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General introduction

Asthma was first described in the medical literature of Greek antiquity. It is difficult 

to determine whether by referring to “asthma”, Hippocrates and his school (460-360 

B.C.) meant an autonomous clinical entity or a symptom1. The clinical presentation of 

asthma nowadays has probably changed little compared to 200 years ago. However, 

there are now many more people with asthma2. According to the Global Initiative for 

Asthma: ‘Asthma is a disorder defined by its clinical, physiological, and pathological 

characteristics. The predominant feature of the clinical history is episodic shortness of 

breath, particularly at night, often accompanied by cough. Wheezing appreciated on 

auscultation of the chest is the most common physical finding. The main physiological 

feature of asthma is episodic airway obstruction characterized by expiratory airflow 

limitation. The dominant pathological feature is airway inflammation, sometimes 

associated with airway structural changes (www.ginasthma.org).’ In Western countries 

the prevalence of childhood asthma and atopic diseases has increased dramatically 

during the end of the last century3,4. There are large differences in asthma prevalence 

between Western countries5, and between the different continents. In Western 

countries, asthma is one of the most frequent chronic disorders in childhood, with a 

high burden of morbidity, absenteeism from school, health care costs6 and reduced 

quality of life7.

Assessment of asthma control is important to guide treatment. It is however 

difficult to predict the temporal pattern and risk of exacerbations in a given patient. 

Theories derived from sciences dealing with complexity of physiological parameters 

can explain the seemingly unpredictable nature of bronchial asthma. Fluctuation 

analysis, a method used in statistical physics, can be used to gain insight into asthma 

as a dynamic disease of the respiratory system, viewed as a set of interacting 

subsystems (e.g., inflammatory, immunological, and mechanical). Fluctuation analysis 

methods can be applied to the quantification of the long-term temporal history of lung 

function parameters8. This information is potentially useful and might help to assess 

the risk of future asthma episodes, with implications for asthma severity and control9.

Childhood asthma is a highly dynamic heterogeneous and complex disease, 

existing in many different phenotypes10, influenced by many genetic and 

environmental factors11. The mechanisms underlying different asthma phenotypes are 

still poorly understood12,13. Twin and family studies have shown that predisposition to 

asthma is highly heritable. In the past 4 years a new hypothesis-free methodology 

has been introduced to study the genetics of complex, non-Mendelian diseases, the 

genome-wide association (GWA) study14,15. Recent GWA studies provided evidence that 

asthma is a heterogeneous disease by showing that different common genetic variants 

are associated with different asthma-related outcomes: childhood onset asthma16,17, 
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adult asthma17-19, impaired lung function20-22, and atopy23-25. Identifying genes 

associated with asthma-related outcomes advances our understanding of biological 

pathways for asthma and may highlight potential future drug targets for the treatment 

of asthma14,15. For this purpose, GWA studies need to be followed by functional studies 

of the identified genes to highlight potential drug targets, but also to epidemiological 

gene-environment studies. Studies examining the interaction between genetic and 

environmental risk factors that are associated with different phenotypes may help to 

elucidate the origins of asthma10,11. It has been proposed to abolish the term asthma 

altogether12 and focus on specific asthma phenotypes or endotypes rather than on 

asthma as a single disease entity13.

In this thesis we specifically focus on the fraction of exhaled nitric oxide (FeNO). 

FeNO is a non-invasive biomarker of eosinophilic airway inflammation26-28, and is 

associated with childhood asthma symptoms29, exacerbations30, physician-diagnosed 

asthma26-28 and atopy31. Nitric oxide (NO) is a reactive free-radical gas that is 

generated in the airway epithelium when L-arginine is oxidized to L-citrulline32. This 

reaction is catalyzed by nitric oxide synthases (NOS)28. Three isoforms of NOS have 

been described: neuronal NOS (nNOS also known as NOS1), inducible NOS (iNOS 

also known as NOS2) and constitutive NOS (cNOS also known as NOS3)33. iNOS is 

mostly localized in the airways, alveolar epithelium, alveolar macrophages and the 

vascular endothelium32,34. Expression of NOS can be upregulated in the presence of 

pro-inflammatory cytokines, inflammatory mediators and small rises in intracellular 

calcium, which could lead to increases in NO levels. NO regulates airway and blood 

vessel tone and high NO concentrations have antimicrobial effects28. Measurements 

of FeNO are non-invasive, well standardized27 and suitable for use in large 

epidemiological studies of children35.

This thesis focuses on major challenges in the field of childhood asthma that have 

still been insufficiently addressed: the interpretation of daily fluctuations in FeNO 

and genetic and environmental risk factors of asthma and FeNO in childhood. To 

investigate this, we used data of several studies:

The Prevention and Incidence of Asthma and Mite 
Allergy (PIAMA) Study
The PIAMA study is a prospective birth cohort study in the Netherlands. Recruitment 

took place in 1996-97 through prenatal clinics. Children were labelled as high-risk 

and low-risk, based on the atopic status of the mother. Respiratory health and 

asthma symptoms of the children were assessed yearly by questionnaires, partly 

based on the International Study of Asthma and Allergies in Childhood (ISAAC) core 

questionnaires37, along with data on demographics and a wide range of asthma risk 
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factors. All high-risk children and a subgroup of low-risk children were invited for 

FeNO measurement at the age of 4 years and 8 years38,39. In this thesis findings of the 

PIAMA study were used to describe differences in FeNO levels measured at 4 and 8 

years for distinct phenotypes of wheeze and atopy. In addition, we used PIAMA data to 

study the modifying effect of smoke exposure during fetal and early postnatal life on 

the association between a specific asthma gene and asthma-related outcomes.

The CHildren with Asthma subjected to Respiratory 
Inflammatory Status Monitoring (CHARISM) Study
The CHARISM study represents the cooperation of 15 clinical research centers. In a 

prospective, open label, randomized, multicenter, parallel group study, children with 

atopic asthma were monitored for 30 weeks, and inhaled corticoid steroid (ICS) doses 

were adjusted every 3 weeks on the basis of either FeNO and symptom scores, or 

symptom scores alone36. In this thesis we used data from this study and performed 

post hoc analyses of fluctuations in daily FeNO measurements and data on asthma 

control and exacerbations over 30 weeks in children with atopic asthma.

The EArly Genetics and Lifecourse Epidemiology 
(EAGLE) Consortium
The EAGLE consortium is a consortium of pregnancy and birth cohorts that collaborate 

to investigate the genetic basis of a wide range of phenotypes in antenatal and 

early life and childhood40. EAGLE integrates closely with the ‘Developmental Origins 

of Health and Disease’ (DOHaD) society. DOHaD is a society of researchers who 

are interested in developmental epidemiology of chronic diseases throughout the 

life course. In order to identify genetic variants associated with certain traits, such 

as FeNO, several thousands of samples are required to achieve the high threshold 

of significant statistical evidence14,15. This is only possible if large cohorts with 

researchers who share a common goal collaborate in a consortium.

The Generation R Study
The Generation R Study is a population-based prospective cohort study from fetal 

life until young adulthood. The study is designed to identify early environmental and 

genetic causes of normal and abnormal growth, development and health during fetal 

life, childhood and adulthood. The study focuses on four primary areas of research: 

(1) growth and physical development; (2) behavioural and cognitive development; 

(3) diseases in childhood; and (4) health and healthcare for pregnant women and 

children. Recruitment took place from April 2002 until January 2006 in Rotterdam. 

Data collection in mothers, fathers and preschool children included questionnaires, 

detailed physical and ultrasound examinations, behavioural observations, and 
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biological samples. Genome-wide SNP genotyping (Illumina 610K array) of the 

participating children is available. Regular detailed assessments are performed 

at various ages. Generation R Study aims to contribute to the development of 

strategies for optimizing health and healthcare for pregnant women and children41. 

The Generation R Study is one of the leading centers in EAGLE. In this thesis we 

used Generation R data to examine asthma, FeNO, and relevant gene-environment 

interactions in childhood.

Aims of this thesis

In the current thesis we aimed to investigate the following aspects of FeNO and 

asthma in childhood:

•	 To compare if distinct temporal phenotypes of wheeze and atopy differ with respect 

to FeNO, a marker of eosinophilic airway inflammation

•	 To examine the possible clinical relevance of daily fluctuations in FeNO, especially 

regarding asthma severity, control, and exacerbation risk

•	 To identify which genetic loci are related to FeNO in childhood, and their relation 

with asthma

•	 To examine if gene-environment interaction is important for the effect of a known 

asthma gene (GSDMB) by examining the effect of cigarette smoke exposure during 

fetal and early postnatal life

•	 To establish if cord blood folate and homocysteine levels have an impact on the risk 

of asthma and eczema in childhood, and if this is genetically determined

•	 To compare different strategies for analysis and imputation of missing data in 

binary repeated asthma-related outcomes

Outl ine of this thesis

This thesis examines FeNO in relation to asthma in childhood, focusing on different 

asthma phenotypes, FeNO fluctuation patterns and the contribution of genetic 

factors on FeNO and asthma. First, chapter 2 describes differences in FeNO levels 

measured at 4 and 8 years for distinct phenotypes of wheeze and atopy. Chapter 3 

presents an analysis of daily fluctuation patterns of FeNO before and after asthma 

exacerbations compared to a stable control period in children with atopic asthma. 

Chapter 4 presents the associations between fluctuations in FeNO and the correlation 

between daily FeNO and symptoms with asthma control and exacerbation risk in 
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atopic asthmatic children. In chapter 5, we present a genome-wide association study 

of FeNO in childhood. Chapter 6 describes the modifying effect of smoke exposure 

during fetal and early postnatal life on the association between asthma GSDMB gene 

and asthma-related outcomes. In chapter 7 we explored the associations of cord 

blood folate, homocysteine and vitamin B12 levels of children at birth with asthma 

and eczema in childhood and the influence of MTHFR variants on these associations. 

Repeated asthma-related outcomes were used in these studies. Missing data in binary 

repeated outcomes is complex to analyze and could lead to biased results. Therefore, 

we examined in chapter 8 what the impact is of different strategies for analysis and 

imputation of missing data in binary repeated asthma-related outcomes. Chapter 9 

discusses the main findings of this thesis in context of the literature, methodological 

considerations and evaluates the clinical implications and future research directions for 

genetic studies of asthma-related outcomes.
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Abstract

Background
Fractional exhaled nitric oxide (FeNO) is a surrogate biomarker of the degree of 

eosinophilic airway inflammation. Using longitudinal latent class analysis, 5 wheezing 

phenotypes have been identified, characterized by different age of onset and 

prognosis.

Objectives
To assess FeNO measured at 4 and 8 years in children with different phenotypes of 

wheeze and atopy.

Methods
Children participated in the PIAMA study, a prospective birth cohort in The 

Netherlands. Respiratory health was assessed yearly by questionnaires until the age 

of 8 years, these data were used to identify 5 wheezing phenotypes. Associations 

between FeNO and wheezing phenotypes were investigated using weighted linear 

regression.

Results
Data on wheezing phenotypes and FeNO at 4 and 8 years was available in 588 and 

973 children, respectively. Compared to the phenotype of never and transient wheeze, 

FeNO at 4 years was higher in intermediate onset and persistent wheeze. FeNO at 8 

years of age differed significantly between all phenotypes, with highest FeNO values 

for persistent, intermediate onset, and late onset wheeze. Rise in FeNO from 4 to 

8 years in intermediate and late onset wheezers was significantly higher compared 

to FeNO rise in never and transient wheezers. Stratified analyses showed that the 

increase in FeNO in persistent, intermediate and late onset wheeze was only present in 

children with allergic sensitization at 8 years.

Conclusions
FeNO measured at 8 years was associated with specific wheezing phenotypes, only 

among atopic children.
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Introduction

The fraction of nitric oxide in exhaled air (FeNO) is a non-invasive surrogate biomarker 

of the degree of eosinophilic airway inflammation with excellent reproducibility 

in childhood1,2. Recent studies have shown that FeNO can be used both in large 

population-based studies and in clinical asthma management studies3,4. Elevated 

FeNO was found in children and adults with asthma and atopy2,3,5,6, overlapping with 

the distribution in normals7,8. We previously reported on FeNO in 4-year-old children 

from the Prevention and Incidence of Asthma and Mite Allergy (PIAMA) cohort, and 

found no association with classic wheezing phenotypes as described by Martinez in 

preschool children8,9. However, FeNO may be influenced by atopy, which can develop 

later in life2,10-12. The PIAMA birth cohort study provided the opportunity to study 

FeNO in relation to phenotypes of wheeze in a large group of children recruited from 

the general population. One of the special features of PIAMA is the yearly respiratory 

health assessment, which can be used to define phenotypes of wheeze. Recently, 

phenotypes of wheeze were identified by longitudinal latent class analysis (LLCA) 

in the ALSPAC study, and these phenotypes were differently associated with atopy 

and lung function13. This analysis was repeated in the PIAMA study and resulted in 

comparable phenotypes with similar associations with doctor’s diagnosed asthma, 

inhaled corticosteroid use, sensitization to common allergens, FEV1 and bronchial 

responsiveness14. FeNO has not been studied in relation to phenotypes identified using 

this novel approach. We hypothesized that the different wheezing phenotypes are 

characterized by differences in eosinophilic inflammation, which would be reflected by 

differences and change in FeNO measured at the age of 4 and 8 years. Because atopy 

is an important determinant of FeNO, we stratified our analysis for atopy2.

Methods

Study design
The PIAMA study is a prospective birth cohort study in The Netherlands. Recruitment 

took place in 1996-97 through prenatal clinics; 7,862 pregnant women were invited 

to participate, 4,146 (53%) agreed and gave informed consent. Children were labelled 

as high-risk (n=1,327) and low-risk (n=2,819), based on the atopic status of the 

mother. Respiratory health and asthma symptoms of the children were assessed yearly 

by questionnaires, partly based on the ISAAC core questionnaires, along with data 

on demographics and a wide range of asthma risk factors15. All high-risk children and 

a subgroup of low-risk children were invited for FeNO measurement at the age of 4 

years (n=1,808) and 8 years (n=1,554). A detailed description of the PIAMA study 
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design was previously published8,16. The study protocol was approved by the medical 

ethics committees of the participating medical centers (Groningen: M 4.019912, 

Rotterdam: MEC 2004-152 and Utrecht: CCMO P04.0071C 04-101/K).

Study population
At the age of 4 years all high-risk (n=1,173) and a random sample of low-risk children 

(n=635) were invited for a medical examination, including offline FeNO measurement. 

Of those 1,808 children 1,269 attended the examination, and an exhaled air 

sample was obtained in 939 children. Off-line FeNO measurements of sufficient 

quality were obtained in 595 children (63%) at age 48. At 8 years also all high-risk 

children still in follow-up (n=988) and a similar, random sample of low-risk children 

(n=566) were invited for a hospital-based medical examination including online 

FeNO measurement. Of these 1,554 children 1,129 (73%) gave informed consent 

and attended the examination. In 39 children a FeNO measurement could not be 

performed due to device failure. Of the remaining 1,090 children at least 1 successful 

FeNO measurement was obtained in 976 children (90%). The other 114 children were 

unable to exhale at a constant flow during FeNO measurement. A detailed flowchart 

of the study population with complete data on confounders, wheezing phenotypes and 

FeNO at 4 years (n=588) and 8 years (n=973) is presented in Figure 2.1.

Measurements
FeNO in 4-year-old children was measured offline by the balloon method17, 

according to European Respiratory Society (ERS) / American Thoracic Society (ATS) 

guidelines8,18. FeNO in 8-year-old children was measured online using the NIOX 

chemiluminescence analyzer (Aerocrine AB, Solna, Sweden) according to ERS and 

ATS guidelines1. We previously found good agreement between these on- and offline 

FeNO measurements19. At 8 years blood was drawn to assess sensitization to airborne 

allergens, defined as specific IgE of ≥ 0.70 IU/mL for at least one of the following 

allergens: house dust mite (Dermatophagoides pteronyssinus), cats, dogs, grass 

pollen (Dactylis glomerata), birch, Alternaria alternata.

Phenotypes of wheeze
Longitudinal latent class analysis was used by Savenije et al. to define wheezing 

phenotypes in PIAMA in early childhood, as originally published by Henderson et 

al13. Wheezing phenotypes were previously defined in children with at least data on 

wheezing at 2 or more occasions, and in a subgroup of children with complete data on 

wheezing at every age from 1 to 8 years14. There were no major differences between 

these two analyses. In the current analysis phenotypes derived in children with at 

least 2 wheezing observations were used, in order to minimize the risk of selection 
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bias. Five wheezing phenotypes were identified in the first 8 years of life: never/

infrequent wheeze (73.2%), transient early wheeze (17.3%), intermediate onset 

wheeze (3.4%), persistent wheeze (4.3%) and late onset wheeze (1.8%). These 

phenotypes were comparable with those identified in the ALSPAC cohort14. The five 

phenotypes are graphically depicted in Figure 2.2.
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Figure 2.1. Flow chart of study population at 4 and 8 years
Flow chart of the number of children participating in the study. *: These 4,146 consisted of 1,327 atopic (32%) 

and 2,819 non-atopic mothers (68%), which is a good reflection of the general Dutch population.
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Statistical analysis
All analyses were carried out in SAS 9.1 (SAS Institute, Inc., Cary, NC). The 

associations between FeNO at 4 and 8 years and phenotypes of wheeze were 

investigated with weighted linear regression models (SAS PROC GENMOD). FeNO data 

were log-transformed, to achieve a normal distribution for linear regression analyses 

and back-transformations were used to calculate geometric mean FeNO for the 

phenotypes of wheeze. Due to the stratified study design, all analyses were performed 

for the total study population as well as for the high-risk and low-risk children 

separately. The analyses were also stratified for allergic sensitization at 8 years, 

because specific IgE is an important determinant of FeNO2. Individual membership 

probabilities (each child gets a probability to belong to each phenotype) derived from 

LLCA were used as weight factors in the linear regression models to minimize the risk 

of misclassification of the wheezing phenotypes. Gender, recent symptoms of cold, 

steroid use, study region, education of the mother and exposure to environmental 

tobacco smoke were considered as potential confounders. Confounders were included 

in the models based on their association with wheezing phenotypes, or if they changed 

the effect estimate by more than 10%.

Figure 2.2. Probabil ity of wheeze at each time point from birth to age 8 years for 
each wheezing phenotype in PIAMA (N=3,789)
The prevalences of the phenotypes are shown next to the phenotypes in the legend. Figure adjusted from 

Savenije&Granell et al, with copyright permission14.
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Results

General characteristics of the study population
Baseline characteristics at 4 and 8 years are given in Table 2.1. Due to the study 

design, high-risk children were overrepresented in comparison with the total PIAMA 

population. Compared to those invited for medical examination at 8 years (n=1,554), 

children with complete FeNO data at 8 years had a higher level of maternal education 

and lower prevalence of prenatal smoking. However, differences were small, and 

with respect to other general characteristics the groups were similar (Table 2.1). 

Among children with complete FeNO data at the age of 4 years, there was an 

overrepresentation of the Western study region and an underrepresentation of the 

Northern and Middle study regions due to technical problems with FeNO measurements. 

This may explain the somewhat lower proportion of never/infrequent wheeze and late 

onset wheeze compared to the population invited for medical examination.

Associations of FeNO values at 4 years and 
phenotypes of wheeze
Phenotypes of wheeze were derived from yearly respiratory health assessments from 

birth up to 8 years. The adjusted geometric mean FeNO was highest in intermediate 

onset wheeze and persistent wheeze compared to never/infrequent and transient 

wheeze, but with considerable overlap (Table 2.2).

Associations of FeNO values at 8 years among 
different phenotypes of wheeze
FeNO at 8 years of age differed significantly between all phenotypes. It should be 

noted that also at 8 years of age, there was considerable overlap in FeNO between all 

phenotypes. FeNO was highest when wheeze started later in life and persisted longer, 

in intermediate onset wheeze, persistent wheeze and late onset wheeze. The adjusted 

geometric mean FeNO for each wheezing phenotype is given in Table 2.2 and the 

distributions are shown in Figure 2.3.

Change in FeNO over time was analyzed in the subgroup of children with FeNO 

measurements both at 4 and 8 years. FeNO in intermediate and late onset wheezers 

was significantly higher compared to never/infrequent and transient wheezers.

Environmental tobacco smoke and steroid use did not change the association 

between FeNO and phenotype of wheeze. These variables add up to 6.5% missing 

data and were not included in the final model in order to increase power. None of 

the other potential confounders changed the association by 10%. Steroids were 

mainly used in intermediate-, late onset- and persistent wheeze, and this might lead 

to underestimation of the differences between these phenotypes and the reference 
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Table 2.1. General characteristics of study population

Invited for 

FeNO at 8 yrs 

(n=1,554)

Complete 

wheezing and 

FeNO data at 4 

yrs (n=588)

Complete 

wheezing and 

FeNO data at 8 

yrs (n=973)

Characteristics

Gender (% females) 49 48 50

Study region

West 31 50 32

Middle 37 34 38

North 32 16 29

Maternal education level

Low 22 21 20

Middle 42 41 42

High 36 38 38

Caesarean section 9 8 10

Atopic mother* 64 66 66

Atopic father* 32 32 32

Exposure to pets in 1st yr 48 47 47

Older siblings (% present) 48 49 47

Daycare attendance in 1st yr 24 28 25

Smoking during pregnancy 16 14 15

Exposure to environmental tobacco smoke† 16 15 16

Inhaled steroid use† 9 9 9

Doctors’ diagnosis asthma† 12 14 12

Phenotypes of wheeze‡

Never/infrequent wheeze 69.9 66.5 68.8

Transient early wheeze 18.6 21.8 19.7

Intermediate onset wheeze 3.9 4.4 4.0

Persistent wheeze 5.1 5.7 5.2

Late onset wheeze 2.5 1.6 2.2

Specific IgE inhalant allergen age 8

Positive for at least 1 of the 6 tested allergens¶ 30 30 29

Values are percentages (%). *: Defined as a positive report of hayfever, allergy and/or asthma. †: Reported 

at the age of 8 years. ‡: Defined using longitudinal latent class analysis as previously described14, known in 

1,165/1,554 children invited at 8 years. ¶: The following 6 inhalant allergens were tested for: house dust mite 

(Dermatophagoides pteronyssinus), cats, dogs, grass pollen (Dactylis glomerata), birch, Alternaria alternata. 

Complete data on FeNO and specific IgE at 8 years in n=792 children.
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Table 2.2. Adjusted geometric mean FeNO (ppb) and change in FeNO per phenotype 
of wheeze at 4 and 8 years

FeNO at 4 years

(N=588)

FeNO at 8 years

(N=973)

Difference in FeNO

between 4 and 8 years

(N=420)

Phenotype of wheeze n*
mean

(95% CI)†
n*

mean

(95% CI)†
n*

mean

(95% CI)†

Never/infrequent 391
8.7

(8.3;9.2)
670

9.5 

(9.0;10.1)#
279

+0.6

(-1.4;2.6)

Transient early 128
8.8 

(7.9;9.8)
192

8.8 

(7.8;9.8)#
95

-0.3

(-4,2;3.9)

Intermediate onset 26
11.2 

(9.5;13.2)‡¶
39

15.8 

(13.3;18.7)#
18

+5.5

(-1.0;12.7)‡¶

Persistent 33
9.9 

(8.5;11.6)‡¶
51

13.0 

(11.1;15.3)#
21

+2.7

(-3.2;9.2)

Late onset 10
9.6 

(7.6;12.1)
21

20.6 

(16.7;25.4)#
7

+9.8 

(0.4;20.7)‡¶

Analyses were weighted for the probability that a child belongs to a certain phenotype (individual posterior 

membership probabilities). *: Frequency (n) of each wheezing phenotype is calculated as the sum of the 

membership probability of all children for that phenotype. †: Geometric mean FeNO value (95% confidence 

interval) in ppb per phenotype of wheeze, adjusted for gender, recent symptoms of cold, study region and 

education of the mother. ‡: p<0.05 for difference in comparison with never/infrequent wheeze. ¶: p<0.05 

for difference in comparison with transient wheeze. #: At 8 years FeNO in every phenotype was significantly 

(p<0.01) different in comparison to all other phenotypes.

Figure 2.3. Box plots of FeNO at 4 and 8 years per phenotype of wheeze
Horizontal lines indicate the median FeNO. Upper/lower limits of the box, outer lines and dots represent the 

25th/75th, the 10th/90th, and the 5th/95th percentiles, respectively. Data were weighted for the probability that a 

child belongs to a certain phenotype (individual posterior membership probabilities).
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group. We think that this is not the case because exclusion of children using steroids 

at 8 years led to similar results of the phenotypes. In order to investigate whether 

the association between FeNO and the wheezing phenotypes may be caused solely 

by the association between FeNO and wheeze at the age that FeNO was measured, 

we performed a sensitivity analyses adjusting for current wheeze at the ages of 4 

and 8 years (ISAAC question: reported wheezing symptoms in the past year). This 

adjustment did not alter the associations between FeNO and phenotypes of wheeze. 

All analyses were repeated using wheezing phenotypes defined in the subgroup of 

children with complete data on wheezing at every age from 1 to 8 years, and this 

produced similar results (data not shown).

FeNO values and phenotypes of wheeze in atopic 
and non-atopic children
We performed stratified analyses based on atopy of the mother. The associations 

between FeNO and phenotypes were similar. However, we found a strong and significant 

interaction with allergic sensitization of the children themselves at the age of 8 years 

(overall p-value for interaction < .001). Among children with elevated specific IgE, FeNO 

levels at 8 years were low in never/infrequent wheeze and transient early wheeze, 

and significantly elevated in the remaining persistent phenotypes. In children without 

elevated specific IgE for inhalant allergens, FeNO levels at 8 years were not significantly 

Table 2.3. Adjusted geometric mean FeNO (ppb) at 8 years per phenotype of 
wheeze stratif ied for atopy

Atopy –

(N=562)

Atopy +

(N=228)

Phenotype of wheeze % atopy n* mean (95% CI)† n* mean (95% CI)†

Never/infrequent 23.9 410 7.9 (7.5;8.4) 129 13.5 (12.0;15.3)

Transient early 27.3 117 7.3 (6.5;8.3) 44 11.8 (9.1;15.2)‡

Intermediate onset 67.7 10 9.0 (7.1;11.4) 21 22.6 (16.7;30.6)‡

Persistent 51.2 20 8.2 (6.8;9.8) 21 20.9 (15.4;28.3)‡

Late onset 72.2 5 8.2 (6.0;11.3) 13 29.4 (20.7;41.8)‡

Combined persistent phenotypes¶ 61.1 35 8.4 (7.2;9.8) 55 22.8 (17.8;29.2)‡

We found significant interaction between phenotypes of wheeze and allergic sensitization on FeNO levels 

(p-interaction < .001). Atopy of the child defined as specific IgE of ≥ 0.70 IU/mL for at least one inhalant allergen 

at the age of 8 years. Analyses were weighted for the probability that a child belongs to a certain phenotype 

(individual posterior membership probabilities). *: Frequency (n) of each wheezing phenotype is calculated as 

the sum of the membership probability of all children for that phenotype. †: Geometric mean FeNO value (95% 

confidence interval) (ppb) per phenotype of wheeze stratified for atopy at 8 years, adjusted for gender, recent 

symptoms of cold, study region and education of the mother. ‡: p<0.05 for difference in comparison with never/

infrequent wheeze. ¶: Due to the smaller sample size, 3 phenotypes with persistent symptoms (intermediate 

onset wheeze, persistent wheeze and late onset wheeze) were also combined in this analysis.
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associated with phenotypes of wheeze. Because the numbers of children with low specific 

IgE were small for the wheezing phenotypes with persistent symptoms (intermediate 

onset wheeze (n=10), persistent wheeze (n=20) and late onset wheeze (n=5)), these 

phenotypes were also combined for this analysis. Table 2.3 shows that, among atopic 

children, all three phenotypes with persistent symptoms had a significantly higher FeNO 

levels than never/infrequent and transient wheeze, while no such association was present 

in non-atopic children. This interaction is illustrated in Figure 2.4.

Discussion

We examined FeNO at 4 and 8 years in relation to phenotypes of wheeze and atopy. 

We found that FeNO at 4 years was higher in intermediate onset and persistent 

wheeze compared to never and transient wheeze. The association between phenotypes 

of wheeze and FeNO measured at 8 years was much stronger. FeNO at 8 years was 

significantly higher in persistent phenotypes of wheeze (including intermediate onset, 

persistent and late onset wheeze) compared to never and transient wheeze, but 

only among children with allergic sensitization at 8 years. Smaller but significant 

differences were observed for FeNO at 8 years between the three persistent 

phenotypes.

Figure 2.4. Boxplots of FeNO at 8 years per phenotype of wheeze, stratified for atopy
Atopy of the child defined as a specific IgE of ≥ 0.70 IU/mL for at least one of the tested inhalant allergens at 

the age of 8 years. Horizontal lines indicate the median FeNO. Upper/lower limits of the box, outer lines and 

dots represent the 25th/75th, the 10th/90th, and the 5th/95th percentiles, respectively. Data were weighted for the 

probability that a child belongs to a certain phenotype (individual posterior membership probabilities).



32

FeNO and wheezing phenotypes
Previous studies have reported increased FeNO in asthmatic children3,5,20-22, while 

others did not confirm this23,24. A possible explanation for these discrepancies is 

that ‘asthma’ comprises several phenotypes that may or may not share the same 

inflammatory mechanisms9,13,14,25. Lumping all these phenotypes together as a 

single disease entity might hamper our efforts to understand the aetiology and 

pathophysiology of specific phenotypes25,26. The presence of such differences has 

been suggested in studies that assessed airway inflammation using bronchoalveolar 

lavage (BAL)27. BAL is an invasive procedure and hence not feasible for research 

purposes in children with mild disease. Only few studies investigated the association 

between non-invasive surrogate markers of airway inflammation, such as FeNO, and 

wheezing phenotypes in early childhood. Moeller et al. measured higher FeNO levels 

in wheezing preschool children compared to non-wheezers, in line with our findings. 

Among wheezing children the authors found higher FeNO levels in children with a 

positive asthma prediction index, which is suggestive for persistent symptoms28. In 

contrast, we found no differences in FeNO at the age of 4 between transient and 

late onset wheezers. This may be explained by differences in classification using the 

asthma predictive index or longitudinal latent class analysis. Brussee et al. found 

in the PIAMA study only a weak association of FeNO at 4 years with phenotypes of 

wheeze up to that age, with slightly higher FeNO levels in children who wheezed at 

the age of 4 years, compared to those who never wheezed8. Also in the present study 

only weak associations between phenotype and FeNO at 4 years were found. This 

could be explained by an increase in chronic airway inflammation with age29, with 

differences in FeNO becoming detectable only after the age of 4 years. However, the 

early development of eosinophilic inflammation as underlying mechanism of persistent 

wheeze is not well understood. Alternatively, differences in the methods of FeNO 

measurement at 4 and 8 years might be involved, but we earlier found that these 

on- and offline methods give similar results, so this seems unlikely19. At 8 years, FeNO 

levels were increased in the phenotypes with persistent symptoms compared to never 

and transient wheezers. Differences in FeNO at 8 years between the three persistent 

phenotypes (intermediate onset, persistent and late onset wheeze) were smaller, but 

also significant. These results need to be interpreted with some caution, as significant 

differences may have resulted from multiple testing. We analyzed change in FeNO over 

time. Despite the small numbers, the rise in FeNO in intermediate onset and late onset 

wheezers was significantly higher compared to that in never/infrequent and transient 

wheezers. Possibly the underlying disease process in late onset wheezers leads to a 

faster increase of eosinophilic inflammation between 4 and 8 years. Elevated FeNO 

levels were especially pronounced in the phenotypes with onset of wheezing after the 

age of 2 years.
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FeNO and atopy
We found a strong association between atopy and FeNO. This is a consistent finding 

in earlier studies3,5,23,24. Some authors have suggested that the association between 

asthma and FeNO may be entirely explained by atopy, implying that measuring 

FeNO is of limited use to assess whether a child has asthma30. The present study 

showed that FeNO is not simply a marker of atopy, but that the presence of atopy 

modifies the association between wheezing phenotypes and FeNO, which is in line 

with previous studies6,23. Indeed, FeNO levels differed substantially between the 

wheezing phenotypes in atopic children at 8 years. Furthermore this shows that 

all wheezing phenotypes occur in atopic and non-atopic children, but that the 

pathophysiology of wheeze in these two groups is probably different. As FeNO has 

been shown to correlate with eosinophilic airway inflammation, we speculate that a 

predominant eosinophilic inflammation might be present selectively in atopic children 

with persistent phenotypes of wheeze. Other mechanisms may play a role in the 

pathophysiology of transient wheeze and of persistent wheeze in non-atopic children. 

Possible mechanisms include smaller airway caliber and/or neutrophilic airway 

inflammation27.

Strengths and l imitations
A strong point of our study is that we assessed wheezing prospectively, and that the 

wheezing phenotypes were discovered without pre-specified constraints in two large 

birth cohorts, using longitudinal latent class analysis13,14. Well-standardized FeNO 

measurements1, objective assessment of atopy at 8 years, and the large size of the 

PIAMA cohort with good follow-up allowed us to detect significant differences in FeNO 

in less common phenotypes, even after stratification for atopy.

A point of consideration in the interpretation of the data is that some children were 

using inhaled steroids while FeNO was measured, and it has been shown that steroids 

can decrease FeNO2. However, any such effect seems limited because a sensitivity 

analysis after exclusion of steroid users did not change the results. In addition, 

one should take into account the possibility that the reported association between 

FeNO and phenotypes of wheeze solely depends on the relation between FeNO and 

current wheeze at the age of 8 years. This seems unlikely, because adjustment for 

current wheeze at 8 years did not alter any of the associations between FeNO and 

phenotypes of wheeze. The present study used parent-reported wheezing symptoms. 

This method of assessing symptoms is widely accepted in epidemiological asthma 

studies31, but may lead to misclassification. Because parents were unaware of their 

child’s FeNO level, any misclassification of wheezing would be independent of FeNO, 

resulting in a diluting effect with underestimation of the true differences in FeNO 

between the wheezing phenotypes. Furthermore, the small sample sizes at the age of 
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4 years should be noted, which may have decreased the power to detect significant 

associations between FeNO and the less frequent wheezing phenotypes. This holds 

true also for the stratified analyses of FeNO at 8 years, where sample sizes were 

small, especially among the non-atopic children. FeNO was not measured in early life 

and our data can therefore not confirm earlier findings that FeNO might be increased 

in transient early wheeze at a time when wheeze was still present32.

Conclusion
FeNO measured at 8 years differed between wheezing phenotypes, only in atopic 

children. Hence, we speculate that the pathophysiology of wheezing phenotypes differs 

between atopic and non-atopic children. Whether or not eosinophilic inflammation is 

indeed causally involved in the pathogenesis of specific wheezing phenotypes remains 

to be shown.
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Abstract

Background
Fractional exhaled nitric oxide (FeNO) is a biomarker for eosinophilic airway 

inflammation and can be measured at home on a daily basis. A short-term increase in 

FeNO may indicate a higher risk of future asthma exacerbations.

Objectives
To assess changes in FeNO before and after asthma exacerbations compared to a 

stable control period.

Methods
A post-hoc analysis was performed on daily FeNO measurements over 30 weeks in 

asthmatic children (n=77). Moderate exacerbations were defined by an increase 

in symptom scores, severe exacerbations by prescription of prednisone. Individual 

mean and maximum FeNO, the variability of FeNO assessed by the coefficient of 

variation (CV) and slopes of FeNO in time were all quantified in 3 weeks blocks. 

Cross-correlation of FeNO with symptoms and autocorrelation of FeNO were assessed 

in relation to exacerbations, and examined as predictors for exacerbations compared 

to reference periods using logistic regression.

Results
FeNO could be assessed in relation to 25 moderate and 12 severe exacerbations. 

The CV, slope, cross-correlation and autocorrelation of daily FeNO increased before 

moderate exacerbations. Increases in slope were also randomly seen in 19% of 

2-week blocks of children without exacerbations. At least 3 to 5 FeNO measurements 

in the 3 weeks before an exacerbation were needed to calculate a slope that could 

predict moderate exacerbations. No specific pattern of FeNO was seen before severe 

exacerbations.

Conclusions
FeNO monitoring revealed changes in FeNO prior to moderate exacerbations. Whether 

or not this can be used to prevent loss of asthma control should be further explored.
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Introduction

Asthma monitoring is challenging in children with frequent exacerbations. Asthma 

is commonly monitored on the basis of symptoms, exacerbation frequency, need for 

rescue treatment and lung function1. This approach does not take airway inflammation 

into account. The fraction of nitric oxide in exhaled air (FeNO) is a non-invasive, 

feasible biomarker which reflects eosinophilic airway inflammation2. FeNO has 

excellent reproducibility, immediate results and has been validated and studied in 

relation to asthma control3,4. Clinical studies on monitoring of airway inflammation by 

means of FeNO were until now inconsistent, but some evidence for limited benefits, 

including less exacerbations, lower steroid doses, reduced airway hyperresponsiveness 

and improved lung function was found5-12. It has been suggested that the combination 

of spirometry and FeNO allows objective assessment of asthma control status13. 

However, FeNO concentrations during asthma exacerbations did not correlate with 

other measures of acute severity, suggesting that they might provide additive 

information14,15. Using a hand-held NO-analyzer, it is possible to monitor FeNO at 

home on a daily basis16,17. Recently, the CHildhood Asthma Respiratory Inflammatory 

Status Monitoring (CHARISM) study examined 77 atopic asthmatic children with daily 

telemonitoring of symptoms and FeNO for 30 weeks18. This follow-up provided the 

opportunity to study FeNO fluctuation. Similar to fluctuation in lung function over time, 

we have shown that fluctuations in FeNO are not a random process but show internal 

long-range correlation19. We have previously shown that these correlation properties of 

daily FeNO are different in a subgroup of children with a high risk of exacerbation20. In 

the present study, we describe FeNO variability in relation to exacerbations of asthma. 

We hypothesized that exacerbations were preceded by an increase in FeNO.

Methods

We performed a post-hoc analysis of FeNO data from the CHARISM study18. Daily 

FeNO was measured daily in 77 atopic asthmatic children using a hand-held airway 

inflammation monitor (NIOX MINO, Aerocrine, Solna, Sweden), along with daily 

symptom scores for 30 weeks at home. The study protocol was approved by the 

medical ethics committees of the participating centers.

Exacerbations were defined by a prespecified increase in symptom scores during 1 

or 2 days (moderate exacerbation), or by prescription of an oral prednisone course 

(severe exacerbation) (Table 3.1)21. Daily FeNO and symptom scores were taken 

from 3-week blocks before and after the onset of exacerbations, and were included in 

the analyses if at least 18 FeNO values out of 21 were available. To avoid carry-over 
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effects, second moderate exacerbations were excluded when they occurred within 

21 days of the previous exacerbation. If a severe exacerbation was preceded by a 

moderate exacerbation, both were included in our analysis to account for this clinically 

relevant situation. We related the changes in FeNO to a stable reference period in the 

same individual. Reference periods were selected from the same patient when stable, 

and matched for use of same dose of inhaled corticosteroid (ICS) and use of long-

acting beta-agonist (LABA). Reference periods were taken at least 6 weeks before or 

3 weeks after the exacerbation. We estimated the risk of false negative observations 

by examining slopes of children without exacerbations. Fluctuation and correlation 

properties in daily FeNO were quantified by the coefficient of variation (CV), the 

slope of daily FeNO (best-fit line through FeNO data), cross-correlation (strength of 

correlation between FeNO and symptoms) and autocorrelation (strength of correlation 

of FeNO with itself shifted by one or more days)20,22,23.

Statistical evaluation
Analyses of FeNO were performed after natural log transformation. FeNO percentage 

was calculated by dividing individual daily values of FeNO by the median of the 

reference period, and averaged over all children who had an exacerbation. Individual 

mean and maximum FeNO, as well as CV and slope of FeNO were calculated for periods 

of 21, 14, 10, 7 and 4 days prior to exacerbations and in matched reference periods. 

These parameters were then examined as predictors for the outcome of an exacerbation 

compared to reference periods, using logistic regression to estimate the odds ratios 

(OR) and the 95% confidence intervals (CI). Cross-correlation and autocorrelation were 

determined in periods of 21, 14, 10 and 7 days. We performed sensitivity analysis to 

estimate the number of measurements needed to detect changes in FeNO before an 

exacerbation by looking at the predictive power of single FeNO values at 21, 14, 10, 7, 

4 days and 1 day before an exacerbation. In order to test how many data points were 

needed to detect an exacerbation, randomly picked days were dropped from the time 

series and we calculated best-fit slopes for the remaining data points. Analyses were 

Table 3.1. Criteria for determining moderate and severe exacerbations

Exacerbation Description Days

Moderate
3 points above the average daily symptom score* of the 2 preceding weeks 2 or more

5 points above the average daily symptom score* of the 2 preceding weeks 1 or more

Severe Prednisone prescription, hospitalisation or emergency visits because of asthma 1 or more

End Less than 3 points above the average daily symptom score* of the 2 preceding weeks 3 or more

*: Daily symptom score = total sum of wheezing, shortness of breath, coughing and sleep disturbances 

symptoms. Symptoms could have values between 0 and 3, where 0 = no symptoms, 1 = occasional symptoms, 

2 = symptoms most of the day and 3 = asthma very bad, unable to do normal activities.
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performed using custom-written software in Matlab (The Mathworks Inc., Natick, MA, 

USA) and SAS PROC GENMOD was used for logistic regression analyses in SAS 9.1 (SAS 

Institute Inc., Cary, NC, USA) for Windows.

Results

Five patients were excluded due to missing data over the whole period (n=4) or 

unknown date of prednisone use (n=1). Twenty-four patients had 1 or more moderate 

exacerbations, for a total of 38. Thirteen of these were excluded due to missing data 

(n=9) or overlap with moderate (n=3) or severe exacerbation (n=1). After quality 

control, 25 moderate exacerbations could be included for 3-week period analysis. 

Eleven patients had 1 or more severe exacerbations, for a total of 15. Three of these 

were excluded from analysis due to missing data. In total, 12 severe exacerbations 

were selected for 3-week period analysis and were analyzed qualitatively, as 

statistical interference of low numbers could be unreliable. Two patients had moderate 

Table 3.2. General characteristics of study population

Moderate exacerbations Severe exacerbations

Demographics

Patients N 18 9

Exacerbations N 25 12

Gender (male) N (%) 8 (44.4) 2 (22.2)

Age (year) Mean (SD) 11.7 (2.5) 10.1 (2.1)

Weight (kg) Mean (SD) 43.8 (11.8) 37.6 (11.1)

Height (cm) Mean (SD) 150.8 (14.4) 142.2 (13.4)

Medication

ICS dose (µg.day-1) Median (IQR) 400 (200-1000) 400 (200-1200)

LABA use per day % 44.0 63.4

Rescue medication use per day % 21.0 20.1

Lung function

FeNO (ppb)* Median (IQR) 21 (14-32) 19 (10-40)

FEV1‖ (% pred)† Mean (SD) 86.7 (16.6) 78.7 (24.3)

�Post-bronchodilator  

FEV1** (% pred)‡

Mean (SD) 90.1 (16.3) 85.6 (19.5)

ICS, inhaled corticosteroid; LABA, long acting bronchodilator; Rescue medication, short acting bronchodilator; 

FEV1, forced expiratory volume in 1 second. *: Median FeNO of total study period. †: Baseline FEV1. ‡: Baseline 

reversibility of FEV1.
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Figure 3.1. SABA rescue medication use around exacerbations and in the reference 
periods
Percentage short acting bronchodilator (SABA) rescue puffs per day in the periods before, during and after 

exacerbations and in the reference period. Rescue medication use is depicted for moderate exacerbations 

(upper panel) and severe exacerbations (lower panel).
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Figure 3.2. Percentage change in FeNO before and after exacerbations 
Mean relative FeNO time series for 3 week periods centered around moderate exacerbations (upper panel) 

and severe exacerbations (lower panel) (onset exacerbation at day 0). Relative FeNO = FeNO divided by the 

median of the reference period. Bars show average daily symptom scores (sum of wheezing, shortness of 

breath, coughing and sleep disturbances).
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exacerbations preceding a severe exacerbation by 3 and 9 days. Demographics and 

baseline characteristics of children with moderate and severe exacerbations are given 

in Table 3.2. Maintenance and reliever medication, used in the periods before, during 

and after exacerbations and in the reference periods are depicted in Figure 3.1.

Moderate exacerbations
On the average, FeNO started to increase approximately 10 days before the onset 

of a moderate exacerbation. The mean change of FeNO before and after a moderate 

exacerbation is displayed in Figure 3.2, upper panel. There was a significant increase 

of FeNO 3 days prior until 4 days after the exacerbations. Figure 3.1 (upper panel) 

shows that short acting bronchodilator use was higher during exacerbations compared 

to the period before the moderate exacerbations (64.9% VS 15.9%, P<.001).

Severe exacerbations
FeNO showed marked variability around severe exacerbations, but no clear rise 

preceding the onset of prednisone treatment (Figure 3.2, lower panel). Individual plots 

did not show a clear trend of symptoms in relation to severe exacerbations. There was 

however a rise in the use of rescue medication (Figure 3.1, lower panel).

Daily FeNO fluctuations and moderate 
exacerbations
The risk of moderate exacerbation was not associated with geometric mean FeNO or 

maximum FeNO. A higher CV of FeNO during 14 and 10 days before an exacerbation 

compared to the reference period was significantly associated with moderate 

exacerbations (standardized CV 14 and 10 days: OR 2.27 (1.16; 4.44) and 1.93 

(1.02; 3.66)) (Table 3.3). The slope of FeNO between 14 and 4 days before moderate 

exacerbations was associated with the exacerbation (slope in 14, 10, 7 and 4 days 

before onset of exacerbation: OR 2.98 (1.22; 7.28), 1.58 (0.98; 2.54), 1.25 (0.97; 

1.63) and 1.16 (1.00; 1.34), respectively). A higher cross-correlation of FeNO and 

symptoms during 14 and 10 days before the onset of moderate exacerbations was 

associated with exacerbation (standardized cross-correlation 14 and 10 days: OR 2.35 

(1.12; 4.90) and 1.84 (0.94; 3.59)), respectively). Higher autocorrelation of FeNO 

was observed during 21, 14 and 10 days before exacerbations (OR 1.97 (1.04; 3.74), 

2.09 (1.08; 4.03) and 1.71 (0.93; 3.16), respectively). Increases in slope, with a 

cut-off defined as mean slope before moderate exacerbations, were randomly seen 

in 19% of 2-week blocks of children without exacerbations. In a receiver operating 

curve analysis, we found an area under the curve of 0.71 for slopes of 2-week blocks 

to predict exacerbations (test cut-off slope = .385; sensitivity, 64.0%; specificity, 

74.3%).
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Single FeNO values were not predictive of exacerbations. At least 3-5 data points in 

3 weeks were required to detect a moderate exacerbation (for 3, 4 and 5 data points: 

OR 1.56 (0.97; 2.50), 1.92 (1.08; 3.41) and 1.79 (1.00; 3.20), respectively).

Discussion

In this proof-of-concept study we examined daily FeNO measurements in relation 

to exacerbations of childhood asthma, compared to reference periods of the same 

child when stable. We found an increase in FeNO starting approximately 10 days 

before moderate, but not before severe exacerbations. Moderate exacerbations were 

quantitatively analyzed with novel mathematical methods23. The CV, slope, cross-

correlation and autocorrelation of the FeNO time-series all showed significant changes 

prior to moderate exacerbations. Increases in slope were also randomly seen in 19% 

of 2-week blocks of children without exacerbations. Single FeNO values were not 

predictive of exacerbations and at least 3-5 data points in 3 weeks were required to 

detect an upcoming exacerbation.

Previous studies on FeNO in relation to asthma management suggested that 

using FeNO to guide asthma treatment might reduce the risk of exacerbations18. 

Unfortunately, most earlier studies on FeNO-guided asthma management were 

underpowered to demonstrate a significant effect on exacerbations7-10. In the only 

Table 3.3. Associations between parameters derived from daily FeNO and moderate 
exacerbations

Before moderate exacerbation vs. Reference period OR (95% CI)a

Days before onset 

of exacerbation
21 14 10 7 4

Coefficient of 

Variation*

1.52 

(0.85;2.72)

2.27 

(1.16;4.44)

1.93 

(1.02;3.66)

1.54 

(0.85;2.78)

1.07 

(0.61;1.87)

Slope
1.74 

(0.72;4.17)

2.98 

(1.22;7.28)

1.58 

(0.98;2.54)

1.25 

(0.97;1.63)

1.16 

(1.00;1.34)

Cross-Correlation*†
1.50 

(0.79;2.83)

2.35 

(1.12;4.90)

1.84 

(0.94;3.59)

1.54 

(0.79;3.00)
-

Autocorrelation*‡
1.97 

(1.04;3.74)

2.09 

(1.08;4.03)

1.71 

(0.93;3.16)

1.32 

(0.74;2.34)
-

a: Odds ratios (95% confidence interval), parameters derived from daily FeNO before moderate exacerbations 

were examined as predictors for the outcome of an exacerbation compared to parameters of daily FeNO 

derived from reference periods. *: Coefficients were divided by the standard deviation to make OR’s more 

directly interpretable33. †: Cross-correlation coefficient of daily FeNO with daily sum of symptoms on the same 

day. ‡: Autocorrelation coefficient of FeNO with FeNO lagged by 1 day.
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study with sufficient power, FeNO monitoring significantly reduced the number of 

prednisone courses11. However, design issues may have clouded the results24. FeNO 

during acute severe exacerbations was studied previously, and did not correlate with 

other measures of severity14,15. These studies concluded that FeNO is not informative 

for severe exacerbations. Longitudinal daily FeNO measurements in relation to 

exacerbations have not been studied before.

In our study we found no evidence that daily FeNO measurements could 

predict severe exacerbations. However, our study sample of children with severe 

exacerbations was relatively small. Surprisingly, daily symptoms were not strongly 

associated with severe exacerbations. We speculate that the symptom diaries 

might be insensitive for symptoms of severe exacerbations, e.g. because severe 

obstruction would not be recognized as wheeze, or severe symptoms might have 

been misinterpreted and hence not properly labelled and scored. That a clinically 

relevant worsening of symptoms had occurred was evident from the increased use of 

rescue medication (Figure 3.1). Unfortunately, diary questionnaires are not commonly 

validated for severe episodes. Spirometric measurements, which could have helped 

defining both moderate and severe exacerbations, were not obtained concurrently with 

FeNO. We did not measure PEF or FEV1 at home after ample consideration, because 

this would require the use of two different measurement devices with essentially 

different blowing techniques, and this was considered not feasible.

Asthma exacerbations are characterized by increases in airway inflammation, which 

can differ in type, depending on the pathogenesis that may involve infective or allergic 

stimuli25. FeNO provides indirect information on eosinophilic airway inflammation2. 

Respiratory viruses are associated with neutrophilic airway inflammation, and are 

responsible for the majority of severe asthma exacerbations with emergency visits, 

hospitalization and prednisone prescriptions26,27. This could explain why FeNO did 

not show an increase before such exacerbations in the present study. Indeed, 

experimental rhinovirus infection caused only a small increase in FeNO 1-2 days before 

an increase in symptoms28,29. In contrast, allergen exposure may cause elevated 

FeNO many days or even weeks before symptoms worsen30. In our study, FeNO could 

detect moderate exacerbations 1-2 weeks before symptoms occurred. We therefore 

speculate that moderate exacerbations were preceded by increased eosinophilic airway 

inflammation.

Interestingly, the majority of children with exacerbations had a strong, positive 

cross-correlation between FeNO and symptoms and autocorrelation before 

exacerbations compared to the reference periods. We recently found that the level of 

cross-correlation between FeNO and symptoms in the whole study period was stronger 

in children with- than in those without exacerbations, and speculated that the level 

of cross-correlation may be useful to identify children at risk for exacerbations20,31. 
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Treatment with inhaled corticosteroids may affect FeNO levels. The magnitude of the 

change in FeNO and its time course are dose-dependent32. A point of consideration is 

therefore that our monitoring strategy was coupled to therapeutic intervention in the 

CHARISM study, and might have modified the association of FeNO and exacerbations. 

Our study was not designed to evaluate individual FeNO changes as a result of steroid 

dose changes. As an increase in ICS would have reduced FeNO, we would have 

underestimated the effect32.

We examined the possibility of false negative episodes by looking at the number 

of periods in which we found a slope that was higher than the average 2-week blocks 

slope preceding moderate exacerbations and found higher slopes in 19% of all 2-week 

blocks in children without exacerbations. However, daily FeNO slopes preceding 

moderate exacerbations were significantly higher compared to slopes throughout 

the whole study period in children without exacerbations (p<.001). This observation 

shows that FeNO slope changes are not highly specific for children with imminent 

exacerbations, though indicative of an increased risk.

Cl inical implications
This is a proof-of-concept study, where different types of mathematical techniques 

were used in a dataset designed for another hypothesis. Long-term daily 

measurements of FeNO enabled us to look at periods of exacerbations relative to 

reference periods in the same subject. This analysis showed that there are indeed 

changes in FeNO before exacerbations compared to reference periods, and quantifies 

some of these changes. The study sample size was small, 25 moderate exacerbations 

in 18 patients. There were only 12 severe exacerbations in 9 patients, which may have 

decreased the power to detect significant associations between daily FeNO and severe 

exacerbations. We believe however that our sample size was sufficient for a proof of 

concept study for moderate exacerbations and think that our findings warrant further 

studies looking at changes in FENO over time in selected populations, which may be 

better than looking at single and averaged values for monitoring and risk prediction 

in asthma23. Our findings also suggest that regular FeNO measurements in the home 

setting could help to detect and perhaps even help prevent loss of asthma control. 

Such monitoring could be especially useful in a selected population with frequent 

moderate exacerbations.

In conclusion, daily FeNO monitoring revealed changes in FeNO prior to moderate 

exacerbations of asthma. Whether or not this can be used to prevent loss of asthma 

control should be further explored.
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Abstract

Background
Fractional concentration of exhaled nitric oxide (FeNO), a marker of airway 

inflammation, has been proposed to be useful for asthma management, but 

conclusions are inconsistent. This may be due to the failure of mean statistics to 

characterize individual variability in FeNO, possibly a better indicator of asthma control 

than single measurements.

Objectives
We characterized fractal fluctuations in daily FeNO over time and the relationship 

between FeNO and symptoms. We investigated whether these are associated with 

asthma severity, control, and exacerbation risk.

Methods
Daily FeNO and symptom scores over 192 days in 41 atopic asthmatic children from 

the CHARISM study were analyzed. Two methods of time series analysis were used: 

detrended fluctuation analysis to quantify fractal patterns in fluctuations in daily FeNO 

(a) and cross-correlation to quantify the strength of the relationship between daily 

FeNO and symptoms. The associations of α and cross-correlation with markers of 

asthma severity and control were assessed via regression analysis.

Results
Daily fluctuations in FeNO exhibited fractal-type long-range correlations. Those 

subjects on higher doses of inhaled corticosteroids (ICS) at study entry had a 

significantly lower a, corresponding to more random fluctuations in FeNO in those with 

greater ICS need. The cross-correlation between FeNO and symptoms was significantly 

higher in those subjects that had exacerbations.

Conclusions
Fluctuation in FeNO and its cross-correlation to symptoms contains information on 

asthma severity and control. Methods that quantify the complexity of asthma over 

time may assist in identifying asthmatics with concordance between eosinophilic 

inflammation and symptoms and thus elevated exacerbation risk.
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Introduction

The heterogeneous expressions of asthma make it a complex disease to characterize1. 

Clinically, the goal is to achieve asthma control, which may be facilitated by 

identifying functional asthma phenotypes and reliable markers of disease, and to 

design a targeted treatment strategy with minimal inhaled corticosteroid (ICS) dose. 

The fractional concentration of exhaled nitric oxide (FeNO), a biomarker of airway 

inflammation, has been shown to reflect asthma control2-4 and therapy response5-7 and 

has been proposed to be useful for asthma management8-11. Longitudinal randomized 

controlled trials in which ICS were titrated based on FeNO showed only limited 

benefits12,13, but several studies found that longitudinal measurements of FeNO in 

asthmatics are helpful to predict deterioration2,14,15. Furthermore, studies with positive 

results utilizing FeNO as a predictor of deterioration concluded that the change in 

FeNO was more predictive than isolated FeNO measurements2, especially in those with 

medium to high-dose ICS treatment14. This provides support for studying the day-to-

day changes in FeNO16,17 for long-term asthma management.

The study of variability in physiological systems over time allows patients to be 

considered as nonlinear dynamic systems that are constantly adapting to changes 

in their environment. Utilizing methods from time series analysis, different aspects 

of dynamic systems can be quantified. Detrended fluctuation analysis (DFA)18 is a 

technique which quantifies the extent to which signal fluctuations are correlated over 

different time scales, a property consistent with fractal systems. Using DFA, it has 

been shown that fluctuations in heart-rate dynamics18-20, tidal breathing21,22, as well 

as lung function in adult asthmatics 23,24 exhibit fractal behaviour. Specifically, fractal 

correlations in fluctuations of peak expiratory flows in adult asthmatics were shown 

to be related to asthma severity and control24 and could be used to predict the risk of 

future obstructive events24,25 as well as β2-agonist treatment response23. Therefore, 

the quantification of fractal properties in fluctuations in FeNO over long periods of 

time may provide information on an individual’s asthma severity in relation to asthma 

control and exacerbation risk.

Recent investigations have advocated the need to focus on the multidimensional 

nature of asthma phenotypes and their temporal pattern in the assessment of asthma 

control1,26. It has been shown that the concordance between FeNO and symptoms 

may identify a phenotype of adult asthma that has a greater exacerbation risk, with 

possible therapeutic implications26. One method to quantify this relationship between 

FeNO and symptoms is cross-correlation, which calculates the correlation between 

two fluctuating signals as a function of a time-lag applied to one of them. This type 

of analysis can reveal the extent to which different expressions of asthma change 

together.
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In this study, we investigated the fluctuations of FeNO and symptoms over 30 

weeks using DFA and cross-correlation, and examined their association with clinical 

status and asthma severity and control in atopic asthmatic children who participated 

in a previous study12. We hypothesized that information contained within fluctuations 

in FeNO over time and its relationship to symptoms may be an additional marker to 

describe individual asthma severity and control.

Methods

Study population and design
We retrospectively analyzed data from the CHildhood Asthma Respiratory 

Inflammatory Status Monitoring (CHARISM) study12; a prospective, open label, 

randomized, multicenter, parallel-group study in Italy and the Netherlands. Asthma 

was monitored daily over 30 weeks in 151 mild to moderate atopic asthmatic children 

aged 6-18 years. The aim of the original study was to investigate whether ICS doses 

are better titrated based on FeNO and symptoms rather than symptoms only. We 

analyzed data from the FeNO arm of the trial, where ICS doses were adjusted every 3 

weeks based on FeNO and symptoms assessed daily in 77 randomly-assigned children. 

Prior to analysis we defined a technical inclusion criterion of less than 10% of FeNO 

data missing out of the first 192 days of the study (<19 days missing), to minimize 

errors in the DFA22. Missing days were filled in with values of the previous day, as 

detailed previously24.

FeNO measurements
Daily FeNO telemonitoring was performed using a portable airway inflammation 

monitor (NIOX MINO®, Aerocrine, Solna, Sweden) with a constant flow of 50 ml/s 

according to ERS/ATS criteria27. Measurements were transferred daily to the study 

centre via a palm-top computer.

Cl inical status
Subjects recorded daily symptom scores, ICS, rescue bronchodilator use, and adverse 

events in a palm-top electronic diary (PalmOne Tungsten W TrialMax, CRF Inc., 

Helsinki, Finland). Similar to the Santanello score28, sleep disturbance and symptom 

scores of cough, wheeze, and shortness of breath were scored from 0 to 3 based on 

increasing severity (0 = no symptoms, 1 = occasional symptoms, 2 = symptoms 

most of the day, and 3 = very bad asthma, unable to perform normal activities). 

Asthma control was estimated weekly and then averaged over the observation 

period according to the GINA guidelines29,30, where symptoms, bronchodilator use, 
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exacerbations, and lung function contributed to an asthma control rating of controlled 

(code = 0), partly controlled ( = 1), and uncontrolled ( = 2). Forced expiratory volume 

in 1 s (FEV1) and reversibility was measured at clinical visits 5 times during the study. 

The lung function results were applied to all weeks following the measurement until 

the next measurement. Weeks were excluded if they did not have at least 6 of 7 days 

of symptom data in their electronic diary. Symptoms, medications, and asthma control 

were summarized over the entire study period, at baseline (asthma activity in the 

first 3 weeks of the study) and at the end of the study (asthma activity in the last 12 

weeks).

Exacerbations
In accordance with the 2009 ATS/ERS statement31, severe exacerbations were defined 

as one or more days of oral prednisone prescription. Moderate exacerbations were 

defined as 2 or more days with a total symptom score of greater than or equal to 

3 above the average total symptom score of the preceding 2 weeks or 1 or more 

days with a symptom score greater than 5 above the preceding 2 week average and 

increased rescue bronchodilator use.

Comorbidities
All subjects had a positive radioallergosorbent test class 2 or higher or a positive 

skin prick test for at least 1 airborne allergen. Comorbidities were recorded at each 

clinic visit and entered into the electronic diary by the study nurses. Reports of cold, 

pharyngitis, fever, flu, otitis, bronchitis, and pneumonia during the study period were 

classified as ‘infectious comorbidities’. Allergic rhinitis, conjunctivitis and eczema, were 

classified as ‘allergic comorbidities’.

Detrended fluctuation analysis
The DFA was used to quantify the extent to which fractal-type correlations were 

present in the FeNO signal with a single correlation exponent, α18. The details of the 

method have been previously published 24. Briefly, to calculate α, a FeNO time-series 

of day-by-day FeNO measurements was integrated and divided into non-overlapping 

time windows of size n. For each window, the fluctuation function F(n) was calculated 

by taking the root-mean-square values of the detrended signal32. This process was 

repeated for increasing n and plotted on a log-log plot, where a linear relationship 

implies F(n) follows a power law functional form F(n) = A na, where A is the amplitude 

of the power law fluctuation function and a is the correlation exponent, which indicates 

the extent of long-range correlation in the original signal.

One can think of the presence of correlations in a signal as a form of memory, 

since fluctuations at any certain time point are related to those at previous points 
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in time. An uncorrelated, random signal such as white noise has an a = 0.5. As a 

increases above 0.5, fluctuations have stronger long-range correlations, i.e. there is a 

stronger relationship between values at different short- or long-range time scales (e.g. 

days or weeks).

We chose to analyze the first 192 days of data, which was a compromise between 

the data length requirements of the DFA calculation22 and inclusion of subjects with 

sufficient data points. In order to account for long-term linear trends present in the 

FeNO time series, a modified detrended fluctuation analysis algorithm32 was used.

Cross-correlation of FeNO and symptoms
Cross-correlation measures the degree to which two signals are linearly correlated 

when one of these signals is lagged in time. Similar to a regression coefficient, the 

strength and direction of this relationship is quantified by a correlation coefficient, 

where a positive coefficient indicates that as one variable increases, so does the other, 

and a negative coefficient indicates an inverse relationship between the variables. 

In this study, FeNO was the reference signal, and symptoms were shifted in time. 

Thus, when a maximum positive cross-correlation is seen at a lag of 2, the strongest 

relationship between FeNO at present is with symptoms measured 2 days later. We 

calculated the cross-correlation between daily FeNO and daily sum of symptom scores, 

where symptoms were lagged by FeNO within ± 7 days to allow for the possibility that 

increases in symptoms could precede or follow increases in FeNO.

Statistical analysis
Associations between parameters of clinical asthma control status (exposures) and a 

or cross-correlation of symptoms/FeNO (outcomes) were examined separately using 

multiple linear regression models adjusted for age, height and sex. Associations 

between occurrence of exacerbation (exposure) and a or cross-correlations (outcome) 

were examined using multiple linear regressions adjusted for mean ICS dose. 

Severe and moderate exacerbations were also examined separately. The potential 

confounding effect of infectious and allergic comorbidities as well as medications 

on the above associations was investigated. First, univariate associations of each 

confounder with mean FeNO, a and cross-correlation coefficient were investigated 

with linear regression. Second, significantly associated parameters from these 

univariate investigations were included as confounders in the above multiple linear 

regression analysis. In addition, we examined the contribution of treatment decisions 

on fluctuations in FeNO by calculating the cross-correlation between FeNO and ICS in 

three-week windows. Statistical analyses were performed using Intercooled Stata 10 

for Windows (Stata Corporation, College Station, Texas, USA).
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Results

Forty-one children met the inclusion criterion of less than 10% data missing of daily 

FeNO and symptoms out of the first 192 days of the study, resulting in a total of 7,820 

measurements of FeNO for analysis. Table 4.1 summarizes the subject characteristics 

Table 4.1. Characteristics of study population

All Included

Subjects

(N = 41)

Asthma 

Exacerbations 

Severe (N = 5)

Moderate (N = 10)

No Asthma 

Exacerbation

(N = 26)

P 

Value*

Characteristics

Sex, male, N (%) 20 (49) 4 (27) 16 (62) 0.03

Age, years 10.9 ± 2.4 10.9 ± 2.4 10.8 ± 2.4 0.92

Weight, kg 39.6 ± 12.1 40.6 ± 12.5 39.1 ± 12.1 0.53

Height, cm 146.3 ± 15.5 146.2 ± 14.7 146.4 ± 16.2 0.90

Medication, N (%)

Antihistamine 19 (46) 7 (47) 12 (47) 0.98

Montelukast 11 (27) 5 (33) 6 (23) 0.48

Nasal-steroid 15 (37) 5 (33) 10 (38) 0.75

Long-acting β-agonist 30 (73) 11 (73) 19 (73) 0.46

Mean ICS dose: μg · day-1, medianl 309 (90-1080) 469 (90-1080) 308 (89-1160) 0.77†

Mean bronchodilator use: puffs/day, medianl 0.88 (0.16-3.29) 1.32 (0.34-5.05) 0.59 (0.11-3.23) 0.02†

Lung function and symptoms

Geometric mean FeNO, ppb 19.8 ± 8.6 18.8 ± 6.4 20.4 ± 9.6 0.79

Mean FEV1, % predicted‡ 97.6 ± 11.3 96.0 ± 9.8 98.6 ± 12.1 0.49

Mean reversibility of FEV1, % pred§ 6.2 ± 6.7 6.9 ± 5.5 5.9 ± 7.3 0.65

Mean asthma controlll 0.83 ± 0.46 1.12 ± 0.38 0.66 ± 0.42 0.0005

Symptom free days, medianl 88 (2-176) 75 (2-166) 106 (1-182) 0.19†

Mean daily sum symptom score, medianl 0.87 (0.15-3.34) 1.32 (0.29-5.33) 0.62 (0.10-3.27) 0.02†

Comorbidities, N (%)

Infectious comorbidities 25 (61) 11 (73) 14 (54) 0.22

Allergic comorbidities 13 (32) 5 (33) 8 (31) 0.87

FeNO fluctuation

a 1.03 ± 0.13 1.05± 0.13 1.02 ± 0.14 0.51

Cross-correlation 0.15 ± 0.21 0.27 ± 0.18 0.09 ± 0.21 0.01

Mean (standard deviation) values are provided unless otherwise indicated. *: Assessed via student’s t test. †: 

Assessed via Wilcoxon rank-sum test. l: Expressed as 95% confidence intervals. ‡: Average of 5 FEV1 tests in 

weeks 1, 3, 12, 21 and 30. §: Average of 5 reversibility FEV1 tests. ll: Mean asthma control classified weekly 

as controlled = 0, partly controlled = 1, or uncontrolled = 2.
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stratified by severe, moderate, or no asthma exacerbation during the study period. 

In the whole study group, FeNO measured over 192 days displayed a considerable 

amount of fluctuation. Two examples of a FeNO time series over 192 days from 

subjects with no changes in steroid dose can be seen in Figure 4.1.

Detrended fluctuation analysis
Fluctuations in FeNO values recorded daily over 192 days were correlated on time 

scales of more than a month (long-range correlation) with a mean long-range 

correlation exponent of (a = 1.03 (SD 0.13)).

Figure 4.1. Exhaled nitric oxide over 192 days from two subjects with no changes 
in ICS dose during study period
Upper panel: Subject with relatively small range of FeNO [5 - 30 parts per billion (ppb)], constant ICS dose of 

1000 μg/day throughout the study, and weak long-range correlation in FeNO reflected by an α of 0.850. Lower 

panel: Subject with relatively large range of FeNO [6 - 40 ppb], constant ICS dose of 400 μg/day throughout 

the study, and stronger long-range correlations reflected by an α of 1.171.
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Cross-correlation of FeNO and symptoms
More subjects (n = 10) had their strongest correlation between FeNO and symptoms 

on the same day (lag 0) than for any other day, whereas the rest of the subjects had 

maximum correlation when symptoms were shifted with respect to FeNO within ± 5 

days. In order to maintain comparability, we used the cross-correlation at lag 0. The 

cross-correlation coefficient of FeNO and symptoms ranged from -0.31 to 0.59, where 

23 subjects had a significantly positive relationship between FeNO and symptoms 

(p < 0.05), 4 subjects had a significantly negative relationship, and 14 had a weak 

relationship (not significant). An example of a subject with strong positive correlation 

can be seen in Figure 4.2. In this subject, the strongest cross-correlation occurred 

when FeNO preceded symptoms by 2 days (lag=2).

Relationship with cl inical status
The long-range correlation exponent a was negatively associated with ICS dose at 

baseline (Table 4.2), but was not found to be associated with ICS, symptoms, and 

asthma control averaged over the whole period, or in the last 12 weeks of the study. 

Furthermore, when stratified by mean asthma control over the study period, there 

was a significant decrease in a with ICS dose only in the uncontrolled children (mean 

asthma control score >1 over the study period, n = 14, 71% of whom had asthma 

exacerbations) of 0.03 per 100mg/day increase in ICS (95%CI -0.05 to -0.01, p 

Figure 4.2. Cross-correlation of daily FeNO and symptoms
Day-by-day FeNO and symptoms in a subject with a strong concordance between the FeNO and symptoms. 

Here, the maximum correlation occurred when increases in FeNO preceded increases in symptoms by 2 days 

(lag 2): cross-correlation; (lag 0) 0.558, (lag 1) 0.607, (lag 2) 0.620.
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= 0.007). The strength of cross-correlation between FeNO and symptoms was not 

related to clinical status or ICS dose throughout the study.

Relationship with exacerbations
Of the included subjects, 5 had a severe asthma exacerbation and 10 had moderate 

exacerbations. Two of those with severe exacerbations had more than 1 prednisone 

course, and 4 of those with moderate exacerbations had more than 1 moderate 

exacerbation. There was no difference in mean FeNO in the exacerbation groups (Table 

4.1). Both a and cross-correlation were able to distinguish between the exacerbation 

group (severe and moderate) and the group with no exacerbations. The strength 

of long-range correlations, a tended to be higher in those children that had severe 

exacerbations, but the differences were not significant. Even when adjusted for 

mean ICS dose during the study, the strength of cross-correlation between FeNO and 

symptoms (Figure 4.3) was greater in those who had either a severe or moderate 

exacerbation by 0.17 (95% CI 0.018 to 0.30, p = 0.030) compared to those who did 

not have an exacerbation.

Table 4.2. Association of α and cross-correlation with cl inical status

Multivariable Models*

Effect Long-range correlation α† Cross-Correlation‡

Coeff. 95% CI P value Coeff. 95% CI P value

Baseline§ Mean FeNOll 0.0007 -0.0019 to 0.0034 0.58 0.0038 -0.0006 to 0.0082 0.09

Baseline Symptom Score -0.017 -0.057 to 0.021 0.36 0.019 -0.048 to 0.086 0.58

Baseline ICS Dose** -0.013 -0.025 to -0.001 0.04 0.002 -0.020 to 0.024 0.86

Baseline Asthma Control -0.013 -0.095 to 0.069 0.76 0.12 -0.02 to 0.25 0.09

Mean FeNO 0.001 -0.004 to 0.006 0.74 0.004 -0.004 to 0.012 0.35

Mean Sum Symptoms -0.016 -0.053 to 0.021 0.38 0.0004 -0.0638 to 0.0647 0.99

Mean ICS Dose** -0.009 -0.021 to 0.004 0.15 0.02 0.00 to 0.04 0.11

Mean Asthma Control 0.010 -0.082 to 0.102 0.82 0.08 -0.08 to 0.23 0.32

Mean FeNO at study end†† 0.001 -0.004 to 0.006 0.76 -0.001 -0.009 to 0.008 0.91

Mean symptom score at study end -0.017 -0.052 to 0.018 0.33 0.018 -0.043 to 0.079 0.55

Mean ICS dose at study end** -0.006 -0.018 to 0.006 0.32 0.008 -0.013 to 0.029 0.44

Mean asthma control at study end 0.016 -0.067 to 0.098 0.70 0.08 -0.06 to 0.22 0.23

*: Model was adjusted for age, height, and sex. †: Long-range correlations calculated using detrended 

fluctuation analysis adjusted for linear trend. ‡: Cross-correlation between FeNO and symptoms on the same 

day (lag 0). §: Clinical status parameters assessed in the first 3 weeks of the study. ll: Geometric mean of 

FeNO. **: Calculated as per 100 mg increase in ICS. ††: Clinical status parameters assessed in the last 12 

weeks of the study.
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Effect of comorbidities and medications
Children who took antihistamines had a borderline increased geometric mean FeNO 

of 5.13 ppb (95% CI -0.10 to10.37, p = 0.054) and a stronger of cross-correlation of 

FeNO and symptoms by 0.13 (95% CI 0.00 to 0.26, p = 0.043) compared to those 

that did not take antihistamines in a univariate model. These effects disappeared 

in a multivariable model, while the relationship between exacerbations and cross-

correlation remained significant. In addition, there was a significant feedback of 

changes in ICS on mean FeNO in 71% of the subjects, but this was not related to 

the long-range correlation exponent, a. In a receiver operator curve analysis (ROC), 

the cross-correlation coefficient of FeNO and symptoms was the best predictor for 

exacerbations (Figure 4.4) compared to mean FeNO (p = 0.033), mean symptoms 

(p = 0.80), and a (p = 0.16). A cut-off in cross-correlation above which significant 

cross-correlation between FeNO and symptoms was found across all subjects (cross-

correlation = 0.134) had a positive predictive value (PPV) of 54% and a negative 

predictive value (NPV) of 84% (sensitivity 80%, specificity 61%).

Figure 4.3. Cross-correlation of daily FeNO and symptoms in exacerbation groups
Box plots of cross-correlation between symptoms and FeNO stratified by severe, moderate or no exacerbation 

during the study period. Boxes represent 25th and 75th percentiles with median line and error bars 

representing 10th and 90th percentiles.
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Discussion

In our study of FeNO recorded daily over 192 days in atopic asthmatic children12, we 

found that fluctuations in FeNO were not random, but were correlated over time scales 

of more than a month (long-range correlation). The long-range correlation exponent, 

a, was found to be lower in those subjects requiring higher ICS doses at study entry. 

Thus, fluctuations in FeNO were more random in children requiring higher ICS doses. 

However, a was not related to mean asthma control as defined by the GINA guidelines. 

Although mean FeNO levels were not predictive, the day-by-day cross-correlation of 

FeNO and symptoms was significantly stronger in those subjects that had severe or 

moderate exacerbations, even when adjusting for mean ICS dose.

Long-range correlations
There is accumulating evidence that there is a healthy amount of variability in 

physiologic systems with a complex, but organized structure. The outputs of such 

systems have been shown to contain long-range, fractal correlations, a property which 

may render them more adaptive to external perturbations. These fractal correlations 

have been shown to break down with disease, possibly reflecting a reduction in the 

adaptive ability of the system and prospective critical events. In asthmatics, the study 

of long-range, fractal correlations in lung function has been shown to provide valuable 

Figure 4.4. Receiver operator curves
Receiver operator curves for mean FeNO, mean sum symptoms, the cross-correlation between FeNO and 

symptoms, and the long-range correlation coefficient α to predict exacerbations. The cross-correlation 

coefficient of FeNO and symptoms was the best predictor for exacerbations compared to mean FeNO 

(p=0.033), mean symptoms (p=0.80), and α (p=0.16).
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information on the complex nature of asthma23,24. We have previously shown that 

patients with a more random pattern in twice-daily peak expiratory flows had more 

severe asthma24, poor treatment response23, and higher probability for an obstructive 

event24. Our present findings indicate that long-range, fractal correlations are also 

manifested in fluctuations of an inflammatory marker of asthma, FeNO.

We found that long-range correlations in fluctuations in daily FeNO were associated 

with ICS doses, but were not related to clinical status, and were not predictive of 

treatment response throughout the study or at the end of the study. This could be due 

to the constant adaptation of ICS to FeNO levels every 3 weeks, as a consequence of 

the original study design. This association between a and mean ICS dose, particularly 

when stratified by asthma control, is likely to be complex. While GINA guidelines 

proposed that asthma severity could best be determined in the untreated patient30, 

recent guidelines33,34 suggest that asthma severity may be a function of asthma 

control, as it is related to ICS treatment that can mask the underlying disease 

process. Our data provide evidence that the relationship between ICS dose, severity 

of asthma and long range correlations in FeNO were most obvious in poorly controlled 

asthmatics. This might be due to the amount of the disease process that is not 

masked by treatment.

The characterizations of long-range correlations in twice-daily peak-expiratory 

flows in asthmatics in combination with variability potentially offer the possibility 

to predict future obstructive events 24,25. In this study we provide the first evidence 

that fluctuations in daily inflammatory markers also contain long-range correlations. 

Based on the present findings it is not possible to draw conclusions on the predictive 

ability of long-range correlations in FeNO, as our data only show a trend for higher a 

in those that had exacerbations. Future trials of fluctuation analysis of daily FeNO in 

steroid naïve asthmatics before and after ICS treatment could help to elucidate the 

relationship between severity of the underlying disease process and asthma control in 

relation to ICS dose.

Concordance of FeNO and symptoms
Although the relationship between FeNO and symptoms has been investigated35-37, 

this is the first study that compares day-by-day FeNO and symptoms over such a 

long period of time using time-series analysis techniques in asthmatic children. In our 

study population, we found that the majority of subjects had the strongest positive 

relationship between FeNO and symptoms on the same day. Subjects who had severe 

or moderate exacerbations had a stronger positive cross-correlation between FeNO 

and symptoms, suggesting that concordance of FeNO and symptoms is an indicator of 

elevated risk of exacerbation.
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This concept of concordance between FeNO and symptoms has recently been 

advocated by Haldar et al26 via phenotype cluster analysis of an asthma cohort. They 

found that within a group of adult asthma patients, there are subjects in whom FeNO 

is strongly associated with asthma symptoms, whereas in others, this relationship is 

weak. They suggested a new concept of ‘concordant’ and ‘discordant’ phenotypes of 

asthma. In our study population of atopic asthmatic children, such a distinction may 

explain why in some patients FeNO and symptoms are dissociated in time. Cross-

correlation analysis of biomarkers and symptoms fluctuating over time might be a 

new way of quantifying such concordance and may help to identify new ‘fluctuation 

phenotypes’ of asthma. This is particularly important since there is increasing evidence 

that asthma therapy might benefit from a more individualized and phenotype-specific 

approach26,38-40. Therefore, the temporal concordance between fluctuations in FeNO and 

symptoms, quantified by cross-correlation methods, could help to identify an elevated 

risk of asthma instability and exacerbation risk. Moreover, asthmatics in which FeNO 

and symptoms are discordant might specifically benefit from FeNO monitoring.

In a ROC analysis, we see that the cross-correlation between FeNO and symptoms 

is the best predictor of exacerbations compared to the other predictor variables, but 

only slightly better than symptoms. Since the definition of exacerbations depends 

on symptoms, the usefulness of symptoms as a predictor is limited. Therefore the 

cross-correlation of FeNO and symptoms is attractive as an independent predictor of 

exacerbations. If we use a cut-off cross-correlation coefficient of 0.134, we find a PPV 

of 54% and a NPV of 84% (sensitivity 80%, specificity 61%). This is similar to the 

predictive value of FeNO to predict loss of control found in other studies 2,41. As the 

cut-off value for concordance is derived from this relatively specific dataset, with no 

information on physiological meaningfulness, the predictive ability should be taken 

with caution.

Limitations of the study
In human studies over long periods of time, it is impossible to control the external 

environment. In this study where asthma was monitored over 30 weeks, not only 

were children exposed to various undocumented external factors such as the school 

environment, local pollution, allergens, but their asthma medication was potentially 

changed every 3 weeks, depending on FeNO and symptoms. Since ICS have an effect 

on FeNO, one could presume that this would have an effect on FeNO variability and 

asthma control, as well as contribute to the intrinsic correlations in FeNO. While we 

could show that there was a strong cross-correlation between FeNO and ICS dose in 

most subjects, we did not find an impact of this feedback on long-range correlations 

in FeNO. We also did not find an impact of the average ICS dose or the number of 

ICS step changes, implying that the amount of ICS dose that a subject received did 
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not seem to impact the level of internal correlation. Better insight in FeNO behaviour 

might be possible in a study in which ICS doses do not depend on FeNO.

We excluded 34 children due to the inclusion criterion of less than 10% missing 

data. These children tended to be older and have higher FeNO values. They did not 

differ in terms of ICS doses at study entry, but due to titration of ICS based on FeNO, 

tended to have higher ICS doses throughout the study. Whereas the exclusion of this 

population did not affect our main findings, one should be cautious when extrapolating 

these results to a more general asthma population.

Cl inical implications and future hypotheses
As proposed in a recent review1, monitoring multiple disease parameters over time and 

characterizing their fluctuations may provide new tools to characterize the dynamic, 

complex nature of asthma better than mean values. In our proof of concept study we 

show that by monitoring fluctuations in symptoms and FeNO, we can better identify 

which children are at risk for exacerbations compared to cut-off or mean FeNO values. 

Furthermore, by studying long-range patterns in FeNO, we may be able to better 

characterize of asthma severity and control, which could aid in treatment decisions. 

We speculate that the application of time-series analysis to clinical parameters could 

help to define new fluctuation phenotypes of asthma. Although this dataset was not 

ideal to answer all our questions on the clinical utility of such methods, future studies 

with a prospective design may be able to disentangle the effect of ICS on correlations 

in FeNO, and help to determine which treatment will be most effective for a given 

patient. Presently, FeNO analyzers are still relatively expensive and complex, but with 

the foreseen development of cheaper, simpler devices, daily monitoring of FeNO may 

become a reality for clinical practice. Such methods are attractive as we move towards 

patient-initiated personalized medicine.
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Abstract

Background
The fractional concentration of nitric oxide in exhaled air (FeNO) is a biomarker of 

eosinophilic airway inflammation and associated with childhood asthma. Identification 

of common genetic variants associated with childhood FeNO may suggest biological 

mechanisms related to specific asthma phenotypes.

Objectives
To identify common genetic variants associated with childhood FeNO, and their relation 

with asthma.

Methods
In 14 independent pediatric discovery genome-wide association (GWA) studies of 

FeNO (N = 8,858), we examined association statistics of ~2.5 million single nucleotide 

polymorphisms (SNPs). Subsequently, we assessed whether significant SNPs were 

expression quantitative trait loci (eQTLs) in genome-wide expression datasets of 

lymphoblastoid cell lines (N = 1,830). Significant SNPs and their relation with asthma 

were tested in a previously published GWA dataset of physician-diagnosed asthma 

(cases: n=10,365; controls: n=16,110).

Results
FeNO was measured online in children aged 5 to 15 years. We identified 3 SNPs 

associated with FeNO: rs3751972 in LYR motif containing 9 (LYRM9) (P = 1.97x10-10) 

and rs944722 in nitric oxide synthase 2, inducible (NOS2) (P = 1.28x10-9) both 

located at 17q11.2-q12, and rs8069176 near gasdermin B (GSDMB) (P = 1.88x10-8) at 

17q12-q21. We found a cis eQTL for the transcript lectin, galactoside-binding, soluble, 

9 (LGALS9) that is in linkage disequilibrium with rs944722. rs8069176 was associated 

with GSDMB and ORM1-like 3 (ORMDL3) gene expression. rs8069176 at 17q12-q21, 

not rs3751972 and rs944722 at 17q11.2-q12, were associated with physician-

diagnosed asthma.

Conclusions
This study highlights that both shared and distinct genetic factors affect FeNO and 

childhood asthma.
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Introduction

Asthma is a complex disease with different phenotypes, influenced by many genetic 

and environmental factors1. The mechanisms leading to specific asthma phenotypes 

are poorly understood2,3. Recent genome-wide association (GWA) studies provided 

evidence that different common genetic variants are associated with specific asthma-

related outcomes such as childhood onset asthma4-6, adult asthma5-7, impaired lung 

function8-11, and atopy12-14.

The fractional concentration of nitric oxide in exhaled air (FeNO) is a non-invasive 

biomarker of eosinophilic airway inflammation15-17. Higher FeNO is associated with 

childhood asthma symptoms18, exacerbations19, physician-diagnosed asthma15-17 

and atopy20. Nitric oxide (NO) is a reactive free-radical gas generated in the airway 

epithelium when L-arginine is oxidized to L-citrulline17. This reaction is catalyzed 

by nitric oxide synthases (NOS), that are upregulated in the presence of pro-

inflammatory cytokines and inflammatory mediators17. NO regulates airway and blood 

vessel tone and high NO concentrations have antimicrobial effects17. Although 60% 

of the variation of FeNO in adults can be explained by heritability21, the genetic loci 

that influence FeNO are largely unknown. Identification of common genetic variants 

associated with childhood FeNO may help to define biological mechanisms related to 

specific asthma phenotypes2,3,22,23.

To identify common genetic variants associated with childhood FeNO, we examined 

the association of ~2.5 million directly genotyped and imputed single nucleotide 

polymorphisms (SNPs) and FeNO in 14 independent pediatric discovery GWA studies 

(N = 8,858).

Methods

FeNO was measured online in children aged 5 to 15 years according to European 

Respiratory Society (ERS) and American Thoracic Society (ATS) guidelines16. FeNO was 

natural-log transformed to obtain a normal distribution. We applied linear regression 

between allele dosages obtained from imputations and natural-log FeNO adjusted for 

sex and age at time of measurement. Details on the discovery analysis and additional 

analyses are presented in the Supplementary Methods section, and an overview of our 

study design is outlined in Figure 5.1. Details on individual study characteristics, SNP 

genotyping platforms and study association analyses are provided in Supplementary 

Table 5.1.

We assessed whether significant SNPs or SNPs in linkage disequilibrium (LD) 

with our lead SNPs were expression quantitative trait loci (eQTLs) in genome-wide 
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expression datasets of lymphoblastoid cell lines (LCLs) (N = 1,830)24,25. eQTLs 

are genomic loci that regulate expression levels of messenger RNAs. We also 

tested the relation of significant SNPs with asthma in a previously published GWA 

dataset of physician-diagnosed asthma (cases: n=10,365; controls: n=16,110)5. 

We explored whether the identified SNPs were related with FeNO in adults in the 

Epidemiological study on the Genetics and Environment of Asthma (EGEA) and in 

Hutterites (N=1,211). We also explored whether common genetic variants known to 

be associated with physician-diagnosed asthma5 were related with childhood FeNO. 

The institutional review boards for human studies approved the protocols and written 

consent was obtained from the participating subjects or their caregivers if required by 

the institutional review board.

 Stage 1: genome-wide association analyses of FeNO in children 
N = 8,858
- ALSPAC1 (n = 949) 
- ALSPAC2 (n = 794) 
- BAMSE (n = 97) 
- CHS1 (n = 708) 
- CHS2 (n = 1,155) 
- COPSAC (n = 313) 
- GABRIELA (n = 358) 
- GENERATIONR (n = 2,572) 
- INMA (n = 153) 
- LISA1 (n = 255) 
- GINI/LISA2 (n = 585) 
- MAAS (n = 600) 
- PIAMA1 (n = 149) 
- PIAMA2 (n = 170) 
 

Stage 2: follow-up of 3 lead SNPs 
- Functional variants in LD with lead SNPs (HaploReg search)  
- eQTLs in LCLs in LD with lead SNPs (discovery n = 955, replication n = 875) 
- Lead SNPs and physician-diagnosed asthma (cases: n=10,365; controls: n=16,110)  
- Lead SNPs and adult FeNO (EGEA, n = 610, Hutterites, n = 601) 
- Analysis of lead SNPs conditioned on current asthma (n = 7,786) 
- Analysis of lead SNPs in non-asthmatic children (n = 6,711) 
 

Stage 3: cross-phenotyping 
- Associations of known physician-diagnosed asthma loci and FeNO (N = 8,858)  
 

Figure 5.1. Study design
SNPs, single nucleotide polymorphisms; LD, linkage disequilibrium; eQTLs, expression quantitative trait loci; 

LCLs, lymphoblastoid cell lines.
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Results

We identified genome-wide significant (P < 5x10-8) association of childhood FeNO and 

SNPs at 3 loci. Two of these were located at chromosome 17q11.2-q12 (Table 5.1): 

rs3751972 in LYR motif containing 9 (LYRM9) and rs944722 in nitric oxide synthase 

2, inducible (NOS2). Each C allele of rs3751972 was associated with higher ln(FeNO) 

(β = 0.086 ppb; S.E. = 0.014; P = 1.97x10-10; explained variance = 0.23%), and 

each C allele of rs944722 was associated with lower ln(FeNO) (β = -0.073 ppb; S.E. 

= 0.012; P = 1.28x10-9; explained variance = 0.30%). rs3751972 and rs944722 are 

in neighbouring loci with low LD (HapMap pairwise LD (phase II release 22 CEU); D’ = 

0.237, r2 = 0.014). A third SNP (rs8069176) near gasdermin B (GSDMB) at 17q12-q21 

was also associated with childhood FeNO. Each A allele of rs8069176 was associated 

with lower ln(FeNO) (β = -0.066 ppb; S.E. = 0.012; P = 1.88x10-8; explained variance 

= 0.41%). Figure 5.2-5.4 show the QQ-, Manhattan-, regional association- and forest 

plots of the 3 signals.

We performed a conditional analysis using the genome-wide complex trait 

analysis (GCTA) tool conditioning on all SNPs of the meta-analysis26 and showed that 

rs3751972 and rs944722 were indeed independent signals (Supplementary Table 5.2). 

After conditioning on all SNPs of the meta-analysis, rs3751972 and rs2274894 showed 

the strongest association in LYRM9 (P = 2.06x10-9) and in NOS2 (P = 1.50x10-8), 

respectively. Using the same approach, rs8069176 showed the strongest association 

at 17q12-q21 (P = 2.14x10-8). The conditioned SNP effect estimates were largely 

unaffected (all SNPs < 6% difference in effect estimate as compared to unconditioned 

SNP effect estimates).

The 3 genome-wide significant SNPs showed low heterogeneity between studies 

(all P ≥ 0.075, I2 = 0 – 37.8%). The 3 SNPs together explained 0.95% of the variance 

Table 5.1. Summary statistics of the 3 SNPs at P < 5x10-8

Marker MAF β S.E. P I2 HetP

rs3751972[C] at 17q11.2 (LYRM9) 0.25 0.086 0.014 1.97x10-10 27.4 0.161

rs944722[C] at 17q11.2-q12 (NOS2) 0.38 -0.073 0.012 1.28x10-09 37.8 0.075

rs8069176[A] at 17q12-q21 (nearest genes ZPBP2-GSDMB) 0.43 -0.066 0.012 1.88x10-08 0.0 0.668

Single nucleotide polymorphisms (SNPs) markers are identified according to their standard rs numbers (NCBI 

build 36). Independent SNPs with a genome-wide significant effect on FeNO levels in children are shown (P 

< 5x10-8). The total sample includes data of 14 independent GWA datasets (N = 8,858). MAF, minor allele 

frequency; S.E., standard error. β reflects differences in natural log-transformed FeNO per minor allele. P 

values are obtained from linear regression of each SNP against natural log-transformed FeNO adjusted for sex 

and age at time of measurement (fixed-effect additive genetic model). Derived inconsistency statistic I2 and 

HetP values reflect heterogeneity across studies with the use of Cochran’s Q tests.
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Figure 5.2. QQ and Manhattan plot of 2,253,077 SNPs of 14 GWA studies (N = 
8,858)
Quantile-Quantile (QQ) plot (upper panel) of 2,253,077 single nucleotide polymorphisms (SNPs) of 14 

genome-wide association (GWA) studies (N = 8,858). The black dots represent observed P values and the red 

line represents the expected P values under the null distribution. Manhattan plot (lower panel) showing the 

association P values of FeNO from the 14 studies. The –log10 of the P value for each of 2,253,077 SNPs (y-axis) 

is plotted against the genomic position (NCBI build 36; x-axis). Model: ln(FeNO) = SNP + sex + age. For two 

samples with non-Caucasian children adjustment of principal components was applied. SNP filters: minor allele 

frequency 5%, imputation accuracy, SNP had to be available in at least 8 cohorts.
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LYRM9

Figure 5.3. Association plots of the 17q11.2-q12 and 17q12-q21 regions
For each of the 17q11.2-q12 (upper panel) and 17q12-q21 (lower panel) regions, single nucleotide 

polymorphisms (SNPs) are plotted with their P values (as –log10 values; left y-axis) as a function of genomic 

position (NCBI Build 36; x-axis). Estimated recombination rates (right y-axis) taken from HapMap are plotted 

to reflect the local linkage disequilibrium (LD) structure around the top associated SNP (represented by a 

purple circle) and their correlated proxies (according to a blue to red scale from r2 = 0 to 1, based on pairwise 

r2 values from HapMap CEU). Triangles represent nonsynonymous SNPs in the region.
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Figure 5.4. Forest plots of the associations between FeNO and the 3 SNPs 
associated with FeNO at P < 5x10-8

Forest plots of the associations between FeNO and single nucleotide polymorphisms (SNPs) in LYRM9 (a), 

NOS2 (b) and near ZPBP2-GSDMB (c) at P < 5x10-8. In each plot, the triangle indicates the effect size and the 

confidence interval of the 14 studies. The P values in the plots are without genomic control correction.
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in FeNO. Other suggestive loci, that did not reach genome-wide significance (P < 1x10-

5), associated with FeNO in childhood, are given in Supplementary Table 5.3 and 5.4.

We assessed whether there were common non-synonymous functional variants in 

LD (r2 > 0.80) with our 3 genome-wide significant SNPs using HaploReg27. We found 

3 variants, rs11557467, rs2305480 and rs2305479 in high LD with rs8069176 at 

17q12-q21 (HapMap; r2 = 0.84, 1.00 and 0.90, respectively). Rs11557467 is located 

in zona pellucida binding protein 2 (ZPBP2), and rs2305480 and rs2305479 in GSDMB.

Subsequently, we assessed whether the identified 3 loci were eQTLs in genome-

wide expression datasets of LCLs (N = 1,830)24,25. We found a cis eQTL for the 

transcript lectin, galactoside-binding, soluble, 9 (LGALS9) in LD with rs944722 in two 

independent datasets (Supplementary Tables 5.5 and 5.6). rs8069176 was associated 

with both GSDMB and ORM1-like 3 (ORMDL3) gene expression. We did not find eQTLs 

for rs3751972.

Table 5.2. Association of the 3 SNPs related to childhood FeNO with physician-
diagnosed asthma and adult FeNO

Physician-diagnosed asthma (cases = 10,365 : controls = 16,110)5

Marker OR (95% CI) P

Proxy for rs3751972: rs4796222[A] (r2=1.000; D’=1.000) at 17q11.2 (LYRM9) 0.98 (0.93-1.02) 0.303

Proxy for rs944722: rs2274894[T] (r2=0.967; D’=1.000) at 17q11.2-q12 (NOS2) 1.00 (0.96-1.04) 0.983

Proxy for rs8069176: rs2305480[A] (r2=1.000; D’=1.000) at 17q12-q21 

(nearest genes ZPBP2-GSDMB)

0.85 (0.81-0.88) 7.93x10-17

Adult FeNO

Marker (EGEA, n = 610) β S.E. P

rs3751972[C] at 17q11.2 (LYRM9) 0.125 0.065 0.057

rs944722[C] at 17q11.2-q12 (NOS2) -0.015 0.061 0.802

rs8069176[A] at 17q12-q21 

(nearest genes ZPBP2-GSDMB)

-0.113 0.062 0.067

Marker (Hutterites, n = 601) Z score P

Proxy for rs3751972: rs4796228[G] (r2=0.659; D’=1.000) at 17q11.2 (LYRM9) -1.536 0.125

Proxy for rs944722: rs2314809[T] (r2=0.967; D’=1.000) at 17q11.2-q12 (NOS2) -2.322 0.020

Proxy for rs8069176: rs11078927[T] (r2=1.000; D’=1.000) at 17q12-q21 

(nearest genes ZPBP2-GSDMB)

0.505 0.613

Single nucleotide polymorphisms (SNPs) markers are identified according to their standard rs numbers (NCBI 

build 36). Independent SNPs with a genome-wide significant effect on FeNO levels in children are shown (P 

< 5x10-8) in relation to physician-diagnosed asthma5 and adult FeNO. S.E., standard error. Odds ratios (OR) 

with 95% confidence intervals (CI) for physician-diagnosed asthma5. β reflects differences in natural log-

transformed FeNO per minor allele for adult FeNO in EGEA. Z-score reflects the strength of the association 

between SNP and natural log-transformed FeNO and the direction of the effect of the minor allele in Hutterites.
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We tested the associations of the 3 FeNO-associated SNPs with physician-

diagnosed asthma in a previously published GWA dataset (cases: n=10,365; controls: 

n=16,110)5. The rs8069176[A] minor allele at the 17q12-q21 locus was associated 

with a decreased risk of asthma. We used rs2305480[A] as a proxy for rs8069176[A] 

(odds ratio (OR) 0.85; 95% CI = 0.81 to 0.88; P = 7.93x10-17; Table 5.2). This is in 

line with the association with lower FeNO that we found for rs8069176[A]. The SNPs 

rs3751972 and rs944722 were not associated with an asthma diagnosis (P ≥ 0.3). The 

3 SNPs were not associated with adult FeNO (N = 1,211, Table 5.2).

Finally, we explored whether common genetic variants known to be associated 

with physician-diagnosed asthma5 were related with childhood FeNO. We observed 

that asthma SNPs rs2305480 at 17q12 (GSDMB), rs3894194 at 17q21.1 (GSDMA), 

rs744910 at 15q22.33 (SMAD3) and rs1295686 at 5q31 (IL13) were indeed associated 

with childhood FeNO, after Bonferroni correction (all P ≤ 0.005; Table 5.3). The 

directions of the SNP effects were as expected.

Table 5.3. Association of known physician-diagnosed asthma loci, from a previous 
GWA study5 with childhood FeNO

Physician-diagnosed asthma5

Marker MAF β S.E. P I2 HetP

rs2305480[A] decreasing risk-allele at 17q12 (GSDMB) 0.42 -0.065 0.012 2.83x10-08 0.0 0.731

rs3894194[A] increasing risk-allele at 17q21.1 (GSDMA) 0.47 0.048 0.012 6.35x10-05 9.5 0.349

rs744910[A] decreasing risk-allele at 15q22.33 (SMAD3) 0.49 -0.039 0.012 8.41x10-04 0.0 0.491

rs1295686[T] increasing risk-allele at 5q31 (IL13) 0.27 0.044 0.014 1.25x10-03 4.6 0.401

rs1342326[C] increasing risk-allele at 9p24.1 (IL33) 0.17 0.025 0.016 0.119 0.0 0.515

rs9273349[T] decreasing risk-allele at 6p21.3 (HLA-DQ) 0.37 -0.022 0.022 0.310 0.0 0.802

rs11071559[T] decreasing risk-allele at 15q22.2 (RORA) 0.14 -0.014 0.017 0.415 0.0 0.651

rs3771166[A] decreasing risk-allele at 2q12 (IL18R1) 0.35 -0.009 0.012 0.463 7.4 0.371

rs2284033[A] decreasing risk-allele at 22q13.1 (IL2RB) 0.42 0.005 0.012 0.705 0.0 0.633

rs2073643[T] increasing risk-allele at 5q23.3 (SLC22A5) 0.47 0.000 0.012 0.993 0.0 0.590

Single nucleotide polymorphisms (SNPs) markers are identified according to their standard rs numbers (NCBI build 

36). We explored whether common genetic variants known to be related with physician-diagnosed asthma5 were 

associated with childhood FeNO. The total sample includes data of 14 independent GWA datasets (N = 8,858). MAF, 

minor allele frequency; S.E., standard error. β reflects differences in natural log-transformed FeNO per minor allele. 

P values are obtained from linear regression of each SNP against natural log-transformed FeNO adjusted for sex 

and age at time of measurement (fixed-effect additive genetic model). Derived inconsistency statistic I2 and HetP 

values reflect heterogeneity across studies with the use of Cochran’s Q tests.
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Discussion

We identified association with FeNO and genetic variants at 3 loci. The common variants 

in and near LYRM9 and NOS2 were located at 17q11.2-q12. The function of LYRM9 is 

unknown. In earlier studies, variants in NOS encoded by NOS1, NOS2 and NOS3 and 

arginase genes jointly contributed to differences in FeNO28-31, and variation in arginase 

genes to asthma severity32. Inducible NOS2 is expressed in lung epithelium and is 

synthesized in response to pro-inflammatory cytokines and mediators. Expression 

of inducible NOS2 may be beneficial in host defense or in modulating the immune 

response17,33. In our study genetic variants in NOS2, but not NOS1 and NOS3, were 

robustly associated with childhood FeNO. The associations of genetic variants in NOS 

or arginase genes might be different among asthmatic versus non-asthmatic children28. 

Therefore, we conditioned for current asthma, leading to comparable results for the 

SNPs in LYRM9 and NOS2 and a slightly lower effect for the SNP in the 17q12-q21 locus 

(Supplementary Tables 5.7). In addition we showed that the 3 lead SNPs were also 

associated with FeNO in non-asthmatic children (Supplementary Tables 5.8).

We found a cis eQTL for the transcript LGALS9 in LD with rs944722, downstream 

of NOS2, and this suggests that the protein Gal-9 may be involved in the regulation 

of FeNO. Gal-9 plays a crucial role in immune responses, including allergic 

inflammation. Gal-9 was shown to inhibit allergic airway inflammation, and airway 

hyperresponsiveness by modulating CD44-dependent leukocyte recognition of the 

extracellular matrix in mice34. Results in guinea pigs showed that Gal-9 might be 

involved in prolonged eosinophil accumulation in the lung35. A recent study suggested 

a novel function of Gal-9 in mast cells and suggested that Gal-9 might be an 

interesting new target for the treatment of allergic disorders including asthma36.

The 17q12-q21 asthma locus, harbouring the ZPBP2, GSDMB, and ORMDL3 genes, 

is a complex region with high LD4,5,37,38. GSDMB may be involved in the regulation 

of the growth and differentiation of epithelial cells39,40. The function of upstream 

ORMDL3 gene in humans is not completely clear. The ORMDL family genes encode for 

transmembrane proteins located in the endoplasmic reticulum membrane. In mice, 

double knockout of the ORMDL genes leads to slower growth and higher sensitivity to 

toxic compounds in mice41. The function of the downstream ZPBP2 gene is not known. 

Hence, the mechanism by which 17q12-q21 variants regulate FeNO remains to be 

elucidated.

Some authors have suggested that the association between asthma and FeNO may 

be entirely explained by atopy42. We found an association between the 17q12-q21 

childhood asthma locus and FeNO. This suggests that FeNO might be causally 

related with asthma: as far as we know the variants at the 17q12-q21 locus are not 

associated with specific atopic outcomes.
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In summary, we identified 3 independent signals that were associated with 

childhood FeNO levels in LYRM9 (rs3751972), in NOS2 (rs944722), which are 

both at 17q11.2-q12, and one signal near GSDMB (rs8069176) at 17q12-q21. The 

17q11.2-q12 and 17q12-q21 loci are both complex regions with high LD, and may 

harbour multiple independent signals that influence FeNO and asthma. This study 

provides novel insights in the regulation of FeNO and highlights that both shared and 

distinct genetic factors affect FeNO and childhood asthma.

Supplementary Methods

Stage 1: genome-wide association (GWA) analyses of FeNO in children. We 

combined 10 population-based cohorts with GWA data and FeNO in children available 

(total N = 8,858 individuals). Four of our discovery cohorts had two independent 

sub-samples within their study leading to a total of 14 independent GWA sub-samples 

for our analysis: two sub-samples from the Avon Longitudinal Study of Parents and 

Children (ALSPAC1, n = 949; ALSPAC2, n = 794); BAMSE (BAMSE, n = 97); two 

sub-samples from the Children’s Health Study (CHS1, n = 708; CHS2, n = 1,155); 

Copenhagen Study on Asthma in Childhood (COPSAC, n = 313); GABRIELA Advanced 

Surveys (GABRIELA, n = 358); Generation R Study (GENERATIONR, n = 2,572); 

Infancia y Medio Ambiente (INMA, n = 153); two sub-samples from Lifestyle Immune 

System Allergy Study (LISA1, n = 255; GINI/LISA2, n = 585); Manchester Asthma 

and Allergy Study (MAAS, n = 600); and two sub-samples from the Prevention and 

Incidence of Asthma and Mite Allergy birth cohort study (PIAMA1, , n = 149; PIAMA2, 

n = 170). While no systematic phenotypic differences were observed between the 

sub-samples of the Avon Longitudinal Study of Parents and Children, Children’s 

Health Study, Lifestyle Immune System Allergy Study and Prevention and Incidence 

of Asthma and Mite Allergy birth cohort study, they were analyzed separately due to 

genotyping on different platforms and/or at different time periods. Genotypes within 

each study were obtained using high-density SNP arrays and then imputed for ~2.5M 

HapMap SNPs (Phase II, release 22; http://hapmap.ncbi.nlm.nih.gov/). The basic 

characteristics, exclusions applied (for example, individuals of non-European ancestry 

for the European samples, family related individuals), genotyping, quality control and 

imputation methods for each discovery study are presented in Supplementary Table 

5.1.

Statistical analysis within discovery studies. Fractional exhaled Nitric Oxide (FeNO) 

was natural log-transformed to obtain a normal distribution. Multiple births and twins 

were excluded from all analyses. The association between each SNP and FeNO was 
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assessed in each study sample using linear regression of natural log-transformed 

FeNO against genotype allelic-dosage using an additive genetic model, with sex and 

age at the time of measurement as covariates. Twelve out of the fourteen sub-samples 

contained children from European descent and the remaining two cohorts, Children’s 

Health Study sub-sample 2 and the Generation R study, had an admix population. 

Therefore, we applied correction for principal components (PCs) in these two datasets. 

No population stratification was observed in the two datasets (study λ values: CHS2 

= 1.031 and GENERATIONR = 0.977). We performed an additional sensitivity analysis 

excluding the non-European samples, which led to comparable results Supplementary 

Table 5.4. Excluding the two admix datasets led to comparable results, according to 

effect size and direction of effect, but higher standard errors were observed. Standard 

errors were most likely higher due to the lower number of study subjects (N = 

3,727). Details of any additional corrections for study specific population structure are 

given in the Supplementary Table 5.1. The GWA analysis per cohort was performed 

using MaCH2qtl43, SNPTEST44, PLINK45 or PropABEL46. The secured data exchange 

and storage were facilitated by the Erasmus Medical Center, Department of Internal 

Medicine47.

Meta-analysis of discovery studies. Prior to meta-analysis, SNPs with a minor allele 

frequency (MAF) ≤ 0.01 and poorly imputed SNPs (r2hat ≤ 0.3 (MaCH); proper_info 

≤ 0.4 (IMPUTE2)) were filtered. Genomic control (GC)48 was applied to adjust the 

statistics generated within each cohort (see Supplementary Table 5.1 for individual 

study λ values). Inverse variance fixed-effects meta-analyses were analyzed using 

METAL (released 2010-08-01)49 by two meta-analysts in parallel and blinded to obtain 

identical results. After the METAL meta-analysis, we filtered SNPs with a MAF ≤ 0.05 

and SNPs that were not available in at least eight sub-samples to avoid false-positive 

findings. We used Cochran’s Q test and the derived inconsistency statistic I2 to assess 

evidence of between-study heterogeneity of the effect sizes. The meta-analysis 

results were obtained for a total of 2,253,077 SNPs. SNPs that crossed the widely 

accepted genome-wide significance threshold P ≤ 5x10-8 were considered to represent 

robust evidence of association with FeNO. SNPs which surpassed a P value threshold 

of P ≤ 1x10-5 were considered to represent suggestive evidence for association with 

FeNO (see Supplementary Table 5.3 and 5.4). The explained variance of the SNPs 

was calculated in the Generation R Study (n = 2,572). The genome-wide complex 

trait analysis (GCTA) tool26 was used to condition on all SNPs of the meta-analysis to 

determine independent genome-wide SNPs. Summary statistics of the meta-analysis 

and individual genotype data of the Generation R study from European ancestry only 

(N = 2,661, also children without FeNO measurements) have been used as reference 

dataset in the GCTA tool.
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Stage 2: follow-up of the 3 lead SNPs and additional analyses. Analysis of 

functional SNPs and eQTLs in LD with the 3 lead signals. We assessed whether there 

were common non-synonymous functional variants in linkage disequilibrium (r2 > 

0.80) with our 3 genome-wide significant SNPs using HaploReg27. Subsequently, we 

assessed whether our 3 genome-wide significant SNPs were expression quantitative 

trait loci (eQTLs). Genome-wide expression data of lymphoblastoid cell lines (LCLs) 

was used to search for the eQTLs24. Gene expression in LCLs was characterized in two 

independent datasets, one sample of 405 siblings using Affymetrix HG U133 Plus 2.0 

chips and the other sample of 550 siblings using Illumina Human6V1 array. Among 

these individuals, 928 were also genotyped at > 300,000 SNPs using the Illumina 

HumanHap300 arrays, with additional genotypes for 2.4 millions SNPs in HapMap 

(release II) and 8 million SNPs in the 1000 Genomes Project filled in using imputation. 

We defined genome-wide significant cis eQTL as false discovery rate (FDR) < 1% 

account for all SNP-probe pairs that were within 1Mb of each other (Supplementary 

Table 5.5). Discovery eQTLs were followed-up in an ALSPAC expression dataset of LCLs 

of 875 individuals (Supplementary Table 5.6)25.

Analysis of lead SNPs conditioned on current asthma and effect of lead SNPs for 

non-asthmatic children. Associations of genetic variants might be different among 

asthmatic versus non-asthmatic children28. Therefore, we assessed whether current 

asthma was a confounder by conditioning on current asthma for our 3 lead SNPs. In 

addition, we explored the effects of the 3 lead SNPs for non-asthmatic children (see 

Supplementary Tables 5.7 and 5.8).

Association of the 3 lead signals related to childhood FeNO with physician-diagnosed 

asthma and adult FeNO. We searched in the previously published GWA meta-analysis 

dataset if the lead index SNPs of FeNO were available and associated with FeNO 

related outcome physician-diagnosed asthma. This dataset include independent 

samples of cohorts participating in the GABRIEL consortium5. The lead SNPs were 

substituted in with a closely correlated proxy from the HapMap, because the index 

SNPs were not available. The 3 independent genome-wide significant SNPs were 

taken forward for in silico replication in a GWA of FeNO in adults (EGEA, n = 610 

and Hutterites, n = 601). The lead SNPs were substituted in Hutterites with a closely 

correlated proxy, because the index SNPs were not available. Details of the replication 

studies are presented in Supplementary Table 5.1. Within the replication studies, 

we analyzed the association between each SNP and natural log-transformed FeNO 

adjusted for age, sex, height, smoking status, study center and principal components.
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Stage 3: cross-phenotyping. Association of known physician-diagnosed asthma 

loci with childhood FeNO. We looked up and assessed whether previously identified 

SNPs associated with FeNO related outcome physician-diagnosed asthma5 were also 

associated with childhood FeNO. Bonferroni correction was applied to correct for 

multiple testing (asthma: P = 0.05 / 10 selected loci = 0.005).
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Supplementary materials

Supplementary Table 5.1. Basic characteristics, exclusions, genotyping, quality 
control and imputation in GWA studies per cohort
This table is available on request (rjpvandervalk@gmail.com).

Supplementary Table 5.2. Summary statistics of the 3 lead SNPs at P < 5x10-8 and 
their independent effects using GCTA tool

Discovery analysis GCTA

Marker β S.E. P Marker β S.E. P

rs3751972[C] 0.086 0.014 1.97x10-10 rs3751972[C] 0.081 0.014 2.06x10-09

rs944722[C] -0.073 0.012 1.28x10-09 rs2274894[T]* -0.068 0.012 1.50x10-08

rs8069176[A] -0.066 0.012 1.88x10-08 rs8069176[A] -0.066 0.012 2.14x10-08

Single nucleotide polymorphisms (SNPs) markers are identified according to their standard rs numbers (NCBI 

build 36). Independent SNPs with a genome-wide significant effect on FeNO levels in children are shown (P < 

5x10-8). In the left column independent signals were determined with HapMap pairwise LD (phase II release 

22 CEU) and in the right column with the GCTA tool. The total sample includes data of 14 independent GWA 

datasets (N = 8,858). GCTA, genome-wide complex trait analysis; S.E., standard error. β reflects differences 

in natural log-transformed FeNO per minor allele. P values are obtained from linear regression of each SNP 

against natural log-transformed FeNO adjusted for sex and age at time of measurement (fixed-effect additive 

genetic model). *: Using GCTA, the strongest and independent signal in NOS2 is rs2274894.
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Supplementary Table 5.6. Replication of eQTLs in an independent dataset of LCLs

Marker MAF H2 P TRANSCRIPT

rs944722[C] 0.40 0.7% 0.014 LGALS9

rs8069176[A] 0.48 16.4% 7.8x10-36 ORMDL3

rs8069176[A] 0.48 16.6% 3.1x10-36 GSDML

Peak expression markers*

rs4239242[C] 0.37 3.4% 2.4x10-08 LGALS9

rs8067378[A] 0.48 19.9% 6.4x10-44 ORMDL3

rs8067378[A] 0.48 20.0% 3.9x10-44 GSDML

rs12936231[C] 0.48 19.7% 1.4x10-43 ORMDL3

rs12936231[C] 0.48 19.8% 8.3x10-44 GSDML

rs3816470[A] 0.46 18.5% 1.2x10-40 ORMDL3

rs3816470[A] 0.46 19.0% 6.3x10-42 GSDML

rs7216389[T] 0.48 19.1% 4.3x10-42 ORMDL3

rs7216389[T] 0.48 18.4% 1.9x10-40 GSDML

rs7359623[C] 0.49 19.7% 1.5x10-43 ORMDL3

rs7359623[C] 0.49 19.6% 2.2x10-43 GSDML

Single nucleotide polymorphisms (SNPs) markers are identified according to their standard rs numbers (NCBI 

build 36). Discovery eQTLs were followed-up in the ALSPAC expression dataset. *: Peak expression markers 

from the eQTL discovery analysis. eQTLs, expression quantitative trait loci; LCLs, lymphoblastoid cell lines; 

MAF, minor allele frequency. H2 is the % variance in expression after adjusting for batch effects explained by 

SNP. P values are obtained from a score test.
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Supplementary Table 5.8. Summary statistics of the 3 lead SNPs for non-asthmatic 
children

SNP effects for non-asthmatic children (n = 6,711)

Marker β S.E. P

rs3751972[C] at 17q11.2 (LYRM9) 0.100 0.015 1.09x10-11

rs944722[C] at 17q11.2-q12 (NOS2) -0.075 0.013 6.10x10-09

rs8069176[A] at 17q12-q21 (nearest genes ZPBP2-GSDMB) -0.046 0.013 2.87x10-04

Single nucleotide polymorphisms (SNPs) markers are identified according to their standard rs numbers 

(NCBI build 36). Data of 14 independent datasets. S.E., standard error. β reflects differences in natural log-

transformed FeNO per minor allele. P values are obtained from linear regression of each SNP against natural 

log-transformed FeNO adjusted for sex and age at time of measurement (additive genetic model).

Supplementary Table 5.7. Summary statistics of the 3 lead SNPs conditioned on 
current asthma

SNP effects conditioned on current asthma (n = 7,786)

Marker β S.E. P

rs3751972[C] at 17q11.2 (LYRM9) 0.092 0.014 7.44x10-11

rs944722[C] at 17q11.2-q12 (NOS2) -0.071 0.012 1.37x10-08

rs8069176[A] at 17q12-q21 (nearest genes ZPBP2-GSDMB) -0.051 0.012 3.23x10-05

Single nucleotide polymorphisms (SNPs) markers are identified according to their standard rs numbers (NCBI 

build 36). The total sample includes data of 14 independent datasets where current asthma information was 

available (n = 7,786). S.E., standard error. β reflects differences in natural log-transformed FeNO per minor 

allele. P values are obtained from linear regression of each SNP against natural log-transformed FeNO adjusted 

for current asthma, sex and age at time of measurement (additive genetic model).
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Abstract

Background
Gene variants on chromosome 17q12-21 are associated with an increased risk of 

childhood-onset asthma, a risk known to be modified by environmental tobacco 

smoke.

Objectives
To assess whether the association of rs2305480 on chromosome 17q12 in the GSDMB 

gene with asthma-like symptoms in the first 4 years of life is modified by smoke 

exposure during fetal and early postnatal life.

Methods
We used data from two independent prospective cohort studies from fetal life onwards 

in The Netherlands. We genotyped rs2305480 and assessed maternal smoking during 

pregnancy and environmental tobacco smoke (ETS) exposure at the age of 2 years. 

Asthma-like symptoms, defined as any reported wheezing, shortness of breath or 

dry nocturnal cough, were reported by parents when the children were 1, 2, 3 and 4 

years. Analyses were based on a total group of 4,461 Caucasian children participating 

in the Generation R and PIAMA studies.

Results
The G risk-allele of rs2305480 was associated with asthma-like symptoms (overall 

odds ratio 1.17 (1.11, 1.24), p=2.66x10-9). The effect of rs2305480 on asthma-

like symptoms was stronger among children who were exposed to smoke during 

fetal life (p-interaction= 0.04). Smoke exposure in early postnatal life was also 

associated with an increased effect of the 17q12 SNP on asthma-like symptoms 

(p-interaction=5.06x10-4). These associations were consistent in both cohorts.

Conclusions
A 17q12 variant, rs2305480, was associated with asthma-like symptoms in preschool 

children, and this association was modified by smoke exposure already during fetal 

life and in infancy. Further investigation regarding SNPs in linkage disequilibrium with 

rs2305480 in relation to pathophysiological pathways is needed.
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Introduction

Genome-wide association (GWA) studies identified single nucleotide polymorphisms 

(SNPs) on chromosome 17q12-21 that are associated with childhood asthma1-3. 

The associations have been replicated in independent populations1-9. Rs2305480 in 

gasdermin B (GSDMB) gene on 17q12 showed the strongest association with childhood 

asthma3 and was associated with transcript levels of ORM1-like 3 (ORMDL3)1 and 

GSDMB10. Gene-environment interactions contribute to the development of asthma2. 

An interaction between 17q12-21 variants, including rs2305480, and environmental 

tobacco smoke (ETS) exposure in the first years of life with asthma phenotypes has 

been published previously8,9. Whether the effect of rs2305480 variants on asthma-like 

symptoms is modified by fetal smoke exposure is unknown2. Exploration of a possible 

interaction between rs2305480, fetal smoke exposure and ETS exposure in infancy 

may identify specific early critical time periods of increased susceptibility2,9. In the 

present study, we examined in two independent prospective birth cohort studies 

whether the association between rs2305480 and asthma-like symptoms was modified 

by smoke exposure already during fetal life, and by ETS exposure in infancy.

Methods

We used data from two independent prospective birth cohort studies from fetal life 

onwards in The Netherlands. In the Generation R Study11, recruitment by midwifes 

and obstetricians from the Rotterdam area took place between July 2001 and January 

2006, and for the Prevention and Incidence of Asthma and Mite Allergy (PIAMA) 

study12 recruitment took place in 1996-97 through prenatal clinics in Groningen, 

Rotterdam and Utrecht. Both studies have been approved by the local medical ethics 

committees. Analyses were restricted to singleton live-births with Caucasian ethnicity 

and subjects from whom DNA was available for genotyping13. Caucasian ethnicity 

was defined as having principal components within 4 SD values of the CEU cluster 

of HapMap14. We genotyped rs2305480 in the GSDMB gene. Causal SNP(s) may lie 

elsewhere in the block of linkage disequilibrium (LD)2. In the Generation R Study, 

genotyping was performed using Illumina 610k Quad arrays (San Diego, CA, USA) 

and in the PIAMA study by KBioscience KASP SNP genotyping technology (Hoddesdon, 

Herts, England). The genotype frequencies of rs2305480 were 22.2%(AA), 48.3%(GA) 

and 29.5%(GG) (Hardy-Weinberg p=0.16) in the Generation R Study and in PIAMA 

19.2%(AA), 49.4%(GA) and 31.4% (GG) (Hardy-Weinberg p-value=0.56).

Respiratory symptoms were assessed by questionnaires at the ages of 1, 2, 3 and 

4 years. Questions were taken from the International Study of Asthma and Allergies 
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in Childhood (ISAAC)15. For this analysis we defined asthma-like symptoms as any 

reported wheezing, shortness of breath or dry nocturnal cough without a cold in a 

given year16. Information about fetal smoke exposure and ETS exposure in infancy 

was assessed by postal questionnaires during pregnancy and at the age of 2 years, 

asking the mothers whether they had smoked during pregnancy, and if people smoked 

occasionally in the house, respectively12,17. In this analysis first trimester smokers and 

mothers who continued smoking during pregnancy were combined.

Analyses were based on a total group of 4,461 subjects. We evaluated the strength 

of association (SNP effect) assuming an additive genetic model. The associations of 

rs2305480 with asthma-like symptoms in children at the ages of 1, 2, 3 and 4 years 

and the overall effects at all ages were analyzed using multiple imputation-based 

generalized estimating equation (MI-GEE) models18,19. To test for effect modification, 

we calculated terms for interactions between rs2305480 and smoke exposure status in 

the MI-GEE model. All models were adjusted for maternal age, education and parity, 

children’s sex, gestational age, birth weight, familial history of asthma and allergy, 

breastfeeding, daycare attendance and pet keeping, based on the significance of their 

associations with asthma-like symptoms (p<0.05), or a change in effect estimate 

of >10%. Missing values in covariates were low (highest 9.6%). To handle missing 

values in binary repeated outcomes18,19 and covariates, but not for the determinants 

‘fetal smoke exposure’ and ‘ETS exposure in infancy’, multiple imputations were used 

for all analyses. Ten independent datasets were generated and calculations of pooled 

estimates were performed. Imputations were based on the relationships between all 

potential confounders. No differences in results were observed between analyses with 

imputed data or complete cases (data not shown). Statistical analyses were performed 

using SAS 9.2 (SAS Institute, Cary, NC). Combined effect estimates and heterogeneity 

between cohorts was calculated using fixed effects meta-analyses in R Version 2.8.1 

(The R foundation for Statistical Computing, library rmeta).

Results

Descriptive baseline characteristics of mothers and children were comparable in both 

cohorts, with the exception of education levels of the mother and daycare attendance, 

which were higher in the Generation R Study (Table 6.1). Early life smoke exposure 

was more frequent in the PIAMA cohort. The prevalence of asthma-like symptoms 

according to fetal and infant smoke exposure categories varied between 25 and over 

50%, and was higher in children who were exposed compared to those who were not 

exposed to smoke (Table 6.2).
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Table 6.1. Baseline characteristics of mothers and children (n=4,461)

Generation R  

(n=2,438)

PIAMA

(n=2,023)

Maternal characteristics

Age, years 31.4 (4.2) 30.7 (3.8)

Highest completed education (%)

Primary, or secondary 37.6 (916) 62.2 (1,259)

Higher 62.4 (1,522) 37.8 (764)

Child characteristics 

Female (%) 49.0 (1,195) 48.7 (986)

Gestational age at birth (weeks) 40.3 (37.4-42.1) 40.1 (37.1-41.9)

Birth weight (grams) 3,534 (520) 3,531 (530)

Familial history of asthma or atopy (%)

No 47.3 (1,153) 43.3 (875)

Yes 52.7 (1,285) 56.7 (1,148)

Breastfed (%)

No 11.2 (274) 15.6 (315)

Yes 88.8 (2,164) 84.4 (1,708)

Day care attendance 1st year (%)

No 40.2 (979) 75.2 (1,521)

Yes 59.8 (1,459) 24.8 (502)

Pets in house (%) 

No 56.2 (1,370) 48.8 (987)

Yes 43.8 (1,068) 51.2 (1,036)

Smoke exposure (%)

No smoke 50.2 (1,225) 55.6 (1,125)

Fetal smoke only 9.1 (222) 4.6 (93)

Infant smoke only 4.8 (117) 22.5 (455)

Fetal and infant smoke 5.8 (142) 15.2 (308)

Missing 30.0 (732) 2.1 (42)

Asthma-like symptoms (%) 

Year 1* 50.1 (1,222) 32.4 (656)

Year 2* 41.3 (1,006) 27.1 (548)

Year 3 33.8 (825) 34.5 (698)

Year 4 34.3 (836) 33.1 (671)

Values are means (standard deviation), medians (5-95th percentiles) or percentages (absolute numbers). 

Pooled estimates were calculated of the 10 multiple imputed datasets. *: Shortness of breath question not 

available in PIAMA at age of 1 and 2 years.
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The G risk-allele of rs2305480 was associated with asthma-like symptoms from 

birth until 4 years of age in both the Generation R Study and PIAMA (overall combined 

odds ratio (OR) 1.17 (95% confidence interval: 1.11, 1.24), p=2.66x10-9)) (Table 6.3). 

The associations were significant for each year separately for age 2 to 4 years, but not 

for the first year. The strongest associations were seen in children aged 3 and 4 years 

with both the risk-allele and exposure to ETS in fetal and early life (Table 6.4 and 6.5).

Table 6.2. Prevalence of asthma-like symptoms according to fetal and infant smoke 
exposure

Generation R PIAMA

No

Smoke

(n=1,225)

Fetal

Only

(n=222)

Infant

Only

(n=117)

Fetal and 

Infant

(n=142)

Missing

(n=732)

No

Smoke

(n=1125)

Fetal

Only 

(n=93)

Infant

Only

(n=445)

Fetal and 

Infant

(n=308)

Missing

(n=42)

Year 1*
49.1 

(602)

53.8 

(120)

41.8

 (49)

51.1 

(73)

51.7 

(379)

33.6 

(378)

45.2 

(42)

27.0 

(123)

32.5 

(100)

33.3 

(14)

Year 2*
38.5 

(472)

44.9 

(100)

52.0

 (61)

42.3

 (60)

42.9 

(314)

26.3 

(296)

35.5 

(33)

25.9 

(118)

27.6 

(85)

35.7 

(15)

Year 3
31.8 

(390)

36.6 

(81)

34.4

 (40)

34.4 

(49)

36.2 

(265)

33.4 

(376)

49.5 

(46)

32.7 

(149)

35.1 

(108)

47.6 

(20)

Year 4
32.5 

(398)

37.1 

(82)

42.1

 (49)

33.1

 (47)

35.4 

(259)

32.2 

(363)

44.1 

(41)

29.7 

(135)

38.0 

(117)

35.7 

(15)

Overall
38.0 

(465)

43.1

 (96)

42.6

 (50)

40.2

 (57)

41.6 

(304)

31.4 

(353)

43.6 

(41)

28.8 

(131)

33.3 

(103)

38.1 

(16)

Values are percentages N/total of stratum (N = number of asthma-like symptom cases). Pooled estimates were 

calculated of the 10 multiple imputed datasets. *: Shortness of breath question not available in PIAMA at age 

of 1 and 2 years.

Table 6.3. Association between rs2305480 and asthma-like symptoms

Generation R

(n=2,438)

PIAMA

(n=2,023)

Combined

(n=4,461)

Asthma-like 

symptoms at age

OR (95% CI)

for asthma-like 

symptomsa

OR (95% CI)

for asthma-like 

symptomsa

OR (95% CI)

for asthma-like 

symptomsa

Hetero-

geneity

Year 1* 1.05 (0.92-1.19) 1.10 (0.96-1.27) 1.07 (0.98-1.18) p=.595

Year 2* 1.17 (1.02-1.34) 1.13 (0.98-1.31) 1.15 (1.05-1.27) p=.760

Year 3 1.25 (1.07-1.46) 1.31 (1.15-1.50) 1.28 (1.16-1.42) p=.658

Year 4 1.17 (1.00-1.37) 1.20 (1.05-1.38) 1.19 (1.07-1.32) p=.779

Overall 1.15 (1.06-1.26) 1.19 (1.11-1.27) 1.17 (1.11-1.24) p=.554

a: Odds ratios (OR) and 95% confidence intervals (CI) for asthma-like symptoms are given for the risk-allele 

G. *: Shortness of breath question not available in PIAMA. OR were given (allowing for a time trend) for each 

year of age separately, and for the overall effect. Models are adjusted for gender, maternal age, familial atopy 

history, breastfeeding and daycare attendance.
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Figure 6.1. Overall association between rs2305480 and asthma-like symptoms, 
according to fetal and infant smoke exposure
Overall odds ratios (OR) and 95% confidence intervals (CI) for asthma-like symptoms are given for the risk-

allele G in a) the Generation R study, b) PIAMA and c) combined. Models are adjusted for gender, maternal age, 

familial atopy history, breastfeeding and daycare attendance. For this analysis it was required to have information 

available for both fetal and infant smoke exposure. The following strata were depicted: No smoke (the Generation 

R Study n=1,225, PIAMA n=1,125); Fetal smoke only (the Generation R Study n=222, PIAMA n=93); Infant 

smoke only (the Generation R Study n=117, PIAMA n=455); Fetal and infant smoke exposure (the Generation R 

Study n=142, PIAMA n=308).
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The associations between rs2305480 and asthma-like symptoms were modified 

by fetal smoke exposure (combined p-interaction=0.04) and ETS exposure in infancy 

(combined p-interaction=5.06x10-4) (Figure 6.1). We did not find an overall SNP effect 

in the group with both fetal and early life smoke exposure in the Generation R and 

PIAMA study. In the Generation R Study complete data on fetal and early life smoke 

exposure was missing in 30%, and in PIAMA 2.1%. A sensitivity analysis for missing 

data in Generation R showed that the effect of rs2305480 on asthma-like symptoms 

was comparable in children of whom complete smoking data were not available and 

in children that were not exposed (OR 1.19 (.95-1.47) and OR 1.10 (1.01-1.19) 

respectively, p-interaction=.52). The directions of the SNP effects were consistent 

between the Generation R Study and PIAMA for all analyses (heterogeneity p-values > 

0.05).

Discussion

We found that a common 17q12-21 variant, rs2305480, was associated with asthma-

like symptoms in preschool children and for the first time demonstrated that smoke 

exposure modified this effect of rs2305480 already during fetal life.

Previous studies have shown associations between 17q12-21 variants and early-

onset asthma1-9. We replicated these findings for asthma-like symptoms in preschool 

children in two independent birth cohorts. The increased risk of asthma conferred by 

rs2305480 was enhanced by early childhood ETS exposure8,9, which was also observed 

in the present study. To our knowledge, there are no reports on the interaction 

between 17q12-21 variants and fetal smoke exposure on any asthma outcome. 

We found a modifying effect of fetal smoke exposure on the association between 

rs2305480 and asthma-like symptoms. We did not find an association for the first year 

of life, which may partly be explained by the specific, transient wheezing phenotype 

that has its highest prevalence at this age, and relates to viral infection rather 

than asthma20. In children with 17q21 risk genotypes and early-life ETS exposure, 

associations between infection and asthma were further enhanced21.

Fetal smoke exposure affects future respiratory health by mechanisms that 

may include interference with fetal overall- and lung growth, and reduction of fetal 

breathing movements22. Maternal smoking during pregnancy decreases expression of 

genes that are involved in lung development in neonatal mice, and increases airway 

remodelling and hyperresponsiveness in the offspring23,24. Evidence of epigenetic 

interactions with in utero smoke exposure in humans is emerging25,26, but has not 

yet been described for GSDMB. A common disease allele in 17q12-21 was linked 

to changes in insulator protein CTCF binding and nucleosome occupancy leading 
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to altered domain-wide cis-regulation and cis-regulatory haplotypes were strongly 

associated with asthma27. Previous studies showed that GSDMB is involved in epithelial 

barrier function in mice28,29. The mechanisms by which ETS affects respiratory health 

are complex, and may involve gene-ETS interactions26,30. Indeed, airway inflammation 

may result from a genetically compromised barrier function of the airway mucosa, 

allowing airborne allergens to penetrate the mucosa31.

There are some methodological issues that could have influenced our findings. 

Firstly, parent-reported asthma-like symptoms were the outcome in our study, 

and asking for symptoms that occurred in the previous year may not produce 

accurate results. However, in preschool children a diagnosis of asthma is based on 

symptoms32. This method of assessing symptoms and exposures is widely accepted 

in epidemiological asthma studies, and we used well-validated questionnaires15,16. We 

were not able to assess the association of rs2305480 and its interaction with fetal and 

infant smoke exposure with specific childhood asthma phenotypes, including transient, 

intermediate, late onset, persistent or other wheezing phenotypes33,34, due to the 

availability of data in the Generation R Study until the age of 4 years only. Follow-up 

studies at older ages which include more detailed assessments of childhood asthma 

phenotypes are needed. Although assessing smoke exposure by questionnaires is 

valid, misclassification may occur due to underreporting leading to bias towards 

the null 35,36. We addressed this in a previous study, which showed good agreement 

between the PIAMA questions after ETS exposure and actual measurements of 

nicotine in indoor air 37. Misclassification may still differ between symptomatic and 

non-symptomatic children. The impact of this cannot be measured, but differential 

misclassification is unlikely since we used data of two prospective birth cohorts. 

Assessment of smoke exposure in early life could have introduced misclassification, 

since this was measured at a single point in time, at the age of 2 years, while variation 

in levels and duration of exposure could have changed over time. This could not be 

examined as smoking was not assessed annually. Baseline demographic characteristics 

including social status, day care attendance and smoke exposure prevalences differed 

between the two cohorts, but were controlled for in the analysis. Heterogeneity tests 

showed that there existed no different effects between the two cohorts. In general, 

the previously shown effect estimates for the associations of common genetic variants 

with doctor’s diagnosis of childhood asthma were small with odds ratios ranging from 

1.09 to 1.323. In our study we found a SNP effect of OR 1.09 overall in unexposed 

children, 1.31 in the fetal only-exposed group, and 1.44 in the infant only-exposed 

group. It was puzzling to find a smaller SNP effect in the group with both pre- and 

postnatal smoke exposure than with either pre- or postnatal separate exposures. 

We think that this could result from different mechanisms. Heavy smoking parents 

may underreport respiratory symptoms of their children38, and ‘continuation of 
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parents’ smoking after pregnancy might be more likely if children have no respiratory 

symptoms. Hence, underestimation of symptoms and/or reverse causation might have 

specifically affected this subgroup. We genotyped rs2305480 in the GSDMB gene, 

but causal SNP(s) may lie elsewhere in the block of linkage disequilibrium2. Further 

investigation regarding SNPs in LD with rs2305480 in relation to pathophysiological 

pathways is therefore needed.

We conclude that 17q12 variant, rs2305480, is associated with asthma-like 

symptoms from the age of 2 to 4 years in preschool children and that smoke exposure 

already during fetal life, and exposure to ETS in infancy enhanced the effect of 

rs2305480. These effects were consistent in two independent, prospective, prenatally 

recruited birth cohorts.
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Abstract

Background
Higher maternal folate levels during pregnancy may lead to higher risks of asthma and 

eczema in childhood.

Objectives
Our aim was to assess the associations of folate, homocysteine and vitamin B12 levels 

of children at birth and their methylenetetrahydrofolate reductase (MTHFR) variants 

with asthma and eczema in childhood.

Methods
This study was embedded in a population-based prospective cohort study (N=2,001). 

Neonatal cord blood folate, homocysteine, and vitamin B12 levels were measured, and 

MTHFR C677T and A1298C genotyped. Wheezing and physician-diagnosed eczema 

were annually obtained by questionnaire until 4 years. At 6 years, we collected 

information on physician-diagnosed asthma ever and self-reported eczema ever, 

measured fractional exhaled nitric oxide (FeNO), and interrupter resistance (Rint). 

Data were analysed with generalized estimating equations or logistic regression: 

continuous outcomes with linear regression models.

Results
Folate, homocysteine and vitamin B12 levels of children at birth were not associated 

with wheezing or eczema until 4 years, asthma and eczema ever, or FeNO or Rint at 

6 years. In children carrying C677T mutations in MTHFR, higher folate levels were 

associated with an increased risk of eczema (repeated eczema until 4 years: OR 1.40 

(95% CI 1.09-1.80) (SD change) P-interaction=0.003, eczema ever at 6 years: OR 

1.41 (0.97-2.03) P-interaction=0.011). No interactions between MTHFR and child 

folate and homocysteine levels were observed for wheezing and asthma.

Conclusions
Folate, homocysteine and vitamin B12 levels of children at birth did not affect asthma- 

and eczema-related outcomes up to the age of 6 years. Further studies are warranted 

to establish the role of MTHFR variants in these associations.
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Introduction

Children of mothers who used folic acid-containing supplements (FACSs) during 

pregnancy may have a higher risk of asthma1-4. However, previous studies showed 

conflicting results1-7. A study using objective measures of maternal folate showed 

that higher folate during pregnancy was associated with higher risks of asthma 

in the offspring8. In our previous study, we found that higher maternal folate was 

associated with eczema, not wheeze9. One explanation was that higher folate, 

along with higher vitamin B12, and lower homocysteine levels, was associated with 

increased DNA methylation, and hypermethylation may lead to atopic disease10. 

Previous observations in mice showed that a methyl-rich diet in pregnancy leads to 

an allergic asthma phenotype via epigenetic mechanisms11. Hence, methyldonors 

could influence programming of the fetal immune system in favour of development of 

allergic disease9,10. Methylenetetrahydrofolate reductase (MTHFR) variants are genetic 

determinants of folate and homocysteine status. Specific MTHFR variants may modify 

the effects of folate and homocysteine on atopic disease10. Nucleotide mutations 

in MTHFR at position 677 and 1298 lead to amino acid changes12. MTHFR C677T 

influences folate and homocysteine levels more than MTHFR A1298C12-16. MTHFR 

C677T, the well-studied functional polymorphism in MTHFR, has also been identified 

by previous genome-wide association studies on folate, homocysteine and vitamin 

B1215,16. No other functional variants in MTHFR have been identified. To our knowledge, 

there are no reports on the associations of neonatal folate, homocysteine and vitamin 

B12 levels with development of asthma and eczema. The role of MTHFR variants in 

these associations is not clear. Therefore, in a population-based prospective cohort 

study among Caucasian children, we assessed the associations between cord blood 

folate, homocysteine and vitamin B12 levels, and MTHFR variants, with asthma- and 

eczema-related outcomes in childhood.

Methods

Design
This study was embedded in the Generation R Study, a population-based prospective 

birth cohort study in The Netherlands17. For the present study, we included a selection 

of Caucasian children, with cord blood available (N=2,001).
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Neonatal folate, homocysteine, and total vitamin 
B12 levels
In cord blood were analyzed using an immunoelectrochemoluminesence assay (Abbott 

Diagnostics B.V., Hoofddorp, the Netherlands)17.

MTHFR variants
C677T (rs1801133) and A1298C (rs1801131) were genotyped. Caucasian ethnicity 

was defined as having principal components within 4 SD values of the CEU cluster of 

HapMap18. Genotype data was extracted from an imputed genome-wide association 

scan (HapMap phase II release 22). The imputation quality of the two SNPs was good 

(rs1801133: RSQ=0.985, rs1801131: RSQ=0.997). The genotype frequencies of 

MTHFR C677T were 46.0%(CC), 43.6%(TC) and 10.4%(TT)(Hardy-Weinberg P=1.00), 

and A1298C were 45.6%(AA), 43.7%(CA) and 10.7%(CC)(Hardy-Weinberg P=0.79). 

The two MTHFR SNPs are in LD, but do not tag the same genetic variation (HapMap 

pairwise LD (phase II release 22 CEU); D’=1.000, r2=0.178).

Asthma- and eczema-related outcomes
Wheezing and physician-diagnosed eczema in the past 12 months were assessed 

yearly by questionnaires, until 4 years using questions from the International 

Study of Asthma and Allergies in Childhood (ISAAC)19. Information on physician-

diagnosed asthma ever and self-reported eczema ever was obtained at 6 years. 

Fractional exhaled nitric oxide (FeNO) was measured at 6 years using the NIOX 

chemiluminescence analyzer (Aerocrine AB, Solna, Sweden). Lung function 

(interrupter resistance, MicroRint, MicroMedical, Rochester, Kent, UK) was measured 

during tidal breathing, with occlusion of the airway at tidal peak expiratory flow. 

Median values for at least 5 acceptable Rint measurements were calculated and these 

were used to calculate Z-scores20. Due to technical issues we had to replace the 

MicroRint during the study period. This resulted in stepwise variation in the median, 

which was corrected for.

Statistical analysis
The associations of folate, homocysteine, and vitamin B12 at birth with repeated 

wheezing and eczema in children aged 1 to 4 years, were modelled per year (allowing 

for a time trend) and the overall effects were analyzed using multiple imputation-

based generalized estimating equation (MI-GEE) models allowing for correction for 

the within-subject dependence as a result of the repeated measurements, while 

physician-diagnosed asthma and self-reported eczema ever, and FeNO and Rint at 

6 years were analysed using logistic and linear regression models. FeNO was elog 

transformed to obtain a normal distribution. We explored effect modification by MTHFR 
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variants for the associations with repeated wheezing and eczema, and asthma and 

eczema ever, by calculating interaction terms between MTHFR variants with folate and 

homocysteine levels. We assumed additive SNP effects. All models were adjusted for 

maternal age, BMI, educational level at intake, history of maternal atopy or asthma, 

parity, smoking, folic acid supplement use and pet keeping during pregnancy, and 

children’s sex, gestational age, birth weight and daycare attendance, based on the 

significance of their associations with repeated wheezing (P<0.05), or a change in 

effect estimate of >10%. We performed sensitivity analyses where we additionally 

adjusted for complementary measures, folate, homocysteine and total vitamin B12, 

as these could influence the metabolic pathway10. Multiple imputations were used for 

all analyses of binary outcomes and covariates. Details are available in Supplementary 

Table 7.1. Data management was performed in SPSS 20.0 (SPSS Inc., Chicago, IL, 

USA). Statistical modelling using MI-GEE (SAS PROC GENMOD) was performed in SAS 

9.2 (SAS Institute, Cary, NC, USA).

Results

Subject characteristics
The descriptives of mothers and children were similar in the observed and multiple 

imputed datasets (Table 7.1 and Supplementary Table 7.2).

Folate, homocysteine and vitamin B12 levels at 
birth and childhood outcomes
We found an association between homocysteine and physician-diagnosed eczema at 

age 1 year (increase homocysteine per standard deviation (SD): odds ratio (OR) 1.13 

(95% confidence interval (CI), 1.01-1.27)). Folate, homocysteine and vitamin B12 

were not associated with repeatedly measured wheezing or eczema for each year 

separately, and from birth until 4 years (all P>0.05) (Table 7.2). The levels were also 

not associated with physician-diagnosed asthma ever and self-reported eczema ever, 

FeNO or Rint at 6 years (Table 7.3).

Folate and homocysteine levels, MTHFR variants 
and childhood outcomes
We found a significant interaction between MTHFR C677T and folate on eczema until 

4 years (P-interaction=0.003), and of MTHFR A1298C and homocysteine on eczema 

until 4 years (P-interaction=0.033). We stratified for MTHFR C677T and A1298C 

genotype to explore the association between folate or homocysteine and eczema in 

children with genetic mutations (Table 7.4). Among children carrying the polymorphic 
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Table 7.1. Descriptive characteristics of mothers and children (N=2,001)

Maternal characteristics

Age at enrolment (years) 31.8 (23.8-37.9)

BMI at enrolment (kg/m2) 23.3 (19.4-32.0)

Smoking during pregnancy

None (%) 76.4

First trimester only (%) 9.3

Continued (%) 14.3

Educational level

Primary/secondary education (%) 37.2

Higher education (%) 62.8

Parity

0 (%) 59.0

1 (%) 31.8

≥2 (%) 9.2

History of asthma or atopy (%) 37.8

Self reported folic acid use during pregnancy

None (%) 10.5

Suboptimal (first 10 weeks) (%) 33.5

Optimal (periconceptional) (%) 56.0

Pets keeping during pregnancy (%) 42.2

Child characteristics

Sex (female %) 48.6

Gestational age at birth (weeks) 40.3 (37.6-42.1)

Birth weight (grams) 3550 (2735-4380)

Day care attendance at 1 year (%) 63.3

Child cord blood measures

Folate (nmol/L) 21.2 (11.9-35.9)

Homocysteine (umol/L) 8.9 (5.6-14.5)

Vitamin B12 (pmol/L) 293 (138-690)

Child outcomes

Wheezing 1st year (%) 29.8

Wheezing 2nd year (%) 18.9

Wheezing 3rd year (%) 12.2

Wheezing 4th year (%) 11.5

Physician-diagnosed eczema 1st year (%) 22.0



117

allele of C677T in MTHFR, higher folate levels were associated with an increased risk 

of eczema until 4 years (increase folate per SD for the heterozygous mutant TC: OR 

1.18 (95%, 1.02-1.37); homozygous mutant TT: OR 1.40 (95%, 1.09-1.80)). These 

effects were independent of homocysteine and vitamin B12. Children with wild type 

MTHFR A1298C and higher homocysteine levels had an increased risk of eczema until 

4 years (increase homocysteine SD for the homozygous wild type AA: OR 1.19 (95%, 

1.05-1.36). This effect was independent of folate and vitamin B12 levels. We repeated 

the analysis for eczema ever at 6 years. We found similar results for MTHFR C677T, 

folate and eczema, but did not find a significant interaction between MTHFR A1298C 

and homocysteine on eczema ever at 6 years (Table 7.5). No interactions between 

MTHFR C677T and A1298C and folate or homocysteine were observed for wheezing 

and asthma.

Table 7.1. Descriptive characteristics of mothers and children (N=2,001) 
(continued)

Physician-diagnosed eczema 2nd year (%) 13.4

Physician-diagnosed eczema 3rd year (%) 9.0

Physician-diagnosed eczema 4th year (%) 7.4

Physician-diagnosed asthma ever at 6 years (%) 7.3

Self-reported eczema ever at 6 years (%) 32.4

FeNO (ppb)* 7.1 (3.5-18.3)

Rint (kPa/l)* 0.85 (0.41-1.36)

Values are percentages for categorical variables and for continuous variables median (95% range). *: 

Continuous outcomes were not imputed (FeNO, n=1,009; Rint, n=1,059).
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Table 7.4. Associations of cord blood folate and homocysteine stratif ied for MTHFR 
C677T and A1298C with repeatedly measured eczema in childhood (N=2,001)

OR’s of eczema until 4 years (95% CI)a

MTHFR genotype

C677T (rs1801133)
Crude Adjusted*

Folate change in SD (7.5 nmol/L)

CC genotype (n=921) 0.93 (0.82-1.06) 0.90 (0.79-1.02)

TC genotype (n=873) 1.18 (1.02-1.36) 1.18 (1.02-1.37)

TT genotype (n=207) 1.50 (1.17-1.91) 1.40 (1.09-1.80)

P-interaction = 0.002 P-interaction = 0.003

OR’s of eczema until 4 years (95% CI)a

MTHFR genotype

A1298C (rs1801131)
Crude Adjusted*

Homocysteine change in SD (2.9 umol/L)

AA genotype (n=912) 1.21 (1.07-1.37) 1.19 (1.05-1.36)

CA genotype (n=874) 1.04 (0.92-1.18) 1.05 (0.93-1.20)

CC genotype (n=215) 0.88 (0.67-1.16) 0.88 (0.67-1.17)

P-interaction = 0.026 P-interaction = 0.033

Abbreviations: OR, odds ratio; CI, confidence interval; SD, standard deviation. a: Overall odds ratios (95% 

confidence intervals) from multiple imputation-based generalized estimating equation models. *: Adjusted 

for maternal age, BMI, educational level at intake, history of maternal atopy or asthma, smoking and folic 

acid supplement use during pregnancy, parity, and children’s sex, gestational age and birth weight. Folate, 

homocysteine and vitamin B12 levels were in one model. The non significant crude P-interaction values for 

repeated eczema: A1298C*folate, P-interaction = 0.489; C677T*homocysteine, P-interaction = 0.064. There 

were no interactions with repeated wheezing: C677T*folate, P-interaction = 0.099; A1298C*folate, P-interaction 

= 0.498; C677T*homocysteine, P-interaction = 0.131; A1298C*homocysteine, P-interaction = 0.298. 

Table 7.3. Associations of cord blood folate, homocysteine and vitamin B12 with 
asthma- and eczema- related outcomes at 6 years

Asthma

N=2,001

Eczema

N=2,001

FeNO

n=1,009

Rint

n=1,059

Levels

OR

(95% CI)a*

OR

(95% CI)a*

Ratio change

(95% CI)b*

Z-score change

(95% CI)b*

Folate nmol/L

Change in SD (7.5) 1.02 (0.83-1.25) 1.05 (0.95-1.18) 1.02 (0.98-1.06) -0.11 (-0.29-0.08)

Homocysteine umol/L

Change in SD (2.9) 0.96 (0.77-1.19) 0.94 (0.84-1.05) 1.01 (0.97-1.05) 0.01 (-0.16-0.19)

Vitamin B12 pmol/L

Change in SD (188) 0.84 (0.62-1.14) 0.97 (0.87-1.08) 1.00 (0.96-1.03) -0.01 (-0.19-0.18)

Abbreviations: OR, odds ratio; CI, confidence interval; SD, standard deviation. a: Odds ratios (95% confidence 

intervals) from logistic regression models. b: Ratio changes and change in standardized z-scores (95% confidence 

intervals) from linear regression models. *: Adjusted for maternal age, BMI, educational level at intake, history 

of maternal atopy or asthma, smoking and folic acid supplement use during pregnancy, parity, and children’s sex, 

gestational age and birth weight. Sensitivity analyses adjusting for complementary measures showed similar results.
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Discussion

Neonatal folate, homocysteine and vitamin B12 were not associated with repeatedly 

measured wheezing or eczema until 4 years, or with physician-diagnosed asthma 

ever and self-reported eczema ever, FeNO or Rint at 6 years. In children carrying the 

polymorphic allele of C677T in MTHFR, higher folate was associated with an increased 

risk of eczema.

Previous studies have shown conflicting results for the associations of FACSs use 

during pregnancy and asthma and allergy-related outcomes in children1-7. Differences 

in measurement methods and the timing and amount of folate exposure between 

studies make it difficult to compare studies. Biological markers are objective and less 

prone to reporter bias. Higher maternal folate measured in blood during pregnancy 

have been suggested to affect the risk of pre-school asthma at age 3 years8, and 

eczema in the first 4 years9. We previously reported no association between maternal 

folate during pregnancy and wheezing in the child up to the age of 4 years9. To our 

knowledge, the associations of neonatal folate, homocysteine and vitamin B12 levels 

and MTHFR variants with asthma and eczema in childhood have not been studied 

before. One study of folate levels at 2 years of age found that higher levels were 

inversely associated with IgE, atopy and wheezing21. A recent study showed that 

higher folate measured at ages 2, 4, 6, and 8 years was significantly associated with 

both food and aeroallergen sensitization, but not with total IgE, wheezing or asthma. 

This study suggested that folate status in early life may influence the risk of specific 

Table 7.5. Associations of cord blood folate stratif ied for MTHFR C677T with 
eczema ever in childhood (N=2,001)

OR’s of eczema ever at 6 years (95% CI)a

MTHFR genotype

C677T (rs1801133)
Crude Adjusted*

Folate change in SD (7.5 nmol/L)

CC genotype (n=921) 0.90 (0.77-1.05) 0.88 (0.75-1.04)

TC genotype (n=873) 1.16 (0.98-1.38) 1.14 (0.95-1.37)

TT genotype (n=207) 1.47 (1.05-2.06) 1.41 (0.97-2.03)

P-interaction = 0.009 P-interaction = 0.011

Abbreviations: OR, odds ratio; CI, confidence interval; SD, standard deviation. a: Overall odds ratios (95% 

confidence intervals) from logistic regression models. *: Adjusted for maternal age, BMI, educational level at 

intake, history of maternal atopy or asthma, smoking and folic acid supplement use during pregnancy, parity, 

and children’s sex, gestational age and birth weight. Folate, homocysteine and vitamin B12 levels were in one 

model. The non significant crude P-interaction values for eczema ever: A1298C*folate, P-interaction = 0.208; 

C677T*homocysteine, P-interaction = 0.446; A1298C*homocysteine, P-interaction = 0.439. There were no 

interactions with asthma ever: C677T*folate, P-interaction = 0.057; A1298C*folate, P-interaction = 0.983; 

C677T*homocysteine, P-interaction = 0.584; A1298C*homocysteine, P-interaction = 0.586.
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allergic sensitization rather than IgE production in general22. No association between 

MTHFR C677T and asthma or atopy was found in 7-8 years olds3. These studies did 

not explore the effects of MTHFR variants and biochemical measures of folate and 

homocysteine.

Folate metabolism is influenced by multiple factors, including homocysteine 

and vitamin B1210,23. MTHFR variants are genetic determinants of folate and 

homocysteine10, of which MTHFR C677T influences folate and homocysteine more 

than MTHFR A1298C12-16. We previously showed that maternal MTHFR C677T did not 

alter the associations of maternal folate or homocysteine and wheezing or eczema 

in the first 4 years9. Interestingly, in the current study we did observe a significant 

interaction between child MTHFR C677T and child folate levels on eczema. We can 

think of two hypotheses to explain this. Maternal folate levels may be associated 

with an increased risk of allergic outcomes in the offspring as a result of epigenetic 

mechanisms in utero8,9. Regulation of neonatal Th1/Th2 balance is under epigenetic 

control24. Folate provides methyl donors for methylation of DNA10,25, which may 

determine when and where a gene is expressed, and this could play a role during 

neonatal immune development24,26. In mice, prenatal exposure to methyldonors 

skewed the fetal immune system toward a Th2 profile, in favour of allergic disease11. 

In dendritic cells that process antigens, altered DNA methylation patterns have 

been shown in neonates at high risk for allergy27. Increased DNA methylation may 

play a role during early immune development when naive T-cells differentiate into 

Th2 cells28,29, and decreased methylation may support the switch of T-cells into a 

Th1 phenotype30. Thus, our results may be explained by increased methylation of 

fetal DNA as a result of high maternal folate levels. However, maternal and child 

folate levels were not strongly correlated (Supplementary Table 7.3), and this 

favours another hypothesis: adverse effect of higher folate on the development of 

eczema in childhood may depend on the child’s genetic mutations in MTHFR C677T. 

Mutations in MTHFR C677T, but not MTHFR A1298C, seem to be associated with mild 

hyperhomocysteinemia and decreased folate in adults12,13. In our study, the child’s TT 

genotype was not associated with folate or homocysteine levels (Supplementary Table 

7.4). In healthy adults, folate has a major role in the homocysteine homeostasis by 

stimulating the transmethylation and remethylation of homocysteine into methionine 

which may subsequently provide methyldonors for DNA methylation31. Mutations in 

MTHFR C677T may render individuals more susceptible to DNA hypomethylation, for 

example in response to low folate status32. Also, studies in adults showed that folate 

supplementation leading to decreased homocysteine levels reduces homocysteine 

levels in those with the TT genotype33,34. However, in newborns, homocysteine 

levels were not affected by an increased folate, suggesting that the homocysteine 

metabolism and response to folate is different in newborns35. In addition, we found 
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that the effect of MTHFR C677T on folate metabolism is also different in newborns. 

With this in mind, we speculate that newborns with MTHFR C677T variants and high 

folate may be particularly vulnerable to increased DNA methylation as a result of a 

continuously altered transmethylation and remethylation flux rate, irrespective of their 

homocysteine levels. Studies on methylation of genes involved in asthma and allergic 

disease and the role of MTHFR mutations in these associations are needed.

In the current study we found an interaction between child MTHFR A1298C and 

homocysteine on eczema until 4 years. Homocysteine converts into methionine 

which may provide methyldonors leading to increased DNA methylation10 and this 

may depend on genetic mutations in MTHFR A1298C. We did not find an interaction 

between MTHFR A1298C and homocysteine on eczema ever at 6 years. We considered 

that this interaction might be a chance finding, because we did not find an effect for 

both repeated physician-diagnosed eczema until 4 years and self-reported eczema 

ever at 6 years.

There are some methodological issues that could have influenced our findings. 

Wheezing, asthma and eczema outcomes were obtained by questionnaires, and asking 

for symptoms and diagnosis that occurred in previous years may not produce accurate 

results. However, this method of assessing symptoms and diagnosis is widely accepted 

in epidemiological studies, and we used well-validated questionnaires19. Assessment 

of biochemical measures occurred at a single point in time, at birth, while variation 

in levels could have been different during pregnancy. MTHFR C677T and A1298C 

may not cover all genetic variation across MTHFR. As far as we know, there are no 

additional functional variants in MTHFR known in the literature that may influence 

folate or homocysteine status. However, there are variants in other genes that may 

affect one carbon metabolism, the pathway that is centered around folate, but these 

variants are not related to both homocysteine and folate status, the pathway of 

interest14. The children with genetic data were not selected randomly, as cord blood 

had to be available. The numbers of missing cord blood samples were higher for lower 

social economic status. Therefore, we have to be cautious with the generalizabilty 

of our findings. Baseline characteristics of mothers and children were comparable in 

the observed and multiple imputed datasets. To reduce attrition bias, we performed 

the analyses after multiple imputations. We performed additional sensitivity analyses 

without multiple imputations of the outcomes and the effect estimates were slightly 

stronger (Supplementary Table 7.5 and 7.6). Neonatal folate, homocysteine and 

vitamin B12 levels did not affect asthma- and eczema-related outcomes. In general, 

the effects of common genetic variants on complex traits are small. In our study 

we found that children with genetic mutations in MTHFR C677T and higher folate 

levels, and children with wild type MTHFR A1298C and higher homocysteine levels 

had an increased risk of eczema. Gene-environment interactions might well be more 
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important than single environmental exposure or genetic risk factors, in particular for 

asthma.

In conclusion, folate, homocysteine and vitamin B12 levels of children at birth 

did not affect asthma- and eczema-related outcomes in childhood. We found a 

significant interaction between MTHFR C677T and folate levels, and MTHFR A1298C 

and homocysteine levels on eczema. Any adverse effects of folate and homocysteine 

on the development of eczema may depend on genetic mutations in MTHFR. These 

findings warrant replication in larger groups.
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Supplementary materials
Supplementary Table 7.1. Details of multiple imputations modell ing

Software used and key setting: SPSS 20.0 software (SPSS Inc., Chicago, IL, USA) – Imputation Method 

determined by SPSS (automatic option) with 10 iterations.

Number of imputed datasets created: 10

Variables included in the imputation procedure: 

Imputed asthma-related variables:

wheezing year 1 (binary: no, yes)

wheezing year 2 (binary: no, yes)

wheezing year 3 (binary: no, yes)

wheezing year 4 (binary: no, yes)

eczema year 1 (combination of 2 binary questions: eczema 1-6 months, eczema 7-12 months)*

eczema year 2 (binary: no, yes)

eczema year 3 (binary: no, yes)

eczema year 4 (binary: no, yes)

asthma ever birth till year 6 (binary: no, yes)

eczema ever birth till year 6 (binary: no, yes)

age mother at intake (continuous)

bmi mother at intake (continuous) 

maternal prenatal smoking (nominal: no, first trimester, continued smoking)

maternal education (nominal: primary, secundary, higher) 

number of deliveries (nominal: 0, 1 >=2)

maternal history (combination of 4 binary questions: house dust, hay faver, eczema, asthma)*

pets keeping during pregnancy (combination of 3 binary questions: cat, dog and bird)*

gender child (binary: male, female)

gestational age (continuous)

birth weight (continuous)

daycare attendance (binary: no, yes)

folic acid supplement use during pregnancy (nominal: none, suboptimal, optimal)

Predictor variables:

wheezing year 6 (binary: no, yes)

respiratory tract infections severity year 1 (binary: no, yes)

respiratory tract infections severity year 2 (binary: no, yes)

respiratory tract infections severity year 3 (binary: no, yes)

respiratory tract infections severity year 4 (binary: no, yes)

respiratory tract infections severity year 6 (binary: no, yes)

shortness of breath year 1 (binary: no, yes)

shortness of breath year 2 (binary: no, yes)
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shortness of breath year 3 (binary: no, yes)

shortness of breath year 4 (binary: no, yes)

cough year 1 (binary: no, yes)

cough year 2 (binary: no, yes)

cough year 3 (binary: no, yes)

cough year 4 (binary: no, yes)

cough year 6 (binary: no, yes)

phlegm year 1 (binary: no, yes)

phlegm year 2 (binary: no, yes)

phlegm year 3 (binary: no, yes)

phlegm year 4 ((binary: no, yes)

weight year 1 (continuous)

height year 1 (continuous)

weight year 2 (continuous)

height year 2 (continuous)

weight year 3 (continuous)

height year 3 (continuous)

weight year 4 (continuous)

height year 4 (continuous)

weight - year 6 (continuous)

height - year 6 (continuous)

breastfeeding ever (binary: no, yes)

paternal house dust mite allergy (binary: no, yes)

paternal hay fever (binary: no, yes)

paternal eczema (binary: no, yes)

paternal asthma (binary: no, yes)

maternal prenatal alcohol (binary: no, yes)

paternal education (nominal: primary, secundary, higher)

paternal prenatal smoking (binary: no, yes)

bmi father at intake (continuous)

age father at intake (continuous)

maternal prenatal stress (continuous)

parenting stress score (continuous)

cows allergy (binary: no, yes)

income household (binary: < €2000,-, > €2000,-)

postnatal environmental smoke year 2 (binary: no, yes)

Treatment of binary/categorical variables: Logistic/multinomial models 

Statistical interactions included in imputation models: None

*: Each binary variable was imputed first and combination of variables was done after MI procedure.
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Supplementary Table 7.2. Descriptive characteristics of mothers and children in 
observed and multiple imputed dataset

 
Observed

dataset

Multiple imputed

dataset

N=2,001 N=2,001

Maternal characteristics

Age at enrolment (years) 31.8 (23.8-37.9) 31.8 (23.8-37.9)

Missing* 0.0 -

BMI at enrolment (kg/m2) 23.3 (19.4-32.0) 23.3 (19.4-32.0)

Missing* 0.3 -

Smoking during pregnancy

None (%) 76.3 76.4

First trimester only (%) 9.2 9.3

Continued (%) 14.5 14.3

Missing* 8.0 -

Educational level

Primary/secondary education (%) 37.0 37.2

Higher education (%) 63.0 62.8

Missing* 1.2 -

Parity

0 (%) 59.0 59.0

1 (%) 31.8 31.8

≥2 (%) 9.2 9.2

Missing* 0.0 -

History of asthma or atopy (%) 38.4 37.8

Missing* 12.0 -

Self reported folic acid use during pregnancy

None (%) 9.6 10.5

Suboptimal (first 10 weeks) (%) 33.2 33.5

Optimal (periconceptional) (%) 57.2 56.0

Missing* 17.7 -

Pets keeping during pregnancy (%) 44.7 42.2

Missing* 9.3 -

Child characteristics

Sex (female %) 48.6 48.6

Missing* 0.0 -

Gestational age at birth (weeks) 40.3 (37.6-42.1) 40.3 (37.6-42.1)

Missing* 0.0 -

Birth weight (grams) 3550 (2735-4380) 3550 (2735-4380)

Missing* 0.1 -

Day care attendance at 1 year (%) 68.1 63.3

Missing* 29.4 -
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Supplementary Table 7.2. Descriptive characteristics of mothers and children in 
observed and multiple imputed dataset (continued)

 
Observed

dataset

Multiple imputed

dataset

N=2,001 N=2,001

Child cord blood measures

Folate (nmol/L) 21.2 (11.9-35.9) 21.2 (11.9-35.9)

Missing* - -

Homocysteine (umol/L) 8.9 (5.6-14.5) 8.9 (5.6-14.5)

Missing* - -

Vitamin B12 (pmol/L) 293 (138-690) 293 (138-690)

Missing* - -

Child outcomes

Wheezing 1st year (%) 28.8 29.8

Missing* 23.1 -

Wheezing 2nd year (%) 17.1 18.9

Missing* 23.3 -

Wheezing 3rd year (%) 10.5 12.2

Missing* 29.3 -

Wheezing 4th year (%) 9.7 11.5

Missing* 27.6 -

Physician-diagnosed eczema 1st year (%) 25.9 22.0

Missing* 43.0 -

Physician-diagnosed eczema 2nd year (%) 12.9 13.4

Missing* 24.0 -

Physician-diagnosed eczema 3rd year (%) 8.0 9.0

Missing* 30.3 -

Physician-diagnosed eczema 4th year (%) 6.1 7.4

Missing* 30.0 -

Physician-diagnosed asthma ever at 6 years (%) 6.2 7.3

Missing* 27.6 -

Self-reported eczema ever at 6 years (%) 31.7 32.4

Missing* 27.8 -

FeNO (ppb) 7.1 (3.5-18.3) 7.1 (3.5-18.3)

Missing* 49.6 49.6

Rint (kPa/l) 0.85 (0.41-1.36) 0.85 (0.41-1.36)

Missing* 47.1 47.1

Values are percentages for categorical variables and for continuous variables median (95% range). *: 

Percentage of valid missing in the total group (N=2,001).
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Supplementary Table 7.3. Relation of maternal folate levels during pregnancy and 
child cord blood levels (N=1,554)

Child folate
M

o
th

e
r 

fo
la

te

T1 T2 T3

T1 51.2% 34.9% 13.9%

T2 31.1% 35.9% 33.0%

T3 17.3% 32.0% 50.7%

Abbreviations: T1, first tertile; T2, second tertile; T3, third tertile (highest folate levels). Values are 

percentages of children that remain or move to another tertile compared to the tertile of maternal folate during 

pregnancy. Maternal and child folate levels were not strongly correlated (r = 0.365). 

Supplementary Table 7.4. Associations of MTHFR C677T and A1298C and cord blood 
folate and homocysteine (N=2,001)

β (95% CI)

MTHFR genotype

C677T (rs1801133)
Folate Homocysteine

CC genotype (n=921) Reference Reference

TC genotype (n=873) 0.36 (-0.34 - 1.06), P = 0.311 0.04 (-0.23 - 0.31), P = 0.768

TT genotype (n=207) 0.78 (-0.35 - 1.92), P = 0.175 0.23 (-0.21 - 0.67), P = 0.302

β (95% CI)

MTHFR genotype

A1298C (rs1801131)
Folate Homocysteine

AA genotype (n=912) Reference Reference

CA genotype (n=874) -0.88 (-1.58 - -0.19), P = 0.013 0.09 (-0.18 - 0.37), P = 0.499

CC genotype (n=215) -0.65 (-1.76 - 0.47), P = 0.256 0.41 (-0.03 - 0.84), P = 0.065

Abbreviations: CI, confidence interval. b = Changes in folate/homocysteine (95% confidence intervals) from 

linear regression models.
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Supplementary Table 7.5. Sensitivity analysis without multiple imputations of the 
outcomes for the associations of cord blood folate and homocysteine stratif ied 
for MTHFR C677T and A1298C with repeatedly measured eczema in childhood 
(N=1,643)

OR’s of eczema until 4 years (95% CI)a

MTHFR genotype

C677T (rs1801133)
Crude Adjusted*

Folate change in SD (7.5 nmol/L)

CC genotype (n=757) 0.86 (0.72-1.02) 0.80 (0.70-0.93)

TC genotype (n=709) 1.23 (1.06-1.44) 1.23 (1.07-1.41)

TT genotype (n=177) 1.51 (1.08-2.12) 1.45 (1.09-1.92)

P-interaction = 0.003 P-interaction = 0.0002

OR’s of eczema until 4 years (95% CI)a

MTHFR genotype

A1298C (rs1801131)
Crude Adjusted*

Homocysteine change in SD (2.9 umol/L)

AA genotype (n=752) 1.30 (1.09-1.54) 1.31 (1.14-1.49)

CA genotype (n=716) 1.08 (0.92-1.28) 1.09 (0.96-1.23)

CC genotype (n=175) 0.82 (0.61-1.09) 0.63 (0.46-0.85)

P-interaction = 0.031 P-interaction = 0.009

Abbreviations: OR, odds ratio; CI, confidence interval; SD, standard deviation. a: Overall odds ratios (95% 

confidence intervals) from multiple imputation-based generalized estimating equation models. *: Adjusted 

for maternal age, BMI, educational level at intake, history of maternal atopy or asthma, smoking and folic 

acid supplement use during pregnancy, parity, and children’s sex, gestational age and birth weight. Folate, 

homocysteine and vitamin B12 levels were in one model.
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Supplementary Table 7.6. Sensitivity analysis without multiple imputations of the 
outcome for the association of cord blood folate stratif ied for MTHFR C677T with 
eczema ever in childhood (N=1,445)

OR’s of eczema ever at 6 years (95% CI)a

MTHFR genotype

C677T (rs1801133)
Crude Adjusted*

Folate change in SD (7.5 nmol/L)

CC genotype (n=671) 0.90 (0.76-1.07) 0.88 (0.73-1.06)

TC genotype (n=619) 1.19 (1.00-1.42) 1.15 (0.96-1.39)

TT genotype (n=155) 1.49 (1.05-2.12) 1.37 (0.92-2.06)

P-interaction = 0.015 P-interaction = 0.027

Abbreviations: OR, odds ratio; CI, confidence interval; SD, standard deviation. a: Overall odds ratios (95% 

confidence intervals) from logistic regression models. *: Adjusted for maternal age, BMI, educational level at 

intake, history of maternal atopy or asthma, smoking and folic acid supplement use during pregnancy, parity, 

and children’s sex, gestational age and birth weight. Folate, homocysteine and vitamin B12 levels were in one 

model.
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Abstract

Background
Binary repeated outcome measurements are complex to analyze. Missing values in 

determinants, confounders and outcomes further complicate analyses and may lead to 

inefficiency.

Objectives
We aimed to explore differences in the associations of maternal atopy with childhood 

wheeze from birth to 4 years using different strategies for analysis and imputation of 

missing values.

Methods
This study was performed on data from 7,696 parents and children participating in a 

population-based prospective cohort. Information on determinants and outcomes and 

potential confounders was available from questionnaires. We compared generalized 

estimating equations (GEE) and generalized linear mixed models (GLMM) in complete 

cases (N=2,866) to multiple imputations based GEE (MI-GEE) and GLMM in three 

different population selections, in which missing confounders, determinants and 

outcomes were multiple imputed. These analyses were based on 4,780 to 7,696 

children.

Results
We observed largely similar estimates using MI-GEE and GLMM and applying different 

imputation methods of missing values. Slightly weaker effect estimates and larger 

standard errors were observed for complete case analysis as compared to analyses 

of datasets where multiple imputations were used. Imputation of determinants and 

outcomes had no benefit over models without imputation.

Conclusions
Our results suggest that MI-GEE and GLMM lead to similar effect estimates in a study 

of maternal atopy and childhood wheeze. Imputation of determinants and outcomes 

did not lead to different effect estimates, as compared to only imputing missing 

covariates.
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Introduction

Missing data may occur for determinants, confounders and outcomes1. Imputation 

of missing values allows for analyses of more subjects than a simple complete case 

analysis. Multiple imputations (MI) is increasingly used in cohort studies to avoid loss 

of information that may occur due to restriction to study participants with complete 

data and to adjust for bias caused by missing data2-4. Imputation of confounders is 

frequently used and generally accepted as a strategy in epidemiological studies5. 

Although several analysis strategies have been described for dealing with missing 

longitudinal outcome data, missing data in binary repeated outcome measurements 

are more complex to analyse6-9. Data are missing completely at random (MCAR) 

when there are no systematic differences between a missing variable and other 

observed and missing study variables. This may occur due to e.g. technical failure 

during measurements. When determinants and confounders are not measured at the 

same time point as the outcomes, generalized estimating equations (GEE) models 

work under the MCAR assumption6. With the MI-GEE approach, MI can be used to 

pre-process incomplete data, including outcome data, after which GEE can be applied6. 

Alternatively, generalized linear mixed models (GLMM) can be used to deal with 

missing binary repeated outcome measurements, due to their validity under the 

assumption of missing at random (MAR) and flexibility of dealing with missing data 

in repeated outcome measures6,8. Data are MAR when any systematic differences 

between the missing and observed data can be explained by differences in the 

observed data. The target of inference of MI-GEE is a population-average effect; for 

GLMM it is a subject-specific effect10. Use of different population selections for multiple 

imputations may lead to different results. MI of a subgroup for analysis, which requires 

observed information on the determinant and at least one outcome measurement 

in time, might be more prone to bias as compared to MI of the total original study 

cohort. The MI assumption of MAR may be violated due to population selection in 

the first option. Imputation of confounders with the determinant and outcome in the 

imputation model may minimize bias in the relationship between determinant and 

outcome11. When the determinant and outcome carry information about the missing 

values of other covariates, this information can be used to impute missing values to 

increase the plausibility of the MAR assumption2,3.

We aimed to explore the differences in effect estimates for the associations of 

maternal atopy with childhood wheezing after applying (MI-)GEE and GLMM analyses. 

We used data from a population-based prospective cohort study among pregnant 

women and their children. Analyses were performed in complete cases and three 

different population selections, in which missing confounders, determinants and 

outcomes were imputed.
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Methods

Design
We used data from the Generation R Study, a population-based prospective 

cohort study from fetal life onwards in the Netherlands12. Recruitment by midwifes 

and obstetricians from the Rotterdam area took place between July 2001 and 

January 2006. The study was approved by the medical ethics committee (MEC 

217.595/2002/202). For the present study, we included only singleton live births, 

which led to a total population of 7,696 children. A participant flow chart is given in 

Figure 8.1.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Live born children participating in postnatal phase 
N=7,893 

 

Singleton children 
 

Used for total study group imputation 
and analysis: N=7,696 

 

Wheezing year 1: n=5,031 (34.6% missing) 
Wheezing year 2: n=5,182 (32.7% missing) 
Wheezing year 3: n=4,812 (37.5% missing) 
Wheezing year 4: n=4,795 (37.7% missing) 

 

Maternal house dust mite allergy, hay 
fever, eczema and asthma available  

 
Selection on the determinant after total study 

group imputation for analysis: N=5,603 

Maternal house dust mite allergy, hay 
fever, eczema, asthma and wheezing 

information available  
(wheezing at least 1 measurement) 

 
Used for subgroup imputation 

and analysis: N=4,780 
 

Wheezing year 1: n=4,015 (16.0% missing) 
Wheezing year 2: n=4,096 (14.3% missing) 
Wheezing year 3: n=3,796 (20.6% missing) 
Wheezing year 4: n=3,808 (20.3% missing) 

n=197 Twins excluded 

n=823 Children excluded 
because of missing data on 
wheezing at all ages 

n=2,093 Children excluded 
because data on all 
maternal variables on house 
dust mite allergy, hay fever, 
eczema and asthma was 
not complete 

The total study group 
was used for imputation 

Figure 8.1. Flowchart of participants and population selections for multiple 
imputations
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Determinants and outcomes
We used the self-reported maternal doctor’s diagnosis of atopy or asthma as 

determinant. We defined maternal atopy or asthma using the following questions, 

obtained by questionnaires at enrolment: (1) ‘Are you allergic to house dust mite?’ 

(2) ‘Do you have any kind of nose allergy such as hay fever?’ (3) ‘Do you have 

chronic eczema?’ (4) ‘Have you ever had asthma?’12. The mother was considered a 

case when at least one out of the four questions was answered with yes. When one 

of the answers was missing, it was set to missing, to avoid selection towards positive 

answers. In datasets where determinants were multiple imputed, we first imputed 

the answers on the questions separately and then defined maternal atopy or asthma. 

Childhood wheezing was used as repeated outcome and was assessed by parental 

reports in questionnaires at the ages of 1, 2, 3, and 4 years (‘Has your child had 

problems with a wheezing chest during the last year?’). Questions about wheeze were 

taken from the International Study of Asthma and Allergies in Childhood (ISAAC)13.

Covariates
Information on maternal anthropometrics, age and body mass index (BMI), parental 

educational level (primary, secondary, and higher education), children’s ethnicity 

(European and non-European) and pet keeping was obtained by questionnaires 

completed by the mother at enrolment12. Information on active maternal smoking 

during pregnancy was obtained by postal questionnaires in the first, second and third 

trimester and was combined into three smoking categories: none, first trimester 

only, and continued smoking14. We used parity as a proxy for siblings. Information 

on birth weight, gestational age and sex of the children was obtained from midwife 

and hospital registries at birth. Postal questionnaires at the ages of 6 and 12 months 

provided information about breastfeeding and day care attendance, respectively12,15.

Statistical analysis
We performed comparative analyses by analysing the associations of maternal 

atopy and childhood wheeze using different population selections, and statistical 

techniques for imputation and analysis. The population selections and imputation 

strategies are depicted in Table 8.1. First, we explored differences in wheezing-related 

characteristics using (1) observed data (complete cases); (2) multiple imputed data of 

a subgroup with observed information on at least the determinant and one outcome 

measurement; (3) imputed data of the total study group invited at baseline with 

an analysis afterwards on subjects with observed information on the determinant; 

and (4) multiple imputed data of the total study group without any selection. To 

observe differences resulting from MI, we compared characteristics of the imputed 

dataset of the subgroup with the imputed dataset of the total study group and 
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considered a change of 10% as relevant. Next, we performed GEE analyses using 

complete cases. Estimates were given for the overall effect on wheezing, allowing 

for a time trend, from birth until 4 years of age. MI-GEE models6,9, were used for the 

different population selections and imputation strategies. For each imputation, n=10 

independent datasets were generated with multiple imputations. Calculations of pooled 

estimates were performed according to Rubin’s rules16. Imputations were based on 

the relationships between all potential confounders and additional predictor variables 

associated with the outcomes (Supplementary Table 8.1). As excluding the outcome 

and determinant in the imputation model may falsely weaken the association between 

determinant and outcome in some cases2. We used the compound symmetry matrix 

as covariance structure in the MI-GEE models, as we assumed that the correlation 

between two separate measures would be constant regardless of how far apart 

the measurements are. Finally, we repeated the analyses with the same datasets 

using GLMM. If an effect estimate from one model was outside the 95% confidence 

interval (CI) of another model, we considered the difference in models as relevant. 

All models were adjusted for maternal age at intake, BMI at enrolment and parity, pet 

keeping and maternal smoking during pregnancy, maternal and paternal educational 

level, and children’s sex, ethnicity, gestational age, birth weight, breastfeeding and 

day care attendance, based on the significance of their associations with wheezing 

(p<0.05), or a change in effect estimate of more than 10% within the total study 

population. In order to examine the relation between missing study variables we 

examined descriptive confounder characteristics in relation to observed and missing 

data of determinants and outcomes of our study. Data management and the multiple 

imputations procedures were performed in SPSS 17.0 (SPSS Inc., Chicago, IL, USA). 

Statistical modelling of GEE and MI-GEE (SAS PROC GENMOD) was performed in 

SAS 9.2 (SAS Institute, Cary, NC, USA). The GLMM (Library lme4) analyses were 

performed in R Version 2.13.0 (The R foundation for Statistical Computing).

Results

Subject characteristics
Descriptive characteristics of mothers and children related to childhood wheezing in 

the observed and MI datasets are given in Table 8.2. MI led to higher percentages of 

prenatal smoke exposure, lower paternal educational level, higher parity, more often 

non-European ethnicity, less breastfeeding and daycare attendance of the children 

(Table 8.2). Table 8.3 shows observed and MI frequencies of wheezing symptoms at 

the ages of 1, 2, 3 and 4 years. MI led to higher frequencies of wheezing symptoms 

as compared to the complete case group. Supplementary Table 8.2 shows confounders 
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Table 8.2. Childhood wheezing-related variables in the observed and the multiple 
imputed datasets

Observed

dataset

Imputed

subgroupa

Imputed

total study 

group

and analysis in 

subgroupb

Imputed

total study 

groupc

  N=7,696 N=4,780 N=5,603 N=7,696

Maternal characteristics

Age at enrolment (years)
31.0

(21.0-38.5)

31.5

(22.4-38.5)

31.1

(21.4-38.3)

31.0

(21.0-38.5)

Missing* 0 - - -

BMI at enrolment (kg/m2)
23.7

(19.4-33.3)

23.6

(19.3-32.6)

23.6

(19.2-33.1)

23.8

(19.2-33.2)

Missing* 11.9 - - -

House dust mite allergy, hay fever, eczema or asthma

No 61.7 65.5 65.8 63.3

Yes 38.3 34.5 34.2 36.7

Missing* 22.4 - - -

Smoking during pregnancy

None 75.9 78.3 76.6 75.7

First trimester only 8.6 8.6 8.4 8.5

Continued 15.5 13.1 15.0 15.8

Missing* 23.2 - - -

Education level

Primary education 9.8 6.5 9.0 10.9

Secondary education 42.8 39.3 42.1 43.8

Higher education 47.4 54.2 48.9 45.3

Missing* 11.2 - - -

Parity

0 55.1 57.6 56.0 54.8

1 30.4 30.4 30.7 30.6

≥2 14.4 12.0 13.3 14.6

Missing* 4.0 - - -

Paternal characteristics

Education level

Primary education 6.8 7.8 9.9 11.4

Secondary education 38.9 38.7 40.8 42.3

Higher education 54.3 53.5 49.2 46.3

Missing* 42.8 - - -
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Table 8.2. Childhood wheezing-related variables in the observed and the 
multiple imputed datasets (continued)

Observed

dataset

Imputed

subgroupa

Imputed

total study 

group

and analysis in 

subgroupb

Imputed

total study 

groupc

  N=7,696 N=4,780 N=5,603 N=7,696

Familial characteristics

Pets keeping during pregnancy

No 67.6 65.7 67.0 67.8

Yes 32.4 34.3 33.0 32.2

Missing* 25.1 - - -

Child characteristics

Sex

Female 49.5 50.3 49.9 49.5

Male 50.5 49.7 50.1 50.5

Missing* 0 - - -

Ethnicity

European 65.3 73.3 68.2 64.0

Non-European 34.7 26.7 31.8 36.0

Missing* 8.7 - - -

Gestational age at birth 

(weeks)

40.0

(37.0-42.0)

40.1

(37.1-42.1)

40.1

(37.1-42.0)

40.0

(37.0-42.0)

Missing* 0 - - -

Birth weight (grams)
3440

(2524-4300)

3480

(2585-4325)

3460

(2560-4320)

3440

(2524-4300)

Missing* 0.2 - - -

Breastfeeding ever

No 8.1 10.4 12.7 13.9

Yes 91.9 89.6 87.3 86.1

Missing* 14.0 - - -

Day care attendance at 1 year

No 42.1 42.8 47.5 50.6

Yes 57.9 57.2 52.5 49.4

Missing* 40.9 - - -

Values are percentages for categorical variables and for continuous variables median (95% range). a: Subgroup 

(N=4,780) was used for multiple imputations, possible confounders and outcomes were imputed. b: Total 

study group (N=7,696) was used for multiple imputations, possible confounders and outcomes were imputed, 

selection was made on observed determinants after the multiple imputations procedure (N=5,603). c: Total 

study group (N=7,696) was used for multiple imputations, determinants, possible confounders and outcomes 

were imputed. *: Percentage of valid missing in the total study group (N=7,696).



144

in relation to observed and missing data of determinants and outcomes. In general, 

missing determinants were associated with repeated outcomes and most confounders. 

Missing outcomes were also associated with most confounders, but not consistently 

with determinants.

Comparative analyses
Effect estimates were not different between (MI-)GEE and GLMM (Table 8.4 and 

8.5). Higher effect estimates, but also larger standard errors were observed in 

the unadjusted GLMM compared to (MI-)GEE. After adjustment for confounders 

Table 8.3. Wheezing symptoms in the observed and the multiple imputed datasets

Observed

dataset

Imputed

subgroupa

Imputed

total study 

group

and analysis in 

subgroupb

Imputed

total study 

groupc

  N=7,696 N=4,780 N=5,603 N=7,696

Wheezing symptoms

1st year 

No 70.6 71.1 70.4 69.4

Yes 29.4 28.9 29.6 30.6

Missing* 34.6 - - -

2nd year

No 80.1 80.2 79.4 78.4

Yes 19.9 19.8 20.6 21.6

Missing* 32.7 - - -

3rd year

No 87.3 87.4 86.8 86.0

Yes 12.7 12.6 13.2 14.0

Missing* 37.5 - - -

4th year

No 87.1 87.0 86.1 85.1

Yes 12.9 13.0 13.9 14.9

Missing* 37.7 - - -

Values are percentages. a: Subgroup (N=4,780) was used for multiple imputations, possible confounders 

and outcomes were imputed. b: Total study group (N=7,696) was used for multiple imputations, possible 

confounders and outcomes were imputed, selection was made on observed determinants after the multiple 

imputations procedure (N=5,603). c: Total study group (N=7,696) was used for multiple imputations, 

determinants, possible confounders and outcomes were imputed. *: Percentage of valid missing in the total 

study group (N=7,696).
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the differences in results from the models remained similar. The estimates of the 

MI subgroup, total group with selection on observed determinant after MI and the 

MI total study group were comparable for both MI-GEE and GLMM (Tables 8.4 and 

8.5). Slightly lower effect estimates and larger standard errors were observed for 

complete case GEE and GLMM analyses compared to the MI subgroup, the total group 

with selection on determinant and the total study group. However, the results were 

not different. MI of determinants and outcomes did not lead to differences in effect 

estimates, as compared to models without imputation, with MI-GEE or GLMM (Tables 

8.4 and 8.5). Slightly stronger estimates were observed when determinants were 

imputed. All estimates were within the 95% CI of the other models.

Discussion

We performed a study focused on associations of a determinant (maternal history 

of atopy or asthma) with an outcome (repeatedly measured childhood wheezing 

from birth to 4 years). We explored differences in effect estimates after applying 

GEE and GLMM analyses in complete cases and MI-GEE and GLMM. We did this in 

three different population selections for MI. Missing confounders, determinants and 

outcomes were imputed. The results showed no overall differences in effect estimates 

for the associations of the determinant and outcomes for all different strategies of 

analysis and MI. Slightly weaker effect estimates and larger standard errors were 

observed for complete case analysis as compared to analyses of datasets where MI 

were used. Imputation of determinants and outcomes did not lead to differences 

in effect estimates as compared to models without imputation of determinants and 

outcomes.

Statistical approaches
We observed no differences in effect estimates with GLMM, irrespective of whether 

outcomes were imputed. GLMM are flexible in handling repeated missing outcome 

data6. Both (MI-)GEE and GLMM were equivalent to study the association between 

maternal history of atopy or asthma and wheezing within this cohort. Alternative 

statistical methods to deal with missing binary repeated outcome data are available, 

including the weighted GEE (WGEE) procedure. This is not widely available, however, 

and requires advanced statistical knowledge5. WGEE models produce accurate results, 

but might be biased and less accurate in small to moderate sample sizes compared 

to MI-GEE6. Covariates and determinants were not repeatedly assessed in our study, 

which may have led to larger differences in estimates when missings are related to 

different time periods.
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Population selection
We observed that differences in estimates based on MI of a subgroup, of the total 

study group with selection on the observed determinant afterwards or of the total 

study group were negligible. Complete case analysis showed slightly lower effect 

estimates as compared to the MI analysis. This is in line with previous studies17,18. 

Inclusion of variables associated with the outcome in the MI might have increased 

odds ratios and reduced standard errors3. We note that differences in complete case 

analyses and MI should be interpreted with caution and should not only be based on 

comparison of standard errors, as standard errors after MI reflects the uncertainty 

of the data rather than study precision17. Adjustment for confounders reduced the 

number of complete cases dramatically leading to reduced power. Hence, complete 

case analysis is not to be preferred for our particular analysis. Indeed, imputation 

of missing confounder values has been advised for analyses of the determinant – 

outcome relation11. Using the total study population invited at baseline for MI takes 

the uncertainty of all missing data in the dataset into account, instead of only those 

missing data that remain after selecting a particular subgroup19. However, if the 

number of missing data is high, too much uncertainty may be created for the studied 

association, leading to a reduced model fit20.

Multiple imputations strategies
Missing data on determinants were weakly related to repeated outcomes and 

confounders in this study. As a result, we observed a very small increase in the 

effect estimates when determinants were imputed. It has been shown previously 

that MI of confounders should include outcome and determinant in the imputation 

model to minimize bias in the relationship between determinant and outcome11. Also, 

when outcome and determinant carry information about the missing values of other 

covariates, this information must be used for MI to increase the plausibility of the MAR 

assumption2,3. Excluding the outcome and determinant in the MI model may falsely 

weaken the association between determinant and outcome2. Higher effect estimates, 

but also larger standard errors were observed for univariate GLMM compared to 

(MI-)GEE. Multivariate models performed similarly. After adjustment for confounders 

no differences were found suggesting that the covariates may sufficiently capture 

the pattern of missing data on the outcome variables. Inclusion of more variables 

associated with the outcome in the MI procedure could increase odds ratios and 

reduce standard errors3, and would increase the plausibility of the MAR assumption2,3. 

Different strategies for dealing with missing binary repeated outcome had no effect 

on the associations between determinant and outcome. However, it should be noted 

that we did not observe clear patterns for the missing variables. When missing data on 

the outcomes are related to several confounders and the determinant, imputation of 
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both the confounders and outcome can be necessary. Also, when missing determinants 

are not random, imputation on the determinant variable may be needed17. Relations 

between missing study variables is recommended to always be carefully explored and 

appropriate methods should be based on the missing patterns17.

Conclusion
Our results show that (MI-)GEE and GLMM lead to comparable associations of 

determinant and outcome. No differences were observed when we imputed not only 

covariates, but also determinants and outcomes. The major advantage of MI is a 

larger study population.
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Supplementary Table 8.1. Details of multiple imputations modell ing

Software used and key setting: SPSS 17.0 software (SPSS Inc., Chicago, IL, USA) – Imputation Method 

determined by SPSS (automatic option) with 10 iterations.

Number of imputed datasets created: 10

Variables included in the imputation procedure: 

Imputed wheezing-related variables:

wheezing year 1 (binary: no, yes)

wheezing year 2 (binary: no, yes)

wheezing year 3 (binary: no, yes)

wheezing year 4 (binary: no, yes)

maternal history (combination of 4 binary questions: house dust, hay faver, eczema, asthma)*

age mother at intake (continuous)

bmi mother at intake (continuous) 

maternal prenatal smoking (nominal: no, first trimester, continued smoking)

maternal education (nominal: primary, secundary, higher) 

number of deliveries (nominal: 0, 1 >=2)

paternal education (nominal: primary, secundary, higher)

pets keeping during pregnancy (combination of 3 binary questions: cat, dog and bird)*

gender child (binary: male, female)

ethnicity child (nominal: Dutch, European, Turkish, Surinamese, Moroccan, Asian, Other)†

gestational age (continuous)

birth weight (continuous)

breastfeeding ever (binary: no, yes)

day care attendance (binary: no, yes)

Predictor variables:

respiratory tract infections severity year 1 (binary: no, yes)

respiratory tract infections severity year 2 (binary: no, yes)

respiratory tract infections severity year 3 (binary: no, yes)

respiratory tract infections severity year 4 (binary: no, yes)

eczema year 1 (combination of 2 binary questions: eczema 1-6 months, eczema 7-12 months)*

eczema year 2 (binary: no, yes)

eczema year 3 (binary: no, yes)

eczema year 4 (binary: no, yes)

shortness of breath year 1 (binary: no, yes)

shortness of breath year 2 (binary: no, yes)

Supplementary materials
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shortness of breath year 3 (binary: no, yes)

shortness of breath year 4 (binary: no, yes)

cough year 1 (binary: no, yes)

cough year 2 (binary: no, yes)

cough year 3 (binary: no, yes)

cough year 4 (binary: no, yes)

phlegm year 1 (binary: no, yes)

phlegm year 2 (binary: no, yes)

phlegm year 3 (binary: no, yes)

phlegm year 4 ((binary: no, yes)

weight 10-13 months – year 1 (continuous)

height 10-13 months – year 1 (continuous)

weight 23-29 months – year 2 (continuous)

height 23-29 months – year 2 (continuous)

weight 35-44 months – year 3 (continuous)

height 35-44 months – year 3 (continuous)

weight 44-56 months – year 4 (continuous)

height 44-56 months – year 4 (continuous)

paternal house dust mite allergy (binary: no, yes)

paternal hay fever (binary: no, yes)

paternal eczema (binary: no, yes)

paternal asthma (binary: no, yes)

postnatal environmental smoke year 2 (binary: no, yes)

breastfeeding duration (nominal: never, <3 months, 3-6 months, > 6 months)

breastfeeding exclusivity (nominal: never, partial 4 months, exclusive until 4 months)

maternal prenatal alcohol (binary: no, yes)

paternal prenatal smoking (binary: no, yes)

bmi father at intake (continuous)

age father at intake (continuous)

maternal prenatal stress (continuous)

parenting stress score (continuous)

cows allergy (binary: no, yes)

income household (binary: < €2000,-, > €2000,-)

folic acid supplementation during pregnancy (nominal: no, suboptimal, optimal)

Treatment of binary/categorical variables: Logistic/multinomial models 

Statistical interactions included in imputation models: None

*: Each binary variable was imputed first and combination of variables was done after multiple imputations 

procedure; †: The seven ethnicities were imputed, after the multiple imputations procedure we defined 

European and non-European children.
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General discussion

In this thesis, we focussed on the fractional concentration of exhaled nitric oxide 

(FeNO), a biomarker of eosinophilic airway inflammation, in children with asthma. 

FeNO exhibits daily fluctuations, and we examined these fluctuations in relation to 

asthma control and exacerbations in children participating in the CHARISM study. 

We also measured FeNO at 4 and 8 years in the PIAMA birth cohort and examined 

FeNO in distinct phenotypes of wheeze and atopy. Identification of common genetic 

variants associated with complex traits, such as FeNO, may help to further elucidate 

biological mechanisms related to a specific asthma phenotype in childhood1-4. Hence, 

an important objective of this thesis was to identify novel genetic variants associated 

with childhood FeNO using the hypothesis-free genome-wide association (GWA) study 

approach in the EAGLE Consortium. Previously identified genetic risk factors of asthma 

and the influence of environmental risk factors on the development of childhood 

asthma were examined in the Generation R Study.

This chapter summarizes the main findings of this thesis and provides a discussion on 

methodological considerations and clinical applications. Finally, recommendations for 

future research are presented.

Main findings

Fluctuations in exhaled nitric oxide measurements
Assessment of asthma control is important to guide treatment. It is however difficult 

to predict the temporal pattern and risk of exacerbations in a given patient. Theories 

derived from sciences dealing with complexity of physiological parameters can be 

applied to (partly) explain the ‘unpredictable’ nature of asthma. Fluctuation analysis, 

a method used in statistical physics, can be used to gain insight into asthma as a 

dynamic disease of the respiratory system, viewed as a set of interacting subsystems 

(e.g., inflammatory, immunological, and mechanical). Fluctuation analysis methods 

can be applied to the quantification of the long-term temporal history of lung function 

parameters (e.g., daily peak expiratory flows (PEFs), measurements of airway 

patency)5. This information is potentially useful and might help to assess the risk of 

future asthma episodes, with implications for asthma severity and control6,7. We found 

similarly informative fluctuation patterns of FeNO and this implicates that childhood 

asthma is indeed a highly dynamic and heterogeneous disease.

Previous studies on FeNO in relation to asthma management suggested that 

using FeNO to guide asthma treatment might reduce the risk of exacerbations8. 
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Unfortunately, most earlier studies on FeNO-guided asthma management were 

underpowered to demonstrate a significant effect on exacerbations9-12. In the only 

study with sufficient power, FeNO monitoring significantly reduced the number of 

children that needed multiple prednisone courses13. However, design issues may have 

flawed the results14. FeNO during acute severe exacerbations was studied previously, 

and no correlation was found between FeNO and other measures of severity15,16. These 

studies concluded that FeNO is not informative for severe exacerbations.

Single FeNO measurements differed for distinct phenotypes of wheeze and atopy, 

but there is considerable overlap between the distributions of FeNO for the different 

phenotypes17. Patterns of daily FeNO measurements in relation to asthma control 

and exacerbations have not been studied before. Fluctuations in FeNO might provide 

better information than looking at single and averaged FeNO for monitoring and risk 

prediction of asthma6. FeNO is not constant over time, but is a highly fluctuating 

dynamic parameter (Figure 9.1) that can be influenced by many factors, e.g. inhaled 

corticosteroids (ICS) use, sputum induction, exercise, smoke and allergen exposure18.

Interestingly, the majority of children with exacerbations had an increase in FeNO, 

a strong positive cross-correlation between FeNO and symptoms and autocorrelation 

before exacerbations compared to reference periods19. The level of cross-correlation 

between FeNO and symptoms in the whole study period of 192 days was stronger in 

children with- than in those without exacerbations, and we speculated that the level 

Figure 9.1. Daily exhaled nitric oxide measurements over 192 days from a child 
participating in the CHARISM study
This child had a constant ICS dose during the study period.
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of cross-correlation may be useful to identify children at risk for exacerbations20. In 

addition, we showed that daily FeNO measurements exhibited fractal-type long-range 

correlations. Lower fractal-type correlation, indicating more random fluctuations in 

FeNO, was associated with greater ICS need21.

Cross-correlation between daily FeNO and symptoms and fractal-type fluctuations 

in daily FeNO might contain information on asthma severity and control. Identifying 

asthmatic children with discordance between high FeNO, suggestive of eosinophilic 

inflammation, and symptoms is clearly important, as such children may have 

an increased exacerbation risk6,21. Our findings also suggest that regular FeNO 

measurements in the home setting could help to detect and perhaps even help 

prevent loss of asthma control. Such monitoring with advanced algorithms could be 

especially useful in a selected population with frequent moderate exacerbations19. 

However, daily FeNO measurements in a home setting are costly and not practical 

and it remains to be shown if daily FeNO measurements are cost-effective in reducing 

asthma exacerbations and treatment prescriptions in any patient population. In 

addition, we calculated cut-off values to predict exacerbations for our specific dataset, 

with no information available on the physiological origins of the fluctuations in daily 

FeNO. Therefore, the predictive ability of our studies should be taken with caution.

Although, FeNO is fluctuating, FeNO is on average higher in children with allergic 

asthma who have eosinophilic airway inflammation17. The mechanisms underlying 

different asthma phenotypes are still poorly understood1,2. FeNO is a trait that is 

influenced by an interplay of genetic and environmental factors. A Norwegian twin 

study showed that genetic effects accounted for 60% for the variation in FeNO in 

adults22. We aimed to identify common genetic variants associated with FeNO, because 

this may help to further elucidate biological mechanisms related to specific asthma 

phenotypes in childhood1-4.

Genetics of exhaled nitric oxide and asthma in 
childhood
We performed a GWA study on FeNO in childhood, and found a novel independent 

signal of rs3751972 in LYRM9, next to the signal of rs944722 in the downstream 

neighbouring gene NOS2 at 17q11.2-q12 to be associated with FeNO. The function of 

LYRM9 is unknown. Variants in the nitric oxide synthases (NOS) pathway genes and 

arginase (ARG) genes seem to contribute to differences in FeNO concentrations23-26 

and, perhaps, asthma severity27. Inducible NOS2 is expressed in lung epithelium and 

is synthesized in response to proinflammatory mediators. Expression of inducible 

NOS2 may be beneficial in host defense or in modulating the immune response18,28. In 

our study only NOS2, but not NOS1 and NOS3, was robustly associated with childhood 

FeNO, suggesting that inducible NOS2 is indeed the most important NOS enzyme in 
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the production of NO23. Furthermore, we found a cis expression quantitative trait locus 

(eQTL) for the transcript LGALS9 in LD with rs944722 in NOS2. LGALS9 is downstream 

of NOS2 and might be involved in prolonged eosinophil accumulation in the lung29. 

We identified a third genome-wide signal for FeNO in the 17q12-q21 asthma locus 

harbouring ZPBP2, GSDMB, and ORMDL3 genes and this locus is a complex region with 

high LD. The 17q12-q21 locus is the most consistent and strongest associated locus 

for childhood asthma30-34. The exact functions of ZPBP2, GSDMB, and ORMDL3 genes 

are not completely clear35-37. Surprisingly, the functions of the 17q12-q21 genes seem 

not to influence allergic type of pathways. The study of Verlaan et al implicates one of 

the potential causative SNPs of the 17q12-q21 locus34, but further follow-up studies 

are needed.

Signals in LYRM9 and NOS2 were not associated with childhood asthma. This study 

highlights that different genetic factors act on childhood asthma through specific 

phenotypic pathways, such as FeNO. GWA studies learned us that different common 

genetic variants are associated with different asthma-related outcomes: childhood 

onset asthma30,31, adult asthma31,38,39, impaired lung function40-42, and atopy43-45. The 

17q11.2-q12 and 17q12-q21 loci are both complex regions with high LD and seem to 

harbour multiple independent signals. Our GWA study explained only a small portion 

of the heritability of childhood FeNO. It is expected that loci can harbour multiple 

independent signals (both common and rare) that are independently associated with 

the outcome of interest and adding those variants will increase the percentage of 

variation explained46-48. We performed a conditional analysis of all single nucleotide 

polymorphisms (SNPs) using genome-wide complex trait analysis (GCTA) for the 

GWA study of FeNO48, showing that the signals in LYRM9 and NOS2 are independent. 

This tool could be used for future GWA studies of asthma to discover additional new 

variants independently associated with asthma and to explore independent effects in 

the 17q12-q21 asthma locus. Further explanations of missing heritability for FeNO 

and asthma are described in the methodological considerations and clinical application 

paragraphs.

Methodological considerations

Improvements in identifying genetic variants of 
exhaled nitric oxide and asthma
Clearly the key factor in identifying more novel genetic variants is increasing the 

sample size. To our knowledge, there are no further child cohort studies with GWA 

and FeNO data available. Future research to identify more loci for asthma is currently 

underway in the TAGC consortium, a large consortium of all available consortia with 
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GWA and both child and adult asthma data available. That increasing the sample size 

is important has been shown for other traits, such as height, a meta-analysis with an 

increasingly larger sample size, yielding an ever increasing number of genetic loci to 

be found. Data of these large collaborations can also be used to determine specific 

biological pathways incorporating multiple genes49.

Genetic variants could have an effect on two or more phenotypic traits (pleiotropy). 

Gene pleiotropic effects is a common feature of human traits50. In this thesis we 

reported that the 17q12-q21 locus was associated with childhood FeNO. Moffatt et 

al previously showed that the same 17q12-q21 locus is associated with childhood 

asthma30,31. Pleiotropic properties can be exploited to identify additional risk variants 

by combining two GWA studies of disease-related traits. Combining GWA study data 

of two related traits may help to identify more pleitropic loci beyond those already 

identified at genome-wide significance level of standard GWA studies51.

To increase genomic coverage of the GWA study presented in this thesis we 

performed imputation using HapMap II release 22 CEU as reference panel. This 

reference panel contains ~2.5 Million, mostly common SNPs, and the SNPs are 

derived from only 60 sequenced individuals. There is a debate going on of human 

geneticists considering that rare variants would have a greater impact on phenotype 

variation47, whereas others still believe in the common variants approach yielding 

to more important new biological insights52. However, in the future reference panels 

from an international collaboration the 1000 Genomes project (1000G, http://

www.1000genomes.org/) and also from regional projects, such as The Genome of the 

Netherlands (GoNL, http://www.dutchgenomeproject.com/) can be used to improve 

genomic coverage by increasing the density and sample size of imputation reference 

panels.

A point of consideration in the interpretation of the data of the GWA study of 

FeNO is that some children were using inhaled corticosteroids (ICS) while FeNO was 

measured, and it has been shown that ICS can decrease FeNO18. Unfortunately, not 

all cohorts had information on ICS use on time of FeNO measurement available and 

therefore it was not possible to adjust for ICS use in our analysis. However, any such 

effect of ICS seems limited because a sensitivity analysis after exclusion of steroid 

users on the association between wheezing phenotypes and FeNO in chapter 2 showed 

no change in results. If ICS would have reduced FeNO, we would have underestimated 

the effects.

Associations of genetic variants in NOS and ARG genes, and perhaps also in other 

genes with childhood FeNO might be different among asthmatic versus non-asthmatic 

children23,26. Unfortunately, due to the prevalence of asthma in our population-based 

studies, stratifying for asthma or atopy on genome-wide level was not possible due to 

lack of power. A previous study suggested that DNA methylation in promotor regions 
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of ARG1 and ARG2 is associated with FeNO in children with asthma24. Thus, DNA 

methylation could play an important role of epigenetic regulation of other genes for 

nitric oxide production.

Atopy is an important determinant for FeNO17,53-56. Some authors have suggested that 

the association between asthma and FeNO may be entirely explained by atopy, implying 

that measuring FeNO is of limited use to assess whether a child has asthma57. We found 

an association between the 17q12-q21 childhood asthma locus and FeNO, implying that 

FeNO might be causally related with asthma. However, this association can still be driven 

by atopy. Unfortunately, it was not possible to examine a causal relationship between 

asthma and FENO in a Mendelian randomization approach since most cohorts had no 

information on atopic status available. In addition, associations of genetic variants with 

childhood FeNO might also be different for atopic and non-atopic children.

Gene-environment interactions and childhood 
asthma development
The term ‘gene-environment interaction’ refers to a situation where an environmental 

risk factor acts as an effect modifier of a genetic risk factor. Different exposures 

of genetic and environmental risk factors and the interaction between genetic and 

environmental risk factors may result in the existence of many different asthma 

phenotypes (Figure 9.2)58.

It has been proposed to abolish the term asthma altogether1 and focus on specific 

asthma phenotypes or endotypes rather than on asthma as a single disease entity2. 

Figure 9.2. Gene-environment interaction and childhood asthma
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Studies examining the interaction between genetic and environmental risk factors 

that are associated with different phenotypes may help to elucidate the origins 

of asthma58,59. That gene-environment interactions in humans are important for 

asthma was clearly shown by Bouzigon et al. Their study showed that the increased 

risk of asthma conferred by 17q12-q21 genetic variants is restricted to early-onset 

asthma and that the risk is further increased by early-life exposure to environmental 

tobacco smoke (ETS)32. Exploration of interactions between 17q12-q21 variants, fetal 

smoke exposure and ETS exposure in infancy may identify specific early critical time 

periods of increased susceptibility33,60. In this thesis we showed that a 17q12 variant, 

rs2305480, was associated with asthma-related outcomes in preschool children, and 

this association was modified by smoke exposure already during fetal life, and in 

infancy.

Misclassification of exposures is a major limitation of environmental epidemiology. 

Differences in measurement methods and the timing make it difficult to compare 

study results. Many environmental exposures are assessed by questionnaires, e.g. 

smoking and folic acid-containing supplementations used during pregnancy, postnatal 

environmental tobacco smoke exposure and breastfeeding and are subjected 

to reporter bias. Objective biomarkers, e.g. biochemical measures of cotinine 

representing smoke exposure or biochemical measures of folate status are less prone 

to reporter bias. We tried to show independent effects of fetal and postnatal ETS 

exposure by stratifying on smoke exposure. However, an ERS task-force concluded 

that stratifying on smoke exposure is not sufficient to claim independent effects of 

fetal and postnatal ETS exposure. Even with stratifying, it is still possible that we were 

detecting an effect of postnatal smoke.

Many genetic factors and their interaction with environmental factors still need 

to be discovered. These interactions may explain a large portion of the missing 

disease heritability of asthma46. The EAGLE consortium is a good basis for future 

gene-environment studies on asthma and allergic diseases. EAGLE can be used for 

discovery and replication efforts. Uniform exposure assessment will be challenging 

and expected differences in results should be discussed in advance. Currently, many 

gene-environment studies are using tagSNPs to determine genetic variation of certain 

genes. Further investigation regarding causal SNPs in linkage disequilibrium with 

tagSNPs in relation to pathophysiological pathways is needed61.

Repeated asthma-related outcomes were used in our gene-environment studies. 

Missing data in binary repeated outcome measurements are complex to analyse62-64. 

Multiple imputations (MI) can be used to pre-process incomplete data, including 

outcome data, after which generalized estimating equations (GEE) is applied (MI-

GEE)62. Alternatively, generalized linear mixed models (GLMM) can be used to deal 

with missing binary repeated outcome measurements62,64. We explored differences 
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in effect estimates after applying different strategies for analysis and imputation of 

missing values, using data from a study on the associations of maternal atopy with 

childhood wheeze from birth to 4 years. Our results suggest that MI-GEE and GLMM 

lead to similar effect estimates for the associations of maternal atopy with childhood 

wheeze. No differences were observed when we imputed not only covariates, but 

also determinants and outcomes. Relations between missing study variables is 

recommended to always be carefully explored and appropriate methods should 

be based on the missing patterns65. The major advantage is that imputation leads 

to larger populations for analysis. Genetic studies have the advantage of random 

assignment of an individual’s genotype from his or her parental genotypes that occurs 

before conception66, meaning that associations between genetic variants and asthma-

related outcomes are less likely confounded by missing data of genetic risk factors. 

However, we still need appropriate methods to impute confounders, environmental 

effect modifiers and methods to deal with missing binary repeated asthma-related 

outcomes.

Cl inical applications

Asthma risk prediction
The advent of GWA studies has led to the discovery of common risk loci for the 

majority of common diseases including childhood asthma31. These discoveries 

raise the possibility of using these variants for risk prediction in a clinical setting67. 

Predictive value of a single gene test in a complex disease such as asthma is of 

limited significance for diagnostic or preventive purposes, as only a small proportion 

of the risk can be explained68. It has been shown that multiple common variants 

explain a large proportion of the heritability, such as human height69. However, the 

predictive accuracy from genetic models incorporating multiple genes varies greatly 

across diseases. Thus far the results of most models incorporating multiple genes 

have still been disappointing, but the range is similar to that of non-genetic risk-

prediction models67. This can be explained by several factors, the most important 

of which is that the identified genetic variants explain a small proportion of the 

phenotypic variance. Currently we are mostly studying tagSNPs and the causal 

variants may explain more. In addition, other types of genetic variation may be missed 

with the GWA approach of SNPs46. It is however also impossible to accurately predict 

with clinical prediction rules which child will develop asthma and which not70. This may 

be explained by the fact that asthma is a heterogeneous disease, existing in many 

different phenotypes59, influenced by many genetic and environmental factors58. That 

genetic origins of asthma are diverse, and some pathways are specific to wheezing 
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syndromes, whereas others are shared with atopy and bronchial hyperresponsiveness 

was demonstrated with a genome-wide prediction study of childhood asthma and 

related phenotypes in a longitudinal birth cohort71. GWA studies also provided evidence 

that asthma is a heterogeneous disease by showing that different common genetic 

variants are associated with different asthma-related outcomes: childhood onset 

asthma30,31, adult asthma31,38,39, impaired lung function40-42, and atopy43-45.

The increase in the prevalence of asthma in the last two decades can not be 

explained by the small changes in the genetic constitution of the Western population 

that occur over time72,73. It rather occurs by changing of environmental factors, such 

as indoor and outdoor pollution, allergen exposure, tobacco smoke in utero and in 

postnatal life and other factors related to the ‘Western lifestyle’ like eating habits, 

including vitamin supplementation and contact with microbial products. This thesis 

showed that genetic and environmental factors interact in the development of asthma. 

Many genetic factors and their interaction with environmental factors still need to be 

discovered. Gene-gene interaction and gene-personal risk factors, such as sex-specific 

genetic effects may also play an important role. Based on data of simulation studies 

and other complex diseases, the use of genetic profiling that incorporates multiple 

genetic risk factors holds promise for clinical application67,74. The results of GWA 

studies will be crucial in establishing genetic risk profiles for asthma. In the future, 

asthma prediction may be possible, based on a prediction model that incorporates 

genes, personal factors and environmental risk factors68.

Identifying potential therapeutic targets of asthma
There is heterogeneity in patient responses to current asthma medications. Significant 

progress has been made in identifying genetic polymorphisms that influence the 

efficacy and potential for adverse effects to asthma drugs75. Recent GWA studies 

begun to shed light on both common and distinct pathways that contribute to asthma 

and allergic diseases76. Moffatt et al identified interleukin-13 (IL-13) with a GWA 

study approach as a genetic risk factor for physician-diagnosed asthma31. IL-13 is a 

relevant target for asthma treatment77, but it is only one of the pathways that can 

lead to the expression of an asthma phenotype78. Anti-IL-13 therapy targeted to 

susceptible adults with asthma who had a pre-treatment profile consistent with IL-13 

activity showed improved lung function79. Another GWA study identified a functional 

glucocorticoid-induced transcript 1 (GLCCI1) gene variant to be associated with a 

reduced response to inhaled glucocorticoids in children with asthma80. Associations 

with variation in genes encoding the epithelial cell-derived cytokines, interleukin-33 

(IL-33) and thymic stromal lymphopoietin (TSLP), and the interleukin 1 receptor-like 

1 (IL1RL1) gene encoding the IL-33 receptor, ST2, highlight the central roles for 

innate immune response pathways that promote the activation and differentiation 
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of T-helper 2 cells in the pathogenesis of both asthma and allergic diseases76. The 

17q12-q21 asthma locus, encoding the ZPBP2, GSDMB, and ORMDL3 genes, is the 

most consistent and strongest associated locus for childhood asthma30,31. These 

genes, identified by GWA studies, represent potential future therapeutic targets. 

Identification of common genetic variants associated with a specific phenotype of 

asthma, such as FeNO, may help to further elucidate biological mechanisms related 

to specific asthma phenotypes in childhood1-4. FeNO and asthma are conditions with 

multiple etiologies involving both genetic and environmental contributions. Multiple 

independent signals in and near LYRM9 and NOS2 at 17q11.2-q12 were found to 

be associated with childhood FeNO. Our findings show that the 17q12-q21 locus is 

associated with both FeNO and asthma. Identification of potential functional SNPs and 

haplotypes in both the 17q11.2-q12 and 17q12-q21 regions through deep sequencing 

and functional studies (e.g., knock-out mice, cell-expression) are needed to elucidate 

the biological mechanisms responsible for childhood asthma and its phenotypes, and 

this information may well lead to the development of better therapies.

Future research directions

Most of the findings in this thesis have no immediate clinical relevance. Earlier studies 

on FeNO-guided asthma management did not consistently demonstrate significant 

benefits. However, design issues may have flawed the results14. Fluctuations in 

FeNO might provide better information than looking at single and averaged FeNO for 

monitoring and risk prediction of asthma6. Advanced algorithms including fluctuation 

analyses could be useful to indentify children with unstable asthma that are in need of 

changes in ICS doses. Clinical trials and cost-effectiveness studies are needed to show 

effectiveness of measuring daily FeNO and improving asthma control and reducing 

exacerbations. Furthermore, studies on physiological origins of fluctuations in FeNO 

and other lung function parameters are needed to improve the understanding of 

asthma as a systemic and dynamic disease.

Common genetic risk variants identified by GWA studies over the past decade have 

explained a small portion of disease heritability of childhood asthma31,46. In this thesis 

we explained only a small part of the variance in FeNO with common genetic variants. 

Rare variants and maybe even multiple independent rare variants in the same locus 

or across the whole genome may have a greater impact on phenotype variation47. 

Next generation sequencing technologies (whole genome, exome and targeted 

region sequencing) at low costs are necessary to identify all rare variants across a 

population. Sequence data can also be used to detect structural variation, such as 

indels and deletions, which have not been studied before in relation to childhood 
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asthma-related outcomes. Data analysis approaches for sequence data and methods 

to impute sequence data into a GWA dataset are still under development. Sequencing 

of individuals with an extreme phenotype of asthma could be in particular useful to 

indentify novel variants and to impute the detected variants back into a full GWA 

cohort81,82. To avoid false-positive findings of rare variants de-novo re-sequencing data 

will be required. Challenges lie ahead in applying these technologies, but for many 

diseases including childhood asthma, rare variants are likely to be a critical piece of 

the puzzle that needs to be solved to understand genetic basis of complex traits and to 

use this information to develop better therapies83.

Rare variants are not the only answer to the missing heritability of 

childhood asthma46. Epigenetics refers to the study of heritable changes in gene 

expression caused by mechanisms other than changes in the underlying DNA 

sequence. Epigenetic mechanisms are grouped in three main classes: DNA 

methylation, modifications of histone tails, and noncoding RNAs (such as MicroRNAs). 

These classes may be influenced by environmental factors in certain periods in life, 

but also in utero and even transgenerational, and are also influenced by diseases 

and aging. Epigenetic marks have been shown to influence immune cell maturation. 

Evidence is emerging that these epigenetic marks affect gene expression in the lung 

and are associated with asthma84-86. It has already been shown that transcriptional 

changes in airway epithelia and inflammatory cells of patients with allergic asthma are 

influenced by asthma phenotype as well as environmental exposures87. Whole genome 

methylation arrays can be used to study epigenetic marks. Epigenetic marks do not 

have to change gene expression by definition and therefore also gene expression 

arrays are needed. These novel technologies make it feasible to study epigenetic 

marks and gene expression, and it is anticipated that this knowledge will enhance our 

understanding of the dynamic biology in the lung and lead to the development of novel 

diagnostic and therapeutic approaches for our patients with asthma84-86.

The results of GWA studies imputed with sequence data will be crucial in establishing 

genetic risk profiles for childhood asthma. Many genetic factors and their interaction 

with environmental factors still need to be discovered. Gene-gene interactions and 

gene-personal risk factor interactions, such as sex-specific genetic effects may also play 

an important role in the development of childhood asthma. The above described studies 

should be performed and epidemiological results should be replicated in large consortia, 

such as EAGLE. In the future, asthma prediction may be possible, based on a prediction 

model that incorporates genes, personal factors and environmental risk factors68.
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Summary

In Western countries, asthma is one of the most frequent chronic disorders in 

childhood, with a high burden of morbidity. Childhood asthma exists in various forms, 

influenced by many genetic and environmental factors. In this thesis, we focus on a 

biomarker that is relevant for a subtype of asthma: the fraction of exhaled nitric oxide 

(FeNO). FeNO is a non-invasive biomarker of a distinct type of airway inflammation, 

and is associated with childhood asthma-like symptoms, asthma attacks, physician-

diagnosed asthma and allergy. This thesis focuses on major challenges in the field of 

childhood asthma which have been insufficiently addressed: The interpretation of daily 

fluctuations in FeNO, and genetic and environmental risk factors of asthma and FeNO 

in childhood.

Chapter 1 begins with introducing FeNO and asthma in childhood and provides 

a background of previous studies, and describes the aims of this thesis. Chapter 2 

describes that FeNO measured at 8 years is differentially associated with five distinct 

types of wheezing. The differences in FeNO were only observed in allergic children. 

Assessment of asthma control is important to guide treatment. FeNO-guided asthma 

management was suggested to improve asthma control and reduce asthma attacks. 

In a previous project, we have measured FeNO in children at home on a daily basis. 

Data of this study were used to analyze the importance of daily fluctuations in FeNO. 

Chapter 3 revealed changes in daily FeNO prior to asthma attacks and Chapter 4 

describes correlations between daily FeNO and symptoms. Fluctuations in FeNO 

measured over a long period of time contain information on asthma severity and 

control. Whether changes in daily FeNO can be used to prevent loss of asthma control 

should be further explored.

FeNO is on average higher in children with allergic asthma who have a distinct 

type of airway inflammation. In Chapter 5 we identified three genetic regions that 

influence FeNO levels. This study also highlights that both shared and distinct genetic 

factors affect FeNO and childhood asthma, with still unknown biological mechanisms. 

Chapter 6 shows that an important genetic factor of childhood asthma is associated 

with asthma-like symptoms in preschool children, and this association is modified 

by smoke exposure already during fetal life and in infancy. In Chapter 7 we show a 

possible effect of folate serum levels on the development of eczema in early childhood, 

that may depend on genetic factors in a folate metabolism gene. Repeatedly measured 

asthma-related outcomes were used in our gene-environment studies.

Missing data in repeated ‘yes/no’ outcome measurements are complex to 

analyse and could lead to false findings. Chapter 8 compares different strategies of 

analysis and methods to deal with missing data, and showed equivalence of several 

recommended strategies.
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Finally, we discuss the results of this thesis in a general manner and place our 

findings in a broader context. The methodological considerations of our studies and 

clinical applications for asthma risk prediction and identifying potential therapeutic 

targets of asthma are discussed and we present our future research perspectives at 

the end of Chapter 9.
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Samenvatting

Astma is de meest voorkomende aandoening op de kinderleeftijd in Westerse landen. 

Astma bestaat in verschillende soorten en wordt beïnvloed door vele genetische- en 

omgevingsfactoren. In dit proefschrift is specifiek gericht op een marker, te weten 

de fractie van stikstofmonoxide (FeNO) in uitgeademde lucht, die relevant is voor 

een bepaald type astma, waarbij allergie een rol speelt. FeNO meet de mate van 

luchtwegontsteking en kan door kinderen zelf worden gemeten. Hogere waarden van 

FeNO zijn geassocieerd met door een arts vastgestelde astma diagnose, maar ook 

met astmaklachten, astma aanvallen en allergieën. Dit proefschrift richt zich op een 

onbelicht gebied van astma bij kinderen: Enerzijds de interpretatie van dagelijkse 

fluctuatie van FeNO en anderzijds op de genetische- en omgevingsrisicofactoren van 

astma en FeNO op de kinderleeftijd.

Het proefschrift begint met een introductie van FeNO en astma op de kinderleeftijd. 

Hoofdstuk 1 geeft achtergrondinformatie van eerdere studies en beschrijft de 

doelstellingen van dit proefschrift. Hoofdstuk 2 beschrijft dat FeNO, gemeten bij 8 

jarigen, verschilt tussen verschillende soorten van astma bij kinderen. De verschillen 

in FeNO werden alleen waargenomen bij allergische kinderen.

Het volgen van de mate van controle bij astma is belangrijk voor de behandeling. 

Dagelijkse FeNO metingen zijn voorgesteld om astmaklachten beter te kunnen 

begrijpen, en daarmee astma-aanvallen te voorkomen. Hoofdstuk 3 beschrijft 

hoe een stijging in dagelijkse FeNO metingen voorafgaat aan een astma aanval. 

Wij speculeerden dat hiermee astma-aanvallen mogelijk te voorspellen, en wellicht 

geheel of deels te voorkomen zijn. Hoofdstuk 4 analyseert fluctuatie van FeNO 

over een lange periode en toont de verbanden tussen dagelijkse FeNO metingen 

met astmaklachten. De schommelingen van FeNO geven informatie over de ernst 

en mate van controle van astma. Toekomstig onderzoek moet uitwijzen in hoeverre 

astma beter gecontroleerd kan worden en aanvallen voorkomen kunnen worden door 

medicatie aan te passen op basis van schommelingen van dagelijkse FeNO metingen.

FeNO bij astmatische kinderen met een specifiek type van luchtwegontsteking 

is gemiddeld hoger dan bij niet-astmatische kinderen. In hoofdstuk 5 worden drie 

genetische regio’s beschreven die FeNO kunnen beïnvloeden. Ons onderzoek toont 

eveneens aan dat zowel gemeenschappelijke als verschillende genetische factoren 

FeNO en astma bij kinderen kunnen beïnvloeden. De mechanismen hierbij zijn 

grotendeels nog onopgehelderd. In toekomstig onderzoek moeten deze biologische 

mechanismen verder worden uitgezocht. De resultaten zouden kunnen leiden tot het 

ontwikkelen van nieuwe, mogelijk betere therapieën voor astma.

Hoofdstuk 6 toont aan dat een belangrijke genetische risicofactor voor astma 

bij kinderen geassocieerd is met beginnende astmaklachten bij kleuters, waarbij 
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blootstelling aan sigarettenrook tijdens de zwangerschap of in het vroege leven het 

risico op klachten verder verhoogt. In hoofdstuk 7 laten we zien dat foliumzuur in 

het bloed het risico kan verhogen op de ontwikkeling van eczeem, en dat dit mogelijk 

afhangt van een gen dat het niveau van foliumzuur in het lichaam bepaalt. Vele andere 

genetische factoren en hun interactie met omgevingsfactoren, die kunnen leiden tot 

een verhoogd risico voor astma, moeten nog onderzocht worden. In hoofdstuk 6 en 7 

is gekeken naar astmaklachten die jaarlijks zijn gemeten. Ontbrekende gegevens bij 

herhaalde meetmomenten leveren problemen op bij dit soort onderzoek en kunnen 

leiden tot foute resultaten. Hoofdstuk 8 onderzoekt het effect van verschillende 

analysestrategieën en verschillende methodes die gewoonlijk gebruikt worden om 

ontbrekende gegevens in te vullen. De resultaten laten zien dat deze methoden 

ongeveer gelijkwaardig zijn.

Tot slot wordt in hoofdstuk 9 besproken wat de resultaten in het algemeen waren 

van dit proefschrift en worden de bevindingen in een bredere context uitgelegd. De 

methodologische overwegingen van onze studies en klinische toepassingen voor het 

voorspellen van astmarisico en het identificeren van potentiële aangrijpingspunten 

voor de behandeling van astma worden toegelicht. Als laatste worden onze ideeën 

voor toekomstig onderzoek gepresenteerd.
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Dankwoord

Mijn oud-huisgenoot IJdo Kleinlugtenbelt zei ooit tegen mij ‘Misschien moet je eens 

tijd aan je studie besteden en niet meer zoveel roeien. De Olympische spelen haal 

je toch niet en misschien kun je jouw passie ergens anders voor gebruiken’. Ik 

realiseerde dat hij gelijk had en kwam er toen achter dat ik wilde promoveren tijdens 

mijn studie Geneeskunde. De afgelopen jaren heb ik met veel plezier gewerkt aan 

mijn onderzoek. Van de mensen met wie ik heb kunnen samenwerken heb ik veel 

geleerd. Nu het proefschrift is afgerond wil ik graag mijn collega’s, vrienden en familie 

hartelijk danken voor hun steun.

Allereerst mijn eerste promotor, Prof.dr. J.C. de Jongste, mijn copromotor, Dr. 

V.W.V. Jaddoe en mijn tweede promotor, Prof.dr. A. Hofman. Beste Johan, de regisseur 

van mijn proefschrift, ik kan me geen betere en fijnere supervisor voorstellen. Uw 

integriteit en passie voor kwaliteit spreken boekdelen. Het was niet mogelijk om 

onvoorbereid naar een werkbespreking te gaan. U prikte er altijd doorheen, wanneer 

ik het onderwerp niet goed begreep. Ik ben blij dat u mij de velen aspecten van het 

onderzoek heeft kunnen laten zien (CHARISM, PIAMA, Generation R, IL1RL1 project 

en weer Generation R). De mogelijkheid die u mij bood om in verschillende ‘keukens’ 

te kijken heeft mij het inzicht gegeven hoe ik mijn wetenschappelijke carrière wil 

voortzetten. Voor dit alles ben ik u erg dankbaar. Onze samenwerking vond ik altijd 

prettig en in de toekomst zou ik graag blijven samenwerken.

Beste Vincent, jij bent, zoals Prof.dr. Tiemeier tijdens zijn oratie vertelde, een: “Top 

strateeg”! Niks is minder waar. Het was bijzonder inspirerend om met je samen te 

werken en daarvoor wil ik je hartelijk bedanken. De snelheid waarmee jij verbanden 

kunt leggen is opmerkelijk. Als gevolg daarvan kreeg ik bijna altijd mijn werk binnen 

12 uur terug. Weliswaar rood en vol met nuttige opmerkingen, maar dat gaf mij 

weer de mogelijkheid om direct met mijn onderzoek door te gaan. Ik vond het leuk 

en leerzaam om met jou te ‘ping-pongen’ met de eerste versies van de GWAS FeNO. 

Laten we dat ook zo doen voor de GWAS BL & IL. Ik vraag me nog af waarom ik mijn 

werk altijd zo snel terug kreeg? Vond je mijn onderwerp leuk of was je bang dat ik 

anders niet door zou werken?

Beste Prof. Hofman, ook u wil ik hartelijk danken, want NIHES is waar het voor mij 

allemaal mee begon. De cursussen van NIHES waren inspirerend. Door NIHES heb ik 

mijn liefde voor epidemiologie, statistiek en computerkunde leren kennen. Ik kan me 

goed herinneren dat ik voor de MSc Clinical Research solliciteerde voor een stage plek 

op de afdeling pulmonologie, waarbij u mij de afdeling kinderpulmonologie aanraadde. 

Erop terugkijkend had ik geen betere plek toegewezen kunnen krijgen, waarvoor mijn 

dank. Daarnaast heb ik voor mijn onderzoek gebruik mogen maken van het prachtige 

Generation R cohort.
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Prof.dr. A.G. Uitterlinden, Prof.dr. E.W. Steyerberg en Prof.dr. A.J. van der Heijden 

wil ik graag bedanken voor hun bereidheid zitting te nemen in de kleine promotie 

commissie en het beoordelen van mijn proefschrift. Beste Andre, bedankt voor de 

leerzame genetische cursussen, de discussies over ‘astma genetica’ en de leuke 

tijd in San Francisco (ASHG 2012). Beste Ewout, bedankt voor de begeleiding bij 

het ‘multiple imputeren’ van missende waarden in het Generation R cohort. Ik vind 

het jammer dat er geen tijd meer over is om een simulatie studie toe te voegen 

aan hoofdstuk 8 van dit proefschrift. Beste Prof. van der Heijden, bedankt dat u als 

secretaris plaats wilde nemen in mijn leescommissie. De overige leden van de grote 

promotie commissie wil ik graag bedanken voor hun bereidheid om van gedachte te 

wisselen over de inhoud van dit proefschrift.

I would like to thank Prof.dr. U. Frey and Dr. G. Stern for inspiring training in 

fluctuation analysis. Dear Urs, thank you for hosting me at your department. Our work 

marks the onset of my scientific career and represents a great learning experience 

(and a lot of fun) during my MSc Clinical Research period. Dear Georgette, you were 

a wonderful host as well. Thank you very much for the great learning experiences and 

the nice dinners we had. I would also like to thank the ‘Berne Gang’ (Oliver, Cindy, 

Philip etc.) for all the fun we had (not for the obligated ‘after-work swim’ in the cold 

River Aare).

Prof.dr. G.H. Koppelman en Prof.dr. D.S. Postma wil ik graag bedanken voor de 

diepgaande inzichten in genetica en dan met name in de functionaliteit van het 

genoom. Francis Collins quote (ASHG 2012): ‘Gene seekers’ moeten samenwerken 

met andere (bv: biologische) labs om hun bevindingen verder functioneel uit te 

werken. Dit is jullie allang bekend - GRIAC.

Graag wil ik alle kinderen en hun ouders bedanken die deel hebben genomen aan 

het CHARISM, PIAMA en het Generation R onderzoek. I gratefully acknowledge and 

thank Prof.dr. E. Baraldi and Dr. S. Carraro for conducting the CHARISM Study. Ik wil 

de PIAMA (Prof.dr. H.A. Smit, Dr. A.H. Wijga, Dr. M. Kerkhof, Prof.dr. B. Brunekreef) 

en Generation R (Prof.dr. H.A. Moll, Prof.dr. H. Tiemeijer, Prof.dr. E.A.P. Steegers) 

coauteurs bedanken voor het kritisch doornemen van mijn manuscripten. Ik wil de 

overige PIAMA en Generation R PI’s bedanken voor het generen van de data voor deze 

twee prachtige cohorten. Daarnaast wil ik de coauteurs Drs. O. Savenije, Drs. S.P. 

Willemsen en Dr. C.W. Looman hartelijk danken voor het mee schrijven en meedenken 

aan mijn manuscripten. I gratefully acknowledge my international ‘genetic colleagues’ 

of the EAGLE consortium. Using your valuable data we were able to submit the first 

genome-wide association meta-analysis study of childhood FeNO. In particular I would 

like to thank Prof.dr. A.J. Henderson of the ALSPAC cohort for his participation in the 

writing team and Prof.dr. H. Bisgaard for his efforts as chairman of the ‘EAGLE asthma 

& atopy working group’ and for hosting me several times at his department.
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Dankzij Irma en Patricia lukte het altijd om een afspraak met Johan en Vincent te 

plannen. Daarnaast wil ik jullie hartelijk danken voor al jullie ondersteunend werk. 

De ‘focus dames’ dank ik voor de gezelligheid op het onderzoekscentrum en het 

verzamelen van de data. Michael, Pascal, Jeannette en lab co voor hun hulp bij het 

genotyperen van SNPs. Claudia bedankt voor alle data die zo snel naar mij toe kwam. 

Alwin bedankt voor computer ondersteuning. In het bijzonder wil ik Daan Caudri, 

Jessica Kiefte – De Jong, Rachel Bakker, Rob Taal en Karol Estrada bedanken. Beste 

Daan, ik vond het geweldig om onder jouw begeleiding aan mijn MSc onderzoek 

te werken. Het was erg fijn om tijdens mijn onderzoek bij Generation R te kunnen 

rekenen op jouw epidemiologische- en statistische hulp. Ik vind het jammer dat we 

nooit meer in de kroeg tot vijf of zes uur ’s morgens over statistiek kunnen praten. 

Komt daar nog verandering in? Beste Jessica, wij delen veel passies op het vakgebied. 

Wat hebben wij toch veel plezier gehad om over ‘multiple imputations’ te praten en 

wat leuk dat we uiteindelijk een manuscript hebben kunnen schrijven. Daarnaast 

mag jouw bijdrage aan het folaat manuscript niet onbenoemd blijven. Beste Rachel, 

schaduwnimf, ik vind dat paranimfen toch wel mannen zijn (in tegenstelling tot wat jij 

in je proefschrift schrijft), bedankt voor je hulp bij het imputatie hoofdstuk, maar ook 

bedankt voor je hulp bij het afronden van dit proefschrift (planning, sponsoring, het 

lezen van Nederlandse stukjes en lay-out). Hi Rob, bedankt voor het kunnen stellen 

van ‘makkelijke genetische vragen’. Dear Karol, I am extremely grateful for all the 

times you have helped me with my genetic analyses. There was not a single question 

you could not answer. Even in the last stage of your career in Rotterdam I received 

valuable comments for the GWAS FeNO manuscript. The above described qualities 

resemble your department. I would also like to gratefully acknowledge the help of 

your colleagues Dr. F. Rivadeneira and Caro, and Prof.dr. Van Duijn and Najaf. It was 

a long time ago, but I would like to acknowledge Dr. D. Rizopoulos who helped with 

the statistics of chapter 2 and 3. My dear friend Signe, we met in Boston and knew 

that we would be friends forever. Thank you for our special friendship and hosting me 

in CPH for several times. Please do not worry about not coming to my defense if you 

need to spend time with your lovely baby. My dear friend Eskil, we met in CPH. You 

might not have liked me in the first place as I proposed to your boss Prof. Bisgaard 

that you should come to Rotterdam and start a new study for a MSc at NIHES the day 

after finishing the last exam at medical school. We became very close friends, as with 

Daan we have discussed epidemiological designs, statistics and genetics in many bars 

with too many beers till early in the morning. I would like to thank you for inviting me 

to your lovely wedding. Søde Julie, jeg værdsætter højt din kærlige støtte i den sidste 

del af min PhD.

Al mijn Generation R en kinderpulmo collega’s, bedankt voor de gezellige borrels 

en de feestjes. Denise en Romy bedankt voor het snoep en het roddelen op jullie 
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kamer. Liesbeth, bedankt voor het aandringen om nogmaals naar het FeNO schonen 

te kijken. Mede dankzij jouw hulp hebben we nu drie in plaats van twee ‘FeNO hits’. 

Mijn kamergenoten, Agnes, Akghar, Esther en Ilse, bedankt voor jullie gezelligheid, 

de theekransjes en jullie nuttige feedback. Speciale dank naar Agnes die in 5 minuten 

vanuit Bristol een thesis lay-out probleem kon oplossen (ik was het al vijf uur aan 

het proberen!). Graag wil ik het hele ‘kinderpulmo-team’ bedanken voor al jullie 

advies tijdens de vrijdagmiddag research meetings. Mariëlle in het bijzonder voor 

al de ‘FeNO tips’ en Harm voor de altijd boeiende gesprekken over uiteenlopende 

onderwerpen die liepen van subsidies schrijven tot ziekenhuis politiek en complexheid 

van monogenetische ziekten. Roderick wil ik hartelijk danken voor het ontwerpen van 

de voorkant. Indrukwekkend hoe snel je dat voor elkaar hebt gekregen en leuk dat 

de lezers van dit proefschrift nu kunnen zien dat mijn onderzoek ook over genetica 

gaat (wat mist in de titel). Charlotte bedankt voor de inspiratie voor mijn leukste 

stelling. Ik wil mijn lieve vrienden en in het bijzonder Vasco bedanken voor al hun 

interesses in mijn onderzoek. Nick het spijt me dat je mijn paranimf niet mocht zijn. 

Rutger bedankt voor je interesses in mooie vrouwen (GiGi Ravelli). Nen Xavier voor 

kleding style advies voor een onderzoeker (Nen Xavier, van Oldebarneveltstraat 121C, 

Rotterdam). Herman en Maria (Panta Rheyn) voor training in onderhandelen. The 

‘Wine Ponces’ voor te veel geblaat en te dure wijnen.

Ik wil mijn paranimfen John Twigt en Peter-Paul le Conge Kleyn bedanken. Beste 

John, wat fijn dat ik je paranimf mag zijn en daarvoor niets hoef te doen. Ik hoop dat 

ik jou ook in taken kan ontzien met al de drukte rond jouw promotie en coschappen. 

Carrièretechnisch bewandelen we hetzelfde pad en daarom kunnen we elkaar goed 

versterken. Bedankt voor je tekst ‘About the author’. Je bent een lieve en betrouwbare 

vriend. Naast mijn paranimf ben je ook mijn professionele tuinder geworden. Mijn 

excuses dat ik je soms uitbuit, maar volgens mij vind je dat wel prettig. Ik kijk uit 

naar onze verse groentes op de BGE. Wanneer eten we courgettes? Lieve Peter-Paul, 

je bent al jaren mijn vriend. Je staat altijd voor me klaar op elk gebied. We hebben 

veel vrijdag avondjes doorgebracht met rode port. Daarbij hebben wij interessante 

discussies over kunst en wetenschap gehad. Excuses voor de keren dat ik te 

stellig overkwam zonder gegronde argumentatie. Ik had je gevraagd een gedicht 

te schrijven/uit te zoeken om dit proefschrift mee af te sluiten. Je hebt een mooi 

gedicht uitgekozen wat (door jouw aanpassing) goed aansluit bij de inhoud van dit 

proefschrift, maar ook bij onze vriendschap en onze ‘vrijdag avond discussies’. Ik vind 

het fijn dat we de voor mij bijzondere dag samen zullen delen.

Ik wil graag mijn familie bedanken. Mijn lieve zusje Samantha en haar vriend 

Menno. Wat fijn dat jullie altijd bereid waren om mij op te halen in Rotterdam voor 

familie events (wanneer ik te lui was om met de trein te komen). In het bijzonder 

wil ik mijn lieve ouders bedanken. De normen en waarden die jullie mij hebben 
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bijgebracht zijn terug te vinden in mijn werk als wetenschapper. Pa, wat fijn dat 

je mijn oneindige ‘gezeur’ over mijn onderzoek wilde aanhoren. Het betekent veel 

voor me dat je altijd de tijd wilde nemen om het te begrijpen en dat je net zo lang 

bleef doorvragen tot je het begreep. Lieve mamma, ook jij stond bij alle hoogte- en 

diepte punten voor mij klaar. Ik kan me nog goed herinneren dat jij mijn vuile was in 

Rotterdam kwam ophalen, omdat ik de lay-out voor mijn thesis voor de kleine cie niet 

in orde kreeg. Hierdoor zou ik zonder schoon ondergoed naar San Francisco gevlogen 

zijn voor een congres. Pap, mam, zonder jullie onvoorwaardelijke steun was dit 

proefschrift nooit afgerond.
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Gene und Kunst

Gene und Kunst, sie scheinen sich zu fliehen,

Und haben sich, eh‘ man es denkt, gefunden;

Der Widerwille ist auch mir verschwunden,

Und beide scheinen gleich mich anzuziehen.

Es gilt wohl nur ein redliches Bemühen!

Und wenn wir erst in abgemeßnen Stunden;

Mit Geist und Fleiß uns an die Gene gebunden,

Mag frei Gene im Herzen wieder glühen.

So ist‘s mit aller Bildung auch beschaffen:

Vergebens werden ungebundne Geister

Nach der Vollendung reiner Höhe streben.

Wer Großes will, muß sich zusammenraffen;

In der Beschränkung zeigt sich erst der Meister,

Und das Gesetz nur kann uns Freiheit geben.

Johann Wolfgang von Goethe, Lyrisches

Adapted by Peter-Paul Nicolaas le Conge Kleyn (Paranymph)
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