, de Jong PT, van den Ouweland FA. Determinants of 
disease and disability in the elderly: the Rotterdam Elderly Study. Eur J Epidemiol. 
1991;7:403-22.

8.	 Colditz GA, Willett WC, Stampfer MJ, Manson JE, Hennekens CH, Arky RA, 
Speizer FE. Weight as a risk factor for clinical diabetes in women. Am J Epidemiol. 
1990;132:501-13.

9.	 Carey VJ, Walters EE, Colditz GA, Solomon CG, Willett WC, Rosner BA, Speizer 
FE, Manson JE. Body fat distribution and risk of non-insulin-dependent diabetes 
mellitus in women. The Nurses’ Health Study. Am J Epidemiol. 1997;145:614-9.

10.	 Chan JM, Rimm EB, Colditz GA, Stampfer MJ, Willett WC. Obesity, fat distribution, 
and weight gain as risk factors for clinical diabetes in men. Diabetes Care. 
1994;17:961-9.

11.	 Manson JE, Rimm EB, Stampfer MJ, Colditz GA, Willett WC, Krolewski AS, Rosner 
B, Hennekens CH, Speizer FE. Physical activity and incidence of non-insulin-
dependent diabetes mellitus in women. Lancet. 1991;338:774-8.

12.	 Will JC, Galuska DA, Ford ES, Mokdad A, Calle EE. Cigarette smoking and diabetes 
mellitus: evidence of a positive association from a large prospective cohort study. 
Int. J. Epidemiol. 2001;30:540-546.

13.	 Wannamethee SG, Shaper AG, Perry IJ. Smoking as a Modifiable Risk Factor for 
Type 2 Diabetes in Middle-Aged Men. Diabetes Care. 2001;24:1590-1595.

14.	 Foy CG, Bell RA, Farmer DF, Goff DC, Jr., Wagenknecht LE. Smoking and 
Incidence of Diabetes Among U.S. Adults: Findings from the Insulin Resistance 
Atherosclerosis Study Diabetes Care. 2005;28:2501-2507.

15.	 Meigs JB, Cupples LA, Wilson PW. Parental transmission of type 2 diabetes: the 
Framingham Offspring Study. Diabetes. 2000;49:2201-7.

16.	 Benichou J, Gail MH. Variance calculations and confidence intervals for estimates of 
the attributable risk based on logistic models. Biometrics. 1990;46:991-1003.

17.	 Bruzzi P, Green SB, Byar DP, Brinton LA, Schairer C. Estimating the population 
attributable risk for multiple risk factors using case-control data. Am J Epidemiol. 
1985;122:904-14.

18.	 Engel LS, Chow WH, Vaughan TL, Gammon MD, Risch HA, Stanford JL, 



48

Schoenberg JB, Mayne ST, Dubrow R, Rotterdam H, West AB, Blaser M, Blot WJ, 
Gail MH, Fraumeni JF, Jr. Population attributable risks of esophageal and gastric 
cancers. J Natl Cancer Inst. 2003;95:1404-13.

19.	 Gail DM. Interactive Risk Assessment Program. In. 2.2 ed; 2002.
20.	 Walter SD. Attributable Risk in Practice. Am. J. Epidemiol. 1998;148:414-.
21.	 Trayhurn P, Beattie JH. Physiological role of adipose tissue: white adipose tissue as 

an endocrine and secretory organ. Proc Nutr Soc. 2001;60:329-39.
22.	 Rockhill B, Newman B, Weinberg C. Use and misuse of population attributable 

fractions. Am J Public Health. 1998;88:15-9.
23.	 Pearson TA, Mensah GA, Alexander RW, Anderson JL, Cannon RO, 3rd, Criqui M, 

Fadl YY, Fortmann SP, Hong Y, Myers GL, Rifai N, Smith SC, Jr., Taubert K, Tracy 
RP, Vinicor F. Markers of inflammation and cardiovascular disease: application to 
clinical and public health practice: A statement for healthcare professionals from the 
Centers for Disease Control and Prevention and the American Heart Association. 
Circulation. 2003;107:499-511.

24.	 Hu FB, Manson JE, Stampfer MJ, Colditz G, Liu S, Solomon CG, Willett WC. 
Diet, lifestyle, and the risk of type 2 diabetes mellitus in women. N Engl J Med. 
2001;345:790-7.

25.	 Bazzano LA, He J, Muntner P, Vupputuri S, Whelton PK. Relationship between 
cigarette smoking and novel risk factors for cardiovascular disease in the United 
States. Ann Intern Med. 2003;138:891-7.

26.	 Mascitelli L, Pezzetta F. Tobacco smoke, systemic inflammation and the risk of type 
2 diabetes. J Intern Med. 2006;259:332; author reply 333.



Chapter 2.3

High serum uric acid as 
a novel risk factor for 

type II diabetes 
mellitus



50

High serum uric acid as a novel risk factor for type II diabetes mellitus

Abstract

Objective 
To investigate the association between serum uric acid level and risk of type II 

diabetes mellitus.

Research design and methods 
The population for analysis consisted of 4536 subjects free from diabetes 

at baseline. During a mean of 10.1 years of follow up, 462 subjects developed 
diabetes. 

Results 
The age- and sex-adjusted hazard ratios (95% confidence interval) for diabetes 

were 1.30 (0.96 – 1.76) for the second, 1.63 (1.21 – 2.19) for the third, and 2.83 
(2.13 – 3.76) for the fourth quartile of serum uric acid, compared to the first 
quartile. After adjustment for BMI, waist circumference, systolic and diastolic 
blood pressure, and HDL-cholesterol, the hazard ratios decreased to 1.08 (0.78 – 
1.49), 1.12 (0.81 – 1.53), and 1.68 (1.22 – 2.30), respectively. 

Conclusion 
The results of this population-based study suggest that serum uric acid is a 

strong and independent risk factor for diabetes.  
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Introduction

Serum uric acid is positively associated with serum glucose in healthy 
subjects1,2. However, this association is not consistent in healthy and diabetic 
individuals3-5 as a low serum level of uric acid is reported in the hyperglycemic 
state 6. Since most individuals experience a phase of impaired glucose tolerance 
before progression to diabetes, it is not clear whether or not raised serum uric 
acid predicts the risk of type II diabetes4,5. We investigated the association 
between serum uric acid and risk of diabetes in the Rotterdam Study, a large 
population-based, prospective cohort study among subjects aged 55 years and 
older.

Methods
The Rotterdam Study has been described in detail elsewhere7. Written 

informed consent was obtained from all participants and the Medical Ethics 
Committee of Erasmus Medical Center approved the study. Serum uric acid 
was measured at baseline with a Kone Diagnostica reagent kit and a Kone 
autoanalyzer8,9. Prevalent diabetes cases were excluded at baseline10. Incident 
cases of diabetes were diagnosed during follow up based on the guidelines of 
the American Diabetes Association11 and WHO12 using information from the 
general practitioners, the pharmacies’ databases, and fasting blood samples that 
were taken during follow-up examinations10.

Cox regression analysis was used to investigate the association of serum 
uric acid and risk of type II diabetes. The PAR and 95% confidence intervals 
were calculated with the use of Interactive Risk Assessment Program (IRAP) 
developed by Dr Mitchell Gail (US national Cancer Institute 2002)13.

Results
Serum uric acid was ranged from 107 µmol/l to 756 µmol/l with a mean (± 

standard deviation) of 323.7 (± 82.2) µmol/l. Age, BMI, waist circumference, 
systolic and diastolic blood pressure, and HDL cholesterol were significantly 
correlated with serum uric acid. The correlation coefficient ranged from 0.03 
for diastolic blood pressure to 0.35 for waist circumference. Except for HDL-
cholesterol, the correlations were positive. 

During a mean follow-up time of 10.1 years, 462 subjects out of 4536 
participants developed diabetes (incidence rate = 10.1 per 1000 person years). 
The age- and sex-adjusted hazard ratios (95% confidence interval) for diabetes 
were 1.30 (0.96 – 1.76) for the second, 1.63 (1.21 – 2.19) for the third, and 2.83 
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(2.13 – 3.76) for the fourth quartile of serum uric acid, compared to the first 
quartile. After adjustment for BMI, waist circumference, systolic and diastolic 
blood pressure, and HDL-cholesterol, the hazard ratios decreased to 1.08 (0.78 
– 1.49), 1.12 (0.81 – 1.53), and 1.68 (1.22 – 2.30), respectively. The PAR of high 
serum uric acid for diabetes was 0.24 (0.17 – 0.30) for the fourth quartile, 0.09 
(0.3 – 0.15) for the third quartile, and 0.04 (-0.01 – 0.10) for the second quartile. 

 Discussion
We showed that the subjects with higher levels of serum uric acid are more at 

risk of developing type II diabetes. We also found that one quarter of diabetes 
cases can be attributed to a high serum uric acid level.

Our finding is in agreement with previous studies. At least two studies in the 
1980s  reported on the association of serum uric acid with the risk of diabetes14,15, 
however, the association was not adjusted for any potential confounder. Lately, 
it has been shown in middle-aged Japanese men4 that serum uric acid level 
is significantly associated with the risk of diabetes even after adjustment for 
potential confounders. However, another study on middle-aged Japanese men 
in Osaka, showed that the association was not significant after adjustment for 
BMI, alcohol consumption, smoking, physical activity, fasting blood sugar and 
parental history of diabetes. The absence of an independent effect in this study 
could be explained by the fact that their study population only consisted of men. 
We observed in our study that, although not significantly, the association was 
weaker in men than in women (data not shown). 

Recognition of high serum uric acid as a risk factor for diabetes has been a 
matter of debate for a few decades since hyperuricemia has been presumed 

Table 1 – Hazard ratios for diabetes according to level of serum uric acid

Uric acid Quartile 
(level in µmol/l)

Participants 
(cases)

HR (95% CI)

Model 1 Model 2 Model 3
1 (≤ 267) 1153 (77) 1.00 (Reference) 1.00(Reference) 1.00 (Reference)
2 (268 – 310) 1141 (94) 1.30 (0.96 – 1.76) 1.14 (0.83 – 1.57) 1.08 (0.78 – 1.49)
3 (311 – 370) 1175 (120) 1.63 (1.21 – 2.19) 1.23 (0.89 – 1.67) 1.12 (0.81 – 1.53)
4 (> 370) 1067 (171) 2.83 (2.13 – 3.76) 1.92 (1.41 – 2.62) 1.68 (1.22 – 2.30)
P for Trend < 0.001 < 0.001 < 0.001
One SD increment 4536 (462) 1.53 (1.39 – 1.67) 1.37 (1.23 – 1.52) 1.31 (1.18 – 1.46)

Model 1: adjusted for age and sex. 
Model 2: model 1 + BMI, and waist circumference 
Model 3: model 2 + systolic and diastolic blood pressure, and HDL-cholesterol
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to be a consequence of insulin resistance rather than its precursor. However, 
recent findings suggest that uric acid could be related to the development of 
diabetes. Serum uric acid has been shown to be associated with oxidative stress16 
and production of TNF-alpha16 which are both related to the development 
of diabetes. In addition, a recent study in rats showed that fructose-induced 
hyperuricemia plays a pathogenic role in the metabolic syndrome17. These 
findings support high serum uric acid as a precursor of type II diabetes. 

Currently, gout and renal disorders are the only consequences considered for 
hyperuricemia. Recent studies have introduced serum uric acid as a potential 
risk factor for hypertension18, stroke8, and cardiovascular diseases19. Our 
findings, suggest that type II diabetes is another consequence of hyperuricemia. 
The importance of this finding is even clearer when considering that lowering 
serum uric acid in subjects in the highest quartile may decrease the incidence of 
diabetes by 24%, if the relationship is causal. Hence, the public health impact of 
high serum uric acid may be larger than currently thought. Even so, uric acid is 
neither a target for treatment in asymptomatic hyperuricemia nor a risk marker 
in clinical practice20, but methods for assessment of serum uric acid are widely 
available and inexpensive. Moreover, xanthine oxidase inhibitors, which are 
currently used to decrease serum uric acid, are safe and inexpensive. 

In conclusion, our findings together with those from previous literature 
indicate that lowering uric acid may be a novel treatment target for preventing 
diabetes and justify a prospective clinical trial on the possible benefits of 
the measurement and lowering serum uric acid on multiple chronic disease 
endpoints. 
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Abstract

Background 
We aimed to estimate the proportion of coronary heart diseases (CHD) that is 

attributable to high serum levels of C-reactive protein (CRP). 

Methods 
The Rotterdam Study is a population-based, prospective follow-up study 

among 7983 participants aged 55 years and older. Traditional risk factors 
and serum CRP were determined at baseline (1990-1993). We estimated the 
population attributable risk (PAR) to estimate the proportion of myocardial 
infarction (MI) and CHD that is attributable to each risk factor including high 
serum CRP.

Results 
During a mean follow up time of 9.8 years, 1008 participants developed CHD, 

of which 396 were cases ofMI. The PAR (95% confidence interval) estimates 
showed that 0.34 (0.20, 0.51) of MI, and 0.25 (0.10, 0.51) of CHD cases were 
attributable to high serum CRP (> 1 mg/l). High serum cholesterol (> 5.2 
mmol/l) was the only risk factor that contributed more to risk of MI and CHD 
than high serum CRP (0.30 for MI and 0.58 for CHD). Collectively, the studied 
risk factors contributed to 0.81 (0.69, 0.90) of the risk of MI, and 0.64 (0.52, 0.75) 
of the risk of CHD. 

Conclusions 
High serum CRP is one of the major contributors to the risk of CHD. 
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Introduction

Inflammation contributes to atherogenesis in all phases, from fatty streak 
initiation to cardiovascular events1 and inflammatory markers are shown to 
predict coronary heart disease (CHD). So far, serum C-reactive protein (CRP), 
a marker of inflammation, has more consistently been associated with the risk 
of CHD than other studied inflammatory markers2. It has even been suggested 
that CRP is a better predictor of cardiovascular events than LDL cholesterol 
(LDL-C)3. Recent studies have provided some evidence that CRP plays a role 
in the pathogenesis of myocardial infarction (MI)4. However, it is unknown 
whether high serum CRP is a major contributor to the risk of CHD or not. 

The proportion of diseased subjects that are attributable to a certain risk factor 
can be estimated by the population attributable risk (PAR). The PAR, which is 
a relevant measure to judge the public health impact of risk factors, depends on 
both the strength of the association and the prevalence of the risk factor5,6.

In this study we estimated the proportion of the risk of CHD, which is 
attributable to high serum CRP. For this purpose, we estimated the PARs of 
serum CRP and established traditional risk factors for incident MI and CHD 
in the Rotterdam Study, a large population-based prospective cohort study in 
Caucasians aged 55 years or over.   

Methods
Study Population

The study was conducted within the framework of the Rotterdam Study, 
an ongoing prospective, population-based cohort study on determinants of a 
number of chronic diseases. The Rotterdam Study has been described in detail 
elsewhere7,8. In brief, all inhabitants of Ommoord, a district of Rotterdam in 
the Netherlands, who were 55 years or over, were invited to participate in 
this study. Of all 10 275 eligible individuals, 7983 agreed to participate (78%). 
Written informed consent was obtained from all participants and the Medical 
Ethics Committee of the Erasmus Medical Center approved the study. 

Baseline measurements
The baseline examinations took place from 1990 to 1993. Participants were 

visited at home for an interview. The information on current health status, 
medical history, use of medication, and smoking status were obtained during 
the interview. The interview was followed by two visits at the research center 
for blood sampling and further examinations. At the research center, height, 
and weight were measured, and the body mass index was calculated (kg/
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m2). Blood pressure was measured at the right brachial artery using a random-
zero sphygmomanometer with the participant in sitting position. The first and 
fifth Korotkoff sounds were recorded twice and averaged to calculate systolic 
and diastolic blood pressure. Serum total cholesterol was determined by an 
automated enzymatic procedure in a non-fasting blood sample. HDL-C was 
measured after precipitation of the non-HDL fraction with phosphotungstate-
magnesium. Serum glucose was measured in a non-fasting and a post load 
sample using a glucose hexokinase method. High sensitivity CRP was 
measured by use of Rate Near Infrared Particle Immunoassay (Immage® 
Immunochemistry System, Beckman Coulter, USA). This system measures 
concentrations from 0.2 to 1440 mg/l, with a within-run precision < 5.0%, a total 
precision < 7.5% and a reliability coefficient of 0.995. 

Myocardial infarction
At baseline, participants were asked whether they have ever experienced a 

heart attack. Later, a 12-lead electrocardiogram (ECG) was recorded and stored 
digitally. All the ECGs were processed by the use of Modular ECG Analysis 
System (MEANS) to obtain the measurements and interpretations9,10. MEANS 
uses a comprehensive set of criteria, partly derived from the Minnesota codes, 
to determine MI. Additional information was collected in subjects who reported 
a previous MI but had no evidence in their ECG. This additional information 
was used to distinguish those who actually experienced MI (either experienced a 
non–Q-wave MI or the Q wave disappeared over time) from those who mistook 
other symptoms for MI. By use of the additional information, participants 
were classified into recognized MI (subjects with self-reported MI confirmed 
by matching EKG characteristics or clinical data), unrecognized MI (subjects 
without documented or self-reported MI, but with ECG characteristics matching 
an MI), and non-MI (subjects without indication of MI on ECG and no self-
report or medical documentation of an earlier MI). 

Follow up information
Follow up for clinical events started at baseline and follow up examinations 

were carried out periodically in 1995-1996, 1997-1999, and 2002-2004. 
Participants were continuously monitored for fatal and nonfatal cardiovascular 
events through automated linkage with files from general practitioners and 
pharmacies working in the study district of Ommoord. In addition, all medical 
records of the participants under the care of general practitioners outside the 
study area were checked annually. 

Two research physicians independently coded all reported events according 
to the International Classification of Diseases, 10th edition (ICD-10). Codes on 
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which the research physicians disagreed were discussed to reach consensus. 
Finally, a medical expert in cardiovascular disease, whose judgment was 
considered final, reviewed all events. Information on vital status was obtained 
regularly from municipal health authorities in Rotterdam. For the present study, 
follow-up data were available until October 1, 2005. In identifying incident 
myocardial infarctions (ICD-10 code I21), all available information, which 
included ECG, cardiac enzyme levels, and the clinical judgment of the treating 
specialist, was used. 

We defined incident CHD as fatal or nonfatal MI (ICD-10 code I21), coronary 
artery bypass grafting (CABG), percutaneous transluminal coronary angioplasty 
(PTCA), other forms of acute (I24) or chronic ischemic heart disease (I25), 
sudden cardiac death (I46), sudden death undefined (R96), and death due to 
ventricular fibrillation (I49) and congestive heart failure (I50). 

Population for analysis
Serum level of CRP was measured in 6658 out of 7129 participants who visited 

the research center at baseline. We excluded those who had a history of MI, 
CABG, or PTCA. Hence, the population for analysis consisted of 5236 subjects. 

Statistical Analysis
Established cutoff points were used to categorize continuous covariates. On 

this basis, cutoff points of 1 and 3 mg/l for serum CRP, 25 and 30 kg/m2 for 
BMI, 5.2 and 6.2 mmol/liter for total cholesterol, and 1.0 and 1.6 unit for HDL 
cholesterol were used. Smoking was categorized as current smoking and former 
smoking versus never smoking. Hypertension was defined as systolic blood 
pressure >=  140 mm Hg, diastolic blood pressure >=  90 mm Hg, or use of 
antihypertensive medication. Diabetes was defined as non-fasting glucose > 11.1 
mmol/liter, an abnormal oral glucose tolerance test (OGTT) > 11.1 mmol/liter, 
or use of anti-diabetic medication. 

A Poisson regression analysis was used to investigate the association of the 
traditional risk factors and serum CRP with the incidence of MI and CHD. We 
estimated the PAR for variables that were significantly associated with the risk 
of CHD including serum CRP, total cholesterol, HDL cholesterol, hypertension 
and diabetes. PAR and 95% confidence intervals were calculated by the use of 
Interactive Risk Assessment Program (IRAP) developed by Dr Mitchell Gail (US 
national Cancer Institute 2002)6,11,12. Details of the statistical analysis have been 
described in previously published reports13.

We estimated the PAR for individual and combined risk factors. The PAR for 
a combination of risk factors corresponds with the proportion of the disease that 
can be attributed to any of the studied risk factors. The combined PAR cannot be 
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computed by  summing up the single PARs. A diseased case can simultaneously 
be attributed to more than one risk factor. As a result, the fraction of the 
population that is attributed to or prevented by each risk factor overlaps with 
other risk factors. Hence, the combined PAR is usually smaller than the sum of 
individual PARs and never exceeds 1.0. 

To estimate the proportion of the disease that is exclusively attributed to a 
specific risk factor, we calculated the “extra attributable risk”. Extra attributable 
risk indicates the proportion of the disease that can be attributed exclusively to 
the studied risk factor14. To calculate the extra attributable risk, we estimated the 
combined PAR in the presence and absence of the risk factor. The difference is 
the extra attributable risk for that risk factor. 

All statistical analyses except for PAR calculations were performed with the 
use of SAS, version 8 (SAS Institute).

Results 
Table 1 shows the baseline characteristics of the studied population in tertiles 

of serum CRP. Serum CRP was positively and significantly correlated with age, 
BMI, diastolic and systolic blood pressure. HDL cholesterol was significantly 
and negatively correlated with serum CRP. Serum CRP was also significantly 
higher in subjects with hypertension and diabetes. 

During follow-up, 1008 participants developed CHD, of which 396 were cases 
of MI. The mean follow-up time was 10.0 years (incidence rate 15.5 per 1000 
person years) for MI and 9.8 years (incidence rate 6.0 per 1000 person years) 

Table 1 -  Baseline characteristics of participants in different categories of serum CRP

Risk factor Serum CRP P value

< 1mg/L 1 – 3 mg/L > 3 mg/L
Men (%) 40.6 37.4 44.0 < 0.001
Body mass index, mean (SD), kg/m2 24.9 (3.2) 26.5 (3.5) 27.1 (4.1) < 0.001
Total cholesterol, mean (SD), mmol/liter 6.5 (1.2) 6.7 (1.2) 6.5 (1.3) 0.59
HDL cholesterol, mean (SD), mmol/liter 1.4 (0.4) 1.3 (0.4) 1.3 (0.3) < 0.001
Never smoking (%) 37.5 37.2 31.1 < 0.001Current smoking (%) 17.2 21.5 29.6
Age, means±SD, years 67.8 (8.7) 69.4 (9.1) 71.4 (9.5) < 0.001
Systolic blood pressure, mean (SD), mm Hg 134.9 (21.7) 139.9 (22.2) 142.7 (22.7) < 0.001
Diastolic blood pressure, mean (SD), mm Hg 72.9 (11.4) 74.1 (11.5) 73.9 (12.2) < 0.001
Hypertension (%) 25.2 34.5 42.4 < 0.001
Diabetes (%) 7.2 9.5 15.8 < 0.001

CRP = C-reactive protein 
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Table 2 - Multivariate adjusted* odds ratio (95% CI) of different risk factors for MI, and CHD 

Risk Factor % Exposed Myocardial infarction Coronary heart disease
C-reactive protein (2 vs. 1) 40.3 1.85 (1.36 - 2.51) 1.36 (1.10 - 1.69)
C-reactive protein (3 vs. 1) 32.0 1.54 (1.09 - 2.17) 1.59 (1.27 - 2.00)
Body mass index (2 vs. 1) 46.5 0.88 (0.69 - 1.13) 0.89 (0.75 - 1.06)
Body mass index (3 vs. 1) 14.5 0.83 (0.56 - 1.21) 0.89 (0.69 - 1.16)
Total cholesterol (2 vs. 1) 28.1 2.11 (1.25 - 3.57) 1.35 (1.00 - 1.81)
Total cholesterol (3 vs. 1) 59.4 2.80 (1.69 - 4.63) 1.57 (1.18 - 2.07)
HDL cholesterol (2 vs. 1) 53.8 1.23 (0.90 - 1.68) 1.15 (0.93 - 1.42)
HDL cholesterol (3 vs. 1) 21.3 1.70 (1.19 - 2.42) 1.70 (1.33 - 2.16)
Former smoking 40.8 1.16 (0.85 - 1.59) 1.13 (0.91 - 1.40)
Current Smoking 22.6 1.21 (0.85 - 1.72) 1.25 (0.99 - 1.60)
Hypertension 36.1 1.34 (1.05 - 1.70) 1.39 (1.18 - 1.64)
Diabetes 11.0 1.69 (1.23 - 2.33) 1.75 (1.41 - 2.16)

* Multivariate adjusted model is adjusted for: age, sex, C-reactive protein, body mass index, total cholesterol, 
HDL cholesterol, smoking, hypertension, and diabetes
MI = Myocardial Infarction, CHD = Coronary Heart Disease

for CHD. Table 2 shows the proportion of the participants who were exposed 
to different categories of high serum CRP and the traditional risk factors. It 
also shows the multivariate adjusted odds ratio of the studied risk factors for 
MI and CHD. High serum CRP, high serum cholesterol, low HDL cholesterol, 
hypertension, and diabetes were significantly associated with the risk of MI and 
CHD. 

Multivariate adjusted PAR of high serum CRP (> 1 mg/l) was 0.34 (95%CI: 
0.20-0.51) for myocardial infarction, and 0.25 (95% CI: 0.10, 0.51) for CHD. The 
PAR was 0.29 (0.16, 0.48) when the 2nd and 3rd tertile were compared to the 
first tertile (table 3). High serum cholesterol (> 5.2 mmol/liter) was the main 

Table 3 -  Multivariate adjusted* population attributable risk (PAR) of different risk factors 
for MI and CHD

Risk Factor Myocardial infarction Coronary heart disease
C-reactive protein (3 vs. 1) 0.08 (0.03 - 0.22) 0.12 (0.06 - 0.20)
C-reactive protein (2&3 vs. 1) 0.29 (0.16 - 0.48) 0.19 (0.09 - 0.34)
Total cholesterol (3 vs. 1) 0.46 (0.33 - 0.59) 0.23 (0.13 - 0.37)
Total cholesterol (2&3 vs. 1) 0.61 (0.41 - 0.78) 0.30 (0.16 - 0.49)
HDL cholesterol (3 vs. 1) 0.10 (0.04 - 0.22) 0.10 (0.06 - 0.17)
HDL cholesterol (2&3 vs. 1) 0.17 (0.04 - 0.48) 0.16 (0.06 - 0.35)
Hypertension 0.08 (0.02 - 0.23) 0.10 (0.05 - 0.18)
Diabetes 0.06 (0.02 - 0.13) 0.07 (0.04 - 0.11)

* Multivariate adjusted model is adjusted for: age, sex, C-reactive protein, body mass index, total cholesterol, 
HDL cholesterol, smoking, hypertension, and diabetes
PAR= Population attributable risk, MI = Myocardial Infarction, CHD = Coronary Heart Disease
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contributor to the risk of MI (PAR=0.58; 95%CI: 0.38, 0.75), and CHD (PAR=0.30; 
95%CI: 0.16, 0.49) (Table 3).  

Collectively, these risk factors contributed to 80% (95% CI: 66%, 89%) of the 
risk of MI, and 60% (95% CI: 47%, 72%) of the risk of CHD. Table 5 shows the 
combined PAR in the presence and absence of each risk factor. Exclusion of 
serum CRP decreased the combined PAR from 0.80 to 0.73 for MI and from 0.64 
to 0.51 for CHD. Therefore, the extra attributable risk of CRP was 0.07 for MI 
and 0.13 for CHD.

Discussion
In this study, we found that high serum CRP contributes substantially to the 

risk of MI and CHD independent of the traditional risk factors. In addition, 
we observed that traditional risk factors account for the majority of the risk of 
MI (72%) and more than half of the risk of CHD (53%) in subjects 55 years and 
older. 

The key finding of our study is that 34% of MI and 25% of CHD cases are 
attributable to high serum CRP (> 1mg/l). Using a higher cutoff point of 3 mg/l 
for high serum CRP, we showed that this proportion was 8% for MI and 12% 
for CHD. This finding is in agreement with Cushman et al15 who reported 11% 
of incident CHD is attributable to high serum CRP (> 3 mg/l) in an elderly 
population. However, in the study by Cushman, the PAR was neither estimated 
for other cut-off points nor in combination with the traditional risk factors. 

It is worthy to note that our study may have underestimated the contribution 
of serum CRP to the risk of CHD. Firstly, our study evaluates serum CRP 
at a single point in time. If chronic inflammation plays a causal role in the 
development of cardiovascular events, a single measurement of serum CRP 

Table 4 - Population attributable risk (PAR) of all risk factors combined, and all risk factors 
combined with one of them excluded for MI and CHD

Risk Factor Myocardial infarction Coronary heart disease

PAR PAR
Combined PAR 0.80 (0.66 - 0.89) 0.60 (0.47 - 0.72)
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C-reactive protein 0.73 (0.55 - 0.85) 0.51 (0.36 - 0.65)
Total cholesterol 0.50 (0.34 - 0.66) 0.43 (0.31 - 0.56)
HDL cholesterol 0.76 (0.60 - 0.87) 0.52 (0.39 - 0.65)
Hypertension 0.78 (0.63 - 0.89) 0.56 (0.41 - 0.69)
Diabetes 0.79 (0.64 - 0.89) 0.57 (0.43 - 0.70)

PAR= Population attributable risk , MI = Myocardial Infarction, CHD = Coronary Heart Disease



67

C
ha

pt
er

 3
.1

may not adequately reflect the cumulative inflammatory burden16. Secondly, the 
role of CRP may be more complex than previously appreciated17. We adjusted 
the association for traditional risk factors, considering them as confounders. 
However, CRP may intermediate the effect of traditional risk factors18. If so, the 
adjustment has attenuated the real effect of CRP. 

Nearly 40% of individuals who develop cardiovascular disease have only one 
traditional risk factor and more than 20% have none19. Moreover, attempts to 
modify risk factors frequently fail and many people find it difficult to reduce 
their risk of developing cardiovascular diseases. Hence, there is an unmet need 
for novel risk factors that contribute to a large proportion of cases and provide 
worthy alternatives in risk modification. Serum CRP, a marker of chronic 
systematic inflammation, has consistently been shown to associate with the 
risk of cardiovascular diseases. In this study, we investigated the proportion 
of MI and CHD cases that are attributable to high serum CRP and found that a 
greater proportion of MI and CHD cases could be attributed to high serum CRP 
compared to other traditional risk factors, except for high serum cholesterol. 
Our finding supports that serum CRP, and in more general terms inflammation, 
is a major contributor to the cardiovascular risk. This stimulates interest in 
further investigation of the possibilities of anti-inflammatory interventions in 
primary prevention of cardiovascular diseases beyond what has been obtained 
from the traditional risk factors.

Inflammation, as reflected by the serum level of CRP, has been shown to 
strongly predict cardiovascular events. Many lifestyle interventions known to 
reduce cardiovascular risk also decrease serum CRP levels. Moreover, statins, 
which reduce vascular risk, lower serum CRP levels. Even so, the causal role 
of CRP in cardiovascular events is still a matter of debate17. PAR is mostly 
estimated for risk factors with a widely accepted causal role. Nevertheless, 
estimating the PAR for high serum CRP illustrates the potential impact of a 
novel risk factor14.

A diseased subject can simultaneously be attributed to or prevented by more 
than one risk factor. Therefore, the fractions of the disease attributed to different 
risk factors overlap each other and cannot be simply summed up. To estimate 
the proportion of the disease that is attributable to a group of risk factors, one 
should estimate the combined PAR20. Based on the combined PAR estimation 
we found that 73% of MI cases and 51% of CHD cases are attributable to the 
traditional risk factors. The combined PAR of traditional risk factors has been 
estimated previously. The INTERHEART study showed that nine modifiable 
risk factors account for over 90% of the risk of first MI.21 Stampfer et al showed 
that lifestyle factors including diet, exercise, and smoking are responsible for 
more than 80% of the coronary events22. The differences in estimates could 
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be due to the difference in the variables considered for the study. Moreover, 
estimates are likely to be different in elderly populations since the exposure rate 
and the strength of association alter by age. 

There are certain assumptions in PAR estimation that should be taken 
into account when interpreting them20. In estimating PAR, we assume that 
all participants who are labeled as exposed will shift into the non-exposed 
group without changing the risk factor distribution in the non-exposed group. 
Moreover, we assume that the risk of the disease diminishes instantly after risk 
factor elimination. In practice, however, the effect of an intervention is likely 
to be different for several reasons. First, not all the people succeed to eliminate 
the risk factor. Second, the risk factor distribution is likely to change in the non-
exposed group. Third, the risk of the disease is likely to stay high for years even 
after removing the risk factor. Therefore, one should be careful with interpreting 
the PAR from such studies for practical purposes. Our study has the advantage 
of having a large sample size, a long follow-up period and a considerable 
number of incident MI and CHD cases. 

In conclusion, high serum CRP is a major contributor to the risk of MI and 
CHD. Compared to the traditional risk factors for CHD, a larger part of MI and 
CHD cases can be prevented by lowering serum CRP compared to any other of 
traditional risk factors, except for serum cholesterol.  
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Abstract

Background 
Recent genome wide association (GWA) studies identified two Single 

Nucleotide Polymorphisms (SNP) (rs10757278 and rs10757274 ) in the region of 
the CDK2NA and CDK2NB genes to be consistently associated with the risks of 
coronary heart disease (CHD) and myocardial infarction (MI). We examined the 
SNPs in relation to the risk of CHD and MI in a large population based study of 
elderly population. 

Methods 
The Rotterdam Study is a population-based, prospective cohort study among 

7983 participants aged 55 years and older. Associations of the polymorphisms 
with CHD and MI were assessed by use of Cox proportional hazards analyses. 

Results 
In an additive model, the age and sex adjusted hazard ratios (HRs) (95% 

confidence interval) for CHD and MI were 1.03 (0.90, 1.18) and 0.94 (0.82, 1.08) 
per copy of the G allele of rs10757274. The corresponding HRs were 1.03 (0.90, 
1.18) and 0.93 (0.81, 1.06) for the G allele of rs10757278. The association of the 
SNPs with CHD and MI was not significant in any of the subgroups of CHD risk 
factors. 

Conclusion 
We were not able to show an association of the studied SNPs with risks of 

CHD and MI. This may be due to differences in genes involved in the occurrence 
of CHD in young and older people. 
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Introduction

It has been considered for long that genes play a substantial role in 
susceptibility to coronary heart disease (CHD)1. Up to now, a limited number 
of these genes have been identified through the candidate gene approach and 
genome wide linkage studies. Recently a number of genome wide association 
(GWA) studies have identified several genetic variants on chromosome 9p21 
associated with the risk of CHD. McPherson et al. found a Single Nucleotide 
Polymorphism (SNP), rs10757274, on chromosome 9p21 associated with the risk 
of CHD2. Helgadottir et al. found a close-by SNP, rs10757278, in the same 9p21 
region associated with the risk of myocardial infarction (MI)3. These findings 
were followed by another GWA study by Samani et al4, which found rs1333049 
to be associated with the risk of coronary artery disease4. All three SNPs are 
located within the same Linkage Disequilibrium (LD) block on chromosome 
9 approximately 22 million base pairs from the 9p telomere, adjacent to two 
tumor suppressor genes, CDKN2A and CDKN2B. These genes are involved 
in regulation of cell proliferation. Abnormal proliferation is one of the 
characteristics of atherosclerosis, one of the pathological features of CHD and 
MI5. 

To date, the findings are replicated in several case-control studies comprising 
12285 cases and 23184 controls and two cohort studies comprising 22056 
subjects6-10. These replications have made this locus one of the best replicated 
findings for genetic susceptibility to cardiovascular diseases. Though these 
findings are promising, they will be of more clinical worth if translated to 
older patients who constitute a larger part of the patients. We chose to study 
rs10757278 and rs10757274 because they were most strongly and consistently 
associated with CHD and MI in GWA studies. The leading SNP of the study by 
Samani et al, rs1333049, is in the same LD block with rs10757278 and contributes 
to the same haplotype alleles. We attempted to replicate the association in the 
Rotterdam Study, a population-based cohort study among older subjects, but 
found no association.

Methods
Study Population

The study was conducted within the framework of the Rotterdam Study, 
an ongoing prospective, population-based cohort study on determinants of a 
number of chronic diseases. The Rotterdam Study has been described in detail 
elsewhere11. In brief, all inhabitants of Ommoord, a district of Rotterdam in 
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the Netherlands, who were 55 years or over, were invited to participate in this 
study. Of all 10275 eligible individuals, 7983 agreed to participate (78%). Written 
informed consent was obtained from all participants and the Medical Ethics 
Committee of the Erasmus Medical Center approved the study. 

Baseline measurements
The baseline examinations took place from 1990-1993. Participants were 

visited at home for an interview. Information on current health status, medical 
history, use of medication, and smoking status were obtained during the 
interview. The interview was followed by two visits at the research center for 
blood sampling and further examinations. 

At baseline, participants were asked whether they have ever experienced 
a heart attack. A 12-lead electrocardiogram (ECG) was stored digitally and 
analyzed by using the Modular ECG Analysis System (MEANS). Myocardial 
infarction found on ECG was based on criteria partly derived from the 
Minnesota code. A history of myocardial infarction was considered present in 
case of a self-report of myocardial infarction confirmed by ECG or additional 
clinical information, or the presence of an ECG characteristic of prior myocardial 
infarction12,13.

Genotyping
Genomic DNA was extracted from leucocytes following standard procedures. 

Participants were genotyped for rs10757274 and rs10757278. Genotypes were 
determined in our study population in 2-ng genomic DNA by use of pre-
designed TaqMan SNP genotyping assay (Assay ID C__26505812_10 and 
C__11841860_10, respectively; Applied Biosystems, Foster City, CA). Reactions 
were performed with the Taqman Prism 7900HT 384 wells format. 

Follow up 
Follow up for clinical events started at baseline and follow up examinations 

were carried out periodically in 1995-1996, 1997-1999, and 2002-2004. 
Participants were continuously monitored for fatal and nonfatal cardiovascular 
events through automated linkage with files from general practitioners and 
pharmacies working in the study district of Ommoord. In addition, all medical 
records of the participants under the care of general practitioners outside the 
study area were checked annually. Two research physicians independently 
coded all reported events according to the International Classification of 
Diseases, 10th edition (ICD-10). Codes on which the research physicians 
disagreed were discussed to reach consensus. Finally, a medical expert in 
cardiovascular disease, whose judgment was considered final, reviewed all 
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events. Information on vital status was obtained regularly from municipal 
health authorities in Rotterdam. For the present study, follow up data were 
available until October 1, 2005. 

Incident coronary heart disease and myocardial infarction
To identifying incident myocardial infarction and coronary heart disease, 

we collected information from baseline (1990 - 1993) until January 1, 2005. 
Fatal or non-fatal MI reported by general practitioners in the research area, 
letters from medical specialists and discharge reports for hospitalized patients 
were the sources of information used. Two research physicians coded the 
events independently and in case of disagreement the consensus was made 
ina separate session. Finally a specialist whose judgment was considered final 
verified the coding. We defined incident MI as fatal or non fatal MI (ICD-10 
code I21). Incident CHD was defined as fatal or nonfatal myocardial infarction 
(ICD-10 code I21), coronary artery bypass grafting (CABG), and percutaneous 
transluminal coronary angioplasty (PTCA). 

Population for analysis
The SNPs, rs10757274 and rs10757278 were genotyped in 6251 and 6265 out of 

7129 participants who visited the research center at baseline. 

Statistical analysis
Genotype frequencies were tested for Hardy-Weinberg equilibrium with 

a chi-square test using The Hardy-Weinberg package for R (http://www.r-

Table 1 – Baseline characteristics of all participants, and of cases with incident MI and 
incident CHD  

Characteristics All participants MI cases P value CHD cases P value

Number 6251 412 - 588 -
Age,  y 69.5 (9.1) 70.3 (7.8) 0.02 68.6 (7.4) 0.23
Men, (%) 40.4 58.7 <0.001 61.2 <0.001
Body mass index,  kg/m2 26.3 (3.7) 26.3 (3.5) 0.29 26.3 (3.4) 0.07
Waist circumference,  cm 90.5 (11.2) 91.9 (10.0) 0.89 92.2 (10.2) 0.33
Systolic blood pressure, mm Hg 139.3 (22.2) 142.3 (21.9) 0.01 141.3 (21.7) 0.004
Diastolic blood pressure, mm Hg 73.7 (11.5) 73.7 (11.5) 0.77 73.7 (11.3) 0.38
Hypertension, (%) 34.3 40.6 0.006 40.2 0.002
Diabetes, (%) 10.5 17.0 <0.001 15.8 <0.001
Total cholesterol, mmol/l 6.6 (1.2) 6.9 (1.2) <0.001 6.9 (1.2) <0.001
HDL cholesterol, mmol/l 1.3 (0.4) 1.2 (0.3) <0.001 1.2 (0.3) <0.001
Current smoker, (%) 22.8 26.0 <0.001 27.1 <0.001Former smoker, (%) 41.5 49.5 51.5

Data shown are Mean (standard deviation) unless otherwise indicated.
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project.org). To compare the baseline characteristics between healthy subjects 
and those who experienced CHD or MI, we used chi-square for categorical 
variables and ANOVA for continuous variables. 

A Cox regression analysis was used to assess the association of SNPs with 
incident CHD and MI. The proportional hazards assumption was validated by 
the use of a time-dependent variable to check increasing or decreasing trends in 
the hazard ratio (HR) over time. The basic model was adjusted for age and sex. 
The multivariate adjusted model was additionally adjusted for BMI, systolic 
and diastolic blood pressure, total cholesterol, HDL cholesterol, smoking, and 
diabetes. 

To examine whether the effect of SNPs vary by the level of other risk factors 
we performed the analysis stratified by age, sex, family history of cardiovascular 
disease, HDL cholesterol, diabetes, hypertension, smoking, and history of 
CHD. For smoking, participants were categorized to never, former, and current 
smokers. For hypertension and diabetes, participants were categorized into 
those with and without the condition. History of CHD was defined as a history 
of MI, percutaneous transluminal coronary angioplasty (PTCA) or coronary 
artery bypass grafting (CABG). For other risk factors, the population was 
divided into two equal subgroups by use of the median. All statistical analyses 
were performed with the use of SAS, version 8. 

Results
Table 1 shows the baseline characteristics of the studied population. CHD and 

MI cases were significantly older, and more often male, hypertensive, diabetic, 
and smoker than subjects without these conditions. Moreover, systolic blood 
pressure, and total cholesterol were significantly higher and HDL cholesterol 
was significantly lower in CHD and MI cases. We found none of these 

Table 2 - The age and sex adjusted and multivariate adjusted association of the SNPs with 
incident CHD and MI

SNP Allele All 
participants

Incident 
cases

Age and sex 
adjusted 

Multivariate 
adjusted HR*

CHD rs10757274 G 45.8 45.5 1.03 (0.90 - 1.18) 1.00 (0.87 - 1.15)
rs10757278 G 44.9 42.7 1.03 (0.90 - 1.18) 1.00 (0.87 - 1.15)

MI rs10757274 G 45.8 43.8 0.94 (0.82 - 1.08) 0.97 (0.84 - 1.11)
rs10757278 G 44.9 42.7 0.93 (0.81 - 1.06) 0.95 (0.83 - 1.10)

* adjusted for age, sex, BMI, serum total and HDL cholesterol, smoking, diabetes, systolic and diastolic blood 
pressure 
CI = Confidence interval, CHD=Coronary heart disease, MI = Myocardial infarction
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characteristics to be significantly associated with the studied SNPs. 
During follow-up, 588 participants developed CHD, of which 412 had 

experienced an MI. The mean follow-up time was 9.5 years for CHD (incidence 
rate 9.9 per 1000 person years) and 9.5 years for MI (incidence rate 6.9 per 
1000 person years). Mean (standard deviation) age of onset was 68.6 (7.4) for 
CHD and 70.3 (7.8) years for MI. We examined the associations of rs10757274 
and rs10757278 with risks of CHD and MI (table 2, 3 and 4). None of the SNPs 
were significantly associated with the risk of CHD or MI. The age and sex 
adjusted HR (95% confidence interval [CI]) for CHD and MI were 1.03 (0.90, 
1.18) and 0.94 (0.82, 1.08) per copy of G allele of rs10757274, respectively. The 
corresponding HRs were 1.03 (0.90, 1.18) and 0.93 (0.81, 1.06) per copy of G 
allele of rs10757278. 

Table 3 – The age and sex adjusted and multivariate adjusted association of the SNPs with 
incident CHD 

Participants (cases) Age and sex adjusted Multivariate adjusted *
rs10757274 AA 1834 (184) Reference Reference

AG 3107 (273) 0.89 (0.74 - 1.07) 0.90 (0.74 - 1.09)
GG 1310 (131) 1.00 (0.80 - 1.26) 0.99 (0.78 - 1.25)

rs10757278 AA 1909 (188) Reference Reference
AG 3097 (269) 0.90 (0.74 - 1.08) 0.90 (0.74 - 1.09)
GG 1264 (127) 1.01 (0.81 - 1.27) 1.00 (0.79 - 1.26)

* adjusted for age, sex, BMI, serum total and HDL cholesterol, smoking, diabetes, systolic and diastolic blood 
pressure 
CI = Confidence interval, CHD=Coronary heart disease, MI = Myocardial infarction 

Table 4 – The age and sex adjusted and multivariate adjusted association of the SNPs with 
incident MI

Participants (cases) Age and sex adjusted Multivariate adjusted *
rs10757274 AA 1832 (133) Reference Reference

AG 3106 (197) 0.90 (0.72 - 1.12) 0.94 (0.75 - 1.19)
GG 1309 (82) 0.89 (0.67 - 1.17) 0.94 (0.70 - 1.25)

rs10757278 AA 1907 (139) Reference Reference
AG 3096 (187) 0.85 (0.68 - 1.06) 0.89 (0.71 - 1.12)
GG 1263 (80) 0.88 (0.67 - 1.16) 0.92 (0.70 - 1.23)

* adjusted for age, sex, BMI, serum total and HDL cholesterol, smoking, diabetes, systolic and diastolic blood 
pressure 
CI = Confidence interval, CHD=Coronary heart disease, MI = Myocardial infarction
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We repeated the analysis with incident cases limited to those occurred before 
age 70. Age and sex adjusted HR (95% CI) for CHD and MI were 1.00 (0.97, 
1.04) and 0.90 (0.74, 1.09) per copy of G allele of rs10757274. The corresponding 
HRs for MI were 1.00 (0.96, 1.04), and 0.91 (0.75, 1.10) per copy of G allele of 
rs10757278. 

To investigate whether any of the covariates affect the relation of SNPs with 
CHD and MI, we repeated the analysis in subgroups of age, sex, family history 
of cardiovascular disease, HDL cholesterol, diabetes, hypertension, smoking, 
and history of CHD (figure 1). The association was not significant in any of the 
studied subgroups and no significant interaction was found. 

Discussion
Our main goal was to replicate the results of recent GWA studies on CHD and 

MI in a population based study. Two SNPs, rs10757274 and rs10757278, which 
were most consistently and strongly associated with the risk of CHD in GWA 
studies were studied. We not only found no significant association between 
these two SNPs and the risks of CHD and MI, but also found, however non-
significant, an inverse direction for the risk. We also did not find an association 
in subgroups of cardiovascular risk factors. 

Different approaches have been used in recent decades to discover causal 
genes for cardiovascular diseases. A novel approach is the GWA study which 
searches large part of the genome for predisposing variants. Contrary to the 
formerly common approach, the candidate gene study, the GWA study is a 
hypothesis free approach, i.e. it holds no prior assumption on the location 
of predisposing genes. As an advantage, this approach promises a more 
comprehensive understanding of the causal genes. However, this method 
is liable to false positive findings. Hence, GWA studies always need to be 
replicated in independent samples to confirm their findings. 

Our study had sufficient power to detect effect sizes as shown in the 
published studies. In an additive model and for a SNP with a minor allele 
frequency of 0.45 (lowest minor allele frequency: 0.43, shown in Icelandic 
population A)3, our study had more than 80% power to detect a relative risk of 
1.15 for CHD (the lowest effect: 1.18, shown in ARIC study 2) and 1.23 for MI 
(the lowest effect: 1.25, shown in the Iceland population A) 14. 

We did not find any of the SNPs to be associated with the risk of CHD in our 
study. One legitimate conjecture for the inconsistency of our results with former 
studies may be heterogeneity of the effect. Compared to the Rotterdam Study, 
most of the studied populations comprised young CHD or MI patients. If the 
risk allele on chromosome 9p21 invokes only early onset of CHD, the effect in 
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older subjects may not be large enough to be found in our study. Therefore, our 
negative finding may point to a heterogeneity of effect by age. In agreement 
with this conjecture, Helgadottir et al. showed that the association was stronger 
when only those with early onset MI were considered3. However, we failed 
to find an evidence of age affecting the association in our data. The strength 
of the association did not change materially when we limited the incident 
cases to those developed CHD or MI before age 70. Moreover, the strength of 
the association was not significantly different in age subgroups (figure1). We 
emphasize that our study may be underpowered to detect the effect of age on 
the association. It is noteworthy that the heterogeneity of effect has a particular 
clinical and public health impact. In Western countries the majority of morbidity 
and mortality from CHD occurs in elderly people. In the Netherlands, 74% of 
men and 91% women who experience fatal MI are older than 65 years (http://
statline.cbs.nl/statweb/). The fact that CHD is less common in younger 
population implies that these subjects are not a good representative of the 
general population of CHD patients. Therefore, caution should be taken in 
generalizing the results of the published studies to an elderly population. 

One may also speculate that those carrying the risk allele had developed CHD 
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��Figure 1. 
Association of rs10757274 and rs10757278 with CHD and MI in subgroups of 
cardiovascular risk factors. The squares centered are on the hazard ratio estimate and scaled 
proportional to the sample size. Horizontal bars show the 95% confidence interval.
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at early age and were excluded at the baseline in our study. If this is true, the 
prevalence of risk allele should be higher in those who had a history of CHD 
at baseline i.e. prevalent cases of CHD. To examine this issue, we studied the 
association of the SNPs with prevalent CHD cases but found no association 
(data not shown). Moreover, the frequencies of the alleles in our population 
were high and comparable to former studies making selection bias unlikely.

Previous studies mainly employed standard case-control association studies. 
Our study has the advantage of employing a different approach, the prospective 
study in a large population based sample. One potential limitation of our study 
is that the participants were not fully followed and healthy subjects who carry 
the risk allele may later develop the disease. 

In conclusion, we showed that the studied SNPs are not major players in 
development of CHD in the elderly population. Our negative finding offers a 
new perspective on 9p21 SNPs and shows that the association does not hold 
for all CHD cases. The lack of association may be due to the difference in genes 
involved in the development of CHD in young and older people. Individualized 
preventive measures and therapies constitute a major long-term goal of GWA 
studies. Heterogeneity of the effect, therefore, has substantial public health 
impact and needs to be acknowledged. 
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Abstract 

Background 
C-reactive protein (CRP) is a heritable marker of chronic inflammation that is 

strongly associated with the risks of diabetes and cardiovascular disease. 

Method 
We performed a genome-wide association (GWA) analysis in 26,967 

participants from six population-based studies to identify genetic variants that 
are associated with CRP levels. 

Results 
We found associations at six genomic loci marked by one or more SNPs that 

showed genome-wide significant p-values, ranging from 1.9×10−50 to 4.4×10-15 for 
the top SNP within each locus. These loci included the CRP gene and five other 
loci which were located in or close to genes encoding the leptin receptor (LEPR), 
interleukin 6 receptor (IL6R), glucokinase regulatory protein (GCKR), hepatic 
transcription factor 1 (HNF1A), and apolipoprotein E (APOE). The weighted 
genetic risk score based on the six top SNPs explained nearly 2% of the variance 
in CRP. 

Conclusions 
Our study confirms that CRP, APOC1, HNF1A, IL6A, LEPR, and GCKR affect 

CRP levels. 
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Introduction

C-reactive protein (CRP) is a general marker of systemic inflammation. 
High CRP levels are associated with increased risks of several diseases, 
including diabetes mellitus1, hypertension2, atrial fibrillation3, coronary heart 
disease4, stroke5, and peripheral arterial disease6, and with excess mortality7. 
The heritability of CRP levels is estimated to be 25 - 40% 8-10, suggesting that 
genetic variation is a major determinant of CRP levels in addition to known 
environmental factors. Recent genome-wide association (GWA) studies found 
six genes and a gene-desert region on 12q23.2 determining CRP levels11,12. The 
genes involved included the gene encoding CRP (CRP), leptin receptor (LEPR), 
interleukin 6 receptor (IL6R), glucokinase regulator (GCKR), hepatic nuclear 
factor 1 alpha (HNF1A), and apolipoprotein E (APOE). These genes are mainly 
involved in inflammatory regulation (IL6R, LEPR) and diabetes (GCKR, and 
HNF1A)12. In this study, we set out to discover novel genes related to CRP levels 
using GWA scans in 26,967 participants of six population-based cohort studies. 

Methods
Participants were of European ancestry. All studies had protocols approved 

by local institutional review boards. Participants provided written informed 
consent and gave permission to use their DNA for research purposes.

The Age, Gene/Environment Susceptibility study (AGES)
The AGES Reykjavik Study cohort originally comprised a random sample of 

30,795 men and women born in 1907-1935 and living in Reykjavik in 196713. A 
total of 19,381 people attended, resulting in a 71% recruitment rate. The study 
sample was divided into six groups by birth year and birth date within one 
month. One group was designated for longitudinal follow-up and was examined 
at all stages. One group was designated as a control group and was not included 
in examinations until 1991. Other groups were invited to participate in specific 
stages of the study. Between 2002 and 2006, the AGES-Reykjavik study re-
examined 5764 survivors of the original cohort who had participated before 
in the Reykjavik Study. Participants came in a fasting state to the clinic. The 
AGES Reykjavik Study GWA study was approved by the National Bioethics 
Committee (VSN: 00-063) and the Data Protection Authority. 

Genotyping was performed using the Illumina 370CNV BeadChip array on 
3,664 participants.  Sample exclusion criteria included sample failure, genotype 
mismatch with reference panel, and sex mismatch, resulting in cleaned genotype 
data on 3,219 individuals. Standard protocols for working with Illumina data 
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were followed with a clustering score greater than 0.4. From a total of 353,202 
SNPS, 325,094 were used for imputation after exclusion of SNPs with a call 
rate < 97%, HWE deviation < 1 × 10-6, mishap (PLINK haplotype-based test for 
non-random missing genotype data14) p < 1 × 10-9, and mismatched positions 
between Illumina, dbSNP and/or HapMap. 

High sensitivity CRP was measured in serum on a Hitachi 912, using reagents 
from Roche Diagnostics and following the manufacturer’s instructions. Both 
within- and between- assay quality control procedures were used and the 
coefficient of variation of the method was 1.3% to 3.4%, respectively, through the 
period of data collection. The assay could detect a minimal CRP concentraton 
of 0.1 mg/l and values below this level were classified as undetectable. All 
participants in this study had detectable CRP levels.

The Atherosclerosis Risk in Communities (ARIC) Study
The ARIC study is a longitudinal cohort study of atherosclerosis and its 

clinical sequelae. It recruited a population-based sample of 15,792 men and 
women aged 45-64 years from four US communities in 1987-8915. For this study, 
the analysis was restricted to subjects of European decent. Affymetrix 6.0 array 
genotypes were obtained in 8,861 self-identified whites: 734 individuals were 
excluded for the following reasons: 1) discordant with previous genotype data, 
2) genotypic sex did not match phenotypic sex, 3) suspected first-degree relative 
of an included individual based on genome-wide genotype data, 4) genetic 
outlier (as assessed by average Identity by State (IBS) using PLINK and > 8 
standard deviations along any of first 10 principal components in EIGENSTRAT 
after 5 iterations. SNPs without chromosomal location, monomorphic SNPs, 
SNPs whose genotype frequencies between two freezes differed by p < 10-

6, SNPs with HWE p < 10-6 or call rate < 90% were excluded from analysis. 
Imputation of ~ 2.5 million autosomal SNPs in HapMap with reference to 
release 22 of the CEU sample was conducted using the algorithm implemented 
in MACH. 

CRP was assessed using the immunoturbidimetric CRP-Latex (II) high-
sensitivity assay from Denka Seiken (Tokyo, Japan). This assay, which has been 
validated against the Dade Behring method (Deerfield, Ill)16, was performed 
according to the manufacturer’s protocol and using a BN2 analyzer (Dade 
Behring (Deerfield, Il). To assess repeatability of measurements, 421 blinded 
replicates were measured on different dates. The reliability coefficient was 0.99.

Cardiovascular Health Study (CHS)
The CHS is a population-based cohort study of risk factors for CHD and 

stroke in adults ≥ 65 years conducted across four field centers17. The original 
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predominantly Caucasian cohort of 5201 persons was recruited in 1989-1990 
from random samples of the Medicare eligibility lists and an additional 687 
African-Americans were enrolled subsequently for a total sample of 5888. DNA 
was extracted from blood samples drawn on all participants at their baseline 
examination in 1989-90. 

In 2007-2008, genotyping was performed at the General Clinical Research 
Center’s Phenotyping/Genotyping Laboratory at Cedars-Sinai using the 
Illumina 370CNV BeadChip system on 3980 CHS participants who were free 
of CVD at baseline, consented to genetic testing, and had DNA available 
for genotyping. Because the other populations in this meta-analysis were 
primarily of European ancestry, the self-described CHS African-Americans were 
excluded from this analysis to reduce the possibility of confounding due to 
population stratification. Genotyping has been attempted to date in 3,397 white 
participants, and was successful in 3,291 persons with a sample call rate > 95%. 
In CHS, the following exclusions were applied to identify a final set of 306,655 
autosomal SNPs: call rate < 97%, HWE P < 10-5, > 1 duplicate error or Mendelian 
inconsistency (for reference CEPH trios), heterozygote frequency = 0, SNP 
not found in HapMap’s CEPH panel. After limiting the sample to those with 
successful genotypes and CRP measurements, the final dataset for this analysis 
comprised data on 306,655 SNPs in 3,265 CHS participants. Imputation was 
performed using BIMBAM v0.99 (n.b., 0.91 for QT) with reference to HapMap 
CEU using release 22, build 36 using one round of imputations and the default 
expectation-maximization warm-ups and runs. SNPs were excluded for variance 
on the allele dosage  ≤ 0.01.  

Blood was drawn in the morning after an overnight fast. Samples were 
promptly centrifuged at 3000g for 10 minutes at 4°C. Aliquots of plasma 
were stored in a central laboratory at -70°C. CRP was measured in all stored 
baseline plasma samples by a high sensitivity immunoassay, with an interassay 
coefficient of variation of 6.25%18. 

Framingham Heart Study (FHS)
The FHS (Framingham Heart Study) is a collection of three cohorts 

recruited to investigate cardiovascular disease and its risk factors19. Serum 
CRP measurements were available from the seventh exam (1998-2001) of 
the Framingham Offspring cohort (children of the original cohort and their 
spouses enrolled in 1971)20,21, and the Third Generation cohort (Offspring adult 
children)22 first examination, recruited from 2002-2005. 

Genotyping was performed using Affymetrix 500K SNP arrays, supplemented 
with the MIPS 50K array. Genotypes of 8481 individuals passed our QC criteria 
that included call rate ≥ 97%, no excess Mendelian errors (< 1000) and average 
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heterozygosity within 5 SD of mean (between 25.758% and 29.958%). SNPs 
analyzed had minor allele frequency ≥ 1%, call rate ≥ 95% and HWE p value ≥ 
10-6. The analysis reported included data on 425,593 SNPs in 6,899 Framingham 
participants with measured CRP levels. The MACH software was used to 
perform imputation based on the haplotypes of the HapMap CEU trios, and 
2,046,740 SNPs with good imputation quality, as measured by the ratio of 
observed to expected variance ≥ 0.3, were analyzed for association with CRP 
levels. The SNPs used for imputation passed more stringent filters including 
a minor allele frequency ≥ 0.01, SNP call rate ≥ 0.97, HWE p-value ≥ 1 × 10-6, 
differential missingness p-value ≥ 1 × 10-9 and <100 Mendelian errors; 378,163 
SNPs passed these quality control criteria. 

CRP was measured in fasting serum samples using a high-sensitivity assay 
(Dade Behring BN100). The minimum detectable dose of this assay is 0.16 mg/l, 
with a standard curve range of 0.16-1000 mg/l. The intra-assay coefficient of 
variation was 3.2%, while the inter-assay coefficient of variation was 5.3%. The 
final population for this analysis included 6899 individuals (Offspring n=3852, 
Third Generation n=3047).

The MONICA/KORA Augsburg Study (KORA)
The presented data were derived from the third population-based Monitoring 

of Trends and Determinants in Cardiovascular Disease (MONICA)/ Cooperative 
Health Research in the Region of Augsburg (KORA) survey S323. This cross-
sectional survey covering the city of Augsburg (Germany) and two adjacent 
counties was conducted in 1994/95 to estimate the prevalence and distribution 
of cardiovascular risk factors among individuals aged 25 to 74 years as part 
of the WHO MONICA study. The MONICA/KORA S3 study comprises 4,856 
subjects. Among them, 3,006 subjects participated in a follow-up examination of 
S3 in 2004/05 (MONICA/KORA F3). All participants underwent standardized 
examinations including blood withdrawals for plasma and DNA. For the KORA 
genome-wide association study, 1,644 subjects, aged 45 to 69 years were selected 
from the KORA S3/F3 samples.  

Genotyping for KORA F3 was performed using Affymetrix 500K Array 
Set consisting of two chips (Sty I and Nsp I). Hybridisation of genomic DNA 
was done in accordance with the manufacturer’s standard recommendations. 
Genotypes were determined using BRLMM clustering algorithm (Affymetrix 
500K Array Set). For quality control purposes, we applied a positive control 
and a negative control DNA every 48 samples. On chip level only subjects with 
overall genotyping efficiencies of at least 93% were included. In addition the 
called gender had to agree with the gender in the KORA study database. SNPs 
were excluded from analysis when monomorphic (MAF < 0.01). Imputation of 
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genotypes was performed using maximum likelihood method with the software 
MACH v1.0.9. After exclusion of subjects with missing information of CRP 
concentrations, the final population available for this analysis included 1,587 
individuals. 

CRP was measured in EDTA plasma by a high sensitivity in-house 
immunoradiometric assay (IRMA) in MONICA/KORA S3, using a five-point 
calibration with WHO International Reference Standard 85/506. The assay range 
was 0.05-10 mg/l. Samples with concentrations > 10 mg/l were remeasured 
at higher dilutions. CRP concentrations were determined in triplicate, and the 
mean was used for analysis. The interassay CV for CRP over all ranges was 
12%24. 

Rotterdam Study (RS)
The Rotterdam Study is a prospective population-based cohort study to 

investigate the determinants of chronic diseases among participants aged 55 
years and older25-27. In brief, residents of Ommoord, a district of Rotterdam 
(Netherlands), 55 years of age or older, were asked to participate, of whom 7983 
participated. The baseline examination took place between 1990-1993. 

The version 3 Illumina Infinium II HumanHap550 SNP chip array was used 
to conduct genotyping among self-reported Caucasians. Genotyping was 
successful in 6240 individuals with a sample call rate > 97.5%. SNPs with call 
rate < 95% and HWE pvalue < 10-6 were excluded. The final dataset for this 
analysis comprised data on 530,683 SNPs in 5974 RS participants. Imputation 
was conducted using the algorithm implemented in MACH. SNP filters 
including a minor allele frequency > 0.01, SNP Call Rate > 0.98, and HWE 
p-value > 1×10-6 were applied and 491,875 SNPs passed these filters. In total,  
2,586,725 SNPs were imputed using phased haplotypes of HapMap CEU trios. 

Non-fasting serum samples were collected. The samples were immediately 
put on ice and were processed within 30 minutes, after which they were kept 
frozen at -20 °C, until measurement of CRP in 2003-2004. High sensitivity CRP 
was measured by use of Rate Near Infrared Particle Immunoassay (Immage® 
Immunochemistry System, Beckman Coulter, USA). This system measures 
concentrations from 0.2 to 1440 mg/l, with a within-run precision < 5.0%, a total 
precision < 7.5% and a reliability coefficient of 0.995.

GWA analysis
Genome-wide scans were made independently in each cohort using various 

genotyping technologies. Quality control and data cleaning were conducted 
independently by each study. Each study carried out an association analysis 
using the genotype-phenotype data within their cohort using natural log 
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transformed CRP. Except for FHS, all studies conducted a linear regression 
analysis adjusted for age, sex, and site of recruitment (if necessary) for all SNPs 
based on an additive genetic model. In FHS, a linear mixed effects model was 
employed using the lmekin function of the kinship package in R with a fixed 
additive effect for the SNP genotype, fixed covariate effects, and a random 
environment effect. In each study, we estimated the genomic inflation rate, 
stated as lambda (λgc), by comparing the median chi-square to 0.4549, the 
median for null distribution values28. P values were adjusted for underlying 
population structure using the genomic inflation coefficient. 

Meta-analysis
To calculate the combined p values and beta coefficients we used inverse-

variance weighted meta-analyses with fixed-effects models. We used METAL, 
software designed to perform meta-analysis on GWA datasets. We applied an a 
priori threshold of genome-wide significance at 5.0×10-8  29. When more than one 
SNP clustered at a locus, we used the SNP with the smallest p-value, the ‘top 
SNP’. 

Figure 1. 
QQ-plot for the meta-analysis results. The distribution of observed p-values in the meta-
analysis is compared to the expected p-values under the null hypothesis. 
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Results

Subjects and Measurements
Baseline and demographic characteristics obtained at intake are in presented in Table 

1. The characteristics of the FHS shown in table 1 were not obtained at intake in the 
study but at the time of CRP measurement. 

Genome-wide significant findings
Figure 1 is a quantile-quantile plot (Q-Q plot) which shows a large excess 

of small p-values on the right tail of the p-value distribution, indicating the 
presence of true associations of genetic variants with the variation in serum 
CRP levels. The primary findings from the meta-analysis are illustrated in figure 
2. The figure presents the p-values for 2,624,803 SNPs across 22 autosomal 
chromosomes. A total of 204 SNPs exceeded the threshold of genome-wide 
significance (p < 5 × 10-8). These SNPs clustered around six loci on 1q23.2, 
19q13.32, 12q24.31, 1q21.3, 1p31.3, and 2q13. 

As presented in table 2, the strongest statistical evidence for an association was 
found for rs1205 (effective allele: T) on the C-reactive protein (CRP) gene (minor 

Figure 2. 
Log plot for the meta-analysis. -Log p-values for all tests performed for the association of the 
SNPs with serum CRP levels. The grey dashed horizontal lines correspond to the p-value 
threshold of 5×10-8 and the grey solid line corresponds to the p-value threshold of 5×10-6.  
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Table 2 - Meta-analysis results for the genome-wide significant loci associated with serum 
CRP levels 

SNP Chr Band Effective 
allele

MAF Beta (SE) P-value Gene**

rs1205 1 1q23.2 T 0.34 -0.10 (0.007) 1.9×10-50 CRP
rs4420638 19 19q13.32 G 0.80 0.12 (0.009) 2.2×10-48 APOC1
rs2464195 12 12q24.31 A 0.38 -0.08 (0.007) 6.4×10-35 HNF1A
rs4129267 1 1q21.3 T 0.60 -0.05 (0.006) 7.0×10-17 IL6R
rs7516341 1 1p31.3 C 0.32 0.05 (0.006) 3.1×10-16 LEPR
rs1260326 2 2q13 T 0.41 0.05 (0.006) 4.4×10-15 GCKR

* MAF: Minor allele frequency, SE: Standard error 
** Closest gene within 60kb 
Chr: Chromosome

allele frequency [MAF]: 0.31-0.34, meta-analysis p-value = 1.9 ×10-50, serum CRP 
level change per minor allele [D]: -0.1 mg/L). The other significant loci were marked 
by rs4420638 (G) at 19q13.32, on the apolipoprotein C-I (APOC1) gene (MAF: 0.15-
0.20, p = 1.2×10-36, D: 0.12 mg/L), rs2464195 (A) at 12q24.31, on the HNF1 homeobox 
A (HNF1A) gene (MAF: 0.32-0.38, p = 6.4×10-35, D: -0.08 mg/L), rs4129267 (T) at 
1q21.3, on the interleukin 6 receptor (IL6R) gene (MAF: 0.39-0.42, p = 7.0×10-17, 
D: -0.05 mg/L), rs7516341 (C) at 1p31.3, on the leptin receptor (LEPR) gene (MAF: 
0.34-0.40, p = 3.1×10-16, D: 0.05 mg/L), rs1260326 (T), at 2p23.3, on the glucokinase 
(hexokinase 4) regulator (GCKR) gene (MAF: 0.35-0.45, p = 4.4×10-15, D: 0.05 mg/L). 
Table 3 shows the cohort-specific results for the association of these loci with CRP 
levels. 

The genetic variants identified in our study explained nearly 2% of the overall 
variance in serum CRP in all studies except one. 

Discussion
We identified six loci associated with circulating CRP levels through a meta-

analysis of GWA scans from six cohort studies comprising 26,967 subjects. Our 
results confirm six gene annotated loci reported by Ridker et al12 and failed to 
replicate their finding with a gene-desert region on 12q23.2. 

CRP, and IL6R are associated with CRP levels at least partly through pathways 
related to innate and adapted immune response. The effect of the IL6R gene on CRP 
levels has been established in earlier studies. It is postulated that IL6R is a determinant 
of CRP levels since it mediates the effect of IL-6, IL-6 can induce an increase in CRP 
synthesis up to several 100-fold during an inflammatory state30. Several of the genes 
that were found to be associated with CRP levels are directly or indirectly related to 
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metabolic regulatory pathways involved in diabetes. HNF1A, also known as T-cell 
factor 1 (TCF1), is part of a complex network that regulates a number of genes in beta 
cells and hepatocytes. Common variation in this gene has been associated with impaired 
insulin secretion and maturity onset diabetes of the young (MODY) type 331. The GCKR 
gene encodes the glucokinase regulatory protein (GCRP). Defects in the expression of 
glucokinase, which phosphorylates glucose to glucose-6-phosphate and probably acts as 
a glucose sensor, result in deficient insulin secretion32. Like the APOE/C region, GCKR 
has been implicated in the metabolism of lipids and triglyceride. 

Our study has the benefit of a large sample size of 26,967 subjects. A 
limitation to this study is that we did not fine map the identified loci. Further 
fine mapping and functional studies on these loci may provide further insight 
into the common pathways that genetically affect CRP levels. All participants 
were of white European descent; hence the generalizability of our findings to 
individuals of other ancestry is unknown.  We report SNPs associated with CRP 
concentrations, but as described above we acknowledge that the identified SNPs 
may be in linkage disequilibrium with variants causally related to CRP levels.  
Although we identified six loci associated with CRP levels, our GWA study does 
not exclude that other genetic loci influence CRP concentrations.  

In conclusion, in this study among 26,967 subjects with genome wide scan 
data, we confirmed six genomic regions in which common variation influences 
CRP levels. Our study highlights immune response and metabolic regulatory 
pathways to be of importance in determining CRP levels. 
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Abstract 

Background 
Hyperuricemia, a highly heritable trait, is a key risk factor for gout. We aimed 

to identify novel genes related to serum uric acid and gout. 

Methods 
Genome-wide association (GWA) studies were conducted for serum uric acid 

in the Framingham Heart Study (FHS; n=7699) and the Rotterdam Study (RS; 
n=4148). Genome-wide significant SNPs were replicated among white (n=11024) 
and black (n=3843) Atherosclerosis Risk in Communities (ARIC) Study 
participants. The association of these SNPs was evaluated with gout; results in 
whites were combined using meta-analysis.

Results 
Three loci in FHS and two in the RS showed genome-wide significance with 

uric acid. Top SNPs in each locus were: missense SNP rs16890979 in SLC2A9 
(p=7.0×10-168 [whites]; 2.9×10-18 [blacks]), missense SNP rs2231142 in ABCG2 
(p=2.5×10-60 [whites]; 9.8x10-4 [blacks]), and rs1165205 in SLC17A3 (p=3.3×10-26 
[whites]; 0.33 [blacks]). All SNPs showed direction-consistent association with 
gout in whites: rs16890979 (OR 0.58 per T allele, 95% CI 0.53-0.63, p=1.2×10-31), 
rs2231142 (OR=1.74 per T allele, 1.51-1.99, p=3.3×10-15), and rs1165205 (OR=0.85 
per T allele, 0.77-0.94, p=0.002). In ARIC blacks, rs2231142 showed a direction-
consistent association with gout (OR=1.71, 1.06-2.77, p=0.028). An additive 
genetic risk score (0-6) comprised of high risk alleles at the three loci showed 
graded associations in each study across scores with uric acid (from 272-351 
μmol/l [FHS], 269-386 μmol/l [RS], and 303-426 μmol/l [ARIC whites]) and 
gout (prevalence 2-13% [FHS], 2-8% [RS], 1-18% [ARIC whites]). 

Conclusions 
We identified three genetic loci (two novel including a candidate functional 

variant Q141K in ABCG2) related to uric acid and gout. A score based on genes 
with a putative role in renal urate handling showed a substantial risk gradient 
for gout.  



103

C
ha

pt
er

 4
.2

Introduction

Gout is one of the most common forms of arthritis1,2. Gout currently affects 
over 700,000 adults in the United Kingdom2 and nearly three million adults in 
the United States3,  accounting for almost four million annual outpatient visits4, 
with a substantial economic burden5. Epidemiological studies from a range of 
countries suggest that the prevalence and incidence of gout are increasing6. Gout 
is characterized by joint pain, inflammation, and painful tophi, and can result in 
joint destruction and disability if untreated7. 

Uric acid is the end product of purine metabolism in humans, and levels are 
primarily determined by endogenous metabolism (synthesis and cell turnover), 
and the rate of excretion and reabsorption in the kidney1.  Humans lack 
uricase, the enzyme responsible for converting uric acid into its more soluble 
and excretable form. Renal excretion of urate is responsible for the majority of 
hyperuricemia and gout8. Thus, understanding the molecular mechanisms of 
urate transport in the kidney has potential research and clinical implications. 

Known risk factors for gout include hyperuricemia, obesity, hypertension, 
diuretic use, and alcohol consumption9. Despite extensive research in the area 
of renal urate transport, the mechanisms influencing serum uric acid levels 
in humans by contributing to either secretion or reabsorption of urate in the 
proximal renal tubules have not been fully elucidated10.  We have previously 
shown that the heritability of serum uric acid levels is 63%11, suggesting that 
genetic variation may contribute to uric acid levels through regulation of 
uric acid synthesis, excretion, or reabsorption. Several recent genome-wide 
association (GWA) studies identified significant associations between single 
nucleotide polymorphisms (SNPs) in the gene SLC2A9 with uric acid levels and 
gout12-16. The gene product of SLC2A9 had not previously been implicated in uric 
acid metabolism, highlighting the power of GWA studies to identify unknown 
physiologic mechanisms contributing to disease.  

The objective of this study was to identify genetic loci related to uric acid 
using GWA studies in two population-based studies (11847 participants) 
and subsequently replicate them in a third population-based study (14867 
participants). Moreover, a meta-analysis of replicated SNPs was performed for 
uric acid and gout across studies to combine the results in whites. Finally the 
association of a genetic risk score summarizing the number of risk alleles was 
tested with both uric acid levels and gout risk. 

Methods
Participants



104

Association of three genetic loci with uric acid levels and gout risk

The Framingham Heart Study started in 1948 when 5,209 participants began 
undergoing biannual examinations to identify cardiovascular disease and its 
risk factors17,18. In 1971, 5,124 participants were enrolled into the Framingham 
Offspring Study. Offspring subjects underwent examinations approximately 
every 4 years19,20. In 2002, the third generation, representing the children 
of the offspring cohort, was recruited (n=4095)21. Almost all participants in 
Framingham cohort are self-identified white (of European descent).  The 
original cohort consisted of 1,644 spouse pairs, and the offspring cohort of 
2,632 individuals with two parents in the original cohort (916 with at least 
one parent in the original cohort) and 1576 spouse pairs.  The third generation 
consisted of 2,944 individuals with both parents in the offspring cohort, 1,148 
individuals with at least one parent in the offspring cohort, and threevwith none 
of the parents in the offspring cohort. A broad range of phenotypes have been 
described and is publicly available (http://www.ncbi.nlm.nih.gov/projects/
gap/cgi-bin/study.cgi?study_id=phs000007.v2.p1). The study was approved by 
the institutional review board of the Boston University Medical Center (Boston, 
MA, USA). 

The Rotterdam Study is a prospective, population-based cohort study on 
determinants of several chronic diseases among subjects aged ≥ 55 years22,23.
All inhabitants of Ommoord, a district of Rotterdam (Netherlands), who 
were 55 years or older, were invited to take part in the study. Of 10,275 
eligible individuals, 7,983 (78%) agreed to participate. At baseline (1990 - 
1993), participants completed an interview at home and visited the research 
center for blood sampling and examination. Follow-up started at baseline 
and examinations were done periodically. In addition, participants were 
continuously monitored for major events through automated linkage with files 
from general practitioners and pharmacies working in the district of Ommoord. 
The medical ethics Committee of Erasmus Medical Center (Rotterdam, 
Netherlands) approved this study. 

The ARIC Study is a continuing, population-based, prospective study in 
four US communities. From 1987 to 1989, 15792 white and African American 
participants aged 45-64 years were recruited by probability sampling and 
underwent baseline examination (visit 1), and were examined three more times, 
roughly every three years24.  For this study, participants were excluded for non-
consent to genetic research (n=53) or if they did not self-identify as black or 
white (n=47). Thus, 8923 of 11,440 white and 2,650 of 4,252 black participants 
attended visit 4. Further exclusions to samples were made for genotyping failure 
of all SNPs, and missing outcomes or covariates. The final sample for association 
analyses, therefore, consisted of 11,024 white and 3,843 black participants at visit 
1, and 8,599 white and 2,392 black participants at visit 4.  Institutional Review 
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Boards of the participating institutions (Johns Hopkins University, University of 
Minnesota, Wake Forest University, University of Mississipi, Baylor University, 
University of Texas and University of North Carolina) approved the study 
protocols. Collectively, in all three studies’ participants provided written 
informed consent. 

Genotyping
In the Framingham cohort, the SNP Health Association Resource (SHARe) 

project genotyped 9,274 participants with the Affymetrix 500K mapping array 
and the Affymetrix 50K supplemental array (Affymetrix, Santa Clara, CA, USA). 
8,508 samples from these participants were genotyped successfully (sample 
call rate ≥97%). Exclusion of individuals with missing uric acid measurements 
(n=623) or covariates (n=186) resulted in a final sample size of 7699 (original 
cohort n=572; offspring n=3377; third generation n=3750). SNPs were excluded 
when SNP call rate was less than 95% or Hardy–Weinberg equilibrium p<10−6, 
making the total final number of 503 551 SNPs.

In the Rotterdam cohort, plated DNA was available for 6680 of 7129 (94%) 
participants who visited the research centre. Genotyping was done with the 
Illumina 550K array (Illumina, San Diego, CA, USA) in self-reported white 
individuals, and succeeded in 6,240 individuals (sample call rate ≥97.5%). The 
final population for analysis consisted of 5,974 individuals. SNPs were excluded 
when minor allele frequency was 1% or less, Hardy-Weinberg equilibrium 
p<10−5, or SNP call rate 90% or less, resulting in 530 683 SNPs. We imputed 
two SNPs, rs16890979 on chromosome 4 and rs1165205 on chromosome 6, that 
were not on the Illumina Infinium II HumanHap550 SNP chip (San Diego, CA, 
USA). Imputation was done with the maximum likelihood method implemented 
Markov Chain based Haplotyper (MACH) version 1.0.28 HapMap release 22 
CEU phased genotypes were used as a reference. The R2 estimate of MACH (the 
ratio of the observed variation to the expected variation under Hardy–Weinberg 
equilibrium) was 0.96 for rs16890979 and 0.99 for rs1165205. 

In the ARIC study, the central DNA laboratory genotyped SNPs rs16890979, 
rs2231142, and rs1165205 individually with TaqMan assays (Applied 
Biosystems, Foster City, CA, USA). Percent agreement of 315 blind duplicate 
samples was more than 98% for all genotyped SNPs. 

Outcome measures
In the Framingham cohort, uric acid concentration was measured at the first 

examination cycle in every cohort with an autoanalyzer with a phosphotungstic 
acid reagent26. Gout was self-reported in the offspring cohort during 
examination cycles three to seven, and in the third-generation group during first 
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examination. Information on uric acid concentration and gout was available for 
7699 and 7386 individuals, respectively.

In the Rotterdam cohort, uric acid concentration was measured at baseline 
with a Kone Diagnostica reagent kit and a Kone autoanalyzer27. Data for drug 
prescription were obtained from a computer network of pharmacies in the 
study area in which all prescriptions have been registered from Jan 1, 1991. 
Individuals treated with drugs exclusively prescribed for gout (allopurinol, 
probenecid, benzbromarone, and colchicine) were regarded as gout patients. 
Information about uric acid concentration was available for 4,148 individuals 

Table 1 - Characteristics of 26714 study participants from the Framingham Heart Study, 
Rotterdam Study, and ARIC Study.  

 FHS Rotterdam ARIC 
white

ARIC black

Sa
m

pl
es

 fo
r s

er
um

 u
ric

 a
ci

d Visit Exam 1 (1948, 
1971, 2002)§ 

visit 1 
(1990 - 1993) visit 1 (1987-89)

Number 7699 4148 11024 3843

Uric Acid (µmol/l)* 315.2 (89.2) 321.2 (80.9) 350.9 
(89.8) 374.7 (99.3)

Female (%) 53 61 53 62
Body Mass Index (kg/m2) 25.9 (4.9) 26.3 (3.7) 27.0 (4.9) 29.6 (6.1)
Age (y) 37.9 (9.4) 69.7 (9.0) 54.3 (5.7) 53.5 (5.8)
Alcohol drinking (g/
week)** 48 (12, 120) 43 (3,85) 30 (0, 93) 53 (15, 125)

Current Drinker (%) 81 79 65 32
Hypertension treatment (%) 8 33 26 43

Sa
m

pl
es

 fo
r g

ou
t

Visit Offspring and 
Third Generation£

During follow-
up (1990 - 2006) visit 4 (1996-98)

Number 7386 5741 8599 2392
Gout (%,n) 2.7 (197) 3.3 (190) 5.4 (467) 8.8 (210)
Female (%) 53 59 54 64
Body Mass Index (kg/m2) 27.0 (6.5) 26.3 (3.7) 26.9 (4.7) 29.6 (5.9)
Age (y) 50.0 (13.9) 69.0 (8.8) 54.1 (5.7) 52.9 (5.7)
Alcohol drinking (g/
week)** 33 (12, 60) 47 (3, 86) 28 (0, 91) 26 (0, 76)

Current Drinker (%) 51 79 56 26
Hypertension treatment (%) 21 32 39 59

Data shown are mean (standard deviation) unless otherwise indicated.
** median (1st and 3rd quartile), among current drinkers
§ Exam 1 of the Original Cohort (1948), Offspring  (1971), and Third Generation (2002-2005)
£Exams 3-7 of Offspring (1987-1999) and exam 1 of the Third Generation (2002-2005)
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Table 2 - Association of four SNPs in three loci with uric acid and gout 

SNP Information Trait FHS § RS ARIC 
white

ARIC 
black

All Whites

rs16890979 MAF 0.23 0.21 0.23 0.42

Chr 4: 9531265 Uric 
acid p-value  1.6×10-76 4.7×10-27 2.3×10-105 2.9×10-18 7.0×10-168

Gene: SLC2A9 beta*(se) -0.36 
(0.02)

-0.29 
(0.03)

-0.34 
(0.02)

-0.20 
(0.02)

-0.34 
(0.02)

Alleles: C/T R2 5.3% 2.8% 4.3% 2.0% NA
V253I Gout p-value  1.3×10-3 6.0×10-3 1.8×10-9 0.14 1.2×10-31

OR** 0.63 0.67 0.56 0.85 0.58
95% C.I. 0.47-0.84 0.50-0.89 0.47-0.68 0.69-1.05 0.53-0.63

rs6449213 MAF 0.19 0.18 NA NA NA

Chr 4: 9603313 Uric 
acid p-value  2.9×10-68 1.15×10-29 NA NA 2.2×10-104

Gene: SLC2A9 beta*(se) -0.37 
(0.02)

-0.32 
(0.03) NA NA -0.35 

(0.02)
Alleles: T/C   R2 4.5% 3.0% NA NA NA

Gout p-value  1.1×10-2 0.06 NA NA 0.001
OR** 0.66 0.75 NA NA 0.69
95% C.I. 0.49-0.91 0.55-1.01 NA NA 0.55-0.86

rs2231142 MAF 0.11 0.12 0.11 0.03 NA
Chr 4: 
89271347

Uric 
acid p-value  9.0×10-20 3.3×10-9 9.7×10-30 9.8×10-4 2.5×10-60

Gene: ABCG2 beta*(se) 0.25 
(0.03)

0.20 
(0.03)

0.25 
(0.02)

0.22 
(0.07)

0.24 
(0.02)

Alleles: G/T R2 1.3% 0.8% 1.2% 0.3% NA
Q141K Gout p-value  1.5×10-6 1.5×10-4 2.0×10-7 0.03 3.3×10-15

OR** 1.97 1.71 1.68 1.71 1.74
95% C.I. 1.49-2.59 1.30-2.25 1.38-2.04 1.06-2.77 1.51-1.99

rs1165205 MAF 0.46 0.47 0.47 0.13 NA
Chr 6: 
25978521

Uric 
acid p-value  5.6×10-10 0.01 8.4×10-11 0.33 3.8×10-29

Gene: 
SLC17A3£ beta*(se) -0.11 

(0.02)
-0.06 
(0.02)

-0.09 
(0.01)

-0.03 
(0.03)

-0.09 
(0.01)

Alleles: A/T R2 0.7% 0.2% 0.4% <0.1% NA
Gout p-value  0.10 0.86 3.0×10-3 0.33 2.0×10-3

OR** 0.83 0.98 0.81 1.16 0.85
95% C.I. 0.67-1.04 0.80-1.21 0.71-0.93 0.86-1.56 0.77-0.94

*Beta coefficient represents 1 standard deviation change in the standardized residual of uric acid per copy 
increment in the minor allele, adjusting for age, sex, BMI, alcohol consumption, hypertension treatment, (cohort 
status in FHS, study center in ARIC). se is the standard error of the beta coefficient
**OR is the odds ratio for gout per per copy increment of the allele modeled adjusting for age, sex, BMI, alcohol 
consumption, hypertension treatment, (cohort status in FHS, study center in ARIC)
§FHS results generated using linear mixed effects models; FBAT results in FHS: rs16890979 (p=8.3×10-23), 
rs6449213 (p=1.9×10-24), rs2231142 (p=5.6×10-11), rs1165205 (7.1×10-3)
£SLC17A3 refers to the entire SLC17A4/ SLC17A1/ SLC17A3 gene cluster
MAF = Minor Allele Frequency
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Figure 1.  
ABCG2 locus (Panel A):  –log10 p-values of genome-wide association analysis of uric acid for FHS and 
Rotterdam; (Panel B): –log10 p-values vs. physical position based on NCBI build 36.2 for SNPs (minor allele 
frequency >0.01) within 60Kb of ABCG2 (open diamonds) for uric acid association analysis for FHS, Rotterdam 
(only SNPs with p<10-7 included), and ARIC whites (only SNPs with p<10-7 included). The top associated SNP 
rs2231142 is plotted with solid diamonds for the three studies, and the p-value from the meta-analysis combining 
the results of the three studies is plotted with a solid diamond; (Panel C): Plot of linkage disequilibrium pattern 
in the ABCG2 region with all minor allele frequency >0.01 of SNPs typed in FHS. Each diamond contains a 
pair-wise r2 value (no value means r2=1) between two SNPs, with a darker shade representing higher correlation. 
The relative locations of the SNPs are marked on the top panel. SNPs with p-value <10-8 in FHS are in bold font, 
and the r2 tracks with top associated SNP are outlined by solid lines. 
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and that for gout for 5,741 individuals. 
In the ARIC study, uric acid concentration was measured with the uricase 

method28 at visit 1. Repeated measurements of uric acid in 40 individuals, taken 
at least 1 week apart, yielded a reliability coefficient of 0.91, and a coefficient of 
variation of 7.2%.30 Gout was identified by self-report at visit 4.

In all three studies, alcohol consumption was referred as self-reported number 
of drinks per week and converted into grams per week, and antihypertensive 
treatment was defined as self-reported intake of antihypertensive drugs or drug 
reconciliation. 

Statistical analysis
Genome-wide association study analyses used cohort-specific (Framingham 

cohort only) and sex-specific standardized residuals from a least squares 
regression model of uric acid, adjusting for age, body-mass index, alcohol 
consumption, and hypertension treatment. In the Framingham cohort, genome-
wide association study analysis was done as linear mixed-effect models to 
account for familial correlation, or family-based association testing to reduce the 
chance of false positives caused by population stratification29,30. In the Rotterdam 
cohort, linear regression was done with PLINK version 1.01.27 Both studies used 
an additive genetic model.

The most significant SNP that reached genome-wide significant association 
with uric acid for every region in either the Framingham cohort (p<5.0×10−8) 
or the Rotterdam cohort (p<1.0×10−7) was selected a priori for follow-up 
genotyping in the ARIC study. This criterion was met by rs16890979, rs2231142, 
and rs1165205 (Framingham cohort), and rs6449213 and rs2231142 (Rotterdam 
cohort). rs16890979 and rs6449213 are located in the same genetic region and are 
in moderate linkage disequilibrium with each other (r2 = 0.66 in HapMap CEU). 
Therefore, only rs16890979, rs2231142, and rs1165205 were genotyped in the 
ARIC study. In all studies, the association with gout was judged as significant at 
p < 0.05, because only SNPs consistently associated with uric acid across studies 
were examined.

We combined the multivariable adjusted measures of beta coefficients and 
OR of replicated SNPs with uric acid and gout across studies. We used the 
Cochran Q test to identify heterogeneity across studies. Because no significant 
heterogeneity was present with uric acid concentration and gout (all p > 0.07), a 
fixed-effect model was used for both traits. We used the meta31 package running 
under R32 to calculate the combined estimates and p values. 

A genetic risk score was generated for every individual by counting the 
number of alleles associated with high uric acid concentration (rs16890979 C, 
rs2231142 T, and rs1165205 A; range 0–6). 
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Figure 2. Additive genetic risk score in the FHS, Rotterdam, and ARIC Studies. (A): prevalence of the genetic 
risk score; (B): mean serum uric acid, μmol/l; (C): prevalence of gout, %; (D) Odds ratio (OR) of gout, adjusted 
for age, sex, BMI, alcohol intake, antihypertensive medication, cohort in FHS and study center in ARIC. 
Results are presented for white ARIC participants only. Error bars present standard errors. Prevalence is period 
prevalence in the Rotterdam Study.
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Results

Table 1 shows the characteristics of 26,714 participants. SNPs genotyped in all 
three studies met quality control standards. Three loci had SNPs that reached 
genome-wide significance in the Framingham cohort. For each locus, the most 
significant SNPs were rs16890979 (a missense SNP in SLC2A9), rs2231142 
(a missense SNP in ABCG2), and rs1165205 (intron 1 of SLC17A3) (table 2). 
Similarly, two loci showed genome-wide significance in the Rotterdam cohort: 
rs6449213 (intron 4 of SLC2A9) and rs2231142 (a missense SNP in ABCG2). 

Figure 1 shows SNPs at the ABCG2 locus. The SLC17A3 locus shows linkage 
disequilibrium in white participants, extending downstream of SLC17A3 to 
include SLC17A1 and SLC17A4. The SLC17A3–SLC17A1–SLC17A4 region is 
referred to as SLC17A3 because of the location of the most associated variant. 

Both rs16890979 and rs2231142 were strongly associated with uric acid 
concentration in white and black participants (table 2). rs1165205 was strongly 
associated with uric acid in white participants only (table 2). 

All meta-analysis p values for uric acid reached genome-wide significance 
(table 2). rs16890979 explained the largest variation in uric acid concentration, 
ranging from 2.8% to 5.3% in white participants across studies. The total R2 of 
all three SNPs (rs16890979, rs2231142, and rs1165205) in explaining uric acid 
concentration was 5.8% (white participants of in ARIC study), 2.4% (black 
participants in ARIC study), 7.1% (Framingham cohort), and 3.7% (Rotterdam 
cohort). Conditional on the top SNPs, only SNPs in the SLC2A9 region, one in 
the Framingham cohort and two in the Rotterdam cohort, remained significant. 

Study-specific results for gout were direction-consistent with uric acid 
concentration (table 2). rs16890979 was associated with gout in white 
individuals from all three studies. Results showing significance were also seen 
for rs2231142 and rs1165205, and for rs6449213. In black individuals of the ARIC 
study, only rs2231142 in ABCG2 showed a marginal association with gout (table 
2). Individually, the Framingham cohort and the Rotterdam cohort did not show 
any genome-wide significant findings for gout. 

Secondary analyses further adjusted uric acid results for diabetes, systolic 
blood pressure, and estimated glomerular filtration rate. Results were not 
materially changed. After adjustment of gout results for uric acid, attenuation 
of ORs for gout was seen, although most loci retained significance. In the 
Framingham cohort, only rs2231142 remained associated with gout after 
adjustment for uric acid (OR 1.57, 1.14–2.16, p < 0.0053). All other loci did 
not retain significance. In the Rotterdam cohort, no SNP was significant after 
adjustment for serum uric acid. In the ARIC study, substantial attenuation of the 
genotypic effect for all three loci on gout risk was seen after adjustment for uric 
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acid. p values decreased from 1.8×10−9 to 2.4×10−4 for rs16890979; from 2.0×10−7 
to 1.7×10−3 for rs2231142; and from 3.0×10−3 to 0.015 for rs1165205. 

The genetic risk score (risk alleles 0–6) showed common variation of the 
population (figure 2). Mean uric acid concentration increased linearly with the 
number of risk alleles (figure 2). For individuals with no risk alleles, the crude 
prevalence of gout was 1–2% across studies and increased to 8–18% for those 
with six risk alleles (figure 2). The multivariable adjusted ORs of gout increased 
accordingly across the risk scores in the three studies (figure 2). 

Substantial gene-by-sex interaction was seen for rs16890979 and rs2231142. 
rs16890979 had a stronger association with uric acid in women than it had in 
men in all three studies. Data from the ARIC study are presented in figure 3. For 
rs2231142, the T allele was associated with both higher uric acid concentration 
and ORs for gout in men than in women (figure 3). The sex-specific R2 
(proportion of variance explained [men to women]) was for rs16890979: 2.0% to 
8.8% (Framingham cohort), 1.4% to 4.1% (Rotterdam cohort), 1.7% to 7.6% (ARIC 
study for white participants), 0.5% to 3.4% (ARIC study for black participants); 
for rs2231142: 2.1% to 0.8% (Framingham cohort), 1.6% to 0.5% (Rotterdam 
cohort), 2.0% to 0.6% (ARIC study for white participants), 0.4% to 0.3% (ARIC 
study for black participants). 

We did not see any significant interaction of any tested SNP with age, body-
mass index, alcohol intake, or hypertension treatment. 
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Figure 3. 
Interaction of sex with SLC2A9 rs16890979 and ABCG2 rs2231142 on uric acid levels and 
gout risk. Multivariable adjusted (A) difference in mean uric acid levels; (B) odds ratio of 
gout. Results are presented for ARIC whites. Error bars represent standard errors. Numbers 
inside/next to bars present sample size (uric acid) and number of gout cases / sample size 
(gout).  
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Discussion

We identified two new loci, ABCG2 and SLC17A3, that show association with 
uric acid concentration and risk of gout. A missense SNP in ABCG2 (rs2231142; 
Q141K) was associated with uric acid concentration and gout in both white 
and black individuals and may be a causal candidate variant. Furthermore, 
we confirmed the previously reported association of variation in SLC2A9 with 
uric acid and gout in white individuals, and extended the findings to black 
individuals. Also, we described sex-specific effects of SNPs in ABCG2 and 
SLC2A9. Finally, we showed that an additive genetic risk score has strong and 
graded associations with uric acid concentration and gout in three population-
based studies. 

SNPs in SLC2A9 have been recently identified as being associated with uric 
acid concentration12-15, and were connected with low renal fractional excretion 
of uric acid15, which is the most common cause of hyperuricaemia33. We showed 
that the missense SNP rs16890979 in SLC2A9 has the strongest association 
with uric acid concentration and gout. This SNP leads to a valine-to-isoleucine 
aminoacid substitution (V253I). The valine residue is highly conserved across 
species. This association was also present in black participants in the ARIC 
study, in whom the linkage disequilibrium pattern differs. However, previous 
sequencing efforts with uric acid did not support the hypothesis that rs16890979 
is the causal SNP in the region, because in 541 individuals from Sardinia this 
SNP was only slightly associated with uric acid concentrations (p < 0.02)12. 
Therefore, the potential causal role of this missense SNP remains unclear.

The apparent importance of renal urate transport influencing uric acid 
concentrations and subsequently gout is supported by the other two genetic 
loci we identified. ABCG2 encodes a transporter of the ATP-binding cassette 
(ABC) family34. Like SLC2A9, ABCG2 is expressed in the apical membrane 
of human kidney proximal tubule cells35, and transports purine nucleoside 
analogues, which resemble the molecular structure of uric acid36. We observed 
the strongest association with uric acid levels and gout in both white and black 
individuals with the ABCG2 missense SNP rs2231142. This SNP in exon 5 leads 
to a glutamine-to-lysine amino acid substitution (Q141K); the glutamine residue 
is highly conserved across species. Based on the FHS data, rs2231142 was not 
grouped into any LD block. Three other SNPs located downstream of and in 
disequilibrium with the Q141K variant were associated with uric acid, two of 
which are located in the PKD2 gene. However, neither these SNPs nor other 
SNPs in the region were independently associated with uric acid conditional on 
the Q141K variant in either FHS or Rotterdam. Combining this evidence with 
the relatively weak LD pattern in the ABCG2 region in the HapMap Yoruban 
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sample and the significant association in ARIC blacks despite the low minor 
allele frequency of 3%, suggests that the ABCG2 Q141K variant (rs2231142) 
could be causally related to uric acid levels. 

	 SLC17A3 encodes a sodium phosphate (Na/Pi) transporter (NPT4), the 
rat homologue of which localizes to the apical membrane of renal proximal 
tubule cells37. Several prior studies have investigated the role of SLC17A1, 
located directly downstream of SLC17A3. SLC17A1 encodes NPT1, which is 
expressed in the human kidney and has been shown to transport urate in model 
systems38. In our study, the association of rs1165205 in SLC17A3 was weaker 
with uric acid levels compared to the other loci.  In FHS, the missense SNP 
rs1165196 (T269I) in exon 7 of SLC17A1 also showed genome-wide significant 
association with uric acid levels (p < 6.24×10-10 in FHS; p < 0.003 in Rotterdam). 
This SNP was not in the same LD block as rs1165205, but both SNPs were in 
high pair-wise LD (r2 = 0.9 in FHS). Additionally, the observed non-replication 
of rs1165205 with uric acid and gout among the black ARIC participants 
may allow for some degree of fine-mapping of the observed association. It is 
therefore conceivable that one or more causal genetic variants may be located 
downstream of SLC17A3, possibly in SLC17A1 or even further downstream in 
SLC17A4 due to the extensive LD in this region.

Although the gout risk conferred by the individual common genetic variants 
was modest, their combination resulted in a large effect on uric acid and gout 
prevalence. Further, the minor allele frequencies were common, suggesting that 
variants with low effect sizes will impact a large proportion of the population. 
Individual risk variants were associated with up to a 70% increased risk of 
developing gout, with effect sizes similar to that of known environmental risk 
factors1. Our genetic risk score was associated with up to a 40-fold increased 
risk of developing gout, substantially higher than environmental risk factors, 
suggesting that knowledge of genotype may help identify individuals at risk 
for developing gout long before the onset of clinical disease. This underscores 
the value of a one-time assessment of the genetic risk score, whereas the 
measurement of uric acid is subject to measurement error and physiologic 
variability over time.  

In additional to risk prediction, knowledge of an individual’s genotype or 
risk score could be used to help guide clinical decision making, especially with 
respect to the selection of medications known to increase uric acid levels and 
precipitate gout.  Currently, gout prophylaxis for asymptomatic hyperuricemia 
is not recommended39, but it is conceivable that our genetic risk score could 
be used to identify individuals in which asymptomatic hyperuricemia should 
be treated.  Since treatment decisions are best guided by randomized trials, 
stored specimens from existing trials should be tested to directly estimate 
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how this discovery of an easily determined strong genetic risk gradient can 
lead to personalized medicine. It is also possible that the genetic risk score, or 
certain genes that comprise it, differentially associate with gout complications, 
particularly joint destruction or poor response to medications.   

Although novel agents for lowering uric acid such as febuxostat40 are 
promising, allopurinol remains the mainstay of treatment for gout41. The 
efficacy of allopurinol can be limited by drug dosing and intolerance, drug-drug 
interactions, and treatment failure7. Errors are frequently made in allopurinol 
use2, and only 21% of patients randomized to allopurinol in a clinical trial 
achieved optimal uric acid levels40. The genes identified here may provide the 
opportunity for the identification of novel proteins and molecular mechanisms 
influencing uric acid levels, and the opportunity for the discovery of needed 
novel drug targets in order to ultimately improve the treatment of gout. 
Limitations to our study include the self-reported ascertainment of gout in 
FHS and ARIC, which could lead to misclassification and underestimation of 
the true magnitude of the genotype-phenotype association. We used slightly 
different definitions of gout across studies. Nonetheless, the findings remain 
consistent, highlighting their robustness. Hyperuricemia may have influenced 
the diagnosis of gout in our sample. However, gout was not ascertained at the 
same time that uric acid was measured; therefore, this is unlikely to account 
for the joint association of the SNPs with uric acid levels and gout. We note 
that the association between the SNPs and gout was not completely attenuated 
by adjustment for uric acid levels, which may be due to the fact that uric acid 
levels were measured before the onset of gout in the majority of cases.  Due 
to the limited power for GWA study for gout in this setting, we focused our 
genetic analyses on uric acid levels and only related SNPs for uric acid to 
gout. Therefore, there are likely to be additional loci for gout that we have not 
detected.  Finally, we assigned identical risk to each allele in creating the genetic 
risk score for ease of interpretation, as done previously42. 
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Abstract

Background 
Fibrinogen is both central to blood coagulation and an acute phase reactant. 

We aimed to identify common variants influencing circulation fibrinogen levels.

Methods 
We conducted a genome-wide association analysis on six population-based 

studies, the Rotterdam Study, the Framingham Heart Study, the Cardiovascular 
Health Study, the Atherosclerosis Risk in Communities Study, the MONICA/
KORA Augsburg Study, and the British 1958 Birth Cohort Study, including 
22,096 participants of European ancestry. 

Results  
Four loci were marked by one or more single nucleotide polymorphisms (SNPs) that 

demonstrated genome-wide significance (p<5.0×10-8). These included a SNP located in 
the fibrinogen β chain (FGB) gene and three SNPs representing newly identified loci. 
The high-signal SNPs were rs1800789 in exon 7 of FGB (p < 1.8×10-30), rs2522056 
downstream from the interferon regulatory factor 1 (IRF1) gene (p < 1.3×10-15), 
rs511154 within intron 1 of the propionyl coenzyme A carboxylase (PCCB) gene (p 
< 5.9×10-10), and rs1539019 on the NLR family, pyrin domain containing 3 isoforms 
(NLRP3) gene (p < 1.04×10-8). 

Conclusions 
Our findings highlight biological pathways that may be important in 

regulation of inflammation underlying cardiovascular disease. 
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Introduction

Elevated levels of fibrinogen within or above the normal range are 
consistently associated with an increased risk of cardiovascular disease1.
Fibrinogen has a key role in blood coagulation but is also known as a marker 
of inflammation. Studies in persons of European ancestry have estimated the 
heritability of multivariable-adjusted fibrinogen levels from 24% in multiplex 
families2 to more than 50% in twins3. The three genes encoding the three 
fibrinogen protein chains explain only a small part of the total estimated genetic 
variance of circulating levels of fibrinogen4. 

The objective of this study was to identify novel genetic loci related to plasma 
fibrinogen levels. A meta-analysis of genome-wide association (GWA) findings 
was conducted on six population-based studies. We analyzed GWA data of 
2,661,766 SNPs from one or more studies from a total of 22,096 participants of 
European descent.

Methods
The setting for this meta-analysis is primarily the Cohorts for Heart and 

Aging Research in Genomic Epidemiology (CHARGE) Consortium.5 CHARGE 
includes the Rotterdam Study (RS), the Framingham Heart Study (FHS), 
the Cardiovascular Health Study (CHS), and the Atherosclerosis Risk in 
Communities (ARIC) Study. In addition, data from the British 1958 Birth Cohort 
(B58C) and the MONICA/KORA Augsburg Study (KORA) has been included.

Rotterdam Study (RS)
The RS is a prospective, population-based cohort study of determinants of 

several chronic diseases in older adults6. In brief, the study comprised 7,983 
inhabitants of Ommoord, a district of Rotterdam in the Netherlands, who were 
55 years or over. The baseline examination took place between 1990-1993. 

Genotyping was conducted using the Illumina 550K array. SNPs were 
excluded for minor allele frequency ≤1%, Hardy-Weinberg equilibrium (HWE) 
p<10-5, or SNP call rate ≤90% resulting in data on 530,683 SNPs. Imputation was 
done with reference to HapMap release 22 CEU using the maximum likelihood 
method implemented in MACH. The final population for this fibrinogen analysis 
comprised 2,068 individuals. 

Framingham Heart Study (FHS)
The FHS started in 1948 with 5,209 randomly ascertained participants from 

Framingham, Massachusetts, US, who had undergone biannual examinations 
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to investigate cardiovascular disease and its risk factors7. In 1971, the Offspring 
cohort8,9 (comprised of 5,124 children of the original cohort, and the children’s 
spouses) and in 2002, the Third Generation (consisting of 4,095 children of 
the Offspring cohort), were recruited10. FHS participants in this study are of 
European ancestry.  

Genotyping was carried-out as a part of the SHARe project using the 
Affymetrix 500K mapping array (250K Nsp and 250K Sty arrays) and the 
Affymetrix 50K supplemental gene focused array on 9,274 individuals. 
Genotyping resulted in 503,551 SNPs with successful call rate >95% and HWE 
p>10-6 on 8481 individuals with call rate >97%. Imputation of ~2.5 million 
autosomal SNPs in HapMap with reference to release 22 CEU sample was 
conducted using the algorithm implemented in MACH. The final population 
for fibrinogen analysis included 7,022 individuals (Original Cohort n=383, 
Offspring n=2,806, Third Generation n=3,833).

Cardiovascular Health Study (CHS)
The CHS is a population-based, observational study of risk factors for clinical 

and subclinical cardiovascular diseases11. The study recruited participants 
65 years of age and older from four US communities in two phases: 5,201 
participants in 1989-1990, and 687 (primarily African American participants) 
in 1992-1993. A GWA study was conducted in a subset of CHS participants 
(n=3,980), all of whom were without clinical cardiovascular disease at their 
baseline clinical visit and provided consent to use their DNA for research. The 
study sample used in the fibrinogen analysis represented the first two of three 
rounds of genotyping, which was a stratified probability sample. Weights were 
assigned to each observation to reflect the likelihood of sampling from the 3,980 
participants. The analysis was restricted to participants of European decent. 

Genotyping was performed using the Illumina 370 CNV BeadChip system. 
Samples were excluded for sex mismatch, discordance with prior genotyping, 
or call rate <95%. SNPs were excluded from analysis when monomorphic, when 
HWE p<10-5, and when call rates were <95%. Imputation was performed using 
BIMBAM v0.95 with reference to HapMap CEU using release 21A build. The 
population available for the fibrinogen analysis included 1,993 individuals. 

The Atherosclerosis Risk in Communities (ARIC)
The ARIC study is a longitudinal cohort study of atherosclerosis and its 

clinical sequelae. It recruited a population-based sample of 15,792 men and 
women aged 45-64 years from four US communities in 1987-8912. The analysis 
was restricted to subjects of European decent. 

Genotyping was performed using the Affymetrix Genome-Wide Human 
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SNP Array 6.0. SNPs were excluded for not being autosomal SNPs, not passing 
laboratory QC, no chromosome location, minor allele frequency ≤1%, SNP call 
rate <90%, or HWE p<10-6.  This resulted in data on 716,442 SNPs. Imputation 
to HapMap SNPs was performed using MACH. After excluding subjects who 
disallowed DNA use, subjects with a mismatch between called and phenotypic 
sex, with a mismatch on >10 of 47 previously analyzed SNPs in ARIC, all 
but one in sets of first degree relatives, and other individuals who were 
genetic outliers, the final population for fibrinogen analysis comprised 8,051 
individuals. 

The MONICA/KORA Augsburg Study (KORA)
The presented data were derived from the third population-based Monitoring 

of Trends and Determinants in Cardiovascular Disease (MONICA)/Cooperative 
Health Research in the Region of Augsburg (KORA) survey S313. This cross-
sectional survey covering the city of Augsburg (Germany) and two adjacent 
counties was conducted in 1994/95 to estimate the prevalence and distribution 
of cardiovascular risk factors among individuals aged 25 to 74 years as part 
of the WHO MONICA study. The MONICA/KORA S3 study comprises 4,856 
subjects. Among them, 3,006 subjects participated in a follow-up examination of 
S3 in 2004/05 (MONICA/KORA F3). All participants underwent standardized 
examinations including blood withdrawals for plasma and DNA. For the KORA 
genome-wide association study, 1,644 subjects, aged 45 to 69 years were selected 
from the KORA S3/F3 samples.  

Genotyping was performed using the Affymetrix 500K Array Set. Samples 
were excluded for sex mismatch, discordance with prior genotyping, or call 
rate <95%. SNPs were excluded from analysis when monomorphic (MAF<0.01), 
when call rates per SNP were <0.1 and per individual were <0.1. Imputation was 
done using maximum likelihood method implemented in MACH 1.0. The final 
population available for the fibrinogen analysis included 1,523 individuals. 

British 1958 birth cohort (B58C)
The B58C is a national population sample followed periodically from birth. 

At age 44-45 years, 9,377 cohort members were examined by a research nurse in 
the home as described previously14. For this study we used a total of 1,480 cell-
line-derived DNA samples from unrelated subjects of European ancestry, with 
nationwide geographic coverage, which were used as controls by the Wellcome 
Trust Case Control Consortium (WTCCC)15. 

Genotyping was performed using the Affymetrix 500K Mapping Array Set 
using the call algorithm CHIAMO as implemented by the WTCCC15. Genotypes 
at other loci were imputed by the program IMPUTE version 0.1.2, using 490,032 
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autosomal SNPs with CHIAMO calls and the linkage disequilibrium patterns 
in the HapMap CEU panel. Analysis of imputed genotypes used Marchini’s 
SNPTEST version 1.1.3 and supplementary regression modeling used STATA 
version 10.0. A final sample size of 1,459 individuals was included in the 
fibrinogen analysis. 

Measurement of fibrinogen
In the KORA study, fibrinogen was determined by an immunonephelometric 

method (Dade Behring Marburg GmbH, Marburg, Germany) on a Behring 
Nephelometer II analyzer. FHS study used the Clauss method16 in the offspring 
and the third generation subjects, and a modified method of Ratnoff and 
Menzie17 in the original cohort subjects. In the RS, fibrinogen levels were derived 
from the clotting curve of the prothrombin time assay using Thromborel S as a 
reagent on an automated coagulation laboratory 300 (ACL 300, Instrumentation 
Laboratory, Zaventem, Belgium). The other studies used the Clauss method for 
measuring plasma fibrinogen16. 

Statistical analysis
Each study independently analyzed their genotype-phenotype data. Except 

for FHS, which has a family structure, all studies conducted analyses of all 
directly genotyped and imputed SNPs using linear regression on untransformed 
fibrinogen measures using an additive genetic model adjusted for age, sex, 
and site of recruitment (if necessary). In FHS, a linear mixed effects model was 
employed with a fixed additive effect for the SNP genotype, fixed covariate 
effects, random family specific additive residual polygenic effects to account for 
within family correlations18, and a random environment effect. In addition, FHS 
adjusted for population stratification using principal components of the directly 
measured SNPs which were computed using the Eigenstrat software. 

To account for residual stratification, p-values were adjusted for genomic 
inflation. The inflation of the association test statistic, stated as inflation factor 
lambda (λgc), was small for all studies: 0.995 for RS, 1.016 for FHS, 1.031 for 
CHS, 1.024 for ARIC, 1.012 for KORA, and 1.008 for B58C. Using the study-
specific results, we conducted a fixed effect model meta-analysis based on 
inverse-variance weighting. MetABEL, a package running under R was used 
to perform the meta-analysis. We used Bonferroni correction to deal with the 
problem of multiple testing. Simulation studies show that the effective number 
of independent tests in a GWA analysis is nearly one million19. Based on one 
million tests, we selected a p-value threshold of 5×10-8 as the level of genome-
wide significance. 

In addition, we estimated the effect of the top SNPs in strata of sex and 
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smoking status. Gene-by-sex and gene-by-smoking interaction was tested in 
each study by introducing an interaction term into the linear model. We used 
a sample size weighted meta-analysis to combine the reported interaction 
p-values across studies for each of the top SNPs. 

The authors had full access to and take full responsibility for the integrity of the data. 
All authors have read and agree to the manuscript as written.

Replication in Women’s Health Genome Study (WHGS)
We used the WHGS to replicate our genome wide significant findings and 

other loci for which our meta-analysis generated more modest evidence of 
an association (p-value of 5×10-7). Participants in WGHS are derived from 
the genetic arm of the Women’s Health Study and include American women 
with no prior history of cardiovascular disease, cancer, or other major chronic 
illness who provided a baseline blood sample during the enrollment phase 
of the Women’s Health Study between 1992 and 199520. Fibrinogen levels 
were measured using an immunoturbidimetric assay (Kamiya Biomedical, 
Seattle, Wash), which was standardized to a calibrator from the World Health 
Organization. Genotyping was done using the Illumina Infinium II assay to 
query a genome-wide set of 315,176 haplotype-tagging SNP markers (Human 
HAP300 panel) as well as a focused panel of 45,882 missense and haplotype 

Figure 1. 
QQ-plot for the meta-analysis results. Quantile-quantile plot of the observed and the 
expected distribution of p-values for all 2,661,766 SNPs and their association with 
fibrinogen levels based on meta-analyzed data. 
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Figure 2. 
Log plot for the meta-analysis. -Log p-values for each of the 2,661,766 tests performed as 
part of the genome-wide association analysis of fibrinogen levels. The grey dashed horizontal 
lines correspond to the p-value threshold of 5×10-8 and the grey solid line corresponds to 
5×10-6.

tagging SNPs. For this analysis, the evaluation was performed on 17,686 non-
diabetic individuals who were of Caucasian ancestry and were not taking lipid-
lowering agents. The GWA results of the WHGS are reported in a companion 
manuscript. 

Results
The sample size and participant characteristics from each study are shown 

in Table 1. A quantile-quantile plot (Q-Q plot) of the observed against 
expected p-value distribution is shown in Figure 1. Figure 2 illustrates the 
primary findings from the meta-analysis and presents p-values for each of the 
interrogated SNPs across the 22 autosomal chromosomes. A total of 73 SNPs 
(supplemental Table 1) exceeded the threshold of genome-wide significance and 
clustered around four loci on chromosomes 1 (2 SNPs), 3 (12 SNPs), 4 (23 SNPs), 
and 5 (36 SNPs) (Figure 3). 

The strongest statistical evidence for an association was for rs1800789 which 
is located at 4q31.3 in exon 7 of the fibrinogen ß (FGB) gene (minor allele 
frequency [MAF]: 0.20-0.24, meta-analysis p-value = 1.75×10-30, fibrinogen level 
change per minor allele [D]: 0.087 g/L). The other significant loci were marked 
by rs2522056, which is located at 5q23.3, 25 kb downstream of the interferon 
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Table 3 – Mean(SD) plasma fibrinogen level (g/L) by genotype 

SNP Study Sample 
size

Fibrinogen Sample 
size

Fibrinogen Sample 
size

Fibrinogen

GG AG AA
rs1800789 RS 1,328 2.8 (0.69) 652 2.9 (0.66) 88 3.0 (0.69)

FHS 4,489 3.2 (0.69) 2,250 3.3 (0.66) 283 3.4 (0.70)
CHS 1,290 3.1 (0.62) 624 3.2 (0.63) 79 3.3 (0.61)
ARIC 4,908 2.9 (0.62) 2,730 3.0 (0.59) 413 3.0 (0.67)
KORA 884 2.8 (0.64) 533 3.0 (0.70) 106 3.0 (0.66)
B58C 928 2.9 (0.61) 471 3.0 (0.55) 59 3.0 (0.60)

GG AG AA
rs2522056 RS 1,349 2.8 (0.68) 641 2.8 (0.69) 78 2.7 (0.72)

FHS 4,364 3.3 (0.68) 2353 3.2 (0.66) 305 3.1 (0.74)
CHS 1,239 3.2 (0.61) 754 3.1 (0.63) 0 NA
ARIC 4,946 2.9(0.62) 2,592 2.9 (0.61) 318 2.8(0.63)
KORA 951 2.9 (1.01) 493 2.8 (1.01) 79 2.7 (1.02)
B58C 971 3.0 (0.59) 438 2.9 (0.58) 50 2.9 (0.59)

GG AG AA
rs511154 RS 1,253 2.8 (0.67) 706 2.8 (0.70) 109 2.9 (0.74)

FHS 4047 3.2 (0.67) 2,536 3.3 (0.70) 439 3.2(0.66)
CHS 1,206 3.2 (0.60) 687 3.2 (0.63) 100 3.3 (0.69)
ARIC 4,925 2.9 (0.61) 2,712 2.9 (0.62) 414 3.0 (0.62)
KORA 946 2.9 (0.68) 503 2.9 (0.63) 74 3.0 (0.62)
B58C 834 2.9 (0.60) 541 3.0 (0.57) 84 3.1 (0.59)

CC CA AA
rs1539019 RS 762 2.8 (0.69) 987 2.8 (0.69) 319 2.8 (0.65)

FHS 2,419 3.3(0.68) 3,428 3.2(0.69) 1,175 3.2 (0.65)
CHS 686 3.2 (0.63) 991 3.2 (0.61) 316 3.2 (0.61)
ARIC 3,041 2.9 (0.63) 3,721 2.9 (0.60) 1,011 2.9 (0.60)
KORA 530 3.0 (0.73) 715 2.9 (0.63) 278 2.8 (0.60)

  B58C 524 3.0 (0.62) 653 2.9 (0.57) 257 2.9 (0.59)

 RS: The Rotterdam Study; FHS: The Framingham Heart Study; CHS: The Cardiovascular Health Study; ARIC, 
The Atherosclerosis Risk in Communities Study; KORA: The MONICA/KORA Augsburg Study; B58C: British 
1958 birth cohort

regulatory factor 1 (IRF1) gene (MAF: 0.17-0.21, p = 1.3×10-15, D: -0.063 g/L), 
rs511154, which is located at 3q22.3, in intron 1 of the propionyl coenzyme A 
carboxylase, beta polypeptide (PCCB) gene (MAF: 0.21-0.24, p = 5.94×10-10, D: 
0.045 g/L) and rs1539019 which is located at 1q44, on the NLR family, pyrin 
domain containing 3 isoforms (NLRP3) gene (MAF: 0.37-0.42, p = 1.04×10-8, 
D: -0.038 g/L). Cohort-specific findings are presented for the top SNP within 
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Figure 3. 
Regional plots of loci associated with fibrinogen. (a-d).  The association p-values (-log10 
transformed, indicated by the left y-axis) for SNPs in a 100kb region of each of the four loci 
( FGB,  IRF1,  PCCB, and NLRP3) are plotted against their chromosome positions (NCBI 
build 36) on x-axis. The black diamond represents the SNP with smallest p value. The 
linkage disequilibrium (estimated using HapMap CEU sample) between each SNP and the 
top associated SNP is illustrated by color and the shape of each SNP. The gray diamond 
indicates complete LD, gray triangle with point-up indicates LD between 0.8 and 1.0, a 
black diamond with point up indicates LD between 0.8 and 0.3, a white triangle indicates 
LD between zero and 0.3 and white point-down triangles indicate no LD. The light gray 
line shows the estimated recombination rates with values indicated by the right y-axis. The 
bottom panel displays the genes in the region based on the UCSC Genome Browser March 
2006 assembly, with the arrow to right (left) indicate indicating +(-) strand.

each locus in Table 2. Results did not change materially when we adjusted the 
model for other covariates (smoking, alcohol consumption, body mass index, 
systolic blood pressure, triglyceride, total- and HDL-cholesterol, diabetes, and 
cardiovascular disease) (data not shown). Table 3 shows the mean and standard 
deviations for fibrinogen levels by genotype for each of the four SNPs.  

We estimated the association of the four SNPs by sex and smoking status separately 
but none of the SNPs showed a significantly different association between subgroups 
(Supplementary Table 2 and 3). 

	 A combined risk alleles score summarizing the number of risk alleles 
was associated with a 15% increase in overall mean fibrinogen level comparing 
subjects with no risk allele (mean fibrinogen level 2.81 g/L) to subjects with 
six or more risk alleles (mean fibrinogen level 3.24 g/L). The genetic variants 
identified in our study explained less than 2% of the overall variance in plasma 
fibrinogen in all studies except one. 

To investigate the validity of our findings, we sought replication of the four 
loci using WHGS data. Since WHGS did not genotype the identical SNPs as 
our six cohorts, the best proxy SNP was used for replication. For rs1800789, 
rs2522056, rs511154, and rs1539019, we used WHGS SNPs rs6056 (r2=0.95; 
p=8.04×10-39), rs1016988 (r2=0.80; p=1.24×10-12), rs684773 (r2=1.0; p=1.92×10-5), 
and rs1539019 (p=2.89×10-4), respectively, as the proxy SNP. The direction of 
each association in WHGS was consistent with our findings.

	 In addition to our four genome-wide significant loci, two other loci 
demonstrated multiple-SNP hits with p-values <5×10-7: one on chromosome 
2 (rs4251961, p=3.5×10-7) and one on chromosome 14 (rs8017049, p= 5.6×10-7). 
When we examined the results for these two loci in the WHGS data, we found 
evidence for replication on chromosome 2 ( rs4251961 in WHGS, p=8.5×10-3). 
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Discussion

We identified four loci associated with circulating fibrinogen level through a 
meta-analysis of GWA data from six cohort studies comprising 22,096 subjects. 
We provide strong information of the previously reported associations with the 
FGB locus. Three of our findings are newly identified associations. 

The most significant SNP in our study was rs1800789 which is located on the 
FGB gene. The FGB gene encodes the fibrinogen ß chain. A well-characterized 
SNP at this locus is rs1800787 (–148C/T) which resides 965 base pairs away from 
our top SNP (rs1800789) and is in high LD with it (D’~1.0, r2=0.91). It is known 
that rs1800787 directly affects gene transcription in basal and IL6-stimulated 
conditions in luciferase expression studies21. Another well-characterized SNP 
in this region is rs1800790 (455G/A), which is also in strong LD with rs1800787, 
is known to be related to plasma fibrinogen22 and showed a strong association 
with fibrinogen levels in our study as well (p=5.04×10-27, Supplementary Table 
1). 

The second locus is located 25 kb downstream from the IRF1 gene on 
chromosome 5. IRF1 is a member of the interferon regulatory transcription factor 
family and activates transcription of interferon α and ß. IRF1 also functions as a 
transcription activator of genes induced by interferon α, β and γ. Direct effects 
of interferons on fibrinogen have not previously been described, but it is known 
that they play a role in the regulation of acute phase proteins. Notably, the SNP 
is only 31 kb from a SNP strongly associated with Crohn’s disease in a recent 
meta-analysis (rs2188962, p<2.32×10-18)23. Individuals with inflammatory bowel 
disease (IBD), including Crohn’s disease, are at a threefold higher risk of venous 
thrombosis24, accounting for substantial morbidity and mortality in this group25. 
Furthermore, multiple studies have indicated significantly elevated levels 
of fibrinogen in IBD patients26. This suggests that IRF1 or nearby genes may 
contribute to Crohn’s disease via a mechanism mediated through an increase in 
acute phase responsiveness and fibrinogen levels.

The third locus on chromosome 3 is located in intron 1 of the PCCB gene. The 
PCCB gene is responsible for a particular step in the breakdown of the amino 
acids isoleucine, methionine, threonine, and valine. However, the available 
information about PCCB does not provide a strong hypothesis about the 
putative function of the gene in regulation of fibrinogen levels. 

The fourth locus on chromosome 1 is located on the NLRP3 gene. The 
NLRP3 gene encodes a pyrin-like protein, which interacts with the apoptosis-
associated speck-like protein PYCARD/ASC and is a member of the NALP3 
inflammasome complex27. Activated NALP3 inflammasome drives processing 
of the pro-inflammatory cytokine pro-IL1ß to IL1ß. Recent data indicate that 
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the NALP3 inflammasome can be activated by endogenous ‘danger signals’ as 
well as compounds associated with pathogens and triggers an innate immune 
response28. 

The finding on chromosome 2 is located in the promoter region (1 kb 
upstream from the transcription start site) of the interleukin-1 receptor 
antagonist (IL1RN) gene. Fibrinogen is an acute phase protein that is regulated 
by cytokines, mainly IL1 and IL6, while the IL6-mediated transcription of the 
fibrinogen gene is inhibited by IL1ß29. This region has formerly reported to 
be associated with fibrinogen levels; rs2232354, which is in high LD with our 
top SNP, rs4251961, was associated with fibrinogen levels in an asymptomatic 
population30.  

Our findings were replicated in WGHS. Two of our four SNPs are reported 
by WGHS as genome-wide significant findings (rs6056 and rs1016988) and the 
other two have p-values which suggest non-chance findings in a replication 
(rs684773 and rs1539019). These results provide further credibility that our 
newly identified loci are valid. 

We examined evidence for the top four fibrinogen loci among gene expression 
QTLs from recent GWA studies in human liver tissues31 and lymphoblastoid 
cell lines32. In liver tissues, SNPs at the FGB locus were strongly associated 
with the expression of FGB (e.g., rs4508864, p<1.20×10-8) as well as with other 
trans-located mRNAs. Likewise, we observed that several SNPs in the region 
of the IRF1 locus were strongly associated with the expression of nearby 
genes (including IRF1, LOC441108, and SLC22A5) in both liver tissues and 
lymphoblastoid cell lines (e.g., rs2070729, p=4.9×10-10 for expression of the IRF1 
gene). These results from independent genome-wide association studies strongly 
suggest a functional basis for the observed associations in the FGB and IRF1 loci. 

Although heritability estimates for circulating fibrinogen are substantial, the 
genetic variants identified in our study explain only a small part of the overall 
variance. Therefore, our SNPs probably have limited value in prediction of 
cardiovascular disease. Rare variants, common variants with smaller effects, 
or variants which interact with other genetic and environmental factors may 
explain the remaining variation in plasma fibrinogen levels. 

Fibrinogen was measured independently in the six cohorts. Though methods 
for measuring fibrinogen concentration were not standardized, they were all 
based on the Clauss method or another clotting assay, except for KORA which 
used nephelometry. Nonetheless, the effect estimates for the top SNPs were 
comparable between KORA and other studies. 

Contributing studies used different genotyping platforms with different 
groups of SNPs. To enable the meta-analysis, each study imputed ~2.5 million 
SNPs in HapMap CEU samples. Imputation has previously been shown to be 
accurate and to increase the power. The power, of course, would have been 
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higher if all SNPs were genotyped in all studies.
In conclusion, we have identified four loci associated with fibrinogen levels 

through meta-analysis of GWA data from six cohort studies comprising 22,096 
subjects. All four loci replicated in a seventh study. In addition, we replicated 
one of the two other loci which showed a close to significant association in 
our meta-analysis and is biologically plausible. Three of our findings (IRF1, 
PCCB, and NLRP3)  represent newly identified associations. Among the genes 
in the novel loci implicated in our study are those that encode proteins playing 
a role in inflammation representing interesting targets for further research 
into biological pathways involved in cardiovascular disease and other chronic 
inflammatory conditions.  
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The main objective of the work described in this thesis was to expand our 
knowledge on novel risk factors for diabetes and coronary heart disease. We 
examined serum CRP and serum uric acid, as novel risk factors for type II 
diabetes and coronary heart disease (CHD). We further performed studies to 
identify genetic variants that affect CRP and uric acid and additionally also 
those affecting fibrinogen levels. We performed a number of studies in the 
frame-work of the Rotterdam study1-3. In genome-wide association (GWA) 
studies, we extended our work by participating in a consortium of population-
based cohort studies, the CHARGE consortium.

In this discussion, the main findings are summarized. Furthermore, some 
methodological issues that came up in these studies will be addressed. Finally, 
potential clinical implications and views for future research are presented. 

Review and interpretation of main findings
Novel risk factors for diabetes mellitus

In chapter 2.1, we provided support for an etiologic role of CRP in the 
pathogenesis of type II diabetes. We performed a meta-analysis to obtain 
evidence from the literature for an association between serum CRP and type II 
diabetes, independent of obesity. To further elaborate on the independent role 
of CRP in risk of diabetes, we showed that a genetically determined elevation 
of serum CRP is associated with a higher risk of type II diabetes. The method 
used to examine causality in observational genetic studies is Mendelian 
randomization. This approach will be discussed in detail in the section on 
methodological considerations. However, a recent study did not observe an 
increased risk of type II diabetes with genetically increased serum CRP4. Since 
the CCG haplotype which showed the association in our study was rather rare, 
one possibility is that our finding is due to chance. In chapter 2.2, we showed 
that a considerable proportion of type II diabetes cases could be attributed to 
high serum CRP. 

Studies such as those described in chapters 2.1 and 2.2 provide evidence that 
serum CRP has a causal role in type II diabetes. To further elaborate this issue, 
we used Hill’s criteria to categorize the present evidence (box1). These criteria 
are not used to judge on causality, but mere to evaluate the present evidence. 
The use of Hill’s criteria in the process of judging about causation is further 
discussed in the paragraph on methodological considerations. 

In chapter 2.3, we showed that higher levels of serum uric acid are associated 
with risk of developing type II diabetes. The association was strong and 
remained significant after adjustment for other risk factors for diabetes. In the 
same chapter, we estimated that one quarter of diabetes cases are attributable 
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to a high serum uric acid level. This finding, together with former studies on 
other diseases such as hypertension5 and stroke6, may point to serum uric acid 
as a novel treatment target for preventing diabetes and its complications. The 
finding may also make a case for randomized controlled clinical trials to assess 
the possible benefits of lowering serum uric acid on multiple chronic disease 
endpoints. 

Novel risk factors for coronary heart diseases
Numerous epidemiologic studies have reported that CRP is an independent 

risk factor for cardiovascular disease7. In chapter 3.1, we examined the influence 
of high serum CRP and six traditional risk factors on risk of MI and CHD. 
Theoretically, a larger part of MI and CHD cases can be prevented by lowering 
serum CRP compared to any other traditional risk factor, except for serum 
cholesterol. Body mass index, total cholesterol, HDL-cholesterol, smoking, 
hypertension, and diabetes accounted for more than half of the risk of CHD in 
subjects 55 years and older.

In addition to these traditional risk factors, CHD has a familial basis; a 
positive family history increases the risk of CHD by a factor 2 to 4. Though 
candidate gene and linkage studies were successful in identifying causative 
mutations in monogenic cardiovascular diseases, they were not successful in 
identifying multiple causative genes that account for non-Mendelian diseases 
such as MI and CHD. GWA studies as the novel approach to investigate related 
genes are supposed to produce better replicable results. The first GWA studies 
on MI and CHD introduced a locus at 9p21.3 that was associated with risk of 
MI and CHD. This locus does not contain protein-coding genes, therefore it 
is likely that it affects the risk of MI and CHD through affecting a regulatory 
region of DNA. In chapter 3.2, we set out to replicate this association. We found 
no significant association between two SNPs from this locus and the risks of 
CHD and MI in the Rotterdam Study. Since this finding is by now replicated 
in many other populations, the lack of association in our study is of interest. 
The Rotterdam Study is a study in an older population. It is possible that genes 
involved in the development of CHD are different in young and older people. If 
that is the case, our finding is suggestive of  a heterogeneity of the effect, which 
not only may be of interest for public health, but also may be of interest  from an 
etiologic perspective.  

Genome wide association studies of novel risk factors
In chapters 4.1, 4.2 and 4.3, we report results from three meta-analysis of GWA 

studies on novel risk factors including CRP, uric acid and fibrinogen levels. We 
confirmed six known loci8 associated with circulating CRP levels (CRP, APOE 
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(APOC1), HNF1A, LEPR, IL6R, GCKR, and ASCL). We also identified three loci with 
uric acid level (SLC2A9, ABCG2 and SLC17A3) and four loci with fibrinogen (FGB, 
IRF1, PCCB, and NLRP3). 

The genes we found for CRP levels are related to immune response and metabolic 
regulation. Finding that genes related to metabolic pathways are involved in the 
regulation of CRP level is interesting, given that diet, exercise, and glucose control all 
lower CRP levels.  

Interestingly, the genes we found for fibrinogen encode proteins that play a role in 
inflammation. Elevated levels of fibrinogen are a known sign of chronic inflammation 
and predict increased risks for MI and CHD. The identified genes may provide insight 
into novel biological pathways that connect chronic inflammation and CHD. 

Uric acid levels are determined by its production (degradation of purine compounds) 
and its elimination. Elimination of uric acid occurs mainly through the kidneys. Our 
GWA study on uric acid revealed the role of renal transporters in the regulation of uric 
acid levels. Our finding provides support for the view that genetic differences in uric 
acid levels are more due to genetic differences in its elimination rate in the kidneys 
rather than to differences in its production. 

Methodological considerations 
Causation

Causation is one of the most difficult concepts to study. The concept is highly 
self-taught and our understanding of it has changed over decades9. There is now 
a philosophical agreement that causation cannot be proven. However, medical 
literature is full of epidemiologic studies that seek causal roles for risk factors. 
It seems that epidemiologists have agreed on a more pragmatic definition of 
causation. As a working definition, a cause could be defined as an antecedent 
event, condition, or characteristic without which the disease event either would 
not have occurred at all or would have occurred at a later time10. 

In spite of criticisms of inductive inference, inductive oriented considerations 
are still used in epidemiologic studies9. Bradford Hill’s criteria are a set of 
requirements which could be used for this purpose. These criteria include 
strength of association, consistency of evidence (from different populations), 
specificity, temporal relationship, dose-response, biological plausibility, 
coherence, experimental evidence, and analogy11. Though these criteria do not 
prove a causal relation, its use helps epidemiologists to evaluate the available 
evidence for a causal role of a risk factor. Notably, Hill himself named these 
items as his “view points” and did not use the word “criteria”. In this sense, 
causal criteria appear to function less like standards or principles and more like 
values12.
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Even as a set of “values” or “view points”, Hill’s criteria have certain pitfalls. 
Though these criteria were developed in the time that epidemiology had 
started studying chronic complex disorders, they are based on a mono-causal 
mental set that is possibly inherited from the infectious diseases era. As an 

Box 1
Hill’s criteria for causality used for the example of CRP levels and 
risk of type II diabetes 

Strength. In a meta-analysis of published studies, we showed that elevated CRP 
level predicts approximately a two to three fold increase in the risk of 
type II diabetes. 

Consistency. An elevated serum CRP was found in most studies to be predictive 
for type II diabetes. 

Specificity. We showed that a considerable proportion of type II diabetes cases 
could be attributed to high serum CRP. Moreover, serum CRP was 
higher than 1 mg/l in more than 80% of those who developed type II 
diabetes. 

Temporality. An elevated serum CRP often precedes the development of type II 
diabetes. 

Dose-dependent. The association of high serum CRP and risk of type II diabetes is 
continuous and dose-dependent. 

Plausibility. Different biological mechanisms have been suggested by which 
elevated serum CRP may cause type II diabetes. 

Coherence. The global increase in the prevalence of type II diabetes is associated 
with an increase in the prevalence of risk factors that increase the CRP 
levels such as obesity and smoking. 

Experiment. The evidences for increased risk of type II diabetes associated with 
genetically elevated serum CRP is controversial.

Analogy. High serum CRP is also associated with risk of insulin resistance and 
metabolic syndrome. 
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example, specificity would always fail when dealing with a multifactor causal 
model. Consistency may be missing due to lack of interacting factors in certain 
populations, i.e. heterogeneity of the effect. Idiosyncratic drug reactions and 
non-linear relations would also not match with a dose-response relationship. 
Despite these drawbacks, Hill’s criteria are still in use13,14. 

Mendelian randomization
Observational studies, which comprise the majority of epidemiologic studies, may 

pose their own limitations when inferring a causal relation. Confounding effects and 
reverse causation are two major problems which may rise when investigating a causal 
relation in an observational study. Confounding bias happens when the effect estimate 
is distorted because it is mixed with or mistaken for the effect of an extraneous variable. 
Reverse causation is a process in which the disease occurs before the occurrence of the 
risk factor and the risk factor is present as a result of the disease.  

A randomized controlled trial (RCT) design is the best design to overcome these 
drawbacks and to assess the causality of a risk factor. Confounding bias is solved with 
the help of randomization and reverse causation is not an issue due to the longitudinal 
design of RCTs. Though an RCT is a good choice for investigating causation, in 
many instances it is neither practical nor ethical to randomize human beings to certain 
interventions. 

One alternative to an RCT is to perform an observational study with the so-called 
“Mendelian randomization” approach. In this approach, genetically elevated levels of 
the exposure are used to examine the non-confounded effect of the exposure on the 
outcome15. Though the Mendelian randomization approach is widely used, its pitfalls 
are sometimes not adequately acknowledged. Confounding by genetic factors (due to 
linkage disequilibrium) or population ancestry (population stratification), canalization, 
lack of power, and invalidity by pleiotropy are the most known limitations. 

However, there are more considerations that should be taken into account.  
To appropriately apply the Mendelian Randomization method, we need a functional 

genetic variant that associates with the exposure of interest. Recently, GWA studies have 
largely increased the number of genes known for each trait. One may think that these 
variants are all potential instruments for Mendelian randomization studies. However, 
the genetic variant should be specific for the exposure of interest. Non-specific genetic 
variants increase the chance that the variant is associated with the disease through 
pathways that do not involve the exposure. This would invalidate the results of a 
Mendelian randomization study. For instance, genetic variation in a leptin receptor 
gene, LEPR, is found to be associated with CRP levels8. This variant may seem to be an 
attractive candidate for a Mendelian randomization study on CRP and CHD, however, 
LEPR is possibly related to CHD through pathways that do not involve CRP. Moreover, 
GWA studies develop genetic risk scores that discriminate people with high and low 



146

General discussion

levels of the trait. Though these risk scores are very attractive due to their potential 
powerful effect on the exposure, the genetic variants are located on different genes and 
may confound the gene-disease association by altering the risk of the disease through 
other pathways (pleiotropy effect).   

Most of the genetic variants used in Mendelian randomization studies only explain a 
very small proportion of the variance of the exposure. When using such variants as an 
instrument, researchers may try to achieve enough power by increasing the sample size. 
Nevertheless, recent studies on instrumental variables show that extreme weakness of 
the instrument could not be compensated by a larger sample size16. 

Population attributable risk
Population attributable risk (PAR), the proportion of the disease risk that can be 

attributed to a risk factor, is used to express the importance of a risk factor from an 
etiologic or public health point of view. Though PAR is widely used, there are several 
issues that should be considered when interpreting the estimates. 

To estimate PAR, subjects should be labeled as exposed and unexposed. Dichotomous 
risk factors make this categorization by definition. When the risk factor is measured 
on a continuous scale, the exposed category is often defined using a cut-off point. 
Most of the time, the cut-off point is arbitrary and leaves the definition of the exposure 
to be broad or restricted. Such broad or restricted definitions may lead to incorrect 
conclusions about the importance of a risk factor. There are examples in the literature 
where a broad definition has spuriously overestimated the PAR17. This consideration 
also extends to genetic studies. Genetic studies, namely GWA studies, estimate the 
PAR for their findings to demonstrate the proportion of disease cases that theoretically 
could be prevented if the adverse effects of the genetic exposure were eliminated. For 
instance, one of the first GWA studies published on type II diabetes claimed that their 
findings together with a known gene, TCF7L2, would explain 70% of the incident 
diabetes cases18. One should note that the proportion of individuals exposed in genetic 
studies is determined by the allele frequency and the PAR estimate is affected by the 
frequency of the risk allele. When the risk allele is very common, the number of people 
who should receive an intervention to prevent the disease is high and may reach to 
nearly the whole population19. Moreover, misinterpreting a high PAR may lead to a 
misimpression that the majority of the disease genes are identified despite the fact that 
many (unknown) genetic variants may exist that interact with the currently known genes 
and environmental factors. 

The PAR estimates may be misinterpreted as the etiologic fraction20. The 
PAR formula only allows to calculate the excess fraction, i.e. the proportion 
of the diseased cases that would not happen if the exposure was eliminated. 
Etiologic fraction, however, is the proportion of the diseased cases in which the 
exposure played a causal role. While excess fraction is more of interest from a 
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public health point of view, the etiologic fraction is important in an etiologic 
framework. One should note that all excess cases are etiologic cases, but not vice 
versa. Therefore, the excess fraction is always smaller or utmost equal to the 
etiologic fraction. 

The combined PAR is the proportion of the diseased cases which would not 
happen if none of the risk factors were present. One important consideration is 
that PAR estimates for individual risk factors cannot be simply added together 
to calculate the combined PAR. The combined PAR is usually lower than the 
sum of individual PARs since a diseased case can simultaneously be attributed 
to more than one risk factor. Dual attribution happens since risk factors interact 
with each other. An exact combined PAR could only be estimated, if we had 
precise information on the magnitude of the interaction between the risk factors. 
Such information lacking is most of the time, therefore, we assume that the risk 
factors are only interacting with each other on a multiplicative scale. This is an 
important assumption which lies behind most of combined PAR estimates and 
should be considered when interpreting the results.  

There are different computational formulas to estimate the PAR. Due to this 
diversity, errors happen in estimating PAR21. Two common errors are to use 
the hazard ratios instead of cumulative risk ratios20 or use of the inappropriate 
formula for adjusted ratios22. PAR is the proportion of the disease cases that 
could be prevented within a distinct period of time. Hazard ratios express the 
point effect of a risk factor and lack information on the time period. Using 
adjusted ratios in the crude PAR formula is also problematic since the fraction of 
the outcome that is attributable to the confounder is not adequately accounted 
for23. 

Risk prediction
One effective way of preventing chronic diseases is to target preventive 

actions towards high-risk groups. To this end, it is essential to identify high-
risk groups in the most accurate way. In recent decades, a number of novel 
risk factors, both environmental and genetic, are found for type II diabetes and 
CHD. Nevertheless, researchers have not succeeded to improve the performance 
of traditional prediction models by adding these novel risk factors24,25, although 
some of them are strongly associated with risk of the disease. This discrepancy 
has led to extensive discussions about the evaluation methods of the prediction 
models. Here, we discuss a number of these considerations. 

The c statistic is the most popular method of assessing the performance of a 
prediction model, however, it is argued that it does not give a comprehensive 
evaluation of its performance26,27. A prognostic model should be evaluated both 
for discrimination and calibration. Discrimination is the ability of a model to 
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separate individuals who will develop the disease from those who will not. 
Calibration indicates how close the predicted probabilities are to the observed 
cumulative incidence rates. The c statistic is only a measure of discrimination. 
Therefore, the c statistic should not be the only tool to judge whether novel risk 
factors offer additional value in prognostic models28. 

Several new statistical methods have been proposed to evaluate the 
contribution of a novel risk factor to a prognostic model. Cook et al introduced 
the reclassification table method. Reclassification examines how individuals are 
assigned to categories of risk and how this assignment is altered by the addition 
of a new risk marker27. Pepe et al proposed a new graphic, the predictiveness 
curve, which is claimed to complement the risk model29. Pencina et al 
introduced two measures to quantify improvement in the correct assignment to 
risk categories in reclassification tables. The Net Reclassification Improvement 
(NRI) requires an a priori risk category and the Integrated Discrimination 
Improvement (IDI) extends the idea to the case of “no cut-offs”30. One should 
note that these two concepts measure discrimination and not calibration. 

Considerations about genome-wide association studies
Percentage of variance explained and the missing inheritability
Though GWA studies have identified many genetic variants for complex 

disorders, these variants only explain a small proportion of their heritability. 
Most speculation in the literature about the “missing” heritability focused 
on the possible contribution of rare variants. “Next generation” sequencing 
technologies are on the way and researchers envision that in the near future 
they will be able to shed more light on the unexplained heritability, which is 
nowadays termed as the ‘dark matter’ of GWA studies. 

Sequencing studies are thought to increase the percentage of heritability 
explained in two ways. The first is to find novel genetic variants with minor 
allele frequencies (MAF) less than 5% and substantial effect sizes (risk ratios of 
two to three)31. The second way is to find the functional variants of the known 
loci which will have a larger effect than the currently identified variants. Though 
sequencing is likely to some extent to succeed in both ways, it is possible that 
the unexplained heritability still remains as an unsolved problem for several 
reasons. 

Firstly, it is not clear how many unidentified rare variants with large effects 
exist. The power in GWA studies depends both on the MAF and the effect size. 
While increasing the sample size in GWA studies should increase the chance of 
discovery for both rare variants and the variations with modest or small effect, 
the largest meta-analysis GWA studies have more frequently identified variants 
with modest effect rather than rare variants.  
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Secondly, rare variants with large effects could also be identified by current 
GWA studies. As an example, in a recent GWA study on lipid levels, 11 out of 
30 loci which were found to carry common variants associated with lipid levels 
also carried rare variants known to cause Mendelian forms of dyslipidemia 32. 
Therefore, it is not clear what proportion of the rare variants with large effects is 
left unidentified. 

Thirdly, sequencing will provide detailed data on the order of DNA 
nucleotides; however, the majority of neighboring variants are in strong linkage 
disequilibrium (LD) with each other. The LD between genetic variants will make 
it difficult to disentangle the effect of these variants. To overcome this problem, 
we may need to study populations with shorter LD blocks such as Africans, or 
isolated populations who may have unique variants in their LD blocks. One 
other solution would be to pool the rare variants. Up to now, genetic variants 
are analyzed individually. If we can pool these variants based on biological or 
functional clusters, the carriers of the rare alleles are added together and the 
power of our study would be much larger33.

The missing heritability is the difference between the heritability index and 
the combined variation explained by all identified genes. The variability that 
is due to the genes could either be due to the effect of genes or be due to the 
interaction between the genes and environment. In estimating the heritability 
index we assume that there is no gene-environment interaction and we calculate 
the maximum contribution of genetic factors to the trait. In other words, the 
heritability index also includes the proportion of variation that is caused by 
gene-environment interaction. Therefore, it could be speculated that the missing 
heritability is at least partly due to the contribution of gene-environment 
interaction. 

Gene-environment interaction
GWA studies have identified hundreds of loci for complex diseases and their 

risk factors. However, hardly any genome-wide significant interaction has 
been reported that widely is replicated in different populations. Lack of robust 

Figure 1 
Three hypothetical suficient 
causes of a disease
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findings in gene-environment interaction analysis is usually attributed to lack 
of power in the identification study. Though most of these studies are indeed 
underpowered, other methodological and statistical considerations should be 
acknowledged. 

Due to modest effects, gene-environment interaction could be investigated 
only with adequate information of the life-time exposure. To date, a great 
proportion of the GWA studies on complex disorders are comprised of case-
control studies. Though it is easier to collect large sample sizes in a case-control 
design, adequate information on former exposure to environmental factors 
usually lacks in such studies. 

A common approach to investigate gene-environment interaction is to 
examine the interaction of genome-wide significant or suggestive loci with 
known environmental risk factors. Although it seems common sense to examine 
the interaction between the most promising predictors of the disease, there 
could also be downsides to this approach as described below. 

According to Rothman’s sufficient cause model, a disease occurs when all 
the component causes are present (figure 1). The set of component causes in a 
sufficient cause that completes a causal factor is called the causal complement of 
that factor. It is known that the magnitude of the effect for a risk factor depends 
on the availability of its causal complement. When the causal complement is 
rare, the risk factor has a small effect and when it is abundant, the effect is 
large10. 

For many years, epidemiologic studies have searched for strong risk factors 
which consistently show the association in different populations. This means 
that most of the known risk factors have no genetic component in their 
complement factor or the necessary genetic variant is present in the majority of 
the population. Likewise, genetic variants which are found in GWA studies are 
probably not highly dependent on the existence of an environmental exposure 
since their effect is usually consistent in different age groups and populations. 
Therefore, choosing the genome wide significant genes may not be the best 
approach in searching for gene-environment interaction. Though the most 
powerful method should be figured out statistically, it could be speculated that 
genetic variations with modest but heterogeneous effect are more promising. 

Replication and significance level
GWA studies are hypothesis free and their primary function is hypothesis 

generating. Replication is a critical step that improves the validity of the 
findings34. When the findings of a GWA study are replicated in several 
independent studies, the risk of a false-positive report diminishes and 
the validity of the finding is established. To provide a replication sample, 
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some GWA studies employ a two-stage design; a discovery panel and a 
replication panel. The discovery panel is normally comprised of studies with 
GWA information. The most promising findings of the discovery panel are 
genotyped in the replication panel. There are debates over a few methodological 
and statistical aspects of this approach. Here we review some of these 
considerations. 

The first issue concerns the selection of SNPs taken to the next stage. Most 
studies take the genome-wide significant and a number of the suggestive 
SNPs to the next stage. The definition of suggestive loci is arbitrary. Using 
the p-value threshold where the Q-Q plot deviates from the diagonal line is 
reasonable. From this point onwards, true positive associations are expected. 
However, the definition may practically depend on biologic, logistic or financial 
considerations. Another issue is the number of SNPs that should be chosen from 
each locus. There is normally more than one significant or suggestive SNP per 
locus and the researcher should decide on the number of SNPs that should be 
replicated per locus. When the locus is too wide or the correlation between the 
SNPs is low, there is a need to choose more than one SNP, however, there is no 
definite guideline and the decision usually is made on arbitrary grounds. 

Second, there is no consensus on how to interpret the results in the replication 
panel. Using a Bonferroni correction to adjust for the number of tests is 
criticized since the number of SNPs taken to the second phase is arbitrary. Some 
studies combine the results of both panels and use the genome-wide significance 
threshold for p-value level, i.e. 5×10-8, or compare the discovery phase and 
the combined results and look for improved p-values. Though these latter 
approaches may be successful in discovering further loci, it should not be taken 
as replication. 

In the GWA studies described in this thesis, we included all studies in the 
discovery panel. One practical reason was that all these studies had genome-
wide data and this approach is more powerful35. We have sought replication 
in studies that could not be included in our discovery panel. In chapter 4.2, the 
Rotterdam Study and the Framingham Heart Study constructed the discovery 
panel and the ARIC study which did not have GWA scans at that point in time 
replicated the results. In chapter 4.3, we replicated our findings in the Women’s 
Genomic Health Study, an independent population with data on the relevant 
phenotype. Chapter 4.1 describes a study that confirmed findings of a published 
GWA study and therefore did not need further replication. 

Need for collaborative work in GWA studies
In a GWA study, we scan the majority of the variation in the genome of 

thousands of unrelated individuals and examine it in relation to the phenotype 
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of interest, free of any prior hypotheses. Though the approach is innovative 
and powerful, there is a need for large sample sizes - to prevent false negative 
findings - and replication - to prevent false positive findings. Since these 
two requirements are most of the time beyond the possibilities of a single 
study, collaborative work between the studies is necessary. As a successful 
example, the Cohorts for Heart and Aging Research in Genomic Epidemiology 
(CHARGE) consortium was formed to improve the statistical power of 
GWA studies and facilitate replication opportunities among multiple large 
population-based cohort studies36. The CHARGE consortium includes five 
prospective cohort studies from the United States and Europe: the Age, Gene/
Environment Susceptibility—Reykjavik Study (AGES), the Atherosclerosis Risk 
in Communities Study (ARIC), the Cardiovascular Health Study (CHS), the 
Framingham Heart Study (FHS), and the Rotterdam Study. In this thesis, we 
describe three studies in chapters 4.1, 4.2, and 4.3 that were performed within 
the framework of this consortium. 

Since most of the variants with large effects are already identified, current 
studies are even performed with larger sample sizes. For instance, we have 
extended our GWA study on CRP levels to studies outside of the CHARGE 
consortium and collected data from more than 65,000 individuals from 15 
studies. 

Clinical implications 
A first clinical implication of the finding of novel risk factors for type II 

diabetes and CHD is the use of these novel factors in prediction models. Among 
many inflammatory markers, CRP is the strongest and the most consistent novel 
risk factor that is associated with the risks of type II diabetes and CHD. There is 
evidence suggesting that adding CRP to risk prediction models among initially 
intermediate-risk individuals improves risk stratification37-39. Whether this 
added value would lead to clinically meaningful reclassification is doubted40. 
Methodological aspects of the correct method of assessment of additive value 
were discussed in the former section on “Risk prediction”. 

A second clinical implication of the search for novel risk factors is to find a 
target population for lifestyle and therapeutic interventions. In a recent trial, 
the JUPITER trial, rosuvastatin significantly reduced the incidence of major 
cardiovascular events in healthy individuals, who had no hyperlipidemia but 
had elevated CRP levels 41. In general, targeting treatment only based on LDL-
cholesterol has not provided optimal risk reduction for many individuals. The 
result of the JUPITER trial suggests that some of the benefits of rosuvastatin may 
relate to a reduction in inflammation. Nevertheless, the biological mechanism 
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does not need to be known when applying the result of trials like the JUPITER 
trial in clinical practice. 

Third, GWA studies may increase our knowledge regarding the etiology and 
pathophysiology of the studied diseases. Like novel risk factors, GWA findings 
can contribute to the development of new therapies. In spite of the view that 
considers GWA findings far from clinical use, early clinical application of them 
is not unexpected. One example is the rapid development of a treatment strategy 
for age-related macular degeneration based on inhibitors of complement 
activation42. GWA findings may also help in risk prediction. Although the loci 
introduced up to now may not be enough to predict type II diabetes43 or CHD 
events44, they may together with the genes that will be discovered in the future 
- and possibly the information on gene-environment interaction - enable us to 
stratify people on their risk of different diseases. 

Plans for future research
In the last two years, the work for this thesis focused on exploring the 

genetic structure of novel risk factors for type II diabetes and CHD. We have 
succeeded in identifying a number of loci for levels of CRP, uric acid, and 
fibrinogen through GWA studies. The main aim of future research should be the 
exploration of the unexplained variation of the traits. Moreover, we still have 
a long way to go from GWA findings to causal variants. Finally, all the efforts 
would be fruitless unless we find proper clinical applications for our findings. 

In the coming years, GWA studies will probably remain as a suitable 
approach to identify novel loci for different traits. Novel findings, however, 
would be achievable only through enhanced statistical power. Mega meta-
analysis or a large collection of individual studies will make it possible to 
achieve GWA information of tens of thousands or even hundreds of thousands 
of individuals. In line with this strategy, we have now extended our GWA 
studies for CRP to nearly 65,000 individuals and for uric acid  to nearly 30,000 
individuals. A large meta-analysis for fibrinogen is planned for the near future. 
Worthy to mention, the availability of a large sample size would also increase 
the chance of finding important gene-environment interactions. 

The search for causal variant will not be an easy task. GWA studies have so 
far only marked wide loci in which one or more variants are associated with 
the trait. One approach to find the exact functional variant(s) would be targeted 
regional sequencing of the genome. Fortunately, sequencing technologies 
are becoming less expensive and more affordable. Moreover, the CHARGE 
consortium is planning to extend its collaborative work to sequencing efforts 
which will provide a unique substructure for such studies. Furthermore, 
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functional work will help to extend our understanding of the mechanism by 
which the gene affects the trait. 

We can further increase our etiologic knowledge by applying GWA findings 
to other traits. When conducted in a population independent from the discovery 
panel, testing GWA findings with other relevant traits is an effective strategy to 
extend the findings from risk factors to clinical events and vice versa. In chapter 
4.2, we tested SNPs related to uric acid for their relation with gout. It would be 
of interest to examine the genetic variants that were found for serum CRP, uric 
acid, and fibrinogen levels with type II diabetes and CHD. Such studies would 
of course need very large sample sizes to obtain enough power.

Current studies have not succeeded in developing valid disease prediction 
models by the use of genetic variants identified by GWA studies. It is disputed 
whether an increase in the number of SNPs will eventually lead to an accurate 
disease prediction. Extra information such as pathway-oriented prediction 
models or use of the information that may become available on gene-
environment interaction, however, may make the process of prediction more 
promising. We also need to use different evaluation measures - as previously 
discussed - to examine the performance of the prediction models with genetic 
variants. 
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Summary

Since the 1950s, epidemiologic studies focused on chronic disorders including 
type II diabetes and coronary heart disease (CHD). Although several risk factors 
have been  identified, there is a need to move beyond the known risk factors 
and to search for novel  factors. C-reactive protein (CRP) and uric acid are two 
markers that have been studied as novel risk factors for type II diabetes and 
CHD in recent years. 

The advent of hypothesis free approaches in genetic studies has made it 
possible to investigate the genetic structure of different traits even beyond our 
current biologic knowledge. These studies may extend our understanding of the 
determinants of disease and the pathways that are involved in the regulation of 
traits and open new avenues in etiologic and therapeutic research.  

In this thesis, we studied the roles of serum CRP and serum uric acid as novel 
risk factors for type II diabetes and CHD. Furthermore, we investigated genetic 
variants that affect the levels of CRP, uric acid and fibrinogen. 

Chapter 1 gives a brief introduction of CRP and uric acid as novel risk factors 
for type II diabetes and CHD. The chapter introduces population attributable 
risk (PAR) as a measure for the impact of risk factors on disease risk and it 
introduces the genome-wide association (GWA) study as a novel method to 
investigate genetic components of different traits. 

Chapter 2 focuses on novel risk factors for type II diabetes. In chapter 2.1, we 
studied the association of serum CRP with type II diabetes. Our meta-analysis 
showed that serum CRP is associated with risk of type II diabetes independent 
of obesity. Moreover, we showed that a genetic variant in the human CRP 
locus was associated both with a high serum CRP, and an increased risk of 
type II diabetes. These findings provide support for CRP as an etiologic factor 
involved in the pathogenesis of type II diabetes. In chapter 2.2, we estimated the 
proportion of type II diabetes cases which is attributable to a high serum CRP 
level. The results showed that high serum CRP is one of the major contributors 
to the risk of type II diabetes. Furthermore, we found that the contribution of 
modifiable risk factors to the risk of type II diabetes is considerable. In chapter 
2.3, we examined the association between serum uric acid and type II diabetes. 
The results showed that subjects with higher levels of serum uric acid are at 
higher risk of developing type II diabetes. We further found that one quarter of 
diabetes cases could be attributed to a high serum uric acid level. 

In chapter 3 we examined novel risk factors for CHD. In chapter 3.1, we 
showed that a substantial proportion of the risks of myocardial infarction (MI) 
and CHD could be attributed to inflammation, independent of traditional risk 
factors. We also demonstrated that modifiable risk factors explain a substantial 
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proportion of the risks of MI and CHD. In chapter 3.2, we sought replication 
for the results of a GWA study on CHD and MI. We found, however, that two 
genetic variants in 9p21 that were reported to be associated with risk of MI and 
CHD do not replicate in an elderly population. The lack of association may be 
due to differences in the etiology of CHD in young and older people. 

Chapter 4 describes several GWA studies. In chapter 4.1, we performed a 
meta-analysis of GWA scans on serum CRP in six studies comprising nearly 
27,000 individuals. We confirmed six previously reported loci annotated by or 
close to genes including CRP, leptin receptor (LEPR), interleukin 6 receptor 
(IL6R), glucokinase regulatory protein (GCKR), hepatic transcription factor 1 
(HNF1A), and apolipoprotein E (APOE). This study highlights immune response 
and metabolic regulatory pathways as important pathways in determining 
CRP levels and provides insights into the genetic architecture of a well-known 
inflammation marker. In chapter 4.2, we performed a GWA study in the 
Framingham Heart Study and the Rotterdam Study and replicated the results 
in the ARIC Study. The study confirmed the previously reported association 
of variation in SLC2A9 with uric acid and gout, and extended these findings to 
blacks. Moreover, two new loci, ABCG2 and SLC17A3, were identified for serum 
uric acid and gout. In chapter 4.3, we performed a GWA study for fibrinogen 
levels. The GWA data were provided by six cohort studies and comprised 
around 22,000 subjects. We confirmed the previously known association of the 
FGB locus with fibrinogen levels. Further, we identified three novel loci IRF1, 
PCCB, and NLRP3. Since these genes also play a role in inflammation, they 
may represent interesting targets for further research into biological pathways 
involved in cardiovascular disease and other chronic inflammatory conditions. 

In chapter 5, we reviewed our findings in the context of a general discussion. 
Methodological considerations with regard to the studies in this thesis and 
similar studies are discussed. Also, potential clinical implications of our findings 
are addressed. Furthermore, future plans for research are discussed. 
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Samenvatting

Sinds de jaren 50 van de vorige eeuw richt epidemiologisch onderzoek zich op 
chronische aandoeningen als diabetes type II en coronaire hartziekten (CHD). Hoewel 
er meerdere risicofactoren gevonden zijn, is er de noodzaak om nieuwe factoren 
te identificeren. C-reactive proteïne (CRP) en urinezuur zijn twee markers die de 
afgelopen jaren het onderwerp van studie zijn geweest als nieuwe risicofactoren voor 
diabetes type II en CHD. 

	 De opkomst van hypothese-vrije methoden in het genetisch onderzoek heeft 
het mogelijk gemaakt de genetische achtergrond van verschillende aandoeningen 
te onderzoeken zonder afhankelijk te zijn van bestaande kennis over biologie. Dit 
soort onderzoek kan ons inzicht in de determinanten van ziekte en de regulatie 
van normale fysiologische processen vergroten en zo nieuwe deuren openen voor 
etiologisch en therapeutisch onderzoek.

	 In dit proefschrift hebben wij de rol bestudeerd van CRP en urinezuur in het 
serum als nieuwe risicofactoren voor diabetes type II en CHD. Daarnaast hebben we 
genetische varianten onderzocht die de hoeveelheid CRP, urinezuur en fibrinogeen in 
het bloed beïnvloeden.

Hoofdstuk 1 geeft een korte introductie over CRP en urinezuur als nieuwe 
risicofactoren voor diabetes type II en CHD. In dit hoofdstuk wordt het populatie 
attributieve risico (PAR) geïntroduceerd, een maat voor het effect van risicofactoren 
op het ziekterisico. Ook wordt het genoom-wijde associatie (GWA) onderzoek 
geïntroduceerd als een nieuwe methode om de genetische componenten van ziektes 
en fysiologische processen te onderzoeken.

Hoofdstuk 2 richt zich op nieuwe risicofactoren voor diabetes type II. In hoofdstuk 
2.1 beschrijven wij de associatie van serum CRP met diabetes type II. Onze meta-
analyse laat zien dat serum CRP geassocieerd is met het risico op diabetes type II, 
onafhankelijk van obesitas. Daarnaast laten we zien dat een genetische variant in 
het humane CRP locus geassocieerd is met zowel een hoog serum CRP als met een 
verhoogd risico op diabetes type II. Deze bevindingen ondersteunen de rol van 
CRP als een etiologische factor in de pathogenese van diabetes type II. In hoofdstuk 
2.2 maken we een schatting welk deel van van het voorkomen van diabetes type 
II toe te schrijven is aan een hoog serum CRP. Onze resultaten laten zien dat een 
hoog serum CRP een belangrijke bijdrage levert aan het risico op diabetes type II. 
Daarnaast hebben we gevonden dat de bijdrage van beïnvloedbare risicofactoren 
aan het risico op diabetes type II aanzienlijk is. In hoofdstuk 2.3 onderzoeken we de 
associatie tussen serum urinezuur en diabetes type II. De resultaten laten zijn dat 
personen met een hoger serum urinezuur ook een hoger risico hebben om diabetes 
type II te ontwikkelen. Verder hebben we gevonden dat in de populatie een kwart het 
voorkomen van met diabetes  toe te schrijven is aan hoge serum urinezuur spiegels.
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In hoofdstuk 3 onderzoeken we nieuwe risicofactoren voor CHD. In hoofdstuk 
3.1 laten we zien dat een substantieel deel van het risico op myocardinfarct (MI) en 
CHD toe te schrijven is aan ontstekingsprocessen, onafhankelijk van de bekende 
risicofactoren. We laten ook zien dat beïnvloedbare risicofactoren een substantieel 
deel van het risico op MI en CHD verklaren. In hoofdstuk 3.2 hebben we geprobeerd 
de resultaten van een eerder uitgevoerd GWA onderzoek naar CHD en MI te 
repliceren. Wij hebben echter in onze oudere populatie twee genetische varianten 
op 9p21, waarvan eerder beschreven was dat ze een associatie zouden hebben met 
het risico op MI en CHD, niet kunnen repliceren. Het feit dat wij geen associatie 
gevonden hebben zou kunnen samenhangen met verschillen in de etiologie van CHD 
tussen jongere en oudere mensen.

In hoofdstuk 4 wordt een aantal GWA onderzoeken beschreven. In hoofdstuk 4.1 
hebben we een meta-analyse gedaan van GWA onderzoeken van CRP spiegels van 
zes verschillende studies met een totaal van bijna 27.000 deelnemers. Wij konden 
zes eerder gevonden loci bevestigen, in of vlakbij de genen CRP, leptin receptor 
(LEPR), interleukin 6 receptor (IL6R), glucokinase regulatory protein (GCKR), hepatic 
transcription factor 1 (HNF1A) en apolipoprotein E (APOE). Dit onderzoek laat 
zien dat de immuunrespons en metabole regulatoire pathways een belangrijke rol 
spelen in het bepalen van de hoeveelheid CRP in het bloed. Daarnaast geeft deze 
studie inzicht in de genetische achtergrond van deze bekende ontstekingsmarker. 
In hoofdstuk 4.2 hebben wij een GWA onderzoek gedaan in de Framingham Heart 
Study en de Rotterdam Study (ERGO onderzoek) en de resultaten gerepliceerd in 
het ARIC onderzoek. Dit onderzoek bevestigde de al eerder bekende associatie van 
variatie in SLC2A9 met urinezuur en jicht en liet zien dat deze bevindingen ook 
voor Afro-Amerikanen gelden. Daarnaast heeft dit onderzoek twee nieuwe loci, 
ABCG2 en SLC17A3, geïdentificeerd die het serum urinezuur niveau en risico op 
jicht beïnvloeden. In hoofdstuk 4.3 hebben wij een GWA onderzoek gedaan naar 
fibrinogeenspiegels. De GWA data kwamen van zes cohortstudies met een totaal 
van ongeveer 22.000 deelnemers. Wij hebben de al bekende associatie van het FGB 
locus met fibrinogeenspiegels bevestigd. Daarnaast hebben wij gevonden dat drie 
andere loci, IRF1, PCCB en NLRP3, ook geassocieerd zijn met fibrinogeenspiegels. 
Omdat deze genen ook een rol spelen in ontstekingsprocessen, zouden zij interessante 
aangrijpingspunten kunnen vormen voor verder onderzoek naar de biologische 
processen die betrokken zijn bij cardiovasculaire aandoeningen en andere ziektes die 
samengaan met chronische ontstekingsprocessen. 

In hoofdstuk 5 bediscussiëren wij onze bevindingen en methodologische aspecten 
van de studies die in dit proefschrift beschreven worden en van soortgelijke studies. 
Ook bespreken wij mogelijke klinische implicaties van onze bevindingen en plannen 
voor toekomstig onderzoek.
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