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1. Introducticn ?

In parts I and I, cf. [5], [6] and also [7], of this series of papers we constructed a
universal p-typical one dimensional commutative formal group and a universal one
dimensional commutative formal group. The extraordinary cohomology theories
BP (Brown-Peterson cohomology) and MU (complex cobordism cohomology) are
complex oriented and hence define one dimensional formal groups over BP,(pt)
and MU (pt) respectively. Cf. [1]. These formal groups are respectively p-typically
universal and universal. Cf. [1], [3], [4] and [18]. Let wgr and pumu denote these
formal groups. The iogarithms of the formal groups usr and pmy are known, cf.
[17], and have a very simple expression in terms of the cobordism classes of the
complex projective spaces. Using the formulas for the logarithms of the universal
formal groups of [S] and [6] one then obtains a free polynomial basis for BP,(pt)
and MU, (pt) in terms of the classes of the complex projective spaces. This is the
subject matter of Sections 2, 3 below.

In [5] we aiso constructed a universal isomorphism between p-typicai formal
groups. The associated map Z[V), Vs, ...] > Z[V}, Va,...; Ty, T, ... ] (When local-
ized at p) can be identified with the right unit map ux: BP,(pt)— BP,(BP) of the
Hopf algebra BP,(BP).

In Sections 4, 5 below, we use the universal isomorphism of [5] to obtain a
recursive description of the homomorphism ng. This description is useful in the
calculation of various BP cohomology operations, cf. Sections 6, 7 below. To obtain
this recursive description of 7z we need an isomorphism formula (Section 5 below)
which is also useful in the theory of formal groups itself, cf. part III of {8].
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2 M. Hazewinkel | Constructing formal groups Il

Finally in Section 8, we use the universal isinorphism and the functional
equation lemma of [5] to derive the main theorem of [20]. All formal groups in this
paper will be commutative and one dimensional. Some of the resuits of this paper
‘were announced in [,7],‘[11]. -

Acknowledgements Lmlevnclus [16] was the ﬁrst to write down a formula snmnlar to
(3.1.3) and to prove that it gives generators for BP,(pt) in the case p=2.

Once one has the various universal p-typical formal groups (which are more or
less canonical) they can be fitted together in various ways (all noncanonical). One
way to do this is described in part II of [8] and gives the generators for MU ,(pt)
described in [8, part II] and [7]. Subsequeritly Kozma [14] wrote down a different
set of polynomial geneiators for MU, (pt), which satisfy more elegant recursion
formulas. These generz ors correspond to a different way of fitting the various
universal p-typical fornial groups together, which, however, does not generalize to
more dimensional forrial groups, but does generalize if one restricts attention to
more dimensional curv 1l|near formal groups Cf. the mtroducuon of [6] and [12] for
more details.

2. The formal groups of complex cobordism and Brown-Peterson cohomology.

2.1. Complex oriented cohomology. theories. Let h* be a complex oriented
cohomology theory (defined on finite CW ccmplexes); and let e"(L) denote the
Euler class in h*(X) of a complex line bundle L over X. Cf. [3, part I, §5], [1, part
I1, §2], or {19] for a definition of ‘“‘complex oriented”.

For complex line bundles L,, L, one has

@11 " (Li®L:) =2 aye"(Li)e" (L.

with a; € h ,(pt), and by naturality the coefficients a; do not depend on L, and L..
So we have a well-defined formal power series

212) FXY)=2 aX'y

which in fact defines a (one dimensional commutative) formal group over h ,(pt) by
commutativity and associativity of tensor products and naturality of Euler classes.

2.2. The formal groups of MU and BP. Choose a prime number p. Let MU stand
for the complex cobordism spectrum and BP for the Brown-Peterson spectrum
associated to the prime number p. These theories are complex oriented. Let pmu
and pge be the associated formal groups. Cf. [1], [3], [19]. Let logmu and logae be
their logarithmic series, i.e.

(2.2.1) . pmu(X, Y)=logmulogmu (X) + logmu(Y)),
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(2.2.2) er(X, Y) = logar(logse (X) + loges(Y)).

One then has (MiS€enko’s theorem, cf. [17])

(22.3)  logwu(X) = D m.X"",
n>0

(224)  loger(X) = Zo myn X"

with mo =1 and m, = (n + 1)"'[CP"},where [CP"]is the cobordism class of complex
projective space of (complex) dimension n. Cf. [1], [3), [17], [18].

The formal group pwmy is universal by a theorem of Quillen [18] and it follows
immediately that pgp is p-typically universal. Cf. also [3].

3.1. Generators for BP,(pt). Choose a prime number p. Let f (X) be the power
series defined by formula (2.2.1) in [5] (cf. also {7]) and let Fv(X,Y)=
V' (fv (X)+ fv(Y)). According to Theorems 2.3 and 2.8 of [5] Fv(X,Y) is a
p-typically univearsal formal group over Z{ V] = Z[V,, V,, V,,...]. Write

o0

B11) X)) =D a(V)X®, al(V)=1

i=0
then we have according to formula (4.3.1) of [S]:
312 pa.(V)=a (VIVI" ' +. . +a(V)VE + V,.

Because Fv (X, Y) over Z,,)[ V] and ueer(X, Y) over BP,(pt) are both p-typically
“universal formal groups (for p-typical formal groups over Z,)-algebras) there exist
{cf. [5, Definition 2.4]) mutually inverse isomorphims ¢ :Z[V]— BP,(pt),
¢ :BP.(pt)— Z,)[ V] such that ¢ applied to the coefficients of fv (X) gives the
coefficients of ugse(X). Applying ¢ to (3.1.2) and writing v; for ¢ (V:) we therefore
find elements v,, v,, v, ... of BP,(pt) which constitute a free polynomial basis for
BP,(pt) and which are related to the m, = (n + 1)"'[CP"] of (2.2.4) above by the
relations

(313)  ph= bt T+ Lo T+ Lof_ o,

where we have written [, for m,~_;.

3.2. Generators for MU (pt). Let fu (X) be the power series defined by formulas
(2.2.1) and (2.2.4) of [6], and let Fu(X, Y)=fi'(fu (X)+ fu(Y)). According to

Thecrems 2.3 and 2.4 of [6] Fy (X, Y) is a universal formal group over Z[U] =
ZI er, U3, U4, . ]. Write

(3.2.1) fu(X)=2b,.(U)X", b, = 1.

Then if we specify the coefficients n(is, ..., i;) occurring in the definition of fu (X)
according to [6, Section 7] we have the foilowing recursion formula:
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622 vmb(U)=U, + 3 LB, @y

d¥l,n
-where the integers v(n) and p’-(n,; d) are defined as follows:
v(n)=1if n is not a power of a prime number
(32.3)
v(p*) = p for all prime numbers p and rEN={1,2,3,...},

324 pmd)=]] c@ad)

pin

where the product is defined over all prime numbers p dividing n and the c(p, d)
are integers which can b chosen arbitrarily subject to

c(pd)=1 iswv(d)=1,p,

(3.2.5) 1 modp

c{p,d)s{ if v(d)=q# p.
0 modg

More precisely: first one chooses c(p, d) € Z for all prime numbers p and d EN
such that (3.2.5) holds: then one constructs fy (X) and Fy (X, Y) according to the
formulas (7.1.2), (7.1.3), {2.2.1), (2.2.4) and (2.2.7) of [6]; the result is then a
universal formal group Fy (X, Y) over Z[U] with logarithm f, (X) satisfying (3.2.2)
with »(n) and u (n, d) giver by (3.2.3) and (3.2.4). Different choices for the c(p, d)
result in different universal formal groups Fy, (X, Y). Because Fy (X, Y) over Z[U]
and umu (X, Y) over MU (pt) are both universal formal groups there are mutuaily
inverse isomorphisms ¢ : Z{U]— MU (pt), ¢ : MU, (pt)— Z[U] such that ¢ ap-
plied to the coefficients of fu (X)) gives the coefficients of umu(X). Applying ¢ to
(3.2.2) and writing u, i = 1,2,... for ¢(U;) we find elements u,, us, ....in MU (pt)
which constitute a free polynomial basis for MU, (pt) and which are related to the
m, = (n + 1)'[CP"] by the formula

d
(3-2.6) l'(")'nn—l = Un + d%n Ei%(d%ﬂ) m(n/d)—lusld-
These are the same generators as those written down by Kozma [14]. Note that the
factor v(d) i (n, d)v(n) is always an integer.
If one uses instead of the universal formal group Fy (X, Y) of [6], the universal
formal group Hy (X, Y) over Z[U] of [6] then, reasoning in exactly the same way,

one finds generators & in MU ,(pt) which are related to the m, by the formula
o i

627 vmymea= i+ 3 (-1 S EBIEO) ez ggne

where 29 is the sum over all seqﬁences (d,d;, di-y, ..., di) such that d, d,...,d; EN,

d:#1, n; d; > 1 and not a power of a prime number forj =2,...,i and dd;...d =
n. These are the generators given in [7] and [8, part II].



M. Hazewinkel / Constructing formal groups II1 5

3.3. Remark. BPis a direct summand of MUZ,,,,. If we identify u,: with v, formula
(3.2.6) (or formula (3.2.7) for that matter) reduces to formula (3.1.3) if n is a power
of p. It follows that the v, are integral, i.e. they live in MU ,(pt), not just in
MUZ,,),(pt). This is also proved in {2].

4. Isomorphisms of p-typical formal groups and 7x: BP;,,(pt)—-> BP,(BP)

4.1. Universal strict isomorphisms of p-typical formal groups. In [5] we also
constructed a universal strict isomorphism

4.1.1) av,r(X):Fv(X,Y)>F,r(X,Y)

for p-typicél formal groups over characteristic zero rings or Z,-algebras. Here
Fy.r(X,Y) is a p-typical formal group over Z[V; T]=Z[V,, V,,...; T\, Ts,...]
and the logarithm fv, r (X) of Fv,r (X, Y) satisfies

@12)  for(X)= ): a.(V, T)X",
413) a(V,T)=a(V)+a(V)T: ' +...+ a(V)T?-,+ T,

cf. formula (4.3.2) of [5].

Let I : Z,,)-Alg — Sets be the functor which associates to every Z,,-algebra A the
set of all triples (F(X,Y),a(X),G(X,Y)) where F(X,Y) and G(X,Y) are
p-typical formai groups over A and a(X) is a strict isomorphism form F(X, Y) to
G(X, Y). If we restrict attention to Z)-algebras theorem 2.12 of [5] says

4.2. .Theorem. The Z)-algebra Z,)\|V, T] represenis the functor I.

The isomorphism Z,yAlg (Z,)[V,T],A)=>1 (A) looks as follows. Let
¢ :Z,)[V,T]—> A be a Z,yalgebra homomorphism. Let v; = ¢(V}), 1, = ¢(T}),
i =1,2,... then the triple associated to ¢ is (F,(X, Y), a..(X), F..(X, Y)).

4.3. The homomorphism V. V. F, (X, Y) is a p-typical formal group over
Z[V T). By the universality of Fv(X, Y) there are therefore unique polynomials
V.€Z[V;T] such that F, (X, Y)=Fy(X,Y). Note that the V, have their
coefficients in Z not just in Z,,.

We have just defined a homomorphism

43.1)  vw:Z[V]>Z[V;T], V.e V.

A more functorial way of looking at this homomorphism is as follows. Let
F:Z,)-Alg — Sets be the functor which associates to a Z,)-algebra A the set of all
p-typical formal groups over A. Then F is represented by Z,)[V], (by the
universality of Fv (X, Y)). There are two natural functor morphims I — F, viz.
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(432) I(A)—>F(A), (F(X,'Y),’a(X ), G(X, Y))» F(X, Y),
- @33) I(A)—>F(A), (F(X,Y),a(X), G(X, Y)» G(X,Y)

and because Z)[V; T] represents I and Z,)[V] represents F we obtain two
Z(,,-algebra homomorphisms Z(,,[ V]—=Z,|V, T]. The homomorphism induced by
'(4 3.2) is the natural inclusion Zo[V]= Z,)[ V, T] and the homomorphnsm induced
'by (4.3.3) is the localization in p of (4.3.1). :

4.4. The Hopf-algebra BP (BP). By Theorem 16.1 of [1, part II] we know that
BP.(BP)=BP,.(pt)[ti.t2;...] = Zp)[v1,02,...5 ti, b2 ...]. It follows that BP,(BP)
represents the functor I. This fact can be uzed to account for the Hopf-algebra
structure of BP,(BP) by using various functor morphisms like (4.3.2) and (4.3.3)
above. This was dorz in [15]. The structure of BP,(BP) as a left module over
BP,(pt) is then given by the natural inclusion BP,(pt)— BP,(pt)[t:, 1, ...] and the
structure of BP,(BP', as a right module over BP,(pt) is given by a homomorphism
n&: BP,(pt)— BP,(BP) which is the localization in p of vg in (4.3.1) above if we
identify BP,(pt) with Z,,[V] and BP,(BP) with Z,,[V; T] by means of v, « V,
4 « T, where the v, are the generators defined in 3.1 above. Alternatively we can
appeal again to Theorem 16.1 of [1, part II] where it is shown that ns ® Q is given
by

@41)  Le S e,
i=0

where again [, = m,~_,. Because Fy,+(X, Y)= Fo (X, Y) and because of formula
(4.1.3) this also shows that 1jr = vr @ Z,). (If ¢ : Z,)[ V]— BP,(pt) is the isomor-
phism V; & v, then ¢(a:(V))= [ by (3.1.2) and (3.1.3), hence the right hand side of
(4.1.3) becomes the right hand side of (4.4.1) under ¢ :Z)[V; T];BP*(BP),
Virv, Timt,i=12,...)

£. The isomorphism formula

The next thing we want to do is to give a recursion formula for the polynomials
V., and hence alsc a recursive descrlptlon of nr: BP (pt)— BP,.(BP). To do so we
first need a formula relating the V, and the V; whick: is also useful in its own right,
especially when discussing reductions and liftings of formal groups and isomor-
phisms of formal groups. Cf 8, parts III and V].

5.1. Let a; = a;(V) be defined by (3.1.2) and write G for a,(V, T), cf. (4.1.3). Then
we have fv (X)=2aX" and fv,r (X)=2aX" and because fv,r (X)= fo (X), the
a; are given by the same formula (3.1.2) with bars over all the symbols occurring.
Le.

(5.1.1)  pa, =@, V" '+...+a,Vi_,+ V.
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In addition we define

(5-1.2) ZS)') ] (V?'T;,H-i Tp Vpr-q)
5.2. Proposition.

(52.1) pa, = 2‘1 VP + D @i Z0 P4 pT

i j=l.i+jsn
Proof. Using (4.1.3), (3.1.2) and (5.1.1) we have

n
pa. = pa, + D, na, T
i=1

- ! n—i
’S‘l Ap- IVFH‘-I+ V + E Z a"_i_ij"-‘-l pn= I+pT

is] i=1 j=1

1 n—-1 n-i

=2 . VI" - S tni TV Y,

i i=1 j=1

3
U

L]

1
) P T

I
M-

& _'VP"_‘ 2 a"__l-_j(V;-’"—‘—’ pn—l Tpn~l—lvpn-l)+ pT

ij=l,i+jen

2 fn—i 2 an- |—;Z(" |~,)+pT

Lj=li+jsn

(Note that Z; + Z; = (V.T?' - T:V?)+ (V,T? — T,;V?) and similarly for Z{.)

i

5.3. Proposition,

= = =7 k. * n—k& n— n-k &y nn-i
Vo= Vot pTa + D Gues {(vz“‘“— Ve + S (vertre - Tt )}
k=1

i+j=k
ij=1
(5.3.1) _
+ 3 (VT!'-T,V7).
i+j=n
hj>1

Proof. This follows directly by substituting in (5.2.1) and (5.1.1) a.-i=
28 @i T where To=1.

5.4. Remark. Formula (5.3.1) can be used to give an inductive proof that the V.
are polynomials with integral coefficients in the V,,..., V,; T,..., T Indeed, we
know that, cf. [5],

o e

641) @ = 2 Via®h,
=1

and assuming that V, i=1,...,n—1 is integral we also have that for all sEN
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(542) V"= (VPP modp''.
Finally p'a; is a polynomial with integral coefficients so that we have in Q[ V; T

V,=V, +pT + > (ViT?'- T-‘7f')

itj=n
R N1 2
n—-1
+ 2 Qn—k {(V{"‘k V{"-")-} :;:k Vp"‘kTpn—k Tpn—tvp,...;)}
Lj>1

n~1 n~k - ek - ik e e
=SS Yen Jver-vry+ S (vt T - Ty
k=t i=1 P :3;:;

b g

= :.2 z a l {(Vil)pn—l—k V(p'))pn—l—k

'=l<

> ((VfY""‘*(Tf')'"""-(Tf')’"""‘(vsm)w")}
e
+ S X{vm-vene 3 (veary -y

=1 iy

ot ]

=S Y prri=0
i=1 P

where all congruences are modulo 1 in Q[ V; T']. (Two polynomials in Q[ V; T] are

= mod 1 if their difference is in Z[V; T].) This proves the integrality of the V,,
n=123,....

6. A generalization of the main lemma of Johnson and Wilson [13]

6.1. BP cohomology operations. The stable cohomology operations of BP
cohomology can be described as BP,(pt)-homomorphisms BP,(BP)— BP,(pt),
where BP,(BP) is seen as a left module over BP,(pt). Cf. [1] and also 4.3 and 4.4
above. To find out what a cohomology operation r does with elements of BP,(pt),
compose r with the right unit map ns: BP,(pt)— BP,(BP). Let E = (ey, €,,...) be
a sequence of =0 integers of which only finitely many are nonzero. The
cohomology operation re is defined as: coefficient of t* in x € BP,(BP)=
BP,(pt)[t, 1,,...]. Thus re (v,) = coefficient of = in &, where , is obtained from
V. by replacing V; with v, and T; with t, i=1,...,n

Assign to an exponent sequence E =(ejes...) the weight ||E|=
ei(p — 1)+ ex(p>’—1)+... and to v; the weight p' — 1. We then have

6.1.1)  mr(v)=B,= > rg(va)tt

FE(l=p"~1

where rz (v,) is homogeneous of weight p" — 1~ || E|.
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In [13] Johnson and Wilson calculate rz (v,) modulo (p,v,,...,v-,) for |[E}j=
p" —p', (13, Lemma 1.7] (sometimes known as the Budweiser lemma)).

As a first application of the recursion formula (5.3.1) we shall calculate in this
section rg (v,) modulo (p**', vy,...,v-,) for all E with |[E||=p" —p".

6.2. Extension of the main lemma. Write 4; for the exponent sequence
©,0,...,0,1,0,...) with the 1 in the i-th place. We also write 4,= (0,0,...) and
l4o]l = 0. Scalar multiplication and addition of exponent sequences are defined
component-wise. The result now is

Lemma. (i) Forn=3 and 2<l<n -1 we have
@) rz (va)=0mod(p”*', vy,...,0-1) if p"—p" ' >||E||=p" —p' and E not
equal to p'dn-; 0r A+ (p — 1)A.—1+ p'An_ioy,
(b) 7z (v.)=v, mod(p**',vy,...,0-1) if E =p'An_
(©) 7= (va)= —pPvy mod(p**, v1,...,0) ifE = A1+ (p — 1)An-1 + p'An-i-s.
(ii) For n =3 (and | = 0) we have
(@) r= (v.)=0mod(p**?)if |E||=p" — 1 and E not equal to A, or A, + pA._,,
(®) re(v)=pif E =4,
() re(va)= —p® mod(p®*®) if E = pA._+ A:.
(iii) For n =3 (and | = 1) we have
@) r=(va)=0mod(p**") ifp" —1>|E||=p" — p and E not equal to pA,-, or
A+ (P —1)An-r+ pAn_s,
(®) re(va)=vi(1- p*") mod(p**") if E = pAn-s,
(©) re(va)= - pPv;mod(p®*") if E = A+ (p — 1)An-1 + pA._..
(iv) For n =1 we have
ra,(v1) = p.
(v) For n =2 we have
(@) re(v:)=0 if |E||=p*—p and E not equal to A, pA,, (p + )4\,
(®) re(v2)=pif E = 4,
() re(v)=—-pPif E=(p+1)4,,
(d) re (v)=(1-p°"'—p®)v: if E = pAi.

The proof of this lemma goes in several steps.

6.3. Proof of Lemma 6.2. (iv) and (v). We have
(6.3.1) D=0, +ph,
6.3.2) 0= —p~ (v + pti)(v: + pty)’ + p~'v105+ v + 0itf + pta.

Parts (iv) and (v) of Lemma 6.2 follow immediately from this.

6.4. Proof of Lemma 6.2. (ii). We prove by induction that for n =2

(6.4.1) 5;. =p, + ptn - pptltppg—] mOd(p'Hz, Usgnons Un—l)-
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Formula (6.3.2) takes care of the case n =2. Now suppose that n =3. Because
@n-x =0mod(vy,...,v.-1) for kK =1,...,n—1 we see from (5.3.1) that
n—-1i
U =0n +plta — O, 45,
i=1
Now by induction we can assume that o, =pt,, — p°tith_;,
mod(p”*?, vy,..., Us) for j=1,...,n =2 and &, = pt, mod(p**? v,,..., v,-). For-
mula (6.4.1) now follows directly.
Part (ii) of Lemma 6.2 follows from (6.4.1) because of (6.1.1).

6.5. Proof of Lemma 6.2 (i) and (iii). Nowletn=3and1<I<n-1andlet E be
an exponent sequenc: such that |E||=p" — p'. If Q is any polynomial in v;, v,,...;
tiyts... we let cgf() denote the coefficient of t* in Q; cg(Q) is then a
polynomial in v, v, .... We have

(65.1)  re(va)=ce(a)

and cg (3,) is homogeneous of weight p" — 1= E || < p' -1, where v, has weight
p' — 1. In particular this means that cg (8,) cannot involve any v; with i > [ and that
the only terms of cg (#,) involving v, are of the form dv, with d € Z. Now

n—k
(652) awsx =2 p'va®)-.

s=1

Substituting this in (5.3.1) and using the remarks just made we obtain, because
['7 I =( mOd(vl, v .. .) fn>k+ l, that

ce (Bn)=cx (pt.. + p"v.{(v',’.'-i R+ D (0P ‘7'55"'5})
‘:ij:nl_’ )
(6.5.3) n=1
+ ce (v,f,';'_, - Z t;ﬁﬁl_,)
j=1

where the congruence is mod(v;, ..., v-,). Now by (6.4.1)
52" =0mod(vy,..., v, p"*?) ifl=1,i=1,
(6.5.4)  #2L,=0mod(v,,..., ., p**?) ifl=2,

Dn-=pithimod(v,, .., Uy, p©*2).

It follows from (6.5.3), (6.5.4) and the fact that cg (.) is homogeneous of weight
<p'~—1 that

) n-1

(6.5.5) Ce (6,.) =Ce (ptn - p"—lvltﬂ_l + vltf,_l - 2 t]ﬁﬁl_i) ifl=1
i=1

where the congruence is mod(p®*') (and |[E||=p" - p), and

n-f

€56)  colB.)=c (pr,.. rortl -3 z,a':.‘_,-) if2<i<n-1
=1
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where the congruence is mod(p®*', v;,...,v-,) (and |[E||=p" — p'). It remains to
calculate ce (55-;) for j = 1,..., n — 1. We distinguish three cases: A)j>nrn-1;B)
j=n-0LC)j>n-1.

6.6. Case A. Calculation of ce (475-;) for j > n — L In this case we have n —j <1
and hence by (6.4.1) that ._; =pt,_; — p*tit._; mod(vs,..., v-1, p**%) and as I <
n—1, j>n-1 it follows that

(6-6.1) Ce (t,ﬁf.l-,) =0 mod(p"”, Uiyeney v'-z) if ] >u—-1

6.7. Case B. Calculation of cz(f.-5¢""). In this case we have by (6.4.1) that
O =u +pt— p°ttf, mod(v,,..., v, p?*?). Because |[E||=p"—p' and v, has
weight p' — 1 it follows that

Ce (‘n-ll-’f"—l) = cg (ta-1(pti — pptlt:l’—l)pn—')

©7.1) + ce (t..-:p""vo (pt — P‘Ptltf-l)""-'_l)-

And we see that
(6.7.2) Ce (t,._,ﬁ;"'") =0mod(p**', vy,...,054) fn—-1=2.

And for | = n -1 we have

p+1

Ce (tlﬁﬁ—l)EPP mOd(p s Ulyenory v,._z) if E = A|+pAn—l

(6.7.3)
ce (ti05-))=0mod(p®*', vy,...,0a-2) if E#A,+ pA,_,.

6.8. Case C. Calculation of c: (75_) for 1 <j < n — L. To deal with these terms we
use induction. We have

(6.8.1)  ce (4555) = ce-4,(B5).

Write

682) D= O re(va )t

NFj=p™ /-1

We then have

i
683) B =F ([ P ) tmloane (o Yrg e

where F,, ..., F, is the set of all exponent sequences of weight < p"~ —1 and the
sum is over all (s;,..., S ) such that s, +...+ s, = p/, s, € NU{0}. The only terms
of (6.8.3) which can contribute to cs_4,(55-) are those with [|s,Fi+ ...+ s.F. || =
|E - 4;||=p"—p'—p’ + 1. This means that there must be at least one F; with
|EJl>p"7 —p', for which s,#0. Indeed if all F, with 50 were of weight
<p"’ —p' then we would have ||s;F,+...+ smFn|<p'(p" —p")=p"-p"' <
p"—p'—p'+1 because I=1, j=1. We can therefore assume that |F,|=
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p"?—p'+1. By induction (with respect to n) we have that rq(v.-;)=
0 mod(p®*', vy, ..., i) except in the foilowing cases:

Case Ci: n—j=3, Fi=A4,.,

Case C;: n— '>"3 Fy=pA, ;.. + 4,

Case Cs: n—j=2, F,=A4,,

Case Con-j=2, Fi=(p f‘l)Al
In cases C; and C, we have rr(vs-;)=0mod p®. And it follows that ool =
0 mod(p®*') in these cases because either s,>1 or s, =1 and then the binomial
coefficient is divisible by p. |

So we are left with the cases C, and C; where F, = A,_;. Suppose that there is an
i=2with ||F||>p" —p', s,#0, F,# A.-, then by the previous reasoning we find a
contribution =0 mod(p**', vy,..., v-,). The only terms

6.8.4) (S‘ 4 s.,.) e Oneg ) o+« P (B0 )

which can contribute something # 0 mod(p**', v;,...,v,-;) are therefore of the
form

685y Fi=A4,, ||Flsp~/-p' ifi=2ands#0.
We then have
686) |siFi+...+ saFul<si(p™ -1+ (' - s)(p"” - p')

and we must have

(6-8-7) “31F1+...+SMF,,, "?p" -p'—p' +1.

If j=2 then p'*'=p'"'+p'+p’—p for all ] =1 and it follows that (6.8.6) and
(6.8.7) can simultaneously hold only if s, =,p + 1. But then rg(v.-;)" =0 mod p**' so
that we find no contributions # 0 mod(p**', v,, ..., vi_,) of the form (6.8.4) if j = 2.

Now suppose that j =1, i.e. F, = 4,_,. Then we find from (6.8.6) and (6.8.7) that
we.must have 5, = p — 1. If 5, = p + 1 then we again find something =0 mod(p**'),
so we are left with two subcases of C, and C; viz.

Case D: j=1, F,=A,.,, si=p,

Case E: j=1, Fi=A4,.,, ssi=p—1. .

In case D we have s, +...+ s, =p/, s;=p, hence s,=...= 5, =0 and (6.8.4)
gives a contribution

688) 1, (Uu-1) =p°

to CE-A,(ﬁﬁ—l).
Now suppose we are in case E. Then (6.8.4) reduces to

(6.8.9) pfau_,(vn—x)’—lfr (Vn-1) = P°re (0n-1)

for a certain exponent scquence F with || F||< p"~'— p’. On the other hand we must
have [|[(p —1)4,-,+ F||=p" = p' — p + 1. It follows that we must have
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(68.10) ||F|=p""~p"

But then by induction we know that r¢ (v.—1) =0 mod(p”**, v,,. .., v;-1) except in the
following cases:

I'e (v,._|) =0 mod(p’*‘, [ ) PR U:-]) if F= p‘A..-l_,, n= 4,

(6.8.11)  re(Vs-1) = — pPv mod(p®*', vy,..., V1)
if F=A4,+(p—1)A.2+p'ds-2-y, n =4,

re(v:)=(1—=p? ' —pPlv, if n =3, F = pA, (and, necessarily, | = 1).

It follows that the only contribution # 0 mod(p*®*', v,,..., vi-,) of the form (6.8.9) is
congruent to p®v; mod(p®*', vy,..., ;). We have now proved that

69. Lemma. Let n=3, 1<l<n-1, |E||=p"—-p', then ce(75.)=0
mod(v,,. .., U1, p**') except in the following cases:
() j=1,l=n—1, E= A+ ph,, c&(t5%-)=p",
@) j=1,1<n—1, E=A+phy, cs(tid-1)=p", |
(i) j=1, I<n—-1, E=A,+(p—1)Au_1+ p'Au-s-sy e (t:05-,) = p*v, where the
congruences are all mod(p®*', vy,..., v1-y).

6.10. Proof of Lemma 6.2(i). Conclusion; According to (6.5.6) we have
mod(p®*', vy, ..., U-1)

n—1
ce (Bn) = ce (ptn +otth— %, r,ﬁ';’_,-) :
j=1
Now let p" —p''>||[E||=p" — p". Then because ! =2 only case (iii) of Lemma 6.9
applies and we find that ¢z (5.) =0 mod(p**', vy, ..., 1) except when E = p'A,;
or E=A,+(p—1)A,-,+p'A._,-; and in these two cases ce(¥.) is respectively
congruent to v, and — p*u..

6.11. Proof of Lemma 6.2 (iii). Conclusion. According to (6.5.5) we have mod(p®*')

ne
ce(Dn)= CE.(th - pPluthat oitho — 2 tiﬁf-'-i) .

i=1

Now let p* —1>||E||=p" — p. Then only case (iii) of Lemma 6.9 applies and we
find that c¢g(5.)=0mod(p?*') except when E=pd,., or E=
A,+(p —1)A.-.+ pA.-: and in these two cases ce (¥,) is respectively congruent to
(1-p?")v, and - p*u..

6.12. Lemma 6.2 is now completely proved. Note that cases (i) and (ii) of Lemma
6.9 deal with exponent sequences E with |E|=p"—1, which are therefore
covered by part (ii) of Lemma 6.2.
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7. The linear part of the Brown-Peterson cohomoldgy operations map Nr

In this section we calculate nr(v.) modulo the ideal (¢, 5, . . .Y, or, equivalently,
we calculate V, modulo (T}, T5,...)%

7.1. We write B, for the element p'a,(V) € Z{V,, V... ], where a,(V)is defined
by (3.1.2). Let J denote the ideal (T}, Tz,...) in Z[V; T).

Theorem. Modulo J we have

Vo= (= 1) (B, VEED(BLVELL) .. (B VESL ) (- TV?Y
(7.1.1) N
+ 3, (— 1) (B, VA (B, VELL) - .. (B VELL )T+ Vi,

where the first sum is over all sequences (s.,...,S,i,j) such that s.i,j€EN,
sit...+s+itj=n tENU{0} and the second sum is over all sequences
(Sty...,S,i) such that s,, i EN, s, +...+s,+i=n, t ENU{0}.
7.2. Example.
Vi=B,\V§'T\Vi— T, Vi— T, Vi + B, VE™'B, VI '(pT))
- Bz V'l,z(pTl) - Bg Vg—l(pTz) + pn + V3.

The proof of Theorem 7.1 uses the recursion formula (5.3.1). First two lemmas:

7.3. Lemma.
- n—1 . - . =1 -
(131) V= Vit pTa + S aurn(VIVE™ = V0™ + S - TV,
k=1 j=1
where the congruence is modulo J = (T, T>,...)%.

This follows immediately from forraula (5.3.1)

7.4. Lemma. Suppose that V, =V, + 2 T.C; modulo J for certain C, € Z[V; T).
Then

(741) V'=vi'+pive! ( > T.-c,) mod J.
Proof. Obvious.

7.5. Proof of Thebréin 7.1. Theorem 7.1 is proved by induction, the case n =1
being trivial. Given formula (7.1.1) for all k<n we have that V, =

Vi mod(T:, T, ...) so that we can apply Lemma 7.4. Substituting the result in
(7.3.1) th.cn proves (7.1.1).
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7.6. Let b, € BP,(pt) be the image of B, under Z[V,, V,,...] = BP, (pt), Vir v,
where the v, are the generators of BP,(pt) determined by formula (3.1.3); i.e.
b, = p"l. = [CP*"'] = p"m ,~_,. In view of 4.4 we obtain

7.7. Corollary. For 0<i < n we have

'A,(Un) = 2 » (_ l)l(b"vg'_x’—‘l e (b.‘vg:iz-;ll‘mm")(_ vﬁ‘—sl—...-s,—i)

(7.7.1)
-0t p D (m Db pEEY)... (bRl -

Q¥ Asg=n—i

where the first sum is over all sequences (s.,...,s) with s,, tENand s;+...+5 <
n — i and the second sum is over all sequences (s;, ..., s:), s« EN, with s, +...+ 5 =
n-i

7.8. Let I denote the ideal of Z[ V'; T] generated by the elements pT,, i = 1,2,...;
T.T, i,j=1,2,... . Now

(78.1) B,=V,V:i... V" mod(p).

It follows that

7.9. Corollary. Modulo I we have

V=3 (- 1yvemrien ooyt Lyl (= TVE)
(7.9.1)
+ Vo= TV = TaVia— .= T V™

where the sum is over all sequences (Si,...,S,i,j) such that s, i, j, tEN and
si+t...+s+itj=n

This corollary can be used to give a noncchomological proof of the Lubin-Tate
formal moduli theorem. Cf. [8, part V]. Warning: the starting formela (2.2.1) in [8,
part V] is not correct and should be replaced with (7.9.1) above; the proof of the .
Lubin-Tate Theorem remains mutatis mutandis the same. '

iz

7.10. Corollary. For 0<i <n we have

1s,(va) = — v5_; mod(p, v,).

7.11. Corollary. For 0<i <n —1 we have
rs,(0.) = — 05+ 0510571 mod(p, v3).
More generally let r = min(n — i — 1, p), then we have
ra{va) = — 05+ 0,087 000 — vloBTivETinE o+ ..

+(-1)*'0ieoh. .. v 2ol mod(p, v5*Y).
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8. The functional equation lemma and multiplicative operations in BP*(BP)

As a final application of the universal isomorphism theorem 2.12 of [5] and the
functional equation lemma 7.1 of [5] we reprove the main theorem of [20].

8.1. Choose a prime number p. Let o : Z,)[ V]— Z,)[V] be the ring homomor-
phism given by V; » V7, fori =1,2,.... If g(X) is a power series with coefficients
in Z,)[ V] or Q[ V] then g”(X) denotes the power series obtained by applying o to
the coefficients of g(X). We also write a® for o(a) if a € Q[V]. Part of the
functional equation lemma 7.1 of [5] now says

8.2. Functional equation lemma. If d(X)= X+ d:X*+... is a power series with
d €EZ,)[V] anc’ v (X) is the logarithm of the p-typically universal formal group
Fyv (X, Y) of [5] and [7], then there are unique elements e,, s, . . . € Z,)[ V] such that
821) g(X)-Xp'Vgl(X*")=X+ eX'

i=1 i=2
where g(X)= fv(d(X)). Inversely given a power series g(X)= X +2Zr.,c. X,

& €EQ[ V] such that (8.2.1) holds for certain e; € Z,)[ V], then there exists a unique
power series d(X}= X +d,X*+... with d; € Z,[ V] such that g(X)= f, (d(X)).

8.3. Corollary. If d(X) is such that g(X)= X + 23, ¢, X"", i.e. ¢, =0 if i is not a
power of p, then e, =0 if i is not a power of p and writing s, for e,» we have

831 = apusy"
kso .a
where a, is the coefficient of X*" in fv (X).

This follows immediately from (8.2.1) above because a, satisfies

n-1

832 a.= .Z. p'Viaii and a,=, pla. VP
= k=1

Let BP,(pt)=Z,)[v;, v5,...], where the v; are the free polynomial generators
defined by formula (3.1.3) above. Define the homomorphism
o :BP,(pt)—> BP,(pt) by v: » v!. Let [ = m,. €BP,(pt)®0Q, cf. 3.1.

8.4. Theorem (Ravenel [20]). For every sequence of elements (ry, rs,...) in BP,(pt)
there is a unique sequence of elements (s, ss,...) in BP,(pt) such that

(8.4.1) i ™= i st

i=0 i=0

for every n > 0. Inversely for every sequence (s, s,,...) in BP,(pt) there is a unique
sequence (r\, 1z, ...) such shat (8.3.1) holds for all n >0.
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Proof. la:ntify Z,[V] with BP (pt) via V; » v. The clement a;, in Q[ V] then
corresponds with | € BP,(pt)®Q. Take a sequence of elements (r,7,...) in
BP.(pt). Let ¢:Z,[V; T]—BP,(pt) be the ring homomorphism defined by
Virv, Tmr Write G(X,Y)=F%r(X,Y). Let g(X) be the logarithm of
G(X, Y), then, cf. (4.1.3) | i

842) g(X)=X+ 2. X?, = 2, Lt
The formal group G(X, Y) is strictly isomorphic to F,(X, Y)= use(X, Y) over
BP.(pt), and the isomor;shism is equal to the inverse of a¥,+(X). Cf. [5, Theorem
2.12] and 4.1 above. It follows that there is a power series d(X) = X + d. X*+
with d; € BP,(pt) such that g(X)= f,(d(X)). (In fact d™'(X)= a¥r(X).) Now
apply Corollary 8.3, to fiad s; such that (8.4.1) holds.

Inversely given elem<:nts (s;, 52, ...) in BP,(pt), let g(X) be the power series

843) g(X)=X+ 2, Zo bs?™

then g(X) satisfies a functional equation (8.2.1) and hence again by the functional
equation lemma, there exists a power series d(X)= X + d,X?+..., d, € BP,(pt)
such that g(X) = fv (d(X)). It follows that g(X) is the logarithm of a p-typical
formal group G(X, Y) which is strictly isomorphic over BP,(pt) to F.(X,Y)=
use(X,Y). By the universality of the triple (Fv(X,Y),av.r(X),Fv,r(X,Y))
there is thersfore a unique homomorphism ¢ :Z)[V; T]—BP,(pt,, such that
¥(Vi)= v and f{,+(X) = g(X). Let r, = ¢(T:) € BP,(pt). Then because of (4.1.3)

844) gX)=X+3 3l

n=1 i=0

This concludes the proof of the theorem.
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