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“Cheshire Puss, ……Would you tell me, please, 

 which way I ought to go from here?” 

 “That depends a good deal on where you want to get to,” said the Cat. 

“I don't much care where—“ 
said Alice. 

 “Then it doesn't matter which way you go,” said the Cat. 

“--so long as I get somewhere,” Alice added as an explanation. 

 “Oh, you're sure to do that,” said the Cat,  

 “if you only walk long enough.” 

 

 (from Alice’s Adventure in Wonderland, by Lewis Carroll) 
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Scope of the thesis 
Hematopoiesis is a complex process carried out by a small pool of totipotent 

self-renewing hematopoietic stem cells, able to generate every cell type of the blood 

throughout life. Blood cell differentiation is achieved by progressive loss of totipotency 

and self-renewal capacity, which gradually identifies the different blood cell lineages. 

Understanding the detailed mechanisms and the key players of this complex 

phenomenon is challenging, due to the intricate net of interactions upon which it relies. 

It is largely accepted however, that understanding of the mechanisms underlying the 

functioning of hematopoietic stem cells is necessary to comprehend the molecular 

alterations that lead to leukemia and ultimately to identify the possible treatments for 

such malignancies. 

The scope of this thesis is to define the role of TEL2, MN1-TEL and MN1 in 

hematopoiesis and leukemogenesis.  The basis of all the projects presented is to 

analyze the reconstitution capability and the leukemic potential of bone marrow cells 

forced to express the above-mentioned proteins through retroviral transduction. 

Chapter 1 of this thesis provides an overview of the current knowledge regarding 

the development of the hematopoietic system, maintenance of homeostasis and its 

deviation towards malignancy. It also summarizes some of the most recent findings 

regarding the function of the proteins that are the subject of this thesis. 

In chapter 2 we demonstrate that the ETS transcription factor TEL2 alone, a 

close homologue of TEL, is not able to trigger leukemia in a mouse model with 

reconstituted retrovirally-transduced bone marrow. However, it also shows that forced 

expression of TEL2 generates aberrations that are reminiscent of human 

myeloproliferative disease. 

The possibility that TEL2 functions as an oncogene when associated with other 

mutations is the subject of Chapter 3. We show that TEL2 expression in p19
Arf

-deficient 

bone marrow leads to development of B cell lymphoma due in part to significant 

upregulation of mTOR. We also present evidence that mTOR is a direct transcriptional 

target of TEL2. 

In chapter 4 we explore the role of the fusion protein MN1-TEL in myeloid 

leukemogenesis and show that forced expression of the fusion protein in mouse bone 

marrow generates factor dependent cell lines and together with unknown secondary 

mutations causes AML in mice. 

In chapter 5 we not only establish that expression of MN1 alone strongly 

stimulates the proliferation of myeloid progenitors causing the development of MPD in 

mice, but also that its overexpression is an important secondary event in the 

development of human AML characterized by the inv(16) chromosomal aberration. 

In Chapter 6 we summarize and discuss the results of this thesis in relation to 

the current knowledge regarding hematopoietic malignancies. 
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1.1 Hematopoiesis 

Among the tissues of the body blood is one of the most fascinating both for the 

complexity of its cellular composition and for its unique structure; thanks to these 

features, the blood can immunologically protect and support the diverse cell types 

present in every area of the body (Orkin, 1996; Orkin, 2000). 

All cells of the hematopoietic system derive from a selected group of precursor 

cells of mesenchymal origin called Hematopoietic Stem Cells (HSCs) (Baum et al., 

1992; Morrison and Weissman, 1994; Osawa et al., 1996; Spangrude et al., 1988). In 

the adult the majority of precursor cells are localized in the bone marrow, whereas only 

a small portion of them is also present in the bloodstream. It is estimated that only one 

every 10,000 to 15,000 bone marrow cells is a HSC, with this value dropping to 1 in 

100,000 blood cells in the bloodstream (Abkowitz et al., 1996; Metcalf, 1999); 

therefore, the isolation of a candidate stem cell population has been a challenge. For a 

long time it was believed that the majority of HSCs in adult marrow neither divided nor 

differentiated and they were considered to be in a state of prolonged intermitotic 

interval (Becker et al., 1965; Hodgson and Bradley, 1979; Lerner and Harrison, 1990). 

However, there is now consolidated evidence that HSCs regularly divide throughout 

adult life (Bradford et al., 1997; Morrison et al., 1996; Ponchio et al., 1995; Rufer et al., 

1999), albeit at a slow rate.  

The introduction of the Fluorescence-Activated Cell Sorter (FACS) constituted a 

milestone for the isolation of cell populations highly enriched in HSCs (Morrison et al., 

1997, Morrison, 1994), by virtue of their unique cell surface marker composition. HSCs 

express significant levels of c-Kit (c-Kit
+
), and Sca-1 (Sca-1

+
)(Uchida and Weissman, 

1992) but do not or hardly express any of lineage-specific markers (Lin
-/lo

). Only a 

small fraction of the HSC population is able to self-renew indefinitely maintaining the 

numerical integrity of their pool (Passegue et al., 2003). When transplanted into 

irradiated mice, these cells reconstitute the hematopoietic compartment and sustain 

hematopoiesis throughout life. Because of these properties HSCs are defined as Long 

Term Hematopoietic Stem Cells (LT-HSCs), and are identified by the cell surface 

markers Thy1
lo
, Lin

-
, Sca-1

+
 and c-Kit

+ 
(Smith et al., 1991; Wagers et al., 2002). In the 

mouse the LT-HSCs are CD34
-/lo

 and therefore differ from human LT-HSC, which are 

CD34
+
 (Osawa et al., 1996). A restricted fraction of the LT-HSCs gives rise to the 

Short-Term Hematopoietic Stem Cells (ST-HSCs). These cells have a finite self-

renewal capacity but generate a set of oligo-lineage restricted progenitors, called 

Multipotent Progenitor Population (MPP).  The ST-HSCs show almost the same 

combination of surface markers as the LT-HSCs with the exception that they also 

express the receptor tyrosine kinase Flk-2 (Lin
-
, c-Kit

+
, Sca-1

+
, Thy1.1

lo
, Flk-2

+
). ST-

HSCs generate MPPs that lost the capacity to self-renew, maintain Flk-2 expression, 
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but loose Thy1 expression (Lin
-
, c-Kit

+
, Sca-1

+
, Thy1

-
 and Flk-2

+
) (Christensen and 

Weissman, 2001) (Figure 1).  It is generally accepted that passage of cells from one 

differentiation stage into the next is an irreversible process, linked to reduction in self-

renewal capacity. The lineage-committed state is then irreversible. The cellular signals 

that influence the choice between self-renewal and differentiation are still not 

completely known.  

The first decisive step in hematopoietic differentiation involves the commitment 

of the MPP to either the myeloid or lymphoid differentiation pathway. This event 

generates a progeny of cells with a more restricted differentiation potential, defined as 

the Common Myeloid Progenitor (CMP) and Common Lymphoid Progenitors (CLP), 

respectively. The progeny of cells committed to either pathway becomes obligated to 

specific sublines of differentiation and is referred as committed progenitor cells.  

The CMP progeny is again divided in two different branches able to generate the 

entire myeloid compartment: the Megakaryocytes-Erythrocytes Progenitors (MEPs) 

 

Figure 1: Hematopoietic and progenitor cell lineages. 

HSCs can be divided into LT-HSCs, highly self-renewing cells that reconstitute an animal 
for its entire life span, or ST-HSCs, which reconstitute the animal for a limited period. ST-
HSCs differentiate into MPPs, which do not or briefly self-renew, and have the ability to 
differentiate into oligolineage-restricted progenitors that ultimately give rise to differentiated 
progeny through functionally irreversible maturation steps. The CLPs give rise to T 
lymphocytes, B lymphocytes, and natural killer (NK) cells. The CMPs give rise to GMPs 
and MEPs. The GMPs then differentiate into monocytes/macrophages and granulocytes. 
The MEPs produce megakaryocytes/platelets and erythrocytes. Both CMPs and CLPs can 
give rise to dendritic cells. All of these stem and progenitor populations are separable as 
pure populations by using their specific cell surface markers combination. 

Adapted from: Passegue’ et al. (2003). PNAS, 100; pp.11842–11849 
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and the Granulocytes-Monocytes Progenitors (GMPs). The CLPs, on the other hand, 

are responsible for the production of the lymphoid compartment. Their downstream 

progeny is constituted of B- and T-lymphocytes and Natural Killer (NK) cells. Finally, 

these latter populations are able to complete the differentiation process and give rise to 

the broad spectrum of mature cells that circulate in the peripheral blood (Passegue et 

al., 2003) (Figure 1).  

This elegant and dynamic process, which generally is restricted to the bone 

marrow and is responsible for blood cell production throughout life, is referred as 

Hematopoiesis.  

During mammalian development this process occurs in distinct anatomical 

locations. More then 40 years ago, Moore and Owen demonstrated that the first site of 

hematopoiesis (primitive hematopoiesis) in the mouse was the embryonic yolk sac 

(Moore and Owen, 1965).  Now we know that in the mouse both embryonic blood and 

endothelial progenitors first emerge in the extra-embryonic yolk sack blood islands at 

Embryonic day (E) 7.5 and that definitive hematopoiesis derives from the 

Aorta/Gonad/Mesonephros (AGM) region at E10 (Haar and Ackerman, 1971; Kondo et 

al., 2003; Orkin and Zon, 2002).  

Already at E12 the mouse fetal liver becomes the principal hematopoietic organ 

from which HSCs migrate to the spleen, the thymus and finally, by day E16-17 to the 

bone marrow which will support hematopoiesis for the rest of the animal’s life (Ikuta K, 

1993; Jordan et al., 1995; Morrison et al., 1995; Zanjani et al., 1993). The common 

origin of the earliest blood cells and vascular endothelial cells suggests that both cell 

types are derived form a common progenitor, the Hemangioblast (Pardanaud and 

Dieterlen-Lievre, 1999a; Pardanaud et al., 1989).  Particularly indicative in this regard 

are findings obtained with a knock-in mouse expressing the histochemical marker LacZ 

under the control of the Runx1 locus (AML1) (North et al., 1999), a gene essential for 

definitive but not primitive hematopoiesis (Okuda et al., 1996; Wang et al., 1996a). In 

this mouse LacZ staining is present in both the endothelial cells in the ventral wall of 

the dorsal aorta and in the associated hematopoietic clusters(de Bruijn et al., 2000). 

Based on this evidence, investigators proposed the existence of specialized 

endothelial cells, defined as “Hemogenic endothelium”, present in the dorsal aorta and 

the vitelline and umbilical arteries, that give rise to HSCs (Caprioli et al., 1998; Cumano 

et al., 2000; Jaffredo et al., 1998; Pardanaud and Dieterlen-Lievre, 1999b; Pardanaud 

et al., 1989; Wood et al., 1997). 

1.2 Regulation of hematopoiesis 

The mechanisms underlying the stem cell decision to either self-renew or 

differentiate are still largely unknown. However, many of the important players have 
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been identified that specify whether a HSC differentiates down the myeloid, lymphoid 

or erythromegakaryocytic lineage. Decades of experimental work have shown that 

lineage commitment is strongly influenced by cytokines (Arai et al., 1990), 

constitutively produced or induced by the bone marrow stroma cells. Interleukin 3 (IL-3) 

stimulates proliferation of multipotent progenitors as well as various lineage-committed 

progenitors. Granulocyte-Macrophage Colony Stimulatory Factor (GM-CSF) also 

stimulates early progenitors, plus macrophages and granulocytes. On the other hand, 

IL-7, Erythropoietin (EPO), Granulocyte-Colony Stimulatory Factor (G-CSF), 

Monocyte-Colony Stimulatory Factor (M-CSF), and IL-5 predominantly stimulate their 

cognate progenitors defined as lymphoid progenitors, erythroblast, granulocytes, 

monocytes/macrophages and eosinophils, respectively. A unique feature of cytokines 

is the combination of their sometimes overlapping function and their distinct biological 

activity on specific cell types. A possible explanation lays in the structure of the 

cytokine receptors and the variety of intracellular signaling pathways they can activate. 

There are several structurally distinct families of cytokine receptors: the tyrosine kinase 

receptor family, the Tumor Necrosis Factor (TNF) receptor family, the Transforming 

Growth Factor (TGF)-  receptor family, and the chemokine receptor family. The 

binding of a cytokine to its receptor usually leads to dimerization of the receptor and 

activation of the receptor–associated kinases. The Janus tyrosine kinases (JAKs) are a 

key signaling element for cytokine function (Darnell et al., 1994). JAKs are cytoplasmic 

protein tyrosine kinases whose activation and subsequent phosphorylation create the 

proper binding sites for signaling molecules possessing a SH2 phospho-tyrosine 

binding domain. The SH2 proteins recruited to the phosphorylated receptor include 

tyrosine phosphatases, the p85 subunit of phosphatidylinositol 3 (PI3) kinase, Signal 

Transducers and Activators of Transcription (STATs), and adaptor molecules like Shc 

and Grb (Ihle and Kerr, 1995). Currently four members of the JAK family are known: 

JAK1,2,3 and TYK2, whereas seven members of the STAT family have been reported. 

Each cytokine is able to activate a specific set of JAK and STATs. For example, IL-12 

and IL-4 seem to activate specifically STAT4 and STAT6 (Kaplan et al., 1996; Takeda 

et al., 1996; Thierfelder et al., 1996). In contrast, many cytokines, including IL-3 (Azam 

et al., 1995), GM-CSF (Gouilleux et al., 1995), IL-5, IL-2, EPO (Wakao et al., 1995), 

and Thrombopoietin (TPO) (Nagata et al., 1995; Nagata and Todokoro, 1995), mainly 

activate STAT5 (Mui et al., 1995). Although a variety of growth factors play a 

fundamental role in hematopoiesis, not every single one of them is considered to be 

‘instructive’ for the chosen pathway of differentiation, but rather ‘permissive’ for cell 

viability and proliferation (Socolovsky et al., 1998; Stoffel et al., 1999). In this context it 

is important to mention the fundamental role of the interaction between blood 

progenitors and bone marrow stroma. Activation of these signaling pathways results in 

activation of a pivotal third element in the regulation of hematopoiesis: the specific 

expression of Transcription Factors (TFs). The differentiation process of progenitors is 

orchestrated by silencing genes that maintain stem cell characteristics and by 
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activating genes that define the identity of a specific lineage. A particularly instructive 

experimental system to study the influence of transcription factor expression on 

differentiation has been developed by Graf and colleagues, in which selected 

multipotent hematopoietic progenitors of chickens are transformed with a retrovirus 

expressing the myb and ets oncogenes.  In this system, the transformation event 

occurs in two types of cells: multipotent progenitors called Myb-Ets progenitors 

(MEPs), and myeloblast (McNagny, 1997). Upon overexpression of GATA-1 in this 

system, it was possible to reprogram these progenitors to differentiate into erythroid-, 

eosinophil- and thromboblast (equivalent to megakaryocytes) lineages (Kulessa et al., 

1995). Similarly, forced expression of GATA-1 in the murine myeloid 416B cell line 

converted them into a megakaryocytic phenotype (Visvader and Adams, 1993; 

Visvader et al., 1995; Visvader et al., 1992). In contrast, forced expression of the ETS-

like factor PU.1 drove MEPs towards myeloid differentiation (Nerlov et al., 1998), while 

forced expression of PU.1 together with GATA-1 and C/EBP  resulted in production of 

eosinophils only (Nerlov et al., 1998). This raises the question which combination of 

TFs is responsible for the commitment to myeloblast and which for the commitment to 

eosinophils? To answer these questions the expression pattern of different TFs has 

been analyzed. GATA-1 expression was high in MEPs, absent in myeloblast, and 

moderate in eosinophils (Kulessa et al., 1995). The ETS family member PU.1 (Spi.1) is 

expressed in myeloblast but not in MEPs and eosinophils (McNagny, 1997). Finally, 

the bZip family CAAT enhancer binding proteins C/EBP  and  are expressed in both 

myeloblast and eosinophils, but not in MEPs (Muller et al., 1995; Nerlov et al., 1998). 

Moreover the expression of PU.1 and C/EBPs in the myelomonocytic compartment of 

the MEP system confirmed their role in the regulation of myeloid-specific genes in 

normal cells.  

GATA-1 and PU.1 are dominant factors for erythroid/megakaryo-

cytic/eosinophilic and myeloid differentiation, respectively. A number of recent 

observations together with their non-overlapping expression pattern suggest that PU.1 

and GATA-1 act as antagonists, in part through direct interaction (Rekhtman et al., 

1999; Zhang et al., 1999). On the other hand PU.1 and C/EBPs synergize in the 

regulation of myeloid-specific cytokine receptor genes (Tenen et al., 1997). Besides 

the mere presence or absence of a TF, its concentration may influence lineage choice 

and differentiation. Eosinophilic differentiation requires low levels of GATA-1 whereas 

high levels are necessary for erythroid and megakaryocytic differentiation (Kulessa et 

al., 1995). High levels of PU.1 favor macrophages development, whereas low levels 

generate B cells (DeKoter and Singh, 2000) (Figure 2).  
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1.3 Hematopoiesis and Leukemia 

The mammalian hematopoietic system is characterized by a hierarchy of cell 

lineages, in which the self-renewal, the proliferative and the differentiative potentials 

are regulated by combinations of intercellular interactions and cytokines.  

 

Figure 2: PU.1 involvement in the different stages of hematopoiesis.  

PU.1 is expressed at low levels in HSCs and multipotent progenitors and is upregulated 
specifically at the beginning of the lympho-myeloid compartment differentiation. PU.1 
concentration increases during macrophage differentiation, whereas its levels remain low during 
the B-lymphocyte differentiation. PU.1 is required for monocytic precursors as well as mature 
macrophage formation, but is downregulated by GATA-1 and C/EBP  during differentiation of 

eosinophils and functionally mature neutrophils. PU.1 downregulation is instead a necessary 
step during erythrocyte and T cell differentiation. 

Adapted from: Gupta et al. (2006). Stem Cells and Development, 4; pp.609-617. 

x stampa  12-01-2007  15:22  Pagina 20



  Introduction 

  21 

HSCs are the best described stem cells and distinguish themselves from their 

downstream progeny by their higher self-renewal potential. Self-renewal of the HSCs 

pool is achieved either by symmetrical division that generates two identical daughter 

cells or by an asymmetrical division, which yields one HSC and a downstream 

progenitor with a reduced self-renewal potential but an increased capacity to 

differentiate. This secondary type of progenitor is able to cycle much faster and 

generate a clonally expanded population of cells (Warner et al., 2004). Further 

divisions of these cells is accompanied by an increase in their lineage commitment, 

which means an higher capacity to proliferate and differentiate at the cost of a loss in 

self renewal ability (Huntly and Gilliland, 2005). Understanding the tight regulation that 

guides this process is not only one of the major targets of modern cell biology but is 

also of great clinical significance given the proven close relationship between normal 

stem cells and cancer stem cells. Cancer stem cells are considered to be a small 

population of cells within the tumor with infinite proliferation potential, responsible for 

the formation and maintenance of the tumor itself (Reya et al., 2001). As HSCs are 

able to regenerate the entire hematopoietic system in a lethally irradiated mouse (Dick, 

1996), cancer stem cells possess the capacity to regenerate the same tumor in a 

permissive recipient (Huntly and Gilliland, 2005). For many types of cancer the target 

cell that gives rise to the neoplastic event is unknown, but for some leukemias there is 

ample evidence that the initiating cell is a HSC that has accumulated a certain number 

of mutations. More then 30 years ago, several studies indicated that only a small 

subset of leukemic cells was capable of extensive proliferation in vivo and in vitro (Park 

et al., 1971). Since then, more evidence has been obtained that most leukemic cells 

are unable to proliferate extensively and that only a restricted pool was truly clonogenic 

(Blair et al., 1997; Bonnet and Dick, 1997); these cells have been defined as the 

Leukemic Stem Cells (LSCs) and, like their normal counterparts, are responsible for 

the perpetuation of their downstream neoplastic population through self-renewal and 

possibly, partial differentiation, analogous to the normal HSCs (Figure 3). Using 

various AML patient samples this cellular subset has been identified as Thy1
-
, CD34

+
, 

CD38
-
, comprising not more than 1% of the entire leukemic population, which are 

solely responsible for the recreation of the same disease in NOD/SCID mice (Blair et 

al., 1997; Bonnet and Dick, 1997). Recently many investigators have demonstrated the 

similarity between the HSC and LSCs revealing that pathways, which have been 

classically associated with cancer, may also regulate normal stem cells development 

and vice versa. For example, over-expression of the BCL-2 oncogene prevents 

apoptosis thereby increasing the number of HSCs in vivo, an observation that 

underscores the role played by programmed cell death on HSC homeostasis (Domen 

et al., 2000; Domen and Weissman, 2000). Also the Wnt signaling pathways appear to 

be relevant for both oncogenic and normal hematopoiesis (Taipale and Beachy, 2001). 

Wnt proteins are signaling molecules (Nusse and Varmus, 1982) that take part in the 

regulation of developmental processes in many different organisms (Cadigan and 
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Nusse, 1997). Wnt signaling is altered in many cancer types and its presence in the 

bone marrow (Reya et al., 2000) suggests a possible role in HSC homeostasis. To 

support this hypothesis, surrogate activation of Wnt signaling by overexpression of 

activated -catenin drives the expansion of transplantable HSCs (Thy1.1
lo
/Lin

-/lo
/ 

Sca1
+
/c-Kit

+
) in long-term culture. Its inhibition instead leads to a reduction of HSCs 

proliferation, increased cell death in vitro and reduced reconstitution potential in vivo 

(Reya et al., 2003). Overexpression of some Hox genes, such as HoxB4 and HoxA9 

(Antonchuk et al., 2002; Thorsteinsdottir et al., 2002) or activation of the Notch 

signaling pathway (Karanu et al., 2000; Varnum-Finney et al., 2000), all result in the 

 

Figure 3: Progenitors cells as target of transformation. 

Comparison of the self-renewal processes occurring during physiological hematopoiesis and 
during leukemic transformation. Due to their high level of self-renewal capacity, the stem cells 
are optimal targets for the leukemic transformation.  

Differently from the normal hematopoiesis (top lane), in the case of stem cell transformation, the 
signaling pathways regulating the self-renewal processes, otherwise tightly regulated, appear to 
be uncontrolled (middle lane). Moreover, if the transformation event occurs at the level of one of 
the progenitors, this leads to the generation of a progenitor cell empowered of self-renewal 
capacity (bottom lane). 

Adapted from: Reya et al. (2001). Nature, 414; pp.105-111. 
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selective expansion of the HSCs pool in vitro and in vivo. Therefore, these pathways 

are also involved in HSC homeostasis, and their deregulation is involved in 

oncogenesis. Despite the supportive evidence, the postulation that LSCs are HSCs 

remains controversial, because it cannot be excluded that LSCs are a more restricted 

progenitor or even a terminally differentiated mature cell that, as a result of 

accumulated mutations, reacquired the stem cell capability of self-renewal. 

1.4 Chromosomal Translocation in leukemia 

In leukemogenesis normal regulation that leads to the lymphoid or myeloid cell 

development is often altered by genetic lesions. This can cause a differentiation arrest, 

a deregulation of proliferation, an aberrant survival potential that drives the clonal 

expansion of the affected cells, or a combination of these effects. Early on, cytogenetic 

analysis revealed that blast cells in patients with leukemia or lymphoma harbored 

clonal chromosomal abnormalities (Look, 1997; Rabbitts, 1994). These karyotypic 

alterations mostly involve chromosomal translocations or inversions, which alter 

expression of the genes located at the chromosomal breakpoints, and, together with 

point mutations and gene deletions, occur in 65% of human leukemias (Look, 1997; 

Pui et al., 1990; Raimondi, 1993; Raimondi, 1999; Rowley, 1990; Solomon et al., 

1991). These aberrations are generally restricted to cells of a specific lineage that 

become arrested in their development, which suggests that the affected gene(s) is 

involved in the regulation of specific hematopoietic progenitors. Chromosomal 

translocations are caused by a double-strand DNA breaks and subsequent non-

homologous end-joining recombination combined with a lack of fidelity in DNA-repair 

mechanisms (Greaves and Wiemels, 2003) within a specific genomic region. The latter 

are known as Break-point Cluster Regions (BCRs) and can measure from a few base 

pairs (Wiemels, 2003) to hundreds of kilobases (Reichel et al., 1998; Wiemels and 

Greaves, 1999; Xiao et al., 2001). Breakpoints occur scattered throughout the BCRs 

suggesting two possibilities: either these regions are particularly vulnerable to breaks 

or breaks occur randomly throughout the gene and only the ones that confer a clonal 

growth advantage lead to disease (Greaves and Wiemels, 2003). In leukemias, as well 

as in other types of cancer, stem cells are the suspected target for this kind of genetic 

alterations (Greaves, 2000; McCulloch, 1983; Reya et al., 2001). This is not because 

these cells are more prone to DNA damage when compared to differentiated cell types; 

on the contrary, the limited cycling of stem cells would protect them from DNA damage 

to their genome. Rather, it is the stem cells’ long lifespan, together with their unique 

self-renewal capacity, that allows them to acquire the secondary genetic alterations 

necessary for uncontrolled clonal expansion. It is a well-known fact that expression of 

the product of a single chromosome translocation in transgenic mice is in most cases 

insufficient to cause leukemic growth (Hanahan and Weinberg, 2000; Higuchi et al., 

2002; Yuan et al., 2001). Many examples support this hypothesis such as the fact that 
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the BCR-ABL fusion gene alone is able to initiate a benign or a chronic 

myeloproliferative clonal expansion in both patients and mice (Daley et al., 1990; Era 

and Witte, 2000), but the progression of CML to an acute phase leukemia (blast crisis) 

with differentiation arrest is due to additional mutations (Deininger et al., 2000). 

Moreover, the BCR-ABL fusion mRNA can be detected in the blood of many normal 

adults (Bose et al., 1998), but most of the same individuals are negative for the fusion 

gene in a second test. The possibility that the fusion gene had been generated in a cell 

with limited proliferative capacity would explain why the presence of the fusion gene is 

transient and why this event does not result in leukemia. Also AML1-ETO and TEL-

AML1 fusion proteins represent a leukemic event but they are never present as a 

single hit. A well-documented second hit in TEL-AML1 cases is the deletion of the 

normal TEL allele (Raynaud et al., 1996), which may provide a selective growth 

advantage compared to cells that retain TEL (Lopez et al., 1999; Rompaey et al., 

2000). 

Chromosome translocations are somatic lesions that can directly activate proto-

oncogenes, either by inappropriate expression, as happens in T- or B-lymphoid 

malignancies in which the proto-oncogene comes under the control of the highly 

expressed B- or T-cell receptor genes, or by fusion to another gene giving rise to 

expression of a leukemia-specific chimeric oncoprotein (Look, 1997; Rabbitts, 1991; 

Rabbitts, 1994). One example of an overexpressed oncogene is MYC, often 

 

Figure 4: Distribution of translocation-generated fusion genes among the different type 
of leukemias. 

The charts illustrate the distribution of translocation-generated fusion genes commonly found 
in the different immunological subtype of ALL (left) and AML (right). The “Random” label 
indicates sporadic rearrangements observed only in leukemic cells from single cases. The 
“None” label refers to leukemias that lack identifiable gene abnormalities. 

Adapted from T. Look (1997). Science, 278; pp.1059-1064 
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translocated into the Immunoglobulin Heavy chain (IgH) in B-lymphoid malignancies or 

into the T-Cell Receptor (TCR) gene loci in T-lymphoid malignancies, both resulting in 

deregulated MYC expression (Rabbitts, 1994). 

However, in the majority of the cases, chromosomal translocations result in the 

expression of fusion genes involving Transcription Factors (TFs) genes critical for the 

regulation of hematopoiesis (Shivdasani and Orkin, 1996). Alteration of transcription is 

a commonly observed mechanism to block normal differentiation (Pandolfi, 2001; 

Tenen, 2003).   

In Acute Lymphoid Leukemias (ALLs) the type of gene alteration seems to 

correlate with a specific differentiation state of the leukemic cells, reflecting the 

immunologic subtype of the disease (Figure 4). The list of the genes that are found 

translocated into the TCR locus in many T-cell leukemias include those encoding the 

orphan homeobox protein HOX11, the cysteine-rich LIM domain-containing LMO1 and 

LMO2 proteins, the basic Helix-Loop-Helix (bHLH) proteins LYL1, TAL1, TAL2, and 

MYC. Moreover, as previously mentioned, the MYC gene is also found translocated 

into the proximity of one of the Immunoglobulin (Ig) loci in B-cell leukemia and Burkitt’s 

lymphoma. BCL-2 is another oncogene identified because of its translocation into the 

IGH locus by the t(14;18) in human B cell follicular cell lymphoma (Bakhshi et al., 1985; 

Cleary and Sklar, 1985; Cleary et al., 1986; Tsujimoto et al., 1985). 

Instead, in pre- and pro-B ALL many chromosomal translocations involve the 

fusion of two different TFs, such as E2A and PBX1 in pre-B lymphoblastic leukemia 

and E2A, HLF, MLL, TEL and AML1 in pro-B cells. MLL, TEL and AML1 are found 

translocated with more than 15 alternative partner genes and, in the case of TEL and 

AML1, even with each other (Lengauer, 2001; Romana et al., 1995a; Romana et al., 

1995b). These translocations are often able to modify the normal expression pattern of 

HOX genes (Buske and Humphries, 2000; Ferrando and Look, 2003). TEL-AML1, 

resulting from the t(12;21), is one of the most common fusion genes, found in 20% of 

ALL patients (Shurtleff et al., 1995). In this translocation the 5’ portion of TEL is fused 

to almost the entire coding region of AML1, encoding the  subunit of the Core Binding 

Factor (CBF) (Loh and Rubnitz, 2002). The resulting chimeric transcription factor 

maintains the protein-protein interaction domain of TEL and the DNA-binding domain 

of AML1. A consequence of this fusion is the inhibition of the transcriptional activity 

normally initiated when AML1 binds to its cognate DNA binding site within the core 

enhancer sequence of its target genes (Hiebert et al., 1996) (Figure 5). AML1 recruits 

other TFs and co-activators, including histone acetylases, generating a complex that 

drives the transcription of target genes. On the contrary, when TEL-AML1 binds to the 

same AML1 binding sites it recruits histone deacetylases, which induce compaction of 

the chromatin, causing transcriptional inhibition (Pui et al., 2004). As mentioned above, 

many products of chromosomal translocations are able to interfere with the normal 

expression of HOX genes (Buske and Humphries, 2000; Ferrando and Look, 2003). A 
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second player in the regulation of HOX gene expression is the Mixed-Lineage 

Leukemia protein (MLL) (Ayton and Cleary, 2001; Ernst et al., 2002). In this case the 

N-terminal portion of MLL, also known as the SET domain (Rozovskaia et al., 2000), 

can be fused with the C-terminal portion of more than 40 partner genes, and this type 

of alterations occur in more than 80% of infants with ALL (Pui et al., 2004).  

AML1-ETO (Peterson and Zhang, 2004), resulting from the t(8;21), and CBF -

 

Figure 5: Transcriptional repression mechanism of TEL-AML1.  

Panel A shows the structure of AML1, consisting of a central runt homology domain (RHD), 
responsible for DNA binding and hetero-dimerization with CBF , a transcription activation 

domain (TA) and the C-terminal amino acid sequence (VWRPY) which mediates the binding to 
the Groucho co-repressor. 

AML1, together with CBF , recruits a transcriptional activation complex that includes histone 

acetyl transferase (HAT) that through lysine residues acetylation, opens the chromatin structure 
leading to the transcriptional activation (purple arrow). 

Panel B shows the structure of the TEL-AML1 fusion protein, in which the TEL HLH domain is 
fused to the almost complete AML1 protein. Although it still maintains the ability to hetero-
dimerize with CBF , TEL-AML1, instead of recruiting a transcriptional activation complex, 
recruits a transcriptional co-repressor complex that includes histone deacetylases (HDAC). In 
this case the removal of acetyl groups from histones results in the compacting of the chromatin 
and transcriptional repression. 

Adapted from: Pui et al. (2004). N Engl J Med, 350; pp.1535-1548. 
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MYH11, resulting from the inversion on chromosome 16 (inv16) or t(16;16), account for 

25% of all cases of human Acute Myeloid Leukemia (AML) (Langabeer et al., 1997a; 

Langabeer et al., 1997b) (Figure 4). Both events affect the function of CBF. This is a 

transcription factor composed of two subunits: AML1 (also known as RUNX1 or 

CBF ), discussed in the previous paragraph and also targeted by t(3;21) and t(16;21), 

and CBF  (Liu et al., 1993). Normal function of both genes is critical for the 

hematopoietic development and lack of either one causes embryonic lethality due to a 

failure to switch to definitive hematopoiesis (Okuda et al., 1996; Wang et al., 1996a; 

Wang et al., 1996b). The expression of AML1-ETO increases the percentage of self-

renewing stem cells without pathogenic consequences (Guzman et al., 2002; Mulloy et 

al., 2002). As mentioned before, a second mutation is necessary to provide the 

molecular context in which AML1-ETO causes leukemia. One possible event is the 

upregulation of HoxA9, commonly observed in AML (Golub et al., 1999; Lawrence et 

al., 1999). The other common chromosomal rearrangement, inv16, associated with 8-

10% of the AML cases is specifically present in the FAB subtype M4E0 (Speck and 

Gilliland, 2002). In this case the CBF  gene is fused to MYH11 gene, which encodes 

for a Smooth Muscle Myosin Heavy Chain (SMMHC) (Liu et al., 1993), generating a 

CBF -SMMHC fusion protein. Similarly to AML1-ETO, CBF -SMMHC is a dominant-

negative inhibitor of CBF transcriptional activity (Liu et al., 1996; Lutterbach et al., 

1999) and is unable to cause AML alone. In chapter 5 of this thesis we show that 

upregulation of the MN1 gene is an important secondary mutation in the development 

of inv(16) AML. In addition to the dominant negative mutations, loss of function 

mutations in AML1 have also been found in 20% of cases of the most immature 

subtype (M0) of AML (Osato et al., 1999; Preudhomme et al., 2000). 

Translocations involving the RAR  gene are invariably associated with Acute 

Promyelocytic Leukemia (APL). The t(15;17) generates the PML/RAR  fusion protein 

and, in a significant portion of patients, also the reciprocal RAR / PML protein (Alcalay 

et al., 2001). Almost the entire RAR  protein is fused to almost the entire PML protein. 

PML is part of the “nuclear body”, complex of macromolecular structures within the 

nucleus (Dyck et al., 1994; Koken et al., 1994; Weis et al., 1994; Zhong et al., 2000b). 

Expression of PML/ RAR  causes not only delocalization of normal PML protein, but 

also of other nuclear body components (Zhong et al., 2000a). PML/ RAR , like RAR , 

is able to bind retinoic acid responsive elements (RAREs) (Lin and Evans, 2000), 

Retinoic Acid (RA), and RXR  (He et al., 1999; Melnick and Licht, 1999). Like RAR , 

PML/RAR  binds co-repressor molecules and, in absence of RA, represses 

transcription of RA-responsive genes. However, unlike RAR , physiological 

concentrations of RA are not sufficient to release the recruited co-repressors from 

PML/ RAR , and the repression state of the RA-responsive genes is maintained. 

Fortunately, pharmacologic concentrations of RA, achieved with the administration of 

all-trans-retinoic acid (ATRA), can reverse this repressive state (Grignani et al., 1998; 

He et al., 1998; Lin et al., 1998) and restores the normal nuclear localization of PML 
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(Dyck et al., 1994; Faretta et al., 2001; Koken et al., 1994; Weis et al., 1994). This 

explains why APL is uniquely sensitive to ATRA treatment (Soignet et al., 1997; 

Warrell, 1996). 

Phosphorylation of tyrosine residues is a well-known mechanism conserved 

throughout evolution to transmit activating signals from the cell surface or specific 

intracellular structures to proteins in the cytoplasm and cell nucleus. Receptor tyrosine 

kinases (RTKs) mediate the cellular response of different extracellular signals involved 

in the regulation of cell proliferation, migration, differentiation and survival. The first 

tyrosine kinase oncogene, BCR-ABL, associated with human hematological disease 

was discovered more then 20 years ago as result of the t(9;22), also known as the 

Philadelphia (Ph) chromosome. Since then, ample evidence accumulated that shows 

involvement of multiple activated tyrosine kinases in different kinds of leukemias. In 

every case the constitutive tyrosine kinase activity causes enhanced proliferation and 

prolonged viability, but rarely blocks differentiation (Scheijen and Griffin, 2002). 

In the case of BCR-ABL the chimeric protein is generated by the fusion of a 

variable portion of N-terminal BCR protein to the ABL tyrosine kinase domain 

(Shtivelman et al., 1985), resulting in a p185, a p210 or a p230. In Chronic Myeloid 

Leukemia (CML) the predominant form is p210
BCR-ABL

, while in Ph
+
 ALL it is      

p185
BCR-ABL

. The p230
BCR-ABL

 has been associated with chronic neutrophilic leukemias 

(Scheijen and Griffin, 2002). ABL can also be fused to the N-terminal portion of TEL, 

resulting in a TEL-ABL protein (Andreasson et al., 1997; Golub et al., 1996; 

Papadopoulos et al., 1995). All ABL fusion proteins show an elevated tyrosine-kinase 

activity compared to normal c-ABL, but of the three, p185
BCR-ABL

 is the most potent 

(Scheijen and Griffin, 2002). The transforming properties of BCR-ABL proteins are 

evident in hematopoietic cells, and require the presence of a functional protein kinase 

domain. Activation of RAS, RAF, PI3K, and JNK/SAPK signaling pathways (Dickens et 

al., 1997; Sawyers et al., 1995; Skorski et al., 1997; Skorski et al., 1995a; Skorski et 

al., 1995b), as well as transcriptional activation of NF- B, c-JUN and c-MYC are 

required for BCR-ABL-induced transformation (Raitano et al., 1995; Reuther et al., 

1998; Sawyers et al., 1992). There is a wealth of evidence that cooperation between 

multiple signaling pathways, including RAS and PI3K, is required for the full oncogenic 

activity of BCR-ABL (Sonoyama et al., 2002).  Moreover, STAT5 is found constitutively 

activated by tyrosine phosphorylation in BCR-ABL-transformed cells (Carlesso et al., 

1996; Ilaria and Van Etten, 1996). BCR-ABL inhibits apoptosis in cells exposed to DNA 

damage, cytokine deprivation and FAS activation, blocking the mitochondrial release of 

cytocrome c and procaspase-3 (Amarante-Mendes et al., 1998b; Dubrez et al., 1998). 

This is accomplished via BAD phosphorylation (Neshat et al., 2000), and induction of 

increased levels of BCL2 and BCL-xL (Amarante-Mendes et al., 1998a)  (Sanchez-

Garcia and Grutz, 1995). Furthermore BCR-ABL-mediated down-regulation of p27Kip1 

may contribute to enhancing the survival signaling in hematopoietic cells (Gesbert et 
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al., 2000; Jonuleit et al., 2000; Parada et al., 2001). The understanding of the 

mechanisms underlying the BCR-ABL activity were fundamental for the development 

of an ABL-specific tyrosine kinase inhibitor, STI-571 (Druker et al., 2001), the poster 

child of target-specific therapeutic interference which is currently used to treat patients 

with Ph
+
 leukemia. 

1.5 ETS transcription factors in Leukemia 

The E26-transformation specific (ETS) family of eukaryotic TFs, which is 

currently composed of more then 30 members, was discovered more than two 

decades ago. These genes are unique to the Metazoan Lineage, and are present in 

organisms as different as sponges and humans (Degnan et al., 1993; Laudet et al., 

1993). Ets-1 was the first member of this family (Leprince et al., 1983; Nunn et al., 

1983), identified as part of the gag-myb-ets oncogene, encoded by the transforming 

retrovirus E26. This virus induces both erythoblastic and myeloblastic leukemia in 

chickens (Karim et al., 1990; Leprince et al., 1983). 

Some of the ETS members are ubiquitously expressed while others show a 

restricted tissue distribution (Graves and Petersen, 1998; Oikawa and Yamada, 2003). 

The better-characterized members are: ETS-1, ETS-2, PU.1 (SPI-1), SPI-B, FLI-1 

(ERGB), ELF-1, ERG, EIL, and TEL. 

The unifying feature of this family of TFs is the presence of the ETS DNA-

binding domain, a Winged Helix-Turn-Helix motif (Graves and Petersen, 1998; Liang et 

al., 1994a; Liang et al., 1994b). This domain binds to the unique sequence GGAA/T 

named ETS Binding Site (EBS), which is present in the promoter/enhancer regions of 

more than 200 ETS target genes necessary for the proper regulation of fundamental 

cellular processes. A second highly conserved domain found in the N-terminal regions 

of a significant fraction of ETS proteins is the “Pointed” (PNT) domain, a Helix-Loop-

Helix (HLH) structure important for protein-protein interactions (Kim et al., 2001). In 

TEL the PNT domain also functions as a self-association domain (Carroll et al., 1996; 

Golub et al., 1996; McLean et al., 1996). Many of the ETS genes are preferentially 

expressed in the hematopoietic system where they regulate both expansion and 

differentiation of hematopoietic progenitors. ETS-1, FLI-1 and ERG are initially 

expressed in the blood island where hemangioblasts are present (Maroulakou and 

Bowe, 2000). TEL is essential for angiogenesis in the yolk sack of the mouse as well 

as hematopoiesis in the adult animal (Wang et al., 1997; Wang et al., 1998). 

Expression of PU.1 is observed in CD34
+
 hematopoietic progenitors, where its levels 

appear to steer differentiation toward myeloid or lymphoid lineages. High PU.1 levels 

promote macrophage differentiation and relatively low levels induce B-cell 

differentiation (DeKoter and Singh, 2000). PU.1
-/-

 hematopoietic progenitors failed to 

express IL-7R  because PU.1 directly regulates the IL7R-  promoter (DeKoter et al., 
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2002). The absence of PU.1 causes defects in the lymphoid compartment, especially 

in B-cells, but the knockout mice also fail to develop mature macrophages and 

neutrophils (McKercher et al., 1996; Scott et al., 1994).  

Several ETS proteins have been implicated in malignant and genetic disorders. 

For example, FLI-1, TEL and ERG, are located at chromosome translocation 

breakpoints in different leukemias and solid tumors (Dittmer and Nordheim, 1998; 

Mavrothalassitis and Ghysdael, 2000; Truong and Ben-David, 2000). PU.1 (Moreau-

Gachelin, 1994) and Fli-1 (Ben-David et al., 1991) are found activated by the Friend 

retrovirus in mouse erythroleukemia, whereas transduction of PU.1 retrovirus into 

hematopoietic progenitors induces the proliferation of immortalized proerythroblast-like 

cells that nonetheless remain dependent on EPO for survival (Schuetze et al., 1993). 

Furthermore, PU.1 transgenic mice develop erythroleukemia soon after birth (Moreau-

Gachelin et al., 1996), while mutations in PU.1 have recently been reported in 

approximately 7% of AML patients, suggesting that disruption of this gene could 

contribute to the differentiation arrest found in these patients (Mueller et al., 2002). 

Another example of an ETS family gene involved in leukemia is TEL/ETV6 gene. This 

gene is a frequent target of chromosome translocations producing fusions with 3 types 

of partners: 

1. protein tyrosine kinases (PTKs) 

2. TFs 

3. other genes, whereby the resulting fusion protein is not active 

(Figure 6). 

The first PTK fusion partner discovered was the Platelet-derived Growth Factor 

Receptor beta (PDGFR ) (Golub et al., 1994). TEL-PDGFR  is a critical player in 

Chronic Myelo-Monocytic Leukemia (CMML) and exhibits transformation activity when 

expressed in cell lines. The N-terminal portion of TEL, including the PNT domain in 

fused to the C-terminal portion of PDGFR  containing the kinase domain. This general 

structure typifies the TEL-PTK fusions in which the tyrosine kinase domain can be 

derived from ABL1, ABL2, JAK2, NTRK3, FGFR3, and SYK. The PNT domain of TEL 

provides a dimerization interphase, which constitutively activates the associated PTK 

(Bohlander, 2005).  

TEL-PTKs are present in a wide range of hematological and non- hematological 

malignancies.  

When expressed in murine bone marrow, TEL-JAK2 leads to fatal myeloid and 

lymphoproliferative disease (Schwaller et al., 1998), TEL-ABL1 to myeloproliferative 

syndrome with a long latency period (Million et al., 2002), and TEL-PDGFR  to a rapid 

fatal myeloproliferative syndrome (Tomasson et al., 2000). 
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Among the TF fusion partners of TEL, RUNX1 (AML1), was one of the earlier 

identified, and occurs in childhood acute B-cell lymphoblastic leukemia (Knezevich et 

al., 1998a). The t(12;21) is present in 25% of the childhood B-ALLs (Shurtleff et al., 

1995) and, in some cases, has been shown to originate in utero (Ford et al., 1998). 

While the TEL-RUNX1 fusions are common in childhood ALL, all the other TEL fusions 

with TFs are much rarer. The t(12;22) translocation fuses TEL to MN1, in some AML 

(M1, M4,  and M7) or in some myelodysplastic syndrome patients (Buijs et al., 1995). 

Two variants of the MN1-TEL fusion have been reported. The Type I fusion occurs 

within TEL intron 2 and incorporates an intact but inactive PNT domain as well as the 

ETS domain into the chimeric protein, whereas the Type II fusion occurs within TEL 

intron 3 disrupting part of the TEL PNT domain (Buijs et al., 1995; Golub, 1997). Initial 

experiments showed that MN1-TEL has weak transforming activity in NIH3T3 murine 

 

Figure 6: Representation of the fusion gene network of TEL/ETV6. 

The darker line connects fusion genes associated to leukemia. The red arrow indicates 
transcriptional regulation. The question mark indicates that the upregulation or the relevance 
thereof has not been proved. 

Adapted from: Bohlander S. (2005). Sem Cancer Biol, 15; pp.162-174. 
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fibroblasts (Buijs et al., 2000). In chapter 4 of this thesis we show that MN1-TEL 

functions as an effective oncogene in the mouse hematopoietic system. 

1.6 Major players in this thesis 

1.6.1 TEL2/ETV7 

TEL2 is another member of the ETS family of transcription factors, closely 

related to TEL. Like TEL, TEL2 contains an N-terminal PNT domain that shows 62% 

homology with the PNT domain of TEL, while the C-terminal ETS domain shows 85% 

homology with that of TEL (Potter et al., 2000).  Both proteins act as transcriptional 

repressors, and TEL2 inhibits expression of RAR  and BMP-6 upon transfection into 

the osteosarcoma cell line MG-63 (Gu et al., 2001). Unlike TEL, that is expressed 

ubiquitously, TEL2 shows a more restricted expression pattern; it is predominantly 

present in human bone marrow and spleen, which suggests a possible role in the 

hematopoietic system (Gu et al., 2001; Potter et al., 2000). Moreover, TEL2 is 

expressed in a variety of human tumors, including leukemias (Cardone et al., 2005; Gu 

et al., 2001; Poirel et al., 2000). In transiently transfected Hela cells TEL2 localizes to 

the nucleus, excluding the nucleoli and can bind the same Consensus DNA-Binding 

Sequence (CDBS) as TEL. Via the PNT domain TEL2 can self-associate or form 

heterodimers with TEL (Potter et al., 2000). Although highly homologous to TEL, the 13 

amino acid substitutions in the 80 amino acid-long ETS domain of TEL2 might enable it 

to bind to a unique set of target genes. This possibility is supported by the observation 

that TEL2 overexpression in the human myeloid leukemia cell line U937, blocks its 

monocytic differentiation, while similar overexpression of TEL fails to recapitulate this 

phenotype (Kawagoe et al., 2004). This effect of TEL2 depends on the presence of 

both an intact PNT and ETS domain (Kawagoe et al., 2004). Forced expression of 

TEL2 in E -Myc transgenic mice accelerates Myc-induced B-cell lymphomagenesis in 

these mice (Cardone et al., 2005).  

1.6.2 MN1-TEL 

A consistent group of human leukemia is associated with tumor-specific fusion 

proteins involving TEL, an ETS TF containing a PNT domain in its N-terminal portion 

(Golub et al., 1994; Sharrocks et al., 1997) that mediates homo/oligomerization 

(Jousset et al., 1997), association with FLI1 (Kwiatkowski et al., 1998) and TEL2 

(Potter et al., 2000) and recruits the transcriptional co-repressor N-Cor (Lopez et al., 

1999). TEL also recruits the Sin3a and SMRT co-repressors (Chakrabarti and 

Nucifora, 1999; Fenrick et al., 1999) enabling TEL to exert its function as 

transcriptional repressor. At its C-terminal portion TEL contains the EBS (Buijs et al., 

1995; Szymczyna and Arrowsmith, 2000). As mentioned earlier, TEL translocations 
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most commonly generate chimeric proteins containing the PNT domain fused to 

phosphotyrosine kinase domains, such as that of the PDGF-  receptor (Golub et al., 

1994), ABL (Golub et al., 1996; Papadopoulos et al., 1995), JAK2 (Lacronique et al., 

1997; Peeters et al., 1997), ARG (Cazzaniga et al., 1999) and NTRK3 (Knezevich et 

al., 1998a; Knezevich et al., 1998b). In these fusions the TEL PNT domain mediates 

the activation of its partner’s phosphotyrosine kinase domains, responsible of the 

transforming activity (Carron et al., 2000; Golub et al., 1994; Liu et al., 2000; Sjoblom 

et al., 1999; Tomasson et al., 1999). The TEL PNT domain is also found fused with 

several TFs such as AML1 (Romana et al., 1995a), MDS1 (EVI1) (Nucifora, 1997) and 

CDX2 (Chase et al., 1999). Among these TEL fusions that retain the ETS DNA-binding 

moiety are rare (Beverloo et al., 2001; Buijs et al., 2000; Cazzaniga et al., 2001). The 

first of such TEL fusions to be identified was the one with MN1, mediated by 

t(12;22)(p13;q11) associated with myeloid malignancies in humans (Buijs et al., 1995). 

This translocation leads to expression of an MN1-TEL fusion oncoprotein. Like AML1-

ETO and other myeloid oncogenes, MN1-TEL has been detected only in myeloid 

leukemia but it is still unclear whether MN1-TEL alone is responsible for the myeloid 

phenotype. One reason for this could be that in patients MN1-TEL expression is 

confined to only GMPs thereby forcing myeloid expansion, a possibility supported by 

the results presented in chapter 5, which show specific expression of MN1 in the GMP. 

Recent work by Kawagoe and Grosveld has shown that expression of MN1-TEL in 

murine MPPs, under the control of the AML1 regulating region, alters both myeloid and 

lymphoid development and causes T-lymphoid tumors (Kawagoe and Grosveld, 

2005b). MN1-TEL expression increases the repopulation ability of myeloid progenitors 

in vitro and also partially inhibits their differentiation in vivo. Moreover, in these mice 

the proliferation of thymocytes is promoted while their differentiation is arrested at the 

early stage of CD4
-
/CD8

-
. This condition leads to the onset of T-lymphoid tumors in 

30% of the mice (Kawagoe and Grosveld, 2005b). However, in the same animal 

model, the combined expression of MN1-TEL with HOXA9 causes AML in 90% of the 

mice while only 10% develop T-lymphoid leukemia (Kawagoe and Grosveld, 2005a). 

These combined data suggest that MN1-TEL has the potential to increase the 

proliferation of both myeloid and lymphoid progenitors but the lack of MN1 expression 

in the CLP is the most likely reason that MN1-TEL is strictly associated with myeloid 

disease.  

In this thesis we demonstrate that murine early progenitors, transduced with 

MN1-TEL, show an increased self-renewal capacity in vitro, and are able to originate 

immortalized myeloid cell lines that maintain a primitive morphology and still depend on 

IL3/SCF for growth and survival (Carella et al., 2006). The primitive nature of these cell 

lines, as well as their preserved ability to differentiate, was confirmed, in vivo, by their 

capability to repopulate the entire hematopoietic system of lethally irradiated mice. 

Three months post-transplantation all recipients died of promonocytic leukemia. Also 

freshly MN1-TEL-transduced progenitors reconstitute the hematopoietic system of 
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lethally irradiated mice and cause AML three months after transplantation (Carella et 

al., 2006).  

1.6.3 MN1 

MN1 is a gene localized on chromosome 22 and was discovered as the target of 

a reciprocal t(4;22) in a meningioma patient. The gene measures 70 Kb and comprises 

2 large exons of 4.7 and 2.8 Kb, respectively, encoding a protein of 1319 amino acids 

(aa) (Lekanne Deprez et al., 1995). As result of the t(4;22) the 5’-exon was disrupted 

and the gene inactivated. No MN1 expression was observed in this patient, despite the 

fact that the other allele was intact. MN1 is an evolutionary conserved gene and is 

expressed ubiquitously at low levels (Lekanne Deprez et al., 1995). The MN1 gene 

was also found fused to TEL as a result of the t(12;22) present in a subset of AML and 

myelodysplastic syndrome patients (Buijs et al., 1995). More recently, MN1 has been 

identified as a transcriptional co-activator that enhances the transcription activity of the 

Moloney sarcoma virus LTR (Buijs et al., 2000; van Wely et al., 2003). MN1’s co-

activation activity is not restricted to the RAR-RXR nuclear receptor, given that MN1 

expression inhibits proliferation of an osteoblast cell line via co-activation of the vitamin 

D receptor (Sutton et al., 2005).  

In chapter 4 of this thesis we show that MN1-TEL is a bona fide myeloid 

oncogene when expressed under the control of a retroviral vector in mouse bone 

marrow. Mapping of sequences essential for the transforming activity of MN1-TEL 

showed that deletion of the N-terminal 500 amino acids of MN1 but not inactivation of 

the ETS DNA binding domain abrogated transformation. This was in stark contrast with 

previous observations in NIH3T3 fibroblasts showing that a functional ETS domain was 

essential for the transformation by MN1-TEL. A possible explanation for this difference 

came from the observation that also retrovirally expressed MN1 was capable of 

transforming mouse myeloid cells. These observations in combination with reports that 

MN1 was consistently overexpressed in samples of inv(16) AML patients (Ross et al., 

2004) prompted us to test whether MN1 overexpression cooperated with CBF -MYH11 

in a mouse model for inv(16) AML. Our results support the notion that MN1 

overexpression is an obligatory secondary event in this leukemia subtype. 
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NEOPLASIA

The ETS factor TEL2 is a hematopoietic oncoprotein
Cintia Carella, Mark Potter, Jacqueline Bonten, Jerold E. Rehg, Geoffrey Neale, and Gerard C. Grosveld

TEL2/ETV7 is highly homologous to the
ETS transcription factor TEL/ETV6, a fre-
quent target of chromosome transloca-
tion in human leukemia. Although both
proteins are transcriptional inhibitors
binding similar DNA recognition se-
quences, they have opposite biologic ef-
fects: TEL inhibits proliferation while TEL2
promotes it. In addition, forced expres-
sion of TEL2 but not TEL blocks vitamin
D3–induced differentiation of U937 and
HL60 myeloid cells. TEL2 is expressed in
the hematopoietic system, and its expres-
sion is up-regulated in bone marrow

samples of some patients with leukemia,
suggesting a role in oncogenesis. Re-
cently we also showed that TEL2 cooper-
ates with Myc in B lymphomagenesis in
mice. Here we show that forced expres-
sion of TEL2 alone in mouse bone mar-
row causes a myeloproliferative disease
with a long latency period but with high
penetrance. This suggested that second-
ary mutations are necessary for disease
development. Treating mice receiving
transplants with TEL2-expressing bone
marrow with the chemical carcinogen N-
ethyl-N-nitrosourea (ENU) resulted in sig-

nificantly accelerated disease onset. Al-
though the mice developed a GFP-positive
myeloid disease with 30% of the mice
showing elevated white blood counts,
they all died of T-cell lymphoma, which
was GFP negative. Together our data iden-
tify TEL2 as a bona fide oncogene, but
leukemic transformation is dependent on
secondary mutations. (Blood. 2006;107:
1124-1132)

© 2006 by The American Society of Hematology

Introduction

The ETS (E26 transformation specific) proteins belong to a large
family of eukaryotic transcription factors (TFs) unique to the
metazoan lineage and highly conserved throughout evolution.1,2

Some ETS proteins are expressed ubiquitously while others show a
restricted tissue distribution.3,4 All ETS proteins possess a highly
conserved 85–amino acid (aa) ETS domain that binds a purine-rich
GGAA/T core motif present in promoters and enhancers of
different target genes.4,5 A subgroup of ETS TFs, including the TEL
proteins, also contains a conserved pointed (PNT) protein-protein
interaction domain, which mediates the formation of homodimers/
oligomers6,7 and heterodimers/oligomers.8,9 In TEL this domain is
involved in transcriptional repression.10

Vertebrate ETS TFs are implicated in many aspects of normal
development and differentiation, including that of the hematopoi-
etic system.11 For example, Ets-1, Fli-1, and Erg are expressed
early during mouse development in the blood islands of the yolk
sac where hemangioblasts are present.12 A high level of Pu-1
expression in CD34! hematopoietic progenitors directs their
differentiation toward the macrophage lineage, while low Pu-1
expression induces B-cell differentiation.13 The expression of
IL-7R", a receptor essential for pro-B-cell development, is directly
regulated by Pu-1 in lymphoid progenitors.3,14 The ubiquitously
expressed TEL/ETV6 is essential for normal embryonic yolk sac
angiogenesis and is important for the maintenance of the adult bone
marrow microenvironment.15

Several ETS genes, including ETS1, ETS2, PU1, FLI1, TEL/
ETV6, and ERG, possess oncogenic properties.4 Human TEL/ETV6
is a frequent target of chromosome translocations16 both in
hematopoietic malignancies as well as in some solid tumors.17

TEL/ETV6 translocations mostly encode oncogenic fusion pro-
teins16,18-21 with some exceptions.22-24 In addition, TEL might also
have tumor suppressor activity because the gene is often deleted
during later stages of t(12;21) childhood pre–B-cell acute lympho-
blastic leukemia (pre–B-ALL).25 This hypothesis is supported by
the observation that TEL expression inhibits Ras-induced transfor-
mation of NIH3T3 fibroblasts.26,27

Recently, a novel ETS gene highly related to TEL1 was isolated
and coined TEL2.9,19,28 TEL2 is expressed predominantly in human
hematopoietic tissues,9 contains a PNT domain and an ETS DNA
binding domain, and localizes to the nucleus. TEL2 self-associates
via its PNT domain but can also form heterodimers/oligomers with
TEL1, suggesting that these proteins might affect each other’s
function in vivo.9,29 Although both proteins function as transcrip-
tional repressors in transient transfection assays,19,29 their biologic
effects appear distinct. For example, TEL1 inhibits colony forma-
tion of Ras-transformed NIH3T3 fibroblasts, while TEL2 slightly
stimulates colony formation.29 During vitamin D3–induced differ-
entiation of the promonocytic cell line U937, TEL2 but not TEL1
expression is down-regulated, and forced expression of TEL2
blocks differentiation. In contrast, overexpression of TEL2 mutants
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containing an impaired ETS or PNT domain had no effect on
vitamin D3–induced differentiation of U937 cells.29 Also TEL2,
but not its PNT or ETS mutant versions, cooperates with Myc in
B-lymphomagenesis in mice,30 and its expression is up-regulated in
some adult human leukemia samples29 and in more than 30% of
pediatric ALL patients.30 Moreover, TEL2 is expressed in many
human tumor cell lines.31 Together these data suggest a role for
TEL2 in hematopoietic malignancy. Herein we show that expres-
sion of TEL2 alone in the mouse hematopoietic system causes a
nontransplantable myeloproliferative disease (MPD) after a long
latency period. This suggests that secondary mutations are neces-
sary for disease development. Indeed, treatment with the DNA-
damaging agent N-ethyl-N-nitrosourea (ENU) in mice receiving
transplants greatly accelerated tumorigenesis.

Materials and methods

Plasmid constructs, retroviral production, and viral
titer determination

TEL2 cDNA was cloned upstream of the IRES element into the unique
EcoRI site of the murine stem cell virus (MSCV) IRES-GFP vector.29,32-35

Retroviral constructs were used to generate replication-incompetent retrovi-
ral stocks by transient transfection of the Ecotropic Phoenix 293T
packaging cells line36 using Fugene 6 (Roche, Indianapolis, IN). Viral titers
were determined by infection of NIH3T3 cells in the presence of Polybrene
(Sigma Chemical, St. Louis, MO) (8 #g/mL) and varied between 4 $ 105 to
1 $ 106 CFU/mL.

Bone marrow extraction, Lin! isolation,
and retroviral transduction

Bone marrow (BM) cells were harvested by flushing the femurs and tibiae
of FVB-J male donor mice 3 days after intraperitoneal injection of 150 #g/g
body weight 5-fluorouracil (5FU) (Sigma Chemical). Lineage-negative
(Lin%) cells were purified by immunodepletion of cells presenting myeloid,
erythroid, and lymphoid differentiation markers using biotinylated mouse
antibodies Ly-6G (Pharmingen, San Diego, CA), Cd11b (Pharmingen),
Cd45R/B220 (Pharmingen), CD5 (Pharmingen) and TER-119 (Pharmin-
gen) and streptavidin-coated beads (Dynabeads M-280 streptavidin; Brown
Deer, WI). The resulting progenitor-enriched population was prestimu-
lated for 48 hours in Iscove medium (Gibco, Carlsbad, CA), 20% fetal
bovine serum (Hyclone, South Logan, UT), supplemented with interleu-
kin-3 (IL-3; 20 ng/mL) (Preprotech, London, United Kingdom), interleu-
kin-6 (IL-6; 30 ng/mL) (Peprotech), interleukin-7 (IL-7; 10 ng/mL)
(Peprotech), and stem cell factor (SCF; 50 ng/mL) (R&D Systems,
Minneapolis, MN) in nontissue culture grade plastic Petri dishes. After
prestimulation the cells were plated onto Retronectin (Takara, Otsu,
Japan)–coated plates and incubated with the retroviral supernatants
twice daily for 2 days in the presence of cytokines.

Colony-forming unit assays

Transduced and normal Lin% cells were plated in semisolid methylcellulose
medium (MC1) plus cytokines (10 #g/mL insulin, 200 ng/mL human
transferrin, 50 ng/mL SCF, 10 ng/mL IL-3, 10 ng/mL IL-6, 3 U/mL
erythropoietin [Epo], StemCell Technologies 03434, Victoria, BC, Canada)
at a concentration of 1 $ 103 cells per dish Erythroid colony-forming unit
(CFU-E), granulocyte erythrocyte monocyte macrophage colony-forming
unit (CFU-GEMM), and granulocyte macrophage colony-forming unit
(CFU-GM) colonies were scored 10 to 14 days later, pooled, and reseeded
at a density of 1 $ 103 cells per dish into secondary methylcellulose (MC2)
cultures. Part of the cells were used to determine the fraction of GFP-
positive cells using a FACSCalibur (Becton Dickinson, Franklin Lakes,
NJ). We continued MC replating until the cultures were exhausted (usually

3 to 4 consecutive rounds of plating) due to terminal differentiation of the
cells.

Long-term culture-initiating cell (LTC-IC) assays

Transduced and normal BM cells (5 $ 103 cells per dish) were plated onto
irradiated M2-10B4 stromal layers37 in Myelocult media (StemCell Tech-
nologies M5300) to which freshly prepared 0.5 #g/mL hydrocortisone
(hydrocortisone 21-hemisuccinate; Sigma Chemical) was added. The cells
were cultured for 4 weeks, while replacing half the medium every 7
days. At the end of this period the cells were harvested, analyzed for
GFP expression by fluorescence-activated cell sorting (FACS), and
plated in methylcellulose media. We scored the number and type of
colonies 2 weeks later. Serial MC replating and concomitant GFP
analyses were performed for 6 to 8 weeks.

Bone marrow transplantation (BMT)

Female 6- to 12-week-old FVB mice were lethally irradiated (single dose of
950 cGy) and 24 hours later received transplants by tail vein injection with
300 #L PBS plus heparin (30 U/mL) containing 3 $ 105 to 5 $ 105 Lin%

cells transduced with retrovirus or not. After BMT, the animals were
evaluated daily for possible signs of disease. Peripheral blood was obtained
monthly by retro-orbital phlebotomy and was analyzed by FACS to
determine the percentage of white blood cells (WBCs), red blood cells
(RBCs), and platelets expressing GFP. Complete blood counts (CBCs) were
performed with a Hemavet 3700 (Drew Scientific, Cumbria, United
Kingdom), and Giemsa-stained blood smears were analyzed to verify the
presence of abnormal cells.

ENU mutagenesis

TEL2 BMT was performed exactly as described in “Bone marrow
transplantation (BMT),” but 5 weeks after transplantation the recipients
received intraperitoneal injections twice, at a 48-hour interval, with 100
mg/kg ENU. The health status of the animals was followed as described in
“Bone marrow transplantation (BMT).”

Analysis of diseased mice and tissue preparation

All the following animal procedures were conducted in accordance with the
U.S. Public Health Service Policy on the Humane Care and Use of
Laboratory Animals. Peripheral blood of moribund animals was isolated for
GFP analysis, blood smears, and CBCs. The animals were killed using CO2

asphyxiation, and the weight of the spleen and liver was recorded. All
organs were recovered, fixed in 10% neutral-buffered formalin, processed
and embedded in paraffin, sectioned at 4 to 5 #m, and stained with
hematoxylin and eosin (H&E) for routine histologic examination. Sternum
and hind limbs were subjected to an additional decalcification step before
tissue processing. Select tissues were also processed for immunohistochemi-
cal analysis with antibodies to the hematopoietic markers CD3 (Dako,
Carpinteria, CA), CD45R/B220 (Pharmingen, San Diego CA), terminal
deoxynucleotidyl transferase (TdT; Supertechs, Bethesda, MD), myeloper-
oxidase (MPO; Dako), TER-119 (Pharmingen, San Diego, CA), GATA1
(Santa Cruz Biotechnology, Santa Cruz, CA), and green fluorescent protein
(GFP; Clontech, Palo Alto, CA).

Single-cell suspensions were prepared from bone marrow, spleen, and
liver for analysis of GFP expression by FACS and for the preparation of
cytospin slides (5 $ 104 cells per slide) for morphologic examination after
May-Grünwald-Giemsa (MGG) staining. After lysis of the red cells, the
leukocytes were analyzed immediately for surface marker expression or
frozen in fetal calf serum (FCS)/10% DMSO for later analysis. Images of
tissue sections and cytospins were obtained using a BX51 microscope
equipped with a Uplan FL 40 $/0.75 numeric aperture (NA) or a
100 $/1.30 NA objective (Olympus, Tokyo, Japan). Images were acquired
using a SPOT camera and SPOT Advanced imaging software (Diagnostic
Instruments, Sterling Heights, MI). Original magnification for tissue
sections and cytospins was 400 $ and 1000 $, respectively.
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Flow cytometric analysis

Single-cell suspensions of BM, spleen, and liver were washed and
incubated for 30 minutes on ice in staining medium (SM: DMEM
supplemented with 10% fetal bovine serum) containing human &-globulin
(100 mg/mL; Sigma Chemical) to block Fc receptors. After washing, cells
were incubated with monoclonal antibodies (CD3c, CD4, CD8, CD11b/
Mac1, CD19, CD34, B220, TER-119, Gr1, Sca1, c-Kit, Flt3, all from
Pharmingen, San Jose, CA; anti–mouse IgM from Southern Biotechnology
Associates, Birmingham, AL) on ice for 30 minutes. After a final washing
step, cells were resuspended in SM and analyzed using a BD Biosciences
FACSCalibur flow cytometer (BD Biosciences, San Jose, CA), selecting
single cells by gating on forward versus side light scatter. Wild-type and
TEL2-expressing bone marrow cells were cultured for 2 weeks, and
apoptotic cells were identified by FACS after annexin V–FITC staining.
Propidium iodine staining was used to exclude dead cells.

Western blotting

For Western blotting, protein extracts were prepared from spleen samples of
diseased TEL2 and healthy control mice, killed at the same time, using TRI
Reagent (Sigma Chemical), following the manufacturer’s instructions.
After quantification using the BCA Protein Assay Reagent (Pierce Chemi-
cal, Rockford, IL), 30 #g total protein was separated on 10% SDS-PAGE
(sodium dodecyl sulfate–polyacrylamide gel electrophoresis) gels under
reducing conditions and transferred onto a polyvinylidine difluoride
membrane (Millipore, Billerica, MA). The membranes were incubated with
the antibodies specific for Bcl-x (Transduction Laboratories, Lexington,
KY), recognizing both Bcl-xl and Bcl-xs, Bcl2 antibody (554218; Pharmin-
gen), and TEL2 antibody.30

Secondary transplantations

Lethally irradiated (9.5 Gy [950 rad]) recipient mice received injections in
the tail vein with 1 $ 106 freshly isolated bone marrow or spleen cells from
moribund primary recipients after red cell lysis. Mice receiving transplants
were followed and killed as described for the primary recipients.

Affymetrix GeneChip analysis

BM from 5FU-treated mice was either mock transduced (Un-BM) or
transduced with MSCV-IRES-GFP (GFP-BM) or MSCV-TEL2-IRES-GFP

(TEL2-BM) retrovirus as described in “Bone marrow transplantation
(BMT).” After transduction, cells were allowed to recover in culture for 48
hours and were sorted for GFP expression by FACS. RNA of the
GFP-positive cells and mock-transduced cells was isolated using Trizol
(Invitrogen, Carlsbad, CA) following the manufacturer’s recommendations.

RNA quality was confirmed by UV spectrophotometry and by analysis
on an Agilent 2100 Bioanalyzer (Agilent Technologies, Foster City, CA).
Ten micrograms of total RNA was processed in the St Jude Hartwell Center
Core Facility according to the standard Affymetrix (Santa Clara, CA)
protocol38 and analyzed on the Affymetrix MOE-430A GeneChip array.
Signal values, detection calls, and pairwise expression analyses were
performed using the default parameters within the statistical algorithm of
the Affymetrix GCOS software version 1.2. Signal values were scaled to a
2% trimmed mean target value of 500. Stringent selection criteria were
applied to identify differential expression associated with TEL2. The
following pairwise comparisons were performed: TEL2-BM versus GFP-
BM, TEL2-BM versus Un-BM, and GFP-BM versus Un-BM. Initial
selection was based on differential expression between TEL2-BM and
GFP-BM. Probe sets with a log2 ratio greater than one (more than 2-fold
change) plus a “change call” (P ' .006, Wilcoxon signed rank test) were
selected for further evaluation. To best identify TEL2-associated changes,
the initial selection was filtered to exclude probe sets with less than 2-fold
change in TEL2-BM versus Un-BM and those with more than 2-fold
change in GFP-BM versus Un-BM. Probe set annotations were obtained
from the Affymetrix website.39 Functional classification of genes was
performed using the Affymetrix Gene Ontology browser. Biologic pro-
cesses significantly enriched within the TEL2-associated gene list were
identified using the (2 test (P ' .001).

Results

TEL2 expression affects the colony-formation potential of
primitive myeloid progenitors in vitro

To test the effect of forced TEL2 expression in mouse hematopoi-
etic cells, Lin% cells of 5-FU treated donor mice were transduced
with MSCV-IRES-GFP or MSCV-TEL2-IRES-GFP retrovirus (Fig-
ure 1A). FACS analysis 4 days later showed that 10% to 50% of the

Figure 1. BM-expressing TEL2 causes a myeloid proliferative disease in mice. (A) Schematic representation of the MSCV-IRES-GFP and MSCV-TEL2-IRES-GFP
retroviral vectors used for the transduction of the Lin% BM cells. The TEL2 cDNA was cloned in the single EcoRI site and is followed by an IRES-GFP marker gene. LTR, long
terminal repeat. (B) Myeloid clonogenic activity of BM cells transduced with TEL2 retrovirus (TEL2-BM) compared with BM cells transduced with vector (MSCV-BM) or
untransduced BM cells (Un-BM). Bars indicate the number of colonies counted at each round of serial replating in MC1 to MC5. CFU (1000 cells per dish plated) counts show
no difference among the 3 samples with regard to their successive colony-forming capacity. This graph depicts the result of 1 of 4 experiments that gave almost identical results.
(C) Successive MC assays of TEL2-BM, MSCV-BM, and Un-BM cells after 4 weeks of LTC-IC culture on an M2-10B4 stromal layer showing an increased colony-forming
capacity of the TEL2-BM cells during the first 2 rounds of MC culture. This graph depicts the result of 1 of 4 experiments that gave almost identical results. (D) Average monthly
peripheral blood leukocyte counts of all mice receiving transplants with TEL2-BM, showing an increase of the WBCs starting at 6 months after transplantation. Error bars show
the standard deviation of each data point. (E) Monthly percentage of GFP-positive cells in the peripheral blood of mice receiving transplants with MSCV-BM or TEL2-BM,
showing a steady increase in GFP-positive cells in mice receiving transplants with TEL2-BM starting at 5 months after transplantation. Error bars show the standard deviation of
each data point. (F) Comparison of the average leukocyte count—in peripheral blood of mice receiving transplants with UN-BM, MSCV-BM and TEL2-BM—at the moment of
death of the TEL2-BM mice. (G) Combined Kaplan-Meier survival plot of 14 (2 $ 7) lethally irradiated mice receiving transplants with MSCV-BM or TEL2-BM (n ) 2).
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cells expressed GFP (not shown), and were used for in vitro
colony-forming assays and in vivo bone marrow reconstitution of
lethally irradiated recipient mice.

To assess whether TEL2 expression conferred a proliferative advan-
tage to hematopoietic cells in vitro, we compared the growth characteris-
tics of Lin% cells transduced with empty retrovirus (MSCV-BM) or a
TEL2 retrovirus (TEL2-BM) with that of uninfected Lin% cells (Un-
BM). To assess the colony-forming capacity of committed progenitors
we plated the cells into MC1 and 2 weeks later scored the cultures for
the number and type of colony-forming units (CFU-E, CFU-GEMM,
CFU-GM). After counting, 103 cells from the MC1 were replated into
fresh MC and CFUs were scored, and this process was repeated until the
CFU activity was exhausted (3 to 4 rounds). However, we observed no
differences in the type, size, or number of the Un-BM, MSCV-BM, and
TEL2-BM colonies (Figure 1B). We next tested whether TEL2 expres-
sion affected the growth of primitive progenitors and followed the
clonogenic potential of TEL2-BM and MSCV-BM progenitors in
myeloid MCs after long-term culture-initiating cell (LTC-IC) cultures.
This experiment was repeated twice with both types of bone marrow
containing 10% GFP-positive cells. After 4 weeks of LTC-ICs, cells
were collected and plated into serial MC assays. While the percentage of
GFP-positive cells in MSCV-BM was similar before and after LTC-ICs,
the percentage of GFP-positive cells in the MC1 of TEL2-BM LTC-ICs
had increased to 60% and the number of colonies in the MC1 was 3-fold
higher than that in the MC1 of MSCV-BM cells. Upon serial replating,
the elevated percentage of GFP-positive cells in the TEL2 MCs
remained, but the number of colonies rapidly dropped to a level similar
to that of MSCV-BM cells (Figure 1C). Thus, TEL2-expressing
primitive progenitors appeared to have a growth advantage in LTC-IC
assays only. When transduced Lin% bone marrow cells used for the
LTC-ICs were directly plated onto tissue culture plastic, they formed
their own stromal layer. Under these conditions TEL2-BM cells grew
faster than control MSCV-BM cells (not shown), and the percentage of
GFP-positive cells again increased from 10% to 60% during 3 weeks of
culture. This suggested that interaction with stromal cells, whether in
LTC-IC cultures or in stroma-forming BM cultures, provided a growth
advantage to TEL2-BM cells.

Bone marrow–expressing TEL2 induces a myeloproliferative
disease in FVB recipient mice

We simultaneously tested whether TEL2 expression in reconsti-
tuted BM30 would affect normal hematopoiesis in vivo and
transplanted Un-BM, MSCV-BM, and TEL2-BM cells into 7
lethally irradiated FVB recipients and assessed their peripheral
blood parameters and the percentage of GFP-positive cells monthly.
The same experiment was repeated 3 months later, and the
combined results of these experiments are presented in Figure
1D-G. All animals receiving transplants engrafted, and the periph-
eral blood counts (PBCs) remained stable for 6 months, followed
by an increasing leukocytosis (Figure 1D) until the mice became
moribund 2 to 3 months later. At the time the animals were killed,
they showed an average peripheral WBC count of 75 $ 109/L
(75 $ 103/#L) (Figure 1E), with all cells expressing GFP (Figure
1F). All TEL2-BM mice died within 8 to 14 months after
transplantation (Figure 1G). Instead, mice receiving transplants
with Un-BM or MSCV-BM cells showed normal blood parameters
and remained healthy, although 2 MSCV-BM animals died of
causes not related to hematopoietic disease.

Average CBCs of mice (Un-BM, MSCV-BM, and TEL2-BM) were
determined at the time of death of the TEL2-BM mice (Table 1).

Assessment of cell morphology of peripheral blood smears
(Figure 2A) showed anemia, large numbers of mature and imma-

ture neutrophils, and the presence of some blastlike cells. BM
cytospins (Figure 2B) of affected mice revealed the presence of
mostly myeloid cells with a similar abundance of mature and
immature neutrophils, but also blastlike cells, monocytes, and
promyelocytes. All TEL2-BM animals showed splenomegaly and
hepatomegaly, due to extensive infiltration of a population of cells
with a high mitotic index, which expressed GFP (Figure 2C-D).
The spleen had completely lost its normal architecture (not shown),
and the cell population in the red pulp consisted of erythroid
precursors, megakaryocytes, and a vast excess of mature granulo-
cytes and immature myeloid cells. Unlike the spleen, the liver
infiltrate consisted of mature granulocytes and immature myeloid
cells. The immature cells were the dominant constituent in both
tissues, and most of them expressed MPO consistent with a
granulocytic lineage (Figure 2E). Western blot analysis confirmed
expression of TEL2 in the spleen of the diseased mice (Figure 2F).
Given that the antiapoptotic effect of TEL2 on B-cell progenitors is
associated with increased expression of Bcl2 but not Bcl-xl,27 we
also tested the expression of these 2 antiapoptotic proteins in the
same spleen samples. Compared with MSCV-BM spleen cells, 2
TEL2-BM tumor samples expressed an increased amount of Bcl-xl
and Bcl-xs, whereas Bcl2 expression was increased in 4 of 6 tumor
samples. Two tumors samples showed no up-regulation of Bcl2 or
Bcl-xl, indicating that the antiapoptotic proteins were not consis-
tently up-regulated in all tumors. FACS analysis of BM (Figure 3)
showed that the malignant cells were Mac1! and Gr1!. BM also
showed an increase in Sca1!, c-Kit!, and Thy1.1! progenitors.
Together these features are consistent with a diagnosis of a chronic
myelomonocytic leukemia (CMML)–like disease,40 suggesting
that TEL2 enlarges an early myeloid progenitor population.

Transplantation of the diseased bone marrow into 12 sublethally
irradiated secondary recipients failed to reproduce disease. The percent-
age of GFP-positive cells in the peripheral blood of the secondary
recipients ranged between 5% and 35% during the first 3 months after
transplantation but diminished to almost undetectable levels thereafter.
Only 1 of 12 secondary recipients showed a distinct myeloproliferation
(93 $ 109/L [93 $ 103/#L]) associated with organ infiltration, but the
percentage of GFP-positive cells in peripheral blood was 12% and the
population of cells infiltrating the different organs was GFP negative.

Table 1. Average complete blood count (CBC) in peripheral blood of
mice receiving transplants with Un-BM, MSCV-BM, and TEL2-BM,
at the moment of death of the TEL2-BM mice

UN-BM MSCV-BM TEL2-BM*

Complete WBC count, $ 109/L 8.6 * 3.6 10.3 * 4.9 76 * 35.32

Neutrophil count, $ 109/L 1.48 * 0.52 2.36 * 0.87 14.7 * 13.94

Lymphocyte count, $ 109/L 4.99 * 1.68 4.64 * 1.6 15.3 * 14.05†

Monocyte count, $ 109/L 0.55 * 0.28 0.57 * 0.39 3.2 * 2.8

Eosinophil count, $ 109/L 0.019 * 0.008 0.013 * 0.005 1.14 * 0.96

Basophil count, $ 109/L 0 0 0.23 * 0.19

MCH, pg 13.42 * 1.45 15.19 * 1.31 17.9 * 4.4

RBC count, $ 1012/L 7.46 * 0.71 7.6 * 0.811 4.66 * 1.65

MCV, fL 44.84 * 3.14 49.23 * 3.32 62.68 * 14.29

Platelet count, $ 109/L 1176 * 68.63 1406 * 204 1094 * 303

Hemoglobin level, g/L 127 * 17 130 * 17 84 * 14

The results are expressed as average * SD. The 2-tail unpaired Student t test
was used to compare the data. P !.05 was considered significant.

MCH indicates mean corpuscular hemoglobin; MCV, mean corpuscular volume.
*P values calculated between the TEL2-BM and the MSCV-BM values were

' .05.
†The high number of lymphocytes in the Hemavet counts of the TEL2-BM mouse

blood samples is a gross overestimate because the blast cells and partially
differentiated myeloid cells have the same size as lymphocytes and are therefore
scored as “lymphocytes.” This was confirmed by morphologic analysis of the blood
smears (Figure 2A).
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We concluded that this unique case was caused by a genetic event not
related to overexpression of TEL2.

Annexin V staining of FVB Lin! BM cells

Because TEL2 expression in pre-B cells inhibits their rate of
apoptosis,30 we assessed whether a similar effect of TEL2 in
myeloid cells might provide a proliferative advantage in the mice
receiving transplants. We analyzed the percentage of apoptotic
cells by annexin V staining in Lin% Un-BM cells or in GFP-positive
MSCV-BM and GFP-positive TEL2-BM cells after culture for 7
days in liquid media promoting myeloid proliferation. Compared
with both Un-BM and GFP-positive MSCV-BM cells, GFP-
positive TEL2-BM cells showed a consistent 50% decrease in the
number of apoptotic cells (Figure 4). This suggested that the
myeloproliferative disease caused by TEL2-BM cells in mice
might in part be attributed to a reduced level of apoptosis of
myeloid progenitors in vivo.

To obtain information about TEL2-induced changes in gene
expression, we transduced FVB Lin% cells with MSCV-IRES-GFP

(MSCV-Lin% cells) or MSCV-TEL2-IRES-GFP retrovirus (TEL2-
Lin% cells) and sorted GFP-positive cells 72 hours later by FACS.
Relative RNA abundance in these 2 GFP-positive cell populations
and in untransduced Lin% cells was determined by Affymetrix
microarray analysis (MOE-430A). We then compared gene expres-
sion differences between Un-Lin% and MSCV-Lin% and MSCV-
Lin% and TEL2-Lin% cells (Figure 5). This 3-way comparison
allowed elimination of genes whose expression was changed due to

Figure 2. Mice receiving transplants with TEL2-BM develop a chronic myelomonocytic-like disease. (A) Peripheral blood smear stained with May-Grünwald-Giemsa
(MGG) of a diseased mouse that underwent TEL2-BM transplantation. Arrows indicate blastlike cells. (B) Cytospin preparation after MGG staining of bone marrow of a
diseased mouse that underwent TEL2-BM transplantation, showing an excess of myeloid cells in early stages of differentiation. Arrows indicate blast cells. (C) Spleen—of a
diseased mouse that underwent TEL2-BM transplantation—with an extensive red pulp infiltrate of myeloid cells with a high mitotic index (H&E, magnification $ 40). Mitotic
figures are indicated by white arrowheads. (D) The myeloid cells expressed GFP (brown stain), confirming their transplant derivation (anti-GFP, magnification $ 40). (E) The
myeloid population was primarily composed of immature cells that expressed MPO (brown stain), consistent with their granulocytic lineage (anti-MPO with cytoplasm
localization, magnification $ 40). (F) Top row shows a Western blot analysis of TEL2 expression in spleen samples of 1 MSCV-BM (MSCV, 10 months after transplantation) and
6 diseased TEL2-BM mice at the moment of death. The second row shows Bcl-xl and Bcl-xs expression in the same samples. Bcl-xl and Bcl-xs expression in leukemic spleen
samples is not altered compared with that in the control spleen sample. The third row shows that 4 of 6 leukemic TEL2 spleens show increased Bcl2 expression (samples 1, 3,
4, and 5). The bottom row shows protein loading of the blot after staining with Coomassie blue.

Figure 3. Flow cytometric cell surface marker analysis of BM cells of a diseased
mouse that received TEL2-BM transplants and a healthy control mouse that
received MSCV-BM transplants. (A) Top row shows expression of the indicated cell
surface markers (y-axis) versus GFP expression (x-axis) in MSCV-BM cells. The bottom
row shows expression of these markers and GFP in TEL2-BM cells. TEL2-BM cells show
increased percentages of cells expressing all of the markers, but most cells are positive for
Mac1 and Gr1. The malignant cells in the spleen, liver, and peripheral blood expressed the
same complement of cell surface markers (not shown).

Figure 4. TEL2 expression reduces the rate of apoptosis of BM cells cultured in
vitro. UN-BM cells (top 2 panels) and retrovirus-transduced MSCV-BM cells (middle
2 panels) and TEL2-BM cells (bottom 2 panels) were inoculated in liquid culture in
presence of myeloid growth factors. After 4 days of culture and staining with
propidium iodide, cells were analyzed for GFP expression (left panels) and for
annexin V expression (right panels) by FACS. The number of apoptotic cells in the
TEL2-BM sample (bottom right quadrant of the dot plots) was half of that in the
UN-BM and MSCV-BM samples. The same was true for the percentage of dead cells
(top right quadrant of the dot plots).
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GFP virus infection rather than TEL2 expression. A total of 195
genes was at least 2-fold up- or down-regulated (for the full list, see
Table S1, available on the Blood website; see the Supplemental
Table link at the top of the online article). Gene ontology analysis
of this data set identified changes in expression of genes involved
in apoptosis and differentiation/proliferation. This revealed changes
in expression of numerous genes involved in apoptosis, including
the proapoptotic genes Trp53inp1, Stk17b (DRAK2),41 Dapk2,42

and Bmf.43 We also noticed down-regulation of antiproliferative
genes including Btg1,44 Btg2,45,46 Cdkn1B (p27Kip1),47,48 and
Rb1cc1 49-51 and up-regulation of cKit, whose activation is associ-
ated with acute myelogenous leukemia (AML).52 There was also a
general down-regulation of differentiation-associated genes, includ-
ing cFes,53,54 Btg1, and Btg2 and of the tumor suppressor gene
Tgfbr255 (Figure 4; Table S1). Notably, there was no up-regulation
of Bcl2 or Bcl-x mRNA levels in TEL2-Lin– cells.

ENU treatment of mice receiving transplants with TEL2 induces
myeloid disease and T-cell lymphoblastic leukemia

The long latency of disease suggested that enforced TEL2
expression alone was insufficient to cause the myeloprolifera-

tive phenotype and that disease development depended at least
on one or possibly more secondary mutations. To test this
scenario we performed random mutagenesis by injecting 5 mice
receiving transplants with vector-transduced BM and 10 mice
receiving transplants with TEL2-transduced BM (30% GFP
positive) with ENU 5 weeks after transplantation. The TEL2-BM-
ENU animals started to die 2 months earlier than the MSCV-BM-
ENU control group, and the average survival time was 2 months
shorter (5 months) than that of MSCV-BM-ENU animals (7
months) (Figure 6A). Moribund mice had a large spleen and
liver with cells staining positive for CD3 (Figure 6B) and TdT
(Figure 6C), which were GFP negative (Figure 6D). Thus, the
mice suffered from T-cell lymphoma not expressing TEL2. In
addition, 3 of the mice had a significantly elevated WBC count
(30 $ 109/L to 50 $ 109/L [30 $ 103/#L to 50 $ 103/#L]) in
the peripheral blood. These mice had an abundance of poorly
differentiated dysplastic GFP-positive (50% to 70%) cells in the
peripheral blood (Figure 6E), which were not T cells because
only a few of them stained positive for CD3 (Figure 6F). The
BM of these mice as well as of mice that had normal peripheral
WBCs did show a high percentage of Mac1! (31% to 72%),
Sca1! (25% to 30%), and GFP-positive (50% to 70%) cells, but
no cells were positive for CD3, CD4, or CD8 T-cell markers.
Therefore, the mice also suffered from a myeloid disease that in
30% of the mice gave elevated WBCs. Two of the 5 MSCV-BM-
ENU control mice died of solid tumors, whereas the remaining 3
died of unknown causes. However, no controls died of a
hematopoietic malignancy because their peripheral blood counts
remained normal and the percentage of GFP-positive cells
remained constant.

Discussion

TEL2, a new member of the ETS TFs, was identified by several
groups a few years ago.9,19,28 The protein was coined TEL2 because
of its high homology with TEL (38.2% identity). However, despite
this homology, its function appears to be quite distinct from that of
TEL. TEL has an antiproliferative effect26,27,56 whereas TEL2 has a
mostly proliferative effect,27,29 although a direct assessment of the
tumorigenic activity of TEL2 alone has not been determined. Our
in vitro LTC-IC studies strongly suggested that TEL2 stimulated
the growth of primitive progenitors, provided they are in contact
with a feeder layer, a condition that mimics the bone marrow
environment. This effect on myeloid cells is different from TEL2’s
effect on B-cell progenitors, whose growth is stimulated in the
absence of feeder cells.27

TEL2 is specifically expressed in the human hematopoietic
system, and its expression is up-regulated in some adult human
leukemias29 and more than 30% of pediatric B-ALL.30 TEL2 also
accelerated B lymphomagenesis in E#-Myc mice, a model for
Burkitt lymphoma, and possibly cooperates with N-MYC/C-MYC
in pediatric B-cell lymphoma.30 Therefore, we tested whether
enforced TEL2 expression alone in mouse bone marrow predis-
posed the animals to hematopoietic malignancy. Our experiments
indeed verified the oncogenicity of TEL2 in this setting, but the
long latency of disease indicated that secondary mutations are
necessary for disease development.

The disease was not transplantable in secondary recipients,
although the proliferation of the myeloid cells appeared strictly cell
autonomous given the tight correlation between GFP expression
and the number of leukemic cells (Figure 1E). This indicated that

Figure 5. Microarray analysis of gene expression changes associated with
TEL2 expression in mouse bone marrow. RNA from mouse bone marrow cells,
either mock transduced (uninfected) or transduced with MSCV-TEL2-IRES-GFP
(TEL2) or MSCV-IRES-GFP (GFP), were analyzed using the MOE-430A Affymetrix
GeneChip microarrays. Log2 ratio values from pairwise comparisons are plotted. (A)
Relative expression of 195 probe sets identified as differentially expressed (see
“Materials and methods”) in both TEL2 versus GFP (x-axis) and TEL2 versus
uninfected (y-axis) bone marrow. (B) Relative expression of differentially expressed
probe sets found enriched (P ' .001) in the Gene Ontology categories of apoptosis
(left) or differentiation (right). Gene symbols are indicated in the panels.
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progenitor cells expressing TEL2 were not immortalized and that
the conditions in the reconstituted bone marrow were unable to
support reconstitution by the MPD. Similar observations have been
reported for MPD caused by NUP98-Hox A9.57 Annexin V analysis
of TEL2-expressing bone marrow after a short period (1 week) of
in vitro culture showed that TEL2 suppressed the apoptotic index
of these cells as it does inhibit apoptosis in Myc-overexpressing or
wild-type B-cell progenitors.30 Given the large excess of myeloid
progenitors in the BM and the outcome of the Affimetrix array
analysis of Lin% cells 72 hours after transduction with TEL2 or
vector retrovirus suggested that TEL2 also inhibits apoptosis of
myeloid progenitors. Several proapoptotic genes were repressed,
such as Trp53inp1, Stk17b, Dapk2, and Bmf, which might mediate
this effect. In addition, 4 of 6 mice analyzed for Bcl2 or Bcl-xl
expression in myeloid cells, which invaded the spleen, showed
up-regulation of Bcl2, Bcl-xl and Bcl-xs. Similar to the effect of
TEL2 in B cells,30 up-regulation of Bcl2 and Bcl-x is probably not
at the transcriptional level, because Bcl2 and Bclx mRNA was not
increased in the Affimetrix arrays of TEL2-transduced bone
marrow. We believe that Bcl2 and Bcl-x overexpression contributes
to expansion of the myeloid cells, but currently we do not know
which events substitute for Bcl2 and Bcl-x overexpression in the 2
tumor samples that did not overexpress these proteins. However,
changes in expression of genes inhibiting (Btg1, Btg2, Cdkn1B,
Rb1cc1) or stimulating (cKit) proliferation could have an additive
effect on the enlargement of the myeloid progenitor pool. It
remains to be determined whether any of these genes are direct
transcriptional targets of TEL2, an issue that we will address in
future studies.

It is reasonable to speculate that myeloid progenitors in the
bone marrow of mice receiving transplants have a reduced
apoptotic rate, but this does not lead to increased numbers of
myeloid cells in the peripheral blood during the first 6 months

after transplantation, a feature also apparent in mice expressing
MLL fusion oncogenes and AML1-ETO.58,59 It is possible that
compensatory mechanisms control the number of myeloid cells
entering the periphery and that additional genetic changes,
possibly those that affect cell proliferation, may override this
check, resulting in accumulation of differentiating myeloid cells
in the peripheral blood. In addition, expansion of the myeloid
compartment during the first 6 months after transplantation
would increase the frequency of secondary mutations and
thereby promote development of disease. The extensive differen-
tiation of the cells is the likely cause of the chronic character of
the disease, which after initial detection took 2 to 3 months to
kill the animal. The differentiation of the malignant cells in
affected animals seems in conflict with the observation that
TEL2 inhibits differentiation of HL60 and U937 myeloid cells.29

The reason for this is unknown but, unlike bone marrow, cell
lines harbor many mutations, which might account for this
difference in behavior.

Given the development of myeloproliferative disease in mice
receiving transplants with TEL2, we expected that ENU mutagen-
esis would induce myeloid leukemia. This occurs in mice
expressing RUNX1-ETO or CBF+-MYH11,59,60 indicating that
these fusion transcription factors specifically affect myeloid
cells despite the fact that conditional RUNX1-ETO knock-in
mice59 also express the fusion protein in their T cells.61 Our
experiments indicate that in combination with ENU all TEL2-BM
mice developed distinct myeloid aberrations in the bone marrow
within 3 to 6 months after ENU treatment, which is much more
rapid than TEL2-BM mice only (Figure 1G). However, only 3
mice showed elevated numbers of dysplastic cells in the
peripheral blood, indicating a possible development of myeloid
leukemia. Surprisingly, all mice also developed GFP-negative
T-cell lymphoma. We must conclude that changes caused by

Figure 6. ENU treatment of mice receiving TEL2-BM transplants accelerates hematopoietic disease and causes T-cell lymphoma. (A) Kaplan-Meier survival curve of
mice receiving transplants with bone marrow transduced with MSCV-IRES-GFP (MSCV-BM) or MSCV-TEL2-IRES-GFP (TEL2-BM) and treated with ENU 5 weeks after
transplantation The mice receiving TEL2-BM transplants died 1.5 to 2 months earlier than the MSCV-BM mice, suggesting cooperation between TEL2 expression and ENU
mutagenesis. (B) Spleen of a mouse with T-lymphoblastic lymphoma that underwent ENU treatment and TEL2-BM transplantation. The malignant lymphocytes in the red pulp
express CD3 (brown color) while most of the lymphocytes associated with the follicular marginal zone do not express CD3 (anti-CD3 with cytoplasm/membrane localization,
magnification $ 40, marginal zone is on the left and the red pulp cells with CD3 expression are on the right). (C) The CD3! malignant lymphocytes also expressed TdT (brown
color), which is consistent with a lymphoblastic lymphoma (anti-TdT with nuclear localization, magnification $ 40). (D) The T lymphocytes in the spleen do not stain with a GFP
antibody; the only cells that are positive for GFP (bottom right corner) are B lymphocytes, which also stain positive for B220 (not shown). (E) Peripheral blood smear of a
TEL2-BM/ENU mouse with increased WBCs (30 $ 109/L [30 $ 103/#L]) showing numerous dysplastic white cells (magnification $ 100). (F) Blood smear of the same mouse
stained with a CD3 antibody. Only a small percentage of cells (white arrowhead, red color) expressed this T-cell marker, indicating that the dysplastic cells are not of T-cell
origin. The nucleated cells were counterstained with DAPI (blue color).
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TEL2 expression promoted T-cell lymphomagenesis, because
none of the control ENU-treated mice developed T-cell lym-
phoma. It is possible that T-cell proliferation is stimulated
indirectly by TEL2-expressing hematopoietic cells, which could
contribute to increased genetic instability, making these cells
more susceptible to ENU-mediated leukemic transformation.
The lethal lymphoid disease might have prevented the myeloid
preleukemic state of these mice to develop into AML.

Together our results suggest that TEL2 is a hematopoietic
oncogene in the mouse, and its overexpression in some adult and
30% of pediatric ALL samples29,30 also argues for a causative role
of TEL2 in human leukemogenesis.
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Summary 

TEL2, a member of the ETS family of transcription factors, is mainly expressed 

in the human hematopoietic system and can interact with its relative TEL, a frequent 

target of recurrent chromosomal translocation associated with hematopoietic 

malignancies. Previously we showed that TEL2 has oncogenic activity. Its 

overexpression in mouse hematopoietic cells accelerated cell cycle traverse and 

reduced apoptosis causing a myeloproliferative disease when these cells were 

transplanted into lethally irradiated mice. TEL2 overexpression also cooperated with c-

Myc in a mouse model of Burkitt’s lymphoma. Indeed, combined overexpression of 

TEL2 and MYC was found in over 30% of samples of pediatric patients suffering from 

acute lymphocytic leukemia (ALL).  

Here we investigated the oncogenic cooperation between TEL2 and the 

Arf/Mdm2/p53 tumor suppressor pathway. Forced expression of TEL2 in Arf
-/-

 mouse 

bone marrow caused expansion of a B cell population predisposing mice to ALL 

bearing features of human B-ALL. We show for the first time that this disease is in part 

caused by TEL2’s ability to directly upregulate transcription of the mTor gene (target of 

rapamycin) via a canonical TEL binding site in its promoter. mTor encodes a central 

regulator of cell growth and apoptosis. However, treatment of Arf
-/-

/TEL2 cells with the 

mTor inhibitor rapamycin only partially attenuated their growth in vitro, suggesting that 

other proliferative effects of TEL2 also contribute to growth of these cells. These 

results suggest that ALL patients overexpressing TEL2 might identify a sub-group of 

patients that might respond less favorably to treatment with rapamycin or its 

analogues.   
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Introduction 

The ETS (E26- Transformation Specific) family of transcription factors (TFs) is 

involved in the regulation of a large number of genes, some of which are expressed 

ubiquitously while others are expressed in a tissue-specific fashion (Graves and 

Petersen, 1998; Oikawa and Yamada, 2003). All of these proteins share a highly 

conserved ETS DNA binding domain of approximately 85 amino-acid (aa) that binds 

the purine-rich GGAA/T core motif (EBS; ETS Binding Sequence). This sequence is 

present in the regulatory regions of more than 200 target genes involved in 

fundamental cellular process (Graves and Petersen, 1998; Janknecht and Nordheim, 

1993). In addition, a subset of ETS TFs share a conserved Pointed (PNT) protein-

protein interaction domain, which confers the ability to form homodimers/oligomers 

(Lacronique et al., 1997) (Kim et al., 2001), and heterodimers (Baker et al., 2001), and 

might abolish activation of gene transcription (Fenrick et al., 1999).  A number of ETS 

proteins are essential for proper development of the hematopoietic system itself 

(Bassuk and Leiden, 1997), some of which exert their function in a lineage-specific 

manner. For example: PU1 plays an important role in lineage development and is 

essential for the generation of myeloid cells and B cells (McKercher et al., 1996) (Scott 

et al., 1994). Absence of PU1 causes a block in differentiation of the hematopoietic 

stem cell into the common myeloid progenitor (CMP) and common lymphoid progenitor 

(CLP) (Akashi et al., 2000; Iwasaki et al., 2005). Also, Fli1 is involved in 

megakaryopoiesis and loss of this gene in mouse embryos results in absence of 

megakaryocytes (Hart et al., 2000; Kawada et al., 2001). TEL/ETV6 is widely 

expressed in embryonic and adult tissues and is necessary for normal embryonic 

angiogenesis and maintenance of the adult bone marrow microenviroment (Scott et al., 

1994; Wang et al., 1997; Yamamoto et al., 1998). TEL is a nuclear phosphoprotein, 

which acts as a sequence-specific transcriptional repressor in transient transcription 

experiments (Lopez et al., 1999) (Fenrick et al., 1999), and the gene is a frequent 

target of chromosome translocations in human hematopoietic malignancies (Golub et 

al., 1997) and in some solid tumors (Knezevich et al., 1998; Tognon et al., 2002). The 

resulting chimeric genes encode fusion proteins often containing the amino-terminal 

PNT domain of TEL fused to different fusion partners such as the protein tyrosine 

kinases ABL, JAK2, or the PDGF -R (Golub, 1997; Poirel et al., 1998; Rubnitz et al., 

1999; Tosi et al., 1998), or to transcription factors such as RUNX1 and EVI1 (Golub, 

1997; Nucifora, 1997). In addition, TEL might have a tumor suppressor function 

because in t(12;21) childhood pre B-ALL one allele of TEL is involved in a translocation 

with AML1, while the second allele is often deleted during the course of the disease 

(Fenrick et al., 2000; Golub et al., 1997; Rompaey et al., 2000). 

We and others have identified a novel ETS gene highly related to TEL-1, named 

TEL-2/ETV7 (Gu et al., 2001; Poirel et al., 2000; Potter et al., 2000). A TEL-2 transcript 

of 1,55 Kb is predominantly present in human hematopoietic tissues both during 
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development and adult life (Potter et al., 2000). TEL2 contains a PNT domain and an 

ETS DNA binding domain and localizes to the nucleus, excluding the nucleoli. 

Interestingly, TEL2 is able to self-associate but can also form hetero-dimers with TEL1, 

suggesting that these proteins might affect each other’s function in vivo (Kawagoe et 

al., 2004; Potter et al., 2000). In spite of their similarity in sequence and structure, 

TEL1 and TEL2 show major differences in biological activity. For example TEL 

suppresses Ras-induced transformation of NIH3T3 fibroblasts in vitro (Van Rompaey 

et al., 1999), while TEL2 promotes transformation (Kawagoe et al., 2004). Forced 

expression of TEL2 but not TEL1 inhibits vitamin-D3-induced differentiation of U937 

cells and endogenous TEL2 but not TEL1 is downregulated during differentiation of 

U937 cells (Kawagoe et al., 2004). TEL2 might have oncogenic potential because it is 

overexpressed in some adult leukemia patient samples (Kawagoe et al., 2004) and in 

more than 30% of pediatric ALL patients (Cardone et al., 2005). TEL2 inhibits 

apoptosis in murine bone marrow and pre-B cells cultured in vitro and cooperates with 

Myc in murine B-lymphomagenesis (Cardone et al., 2005). Finally, forced TEL2 

expression in normal murine bone marrow leads to a myeloproliferative disease, which 

is characterized by a long latency period (Carella et al., 2005). Our previous work 

suggested that secondary mutations accelerate the onset of disease. To further test 

this hypothesis we expressed TEL2 in bone marrow isolated from p19Arf
-/-

 mice 

(Kamijo et al., 1997), which mostly develop sarcomas and T-cell lymphomas (Kamijo et 

al., 1997). Here we show cooperation of TEL2 with inactivation of the p53 pathway. 

After transplantation into congenic recipient animals TEL2/Arf-/- BM cells cause B-cell 

lymphomas in 100% of cases, with all tumors expressing increased levels of c-Myc. 

We provide evidence that resistance to apoptosis and increased cell cycle 

traverse of pre-B cells overexpressing TEL2 is in part caused by direct upregulation of 

the master regulator of cell metabolism, mTOR, through binding of TEL2 to the mTOR 

promoter region. 

x stampa  12-01-2007  15:22  Pagina 69



Chapter 3 

70 

Results 

Expression of TEL2 in Arf-/- bone marrow causes B-cell leukemia in 
transplanted mice. 

Overexpression of TEL2 in the mouse hematopoietic compartment leads to a 

proliferative advantage of selected cell populations due to reduced apoptosis and 

accelerated cell cycle traverse (Cardone et al., 2005; Carella et al., 2005). Because 

TEL2 cooperates with c-Myc in lymphomagenesis and c-Myc cooperates with 

inactivation of the tumor suppressor Arf (Kamijo et al., 1997), we tested whether TEL2 

also cooperated with inactivation of Arf. Therefore we transplanted 2 cohorts of lethally 

irradiated recipients (n=18) with Arf
-/-

 BM or with Arf
-/-

 BM transduced with MSCV-

IRES-GFP or MSCV-TEL2-IRES-GFP retrovirus. The CBCs, bloodsmears, and 

analysis of the percentage of GFP
+
 cells in the peripheral blood (PB) of transplanted 

mice were determined monthly and 2-3 months later we observed a consistent 

increase in the WBC counts (Fig 1A), due to increasing numbers of B lymphocytes (not 

shown). In 16 out of 18 primary recipients lethal disease developed within a period of 

4-14 months post-transplant (medium survival: 9 months, Fig 1B). The remaining 2 

Figure 1: TEL2 expression in p19
Arf-/-

 BM causes B-cell lymphoma in mice. 

A) Average monthly WBC counts in PB of  mice (n=18) transplanted with Arf
-/-

/TEL2 BM 
showing a steady increase during the first 6 months post-transplantation. Error bars show the 
variation in WBCs between individual mice at each data point. B) Combined Kaplan-Mayer 
survival plots of mice (n=18) transplanted with Arf

-/-
 BM (GFP

-
), or Arf

-/-
 BM transduced with 

MSCV-TEL2-IRES-GFP (TEL2) or MSCV-IRES-GFP retrovirus (MSCV). The 2 mice 
transplanted with MSCV-TEL2-IRES-GFP BM that were healthy at 14 months after 
transplantation represent 2 animals in which the transplant did not take and their BM and 
peripheral blood did not express GFP. C) WBC counts performed at the time of death of mice 
transplanted with Arf

-/-
 BM (GFP

-
), or Arf

-/-
 BM transduced with MSCV-TEL2-IRES-GFP or 

MSCV-IRES-GFP. Error bars show the the variation in cell counts between individual mice 
receiving the same transplant. D-E) May-Grunwald-Giemsa (MGG) staining of a PB smear (D, 
40X) and a BM cytospin (E, 60X) of a moribund mouse transplanted with Arf-/-/TEL2 BM, 
showing the presence of lymphoid blast cells. F), H), J), Liver sections of a diseased mouse 
transplanted with Arf

-/-
/TEL2 BM, stained with H&E (F), anti-GFP(H) and anti-B220 (J) antibody 

(20x), respectively, revealing GFP+ (brown stain, H), CD45R/B220 (brown stain, J) leukemic 
cells infiltrating the portal tracts and sinusoids of the liver. G), I), K), Spleen sections showing 
the splenic red pulp and follicles. The H&E staining (G) shows the massive infiltration of dark 
staining cells that express GFP (brown stain in I) and the B lymphoid marker CD45R/B220 
(brown stain, K). L) Flow cytometric analysis of cell surface markers of bone marrow cells of a 
diseased Arf

-/-
/TEL2-BM transplanted mouse (TEL2) compared with BM of a mouse 

simultaneously transplanted with Arf
-/-

/MSCV (MSCV) BM, confirming the B-cells lineage 
derivation of the malignant cells in the diseased mouse. The Y-axes indicate expression of 
different cell surface marker plotted against the expression of GFP on the X-axis. Most of the 
neoplastic cells expressed the pan-B cell marker B220 and IgM, indicating a more mature 
population of B-lymphocytes. 
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animals survived without developing disease but their PB did not express GFP, 

indicating that transplantation of the Arf
-/-

/TEL2 bone marrow had failed. Compared to 

mice transplanted with Arf
-/-

 BM or Arf
-/-

/vector BM, Arf
-/-

/TEL2 BM-transplanted mice 

showed an accelerated onset of disease. When moribund, these mice presented with 

peripheral blood leukocyte counts between 2-10.2x10
7
/ml (Fig1C) with blast cells in the 
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PB and BM (Fig 1D-E). All mice showed massive hepatomegaly (Fig1F), splenomegaly 

(Fig1G), bone marrow invasion, and frequent lymphoadenopathy. Histopatology 

confirmed large numbers of GFP
+
 leukemic cells in the bone marrow, liver (Fig 1H), 

spleen (Fig 1I), kidney, and to a lesser extent also in the lymphnodes, lungs, and 

meninges (data not shown). Immunohistochemical staining showed that these cells in 

the different tissues stained negative for TdT, MPO and CD3, but positive for CD45, 

IgM (data not shown), and B220 (Fig J-K). Additional FACS cell surface marker 

analysis of the neoplastic cells in bone marrow, spleen and liver showed that the 

predominant GFP
+
 population was Sca-1

+
, B220

+
 and IgM

+ 
(Fig 1L), with some of the 

sick animals also containing a minor population of GFP
+ 

myeloid cells expressing c-Kit, 

Thy1.2, Gr-1 and Mac-1 (data not shown). We concluded that the mice suffered form 

disseminating B-cell lymphoma and that forced expression of TEL2 in Arf
-/-

 bone 

marrow cells not only accelerated disease onset but also changed the type of disease 

from mostly T cell lymphoma in Arf
-/-

 mice to B cell lymphoma in mice transplanted with 

Arf
-/-

/TEL2 bone marrow.  

TEL2/Arf-/- B-cell leukemia is transplantable 

We next tested whether the B cell lympho-leukemia was transplantable and 

injected 1x10
6
 bone marrow cells (80-90% GFP+) of 4 diseased primary recipients 

each into 4 sub-lethally irradiated secondary recipients (16 mice in total). All mice died 

within 4-7 weeks post-transplant (Fig 2A) of fulminant disease. The leukocyte count in 

the PB reached values >15x10
7
/ml (Fig 2B), with all cells expressing high levels of 

GFP (data not shown). All animals showed massive numbers of neoplastic cells in the 

spleen, liver, kidney, lungs, heart, lymphnodes, thyroid, and brain (data not shown). 

Surface marker analysis of cells in the bone marrow, spleen, and liver showed a 

uniform population of B lymphocytes positive for Sca-1, B220, IgM, CD43, but negative 

for BP1 (data not shown). 

We also analyzed the identity of the antibody light chain within the GFP
+
 

population and found that some cells expressed -chain whereas others expressed -

chain, indicating an at least oligoclonal origin of the transformed cells (data not shown). 

Arf-/-/TEL2 tumor cells show chromosomal aberrations, 
amplification of c-Myc, and increased c-Myc expression. 

We analyzed the karyotypic abnormalities present in malignant Arf
-/-

/TEL2 cells 

in the bone marrow, spleen, and liver of 4 primary, and 2 secondary recipients. All 

samples showed structural chromosomal abnormalities, but numerical aberrations 

were more frequent. Interestingly, between 5%-60% of cells in all samples (average 

30%) showed triplication of chromosome 15 (Fig 2C), a predominant feature present in 

spontaneous and carcinogen-induced murine B-cells lymphomas (Wiener et al., 1981) 
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that also display a Thy1
+
/B220

+
 phenotype (Vasmel et al., 1989). Because many genes 

involved in B-cell proliferation (such as the IL-7R, the Ly6 family of genes, and c-Myc) 

 

Figure 2: Arf-/-/TEL2-induced leukemia is transplantable and overexpresses c-Myc. 

A) Combined Kaplan-Mayer survival plots of secondary recipients transplanted with leukemic 
Arf-/-/TEL2 BM (TEL2) or healthy Arf-/-/MSCV BM (MSCV-I-GFP) (n=16). Compared with the 
development of the primary lympho-leukemia, secondary recipients of leukemic BM showed a 
highly accelerated mortality rate and died between 4 and 7 weeks after transplantation. 
Recipients of control BM did not develop disease. B) WBC counts of moribund secondary 
recipients after receiving leukemic Arf-/- /TEL2 BM (TEL2) or of healthy recipients after 
receiving Arf-/- /MSCV BM killed at the same time (MSCV).  Error bars show the variation in 
WBC counts between different mice within each group. C) Karyotype analysis of cells isolated 
from a diseased mouse, which received a transplant of leukemic Arf-/-/TEL2 BM. All such mice 
displayed chromosomal instability. In this particular case there is a triplication of chromosome 
15, a common feature of these mice, but also a triplication of chromosome 19 and loss of the Y 
chromosome. D) Fluorescent In Situ Hybridization (FISH) of leukemic BM cells in interphase 
using a c-Myc BAC DNA (green signal) and a chromosome 15 specific BAC DNA (red signal) 
as probes. The abundance of green signals indicates amplification of the c-Myc gene in the 
leukemic cells. The chromosomes were counterstained with DAPI (blue). E) FISH analysis of 
BM cells of one of the diseased mice in which a triplication of the c-Myc gene (green signals) 
was present in 30% of the cells with one of the signals not associated with chromosome 15 (red 
signals). In this mouse the third c-Myc copy is present on the chromosome 12. A t(12;15) is a 
common event in mouse B-cell leukemia. F) Western blots of total protein extracts prepared 
from BM, spleen (spl) and PB WBC (PB) of Arf-/- mice transplanted with MSCV-TEL2-IRES-
GFP- (T2) or MSCV-IRES-GFP-transduced BM , showing over-expression of c-Myc protein in 
almost all leukemic samples. As a loading control the detection of GAPDH is shown. 
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are located on chromosome 15, triplication of this chromosome might directly 

contribute to the tumor phenotype. We performed fluorescent in situ hybridization 

(FISH) of malignant interphase and metaphase cells of bone marrow, spleen, and liver, 

using a mouse c-Myc BAC probe and a chromosome 15-specific BAC probe, which 

localizes to band A2. This allowed us to assess whether tumor cells contained c-Myc 

translocations/amplifications and whether the c-Myc copy number coincided with the 

chromosome 15 ploidy. The results confirmed the initial karyotype analysis with c-Myc 

signals present on each of the three chromosomes 15 in 30-85% of the cells, while in 4 

out of 6 samples 2-30% of the cells also showed other abnormalities involving c-Myc. 

Some cells showed 3 signals for c-Myc but only 2 signals for the chromosome 15 

probe (Fig. 2D), while the remainder of the cells contained an aneuploid number of 

signals for both probes with the number of c-Myc signals always higher than those of 

chromosome 15 (Fig. 2E). This indicated an increased c-Myc copy number due to 

triplication of chromosome 15 and additional translocation events. Western blot 

analysis of protein extracts of bone marrow, spleen, or peripheral blood of a number of 

diseased animals showed overexpression of c-Myc as compared to MSCV-

transplanted controls (Fig. 2F). 

Other frequent chromosomal abnormalities in these tumor cells included trisomy 

chromosome 7, and the presence of a 1q+ chromosome, while many other, less 

common, abnormalities were also present (not shown). 

Forced TEL2 expression accelerates cell cycle traverse and 
reduces the apoptotic rate of B-lymphocytes cultured in vitro. 

The long latency period necessary for TEL2 to induce disease in an p19Arf
-/-

 

background or an E -Myc transgenic background (Cardone et al., 2005) suggested 

that yet additional events must occur for disease to emerge. To investigate which 

changes in growth characteristics TEL2 might impinge upon Arf
-/-

 B220
+
 cells, we 

studied their altered growth characteristics in vitro. FACS cell surface marker analysis 

of retrovirus transduced cells cultured for 5 days on S-17 stroma cells in presence of 

IL-7 (Henderson and Dorshkind, 1990; Henderson et al., 1990) confirmed that >90% of 

cells expressed the B-lymphoid markers B-220, CD43, and CD24, but were mostly 

negative for IgM (Fig3A). In addition, the cells were Thy1.2
+
 but did not express CD3, 

CD4, and CD8, identifying these cells as pre-pro-B and early pro-B lymphocytes 

(Hathcock et al., 1992) ; Li et al. 1993 ; (Li et al., 1996) (Allman et al., 1999; Hardy et 

al., 1991; Li et al., 1993; Wells et al., 1994). In some of the diseased mice high Thy1.2 

expression of was also a feature of malignant Arf
-/-

/TEL2 B lymphocytes. After sorting, 

the GFP
+
 population was cultured on plastic or on S-17 stromal layers in the presence 

of IL-7. Irrespective of the presence of the S-17 feeders the TEL2-expressing cultures 

contained up to 10-fold more cells than MSCV-I-GFP vector transduced or non-

transduced Arf
-/-

 pre-B cell cultures within 5 days of culture (Fig 3B). However, the Arf
-/-

x stampa  12-01-2007  15:22  Pagina 74



 TEL2 activates mTOR in B cell leukemia 

  75 

/TEL2 cells remained strictly IL-7 dependent, as withdrawal of this growth factor led to 

demise of the culture (Fig 3C). These data further confirmed that Arf
-/-

/TEL2 B cells 

need additional mutations to become fully transformed. 

To determine what caused the increased proliferation of Arf
-/-

/TEL2 cells we 

determined their cell cycle profile and their rate of apoptosis using flow cytometry. As 

shown in Fig 3D, 5 consecutive days of cell cycle analysis showed that Arf
-/-

/TEL2 

cultures contained twice as many cells in S- (45-55%) and G2/M phase (5-10%) of the 

cell cycle than control cells (15-25% S-phase; 3-5% G2/M phase), indicating an 

accelerated cell cycle traverse. In addition, the amount of fragmented DNA, derived 

from apoptotic cells in Arf
-/-

/TEL2 cultures was much less abundant than in cultures of 

control cells. This difference in apoptotic rate between the 3 cultures was confirmed by 

Annexin V staining showing that the number of dying and dead cells in the Arf
-/-

/TEL2 

pro B cell cultures (Fig. 3E, right panel) was much lower than in the control pro-B cell 

cultures (Fig. 3E, left and middle panel). Thus, TEL2 targets both cell cycle and 

apoptotic regulators causing the increased growth rate of Arf
-/-

/TEL2 pro B cells. 

Protein expression pattern in TEL2 expressing B-lymphocytes 

To canvass proteins involved in these responses we performed Western blot 

analysis of cell lysates of pro-B cells 5 days after Arf
-/-

 bone marrow had been 

transduced with MSCV-TEL2-IRES-GFP (TEL2) or MSCV-IRES-GFP (MSCV). Flow 

cytometry confirmed that the cells expressed B cell markers and lysates of sorted 

GFP
+
 cells were compared with that of non-transduced cells grown under the same 

conditions. Compared to Arf
-/-

 or Arf
-/-

/MSCV control pro-B cells, Arf
-/-

/TEL2 cells 

expressed increased amounts of the cell cycle regulators cyclin D2, cyclin A, cyclin E, 

E2F1, E2F2 and cMyc (Fig. 3F). These cells also expressed more of the apoptotic 

regulator Bcl2 (Fig 3F), but not Bcl-XL (not shown). Myc potently inhibits expression of 

Bcl2 and Bcl-XL an effect apparently counteracted by TEL2, which might contribute to B 

lymphomagenesis (Eischen et al., 2001). Thus, the increased expression of these 

proteins might be directly responsible for the increased growth rate of Arf
-/-

/TEL2 cells. 

Surprisingly, Mdm2 expression was also upregulated (Fig 3F), an effect not seen in 

wild type TEL2 expressing pro-B cells (Cardone et al., 2005). Other critical cell cycle 

regulators, such as p53, Rb, p21 and p27 did not show altered levels of expression in 

Arf
-/-

/TEL2 pro-B cells compared to that in control cells (data not shown). 
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TEL2 directly regulates mTOR expression 

To identify other changes in gene expression that might contribute to the altered 

growth characteristics of Arf
-/-

/TEL2 pro-B cells, we also performed Affymetrix 

microarray analysis, using the MOE 430A chip, of the same cells grown on S17 

feeders for 1 week after Lin
-
 cell transduction. We adopted a three-way comparison 

considering only the subset of genes that showed a different expression level in TEL2-

transduced versus non-transduced and TEL2-transduced versus MSCV-transduced 

pro-B cells, but that did not show changes in MSCV versus non-transduced pro-B cells 

(Fig 4A). This allowed elimination of genes whose expression might be altered due to 

retroviral transduction rather than to TEL2 expression. In total, we selected 217 genes 

that showed at least a 2-fold up-, or down-regulation in the TEL2 expressing pro-B 

cells compared to MSCV transduced cells (see complementary data, Table 1). One of 

the most intriguing upregulated genes was Frap1/mTor, the target of rapamycin 

Figure 3: Forced TEL2 expression stimulates growth and survival of Arf
-/-

 B cells in vitro. 
A) Flow cytometric analysis of cell surface markers present on GFP

+
 Arf

-/-
/TEL2 primary 

leukemia B cells. After transduction with MSCV-TEL2-IRES-GFP or MSCV-IRES-GFP retrovirus, 
BM was cultured on S17 feeder cells in the presence of IL-7. After 5 days the population was 
positive for the pan B cell marker CD45R/B220 and the pro- and pre-B cell marker CD24, The 
cells did not express surface IgM confirming the immature status of these cells. The Arf

-/-
/TEL2 B 

cells consitently expressed Thy1.2. B) Growth curves comparing the proliferation rate of Arf
-/-

 
pro-B cells (GFP

-
) with that of the same cells transduced with MSCV-TEL2-IRES-GFP (TEL2) or 

MSCV-IRES-GFP (MSCV) retrovirus cultured in presence of IL-7 over a period of 5 days. The 
results shown are representative of three independent experiments. C) Comparison of the 
survival rate of Arf

-/-
 pro-B cells (GFP

-
) with that of the same cells transduced with MSCV-TEL2-

IRES-GFP (TEL2) or MSCV-IRES-GFP (MSCV) retrovirus after withdawal of IL-7. Although Arf
-/-

/TEL2 cells appear less affected during the first 24 hours of IL-7 withdrawal, they remain strictly 
growth factor dependent as shown during days 2-5 of culture. D) Flow cytometric analysis of the 
DNA content of Arf

-/-
 pro-B cells (GFP

-
) and the same cells transduced with MSCV-TEL2-IRES-

GFP (TEL2) or MSCV-IRES-GFP (MSCV) retrovirus during cell cycle progression at 5 
consecutive days of culture in presence of IL-7. Arf

-/-
/TEL2 pro-B cells showed a consistent 

increase of the percentage of cells in the S and G2/M phases of the cell cycle. The percentage of 
cells within the G1, S and G2/M phases of the cell cycle were determined by analysis of the 
single-parameter DNA histogram using the computer program ModFit. Black arrows indicate 
fragmented DNA derived from apoptotic cells present in the control samples, which is absent in 
the Arf

-/-
/TEL2 sample. E) TEL2 expression decreases the rate of apoptosis of Arf-null pro-B 

cells. The top 3 panels show the fraction of apoptotic cells (upper and lower quadrant of each 
panel) in Arf

-/-
 pro-B cell cultures (GFP

-
) and in cultures of the same cells transduced with 

MSCV-TEL2-IRES-GFP (TEL2) or MSCV-IRES-GFP (MSCV) retrovirus in the presence of IL-7. 
The rate of apoptosis was measured by the ApoAlert method. Cells were stained with an 
annexin-V-FITC antibody (X-axis) and propidium iodide (Y-axis) and analyzed by FACS. Bottom 
panels show the percentage of GFP

+
 cells in each sample. The results are representative of 

three independent experiments.
 
F) Western blot analysis showing overexpression of E2f-1, E2f-

2, Bcl2, c-Myc, Mdm2, Cyclin-A, -E, and -D2 in Arf
-/-

/TEL2 pro-B cells (right lanes), compared to 
expression of these proteins in Arf

-/-
 (left lanes) and Arf

-/-
/MSCV (central lanes) pro-B cells. 
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serine/theonine kinase, a member of the phosphoinositide-kinase-related kinases 

(PIKK) (Bjornsti and Houghton, 2004b). mTor senses mitogenic stimuli, nutrient 

conditions (Hara et al., 2002; Hardwick et al., 1999; Kim et al., 2002) and ATP (Dennis 

et al., 2001) and is a central regulator of cell size and proliferation (Dennis et al., 2001), 

differentiation (Coolican et al., 1997; Erbay and Chen, 2001; Shu et al., 2002), 

migration (Poon et al., 1996; Sun et al., 2001) and survival (Hosoi et al., 1999; Huang 

Figure 4: TEL2 regulates mTOR expression in Arf
-/-

/TEL2 pro-B cells. 

A) Microarray analysis showing changes in expression of 217 probesets associated with 
TEL2 overexpression in Arf

-/-
 pro-B cells. The heat-map compares the relative levels of 

transcripts present in Arf
-/-

/TEL2 pro-B cells with that in Arf
-/- 

pro-B cells (TEL2 versus 
Unin.) or Arf

-/-
/MSCV pro-B cells (TEL2 versus MSCV). The differences in expression 

levels of these 217 probesets have been corrected for differences in their expression in 
Arf

-/-
/MSCV and Arf

-/-
 pro-B cells (GFP versus Unin.). Log2Ratio values from the pair-wise 

comparisons are plotted in the heat-map. B) Western blot analyses of total protein 
extracts of Arf

-/- 
pro-B cells (GFP

-
), Arf

-/-
/TEL2 pro-B cells (TEL2) and Arf

-/-
/MSCV pro-B 

cells (MSCV), cultured for 1 week in presence of IL-7, showing the levels of expression in 
these 3 samples of mTor, its Ser

2448
- and Ser

2481
-phosphorylated forms (p-m-TOR), 

Thr
389

-phopsphorylated p70S6K (p-p70S6K), 4E-BP1, Raptor, phosphorylated S6 (p-S6, 
Ser235/236), phosphorylated Akt(p-Akt, Ser473) and eIF4E. C) Western blot analysis of 
active translation complexes containing eIF4E and eIF4G recovered from lysates of Arf

-/- 

pro-B cells (GFP
-
), Arf

-/-
/TEL2 pro-B cells (TEL2) and Arf

-/-
/MSCV pro-B cells (MSCV) by 

binding to 7-methyl-GTP-Sepharose beads, Te control shows translation complexes 
recovered form Arf

-/- 
pro-B cells (GFP

-
) on standard Sepharose beads. Compared to 

control samples (GFP
-
, MSCV) the amount of active translation complexes in Arf

-/- 
/TEL2 

pro-B cells is not increased. D) Western blot analyses of total protein extracts of Arf
-/- 

pro-
B cells (GFP

-
), Arf

-/-
/TEL2 pro-B cells (TEL2) and Arf

-/-
/MSCV pro-B cells (MSCV) cultured 

in the presence of IL-7 with or without the mTor inhibitor rapamycin. Compared to 
controls, TEL2 overexpressing Arf

-/- 
pro-B cells contain increased levels of Bad and p-

Bad(Ser112), both in the presence and absence of rapamycin. E) Sequence of a 600 bp 
mTor promoter fragment (Ensembl ID ENSMUSG00000028991) 5’ of the cap site. The 10 
predicted ETS core binding sites are indicated in red, the canonical TEL binding site 
CCGGAAGT in blue. We generated 2 mutant promoter fragments; one in which the 
canonical TEL2 binding site was mutated (1A, first boxed sequence) the second carrying 
a mutation in the downstream GTGGAAGT sequence (1B, second boxed sequence). F) 
Chromatin Immunoprecipitation Assay (ChIP) of fragmented chromatin of GFP

+
 Arf

-/-
 pro-

B cells transduced with MSCV-IRES-GFP or MSCV-TEL2-IRES-GFP retrovirus, using a 
TEL2 antibody (TEL2 Ab), followed by PCR amplification of mTOR promoter sequences. 
The agarose gel shows presence of the mTOR promoter fragment in the TEL2 
immunoprecipitate (TEL2 Ab) of cells transduced with MSCV-TEL2-IRES-GFP retrovirus 
but not in cells transduced with MSCV-IRES-GFP retrovirus. No mTor promoter fragment 
was detected in a ChIP assay without added TEL2 antibody (NoAb). G) Primary Arf

-/-

/TEL2 pro-B-cells were transfected with luciferase reporters driven by the SV40-promoter 
(SV40 promoter), no promoter (basic), the wild type  600bp mTOR promoter (WT), the 1A 
(1A) or the 1B (1B) mutant mTor promoters. Luciferase activity was normalized via co-
transfection of an active Renilla luciferase reporter. Mutation of the canonical TEL2 
binding site in the 1A mutant promoter resulted in significant loss of promoter activity.  

x stampa  12-01-2007  15:22  Pagina 78



 TEL2 activates mTOR in B cell leukemia 

  79 

et al., 2001; Huang et al., 2003) by controlling cellular functions that include translation 

initiation, transcription and protein stability (Inoki et al., 2005; Jacinto and Hall, 2003). 
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The best-studied role of mTOR is its control of translation. First, we verified that 

upregulated transcription of mTor also resulted in increased amounts of mTor protein 

on western blots. As shown in Fig 4B, Arf
-/-

/TEL2 pro-B cells expressed considerably 

more mTor than Arf
-/-

 control cells. In addition, using phospho-specific antibodies 

mTOR also appeared to be activated as it was phosphorylated at both Ser
2448

 

(Abraham, 2002; Jacinto and Hall, 2003) and the autophosphorylation site Ser
2481 

(Peterson et al., 2000). However, Raptor, a constituent of the mTor complex (Hara et 

al., 2002; Kim et al., 2002), and Akt, an upstream effector of mTor phosphorylation 

(Brazil and Hemmings, 2001; Kandel and Hay, 1999) (Scheid and Woodgett, 2001a; 

Scheid and Woodgett, 2001b), showed a comparable level of expression in all samples 

(Fig 4B). We next tested whether 2 important signaling targets of mTor, ribosomal 

p70S6K1 and 4E-BP1 (Fumagalli and Thomas, 2000) were altered. Ribosomal 

p70S6K1 controls the synthesis of ribosomal proteins and 4E-BP1 (eIF4E-binding 

protein 1) controls cap-dependent translation of mRNAs (Bjornsti and Houghton, 

2004a; Bjornsti and Houghton, 2004b). P70S6K1 was phosphorylated at Thr
389

, in Arf
-/-

/TEL2 pro-B cells, indicating that it was active. The amount of 4E-BP1 on the other 

hand was increased but its phosphorylation level was similar to that in the control Arf
-/-

 

pro-B cells (Fig 4B). Surprisingly, phosphorylation of S6 at Ser
235/236

, the downstream 

target of p70S6K1, was not increased in TEL2 cells, indicating that it was not activated. 

Also the amount of eIF4E, which is released upon 4E-BP1 phosphorylation, was not 

altered in Arf
-/-

/TEL2 pro-B cells compared to control cells (Fig. 4B and C). Moreover, 

binding to 7-methyl-GTP-Sepharose beads of translation complexes containing 

activated eIF4E (Gingras et al., 1998), followed by Western blot analysis, showed that 

compared to Arf
-/-

 control cells Arf
-/-

/TEL2 cells neither contained more activated eIF4E, 

nor of the eIF4E-complexed scaffold protein eIF4G (Fig. 4C). Together these data 

indicated that these 2 pathways downstream of mTor were not more active in Arf
-/-

/TEL2 pro-B cells than in Arf
-/-

 control pro-B cells. Because p70S6 K1 was activated in 

Arf
-/-

/TEL2 cells, but not its target S6, we checked the fate of other known p70S6 

targets, such as the pro-apoptotic protein Bad (Harada et al., 2001). Bad is inhibited by 

p70S6K1 through phosphorylation at Ser
112

. Indeed, blotting with both a Bad and a 

phospho-specific Bad antibody confirmed that Arf
-/-

/TEL2 pro-B cells contained more 

Ser
112

-phosphorylated Bad- than control cells (Fig 4D). This inactivation of Bad might 

also contribute to the reduced apoptotic rate of Arf
-/-

/TEL2 pro-B cells. 

mTor is a transcriptional target of TEL2 in Arf-/- pro-B cells. 

Because Akt activity was not increased in Arf
-/-

/TEL2 pro-B cells (Fig. 4B), it can 

not be responsible for the observed upregulation of mTor. Therefore, we investigated if 

TEL2 directly regulates mTOR transcription. Sequence analysis of a 600 bp mTor 

promoter fragment, directly upstream the Cap site revealed the presence of 10 ETS 

core binding sites (Wasylyk et al., 1993), one of which, CCGGAAGT, represents a 

canonical TEL binding site (Fig 4E) (Buijs et al., 2000). Given that this site can also 
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bind TEL2 (Potter et al., 2000) we determined whether TEL2 is bound to this site in Arf
-

/-
/TEL2 pro-B cells, using ChIP (chromatin immunoprecipitation) analysis. As shown in 

Fig. 4F, the central part of the 600 bp promoter fragment (indicated in grey in Fig 4E), 

which contains the CCGGAAGT site, was enriched in the chromatin 

immunoprecipitated with a TEL2 antibody. This suggested that TEL2 is associated with 

the mTOR promoter in Arf
-/-

/TEL2 pro-B cells. We next assessed in transient 

transcription experiments whether a luciferase reporter gene under the control of the 

600bp mTor promoter fragment was responsive to TEL2 expression. We used this 

mTOR promoter-luciferase reporter, a SV40 promoter-luciferase positive control 

reporter, and promoter-less negative control reporter to transiently transfect Arf
-/-

/TEL2 

pro B-cells. Fig. 4G shows that cells transfected with the wild type mTor promoter-

driven luciferase reporter showed almost the same luciferase activity as cells 

transfected with the SV40 promoter driven reporter, whereas the promoter-less 

reporter generated no luciferase activity. To determine if TEL2 responsiveness was 

conferred via the CCGGAAGT ETS binding site or possibly also via the adjacent 

GTGGAAGT ETS site (designated 1A and 1B in Fig 4E, respectively), we also 

generated reporter plasmids with promoter fragments in which the 1A or the 1B ETS 

binding sites were mutated. Compared to the wild type promoter fragment, cells 

transfected with the 1B mutant promoter showed only a slight reduction in luciferase 

activity, while the 1A mutant promoter showed a 3-fold reduction in luciferase activity 

(Fig. 4G). Together these data suggested that TEL2 can directly upregulate the mTor 

promoter, in large part via binding to the 1A TEL site. 

Rapamycin attenuates but does not stop proliferation of Arf-/-/TEL2 
pro-B cells. 

To verify whether mTor upregulation contributed to the increased proliferation of 

Arf
-/-

/TEL2 pro-B cells, we treated these cells, Arf
-/-

, and Arf
-/-

/MSCV control pro-B cells 

for 3 days with the specific mTor inhibitor rapamycin (Gingras et al., 2001). This 

treatment completely halted the proliferation of control cells and considerably slowed 

the growth of Arf
-/-

/TEL2 pro-B cells, as shown by the 3-day growth curve (Fig. 5A) and 

FACS cell cycle analysis (Fig. 5B). This not only suggested that mTOR upregulation 

greatly contributed to the proliferation of Arf
-/-

/TEL2 pro-B cells but also that other 

growth-stimulating effects emanating from TEL2 contribute to their accelerated cell 

cycle traverse. The cell cycle profiles also indicated that rapamycin induced much less 

cell death in the Arf
-/-

/TEL2 pro-B cells than in control cells (fragmented DNA peaks in 

the flow charts, Fig. 5B). This notion was supported by FACS analysis of the three 

different types of cells stained with Annexin-V at day 0 and day 2 of rapamycin 

treatment. This showed that Annexin-V
+
 cells in the Arf

-/-
/TEL2 pro-B cells is half of that 

in control cells both at day 0 and 2 of rapamycin treatment (Fig. 5C). 
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Figure 5:The growth promoting activity of TEL2 in Arf
-/- 

pro-B cells is in part 
dependent on mTor activation. 

A) Growth curves comparing the proliferation rate of Arf
-/-

/TEL2 pro-B cells (TEL2) and Arf
-/-

/MSCV pro-B cells (MSCV) in presence (Rapa) or absence of Rapamycin. Rapamycin 
greatly reduced but did not stop the proliferation of Arf

-/-
/TEL2 pro-B cells. B) Rapamycin 

treatment induced cell cycle arrest of Arf
-/- 

pro-B cells (GFP
-
) and Arf

-/-
/MSCV pro-B cells 

(MSCV) but not of Arf
-/-

/TEL2 pro-B cells (TEL2). Arf
-/-

/TEL2 pro-B cells proliferated slower 
in the presence of rapamycin as shown by the reduced fraction of cells in the S and G2/M 
phases of the cell cycle (compare +rapamycin with –rapamycin). Whereas addition of 
rapamycin induced apoptosis in Arf

-/- 
pro-B cells and Arf

-/-
/MSCV pro-B cells as indicated by 

the appearance of fragmented DNA (black arrowheads) the drug did not induce noticeable 
DNA fragmentation in Arf

-/-
/TEL2 pro-B cells. C) FACS analysis of cultures of Arf

-/- 
pro-B 

cells (GFP
-
), Arf

-/-
/MSCV pro-B cells (MSCV) and Arf

-/-
/TEL2 pro-B cells (TEL2) after 

staining with an annexin-V-FITC antibody shows a significant increase in dead (upper 
quadrants) and apoptotic cells (lower right quadrant) in the control cultures (upper and 
lower left and middle panels) 48 hours after addition of rapamycin, while there is only a 
marginal increase in dead and apoptotic cells in Arf

-/-
/TEL2 pro-B cell cultures (upper and 

lower right panels) upon rapamycin treatment. D) Microarray analysis showing changes in 
gene expression in Arf

-/-
/TEL2 pro-B cells treated for 48 hours or not with rapamycin. All 

differentially expressed genes in this dataset are indicated by filled circles; GCOS analysis 
>2-fold plus “Change Call” (377 Probesets). E) List of differentially expressed genes 
implicated in cell growth and/or apoptosis in Arf

-/-
/TEL2 pro-B cells in the presence or 

absense of rapamycin.  

x stampa  12-01-2007  15:22  Pagina 82



 TEL2 activates mTOR in B cell leukemia 

  83 

Rapamycin-induced differences in gene expression in Arf-/-/TEL2 
pro-B cells. 

To characterize genes responsible for the proliferation of Arf
-/-

/TEL2 pro-B cells 

in the presence of rapamycin, we performed Affymetrix micro array analysis of the cells 

grown in the presence or absence of rapamycin (Fig. 5D and E). Rapamycin-treated 

cells showed down-regulation of anti-proliferative genes like Btg2 (Duriez et al., 2004; 

Rouault et al., 1996), a member of the B-cell translocation gene family (Btg1,2,3 and 

Tob1) (Kuo et al., 2003). Among the up-regulated genes there are several that might 

contribute to the increased proliferation such as the anti-apoptotic gene Bcl2 (Letai et 

al., 2004; Sanchez-Beato et al., 2003) (Oltersdorf et al., 2005), and the anti-apoptotic 

and proliferation stimulating genes Pim 1,2 and 3 (Mikkers et al., 2004), the growth 

factor gene Lif (Estrov et al., 1992) and the growth stimulating gene Notch3 (Jonsson 

et al., 2001). Currently, we do not know how these genes are upregulated in the 

presence of rapamycin or whether indeed they are direct transcriptional targets of 

TEL2.  
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Discussion. 

In previous work we have shown that forced expression of TEL2 in the mouse 

hematopoietic system causes a myeloproliferative disease (Carella et al., 2005). When 

expressed together with cMyc in an E -Myc model of B lymphomagenesis, TEL2 

shortens disease latency (Cardone et al., 2005). In those studies we found that TEL2 

inhibited apoptosis of wild type myeloid-, as well as B-lymphoid of E -Myc 

hematopoietic cells and we speculated that the reduced apoptotic rate in both models 

would enlarge a critical cell pool that, due to its increased cell number, would be more 

vulnerable to additional mutation, hence causing disease or shortening disease latency 

(Cardone et al., 2005; Carella et al., 2005). This scenario seems particularly plausible 

in the E -Myc lymphomagenesis model, in which all E -Myc/TEL2 B cell lymphomas 

indeed acquired additional mutations inactivating the p53 pathway (Cardone et al., 

2005), eliminating the high apoptotic rate of Myc overexpressing B cells (Eischen et al., 

1999). In addition, pro-B cells expressing TEL2 in vitro displayed accelerated cell cycle 

traverse, which coincided with the appropriate changes in expression of cell cycle 

regulators (Cardone et al., 2005). Because both c-Myc and TEL2 overexpression 

stimulate growth of B cells (Cardone et al., 2005), we tested whether TEL2 could 

cooperate with inactivation of the p53 pathway by expressing TEL2 in Arf-null bone 

marrow. Given that TEL2 alone produced myeloid disease (Carella et al., 2005), it was 

surprising that mice transplanted with Arf
-/-

/TEL2 bone marrow developed B cell 

lymphoma rather than acute myeloid leukemia. However, C57Bl/6/129sv Arf
-/-

 mice 

develop T-cell lymphoma (Kamijo et al., 1997) while expression of TEL2 changes the 

type of malignancy from T to B cell lymphoma. This might be caused by a distinct cell 

specificity of TEL2, favoring outgrowth of B lymphoid, rather than T lymphoid 

progenitors. Although we have not analyzed the effects of TEL2 on T cells, 

downstream effects of TEL2 do show cell specificity, given that forced expression of 

the protein in primary mouse embryo fibroblasts does not stimulate their growth (C. 

Carella and G. Grosveld, unpublished results). As shown in Fig. 3E,TEL2 expression 

suppressed the apoptotic rate of Arf
-/-

 pro-B cells, possibly due to increased Bcl2 

expression (Fig. 3F) and inactivation of Bad (Fig 4B). Thus, the combined effects of 

TEL2, faster cycling and reduced apoptosis, would enlarge the pool of pro-B cells, 

which is reflected in pre-leukemic mice by the steady increase of B lymphocytes in the 

peripheral blood (Fig. 1A). Although cultured pro-B lymphocytes expressing TEL2 

contain increased amounts of Myc (Fig 3 F), in Arf
-/-

/TEL2 B cell lymphomas there is an 

apparent selection for cells that amplified the Myc copy number, either by triplication of 

chromosome 15 or by a combination of triplication and additional translocations. These 

findings are relevant given that these features are consistently found in both murine B 

cell lymphomas (Vasmel et al., 1989) and human Burkitt’s lymphomas (Boxer and 

Dang, 2001). Therefore, the end result in Arf
-/-

/TEL2 B cell lymphomas is 

overexpression of Myc in combination with a compromised p53 pathway, which is 
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identical to B cell lymphomas in TEL2/E -Myc mice, which express high levels of Myc 

and eliminate their p53 pathway (Cardone et al., 2005). In addition, the level of Mdm2 

protein is highly increased in Arf
-/-

/TEL2 B cell lymphomas, and it is significant that this 

protein, which silences the pro-apoptotic function of p53(Eischen et al., 2004; Eischen 

et al., 1999), can also exert mitogenic effects through a p53-independent activation of 

E2f1, whose protein level is also increased in our malignant cells (Martin et al., 1995). 

We believe that in both scenarios TEL2 functions as a mediator, which enlarges the 

cell pool by suppressing apoptosis in TEL2/E -Myc B cells and by suppressing 

apoptosis and accelerating cell cycle traverse in Arf
-/-

/TEL2 B cells. Enlargement of 

these cell pools increases the chance of the suitable cooperating mutations to occur. 

It is noteworthy that increased protein levels of E2f-1, E2f-2, Bcl2, cMyc, and 

Cyclins A, E and D2 , common to many types of B cell lymphomas, in Arf
-/-

/TEL2 cells 

must be due to increased protein synthesis or reduced turnover, or both, because in 

our Affymetrix analysis none of encoding mRNAs were upregulated. Therefore, 

increased amounts of mTor mRNA in our Affymetrix arrays, encoding a central 

regulator of translation, was a possible key event, directly responsible for the increased 

amount of the above proteins (Bjornsti and Houghton, 2004b). 

First we investigated whether mTor was a transcriptional target of TEL2 in pro-B 

cells. Based on ChIP analysis with a TEL2 antibody in Arf
-/-

/TEL2 pro-B cells and 

luciferase assays testing the activity of the wild type and mutant 600 bp mTor promoter 

fragment in these cells, we believe that mTor is a direct transcriptional target of TEL2. 

Respective mutation of the two putative TEL binding sites showed that TEL2 

responsiveness was mainly mediated via the 1A (CCGGAAGT) site (Fig. 4E, F). Two 

conclusions can be drawn from this result: 1) TEL2 can act as a transcriptional 

activator, while it functions as a strong transcriptional repressor in transient 

transcription assays on an artificial promoter in NIH3T3 fibroblasts (Kawagoe et al., 

2004; Potter et al., 2000). This suggests that the transcriptional readout of TEL2 is cell-

specific and will be dictated by the transcription complexes with which it associates. 2) 

Given the hematopoietic-specific expression of TEL2 (Potter et al., 2000), 

transcriptional regulation of the mTor gene by TEL2 must be mainly restricted to 

hematopoietic cells. 

Not only transcription of mTor was upregulated, but also the amount of mTor 

protein and its kinase activity (Fig. 4B). Therefore, it was puzzling that the known 

downstream pathways of mTor were only partially activated. Its phosphorylation target 

ribosomal p70S6K1 was activated, but S6, the target of p70S6K1 kinase was not. 

Another target of p70S6K1, Bad (Harada et al., 2001) did show rapamycin sensitive 

increased phosphorylation at Ser
112

 (Fig. 4B), suggesting that a mTor-to-p70S6K1-to-

Bad phosphorylation cascade was operational. In addition, this suggested that 

inactivation of Bad via this phosphorylation step might contribute to the reduced 

apoptosis of Arf
-/-

/TEL2 Pro-B cells. Also the amount of 4EBP1 in Arf
-/-

/TEL2 Pro-B 
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cells was increased but, despite the presence of the vastly increased amount of 

activated mTOR, the overall amount of phosphorylated 4EBP1 was marginally 

increased (middle band in the 4EBP1 blot in Fig. 4B), which would indicate only 

marginal additional activation of translation initiation factor eIF4E. Indeed, binding of 

active translation complexes containing eIF4E and eIF4G to 7-methyl-GTP-Sepharose 

beads was not increased in Arf
-/-

/TEL2 pro-B cells.  Notwithstanding these puzzling 

results, the growth characteristics of Arf
-/-

/TEL2 Pro-B cells was in large part dependent 

on activated mTor, as suggested by the reduced growth rate of the cells in the 

presence of rapamycin. Given that control cells did not proliferate and died in the 

presence of rapamycin it is clear that other growth promoting and anti apoptotic effects 

emanate from TEL2, not involving mTor. These include upregulation of growth 

stimulating (Notch3, Lif) and downregulation of anti-proliferation genes (Btg2) as well 

as upregulation of anti-apoptotic genes (Bcl2, Pim1, 2, and 3). In particular the 

upregulation of Bcl2 and Pim proteins are interesting. Pim proteins have been shown 

to be involved in oncogenic events (Allen et al., 1997; Konietzko et al., 1999; Moroy et 

al., 1991; Verbeek et al., 1991) promoting lymphomagenesis (Amson et al., 1989; Neill 

and Kelsell, 2001; Yoshida et al., 1999) and Pim2 can phosphorylate and inactivate 

Bad independent of mTor function (Fox et al., 2003). Therefore, we can speculate that 

both activation of Bcl2 and inactivation of Bad through Pim proteins provide Arf
-/-

/TEL2 

leukemic cells with an alternative pathway to achieve increased cell-survival 

(Hammerman et al., 2005)(Fig. 6). It is presently unknown whether any of these genes 

are direct transcriptional targets of TEL2, and we have insufficient insight in the mTor 

regulatory network to explain the changes in expression of these genes in Arf
-/-

/TEL2 

pro-B cells in the presence of rapamycin.  Importantly, there are already clinical trials 

using rapamycin in B-CLL patients (Decker et al., 2003) (Hipp et al., 2005; 

Ringshausen et al., 2005) and we believe that understanding the molecular events that 

allow leukemic cells to overcome the rapamycin block, could be relevant to identify 

subgroups of leukemic patients non-responsive to rapamycin. Patients overexpressing 

TEL2 might constitute such a subgroup. 

A recent report may also provide an explanation for the increased protein 

expression of E2F-1, E2F-2, Bcl2, cMyc, and Cyclins A, E and D2 in Arf
-/-

/TEL2 pro-B 

cells in spite of only partial activation of the mTor pathway. It was shown that activated 

S6K1 phosphorylates Pdcd4, an inhibitor of eIF4A (Dorrello et al., 2006). 

Phosphorylated Pdcd4 is a substrate of the ubiquitin ligase SCF and becomes rapidly 

degraded by the proteasome, resulting in increased translation and cell growth.   It will 

be important to determine whether Pdcd4 in Arf
-/-

/TEL2 pro-B cells is indeed 

phosphorylated in an mTor-dependent manner. 

x stampa  12-01-2007  15:22  Pagina 86



 TEL2 activates mTOR in B cell leukemia 

  87 

 

Figure 6: Diagram showing the hypothesized mechanisms of cooperation between TEL2 
forced expression and p19

Arf
 deficiency . 
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Materials and methods. 

Plasmid constructs, retrovirus production, determination of viral titers, 
mouse bone marrow transduction and transplantation. 

MSCV-IRES-GFP and MSCV-IRES-TEL2 retroviral vectors have been described 

elsewhere (Kawagoe et al., 2004). Generation of retroviral stocks, determination of 

viral titers, isolation and transduction of Lin
-
 bone marrow cells, and bone marrow 

transplantation of mice were performed as described (Cardone et al., 2005). The 

retroviral titers ranged between 4x10
5
 - 10

6
 cfu/ml. 

Luciferase constructs for m-Tor promoter transient expression assays were 

prepared using the pGL3-basic vector (Promega, Madison, WI). The 600 bp m-Tor 

promoter fragments were generated by PCR using genomic mouse DNA as a template 

and primers containing a synthetic BglII restriction site at the 5’ end and a HindIII 

restriction site at the 3’ end to create a fragment compatible with cloning into the pGL-3 

vector. To generate promoter fragments containing mutated TEL2 binding sites we 

used site directed mutagenesis employing PCR primers that changed the CCGGAAGT 

sequence (1A in Fig. 4C) into CCAGCTGT, creating a PvuII restriction site. For 

generation of the 1B mutant (1B in Fig. 4C) we followed the same strategy but 

changing the GTGGAAGT sequence into GTACTAGT, creating a SpeI restriction site. 

Primer sequences are available upon request. 

Analysis of diseased mice and tissue preparation 

Moribund transplanted animals were analyzed as described (Carella et al., 

2005). For immunohistohemical analysis the following primary antibodies were used: 

CD3 and myeloperoxidase (MPO) (Dako, Carpinteria, CA); CD34, CD45R/B220, and 

IgM (PharMingen; San Diego, CA); terminal deoxynucleotidyl transferase (TdT; Super 

Techs, Bethesda, MD) and green fluorescent protein (GFP; Molecular Probes, Eugene, 

OR). 

Flow Cytometric Analysis 

Single cell suspensions of bone marrow, spleen and liver cells were washed, 

and incubated for 30 minutes on ice in staining medium (SM: DMEM supplemented 

with 10% fetal bovine serum) containing human gamma-globulin (100mg/ml, Sigma, St 

Loius, Mo) to block Fc receptors.  After a second wash, cells were incubated with a 

titered excess of monoclonal antibody (CD3c, CD4, CD8, CD11b/Mac1, CD19, CD34, 

CD45R/B220, TER119, Gr-1, Sca-1, c-kit, Flt3, all from Pharmingen; anti-m-IgM from 

Southern Biotechnology Associates) on ice for 30 minutes. After a final wash, cells 

were resuspended in SM and analyzed using a BD Biosciences FACS Calibur flow 

cytometer (BD Biosciences, San Jose, CA), selecting single cells by gating on forward 

versus side light scatter. 
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Cell cycle analysis and Annexin V staining 

P19
Arf-/- 

pro-B-cells, GFP
+
 FACS sorted Arf

-/- 
pro-B cells transduced with MSCV-

IRES-GFP or MSCV-TEL2-IRES-GFP were seeded at equal density (5x10
5
 cells/ml) in 

presence of IL-7, and cultured for 5 days. The cell number, their apoptotic rate and 

their cell cycle status were analyzed daily. The experiment was repeated twice in 

triplicate. The percentage of cells in the G1, S, and G2/M phases of the cell cycle were 

determined by analysis of the single-parameter DNA histogram using the computer 

program ModFit. The Annexin-V-isothiocyanate staining and the cell cycle analysis 

were performed as described previously (Cardone et al., 2005). 

Secondary Recipients 

Secondary transplants were performed by tail vein injection of 1x10
6
 freshly 

isolated bone marrow or spleen cells of moribund primary recipients into sub lethally 

irradiated secondary recipients (950 Rad). Diseased mice were analyzed as described 

(Carella et al., 2005). 

Karyotype analysis of malignant cells. 

Single cell suspensions of bone marrow, spleen and liver were cultured as 

described (Carella et al., 2005) and treated with colcemid (50 ng/ml) for approximately 

2 hours to arrest cells in metaphase. Cytospin slides were air dried and banded with 

trypsin-Wright’s stain. 

Fluorescent in situ hybridization (FISH). 

Purified cMyc BAC DNA (218117) or a mouse chromosome 15 specific BAC 

(43G16) were used as probes to determine the copy number of the cMyc gene and the 

ploidy of chromosome 15 in B lymphoma cells. The chromosome 15 BAC DNA was 

labeled with digoxigenin-11-dUTP (Roche Molecular Biochemicals, Indianapolis, IN) 

and the cMyc BAC DNA was labeled with biotin-16-dUTP (Roche Molecular 

Biochemicals) by nick translation. The labeled probes were combined with sheared 

mouse DNA, heat denatured, and hybridized to metaphase and interphase nuclei in a 

solution containing 50% formamide, 10% dextran sulfate and 2xSSC. Probe detection 

was accomplished by incubating the hybridized slides in fluorescein labeled anti-

digoxigenin (Roche Molecular Biochemicals) and Texas-red avidin (Vector 

Laboratories Inc., Burlingame, Ca). The nuclei were then stained with 4,6-diamidino-2-

phenylindole (DAPI) and their chromosome content analyzed. 

In vitro culture, transduction, and transfection of Arf-/- pro-B cells. 

Bone marrow cells were extracted from C57Bl/6/129SVJ p19
Arf-/-

 donor mice 

after 5FU treatment. The Lin
-
 selection and retrovirus transduction were performed as 

described (Cardone et al., 2005). After transduction, cells were plated on an S17 

stromal layer (Saffran and Witte, 92) in RPMI 1640 medium supplemented with 10% 
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fetal calf serum (HyClone), 55 M 2-mercaptoethanol, 2mM glutamine, penicillin 

(100IU/ml), streptomycin (100 g/ml) and IL-7 (50 U/ml), to allow outgrowth of the pro-

B cell population. After 1 week we confirmed their pro-B cell immunophenotype by flow 

cytometry and sorted the GFP
+ 

cells by FACS. 

Arf
-/-

 pro-B cells, transduced with retrovirus or not, were cultured for 3 days in the 

presence of Rapamycin (10g/ml dissolved in DMSO) and a reduced concentration of 

IL-7 (10 U/ml), to avoid possible inhibitory effects of rapamycin treatment (Brown 

Grupp PNas 03). Cell counts, Annexin-V staining and cell cycle analysis were 

performed daily. 

Arf
-/-

/TEL2 pro-B-cells were transfected with luciferase reporter plasmids using 

the Cell Line Optimization Nucleofector
TM

 Kit (Amaxa Biosystem Inc, Gaithersburg, 

MD). Cells were harvested 24h after nucleofection and Luciferase activity was 

measured using the Dual-Luciferase
R
 Reporter Assay System (Promega) following the 

manufacturer’s protocol. 

Western Blots analysis 

Protein extracts of mouse tissues or p19
Arf-/-

 B-cells, transduced with retroviruses 

or not, were obtained using TRI Reagent (Sigma) following the manufacturer’s 

instructions. The total protein concentration was determined using the BCA
TM

 Protein 

Assay Reagent (Pierce Chemical
 
Co., Rockford, IL). Protein (30 g) was separated on 

10% SDS-PAGE gels under reducing conditions and transferred onto a poly-vinylidene 

difluoride (PVDF) membrane (Immobilon PVDF, Millipore, Bedford, MA). The 

membranes were probed with any of the following antibodies: Bcl-X (556361; BD 

PharMingen), recognizing both Bcl-Xl and Bcl-Xs, Bcl2 (554218; BD PharMingen), E2f-

1(32-1400; Zymed Laboratories Inc., South San Francisco, CA), E2f-2 (sc-633), E2f-3 

(sc-878), c-Myc (sc-764), Mdm2 (sc-812), Cyclin A (sc-751), Cyclin E (sc-481), Cyclin 

D2 (sc-181), Cyclin D1 (sc-450), Cyclin D3 (sc-182;.), Gapdh (MAB374; Chemicon 

Int.,Temecula, CA), p53 (Ab-7; Calbiochem, La Jolla, CA.), Rb (sc-102; Santa Cruz 

Biotechnology Inc.), p21 (554085; BD PharMingen), Kip1/p27 (57; Transduction 

Laboratories, Lexingtion, Ky), mTor (26E3) mouse monoclonal hybridoma (produced in 

Peter Houghton’s laboratory), p-mTor(Ser2448) rabbit polyclonal, p-mTor(Ser2481) 

rabbit polyclonal, Raptor rabbit polyclonal, p-p70S6K(Thr389) rabbit polyclonal, p-

ribosomal S6(Ser235/236) rabbit polyclonal (all Cell Signaling Technology, Beverly, 

MA), 4E-BP1 rabbit polyclonal (Zymed Laboratories), Actin mouse monoclonal (Santa 

Cruz Biotechnology, Santa Cruz, CA), p-Akt(Ser473) rabbit polyclonal (Cell Signaling 

Technology), eIF4E mouse monoclonal (BD Transduction Laboratories), p-

Bad(Ser112), Bad, p-eIF4G(Ser1108) (all from Cell Signaling Technology). Western 

blots were incubated with secondary IgG conjugated horseradish peroxidase 

antibodies (Pierce, Rockford,IL). Immunoreactive bands were visualized using Pierce 

SuperSignal chemiluminescence substrate (Pierce, Rockford, IL) and exposure of the 

blots to Kodak BiomaxTM MR film (Eastman Kodak Company, Rochester, NY). 
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Binding of active translation complexes containing eIF4E and eIF4G on 7-
methyl-GTP-Sepharose beads. 

Binding of active translation complexes containing eIF4E and eIF4G to 7-methyl-

GTP-Sepharose beads was performed as described (Gingras et al., 1998). 

Chromatin Immunoprecipitation (ChIP) Assay 

Once obtained, the pro-B populations were sorted for GFP
+
 cells, as described 

above, chromatin was prepared and immunoprecipitated with a TEL2 antibody 

(Cardone et al., 2005) using the Chromatin Immunoprecipitation (ChIP) Assay Kit 

(Upstate Cell Signaling Solutions) following the manufacturer’s instructions. 

Luciferase reporter assays 

The transfection of the primary Arf
-/-

/TEL2 pro-B-cell with the pGL3 vector, or the 

same vector containing the wild type, the 1A, or 1B mutant mTor promoter fragments 

was performed using the Cell Line Optimization Nucleofector
TM

 Kit (Amaxa biosystem 

GmbH, Cologne, Germany), following the manufacturer’s instructions. The cells were 

harvested 24h after nucleofection and Luciferase activity was measured using the 

Dual-Luciferase
R
 Reporter Assay System (Promega) following the manufacturer’s 

instructions. 

Affymetrix GeneChip analysis 

Duplicate experiments were performed to identify changes in gene expression 

associated with TEL2 overexpression. Bone marrow of 5 FU-treated p19
Arf-/-

 mice was 

either mock-transduced (Un-BM) or transduced with MSCV-IRES-GFP (GFP-BM) or 

MSCV-TEL2-IRES-GFP (TEL2-BM) retrovirus as described above. After transduction, 

cells were allowed to recover in culture for 48 hours and were then plated onto S17 

stromal layers and cultured in presence of IL-7 for 1 week. GFP
+ 

B-lymphoid cells of all 

3 cultures were sorted by FACS and RNA was isolated using Trizol (Invitrogen) 

following the manufacturer’s recommendations. 

RNA quality was confirmed by UV spectrophotometry and by analysis on an 

Agilent 2100 Bioanalyzer. Total RNA (10 g) was processed in the St. Jude Hartwell 

Center Core Facility, following the standard Affymetrix protocol 

(http://www.affymetrix.com/support/technical/manual/expression_manual.affx). 

Expression analysis was performed using the Affymetrix MOE-430A GeneChip array. 

Signal values, detection calls and pair-wise GeneChip analyses were performed using 

the default parameters within the statistical algorithm of the Affymetrix GCOS software 

version 1.1. Signal values were scaled to a 2% trimmed mean target value of 500. 

Probeset annotations (March 14, 2005) were obtained from the Affymetrix website 

(http://www.affymetrix.com/analysis/index.affx). 
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In each experiment, three pair-wise comparisons were performed: TEL2-BM vs. 

GFP-BM, TEL2-BM vs. Un-BM, and GFP-BM vs. Un-BM. Stringent selection criteria 

were applied to detect differential expression. Only those probesets with a Log2Ratio>1 

(>2-fold change) and called “Increased/Decreased” (p<0.0045, Wilcoxon signed rank 

test) were retained for subsequent filtering. TEL2-associated changes were identified 

as probesets that displayed differential expression across each of the four 

comparisons of TEL2 vs. GFP and TEL2 vs. Un-BM. 

A third experiment was set up to identify rapamycin-sensitive changes in the 

context of TEL2 expressing B-cells. The Arf
-/-

/TEL2 B-cells were grown in presence or 

absence of Rapamycin (10 g/ml) for 48h and RNA was extracted. As described above, 

the Affymetrix GCOS software was used to perform a pair-wise comparison between 

the two samples. Probesets with a Log2Ratio>1 and with a “change call” (p<0.006, 

Wilcoxon signed rank test) were retained for further evaluation. 
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Supplementary data  

 

The Ets factor TEL2 activates mTor in mouse 

B lymphoid cells and causes B cell lymphoma 

when expressed in Arf-null bone marrow. 

Cintia Carella
1
, Frank Harwood

2
, Geoffrey Neale

3
, Jerold E. Rehg

4
, Peter 

Houghton
2
 and Gerard C. Grosveld

1
 

 

 

Table1 description: 

Differential expression in Arf-null B-cells associated with Tel2 expression. A total 

of 217 probesets had greater than 2-fold change in expression in both Tel2 vs. vector 

and TEL vs. GFP
-
 cells. Signal and fold-change values represent the average of 

duplicate experiments. Full details of the selection criteria are described in materials 

and methods. Gene annotations are from the Affymetrix update on 12/19/05. 
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 TEL2 activates mTOR in B cell leukemia 

 109 

Table2 description: 

Differential expression in Tel2/Arf-null B-cells following rapamycin treatment. 

The selection has been performed comparing the Tel2 transduced Arf-null B-cells in 

culture for 48 hours in presence or not of Rapamycin.  A total of 259 probesets had 

greater than 2-fold change in expression using the selection criteria described in 

materials and methods. Probesets with “Absent” detection calls in both conditions were 

excluded. Gene annotations are from the Affymetrix update on 12/19/05.  
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ORIGINAL ARTICLE

MN1-TEL, the product of the t(12;22) in human myeloid leukemia, immortalizes murine
myeloid cells and causes myeloid malignancy in mice

C Carella1,3, J Bonten1,3, J Rehg2 and GC Grosveld1

1Department of Genetics and Tumor Cell Biology, St Jude Children’s Research Hospital, Memphis, TN, USA and 2Department
of Pathology, St Jude Children’s Research Hospital, Memphis, TN, USA

MN1-TEL is the product of the recurrent t(12;22)(p12;q11)
associated with human myeloid malignancies. MN1-TEL func-
tions as an activated transcription factor, exhibiting weak
transforming activity in NIH3T3 fibroblasts that depends on
the presence of a functional TEL DNA-binding domain, the
N-terminal transactivating sequences of MN1 and C-terminal
sequences of MN1. We determined the transforming activity of
MN1-TEL in mouse bone marrow (BM) by using retroviral
transfer. MN1-TEL-transduced BM showed increased self-
renewal capacity of primitive progenitors in vitro, and pro-
longed in vitro culture of MN1-TEL-expressing BM produced
immortalized myeloid, interleukin (IL)-3/stem cell factor-depen-
dent cell lines with a primitive morphology. Transplantation of
such cell lines into lethally irradiated mice rescued them from
irradiation-induced death and resulted in the contribution of
MN1-TEL-expressing cells to all hematopoietic lineages, under-
scoring the primitive nature of these cells and their capacity to
differentiate in vivo. Three months after transplantation, all
mice succumbed to promonocytic leukemia. Transplantation of
freshly MN1-TEL-transduced BM into lethally irradiated mice
also caused acute myeloid leukemia within 3 months of
transplantation. We infer that MN1-TEL is a hematopoietic
oncogene that stimulates the growth of hematopoietic cells, but
depends on secondary mutations to cause leukemia in mice.
Leukemia advance online publication, 29 June 2006;
doi:10.1038/sj.leu.2404298
Keywords: chromosome translocation; myeloid leukemia;
oncogene; ETS transcription factor; retroviral transfer

Introduction

Recurrent chromosome translocations in human leukemia
frequently produce tumor-specific fusion proteins involving
TEL (ETV6), a member of the E26 transforming sequence (ETS)
family of transcription factors.1,2 TEL’s N terminus contains a
pointed (PNT) domain, which interacts with other proteins and
defines a subclass of ETS proteins.3,4 TEL’s PNT domain
mediates homo-oligomerization,5 but also associates with the
PNT domains of FLI16 and TEL27 and recruits the transcriptional
corepressor N-Cor.8 The domain between the PNT and DNA-
binding domains recruits the corepressors Sin3a and SMRT.9,10

These interactions are responsible for TEL’s transcriptional
repressor function. TEL’s C-terminal ETS domain binds to DNA
at sites (e.g., 50-GGAA-30) typical of those bound by ETS
proteins.11,12

Translocations affecting TEL, mostly results in fusion of the
PNT domain with various partners,1,13 including the phospho-
tyrosine kinases (PTKs) platelet-derived growth factor-b recep-
tor, ABL,14 janus kinase 215 and ARG16 in hematopoietic
diseases, and NTRK3 in some solid tumors.17,18 Oligomeriza-
tion via the PNT domain constitutively activates the PTK activity
of the fused partner protein,15,19,20 thereby tumorigenically
transforming hematopoietic cells.19,21–24 In other PNT-domain
fusions, such as TEL-acute myeloid leukemia1 (AML1), recruit-
ment of mSin3A via the PNT domain creates a dominant-
negative transcription factor.10,25–27 The PNT domain may
similarly affect other transcription factor fusion partners,
including TEL-MDS1 (TEL-EVI1)28 and TEL-CDX2.29

TEL fusion proteins that retain the ETS DNA-binding moiety
are rare.11,30–32 The first identified, MN1-TEL1, is the product of
the t(12;22)(q12;q11) associated with human myeloid malig-
nancy. MN1-TEL activates transcription of reporter genes via
TEL-binding sites.11 MN1 was discovered through its involve-
ment in a t(4;22)(p16;q11) in meningioma.33 MN1, a nuclear
protein, is a transcriptional coactivator11 recruited by the
retinoic acid coactivators (RAC)3 and p300 in retinoic acid
receptor a (RARa) retinoid X receptor-(RXR)-mediated transcrip-
tion.34 In NIH3T3 fibroblasts, MN1-TEL exhibits transforming
activity that depends on DNA binding via TEL and on
N-terminal transactivating sequences and C-terminal sequences
in MN1. We showed that mice expressing MN1-TEL under the
control of Aml1 regulatory sequences develop T-cell lymphoma
after a long latency.35 Nonetheless, these mice can also develop
AML provided they obtain the appropriate secondary mutation.
AML results when MN1-TEL is combined with overexpression of
HOXA9, a combination also found in patients with the
t(12;22).35,36 Here we assessed the in vitro and in vivo
transforming activity of MN1-TEL in mouse BM, using a
retroviral transduction/BM transplantation approach and identi-
fied MN1-TEL sequences necessary for transformation of
myeloid cells.

Materials and methods

Plasmids and retrovirus production
MN1-TEL cDNA was cloned into the unique EcoR1 cloning site of
murine stem-cell virus-internal ribosome entry site-green fluores-
cent protein (MSCV-IRES-GFP) plasmid, and high-titer virus
(5! 105 – 1.5! 106cfu/ml) was obtained as described pre-
viously.37 As a control, we used empty MSCV-IRES-GFP vector.

BM extraction, isolation of Lin BM cells and retroviral
transduction, and BM transplantation
BM was harvested from the femurs and tibiae of male, 8- to
12-week old, FVB-J, C57BL/6J, or C57BL/6/129svJ mice treated

Received 26 January 2006; revised 21 April 2006; accepted 18 May
2006

Correspondence: Dr GC Grosveld, Department of Genetics and Tumor
Cell Biology, St Jude Children’s Research Hospital, 332 North
Lauderdale, Memphis, TN 38105, USA.
E-mail: gerard.grosveld@stjude.org
3These authors contributed equally to this work
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& 2006 Nature Publishing Group All rights reserved 0887-6924/06 $30.00
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with 5-fluorouracil (5FU) (Sigma, St Louis, MO, USA). Isolation
of Lin" cells, viral transduction and BM transplantation into
female, 8- to 12-week-old C57BL/6J or C57BL/6/129svJ reci-
pients was performed as described previously.37

Hematopoietic colony-forming assays and LTC-IC
assays
These assays were performed as described previously.38

Cell cycle analysis by FACS
Cell cycle analysis of MMT3 and vector control cells was
performed as described previously.37

In vitro differentiation of MMT3 cells
MMT3 cells in liquid culture were induced to differentiate by
adding dimethyl sulfoxide (DMSO) (1 and 2%), vitamin D3
(1! 10"8mol/l), trichostatin A (10 mg/ml), retinoic acid (1mM)
or one of the following growth factors: granulocyte colony-
stimulating factor (G-CSF), 5 ng/ml; granulocyte–macrophage
colony-stimulating factor (GM-CSF), 30 ng/ml; macrophage
colony-stimulating factor (M-CSF), 5 ng/ml; IL-3, 50 ng/ml;
erythropoietin (EPO), 2U/ml; and IL-6, 50 ng/ml (Preprotech,
Rocky Hill, NC, USA). Cell-surface markers (Sca1, cKit, Mac1,
Gr1, Thy1, B220, CD3, CD4, CD8), identified by fluorescence-
activated cell sorting (FACS) at 0, 3 and 7 days of culture, were
compared with those on MMT3 cells cultured with IL-3, IL-6 and
stem cell factor (SCF) (50 ng/ml).

Secondary BM transplantation
Mice (C57BL/6/129svJ) were given a single sublethal dose (8Gy)
of radiation and the next day were injected in the tail vein with
5–8! 105 primary leukemic BM or spleen cells. Mice were
inspected daily for signs of hematopoietic disease.

Analysis of diseased mice and tissue preparation
All animal procedures were conducted in accordance with the
US Public Health Service Policy on Humane Care and Use of
Laboratory Animals. Retro-orbital cavity blood was collected
monthly and analyzed by FACS to determine the percentage of
GFP-expressing white blood cells (WBCs), erythrocytes and
platelets. Blood counts were obtained with a Hemavet 3700
instrument (Drew Scientific, Cumbria, UK), and Giemsa-stained
blood smears were examined for abnormal cells. Moribund
animals were killed by CO2 asphyxiation after methoxyflurane
inhalation and analyzed as described previously.37

FACS of Hoechst 33342-stained side population cells
Exponentially growing MMT3 cells were harvested in phos-
phate-buferred saline (1! 106 cells/ml) containing 10mg/ml
Hoechst 33342 (Sigma) and incubated for 90min at 371C. To
positively identify the SP cells, the ATP binding cassette
transporter inhibitor reserpine (10 mM; Sigma) was added to a
small aliquot of cells. Cells were counterstained with propidium
iodide to mark dead cells and sorted in a BD Biosciences FACS
Vantage SE/DiVa instrument (BD Biosciences, San Jose, CA,
USA) using laser excitation at 488 and 357nm. Hoechst-33342
fluorescence was collected at 424722nm (blue) and 4640 nm
(red). A bivariate display of red versus blue fluorescence was
used to identify SP cells, which were absent from the aliquot
incubated with reserpine. Viable GFPþ cells displaying

diminished Hoechst fluorescence were collected as the SP cells;
all other cells were collected as the non-SP cells.39

Results

MN1-TEL increases the self-renewal capacity of
primitive hematopoietic progenitors
Lin" BM from 5FU-treated FVB mice was transduced with
MSCV carrying an IRES sequence linked to the GFP gene,
without (control) or with MN1-TEL cDNA. FACS 2 days later
revealed GFP expression in 30–40% of MN1-TEL-transduced
and 50–60% of control BM cells (Figure 1a). After 2 weeks in
methylcellulose (MC), MN1-TEL-expressing cells showed a
proliferation advantage over vector-transduced cells, either
owing to a shorter cell cycle traverse, reduced apoptosis or
both. Serial replating increased this advantage: the percentage of
GFPþ MN1-TEL-expressing cells steadily increased to 100%,
whereas that of GFPþ control cells remained constant (around
60%; Figure 1a). Although the colony-forming activity of control
cells was exhausted at MC3 or MC4, MN1-TEL-transduced cells
produced colonies for two additional cycles (Figure 1b).
Colonies produced by MN1-TEL-expressing cells were GFPþ ,
larger and more densely packed than those of control cells,
especially at later rounds of MC assays (Figure 1c). After 4, 5 or 6
weeks of long-term-culture-initiating cell culture (LTC-IC),40 the
effect of MN1-TEL on colony formation was more pronounced:
MN1-TEL cultures in initial MC assay produced, on average, 35
times as many colonies as did control cultures (Figure 1d). The
Sca1þ /cKitþ /Lin" progenitor phenotype of MN1-TEL cells
(determined by cell-surface marker analysis; not shown)
suggested expansion of a primitive hematopoietic progenitor.
However, MN1-TEL did not immortalize cells: no colonies were
produced beyond MC 6 following LTC-IC. The same results
were obtained with C57BL/6 BM.

When after 5 weeks of LTC-IC, cells were put in liquid culture
in the presence of any of the following cytokines: IL-6, IL-3, SCF,
GM-CSF, G-CSF, M-CSF, EPO or IL-3þ SCFþ IL6, they prolif-
erated in the presence of IL-3þ SCF þ IL6 (Figure 1d), IL-3 and
somewhat with SCF (not shown). Removal of cytokines
completely inhibited proliferation (Figure 1e).

MN1-TEL sequences necessary for increased
proliferation in LTC-IC assays
MN1-TEL’s ability to transform NIH3T3 fibroblasts depends
on TEL-mediated DNA binding and functions provided by
N-terminal and C-terminal MN1 sequences. We assessed these
sequences’ involvement in growth promotion of BM by
examining the effects of MN1-TEL mutants described pre-
viously:11 MN1-TEL-DBDM (does not bind TEL-binding sites);
MN1-TELD229–1223 (retains N-terminal part of MN1
sequences interacting with p300 and Rac3);34 the complemen-
tary mutant MN1-TEL12–228 (retains C-terminal part f MN1
sequences interacting with p300 and Rac3); MN1-TELD692–
1123 (retains all sequences interacting with p300 and Rac3);
and MN1-TELD18–1123 (missing almost all MN1 sequences).
We transduced Lin" BM cells with MSCV-IRES-GFP virus-
expressing mutant MN1-TEL, wild-type (WT) MN1-TEL
or neither. Western blotting of sorted GFPþ cells with a
C-terminal TEL antibody11 showed the expression of all
MN1-TEL proteins, although the MN1-TEL, MN1-TEL-DBDM
and MN1-TELD692–1123 were expressed at a lower level
than MN1-TEL12–228 and MN1-TELD229–1223 and at much
lower level than MN1-TELD18–1123 (Figure 1d). Given that
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vector-transduced and non-transduced BM produce few MC
colonies after LTC-IC, this analysis allowed us to identify MN1-
TEL mutants that retained the capacity to stimulate BM self-
renewal activity.
Combining data from two LTC-IC experiments after 4, 5 and 6

weeks of LTC-IC, we determined average numbers of colonies in
serial MC assays (Figure 1d). All cells producing colonies in

serial MC assays were GFPþ . Only MN1-TEL, MN1-TELDBDM
and, to a lesser extent, MN1-TELD692–1123 cells showed
increased self-renewal activity. Cells expressing D229–1223,
D12–228 and D18–1123 MN1-TEL produced few colonies
(Figure 1d). We concluded that N-terminal MN1 sequences
but, surprisingly, not DNA binding by the ETS domain are
important for MN1-TEL’s growth-promoting activity.

Figure 1 MN1-TEL promotes growth of mouse myeloid progenitors. (a) Mouse BM was transduced with MSCV-MN1-TEL-IRES-GFP or MSCV-
IRES-GFP and serially plated into MC1–6. The percentage of GFP-expressing cells at each round of plating is shown. (b) The numbers of MN1-TEL
or vector-transduced colonies at each round of MC culture are shown. (c) Left two panels compare the size of an MC3 colony of vector cells (left)
and MN1-TELþ cells (right). Right two panels show immunofluorescence micrographs of a non-transduced GFP" colony (left) and a GFPþ /MN1-
TELþ colony (right) in the same MC2 culture. (d) Colony-forming capacity of BM cells transduced with retrovirus encoding MN1-TEL, MN1-TEL
mutants or GFP alone, in serial MC assays (LMC1–6) after 4, 5 or 6 weeks of LTC-IC (LMC1–6). A visual representation of the MN1-TEL mutants is
shown at the right of the bar graph. Green represents MN1 sequences and interrupting white boxes represent deleted sequences. Gray represents
TEL sequences with the PNT domain in orange and the ETS DNA-binding domain in yellow. The small red box indicates the mutation in the ETS
domain of the DBDM mutant. The Western blot underneath shows expression of the different MN1-TEL mutants in transduced GFPþ BM cells
(indicated by asterisks at the right of the bands) detected with a C-terminal peptide TEL antibody. The glyceraldehyde-3-phosphate dehydrogenase
loading control is shown underneath. (e) Mouse BM transduced with MSCV-MN1-TEL-IRES-GFP was cultured in LTC-IC for 5 weeks, followed by
liquid culture with IL-3, SCF and IL-6 (4 weeks). Growth curves were determined in the presence of IL-3/SCF/IL-6 (MN1-TELþGF) or without
added growth factors (MN1-TEL-GF).
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BM cells expressing MN1-TEL can be immortalized
in culture
Confirming our previous finding that BM from MN1-TEL knock-
in mice can be immortalized,35 BM cells transduced with MN1-
TEL retrovirus became immortalized upon 3–5 weeks of liquid
culture with IL-3, IL-6 and SCF using cells recovered from the
MC 1 (2 weeks) after 4 weeks of LTC-IC. May–Grunwald–
Giemsa staining revealed small, blast-like cells and large cells
with basophilic granules all expressing GFP and MN1-TEL
(Figure 2a, c and e). Immunophenotyping by FACS showed they
were cKitþ , Scaþ , partly Thy1þ and Mac1low (Figure 2c). We
obtained numerous morphologically and immunophenotypi-
cally similar MN1-TEL cell lines from independently transduced
BM isolates and examined one line, MMT3, for its cell cycle
characteristics and cytokine dependence. FACS cell cycle
analysis after 2 months of liquid culture of MMT3 cells and
vector-transduced cells showed that 44.5% of the former and
only 3% of the latter were in the S-phase (Figure 2b), indicating
that MN1-TEL cells cycled much faster than vector control cells.
We next cultured MMT3 cells with IL-3; SCF; IL-6; M-CSF;
G-CSF; GM-CSF; EPO; IL-3, IL-6 or SCF (Figure 2d). Cells
proliferated well with IL-3, to some extent with SCF, vigorously
with IL-3þ SCFþ IL-6, and slowly with EPO. Non-proliferating

cells were remarkably resistant to apoptosis induced by cytokine
withdrawal and died slowly (half the population in 5 days). We
compared the level of antiapoptotic BclXL and Bcl2 proteins
expressed in MMT3 and control cells cultured for 2 months
(Figure 2e). MMT3 cells expressed a moderately increased
amount of BclXL and a substantially increased amount of Bcl2.

Transplantation of MMT3 cells into lethally
irradiated mice
Attempts to induce differentiation of MMT3 cells in vitro by
adding vitamin D3, retinoic acid, DMSO, trichostatin A or
various cytokines (IL-6, G-CSF, GM-CSF, M-CSF, IL-7 and IL-2)
failed and the cells remained immunophenotypically and
morphologically unchanged (not shown). We next tested
whether leukemia developed in lethally irradiated mice given
MMT3 cell transplants. Surprisingly, transplantation rescued all
(n¼ 10) recipients from radiation-induced BM failure; two
mock-transplanted irradiated control mice died at 12 and 14
days after irradiation, respectively. One month after transplanta-
tion, the WBC counts of recipients were low (0.26–1.04! 103/
ml) but reached normal values (2.3–7.5! 103/ml) after 2 months;
50–70% of cells were GFPþ at each time point (Figure 3a and

Figure 2 MN1-TEL-expressing BM cells are immortalized during liquid culture. (a) FVB BM was transduced with MSCV-MN1-TEL-IRES-GFP,
seeded into LTC-IC, harvested 4 weeks later and plated in MC. Two weeks later, MC colonies were seeded into liquid cultures containing IL-3/SCF/
IL-6 and 5 weeks later cell lines containing morphologically variable cells emerged (left panel). Immunolabeling of these cells with the 2F2
monoclonal MN1 antibody revealed nuclear localization of MN1-TEL (lower right panel). Nuclear staining with 40,60-diamidino-2-phenylindole
(DAPI) is shown (upper right panel). (b) FACS cell cycle analysis of MMT3 cells and vector-transduced cells, both in culture for 2 months, showed
that MMT3 cells cycled faster. (c) Cell-surface marker analysis of the MN1-TEL cell line MMT3. (d) MMT3 cells are growth-factor dependent, as
shown by proliferation assays with different cytokines. (e) MMT3 cells and WT FVB BM cells grown in liquid culture with IL-3/SCF/IL-6 for 8 weeks
were lysed and the proteins immunoblotted with anti-MN1, anti-actin, anti-BclX and anti-Bcl2 antibodies.
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b). Gating and immunophenotyping by FACS of the peripheral
blood of one transplant recipient killed at 2 months determined
the proportions of erythrocytes (3%), B cells (53%), T cells (7%),

granulocytes (68%), macrophages (83%) and platelets (35%)
expressing GFP (Figure 3c). This analysis also identified
GFPþ bright and GFPþ dim populations (Figure 3c, right). The

Figure 3 Hematopoiesis in lethally irradiated mice is temporarily restored by transplantation with MMT3 cells. (a) Average percentage of GFPþ

WBCs in the peripheral blood of 10 MMT3-transplanted mice 1, 2 and 3 months after transplantation. (b) Average WBC counts of MMT3-transplant
recipients 1, 2 and 3 months after transplantation. Error bars indicate variation among mice. (c) Cell-surface marker analysis of peripheral blood from a
mouse 2 months after transplantation with MMT3 cells (left eight panels). At the right is the GFP fluorescence in the peripheral blood of MMT3-
transplant recipients, showing separate peaks representing GFPþdim and GFPþ bright lymphocyte and monocyte populations and GFPþdim

granulocytes. (d) Cell-surface marker analysis of BM from the same mouse 2 months after transplantation with MMT3 cells, also showing GFPþdim

and GFPþbright populations. (e) MN1-TEL immunofluorescence in BM from a mouse 2 months after transplantation with MMT3 cells, using an MN1
antibody. Left, DAPI staining; middle, MN1-TEL detected with an MN1 antibody; right, vector-transduced BM stained with an MN1 antibody.
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former mainly consisting of cKitþ cells that differentiated
partially into immunoglobulin (Ig)Mþ B cells and more poorly
into Mac1þ monocytes/macrophages and Gr1þ granulocytes.
The GFPþ dim population (cKit/Sca1) differentiated better into
Mac1þ , Gr1þ and B220þ WBCs. The BM of this mouse (15%
Sca1þ , 61% cKitþ , 4% Cd34þ , 9% Thy1þ , 9% B220þ , 2%
IgMþ , 22% Mac1þ and16% Gr1þ ) showed a GFPþ bright

population consisting of cKitþ and partly Sca1þ /Thy1þ cells
and the GFPþ dim population consisting of Mac1þ /Gr1þ cells
IgM". (Figure 3d). Some cells in each population were B220þ

but IgM". Immunolabeling of cytospin preparations of this BM
revealed 60% of cells expressing MN1-TEL (Figure 3e). FACS of
eye blood from the nine remaining MMT3-transplant recipients
also showed the two GFPþ populations (Figure 3c, right). To
avoid killing more transplant recipients, we deduced the
percentage of GFPþ cells in their peripheral blood from the
FACS scatter plots. On average, erythrocytes were 3% GFPþ

and platelets, 50%. The aberrant size distribution of the MMT3-
derived cells precluded the determination of GFPþ contribu-
tions to the different WBC lineages.

Development of myeloid leukemia after transplantation
Myeloid leukemia (Sca1þ , Mac1þ , cKitdim) developed in all
mice 10–13 weeks after transplantation (Figure 4a and b).
Peripheral WBC counts were high (100–180! 103/ml) and
GFPþ cells had invaded most organs, including liver, spleen,
kidney, lung, heart and caused brain hemorrhages (Figure 4c).
The invading blast cells had distorted or effaced the architecture
of the spleen, liver and femoral BM in association with
dysplastic megakaryocytes. Immunohistochemical staining of
paraffin sections showed that blasts in the BM and the invaded
organs were positive for cKit, CD34, with some also positive for
GATA1 (not shown). The blasts were negative for CD3, CD45,
TdT, Mac2, lysozyme, myeloperoxidase and Factor 8. These
features would be consistent with a myeloid leukemia with
megakaryocyte maturation.

To determine which cells of the MMT3 cell line rescued the
lethally irradiated mice, we incubated cells with Hoechst 33342
and sorted the unstained, GFPþ side population (SP) by FACS
(Figure 5a). SP cells variably constituted 5–25% of all GFPþ

cells. In normal BM, the SP is highly enriched in hematopoietic

Figure 4 Transplantation with MMT3 cells causes myeloid leukemia in mice. (a) Kaplan–Meier survival curve for nine lethally irradiated mice
given transplants of MMT3 cells (MN1-TEL) and five lethally irradiated mice given transplants of MSCV-IRES-GFP-transduced BM (Vector). (b)
Representative cell-surface marker analysis of BM from one of nine mice in which leukemia developed 3 months after transplantation with MMT3
cells. (c) Tissue sections (hematoxylin–eosin stain) from a mouse in which leukemia developed 3 months after transplantation with MMT3 cells.
Left, hemorrhage in the brain (!100 magnification), a common feature in these mice; middle, liver with invading tumor cells (! 200); right, spleen
with leukemic cells (!200).
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Figure 5 Lethally irradiated mice receiving transplants of MMT3 SP cells are rescued from radiation death but develop leukemia. (a) Left, a culture
of fast-growing MMT3 cells was stained with Hoechst 33342 dye and sorted by two-color FACS (red and blue fluorescence) to separate stained
(non-SP) and unstained (SP, boxed area in the left panel) cells, all expressing GFP (right). (b) Cytospin preparations of the MMT3 non-SP and SP
fractions obtained in (a). (c, left) Kaplan–Meier survival curve for lethally irradiated mice given transplants of non-SP (n¼2) and SP (n¼4) MMT3
cells, rescuing them from hematopoietic failure. Non-SP recipients died of leukocytopenia 8 and 9 weeks later, whereas SP recipients died of
myeloid leukemia between 15 and 18 weeks later. (Right) Leukemic cells were isolated from a moribund MMT3-transplant recipient and liquid
cultured with IL-3/SCF/IL-6 (MMT3þ ) or without growth factors (MMT3"), and leukemic cells isolated from a recipient of MSCV-MN1-TEL-IRES-
GFP BM (see Figure 6) were liquid cultured with IL-3/SCF/IL-6 (MN1-TELþ ) or without growth factors (MN1-TEL").
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stem cells.39 The MMT3 SP consisted of mainly small cells with
scant cytoplasm; non-SP cells were larger, with more abundant
cytoplasm (Figure 5b). Transplantation of SP-MMT3 cells into
lethally irradiated recipients (n¼ 4) recapitulated the results
obtained with unsorted MMT3 cells; mice were rescued from
radiation-induced death but succumbed to myeloid leukemia
(cKitþ /Sca1þ /Mac1þ dim) 3.5–4 months after transplantation
(Figure 5c, left). Non-SP MMT3 cell transplants also prolonged
the lives of lethally irradiated recipients, but these mice (n¼ 2)
died of leukopenia 2 months after transplantation (Figure 5c, left
panel). Clearly, the SP-MMT3 cells included primitive cells with
repopulating and leukemogenic activity, whereas the non-SP
cells included non-leukemic, short-term repopulating cells.

Next, we addressed whether individual cells in the MMT3 cell
line are multipotent or whether multiple sub-populations, each
with limited differentiation capacity, together conferred multi-
potentiality. We sorted six single SP-MMT3 cells, and expanded
each to a total of 3! 106 cells. These were then transplanted
into 6 lethally irradiated mice (5! 105 cells/mouse), but all 36
recipients died 11–14 days later. This result might indicate that
the repopulating cells represent a minor subset (o17% of cells)
of the SP-MMT3 cells or that the cells were no longer
multipotent owing to expansion in culture.

Leukemic BM from MMT3-transplant recipients grew in
culture without added cytokines, indicating that a secondary
mutation(s) had occurred that rendered these cells IL3/SCF-
independent (Figure 5c, right panel). The MMT3 leukemia was
fully transplantable into secondary sublethally irradiated mice
and caused disease (Sca1þ , Mac1þ , cKitdim Thy1dim) within
3–4 weeks after transplantation.

Mice receiving freshly transduced MN1-TEL BM also
develop myeloid leukemia
We also tested whether C57BL/6/129svJ mice receiving
transplants of C57BL/6 BM freshly transduced with MSCV-
MN1-TEL-IRES-GFP (MN1-TEL-BM, 10 mice) or MSCV-IRES-
GFP (vector-BM, 10 mice) developed leukemia. MN1-TEL-BM
recipients died of myeloid leukemia 8–14 weeks after trans-
plantation. No disease developed in vector-BM recipients, but
two mice died of graft failure (Figure 6a). MN1-TEL-BM
recipients had high peripheral WBC counts (1.5–2.0! 105/ml),
and most had brain hemorrhages. The peripheral blood
contained blasts and poorly differentiated neutrophils; the BM
consisted of monomorphic myeloid cells (Figure 6b). Leukemic
cells invaded the spleen, liver, lungs, kidney, intestines and
lymph nodes, showing mitotic figures in all organs. Leukemic
BM of moribund animals was phenotypically variable: two
samples contained GFPþ dim and GFPþ bright cell populations
(Figure 6c, lower panels); the remainder contained a single
GFPþ dim population (Figure 6c, upper panels). In mice with two
GFPþ populations, GFPþ dim cells were mainly cKitþ dim,
whereas the GFPþ bright population was mainly Mac1þ /Gr1þ /
Thy1þ . The leukemic cells in the BM of the other eight mice
were cKitþ /Mac1þ /Thy1þ with 10% of the cells also Gr1þ .
Transplantation of the leukemic BM into sublethally irradiated
secondary recipients generated fulminant myeloid leukemia
19–27 days after transplantation. Leukemic BM from these
mice proliferated without added growth factors (Figure 5c),
although not as vigorously as MMT3-derived leukemic cells.

Discussion

Previously, we established that MN1-TEL has weak transforming
activity in NIH3T3 fibroblasts11 and causes hematopoietic

disease in mice when expressed from the endogenous Aml1
locus.35,36 Here we have shown that retrovirally expressed
MN1-TEL has a more potent transforming activity than MN1-TEL
expressed by Aml1. Retrovirally expressed MN1-TEL increased
the self-renewal activity of myeloid progenitors, but serial MC
cultures were always finite. Other oncogenic fusion transcrip-
tion factors such as MLL-AF9 and AML1-ETO show similar
activities.41,42 Immortalized, cytokine-dependent cell lines
arose only when MN1-TEL BM cells were expanded in liquid
culture. Because the number of cells in liquid culture vastly
exceeds that in MC assays, they are more likely to undergo
secondary mutations causing immortalization. We have not yet
attempted to identify these mutations.

Although cells of the MN1-TEL cell line MMT3 were
impervious to differentiation stimuli in vitro, they displayed a
remarkable capacity to differentiate along various lineages after
transplantation into lethally irradiated mice. Although we
analyzed the BM of only one mouse 2 months post-transplanta-
tion (i.e., 1 month before leukemia developed; Figure 3c), we
obtained similar results from the peripheral blood of the nine
remaining mice. However, results from recipients of MMT3-SP
cells suggest that leukemic cells are not inherent to the cell line
but are generated after transplantation. Given that SP cells
(5! 105 cells/mouse) were transplanted directly after FACS and,
in this experiment, composed 25% of the MMT3 population,
these mice received 2.5 times as many primitive cells as did
mice receiving non-sorted MMT3 cells (8! 105 cells/mouse). If
the MMT3 line had contained leukemic cells, one would expect
leukemia to have developed more rapidly in SP-MMT3-
transplant recipients. However, there was no significant
difference in disease onset (14–18 weeks versus 10–13 weeks;
Figures 4a and 5c), consistent with the notion that MMT3 cells
underwent additional leukemic events after transplantation. This
suggestion was further supported by the observation that MMT3
cells recovered from the leukemic mice had become IL3-
independent (Figure 5c), which could only have happened by
additional mutation.

We noticed that during a year in culture, the surface markers
of the MMT3 cells changed from 100% cKitþ /Sca1þ to 60%
also Mac1þ , a phenotype similar to that of the MMT3 leukemia
cells in diseased mice. Leukemic cells in these mice might
therefore have arisen from this sub-population of cells in the
MMT3 line.

We addressed whether individual cells of the MMT3 line were
multipotent or whether multiple sub-populations have limited
differentiation capacity. The finding that none of the six single-
cell-derived MMT3-SP cell batches rescued transplant recipients
from radiation-induced death suggested either that only a small
sub-population (o17%) of SP-MMT3 cells have repopulating
activity, or that the cells’ multipotency was lost during
expansion to a population of 3! 106 in culture. In either case,
the outcome prevented us from determining whether individual
MMT3-SP cells are multipotent.

Because MN1-TEL stimulates proliferation and slightly im-
pairs differentiation of BM cells,36 a second genetic event is
needed to immortalize them in vitro. Full leukemic transforma-
tion required at least one additional genetic event to confer
cytokine independence. Therefore, full transformation requires
two or more events in addition to MN1-TEL expression.

We mapped MN1-TEL sequences essential for stimulation of
myeloid cell proliferation and found one substantial difference
from the findings of a similar analysis in NIH3T3 fibroblasts:11

growth of myeloid progenitors in LTC-IC was independent of a
functional TEL DNA-binding domain. We believe that MN1 is
responsible for this finding, because it alone also promotes
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growth of myeloid cells of a slightly different phenotype in LTC-
IC (J Bonten, C Carella and G Grosveld, unpublished observa-
tion) but not of fibroblasts.11 Therefore, the growth-stimulating
effect of MN1-TEL-DBDM may be mediated entirely by its MN1
sequences. Further analysis is needed to resolve this issue.

We therefore concentrated on the contribution of the different
MN1 (rather than TEL) sequences to the oncogenicity of the
fusion protein. The growth-stimulating activity of MN1-TEL
depended largely on the N-terminal 228 amino acids of MN1, a
domain also important for interaction with p300 and Rac3 in

Figure 6 Myeloid leukemia develops in mice given transplants of MN1-TEL-expressing BM. (a) Kaplan–Meier survival curve of 10 lethally
irradiated C57BL/6/129svJ mice that received C57BL/6 BM transduced with MSCV-MN1-TEL-IRES-GFP (MN1-TEL) and 10 mice that received
MSCV-IRES-GFP-transduced BM (Vector). (b) The peripheral blood of moribund MN1-TEL leukemic mice contained blast cells and partially
differentiated neutrophils (upper left panel). Leukemic cells filled the BM (upper right panel) and invaded most organs such as spleen (lower right
panel) and the liver (lower left panel). Note the presence of numerous mitotic figures in the BM and spleen (black arrowheads). (c) Cell-surface
marker analysis of BM from mice with MN1-TEL leukemia. Upper row, a single GFPþ dim population; lower row, GFPþ dim and GFPþ bright cell
populations.
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HepB3 cells.34 Consistent with p300 and Rac3 interactions
within the first 520 N-terminal amino acids of MN1,34 MN1-
TELD692–1123 retained some transforming ability. However,
whether loss of transforming activity of MN1-TELD12–228 is
owing to the loss of interaction with these two coactivators
remains to be determined. Experiments with additional MN1-
TEL mutants and co-immunoprecipitation studies will resolve
this issue.

MN1’s contribution to oncogenicity also depends on
sequences between amino acids 693 and 1123. Interestingly,
this region contains an arginine-methyltransferase target se-
quence (amino acids 939–947).43 Arginine methylation is
important for transcriptional activation of nuclear receptor
transcription complexes,44 and given MN1’s interaction with
RARa-RXR dimers,34 this methylation sequence might contri-
bute to MN1’s function, a possibility we are investigating.

Finally, our finding that myeloid leukemia develops in mice
given transplants of MN1-TEL-transduced BM (reported here)
but not in mice carrying an MN1-TEL knockin construct35

may be explained by the much higher level of expression of
MN1-TEL mediated by the retroviral vector than by the Aml1
knockin allele.

In summary, we have further established that MN1-TEL is a
bona fide hematopoietic oncogene and that its function strongly
depends on sequences in the N-terminal domain of MN1. We
are determining which proteins interact with this domain and
which downstream target genes mediate the growth-promoting
effects of MN1-TEL in hematopoietic cells.
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Summary 

The gene encoding the transcriptional coactivator MN1 is target of the reciprocal 

chromosome translocation (12;22)(p13;q12) in some patients with acute myeloid 

leukemia (AML). In addition, expression array analysis showed that MN1 was 

overexpressed in AML specified by inv(16), in some AML overexpressing EVI1, and in 

some AML without karyotypic abnormalities. Here we describe that mice receiving 

transplants of bone marrow overexpressing MN1 rapidly developed myeloproliferative 

disease. This bone marrow also generated myeloid cell lines in culture. By mimicking 

the situation in human inv(16) AML, forced coexpression of MN1 and Cbf -SMMHC 

rapidly caused AML in mice. These findings identify MN1 as a highly effective 

hematopoietic oncogene and suggest that MN1 overexpression is an obligatory and 

defining cooperative event in human inv(16) AML.  

 

Significance 

The MN1 gene is the target of a rare t(12;22) in patients with myeloid leukemia 

and encodes a transcriptional coactivator. The gene is also overexpressed in 12% of 

AML patients characterized by the chromosome 16 inversion, which encodes the 

CBF -SMMHC fusion oncoprotein. Here we show that mice overexpressing MN1 in the 

bone marrow rapidly develop myeloproliferative disease, whereas mice overexpressing 

MN1 in conjunction with Cbf -SMMHC rapidly develop AML. Overexpression of MN1 is 

also found in other types of AML. Our results indicate that MN1 overexpression is an 

obligatory step in the development of inv(16) AML and future pharmacological 

interference with MN1 function might provide a novel therapeutic approach for the 

treatment of AML in which this protein is overexpressed. 

x stampa  12-01-2007  15:23  Pagina 137



Chapter 5 

138 

Introduction 

The MN1 gene was identified as the target of a unique balanced t(4;22) in a 

patient with meningioma and was thought to be a prime candidate for the meningioma 

tumor suppressor gene on chromosome 22 (Meningioma 1; Lekanne Deprez, 

1991)(Lekanne Deprez et al., 1991), but its relation to meningioma remains 

unresolved. MN1 encodes a nuclear protein of 150kD, highly conserved among 

vertebrates and no homology to other proteins. Its amino acid (aa) sequence 

suggested a role in transcription(Lekanne Deprez et al., 1995), which was confirmed 

by the observation that MN1 activated transcription of the Moloney Sarcoma Virus long 

terminal repeat (MSV-LTR) in transient transcription assays(Buijs et al., 2000). MN1 

appeared to activate transcription of the LTR via direct repeat sequences (DR5) that 

bind RAR-RXR nuclear receptor dimers. MN1 interacts with RAR-RXR most probably 

via the protein intermediates p300 and RAC3 (also known as nuclear receptor 

coactivator 3, NCOA3) (van Wely et al., 2003). RAC3 and MN1 are transcription 

coactivators(Chen et al., 1997; Leo and Chen, 2000), and coexpression of MN1 with 

p300 or RAC3 synergistically activated the transcriptional activity of RAR-RXR dimers 

in the presence of retinoic acid(van Wely et al., 2003). MN1’s co-activation activity is 

not restricted to the RAR-RXR nuclear receptor, as MN1 expression inhibits 

proliferation of an osteoblast cell line via coactivation of the vitamin D receptor(Sutton 

et al., 2005). 

MN1 is also the target of a balanced t(12;22) in myeloid leukemia(Buijs et al., 

2000), in which its first exon is fused to TEL, a member of the family of ETS 

transcription factors(Golub et al., 1994). Although TEL generally functions as a site-

specific transcriptional repressor(Chakrabarti and Nucifora, 1999; Fenrick et al., 1999; 

Lopez et al., 1999), MN1-TEL moderately activates transcription of TEL-responsive 

reporters in transient transfection experiments and the fusion protein has transforming 

activity in both NIH3T3 fibroblasts(Buijs et al., 2000) and mouse bone marrow (BM) 

(Carella et al., 2006). The transforming activity in NIH3T3 cells critically depends on 

DNA binding via the ETS domain of TEL and on the presence of the N-terminal 500 

amino acids (aa) of MN1(Buijs et al., 2000). In BM cells the transforming activity also 

depends on the MN1 N-terminal 500 aa but it is independent of DNA binding(Carella et 

al., 2006). 

Conditional MN1-TEL knock-in mice that expressed the gene under the control 

of Aml1 regulatory sequences developed lymphoid or myeloid malignancies depending 

on the nature of the cooperating mutations(Kawagoe and Grosveld, 2005a; Kawagoe 

and Grosveld, 2005b). This confirmed MN1-TEL’s role as a bona fide hematopoietic 

oncogene. 
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Interestingly, the association of MN1 with myeloid malignancy might go beyond 

MN1’s involvement in the t(12;22), as the gene was found to be overexpressed in 

inv(16)(p13;q22) AML(Ross et al., 2004; Valk et al., 2004), in some AMLs 

overexpressing the transcription factor EVI1(Valk et al., 2004) and in some adult AMLs 

without karyotypic abnormalities(Heuser et al., 2006). In the latter case overexpression 

of MN1 was associated with a worse prognosis and a shorter survival rate(Heuser et 

al., 2006). 

Inv(16) is the chromosomal hallmark of one of two core binding factor (CBF) 

leukemias and encodes the CBF -SMMHC fusion protein(Liu et al., 1995). CBF 

consists of a CBF /RUNX1 heterodimer that regulates genes associated with lymphoid 

and myeloid differentiation(Otto et al., 2003). The RUNX1 subunit is the target of the 

recurrent t(8;21) in AML, giving rise to a RUNX1-ETO fusion protein. Both CBF -

SMMHC and RUNX1-ETO have a dominant-negative effect on CBF function(Castilla et 

al., 1996; Okuda et al., 1996). This was concluded from the observation that Runx1 

and Cbfb knockout mouse embryos and heterozygous Runx1-ETO or Cbfb-SMMHC 

knock-in embryos all die at midgestation due to the inability to switch to definitive 

hematopoiesis(Okuda et al., 1996; Sasaki et al., 1996; Wang et al., 1996). Mice 

chimeric for Runx1-ETO or Cbfb-SMMHC show alterations in multilineage 

differentiation of hematopoietic cells in the BM but do not spontaneously develop 

myeloid leukemia(Castilla et al., 1999; Higuchi et al., 2002). Consistent with the notion 

that leukemogenesis is a multi-step process(Look, 1997), such mice only developed 

myeloid disease after treatment with the chemical carcinogen N-ethyl-N-nitrosourea 

(ENU)(Castilla et al., 1999; Higuchi et al., 2002). Retroviral mutagenesis of Cbfb-

SMMHC chimeric knock-in mice identified the cooperating zinc finger genes Plag1 and 

PlagL2(Castilla et al., 2004), which are also overexpressed in 20% of human AML 

samples with PLAGL2 preferentially increased in inv(16) leukemia samples(Landrette 

et al., 2005).  

Here we report that mice receiving transplants with BM overexpressing MN1 

rapidly developed a fatal myeloproliferative disease, while mice receiving transplants 

with Cbfb-SMMHC chimeric BM overexpressing MN1 developed acute myeloid 

leukemia. In addition, Q-RT-PCR analysis of AML samples confirmed MN1 

overexpression in inv(16) patient samples but elevated expression was also found in 

other pediatric AML samples. Our data suggest that MN1 overexpression is an 

important secondary mutation in inv(16) AML but its upregulation may also contribute 

to the development of other AML subtypes. 
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Results 

Inv(16) leukemia cells overexpress MN1. 

Expression profiling of pediatric and adult patients with AML (Ross et al., 2004; 

Valk et al., 2004) has shown that BM from patients with inv(16) AML, who express the 

CBF -SMMHC fusion protein, expressed up to 10 times more MN1 mRNA than normal 

BM. Inv(16) AML is often of the French-American-British classification(Bennett et al., 

1991) (FAB)-M4 subtype with eosinophilia. Also AML patients overexpressing EVI1 

showed upregulated expression of MN1(Valk et al., 2004). We therefore assessed the 

level of MN1 expression in 41 pediatric AML BM samples in comparison with 

expression in normal BM using Q-RT-PCR. This group included: 1 acute 

undifferentiated leukemia (FAB-M0), 4 acute myeloblastic leukemias [FAB-M1; 1 with 

t(8;21)], 5 acute myeloblastic leukemias with maturation [FAB-M2; 4 with t(8;21), 1 

other], 7 acute promyelocytic leukemias [FAB-M3; all t(15;17)], 16 acute 

myelomonocytic leukemias [FAB-M4; 7 inv(16) with eosinophilia, 2 inv(16) without 

eosinophilia, 1 t(8;21) with eosinophilia, 6 other M4)], 6 acute monocytic leukemias 

(FAB-M5, all MLL translocations), and 2 megakaryoblastic leukemias (FAB-M7). All 9 

inv(16) samples, with or without eosinophilia, showed between 17 to112-fold higher 

MN1 expression than normal BM, whereas only 1 non-inv(16) FAB-M4 sample showed 

Figure 1: MN1 expression in AML patient samples and mouse bone marrow. 

A) Upper panel; BM RNA of pediatric AML FAB-M4 patients [16 in total, of which 10 with 
eosinophilia (E), including 9 samples with inv(16), 1 with t(8;21) and 6 with other karyotypic 
abnormalities (other)] were analyzed for expression of MN1 by Q-RT-PCR. Expression 
levels are depicted as fold expression of MN1 in normal human BM (BM). The upper row of 
the 6 fluorescence micrographs shows indirect immunofluorescence detection of MN1, 
using BM cytospin preparations stained with an MN1 monoclonal antibody of the 2 inv(16) 
patients (indicated by red labels in the upper panel) and a healthy individual. The lower row 
shows control staining of the same cytospin preparations using secondary antibody only. 
B) BM RNA of 41 pediatric patients with AML [1 FAB-M0 (olive green), 4 FAB-M1 (orange), 
5 FAB-M2 (purple), 7 FAB-M3 (blue), 16 FAB-M4 (red), 6 FAB-M5 (green), and 2 FAB-M7 
(black)] with the indicated chromosomal translocations or other karyotypic abnormalities 
(other) were analyzed for expression of MN1 by Q-RT-PCR. Expression levels are depicted 
as fold expression of MN1 in normal human BM. “MLL” signifies samples with different 
chromosomal translocations involving the MLL gene. “E” indicates eosinophilia. C) Mouse 
BM (FVB) was FACS sorted into fractions representing the hematopoietic stem cells 
(HSC), the common myeloid progenitors (CMP), the common lymphoid progenitors (CLP), 
the granulocyte/macrophage progenitors (GMP), and the megakaryocyte/eryrthrocyte 
progenitors (MEP) using the forward scatter of differentiation lineage-negative cells, 
expressing or not of the cell surface markers c-Kit, Sca-1, Fc -receptor and CD34. RNA of 
each fraction was extracted and subjected to Q-RT-PCR to determine the level of Mn1 
expression in relation to Hprt. Expression levels are depicted as fold expression of Mn1 in 
unfractionated mouse BM (BM). Lin-ve BM represents a sample containing all progenitors 
depleted of cells expression lineage markers. 
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medium to high MN1 expression (Fig 1A, B and supplementary data Fig 1A). The 6 

other FAB-M4 samples showed no (1 t(8;21)M4E) or only moderate upregulation (1.7-

2.9 fold; Fig 1A, B). Also the 4 FAB-M1 leukemia samples showed significant MN1 

upregulation (4.1-25.3 fold) (Fig.1B and supplementary data Fig.1B). Of the remaining 
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21 AML samples 9 showed moderately increased expression (2.2-8 fold) of MN1, 

including all M2 samples, 4 of which carried the t(8;21), whereas 12 samples showed a 

lower than 2-fold increase in MN1 expression (Fig. 1B). The latter group contained 5 of 

6 FAB-M5 samples harboring MLL translocations, 5 of 7 t(15;17) FAB-M3 samples, 1 

of 2 FAB-M7 samples, and 1 FAB-M0 sample. 

These results not only confirmed overexpression of MN1 in inv(16) FAB-M4 but 

also indicated that the level of MN1 overexpression substantially exceeded that 

determined by expression profiling.  

Because Plag1 and PlagL2 overexpression was shown to cooperate with Cbfb-

SMMHC in a mouse model of inv(16) leukemia(Castilla et al., 2004) and PLAGL2 

expression was preferentially upregulated in BM samples of inv(16) leukemia 

patients(Landrette et al., 2005), we tested whether there was a direct correlation 

between the levels of MN1 and PLAGL2 expression in our 9 inv(16) patient samples. 

Q-RT-PCR for PLAGL2 mRNA showed that only 1 FAB-M4E sample showed a 4.4-fold 

higher expression of PLAGL2 than control BM, whereas the other 8 samples showed 

equal or lower PLAGL2 expression than control BM (supplementary data Fig. 1A). This 

result suggested that upregulation of MN1 and PLAGL2 are not functionally linked and 

appear to be independent genetic events in inv(16) leukemia.  

Because Valk and coworkers(Valk et al., 2004) also reported overexpression of 

MN1 in leukemia samples with upregulated EVI1 expression, we repeated the Q-RT-

PCR analysis of the same 41 AML samples for EVI1 expression. Only 5 samples 

showed increased expression of this gene (supplementary data, Fig. 1C), and 2 of 

those (1 FAB-M7 and 1 FAB-M1) also showed upregulated expression of MN1. These 

data suggest that upregulation of MN1 does occur in EVI1 leukemia but is not an 

obligatory step.  

Using an MN1 monoclonal antibody(Buijs et al., 2000), immunofluorescence 

detection of MN1 in the BM cells of 2 inv(16) patients and a healthy subject (fold 

overexpression of MN1 mRNA patient1: patient2: normal BM = 50: 25: 1; Fig. 1A) 

indeed confirmed increased speckled staining in the nucleus of tumor cells of patient1 

and slightly increased staining in cells of patient2 (Fig. 1A). The same cells incubated 

with secondary antibody alone showed no staining (Fig. 1A).  

To determine whether MN1 upregulation might be the result of gene 

amplification, we employed Q-PCR of DNA of the same 2 inv(16) patient samples that 

we used for MN1 immunofluorescence to determine whether their MN1 copy number 

was higher than that in normal BM DNA However, no amplification could be detected 

(not shown).  
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Expression of mouse Mn1 in selected mouse BM progenitor 
populations. 

Because MN1 is upregulated in inv(16) leukemia, we wished to address which 

hematopoietic progenitor cells normally express this gene. To answer this question we 

used mouse BM and followed the method of Akashi and coworkers(Akashi et al., 2000) 

to sort populations representing the hematopoietic stem cell (HSC), the common 

myeloid progenitor (CMP), the common lymphoid progenitor (CLP), the 

myeloid/erythroid progenitor (MEP) and the granulocyte/monocyte progenitor (GMP) 

(Fig. 1C). We then determined the amount of Mn1 mRNA present in these fractionated 

cell populations by using quantitative (Q)-RT-PCR with whole mouse BM RNA as a 

control. This showed that Mn1 mRNA was present at a similar level in whole BM and in 

the HCS fraction, while Lin
-
 BM cells were 2-fold enriched in Mn1 expressing 

progenitors. Analysis of the other fractions showed that this signal was derived from 

the GMP fraction in which Mn1 expression is 300-fold higher that in whole BM, 

whereas there is no Mn1 expression in the CMP, CLP or MEP fractions. This result 

opens the possibility that Mn1 expression in the GMP might be involved in the 

expansion of the progeny of this fraction and that forced overexpression of MN1 

causes this progenitor population to proliferate abnormally. 

Overexpression of MN1 in mouse BM stimulates outgrowth of 
myeloid cells and produces immortalized cell lines. 

We reported that MN1-TEL transforms NIH3T3 fibroblasts, an activity dependent 

on both the presence of MN1 N-terminal sequences and a functional TEL DNA binding 

domain (Buijs et al., 2000). Paradoxically, the self-renewal activity of mouse BM cells 

was equally stimulated by MN1-TEL as by an MN1-TEL mutant with a non-functional 

ETS DNA binding domain, as measured by colony forming assays in semisolid 

medium(Carella et al., 2006). To determine if MN1 alone also possessed this capacity, 

BM transduced with murine stem cell virus (MSCV) expressing MN1-IRES-GFP (30% 

GFP
+
)(Fig 2A) was plated in methylcellulose and its colony forming activity compared 

with that of BM transduced with MSCV-IRES-GFP. In the first methylcellulose assay 

(MC1), MSCV-MN1-IRES-GFP-transduced cells gave twice as many colonies as 

vector-transduced BM (Fig. 2A). Upon serial replating (MC2, MC3, MC3), the number 

of MN1
+
 BM and vector BM colonies dropped to equal numbers in the MC2 but the 

number of MN1
+
 colonies increased drastically in the MC3 and MC4 whereas vector-

transduced cells produced no colonies. Fluorescence-activated cell sorting (FACS) 

analysis of cells recovered from the MC3 culture revealed that >95% of cells were 

GFP
+
 (not shown). This together with the observation that MN1-overexpressing cells 

recovered from the MC1 grew rapidly in liquid culture, and were 98% GFP
+
 within 4 

weeks of culture, strongly suggested that MN1 overexpressing cells acquired a distinct 

growth advantage over that of non-transduced cells. Immunofluorescence analysis with 
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an MN1 antibody showed mostly nuclear, punctate MN1 signals in all cells (Fig. 2B), 

whereas vector transduced cells showed only faint GFP fluorescence encoded by the 

retroviral vector. 

 Figure 2: Mouse BM 
transduced with MN1 
retrovirus shows 
increased proliferation 
and generates cytokine-
dependent cell lines. 

A) The map at the top 
depicts the structure of 
the MSCV-MN1-IRES-
GFP retroviral vector 
used to transduce mouse 
BM. The MN1 open 
reading frame (MN1) is 
fused to IRES-GFP (I-
GFP), flanked by MSCV 
long terminal repeat 
(LTR) sequences. As 
control we used the same 
vector not containing MN1 
sequences. R1 indicates 
EcoRI sites flanking the 
insert. BM form 
C57Bl/6/129svJ mice, 
transduced with MSCV-
MN1-IRES-GFP (MN1) or 

MSCV-IRES-GFP 
retrovirus (vector), were 
serially plated in 
methylcellulose semi-solid 
medium (MC1, MC2, 
MC3, MC4) and at each 
step colonies were 
counted after 2 weeks of 
culture. At each serial 
replating 10

3
 cells from 

one MC were plated into 
the next MC and colonies 
were scored 2 weeks 
later. MN1 expressing BM 
replated much better than 
vector-transduced and 

produced more colonies BM. B) Fluorescence micrograph of an MSCV-MN1-IRES-GFP-
transduced cell line and MSCV-IRES-GFP-transduced BM stained with an MN1 antibody. C) 
Flow cytomeric analysis by FACS of the DNA content of propidium iodide stained nuclei from 2 
independent MSCV-MN1-IRES-GFP-transduced cell lines (MN1) and MSCV-IRES-GFP-
transduced BM (Vector), cultured for 2 months after transduction of the BM. MN1-
overexpressing cells proliferate much faster than vector-transduced BM cells. 
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Cell surface marker analysis showed that the cells were cKit+/Sca1+/Mac1+ with 

10% of the cells also expressing Gr1 (not shown). Cells cultured this way were 

immortalized but their growth and survival was strictly dependent upon addition of the 

cytokines IL3 and SCF to the culture (not shown). Cell cycle analysis using flow 

cytometry of 2 independent MN1 cell lines and vector-transduced BM, all cultured for 2 

months after transduction, showed that the fraction of MN1-transduced cells in the S- 

and G2/M-phase of the cell cycle was drastically increased compared to that of vector-

transduced cells (Fig. 2C). This showed that MN1 overexpression strongly stimulates 

cell cycle traverse. 

Mice receiving transplants of BM transduced with MN1 retrovirus 
rapidly develop myeloproliferative disease (MPD).  

We next tested the effect of MN1 overexpression on mouse BM in vivo. Lethally 

irradiated C57Bl/6/129svJ mice (n=14) died of fulminant hematopoietic disease 5-8 

weeks after receiving transplants of 3-5 x 10
5
 MSCV-MN1-IRES-GFP-transduced (Fig 

3A) C57Bl/6 Lin-
 
BM cells (60% GFP

+
), whereas mice receiving transplants with the 

same number of MSCV-IRES-GFP C57Bl/6 Lin-
 
BM cells (60% GFP

+
) (n=5) remained 

healthy (Fig. 3A). The average white blood cell count (WBC) of diseased mice was 1.5 

x 10
7
/ml, and their peripheral blood contained large numbers of neutrophils, neutrophil 

precursors and some blast-like cells (Fig. 3B) all expressing GFP (Fig. 3E). 

Southernblotting of the BM DNA of 3 of the diseased mice probed with IRES-GFP 

showed multiple integrations of the MSCV-MN1-IRES-GFP retrovirus (Fig. 3C), 

suggesting that the disease was oligoclonal. Malignant cells invaded the spleen, liver, 

and brain (Fig. 3D), and most of the mice died of brain hemorrhage that was probably 

caused by the high WBC. FACS analysis showed that BM and spleen were each 

composed of a single population of Mac1
+
/Gr1

+
 cells (Fig. 3E). Together, these 

features suggested that the mice suffered from a myeloproliferative disease (MPD).  

Transplantation of pooled 5 x 10
5
 BM cells from 2 of the diseased MN1 mice into 

5 sublethally irradiated secondary recipients recreated the same fulminant MPD 18-23 

days later (not shown), suggesting the disease was cell-autonomous. We conclude 

that MN1 is a highly efficient oncogene that strongly promotes the growth of 

myelomonocytic cells but does not substantially inhibit their differentiation. 
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Figure 3: Mice receiving transplants of MSCV-MN1-IRES-GFP-transduced BM rapidly 
develop myeloproliferative disease (MPD). 

A) Survival curve of lethally irradiated C57Bl/6 mice receiving transplants of syngeneic BM 
transduced with MSCV-MN1-IRES-GFP (MN1, n=14) or MSCV-IRES-GFP (Vector, n=5) retrovirus. 
Mice receiving MN1-overexpressing BM died of hematopoietic disease between 34-52 days after 
transplantation, whereas vector-transplanted mice remained healthy. B) Peripheral blood smear of 
a representative moribund MN1-BM-transplanted mouse (average WBC is 150 x 10

7
/ml) showing 

large numbers of partially and fully differentiated neutrophils and some blast-like cells (arrow), 
showing the mice suffered of a myeloproliferative disease (MPD). C) Southernblot of BM DNA of 3 
MPD mice overexpressing MN1, digested with EcoRI and hybridized with a GFP probe. All three 
samples contain multiple retroviral integrations, suggesting that the disease is oligoclonal. D) 
Malignant cells invaded the spleen and liver. All diseased mice showed brain hemorrhages, often 
causing sudden death. Secondary recipients receiving transplants of diseased BM rapidly (18-23 
days) developed the same disease (not shown). E) FACS analysis of cell surface markers of MPD 
BM showing that cells were GFP+/Gr-1+/Mac-1+ and some also expressed Sca-1 and/or Thy-1. 
Cells were negative for c-Kit. 
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Coexpression of Cbf -SMMHC and MN1 causes AML in mice.  

Because MN1 is consistently overexpressed in inv(16) AML, we tested whether 

its overexpression in BM of mice expressing Cbf -SMMHC cooperates to cause AML. 

Chimeric mice generated with Cbfb-SMMHC knock-in ES cells do not spontaneously 

develop hematopoietic disease and hematopoietic cells expressing the Cbf -SMMHC 

fusion protein fail to differentiate and remain in the BM(Castilla et al., 1999). We used 

Cbfb-SMMHC ES cells to generate 10 highly chimeric mice. Lin- BM cells from these 

mice were transduced with MN1-IRES-GFP retrovirus (30% GFP
+
) and transplanted 

into 12 lethally irradiated C56Bl/6 recipients. As a control, we transplanted chimeric BM 

transduced with control IRES-GFP retrovirus (45% GFP
+
) into 6 irradiated recipients. 

Given that all our human inv(16) samples overexpressed MN1, it was possible that 

transcription of MN1 is regulated by Cbf -SMMHC. Therefore, we determined by Q-

RT-PCR whether the level of endogenous Mn1 mRNA in MSCV-IRES-GFP-transduced 

chimeric mouse BM was more abundant than in similarly transduced wild type BM. As 

shown in Fig. 4A Mn1 expression in both types of BM was similar, opposing the 

possibility that Cbf -SMMHC directly or indirectly upregulated Mn1 expression in 

mouse BM.  

All 12 mice receiving inv(16)/MN1 transplants died of hematopoietic disease 58-

68 days after transplantation, whereas the 6 mice given vector-transduced inv(16) 

transplants remained well (Fig. 4B). Leukemic cells infiltrated the spleen and lymph 

nodes and effaced their normal architecture (not shown). In addition myeloid cells 

infiltrated the liver, brain, uterus, lungs, stomach and heart (not shown). Southern blot 

analysis of BM DNA of 3 of these mice with a GFP probe showed multiple integrations 

(Fig. 4C), suggesting the disease was oligoclonal (see discussion). The diseased mice 

could be divided into those whose peripheral blood contained a predominance of blast 

cells (Fig. 4B) and those whose peripheral blood contained partly blast cells and partly 

more differentiated myeloid cells (neutrophils and neutrophil precursors). Cell surface 

marker analysis by FACS (Fig. 4C) showed that BM cells of the former type mostly 

expressed no markers other than cKit, with a small percentage of cells expressing 

Mac1 and Gr1, whereas the BM of the latter mice contained fewer cKit
+
 cells and more 

Mac1
+
 and Gr1

+
 cells. The expression of cKit in the MN1/Cbf SMMHC leukemic cells 

was in sharp contrast with the malignant cells of mice that received MN1-transduced 

BM, which expressed Mac1 and Gr1 but not cKit (Fig. 3E). This result is similar to 

Cbfb-SMMHC chimeric mice treated with ENU which also developed a cKit+ 

AML(Castilla et al., 1999). GFP signal was present in 99% of all cells (Fig. 4C). 

Immunofluorescense using an MN1 antibody and an antibody to the CBF -SMMHC 

fusion breakpoint(Wijmenga et al., 1996) to double label cytospin preparations of BM 

from both types of mice showed that in mice with mostly blasts in the peripheral blood, 

most BM cells expressed both MN1 and CBF -SMMHC, whereas mice with fewer 

blasts and more differentiated cells in the PB also contained cells in the BM expressing 

x stampa  12-01-2007  15:23  Pagina 147



Chapter 5 

148 

MN1-only (Fig. 4D). This suggested that mice whose peripheral blood contains more 

differentiated cells have a mixed AML/MPD in which the AML arose from inv(16) cells 

overexpressing MN1 and the MPD from wild-type cells overexpressing MN1, whereas 

mice with mostly blast cells in the peripheral blood have inv(16)/MN1 AML.  

We next assessed whether the level of MN1 expression in the BM of our 

MN1/Cbf -SMMHC transplanted mice would be comparable with that in inv(16) patient 

BM. Using Q-RT-PCR with human MN1 primers (our mouse Mn1 primers do not 

amplify human MN1 cDNA, not shown), we determined the amount of MN1 mRNA in 

the leukemic BM of 4 Cbfb-SMMHC/MN1 transplanted mice, in BM of 3 inv(16) 

patients and in the inv(16) M4E cell line ME-1(Yanagisawa et al., 1991). This showed 

that MN1 expression in these 4 Cbfb-SMMHC/MN1 BM samples was 0.7-3.9 fold as 

abundant as in the patient sample with the highest MN1 expression (Figs. 5 and 1A). 

Thus, MN1 expression in the BM of 3 of the mice was considerably higher than in 

inv(16) patients but in one mouse comparable expression also appeared sufficient to 

provoke disease. 

 

 

Figure 4: Mice receiving transplants of chimeric Cbfb-SMMHC BM transduced with MSCV-
MN1-IRES-GFP develop AML. 

A) RNA from normal mouse BM (wt) and chimeric inv(16) BM (inv), both transduced with MSCV-
IRES-GFP virus was analyzed by Q-RT-PCR for the expression of endogenous Mn1. The values 
are the average of 2 independent experiments. Mn1 expression is not upregulated in inv(16) 
chimeric BM. B) Survival curve showing that lethally irradiated C57Bl/6 mice receiving 
transplants of chimeric Cbfb-SMMHC BM transduced with MSCV-MN1-IRES-GFP (n=12) 
developed hematopoietic disease 58-68 days after transplantation, while those receiving 
transplants of the same BM transduced with MSCV-IRES-GFP (n=6) retrovirus remained 
healthy. The blood smear to the right shows the peripheral blood of a mouse with AML with a 
preponderance of blast cells, but also showing neutrophil progenitors. C) Left panel: FACS cell 
surface marker analysis of the BM of a mouse with a preponderance of blast cells in the 
peripheral blood, with 75.3% of cells expressing c-Kit, 9.6% of cells expressing Gr-1, and 17% 
Mac-1 (upper 3 plots) and of the BM of a mouse with a lower number of blast cells in the 
peripheral blood showing 19.6% of cells expressing c-Kit, and 49.1% of cells expressing Gr-1 
and 60.9% of cells expressing Mac-1 (lower 3 plots). More than 98% of cells express GFP. Right 
panel: Southern blot of BM DNA of 4 leukemic MN1/Cbf -SMMHC-transplanted mice (1-4), 

digested with EcoRI and hybridized with a GFP probe. All 4 samples contain multiple retroviral 
integrations. Due to DNA overloading of sample 4 a shorter exposure of this lane is shown. D) 
Fluorescence micrographs of BM cytospin preparations of a diseased mouse containing mainly 
c-Kit+ BM cells (left panel) and a mouse containing partial c-Kit+ BM cells (right panel), double 
stained with antibodies specific for the CBF -SMMHC fusion peptide (red), and MN1 (green). 
Most cells in the left panel are positive for both CBF -SMMHC (cytoplasm) and MN1 signals 

(nucleus), whereas only part of the cells in the right panel are positive for both signals with the 
remainder of the cells only positive for the MN1 signal. The nuclei of the cells in the left panel 
were counter stained with DAPI (blue). 
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 Figure 5: Comparison of MN1 
expression in BM of inv(16) patients 
and diseased mice transplanted with 
Cbf -SMMHC/MN1-expressing BM. 

Q-RT-PCR with primers specific for 
human MN1 was used to determine the 
level of MN1 RNA expression in the 
human inv(16) cell line ME-1 (ME-1), in 
pooled BM of healthy individuals (BM), 
in BM of 3 inv(16) patients (M4E) and in 
BM of 4 diseased Cbf -SMMHC/MN1-
transplanted mice. As a negative control 
we used BM of a mouse transplanted 

with vector-transduced Cbf -SMMHC chimeric BM [inv(16)]. Expression levels are depicted as 

fold expression of MN1 in normal human BM. MN1 expression in BM of Cbf -SMMHC/MN1-
transplanted mice was between 0.7-3.9 fold higher than in BM of the inv(16) patient with the 
highest level of MN1 expression (speckled box M4E).  
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Supplementary data  
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Supplementary data Figure 1. MN1 and PLAGL2 expression in pediatric inv(16) FAB-M4 
patients, MN1 expression in FAB-M1 patient samples, and MN1 and EVI1 expression in 41 
pediatric AML samples. 

A) BM RNA of pediatric inv(16) FAB-M4 patients with (M4E) or without eosinophilia (M4) and of 
a pool of 8 normal donors was analyzed for expression of MN1 and PLAGL2 by Q-RT-PCR. The 
histogram in purple shows the expression level of MN1 in patient samples, depicted as fold 
expression of MN1 in normal human BM (BM), the histogram in orange shows the expression 
level of PLAG2 in the same patient samples, depicted as fold expression of PLAGL2 in normal 
human BM (BM). All values were normalized for GAPDH expression. Note that the scales for 
MN1 (left, purple) and PLAGL2 (right, orange) expression are different. All inv(16) BM samples 
overexpress MN1, but only one sample overexpresses both MN1 and PLAGL2. B) BM RNA of 
pediatric FAB-M1 patients or of a pool of 8 normal individuals was analyzed for expression of 
MN1 by Q-RT-PCR. All 4 FAB-M1 patients overexpress MN1. Values were normalized for 
GAPDH expression C) BM RNA of pediatric AML patients of different FAB-classification (M0-M7) 
or of a pool of 8 normal donors was analyzed for expression of MN1 and EVI1 by Q-RT-PCR. 
The histogram in purple shows the expression level of MN1 in the different samples, depicted as 
fold expression of MN1 in normal human BM (BM), the histogram in orange shows the 
expression level of EVI1 in the same patient samples, depicted as fold expression of EVI1 in 
normal human BM (BM). All values were normalized for GAPDH expression. Only 2 patient 
samples coincidently overexpressed MN1 and EVI1 (one M7 and one M1). 
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Discussion 

Myeloid leukemogenesis is a multi-step process(Look, 1997) and it has been 

well documented that in AML, specified by recurrent chromosome translocations, 

cooperating mutations are essential for disease development(Ayton and Cleary, 2003; 

Castilla et al., 1999; Castilla et al., 2004; He et al., 2000; Kawagoe and Grosveld, 

2005a; Largaespada, 2000). In expression profiling experiments, the level of MN1 

mRNA was specifically elevated in BM samples of pediatric and adult patients with 

inv(16) AML(Ross et al., 2004; Valk et al., 2004). MN1 upregulation was also found in 

a subtype of AML associated with very poor prognosis(Barjesteh van Waalwijk van 

Doorn-Khosrovani et al., 2005), which is defined by overexpression of the 

immortalizing(Du et al., 2005) transcription factor EVI1(Valk et al., 2004). Given that 

MN1 sequences confer oncogenic properties to the MN1-TEL fusion protein(Buijs et 

al., 2000; Carella et al., 2006), the product of the t(12;22) in AML, it opened the 

possibility that overexpression of MN1 in these AML subtypes actively contributed to 

the leukemic process. This suggestion was supported by the observation that 

retrovirus-mediated overexpression of MN1 in mouse BM boosted proliferation of 

myeloid cells, allowed the establishment of myeloid cell lines in vitro, and caused rapid 

development of MPD after transplantation into lethally irradiated mice. Moreover, the 

MN1 effects were cell-intrinsic as secondary recipients receiving transplants of BM of 

diseased primary recipients rapidly developed the same disease. Despite the rapid 

development of the primary MPD Southern blot analysis of the malignant cells showed 

that the disease was oligoclonal rather than polyclonal, which implied that additional 

genetic changes must have occurred for the disease to develop. Currently we do not 

know the nature of these additional genetic changes. 

Expression of endogenous Mn1 is present in the sorted HSC but not in the CMP 

CLP, MEP progenitor compartments. Given the profound proliferative effect of human 

MN1 expression on GMP-derived cells in mouse BM, we speculate that expansion of 

this compartment might be dependent on endogenous upregulation of Mn1. Therefore, 

forced expression using the MN1 retroviral vector would lead to over-expansion. Why 

MN1 overexpression specifically affects the proliferation of GMP-derived but not MEP-

derived cells is currently unknown. Mn1 knockout mice have defects in the 

development of membranous bones of the cranial skeleton(Meester-Smoor et al., 

2005) but whether these mice also harbor hematopoietic defects is a question we are 

currently addressing. 

We also do not know via which mechanism MN1 stimulates growth of 

myelomonocytic cells. We reported that in Hep3B cells the protein is recruited to 

RAR/RXR dimers via the coactivators p300/CBP and RAC3(van Wely et al., 2003) and 

stimulates the transcription activity of RAR/RXR in the presence of retinoic acid. It is 
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possible that in myeloid cells MN1 participates in a similar protein complex or in protein 

complexes with other transcription factors that recruit p300/CBP, such as MYB, 

RUNX1, GATA1, 2, and 3, C/EBP, PU.1, and MLL(Blobel, 2000). Growth stimulation of 

myeloid cells by MN1 is opposite to its reported effects in an osteoblast cell line(Sutton 

et al., 2005), in which MN1-mediated coactivation of the vitamin D receptor inhibited 

proliferation. Growth inhibition of several types of epithelial cells by TGF- , an inhibitor 

of epithelial cell proliferation, is also associated with induction of MN1 expression(Chen 

et al., 2001; Kang et al., 2003). This profound difference in response to MN1 

upregulation can only be explained if MN1 can be recruited into different transcription 

factor complexes whose effects are cell type specific.  

Previously we reported that BM of MN1-TEL knock-in mice showed increased 

self-renewal activity of myeloid progenitors(Kawagoe and Grosveld, 2005a) and 

produced myeloid cell lines in vitro. The same effects were observed with BM 

transduced with MN1-TEL retrovirus. In both scenarios MN1-TEL cell lines displayed a 

more primitive phenotype (cKit+/Sca1+) (Carella et al., 2006; Kawagoe and Grosveld, 

2005a) than the MN1 cell lines (cKit+/Sca1+/Mac1+) reported here. We speculate that 

this difference is caused by the presence of TEL sequences in the fusion protein, 

which might recruit MN1-TEL to TEL recognition sites at promoter/enhancer areas of 

genes that inhibit differentiation.  

As determined by Q-RT-PCR, MN1 mRNA levels in inv(16) FAB-M4 samples 

were much greater than that determined by expression profiling. Q-RT-PCR analysis 

showed that MN1 expression in our 9 inv(16) patient samples was on average 43.7 

fold higher than in normal BM, while estimations using array analysis suggested an 

average 4.6-(Ross et al., 2004) or 9.2-fold(Valk et al., 2004) increase in MN1 mRNA. 

This discrepancy leads to a distinct underestimation of MN1 expression using 

expression arrays. Indeed, inclusion of other AML subtypes in our Q-RT-PCR analysis 

showed substantial upregulation of MN1 in FAB-M1 samples (14.1-fold average) and 

moderate (2 to 8-fold) upregulation in all M2-, 1 M7-, 2 M3- and 1 M5 sample(s), not 

reported in the study by Ross et al., 2004 (Ross et al., 2004), which included the very 

same patient samples. MN1 expression was also moderately increased in all but 2 

non-inv(16) FAB-M4 samples. Q-RT-PCR of a much larger group of AML samples will 

have to determine whether it will support our initial results. Given the small numbers of 

patients analyzed it was impossible to obtain a statistically significant correlation 

between levels of MN1 expression and the survival rates of inv(16) and FAB-M1 

patients. Nonetheless, it was reported that MN1 overexpression in adult patient 

samples with a normal karyotype correlated with a worse prognosis and a shorter 

survival rate(Heuser et al., 2006). 

Immunofluorescence analysis with an MN1 monoclonal antibody of 2 of our 

inv(16) BM samples, expressing 50 and 25-fold more MN1 mRNA than normal BM, 

showed that the MN1 signal was elevated in leukemic cells but the difference was 
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much more modest than expected from the increase in MN1 mRNA levels. Possible 

explanations could be that not all MN1 mRNA is translated in these AML cells, or 

alternatively that MN1 over expression increases its protein turnover. To date all 

inv(16) patient samples analyzed showed upregulated MN1 expression(Ross et al., 

2004; Valk et al., 2004; this manuscript), strongly suggesting that overexpression of 

MN1 is an obligatory step in the development of this disease. 

An important question that remains to be answered is via which molecular 

mechanism MN1 overexpression is obtained. Based on the observation that 

expression of the endogenous mouse Mn1 gene was similar in Cbfb-SMMHC chimeric 

and normal BM (Fig 4A) we do not think that the gene is a direct transcriptional target 

of the CBF transcription factor. Given that the promoter regions of the mouse and 

human genes show extensive sequence conservation, their transcriptional regulation is 

likely to be similar. Also, MN1 upregulation was reported in AML patients with a normal 

karyotype(Heuser et al., 2006), further indicating that other genetic changes than 

expression of CBF fusion proteins are responsible for MN1 overexpression. Using PCR 

amplification of MN1 first exon sequences in the genomic DNA of the two patient 

samples that overexpress MN1 protein (Fig1 A, indicated in red) and of normal BM 

sample revealed a diploid copy number in all 3 samples (not shown). Therefore the 

increased MN1 expression in these 2 patients was not the result of MN1 gene 

amplification.  

Cbf -SMMHC chimeric knock-in mice do not develop myeloid leukemia(Castilla 

et al., 1999; Landrette et al., 2005), whereas mice carrying a conditional Cbf -SMMHC 

knock-in gene do develop disease within 3-6 months after induction. This difference is 

most likely caused by the increased size of the Cbf -SMMHC
+
 preleukemic progenitor 

pool in the BM of the conditional knock-in mice(Kuo et al., 2006). Thus, the increased 

proliferative capacity of MN1 overexpressing cells may enlarge the pool of inv(16) cells 

enough to promote additional mutations allowing the leukemia to emerge. We favor 

this possibility because Southern blotting suggested that mouse inv(16)/MN1 leukemia 

is oligoclonal rather than polyclonal, although our analysis cannot exclude that the 

oligoclonality derives from the concomitant MN1-induced MPD in these transplanted 

mice. Irrespective of whether the MN1/inv(16) disease is monoclonal or oligoclonal the 

finding strongly suggests that additional mutations must occur during AML 

development in the transplanted mice. Known candidate genes are Plag1 and PlagL2, 

which were identified as Cbfb-SMMHC cooperating genes in mouse inv(16) 

AML(Landrette et al., 2005), and were found to be upregulated in human inv(16) 

AML(Valk et al., 2004). We do not think Plag1 or PlagL2 are transcriptional targets of 

MN1 because the mRNA levels of these genes were not increased in Q-RT-PCR 

analysis of MN1 overexpressing mouse cell lines, MN1 MPD BM, or inv(16)/MN1 BM. 

The same holds true for PLAGL2 in inv(16) leukemia as we did not find any correlation 

between the levels of PLAGL2 and MN1 expression in our patient samples 
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(supplementary Fig. 1C), of which only one showed increased expression of PLAGL2. 

We also investigated the mutation status of the Npm gene in BM of the 3 MN1 MPD 

mice shown in Fig. 3C and the 4 inv(16)/MN1 AML mice shown in Fig. 4C. Mutation in 

codons 288 or 290 of NPM causes relocalization of the protein from the nucleolus to 

the cytoplasm in 35% of AML patients (Grisendi and Pandolfi, 2005), which affects the 

p53 tumor suppressor pathway activity (den Besten et al., 2005). Sequencing of PCR-

amplified Npm cDNA of these 8 mice showed that the gene was not mutated (not 

shown). 

Given the cooperation between MN1 overexpression and CBF -SMMHC in 

inv(16) AML, interference with MN1 function might provide a novel therapeutic 

approach for this CBF leukemia. In addition, it will be interesting to determine whether 

MN1 overexpression similarly promotes leukemia development in a mouse model for 

t(8;21) AML, which also targets the Cbf transcription factor. 

Together our experiments suggest that the differentiation-inhibiting protein Cbf -

SMMHC and the proliferation-stimulating protein MN1 cooperate in the development of 

AML in this mouse model. Given that MN1 expression is upregulated in all inv(16) 

patients investigated (Ross et al., 2004; Valk et al., 2004; this study), it is reasonable to 

speculate that these 2 proteins play a similar cooperative role in human inv(16) AML. 
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Experimental procedures: 

Patient materials 

All patients and patient materials used in this paper have been described 

previously(Ross et al., 2004). Informed consent for the use of the leukemic cells for 

research was obtained from parents, guardians, or patients (as age-appropriate) in 

accordance with the Declaration of Helsinki, and study approval was obtained from the 

SJCRH institutional review board (IRB). 

Plasmids and retrovirus production 

MN1 cDNA (Buijs et al., 2000) was cloned into the EcoRI site of MSCV-IRES-

GFP and high-titer ecotropic virus (5x10
5
 - 1x10

6
cfu/ml) was obtained as 

described(Cardone et al., 2005). As a control we used MSCV-IRES-GFP virus without 

cDNA insert. 

Bone marrow transplantation. 

For transplantation of MSCV-MN1-IRES-GFP transduced wild type BM into 

C57Bl/6 females, BM was harvested from femurs and tibiae of 8 week-old male 

C57BL/6 or C57BL/6/129svJ mice treated with 5-fluorouracil (5FU). 5FU injection, 

isolation of Lin- cells, viral transduction and BM transplantation into lethally irradiated 

female recipients was performed as described previously(Cardone et al., 2005). For 

transplantation of inv(16) chimeric BM, heterozygous Cbfb-SMMHC knock-in ES 

cells(Castilla et al., 1996) were injected into C57BL/6 blastocysts and 10 highly 

chimeric male mice were generated. After treatment with 5-FU, BM of these mice was 

isolated, transduced with MSCV-MN1-IRES-GFP or MSCV-IRES-GFP retrovirus, 

yielding cell populations that were 30% and 60% GFP
+
, respectively. The MSCV-MN1-

IRES-GFP-transduced cells were transplanted into 12 lethally irradiated female 

C57BL/6 recipients and the MSCV-IRES-GFP control cells into 6 such recipients.  

Immunofluorescence 

Cytospin preparations of BM of 2 pediatric inv(16) patients from the St Jude 

Children’s Research Hospital tumor bank and BM of a healthy donor were fixed with 

4% paraformaldehyde for 4 minutes. Cells were permeabilized with 0.2% Triton-X100 

and incubated with MN1 monoclonal antibody 2F2(Buijs et al., 2000), followed by 

incubation with a CY3-labeled goat-anti mouse secondary antibody (1/400 dilution). 

MN1 staining of cytospin preparations of MN1-transduced BM-derived cell lines was 

performed following the same procedure. Fluorescent images of cytospin preparations 

were obtained using a BX-50 microscope (equipped with a UPlanFI 40X/0.75 or 

100X/1.30 numeric aperture objectives, Olympus, Tokyo, Japan) with a SPOT camera 

and SPOT Advanced imaging software (Diagnostic Instruments, Sterling Heights, MI).  
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Cell cycle analysis by FACS. 

Cell cycle analysis of MN1-transduced BM cell lines and vector-transduced 

control BM cells was performed as described previously(Cardone et al., 2005). 

Secondary bone marrow transplantation 

Secondary BM transplantation of leukemic BM was performed as described 

previously(Carella et al., 2006).  

Hematopoietic progenitor assays.  

Sequential methylcellulose-based cultures (MC1-4) of BM cells was performed 

using MethoCult GFM3434 (StemCell Technologies, Vancouver, BC), containing 

mouse SCF (50 ng/ml), mouse IL-3 (10 ng/ml), human IL-6 (10 ng/ml), and human 

erythropoietin (3 units/ml) and were performed as described(Carella et al., 2006). 

Analysis of diseased mice and tissue preparation 

All animal procedures were conducted in accordance with the U.S. Public Health 

Service Policy on the Humane Care and Use of Laboratory Animals. Collection of 

blood, GFP analysis of peripheral blood (PB), BM, spleen, and liver cell suspensions, 

euthanasia of diseased animals, tissue collection, fixation, paraffin embedding, 

sectioning and histological staining and May-Grunwald-Giemsa staining of PB were 

performed as described(Carella et al., 2006). Select tissues were also processed for 

immunohistochemical analysis with antibodies to hematopoietic phenotype markers: 

CD3 ( Dako, Carpinteria, CA ), CD45R/B220 (PharMingen, San Diego CA), terminal 

deoxynucleotidyl transferase (TdT, Supertechs, Bethesda, MA), myeloperoxidase 

(MPO, Dako, Carpinteria, CA), TER 119 (PharMingen, San Diego, CA), GATA. (Santa 

Cruz, Santa Cruz, CA) and green fluorescent protein (GFP, Clontech, Palo Alto, CA). 

Cell surface markers 

Marker analysis by FACS of single-cell suspensions of BM and spleen was 

performed as described(Carella et al., 2006). Cells were incubated with monoclonal 

antibodies (CD3c, CD4, CD8, CD11b/Mac1, CD19, CD34, B220, TER-119, Gr1, Sca1, 

c-Kit, Flt3, all from Pharmingen, San Jose, CA; anti–mouse IgM from Southern 

Biotechnology Associates, Birmingham, AL) on ice for 30 minutes. Stained cells were 

analyzed using a BD Biosciences FACSCalibur flow cytometer (BD Biosciences, San 

Jose, CA). 

Sorting of mouse BM for stem cell and progenitor fractions 

Following the methods of Akashi et al. (Akashi et al., 2000) different mouse BM 

progenitor populations representing the hematopoietic stem cell (HSC), the 

myeloid/erythroid progenitor (MEP), the common myeloid progenitor (CMP), the 

granulocyte/monocyte progenitor (GMP) and the common lymphoid progenitor (CLP) 
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were isolated and their identity verified by RT-PCR analysis for the expression of 

signature genes(Akashi et al., 2000). 

Q-RT-PCR 

The reverse trancriptase reactions of patient BM RNA were done with 50ng total 

RNA in 20ul total volume using TaqMan Reverse Transcription Reagent (Applied 

Biosystems) following the manufacturer’s recommendations. 

Primers and probes for genes were chosen with the assistance of the computer 

program Primer Express (PE Applied Biosystems, version 2.0.0). We confirmed the 

gene specificity of the nucleotide sequences chosen for the primers using BLASTN 

searches. To avoid amplification of contaminating genomic DNA, one of the two 

primers was placed at the junction between two exons or in a different exon. The 

primers and probes are shown in Table 1. Each probe was synthesized with the 5’ end 

reporter dye (FAM: 6-carboxyfluorescein) and 3’ end BHQ1 dark quencher dye at St 

Jude’s Hartwell Center for Bioinformatics and Biotechnology. 

Quantitative PCR was performed on an ABI Prism 7900HT Sequence Detection 

System (PE Applied Biosystems, Foster City, CA, USA). All PCR reaction mixtures 

contained 2ul cDNA (corresponding to 5 ng reverse transcribed total RNA), 1X 

TaqMan Universal PCR Master Mix (PE Applied Biosystems), 1X Eukaryotic 18S rRNA 

endogenous control, 300nM of each primer and 200nM probe in 30ul reaction volume 

in 96 well plates. The thermal cycling conditions were as follows: after incubation at 

50°C for 2 minutes and an initial denaturation step at 95°C for 10 min, 40 cycles were 

performed at 95°C for 15 seconds and 1 minute at 60°C.  Standard curves were 

obtained using cDNA generated with human or mouse total bone marrow RNA (pooled 

human normal bone marrow from 8 male/female from BD Bioscience Clontech and 

pooled mouse BM from 3 male C57Bl/6/129svj mixed-background mice). Each PCR 

run included the 6 points of the standard curve (5-fold serially diluted human or mouse 

bone marrow cDNA), a non-template control with water, a calibrator cDNA, and the 

unknown cDNA samples. Baseline and threshold Ct value were analyzed manually 

with the ABI Prism SDS2.1 software. Values for each PCR product were normalized 

against 18S rRNA to compare expression in patient bone marrow samples with that in 

human bone marrow total RNA (BD Bioscience Clontech). Quantitative PCR assays 

were conducted in duplicate for each sample and a mean value was used to calculate 

mRNA levels.  

Q-PCR reactions to compare the copy number of the MN1 gene in inv(16) 

patient BM DNA samples with that in normal BM DNA was performed using the 

TaqMan Reverse Transcription Reagent following the manufacturer’s protocols. A 

dilution series of 1, 0.5, 0.25, 0.125, 0.025, 0.005, 0.001, 0.0002 g genomic BM DNA 

of 2 different inv(16) patients (indicated in red in Fig. 1) and a normal individual were 

subjected to one-step PCR with MN1 first exon 1 and GAPDH exon 8 primers (Table 
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1), using 40 cycles of amplification (10 seconds 95°C, 1 minute 60°C) after incubation 

of the samples for 10 minutes at 25°C, 30 minutes at 48°C and 10 minutes at 95°C. 

The GAPDH 5’ end reporter dye was tetrachlorofluorescein (TET) instead of FAM. 

Baseline and threshold Ct value were analyzed manually with the ABI Prism SDS2.1 

software. Values for the MN1 PCR product were normalized against that of the 

GAPDH product in inv(16) and normal BM DNA samples. 

Analysis of Mn1 expression in mouse hematopoietic stem cells and bone 

marrow progenitor populations was carried out using a two-step real-time RT-PCR 

protocol.  FACS sorted hematopoietic stem cells and bone marrow progenitor fractions 

were pelleted by centrifugation and subsequently lysed in 800 L of TRIzol reagent 

(Invitrogen Corporation, Carlsbad, CA, USA). Total RNA was isolated using the 

PureLink Micro-to-Midi Total RNA Purification Kit (Invitrogen Corporation) following the 

manufacturers protocol however, with addition of 10 g of RNase-free glycogen prior to 

binding to the column. Genomic DNA was degraded by addition of 1 unit of DNase I for 

15 minutes at room temperature, followed by inactivation of DNase I by addition of 1 

L of 25 mM EDTA and heating at 65°C for 10 minutes. First-strand cDNA synthesis 

was carried out on the total RNA isolate using SuperScript III First-Stand Synthesis 

SuperMix (Invitrogen Corporation), following the manufacturers instructions. Real time 

analysis was carried out using a modified version of the multiplexed tandem PCR 

approach(Stanley and Szewczuk, 2005). For first round multiplexed amplification, 5 L 

of the first strand cDNA reaction was added to MN1 or HPRT outer primers (300nM 

final of each), 200nM dNTPs (Promega, Madison WI, USA), 1.5mM MgCl2, GoTaq 

buffer (Promega), and 0.5U GoTaq (Promega) in a total volume of 20 L. PCR was 

carried out on a PTC-200 thermocycler (Bio-Rad Laboratories, Hercules, CA, USA) for 

15 cycles using the following conditions: 95°C, 10 min for 1 cycle followed by 20 cycles 

of 95°C for 10 sec, 60°C for 20 sec and 72°C for 20 sec. The resulting products were 

mixed and first-round primers, dNTPs and Taq removed using the QIAGEN mini elute 

PCR reaction clean-up kit (QIAGEN Inc, Valencia, CA, USA). The real-time PCR 

reaction consisted of 5 L of an appropriate dilution of the first-round amplified cDNA 

mixed with 15 L of 2x TaqMan Universal PCR Master Mix (Applied Biosystems, 

Foster City, CA, USA), 300 nM each of the inner Mn1 or Hprt forward and reverse 

primers and 200 nM probe in a final reaction volume of 30 L. Real time PCR was 

carried out in a 96-well plate on Bio-Rad iQ5 Multicolor Real-Time PCR Detection 

System using the following cycling conditions: one cycle each of 50°C for 2 minutes 

and 95°C for 10 minutes, followed by 40 cycles of 95°C for 15 seconds and 60°C for 1 

minute. For all samples, the expression level of Mn1 was normalized to Hprt and 

expressed relative to the level in total bone marrow. 
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Table 1. 
 
Human PLAGL2 cDNA primers: 
Forward: CACTGTGGCAAGGCTTTTGC 
Reverse: GATGGTCCTTGCGGTGAAACAT 
Probe: ATACAAGCTGTATAGGCACATGGCCACCC 
 
Human EVI1 cDNA primers: 
Forward: AATGTGAAAACTGTGCCAAGGTT 
Reverse: CCGACATGCTGAGAGCGAAT 
Probe: TCACGGACCCTAGCAACCTTCAGCGGCA 
 
Human MN1 cDNA primers:  
Forward: GAAGGCCAAACCCCAGAAC 
Reverse: GATGCTGAGGCCTTGTTTGC 
Probe: CCAACAGCAAAGAAGCCCACGACC 
 
Human MN1 exon 1 primers: 
Forward: ATTGACCTGGACTCGCTGATG 
Reverse: TGTCCACCAGGGCCTTGT 
Probe: CAGCGCTGCCTGGTACATGCCC 
 
Human GAPDH exon 8 primers: 
Forward: ACCACAGTCCATGCCATCACT 
Reverse: CCATCACGCCACAGTTTCC 
Probe: CCCAGAAGACTGTGGATGGCCCC 
 
Mouse Mn1 cDNA primers: 
Forward outer/inner: TGGTGGAGATGAGGACAAGA 
Reverse outer: CTTGGGGTCACCATCTGTG 
Reverse inner: GTGGCTGAGGCCTTGTTGG 
Probe: CCCAACAACAAAGAAGCCCATGACC 
 
Mouse Hprt cDNA primers: 
Forward outer/inner: TTATCAGACTGAAGAGCTACT 
Reverse outer: CTTAACCATTTTGGGGCTGT 
Reverse inner: TTACCAGTGTCAATTATATCTTCAACAATC 
Probe: TGAGAGATCATCTCCACCAATAACTTTTATGTCC 

Retroviral integration sites in leukemia samples. 

To determine the number of MN1 retroviral integration sites, Southern blots 

containing tumor DNA digested with EcoRI were hybridized with a GFP probe. This 

detects hybrid DNA fragments containing MSCV sequences downstream of the viral 3’ 

EcoRI site (Fig. 1A) to the first downstream EcoRI site in mouse genomic DNA. 

x stampa  12-01-2007  15:23  Pagina 161



Chapter 5 

162 

Acknowledgements: 

We thank Dr Jerold Rehg for the pathological analysis of the mice, Dr Richard 

Ashmun and Ann-Mary Hamilton Easton for expert FACS analysis, and Blake 

McGourty for the supply of C57Bl/6/129svJ mixed background mice. This work was 

supported by NCI Grant CA72999, the Cancer Center (CORE) support grant CA217G, 

the Dutch Cancer Society Grants EUR98-1778 and DDHK2003-2869 and by the 

American Lebanese Syrian Associated Charities (ALSAC). 

x stampa  12-01-2007  15:23  Pagina 162



 MN1 overexpression in inv(16) AML 

  163 

References: 

Akashi, K., Traver, D., Miyamoto, T., and Weissman, I. L. (2000). A clonogenic common 
myeloid progenitor that gives rise to all myeloid lineages. Nature 404, 193-197. 

Ayton, P. M., and Cleary, M. L. (2003). Transformation of myeloid progenitors by MLL 
oncoproteins is dependent on Hoxa7 and Hoxa9. Genes Dev 17, 2298-2307. 

Barjesteh van Waalwijk van Doorn-Khosrovani, S., Spensberger, D., de Knegt, Y., Tang, 
M., Lowenberg, B., and Delwel, R. (2005). Somatic heterozygous mutations in ETV6 
(TEL) and frequent absence of ETV6 protein in acute myeloid leukemia. Oncogene 24, 
4129-4137. 

Bennett, J. M., Catovsky, D., Daniel, M. T., Flandrin, G., Galton, D. A., Gralnick, H. R., and 
Sultan, C. (1991). Proposal for the recognition of minimally differentiated acute myeloid 
leukaemia (AML-MO). Br J Haematol 78, 325-329. 

Blobel, G. A. (2000). CREB-binding protein and p300: molecular integrators of 
hematopoietic transcription. Blood 95, 745-755. 

Buijs, A., van Rompaey, L., Molijn, A. C., Davis, J. N., Vertegaal, A. C., Potter, M. D., 
Adams, C., van Baal, S., Zwarthoff, E. C., Roussel, M. F., et al. (2000). The MN1-TEL 
fusion protein, encoded by the translocation (12;22)(p13;q11) in myeloid leukemia, is a 
transcription factor with transforming activity. Mol Cell Biol 20, 9281-9293. 

Cardone, M., Kandilci, A., Carella, C., Nilsson, J. A., Brennan, J. A., Sirma, S., Ozbek, U., 
Boyd, K., Cleveland, J. L., and Grosveld, G. C. (2005). The novel ETS factor TEL2 
cooperates with Myc in B lymphomagenesis. Mol Cell Biol 25, 2395-2405. 

Carella, C., Potter, M., Bonten, J., Rehg, J. E., Neale, G., and Grosveld, G. C. (2006). The 
ETS factor TEL2 is a hematopoietic oncoprotein. Blood 107, 1124-1132. 

Castilla, L. H., Garrett, L., Adya, N., Orlic, D., Dutra, A., Anderson, S., Owens, J., Eckhaus, 
M., Bodine, D., and Liu, P. P. (1999). The fusion gene Cbfb-MYH11 blocks myeloid 
differentiation and predisposes mice to acute myelomonocytic leukaemia. Nat Genet 
23, 144-146. 

Castilla, L. H., Perrat, P., Martinez, N. J., Landrette, S. F., Keys, R., Oikemus, S., Flanegan, 
J., Heilman, S., Garrett, L., Dutra, A., et al. (2004). Identification of genes that synergize 
with Cbfb-MYH11 in the pathogenesis of acute myeloid leukemia. Proc Natl Acad Sci U 
S A 101, 4924-4929. 

Castilla, L. H., Wijmenga, C., Wang, Q., Stacy, T., Speck, N. A., Eckhaus, M., Marin-Padilla, 
M., Collins, F. S., Wynshaw-Boris, A., and Liu, P. P. (1996). Failure of embryonic 
hematopoiesis and lethal hemorrhages in mouse embryos heterozygous for a knocked-
in leukemia gene CBFB-MYH11. Cell 87, 687-696. 

Chakrabarti, S. R., and Nucifora, G. (1999). The leukemia-associated gene TEL encodes a 
transcription repressor which associates with SMRT and mSin3A. Biochem Biophys 
Res Commun 264, 871-877. 

Chen, C. R., Kang, Y., and Massague, J. (2001). Defective repression of c-myc in breast 
cancer cells: A loss at the core of the transforming growth factor beta growth arrest 
program. Proc Natl Acad Sci U S A 98, 992-999. 

Chen, Z., Fisher, R. J., Riggs, C. W., Rhim, J. S., and Lautenberger, J. A. (1997). Inhibition 
of vascular endothelial growth factor-induced endothelial cell migration by ETS1 
antisense oligonucleotides. Cancer Res 57, 2013-2019. 

x stampa  12-01-2007  15:23  Pagina 163



Chapter 5 

164 

den Besten, W., Kuo, M. L., Williams, R. T., and Sherr, C. J. (2005). Myeloid Leukemia-
Associated Nucleophosmin Mutants Perturb p53-Dependent and Independent Activities 
of the Arf Tumor Suppressor Protein. Cell Cycle 4. 

Du, Y., Jenkins, N. A., and Copeland, N. G. (2005). Insertional mutagenesis identifies 
genes that promote the immortalization of primary bone marrow progenitor cells. Blood. 

Fenrick, R., Amann, J. M., Lutterbach, B., Wang, L., Westendorf, J. J., Downing, J. R., and 
Hiebert, S. W. (1999). Both TEL and AML-1 contribute repression domains to the 
t(12;21) fusion protein. Mol Cell Biol 19, 6566-6574. 

Golub, T. R., Barker, G. F., Lovett, M., and Gilliland, D. G. (1994). Fusion of PDGF receptor 
beta to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) 
chromosomal translocation. Cell 77, 307-316. 

Grisendi, S., and Pandolfi, P. P. (2005). NPM mutations in acute myelogenous leukemia. N 
Engl J Med 352, 291-292. 

He, L. Z., Bhaumik, M., Tribioli, C., Rego, E. M., Ivins, S., Zelent, A., and Pandolfi, P. P. 
(2000). Two critical hits for promyelocytic leukemia. Mol Cell 6, 1131-1141. 

Heuser, M., Beutel, G., Krauter, J., Dohner, K., von Neuhoff, N., Schlegelberger, B., and 
Ganser, A. (2006). High meningioma 1 (MN1) expression as a predictor for poor 
outcome in acute myeloid leukemia with normal cytogenetics. Blood. 

Higuchi, M., O'Brien, D., Kumaravelu, P., Lenny, N., Yeoh, E. J., and Downing, J. R. (2002). 
Expression of a conditional AML1-ETO oncogene bypasses embryonic lethality and 
establishes a murine model of human t(8;21) acute myeloid leukemia. Cancer Cell 1, 
63-74. 

Kang, Y., Chen, C. R., and Massague, J. (2003). A self-enabling TGFbeta response 
coupled to stress signaling: Smad engages stress response factor ATF3 for Id1 
repression in epithelial cells. Mol Cell 11, 915-926. 

Kawagoe, H., and Grosveld, G. C. (2005a). Conditional MN1-TEL knock-in mice develop 
acute myeloid leukemia in conjunction with overexpression of HOXA9. Blood 106, 
4269-4277. 

Kawagoe, H., and Grosveld, G. C. (2005b). MN1-TEL myeloid oncoprotein expressed in 
multipotent progenitors perturbs both myeloid and lymphoid growth and causes T-
lymphoid tumors in mice. Blood 106, 4278-4286. 

Kuo, Y. H., Landrette, S. F., Heilman, S. A., Perrat, P. N., Garrett, L., Liu, P. P., Le Beau, M. 
M., Kogan, S. C., and Castilla, L. H. (2006). Cbf beta-SMMHC induces distinct 
abnormal myeloid progenitors able to develop acute myeloid leukemia. Cancer Cell 9, 
57-68. 

Landrette, S. F., Kuo, Y. H., Hensen, K., Barjesteh van Waalwijk van Doorn-Khosrovani, S., 
Perrat, P. N., Van de Ven, W. J., Delwel, R., and Castilla, L. H. (2005). Plag1 and 
Plagl2 are oncogenes that induce acute myeloid leukemia in cooperation with Cbfb-
MYH11. Blood 105, 2900-2907. 

Largaespada, D. A. (2000). Genetic heterogeneity in acute myeloid leukemia: maximizing 
information flow from MuLV mutagenesis studies. Leukemia 14, 1174-1184. 

Lekanne Deprez, R. H., Groen, N. A., van Biezen, N. A., Hagemeijer, A., van Drunen, E., 
Koper, J. W., Avezaat, C. J., Bootsma, D., and Zwarthoff, E. C. (1991). A t(4;22) in a 
meningioma points to the localization of a putative tumor-suppressor gene. Am J Hum 
Genet 48, 783-790. 

Lekanne Deprez, R. H., Riegman, P. H., Groen, N. A., Warringa, U. L., van Biezen, N. A., 
Molijn, A. C., Bootsma, D., de Jong, P. J., Menon, A. G., Kley, N. A., et al. (1995). 
Cloning and characterization of MN1, a gene from chromosome 22q11, which is 
disrupted by a balanced translocation in a meningioma. Oncogene 10, 1521-1528. 

x stampa  12-01-2007  15:23  Pagina 164



 MN1 overexpression in inv(16) AML 

  165 

Leo, C., and Chen, J. D. (2000). The SRC family of nuclear receptor coactivators. Gene 
245, 1-11. 

Liu, P. P., Hajra, A., Wijmenga, C., and Collins, F. S. (1995). Molecular pathogenesis of the 
chromosome 16 inversion in the M4Eo subtype of acute myeloid leukemia. Blood 85, 
2289-2302. 

Look, A. T. (1997). Oncogenic transcription factors in the human acute leukemias. Science 
278, 1059-1064. 

Lopez, R. G., Carron, C., Oury, C., Gardellin, P., Bernard, O., and Ghysdael, J. (1999). TEL 
is a sequence-specific transcriptional repressor. J Biol Chem 274, 30132-30138. 

Meester-Smoor, M. A., Vermeij, M., van Helmond, M. J., Molijn, A. C., van Wely, K. H., 
Hekman, A. C., Vermey-Keers, C., Riegman, P. H., and Zwarthoff, E. C. (2005). 
Targeted disruption of the Mn1 oncogene results in severe defects in development of 
membranous bones of the cranial skeleton. Mol Cell Biol 25, 4229-4236. 

Okuda, T., van Deursen, J., Hiebert, S. W., Grosveld, G., and Downing, J. R. (1996). AML1, 
the target of multiple choromosomal translocations in human leukemia, is essential for 
normal fetal liver hematopoiesis. Cell 84, 321-330. 

Otto, F., Lubbert, M., and Stock, M. (2003). Upstream and downstream targets of RUNX 
proteins. J Cell Biochem 89, 9-18. 

Ross, M. E., Mahfouz, R., Onciu, M., Liu, H. C., Zhou, X., Song, G., Shurtleff, S. A., 
Pounds, S., Cheng, C., Ma, J., et al. (2004). Gene expression profiling of pediatric 
acute myelogenous leukemia. Blood 104, 3679-3687. 

Sasaki, K., Yagi, H., Bronson, R. T., Tominaga, K., Matsunashi, T., Deguchi, K., Tani, Y., 
Kishimoto, T., and Komori, T. (1996). Absence of fetal liver hematopoiesis in mice 
deficient in transcriptional coactivator core binding factor beta. Proc Natl Acad Sci U S 
A 93, 12359-12363. 

Stanley, K. K., and Szewczuk, E. (2005). Multiplexed tandem PCR: gene profiling from 
small amounts of RNA using SYBR Green detection. Nucleic Acids Res 33, e180. 

Sutton, A. L., Zhang, X., Ellison, T. I., and Macdonald, P. N. (2005). The 1,25(OH)2D3-
regulated transcription factor MN1 stimulates vitamin D receptor-mediated transcription 
and inhibits osteoblastic cell proliferation. Mol Endocrinol 19, 2234-2244. 

Valk, P. J., Verhaak, R. G., Beijen, M. A., Erpelinck, C. A., Barjesteh van Waalwijk van 
Doorn-Khosrovani, S., Boer, J. M., Beverloo, H. B., Moorhouse, M. J., van der Spek, P. 
J., Lowenberg, B., et al. (2004). Prognostically useful gene-expression profiles in acute 
myeloid leukemia. N Engl J Med 350, 1617-1628. 

van Wely, K. H., Molijn, A. C., Buijs, A., Meester-Smoor, M. A., Aarnoudse, A. J., 
Hellemons, A., den Besten, P., Grosveld, G. C., and Zwarthoff, E. C. (2003). The MN1 
oncoprotein synergizes with coactivators RAC3 and p300 in RAR-RXR-mediated 
transcription. Oncogene 22, 699-709. 

Wang, Q., Stacy, T., Binder, M., Marin-Padilla, M., Sharpe, A. H., and Speck, N. A. (1996). 
Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous 
system and blocks definitive hematopoiesis. Proc Natl Acad Sci U S A 93, 3444-3449. 

Wijmenga, C., Gregory, P. E., Hajra, A., Schrock, E., Ried, T., Eils, R., Liu, P. P., and 
Collins, F. S. (1996). Core binding factor beta-smooth muscle myosin heavy chain 
chimeric protein involved in acute myeloid leukemia forms unusual nuclear rod-like 
structures in transformed NIH 3T3 cells. Proc Natl Acad Sci U S A 93, 1630-1635. 

Yanagisawa, K., Horiuchi, T., and Fujita, S. (1991). Establishment and characterization of a 
new human leukemia cell line derived from M4E0. Blood 78, 451-457. 

 

x stampa  12-01-2007  15:23  Pagina 165



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x stampa  12-01-2007  15:23  Pagina 166



 

 

 

 

Chapter 6 

 

 

 

 

 

Discussion 

 

 

x stampa  12-01-2007  15:23  Pagina 167



 

 

 
 

 

x stampa  12-01-2007  15:23  Pagina 168



  Discussion 

  169 

The hematopoietic system is one of the most fascinating and intricate 

developmental systems in the vertebrate. Its complexity lies in its capability of 

producing a broad spectrum of cells, diverse not only in their differentiation stage, like 

in most of the other tissue compartments, but also in their nature and consequently, 

their function. One additional characteristic that distinguishes the hematopoietic system 

from many other organs is that most mature blood cells have a short life and therefore 

hematopoiesis has to be a continuous process throughout life. With the term 

hematopoiesis we define the totality of cellular processes that drive succession of 

lineage-commitment steps coupled with a restriction of differentiation potential and the 

establishment of lineage-specific expression profiles, starting from a restricted number 

of HSCs. Experimental work in the last 30 years has provided much information 

regarding the hematopoietic subpopulations and their overall regulation. Many 

regulatory factors involved in the control of the proliferation and differentiation of these 

populations have been identified, cloned and characterized. What makes these factors 

of special interest is that there is a continuously growing amount of evidence that many 

of them are not only responsible for physiological hematopoietic processes but are also 

involved in the pathologic mechanisms leading to hematological malignancies. Among 

the multitude of these factors we are particularly interested in the ETS transcription 

factors, a large family of winged helix-loop-helix DNA-binding proteins (Graves and 

Petersen, 1998; Janknecht and Nordheim, 1993; Oikawa and Yamada, 2003). Many of 

the ETS proteins are expressed in the hematopoietic system and are thought to be 

involved in cell differentiation and function (Maroulakou and Bowe, 2000). In the 1990s, 

many of these ETS factors have been studied using gene targeting experiments in 

murine embryonic stem cells. This approach elucidated their function and extensive 

biochemical and molecular studies contributed in the clarification of their role in 

hematopoiesis.  

Our laboratory had focused its interest on the ETS protein TEL because of its 

involvement in the recurrent t(12;22)(p12;q12) in human myeloid malignancies. While 

studying TEL we became interested in the function of its close homologue TEL2, 

whose expression is mainly restricted to the hematopoietic system (Potter et al., 2000). 

Several observations indicated a possible association of TEL2 with 

tumorigenesis: 1) TEL2 dimerizes with TEL (Kawagoe et al., 2004) a protein believed 

to have a tumor suppressor function, 2) TEL2 expression was found to be up-regulated 

in some B-ALL and AML patients (Kawagoe et al., 2004) and had been found in (non-

hematopoietic) cDNA libraries used by the National Cancer Institute Cancer Genome 

Anatomy Project (NCI-CGAP), 3) TEL2 blocked the inhibitory effect of TEL1 on Ras-

induced cellular transformation of NIH3T3 cells (Kawagoe et al., 2004), demonstrating 

that, in spite of their high similarity, TEL1 and TEL2 have divergent activities, 4) forced 

expression of TEL2 in U937 cells inhibited their vitamin D3-induced differentiation.  
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These observations prompted us to investigate the in vivo effects of TEL2 

overexpression in murine bone marrow. 

In Chapter 2 we showed that TEL2 behaves as an oncogene when 

overexpressed in murine bone marrow, causing a myeloproliferative disease. TEL2 

inhibits apoptosis of myeloid progenitors, which might be causally involved in disease 

development. Affimetrix analysis showed that TEL2 downregulates several pro-

apoptotic genes, such as p53, the executioner caspase7, Scythe, and the Nf B 

inhibitors Bcl3 and Faf1, which could explain TEL2’s inhibitory effect on apoptosis 

(Carella et al., 2005). However, it remains to be determined whether downregulation of 

these genes is a direct or indirect effect of TEL2, because it is unknown whether any of 

these genes are direct transcriptional targets. Because the latency of disease onset is 

long, we inferred that development of TEL2-induced myeloid disease depended on 

secondary genetic events. To confirm this, we treated TEL2-transplanted mice with the 

chemical mutagen ENU to determine cooperation between TEL2 expression and 

chemical mutagenesis. Although ENU treatment significantly shortened the latency of 

disease development the outcome was different than expected. Part of the mice 

developed significantly elevated WBC in the peripheral blood of poorly differentiated 

TEL2-expressing cells and/or showed increased numbers of myeloid cells in the BM 

relatively early after transplantation. Nevertheless, all mice died of T cell lymphoma not 

expressing TEL2 (Carella et al., 2005). This remains a puzzling result, which can only 

be explained by the assumption that TEL2 overexpression in the hematopoietic system 

indirectly promoted the development of lymphoid disease. Because we did not analyze 

the cells in the thymus prior to overt disease we do not know whether there was 

abnormal proliferation of T cells, possibly as a result of aberrant cytokine expression. 

To further explore the possible secondary mutations cooperating with TEL2 in 

the leukemic process we decided to overexpress TEL2 in bone marrow already 

predisposed to develop neoplasia, such as bone marrow cells of E -Myc transgenic 

mice or of Arf-null mice  

Transgenic mice expressing the c-Myc oncogene driven by the immunoglobulin 

heavy chain enhancer (E ) develop a fatal lymphoma within a period of 6 months 

(Adams et al., 1985). Tumor development depends on secondary inactivation of the 

p53 pathway which eliminates c-Myc-induced apoptosis (Eischen et al., 1999). We 

found that TEL2 overexpression augments the proliferation and survival of normal 

murine B cells and accelerated B-lymphomagenesis in E -Myc transgenic mice 

(Cardone et al., 2005). Despite a TEL2-induced 50% reduction in the apoptotic rate of 

-Myc pre-B cells,  all TEL2/E -Myc B-cell lymphomas underwent inactivation of the 

p53 pathway. The most likely explanation for the cooperative effect in this 

tumorigenesis model is that the TEL2-induced reduction in the apoptotic rate of the -

Myc pre-B cells promoted further expansion of this compartment in transplanted mice. 

This increased the chance of additional mutations, but TEL2’s effect alone was 
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insufficient to cause disease. A similar scenario might also be involved in human 

lymphomagenesis as suggested by the analysis of pediatric B-cell acute lymphocytic 

leukemia (B-ALL) samples, which showed increased co-expression of TEL2, MYC-C 

and/or MYC-N in over one-third of cases (Cardone et al., 2005).  

In Chapter 3 we also performed the complementary experiment by expressing 

TEL2 in bone marrow of Arf-null mice. These mice with a compromised Arf-Mdm2-p53 

pathway (Kamijo et al., 1997) are prone to spontaneous tumor development, and 

develop undifferentiated sarcomas (43%), lymphomas (29%) of predominantly T-cells 

origin, carcinomas (17%) and tumors of the nervous system (11%) (Kamijo et al., 

1999). All mice transplanted with TEL2-overexpressing Arf-null bone marrow 

developed B-cell lympho-leukemia 4-6 months after transplantation. Thus, compared 

with TEL2-transduced wild type bone marrow (Chapter 2), the absence of Arf not only 

accelerated the onset of disease, but also changed the disease phenotype from 

myelodysplasia to B-cell lymphoma. Interestingly, TEL2/Arf-null lymphomas all showed 

c-Myc amplification resulting in overexpression of c-Myc. Thus, whether one combines 

TEL2 overexpression with Myc overexpression or with an impaired p53 pathway, the 

disease outcome is identical; a B cell lympho-leukemia that lost the p53 pathway 

overexpressing both TEL2 and c-Myc.  

In vitro culture of Arf
-/-

 B220
+
 pro-B cells with or without TEL2 overexpression 

showed that TEL2 shortens cell cycle traverse and reduces the rate of apoptosis, 

thereby stimulating the proliferation of these cells. This phenotype was in agreement 

with increased expression of proteins affecting cell cycle and apoptosis such as c-Myc, 

Bcl2, E2f1, E2f2 and the cyclins A, E and D2.  Affimetrix analysis of these cells did not 

show increased levels of RNA encoding for any of these proteins, suggesting that the 

upregulation of their protein levels was a post-transcriptional event.  However, the 

combination of loss of the p53 pathway and overexpression of TEL2 was insufficient 

for tumorigenic transformation of these cells and they remained strictly dependent on 

IL-7 for survival. We believe that the oncogenic role of TEL2 overexpression in Arf
-/-

 

bone marrow in mice consists of increasing the pool of pre-leukemic pre-B cells 

through increased proliferation, thereby promoting the chance of additional mutations 

such as amplification and overexpression of c-Myc. Clearly the growth promoting effect 

of TEL2 alone is insufficient for tumorigenic transformation of these cells resulting in 

selection for overexpression of c-Myc. The combination of c-Myc overexpression on a 

mutant p53 pathway background is an essential and well-recognized combination for 

full transformation of B lymphoid cells (Eischen et al., 1999). Comparison of the 

transcriptome of in vitro cultured Arf
-/-

 pro B cells expressing TEL2 with that of Arf
-/-

 pro 

B cells also revealed upregulation of Frap1 (FK506 binding protein 12-rapamycin 

associated protein 1 or FKBP12), also coined mammalian Target of Rapamycin 

(mTor), a member of the phosphatidylinositol 3-kinase (PI3K) family of proteins. mTor 

is a central player in the regulation of a wide collection of cellular functions, including 
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translation, transcription, mRNA turnover, protein stability, actin cytoskeleton 

organization and autophagy (Inoki et al., 2005; Jacinto and Hall, 2003). The best-

characterized mTor function in mammalian cells is its regulation of translation (Bjornsti 

and Houghton, 2004), which would provide an explanation for the increased 

expression of part of the cell cycle and anti apoptotic proteins in Arf
-/-

/TEL2 pro B cells. 

In Chapter 3 we also provide preliminary evidence that the protein level of activated 

mTor is upregulated in these cells, results that are currently being verified by others in 

the laboratory. Moreover, we found evidence that mTor is a direct transcriptional target 

of TEL2 via the CCGGAAGT binding site present at -289 to -281 in its promoter region. 

Despite the fact that proliferation of the Arf
-/-

/TEL2 pro-B cells was inhibited by the 

addition of the mTor inhibitor rapamycin, we detected only partial upregulation of the 2 

known downstream pathways of mTor. This seems in direct conflict with the notion that 

the increase in cell cycle proteins and anti-apoptotic proteins was a direct result of 

increased translation initiation due to mTor activation. However, recently it was 

reported that activated S6K1 phosphorylates Pdcd4, an inhibitor of eIF4A, resulting in 

its increased degradation via the ubiquitin ligase SCF (Dorrello et al., 2006) thereby 

stimulating translation and cell growth. This novel finding may well explain our results 

(S6K1 activity is upregulated in our cells) and calls for a comparison of the amount of 

Pdcd4 protein in Arf
-/-

 pro-B cells with that in Arf
-/-

/TEL2 pro-B cells.  

Our findings point to the possibility that molecular identification of TEL2-

overexpressing leukemia/lymphoma samples might identify patients that will be partly 

resistant to adjuvant treatment with inhibitors of the mTor pathway, such as rapamycin 

or rapamycin analogues (Yee et al., 2006; Zanesi et al., 2006) and will therefore have 

limited benefit from such treatment.  

Our results in wild type, E -Myc transgenic, and Arf-null mice combined with the 

fact that TEL2 expression is upregulated in some adult leukemias and over 30% of 

pediatric ALLs, leads us to propose that TEL2 is a bona fide oncogene involved in 

human leukemia. 

The second focus of this thesis was to establish the oncogenic activity of MN1-

TEL in the mouse hematopoietic system. MN1-TEL is the product of the chromosomal 

translocation t(12;22)(p12;q12) associated with human myeloid malignancies. We 

argued that confirming the oncogenic activity of MN1-TEL in the mouse hematopoietic 

system would make a strong case for a causative role of MN1-TEL in human leukemia. 

When we started this work It had been shown that MN1-TEL possessed weak 

oncogenic activity in NIH3T3 fibroblasts (Buijs et al., 1995; Buijs et al., 2000).  

In Chapter 4 of this thesis we demonstrated that forced expression of MN1-TEL 

in murine bone marrow increased the self-renewal capacity of primitive hematopoietic 

progenitors, which upon in vitro culture produced immortalized IL-3/SCF-dependent 

myeloid cell lines. Generation of these cell lines requires at least one additional genetic 

or epigenetic event, given that serial replating of MN1-TEL expressing bone marrow 
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cells in methylcellulose was always finite. We believe that the much larger number of 

cells in liquid cultures increases the chance of secondary mutations resulting in 

immortalization of the cells. As yet we have not invested effort in identifying the nature 

of this event but its characterization might be important for understanding the process 

of myeloid leukemogenesis in general. Given the role of the p53 pathway in cell 

immortalization we speculate that candidate genes would directly or indirectly affect 

this pathway. Mutations affecting the proper function of this pathway have already 

been described in AML. For instance 35% of AML patients express a mutant NPM 

protein (Cazzaniga et al., 2005; Falini et al., 2005), which causes the protein to 

relocalize form the nucleolus to the cytoplasm. This perturbs both p53-dependent and 

independent functions of Arf (den Besten et al., 2005). 

It was remarkable that lethally irradiated mice receiving transplants of MN1-TEL 

cell lines were rescued from radiation-induced bone marrow insufficiency. This 

indicated the presence of primitive progenitors that maintained the capacity to 

differentiate into all hematopoietic cell lineages. Notwithstanding, all transplanted mice 

developed acute myeloid leukemia within 3 months after transplantation. Leukemic 

cells recovered form these mice proliferated in culture without addition of growth 

factors, strongly suggesting that the cell line had undergone additional genetic 

alterations rendering it fully transformed. 

The fraction of normal bone marrow cells that do not stain with the fluorescent 

dye Hoechst 33342, defined as side population (SP) are highly enriched in 

hematopoietic stem cells (Goodell et al., 2005). Using SP sorting we showed that the 

repopulation and leukemogenic activity of the MN1-TEL cell line resided within this 

fraction. Thus, only a small number of cells within the cell line maintains its self-

renewal potential. We believe that cells within this fraction underwent additional 

mutation and generated the leukemic stem cell that eventually killed the mice. Given 

that this is a long living cell, we think that it would be a better target to undergo 

mutation than a short living, differentiating cell that would have to regain its capacity to 

self-renew.  

In addition to generating myeloid cell lines, we also showed that bone marrow 

freshly transduced with MN1-TEL retrovirus caused AML in transplanted mice within 3 

months after transplantation. Together these experiments led to 2 important 

conclusions: 1) MN1-TEL is an efficient hematopoietic oncogene but alone is 

insufficient to cause disease and 2) Methylcellulose cultures provided a reliable assay 

system to measure MN1-TEL’s oncogenic activity in myeloid cells.  

We next employed these methylcellulose assays to determine which sequences 

of MN1-TEL were essential for its transforming activity. These experiments led to the 

exciting but puzzling observation that MN1-TEL’s transforming activity was not 

dependent on a functional ETS DNA binding domain, while such dependence was well 

established in fibroblasts (Buijs et al., 2000). It was even more surprising that bone 
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marrow cells transduced with a retroviral vector expressing a protein from which all 

TEL sequences had been deleted also showed increased self-renewal activity and 

generated myeloid cell lines during liquid cultures. The same was true for bone marrow 

transduced with a virus encoding full length MN1. Moreover, mice transplanted with 

such bone marrow samples rapidly developed myeloproliferative disease. Although the 

disease features resembled those of MN1-TEL-expressing bone marrow, there were 

important differences: MN1-TEL cell lines had a more primitive phenotype than MN1 

cell lines and MN1-TEL expressing bone marrow caused AML rather than 

myeloproliferative disease upon transplantation into lethally irradiated mice. This 

suggested that presence of the TEL DNA binding domain in the fusion protein made it 

a more potent inhibitor of differentiation than MN1. Because MN1 interacts with 

transcription factors via its N-terminal domain (van Wely et al., 2003), one can envision 

that additional DNA binding via the ETS domain might target the fusion protein to the 

promoters/enhancers of a subset of genes that inhibit myeloid differentiation. 

Conformation of this possibility would need testing of additional MN1-TEL mutants 

combined with extensive transcriptional profiling and promoter studies, experiments 

that are well within our current technical reach.  

Despite the rapidly developing myeloproliferative disease in mice transplanted 

with MN1-overexpressing BM, the disease was not polyclonal suggesting that there 

was selection of cells that underwent additional mutation. Whether these were de novo 

mutations or gene expression changes caused by integration of the MN1 provirus 

remains to be established. It would be worthwhile to isolate the MSCV-MN1-IRES-GFP 

integration sites form the malignant cells of different mice to establish whether there 

are common integration sites. If so, it would pinpoint the gene or genes whose altered 

expression cooperate(s) with MN1 in the development of the myeloproliferative 

disease. Together our results showed that MN1 strongly stimulates the growth of 

myeloid progenitors.  

These findings combined with the observation that MN1 is consistently 

overexpressed in samples of patients suffering from inv(16) AML (Ross et al., 2004; 

Valk et al., 2004) prompted us to perform the experiments described in Chapter 5 of 

this thesis. Inv(16) AML is characterized by expression of a CBFB-MYH11 fusion 

protein (Liu et al., 1996). When expressed in mouse bone marrow CBFB-MYH11’s 

dominant negative effect on the CBF transcription factor (Castilla et al., 1996; Okuda et 

al., 1996) enables it to cause alterations in multilineage differentiation of hematopoietic 

cells (Castilla et al., 1999), but expression of this fusion protein alone does not cause 

leukemia. Therefore, our goal was to assess whether MN1 overexpression is a 

cooperating event in inv(16) AML.  

First we addressed which progenitors in the bone marrow express MN1. Using 

FACS we sorted bone marrow fractions representing the HSCs, CMPs, GMPs and the 

common MEPs. Quantitative-RT-PCR revealed that MN1 is expressed at a low level in 
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the HSC and is strongly upregulated in the GMP, while there is no expression in the 

CMP, CLP and MEP fractions. Cells causing the MN1 myeloproliferative disease are 

GMP-derived and expression of the retrovirus-encoded MN1 will become even higher. 

It is possible that the elevated levels of MN1 specifically affect the proliferation rate of 

these cells but not their differentiation, giving rise to a massive increase in partially and 

fully differentiated neutrophils. To prove this point one could transduce sorted GMP 

cells with MN1 retrovirus and compare their growth rate with that of vector-transduced 

GMP cells using methylcellulose assays and liquid cultures.  

Second, we verified that MN1 overexpression indeed occurs in inv(16) AML 

patients and confirmed by Q-RT-PCR that 9 out of 9 of our inv(16) AML samples 

contained increased amounts of MN1 mRNA. Moreover, in the 2 inv(16) samples 

available for analysis we also detected increased amounts of MN1 protein. 

It was therefore exciting that mice transplanted with CBFB-MYH11 knock-in 

chimeric bone marrow transduced with MN1 retrovirus developed a c-Kit
+
 AML 2 

months after transplantation, in which cells expressed both MN1 and CBFB-MYH11. 

This result was distinctly different from what happens in CBFB-MYH11 chimeric mice. 

These animals only develop leukemia upon treatment with the chemical carcinogen N-

ethyl-N-nitrosourea (ENU) (Castilla et al., 1999), a c-Kit
+
 AML very similar to that in our 

MN1/CBFB-MYH11-transplanted mice. These results convinced us that MN1 

overexpression truly cooperates with CBFB-MYH11 in the development of this AML 

and suggests a similar cooperation in human inv(16) leukemia. Whether this 

combination is sufficient to fully transform myeloid progenitors is however doubtful. The 

emerging leukemia was not polyclonal, again suggesting selection for leukemic 

subclones due to additional mutation. Also, using retroviral tagging in mice Castilla and 

coworkers (Castilla et al., 2004) reported that overexpression of the transcription 

factors Plag1 and PlagL2 cooperated with CBFB-MYH11 in the development of AML. 

Indeed, 20% of human AML samples show overexpression of PLAG genes with 

PLAGL2 preferentially increased in inv(16) leukemia samples (Landrette et al., 2005). 

We determined that PLAG genes were not overexpressed in our diseased mice and 

that only 1 of our 9 human inv(16) samples showed increased expression of PLAGL2. 

This established that PLAG genes are not transcriptional targets of MN1 and their 

upregulation in some inv(16) AMLs is likely to be caused by a separate genetic event. 

It is therefore likely that in inv(16) patients without PLAGL2 overexpression other 

mutations may substitute for its effects, supporting the notion that MN1 overexpression 

and CBFB-MYH11 alone are insufficient to cause disease.  

We also established that MN1 overexpression is not restricted to inv(16) AML 

but occurs in poorly differentiated FAB-M1 AML. This is in agreement with a paper 

reporting overexpression of MN1 in AML samples without karyotypic abnormalities 

(Heuser et al., 2006). In these patients MN1 overexpression is associated with a worse 
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prognosis and a shorter survival rate. Given MN1’s cooperative role in inv(16) AML, we 

infer that its role in M1 AML is likely to be similar.  

Many aspects of MN1’s role in AML remain unanswered. For instance it is 

currently unknown how expression of the gene is upregulated. In 2 inv(16) patient 

samples we excluded the possibility of gene amplification and MN1 expression in 

mouse cells is not upregulated by CBFB-MYH11, a result in agreement with MN1 

overexpression in leukemia samples that do not carry CBF transcription factor 

mutations. This suggests that other as yet unknown genetic events are responsible for 

MN1 overexpression. Possibly, structure-function analysis of the MN1 promoter in the 

inv(16) cell line ME-1 might pinpoint sequences responsible for its upregulation. Once 

such sequences have been delineated it should be possible to identify the transcription 

factors that bind to these sequences. Also the mechanism by which MN1 stimulates 

cell growth remains to be defined. The sequences involved in MN1’s growth 

stimulatory effect (at least in MN1-TEL) reside in the N-terminal domain of the protein 

(Chapter 4), which was shown to interact the transcriptional coactivators P300/CBP 

and RAC3 (van Wely et al., 2003), defining MN1 as a constituent of coactivator 

complexes. To understand how MN1 and MN1-TEL control growth of myeloid 

progenitors it will be crucial to determine via which transcription factor(s) MN1 exceeds 

its function. Identification of MN1 and MN1-TEL transcription factor complexes present 

in MN1 and MN1-TEL-overexpressing cells might provide insight into this question. In 

addition, it will be equally important to define the critical downstream targets of MN1, a 

problem that might be tackled by careful and extensive expression profiling. Together 

these approaches may provide us with a detailed insight into the molecular 

mechanisms with which MN1 and MN1-TEL affect the proliferation of myeloid 

progenitor cells. 

Our work with MN1-TEL produced results that implicates MN1 in a much wider 

range of AMLs and in a much larger group of patients than those defined by the 

t(12;22)(p12;q12). Therefore interference with MN1’s function might be of therapeutic 

relevance for this group of patients. Once the critical MN1 transcription factor 

complexes have been defined, we hope that it will be possible to develop small 

molecule inhibitors that interfere with association of MN1 with its cooperating factors. 

Given that MN1-TEL’s function is dependent on the MN1 N-terminal domain we expect 

that treatment with such inhibitors will be beneficial both for patients overexpressing 

MN1 as well as for patients expressing MN1-TEL.    
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Summary 
The generation of all blood cells in the body relies on the ability of a restricted 

pool of totipotent hematopoietic stem cells, the long-term repopulating cells, to 

simultaneously differentiate and self-renew. This process guarantees that the pool of 

totipotent stem cell is maintained, and produces an array of pluripotent stem cells that 

gradually loose their self-renewing potential as they differentiate to produce mature 

blood cells. 

Every cell type in the hematopoietic system can generate a cancer. This type of 

cancer is called leukemia. In the past decades particular emphasis has been put on 

identifying and understanding the molecular alterations that cause these diseases and 

that determine their pathological outcomes. 

The continuous acquisition of molecular research tools enabled us to better 

understand the relationships among different cell types of the hematopoietic system 

and to formulate and study models of leukemogenesis more in detail. 

The role played by ETS transcription factors during development of the 

hematopoietic system and their involvement in pediatric and adult leukemias, has been 

studied for years. Our group has developed an interest in this family of transcription 

factors, focusing in particular on the role of TEL in the chromosomal translocation 

t(12;22)(p12;q12) involved in human myeloid malignancies and on the possible role of 

its homologue TEL2 in leukemia. 

TEL2 is expressed in the hematopoietic system and increased expression of this 

gene has been found in some leukemias in adults and in over 30% of pediatric B-cell 

lymphoma patients. These observations, coupled to our previous in vitro results 

identified TEL2 as a potential oncogene, which led us to directly test the hypothesis 

that TEL2 can play an active role in leukemogenesis in a mouse model. 

Our data, discussed in Chapter 2, clearly show that TEL2 behaves as a bona 

fide oncogene in vivo. Lethally irradiated wild type mice whose bone marrow had been 

reconstituted with TEL2 overexpressing bone marrow, developed a myeloproliferative 

disease (MPD) after a long latency period. This was a significant finding that identified 

TEL2 as a gene that can cause alterations of   the hematopoietic system. However, our 

data clearly suggested that TEL2 overexpression alone was not sufficient for the 

development of leukemia but required cooperation of secondary mutations. 

This latter hypothesis was investigated in Chapter 3 by directing forced 

expression of TEL2 in mouse bone marrow cells harboring a compromised p53 

pathway resulting from deletion of the tumor suppressor p19Arf (Chapter 3). This not 

only accelerated the onset of disease but also changed the phenotype from MPD to B-

cell lymphoma. Most importantly, we uncovered a direct involvement of TEL2 in the 

regulation of Frap1, also known as mTor (Target of Rapamycin) in Arf-/- pro-B cells. 
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This finding led us to propose a hypothetical model, in which the upregulation of mTor 

by TEL2 is in part responsible for the increased proliferation and survival rates of 

malignant cells. Although additional studies are needed to detail the exact mechanisms 

by which these phenomena occur, our data possibly carry significant therapeutic 

implications. If subgroups of adult and/or pediatric leukemia patients can be identified 

that show increased expression of TEL2 and mTOR, such patients might only partially 

benefit from treatment with the mTOR inhibitor rapamycin, a drug which is being tested 

for treatment of other types of cancer. Our data suggest that in addition to mTOR 

activation additional growth promoting signals emanate from TEL2, which would call for 

a treatment of these patients with rapamycin in combination with other 

chemotherapeutic agents. 

A second aim of this thesis was to elucidate the oncogenic potential of the fusion 

protein MN1-TEL in the mouse hematopoietic system. The data described in Chapter 4 

further established the role of MN1-TEL as a hematopoietic oncogene and identified 

the N-terminal domain of MN1 to be essential for the oncogenic activity of the fusion 

protein. Next we will have to identify the proteins interacting with this domain and to 

identify the downstream target genes that mediate the growth-promoting activity of 

MN1-TEL in the hematopoietic system. 

Our studies also paved the way to further explore the leukemogenic role of MN1 

itself. In Chapter 5 we show that MN1 alone is also able to stimulate the growth of 

mouse myeloid progenitors, to cause MPD in mice, and to cooperate with Cbf -

SMMHC, the product of the human chromosomal rearrangement inv(16) in the 

development of acute myeloid leukemia (AML) in mice. This findings combined with the 

observation that MN1 is consistently overexpressed in inv(16) AML patients 

underscore the importance to further elucidate the molecular mechanisms with which 

MN1 exerts its growth promoting activity in myeloid cells. This knowledge may 

eventually lead to the development of specific small molecule inhibitors of MN1 that 

might provide a more targeted mode of treatment of patients with myeloid leukemia 

overexpressing MN1. 
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Samenvatting 

De produktie van alle bloedcellen in het lichaam is afhankelijk van een 

gelimiteerd aantal totipotente hematopoietische stamcellen, de lange termijn 

repopulerende cellen, die tegelijkertijd differentieëren en zichzelf vernieuwen. Dit 

proces garandeert dat de voorraad van totipotente cellen gehandhaafd blijft en dat er 

een verzameling van pluripotente stamcellen geproduceerd wordt. Deze pluripotente 

cellen verliezen, tijdens de differentiatie tot volwassen bloedcel, geleidelijk de 

capacitiet zichzelf te regenereren. 

Van elke cel soort in het hematopietische systeem kan een kanker ontstaan. Dit 

type kanker noemt men leukemia. In voorgaande jaren is er veel tijd geinvesteerd in 

het vinden en begrijpen van de molekulaire veranderingen die deze ziektes 

veroorzaken en die de pathalogische eigenschappen van deze ziektes bepalen. 

Het zich steeds uitbreidende arsenaal van onderzoeks methoden heeft ons in 

staat gesteld om de relatie tussen de verschillende soorten hematopoietische cellen te 

begrijpen en meer gedetailleerde leukemie modellen te genereren en te bestuderen. 

De rol van ETS transcriptie faktoren tijdens de ontwikkeling van het 

hematopoieties systeem en de betrokkenheid van deze faktoren bij de ontwikkeling 

van leukemie in zowel kinderen als volwassenen wordt reeds vele jaren bestudeerd. 

Onze onderzoeksgroep raakte geinteresseerd in deze groep van transcriptie faktoren 

door de betrokkenheid van TEL bij de chromosomale translokatie t(12;22)(p12;q12) bij 

humane myeloïde leukemie en ook door de mogelijke rol van het homologe TEL2 gen 

bij leukemie. 

TEL2 komt tot expressie in het hematopoietisch systeem en over-expressie van 

het gen werd vastgesteld bij een aantal leukemieën bij volwassenen en bij meer dan 

30% van de B cel lymfomen bij kinderen. Samen met eerdere in vitro resultaten 

bevestigden deze bevindingen TEL2 als een potentieel oncogen, wat ons er toe bracht 

om direct de hypothese te testen dat TEL2 in een muismodel een aktieve rol kan 

spelen tijdens leukemogenese.  

Onze resultaten, besproken in hoofdstuk 2, tonen duidelijk aan dat TEL2 zich in 

vivo gedraagt als een bona fide oncogen. Letaal bestraalde muizen die 

getransplanteerd werden met TEL2 over-expresserend beenmerg ontwikkelden een 

myeloproliferatieve ziekte (MPD) met een lange latentie tijd. Dit was een belangrijke 

vinding omdat het aantoonde dat TEL2 veranderingen in het hematopoietiese systeem 

teweeg kan brengen. Echter, onze resultaten suggereerden duidelijk dat de over-

expressie van TEL2 alleen onvoldoende was om leukemie te veroorzaken, maar afhing 

van de samenwerking met secondaire mutaties. 

Deze hypothese werd getest in hoofdstuk 3. Door TEL2 te over-expresseren in 

beenmerg waarin het p53 netwerk geinaktiveerd was door deletie van de tumor 
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suppressor p19Arf. Dit versnelde niet alleen het ontstaan van de ziekte maar 

veranderde ook het fenotype van MPD naar B cel lymfoma. De belangrijkste 

ontdekking was dat TEL2 in Arf-/- pro-B cellen direkt betrokken is bij de regulatie van 

Frap1, ook wel mTor genoemd (Target of Rapamycin). Deze vondst leidde tot een 

hypothetisch model waarbij de toegenomen expressie van mTor door TEL2 

gedeeltelijk verantwoordelijk is voor de toename in groei en overleving van de maligne 

cellen. Hoewel aanvullende studies nodig zijn om het preciese mechanisme waarmee 

dit plaatsvindt te ontrafelen, hebben onze resultaten wellicht belangrijke therapeutische 

implicaties. Als er subgroepen volwassen en/of pediatriese leukemie patienten 

geindentificeerd worden die een verhoogde expressie van TEL2 en mTOR vertonen, 

zouden zulke patienten slechts gedeeltelijk voordeel hebben van een behandeling met 

de mTOR remmer rapamycine, een middel dat reeds gebruikt wordt voor de 

behandeling van andere soorten kanker. Onze data suggereren dat naast mTOR over-

expressie TEL2 ook andere groei-stimulerende signalen teweeg brengt, wat zou 

betekenen dat zulke patienten behandeld zouden moeten worden met rapamycine in 

combinatie met ander chemotherapeutica.  

Een tweede doel van dit proefschrift was om de oncogene capaciteit van het 

MN1-TEL fusie eiwit in het hematopoietisch systeem van de muis te bepalen. De data 

beschreven in hoofdstuk 4 bevestigen verder de rol van MN1-TEL als hematopoietisch 

oncogen en laten zien dat het N-terminale domein van MN1 essentieel is voor de 

oncogene aktiviteit van het fusie-eiwit. In navolging hierop zullen we zowel de eiwitten 

moeten identificeren die binden aan MN1 als wel de ‘target’ genen moeten bepalen die 

de groei-stimulerende aktiviteit van MN1-TEL in het hematopoietische systeem 

bewerkstellen. 

Onze studies leidden er ook toe om de leukemogene rol van MN1 zelf te 

onderzoeken. In hoofdstuk 5 laten beschrijven we dat MN1 in staat is de groei van 

hematopoietische voorloper cellen te stimuleren, MPD te veroorzaken in muizen, en 

samen te werken met Cbf -SMMHC bij het veroorzaken van acute myeloide leukemie 

(AML) in muizen. Cbf -SMMHC is het produkt van de humane chromosomale 

verandering inv(16). Deze bevindingen gecombineerd met het feit dat MN1 consistent 

over-geëxpresseerd wordt in inv(16) AML patienten onderstrepen het belang om het 

moleculaire mechanisme te ontrafelen waamee MN1 de groei van myeloïde cellen 

stimuleert. Deze kennis zou uiteindelijk kunnen leiden tot het ontwikkelen van 

specifieke klein-moleculaire remmers van MN1 die wellicht een meer gerichte 

behandeling kunnen verschaffen voor patienten met leukemieën die MN1 over-

expresseren. 
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List of Abbreviations 
AGM........................Aorta/Gonad/Mesonephros 
ALL..........................Acute Lymphoid Leukemia 
AML.........................Acute Myeloid Leukemia 
APL .........................Acute Promyelocytic Leukemia 
ATRA ......................all-trans-retinoic acid 
B-ALL ......................B-cell acute lymphocytic leukemia 
BCR.........................Break-point Cluster Region 
bHLH.......................basic Helix-Loop-Helix 
CBC.........................Complete Blood Count 
CBF.........................Core Binding Factor 
CDBS ......................Consensus DNA-Binding Sequence 
CLP .........................Common Lymphoid Progenitors 
CML.........................Chronic Myeloid Leukemia 
CMML .....................Chronic Myelo-Monocytic Leukemia 
CMP ........................Common Myeloid Progenitor 
E ..............................Embryonic day 
EBS.........................ETS Binding Site 
ENU.........................N-ethyl-N-nitrosourea 
EPO.........................erythropoietin 
ETS .........................E26-transformation specific 
FACS ......................Fluorescence-Activated Cell Sorter 
FISH........................Fluorescent In situ Hybridization 
G-CSF.....................Granulocyte-Colony Stimulatory Factor 
GFP.........................Green Fluorescent Protein  
GM-CSF..................Granulocyte-Macrophage Colony Stimulatory Factor 
GMP........................Granulocytes-Monocytes Progenitor 
HAT.........................Histone Acetyl Transferase 
HDAC......................Histone De-Acetylase 
HLH.........................Helix-Loop-Helix 
HSC.........................Hematopoietic Stem Cell 
Ig .............................Immunoglobulin 
IgH...........................Immunoglobulin Heavy chain 
IL-3 ..........................Interleukin 3 
IRES........................Internal Ribosome Entry Site  
JAK..........................Janus tyrosine kinase 
LSC .........................Leukemic Stem Cell 
LT-HSC...................Long Term Hematopoietic Stem Cell 
M-CSF.....................Monocyte-Colony Stimulatory Factor 
MEP ........................Megakaryocytes-Erythrocytes Progenitor 
MEP ........................Myb-Ets progenitor 
MLL .........................Mixed-Lineage Leukemia protein 
MPP ........................Multipotent Progenitor Population 
MSCV......................Murine Stem Cell Virus  
mTor........................mammalian Target of Rapamycin 
NK ...........................Natural Killer 
PB ...........................Peripheral Blood 
PDGFR .................Platelet-derived Growth Factor Receptor beta 
Ph............................Philadelphia 
PI3...........................phosphatidylinositol 3 
PI3K ........................phosphatidylinositol 3-kinase 
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PNT.........................Pointed domain 
PTK .........................Protein Tyrosine Kinase 
RA ...........................retinoic acid 
RARE ......................retinoic acid responsive element 
RTK.........................Receptor tyrosine kinase 
SMMHC ..................Smooth Muscle Myosin Heavy Chain 
SP ...........................side population 
STAT.......................Signal Transducers and Activators of Transcription 
ST-HSC ..................Short-Term Hematopoietic Stem Cell 
TCR.........................T-Cell Receptor 
TF............................Transcription Factor 
TGF- ......................Transforming Growth Factor-  

TNF .........................Tumor Necrosis Factor 
TPO.........................Thrombopoietin 
WBC........................White Blood Cells  
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