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INTRODUCTION   
 

 

  The main physiological functions of the androgens testosterone (T) and dihydrotestosterone 

(DHT) involve the development and maintenance of the male phenotype. T is mainly produced 

in the testis and converted to DHT in several target organs, including the prostate. Androgens 

have a hydrophobic cholesterol-derived steroid structure, which allows free traveling between 

the extra- and intracellular space. The intracellular target of androgens is the androgen receptor 

(AR). Upon androgen binding, the AR translocates to the nucleus and regulates transcription of 

androgen target genes.  

 

 1.1  NUCLEAR RECEPTORS 
 

  The AR belongs to the group of steroid receptors, which is a subgroup of the nuclear receptor 

(NR) family of transcription factors. In vertebrates and invertebrates, more than 150 members of 

the NR superfamily have been identified. During the last decades, this family of physiologically 

highly important proteins has been subject of study by many research groups, resulting in an 

overwhelming number of publications. In this section a comprehensive overview of general NR 

functioning is given, based on excellent reviews published on this subject 
1-11

. Where 

appropriate, references to key publications are included in the text. In section 1.2, more detailed 

information of the AR is presented. 

 

1.1.1  General features of nuclear receptors 

  Based on phylogenetic studies, the NR family can be subdivided into six different subtypes 
12
. 

The group of type I receptors includes the thyroid hormone receptors (TRα and TRβ), the 

vitamin D receptor (VDR), the retinoic acid receptors (RARα, RARβ and RARγ), the 

peroxisome proliferator activated receptors (PPARα, PPARβ and PPARγ), and the Drosophila 

ecdysone receptor (EcR). Members of the type II receptor group are the retinoic X receptors 

(RXRα and RXRβ) and orphan receptors like COUP-TF, Rev-Erb, TR2, and TR4, for which the 

ligand has not been identified as yet, or which can function without stimulation by a ligand 
13
. 

The type III receptors comprise the group of steroid receptors, which includes the AR, the 

glucocorticoid receptor (GR), the mineralocorticoid receptor (MR), the progesterone receptor 

(PR), and the estrogen receptors (ERα and ERβ). The closely related orphan receptors estrogen 

related receptors (ERRs) also belong to the type III receptors. The NR subtypes IV, V and VI all 

include various orphan receptors.  

  In general, NRs are ligand-activated transcription factors. Upon ligand binding, NRs undergo 

conformational changes that result in a cascade of events leading to DNA binding and 

transcription activation or repression of specific target genes. The liganded, and in some cases 

the unliganded, receptor is able to bind as a homo- or heterodimer to specific sites in the DNA 

and subsequently recruits coactivators or corepressors, general transcription factors and RNA 

polymerase II (RNApolII), to ultimately regulate transcription of target genes. Protein-protein 

interactions play a prominent role in these processes 
14-19

. A simplified scheme of these events is 

depicted in Figure 1A. 
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Figure 1.  A) Schematical overview of intracellular NR functioning. GTF = general transcription factors, PolII = 
RNA polymerase II, HRE = hormone response element. B) Schematical representation of NR functional domains. 

NTD = N-terminal domain, DBD = DNA binding domain, H = hinge region, LBD = ligand binding domain. 

 

1.1.2  Structure and functional domains of nuclear receptors   

  NRs have a modular structure composed of a non-conserved amino-terminal domain (NTD), a 

highly conserved central DNA-binding domain (DBD), a moderately conserved carboxyl-

terminal ligand-binding domain (LBD), and a flexible hinge region located between the DBD 

and the LBD (Figure 1B). 

1.1.2.1  The amino-terminal domain 

  The NTD is the most variable domain both in size and amino acid composition. Until now, for 

none of the NRs the three-dimensional structure of this domain has been resolved. It is generally 

assumed that the NTD has an unorganized, flexible structure, which hampers crystallization. 

Small regions in the NTD might adopt a more structured conformation upon protein-protein 

interactions in transcription initiating complexes. However, structures of such complexes have 

not been elucidated as yet.  

  For most NTDs, a trans-activation function, AF-1, has been established. The AF-1 domains in 

the different NRs do not show structural homology and are mapped at quite distinct positions in 

the NTD. AF-1 is promoter and cell dependent, which indicates interactions of the NTD with 

promoter and cell specific proteins involved in transcriptional regulation 
14
. An increasing 

number of NTD interacting proteins has been identified. The NTD, if bound to a DBD, can 

autonomously activate expression of target genes, as proven by the constitutive activity of 

truncated NRs lacking their LBD. The LBD functions as an activation lock, which is opened by 

binding of its cognate ligand.  
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1.1.2.2  The DNA binding domain 

  Ligand-activated NRs bind through their highly conserved DBDs to hormone response 

elements (HREs) in the regulatory regions of target genes. HREs have specific consensus 

sequences for high affinity binding to the different NR subgroups, and are composed of an inverted 

or direct imperfect repeat of two 6 bp half-sites separated by a spacer of variable length. NRs bind 

to HREs as homo- or heterodimers, each receptor to one HRE half-site 
20, 21

. 

  The DBD is composed of two zinc clusters and a carboxyl-terminal extension (CTE). The N-

terminal zinc cluster of steroid receptors contains three amino acids, denoted as the P-box, which 

determine DNA binding specifity 
22, 23

. The C-terminal zinc cluster contains a dimerization 

interface, the D-box (Figure 2A). For several NRs, crystallographic analyses have revealed the 

DNA-bound DBD dimer structures with detailed data on protein-protein and protein-DNA 

interaction sites (reviewed in ref. 24). Adjacent to the C-terminal part of each zinc cluster a short α-

helical structure can be recognized. The helix flanking the N-terminal zinc cluster enters the major 

groove in the DNA. This conserved recognition α-helix enables the amino acid residues of the P-

box to bind to receptor specificity determining sites in the HREs. Two phenylalanine residues in 

this helix are also involved in nuclear export of NRs in the presence of ligand 
25, 26

. The helix 

flanking the C-terminal zinc cluster, the CTE, is positioned perpendicular to the other helix, in this 

way exposing the D-box, facilitating dimerization (Figure 2B) 
20
.  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.  A) Schematic representation of the NR DBD structure. CTE = carboxy-terminal extension. B) Tertiary 
structure of a DNA bound NR DBD dimer. 

1.1.2.3  The hinge region 

  The hinge region forms a flexible link between the DBD and the LBD, allowing easy rotation of 

the latter domain. The amino acid sequence of the hinge region is not conserved among NRs. In 

many NRs, the hinge region contains a bipartite nuclear localization signal (NLS) essential for 

nuclear import of the liganded receptor 
27
.  
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1.1.2.4  The ligand binding domain 

  Small variations excluded, NR LBDs have a canonical structure consisting of 12 α-helices, folded 

in a three-layered anti-parallel sandwich conformation 
28, 29

. The ligand-binding pocket is lined by 

many amino acid residues throughout the LBD and varies with the structure of the ligands of the 

respective receptors. Upon agonist binding, helix 12 is repositioned like a lid over the ligand 

binding pocket in a manner favoring NR activation. This is illustrated for the RXRα and RARγ in 

Figure 3. Binding of antagonists induces a different LBD conformation leading to an unfavorable 

positioning of helix 12, thereby causing blocking of receptor function 
30-33

.  

  In addition to ligand binding, the LBD might be involved in homo- or heterodimerization. It also 

interacts with chaperone proteins like heat shock proteins, and harbors the ligand-dependent 

transcription activation function 2 (AF-2).  

  The AF-2 structure is conserved among many NRs. A core region in the AF-2 domain, which 

is in helix 12, appears essential for ligand-dependent transcriptional activity 
34-38

. A general 

mechanism has been proposed, in which the AF-2 core plays a central role in the generation of 

an interaction surface, allowing binding of NR coactivators to the LBD 
31
. Coactivators can 

modulate the transcriptional activity of a broad range of NRs (see section 1.1.5). A large number 

of coactivators that bind to NRs has been described. The interaction with NRs is not limited to 

the LBDs, but also involves binding to the NTDs, resulting in cooperation or even synergy 

between AF-1 and AF-2 activities 
39-42

.  

 Unliganded or antagonist bound receptors can bind to corepressors by an interaction interface in 

the LBD that overlaps the coactivator binding site 
43
. Recruitment of corepressors inhibits 

receptor functioning leading to silencing of gene transcription 
44
. 

  In addition to the motif found in the DBD, for the MR, ER and AR, a nuclear export signal 

(NES) has been identified in the LBD. This second NES is, in contrast to the DBD NES, active 

in the absence of ligand and inhibited when ligand is present 
45
.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.  Two-dimensional representation of an NR LBD structure. Left: RXRα LBD without retinoic acid (RA). 
Right: RARγ LBD bound by RA. From ref. 29. 
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1.1.3  The nuclear receptor subfamily of steroid receptors 

  Through binding to their respective receptors, steroid hormones mediate biological processes like 

cell growth, cell differentiation, and homeostasis. The GR regulates storage, mobilization and 

metabolism of carbohydrates and fatty acids. The MR plays an important role in maintaining 

electrolyte levels within a narrow range. ERα, ERβ, and PR mediate development and maintenance 

of the female phenotype, but also play a role in males. The AR is responsible for the male 

phenotype, but is also important for female development.  

  The structures of steroid receptors are highly conserved. The highest percentage homology is 

present in the DBDs and LBDs. GR, PR, and MR DBDs show up to 80 % homology with the AR 

DBD. This conservation level is reflected in the HRE preferences of the steroid receptors. GR, MR, 

PR and AR homodimers all bind with high affinity to a consensus HRE, the inverted repeat 

AGAACAnnnTGTTCT, generally denoted as glucocorticoid response element (GRE) 
46-49

. ERα 

and ERβ are quite distinct from the other steroid receptors. Their structures deviate more from 

these receptors and the high-affinity DNA binding site is an inverted repeat of the consensus 

halfsite AG
G
/TTCA. Most type I and II NRs also bind to this sequence, which might be present as a 

single half-site or in a direct or inverted tandem repeat orientation in the regulatory sequences of 

target genes 
16, 50

. Because GR, MR, PR, and AR recognize the same high affinity GRE, many 

genes can be regulated by more than one steroid receptor. However, the physiological function of 

the different receptors is quite distinct, which can only partly be explained by their tissue specific 

expression pattern. So, additional mechanisms are required for a hormone specific response in case 

multiple receptors are simultaneously present in one and the same cell. Several mutually not 

exclusive mechanisms to explain steroid specific transcriptional regulation include selective 

interactions of receptors with specific and general transcription factors and coregulators, 

coregulator levels, ligand availability, local chromatin structure at the regulatory sites of the 

receptor target genes and, as recently described for the AR, steroid receptor specific HREs (see 

1.2.6 and Chapter 5) 
4, 7, 51-56

. 

  The AF-1 functions of the steroid receptors have roughly been mapped. For each receptor a region 

in the NTD has been defined, which is required for optimal transcriptional activity. Within these 

regions, a core region that is essential for AF-1 activity has been established. The AF-1 regions in 

different receptors are not identical and map at different parts of the NTD. Two PR isoforms are 

known, PR-A and PR-B. PR-B has an amino-terminal extension harboring an AF-3 function that 

enhances AF-1 activity 
57
. Like in other NR subgroups, the extent to which the separate AF-1 and 

AF-2 activities contribute to steroid receptor activity varies among the different receptors. In 

addition, cell and promoter context determine the relative activities of AF-1 and AF-2. 

Furthermore, AF-1 and AF-2 activities can act synergistically, as was found for ERα, ERβ, GR, 

PR and AR 
39-42

. 

  Unlike other NRs, in the unliganded inactive state steroid receptors are bound by heat shock 

protein complexes. These complexes bind preferentially to the LBDs and are supposed to be 

involved in proper LBD folding, intracellular transport, nuclear import and protection against 

degradation. Most studies indicate that heat shock protein complexes dissociate from the steroid 

receptor upon ligand binding, thereby enabling the receptor to dimerize, bind to DNA and activate 

transcription of its target genes 
58
. 
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1.1.4  Nuclear receptors in transcription regulatory complexes  

  To regulate transcription, the activity of NRs is directly and indirectly modulated by many 

other proteins, which can be components of large protein complexes. These complexes function 

in a spatiotemporal sequence, of which the dynamics are not yet completely understood. A 

model of protein complexes, and protein-DNA and protein-protein interactions involved in 

transcriptional gene regulation by NRs is depicted in Figure 4. It is based on many studies 

utilizing a variety of experimental approaches, including electrophoretic mobility shift assays 

(EMSA), two-hybrid assays, reporter gene assays, chromatin immuno precipitation (ChIP), 

fluorescence resonance emission transfer (FRET), and real-time movement measuring in living 

cells by fluorescence recovery after photobleaching (FRAP). The model includes binding of 

nuclear receptor, coregulators, chromatin remodeling complexes, and Mediator complexes, 

ultimately leading to activation or inhibition of transcription initiation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.  Schematic model of transcriptional regulation by NRs. A) Transcriptional activation, ligand (agonist) is 
in red. B) Transcriptional repression, ligand (antagonist) is in dark red. For further description see text of this 

section (1.1.4). 
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  In the model ligand-bound NRs bind as a dimer to their cognate response elements present in 

target genes. It is known that some NRs have direct access to DNA, which might be dependent 

on nucleosomal phasing of their cognate recognition sites 
59
. Interaction of NRs with DNA 

might be very transient with tenths of seconds to seconds per cycle 
60-62

. For GR and ERα it has 

been shown that they can be removed from their DNA binding sites by proteasomes. This would 

fasten cycling and thereby allow the continuous response to fluctuations in hormone levels 
63,64

. 

The chaperone protein hsp90 might stabilize GR binding by inhibiting removal from its 

response element 
63
. Unlike FRAP experiments, ChIP experiments have shown that transcription 

factors and coregulators can be recruited to promoter/enhancer sequences within minutes 
64
. It is 

possible that proteins present in transcription initiation complexes individually and rapidly 

exchange multiple times within a binding cycle observed with ChIP. 

  Binding of a NR dimer to DNA is followed by recruitment of coregulators, which might be 

coactivators or corepressors. The best known NR coactivators are the p160 proteins, which are 

described in more detail in section 1.1.5 
60
.   

  Coactivators, in turn, recruit factors with strong histone acetyltransferase (HAT) activity, like 

the cointegrators CREB binding protein (CBP)/p300 and p300/CBP-associated factor (p/CAF). 

Some p160 coactivators also have weak intrinsic HAT activity 
65, 66

. Subsequently, histones on 

target genes are acetylated on lysine residues. This decreases histone affinity for DNA, which 

results in an opened chromatin structure allowing ongoing recruitment of all required protein 

complexes favoring gene transcription 
67-69

. Acetylation also disrupts internucleosomal contacts, 

thereby disturbing higher order chromatin structures 
70
. In case of transcription inhibition, a NR 

corepressor is recruited, which in turn recruits proteins with histone deacetylase activity 

(HDACs) through which histones will be deacetylated resulting in tightening of chromatin 

conformation and thereby preventing transcriptional activation 
44, 71-73

. Examples of NR 

corepressors are described in more detail in section 1.1.6.  

  Nucleosome disruption and thereby activation of gene transcription is also conferred by the 

protein arginine methyltransferases: protein arginine methyltransferase 1
 
(PRMT1) and cofactor 

associated arginine (R) methyltransferase 1 (CARM-1/PRMT4), which both can methylate 

histones. These histone methyltransferases (HMTs) are recruited by p160 coactivators and p300 
74-77

.   

  The chromatin structure on transcribed genes is not only modified by HATs and 

methyltransferases, but also by ATP dependent chromatin remodeling complexes. In fact, ERα, 

its coactivator SRC-1, and p300, were all found to bind to components of a remodeling complex 
78, 79

. Remodeling complexes confer unwinding of DNA and release of histones in a non-

covalent and ATP-driven manner (reviewed in refs 80, 81). Three groups of these complexes 

have been found. The best known is the switch/sucrose non-fermenting (SWI/SNF) complex. It 

was first identified in yeast; the human homologs are the Brahma related proteins. A second 

complex is imitation switch (ISWI), which was originally identified in Drosophila. However, 

involvement in NR mediated transcription activation was only established for the SWI/SNF 

complexes. Other described complexes are Mi-2/ nucleosome remodeling and histone 

deacetylation (Mi-2/NURD) complexes, which act on chromatin regions that have become 

deacetylated by HDACs. These contain histone deacetylase activity, which confers further 

tightening of the chromatin structure of a gene that has to be silenced.  

  Crosslinking assays have revealed that the GR and the human SWI/SNF complex bind on a 

tandemly repeated MMTV promoter in an alternating fashion, with a cycle time of 

approximately 5 min. 
62
. This indicates that within one exchange cycle, after conferring the first 
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step in opening the chromatin by recruitment of HATs, the GR is removed from its DNA 

binding site, leaving the stage for further chromatin remodeling. 

  Another large complex involved in transcriptional regulation is the Mediator complex, of 

which orthologs have been found in mammalians, Drosophila, C. elegans and yeast. This 

complex consists of about 25 subunits. The Mediator complex was initially identified as the 

thyroid receptor-associated proteins (TRAP) or the vitamin D receptor–interacting proteins 

(DRIP) or activator-recruited cofactor (ARC) 
82-85

. A universal code for each Mediator protein 

in different species is now available 
86
. FRET experiments have shown that NRs can directly 

interact with components of the Mediator 
87
. The Mediator complex binds with its 

DRIP205/TRAP220 subunit (MED1) to the NR LBD in a ligand-dependent manner, through an 

LXXLL motif which is also found in many coactivators (see section 1.1.5) 
88-92

. ChIP 

experiments have revealed that the TR first recruits p160 and p300, followed by the Mediator 

complex. This finding is substantiated by the observation that recruitment of the Mediator is 

stimulated by inhibition of HDAC activity, which indicates that histone acetylation is required 

for recruitment of the Mediator complex to chromatin 
93
. Consistent with this observation, 

synergism was observed between the Mediator complex and p300/CBP-SRC for ERα-mediated 

transcription with chromatin templates, but not with naked DNA 
94
. ChIP experiments with the 

ERα and its recruited proteins showed that the time scale of Mediator cycling is in the same 

order as that of the receptor and its coregulators, indicating a cooperating role for the Mediator 

complex in transcriptional regulation 
64
.  

  The Mediator complex can bind RNApolII thereby functioning as a scaffold to recruit other 

components of the transcription machinery 
95
. In addition to transcription initiation, the 

Mediator complex enables re-initiation of transcription by providing access for multiple rounds 

of transcription 
96
. The composite nature of different promoters will influence the conformation 

of bound NRs, which is ultimately transmitted to the recruited Mediator complex (reviewed in 

ref. 97). The conformation of the Mediator complex, in turn, will determine the number of 

RNApolII molecules that can start transcription in a defined period of time. 

  A summarizing spatiotemporal model of the events occuring to regulate transcription by NRs 

can be as follows:  

  After ligand binding, NRs can freely bind to and depart from their cognate DNA binding sites 

very quickly, giving target genes the opportunity to respond immediately to changes in hormone 

concentration. This could imply that NRs have left the response element directly following the 

recruitment of coregulators, which has been proposed as a 'hit and run' mechanism 
61
. After 

binding to chromatin, NRs recruit nucleosome disrupting HATs and HMTs via their 

coactivators and chromatin remodeling complexes to further disturb chromatin structures at the 

regulatory sites of the NRs target genes (Figure 4A). In case of transrepression, inhibition of 

transcription is established by recruitment of HDACs via their corepressors, which may also be 

guided by chromatin remodeling complexes (Figure 4B). The loosened chromatin enables 

recruitment of the general transcription factors and RNApolII to the transcription initiation site 

via the Mediator complex. Many of the spatiotemporal details on transcriptional regulation are 

not elucidated as yet, therefore the model described above is expected to be extended and 

modified. 
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1.1.5  Nuclear receptor coactivators 

  NRs function in large networks of proteins and protein complexes that dynamically interact to 

activate or inhibit transcription initiation. An overview of the recent knowledge on these 

networks was described in section 1.1.4. Proteins that directly or indirectly activate or enhance 

transcriptional activation of NR target genes are generally considered as coactivators. Examples 

are: the chromatin remodelling complexes, the Mediator complex, HATs, HMTs, and the group 

of proteins that recruit all these proteins to the NRs (reviewed in ref. 98). This latter group 

includes the p160 coactivators, which have been studied in most detail.  

  Three distinct human p160 steroid receptor coactivator proteins have been identified, SRC-1, 

TIF2/SRC-2, and SRC-3, also known as ACTR, AIB1, RAC3, or TRAM-1 
65, 99-103

. NCoA-1 is 

the mouse homolog of SRC-1, GRIP-1/NCoA-2 in the mouse is homologous to TIF-2, and 

p/CIP is the mouse homolog of SRC-3 
104, 105

.  

  P160 coactivators contain several functional domains (Figure 5). Best studied in this regard is 

the NR interacting domain, or NR box, which contains three LXXLL motifs (L = leucine, x = 

any residue) 
106
. The leucine residues in these motifs are indispensible for receptor interaction, 

and flanking residues play a modulating role herein. The LXXLL motifs interact with a 

hydrophobic cleft in the NR LBD in a ligand-dependent manner. This cleft is lined by a charged 

clamp formed by a conserved lysine in helix 3 and a conserved glutamic acid in the AF-2 core in 

helix 12 
107
. Through an amino-terminal glutamine(Q)-rich region and independent of its 

LXXLL motifs, p160 coactivators can bind to NR NTDs, resulting in synergism of AF-1 and 

AF-2 activities, which might be necessary for optimal receptor functioning 
39, 41, 42, 108, 109

. 

  P160 coactivators contain also binding domains for the HAT containing cointegrators 

CBP/p300 and  p/CAF (see 1.1.4), which play an essential role in gene transcription as has been 

demonstrated in knock-out models 
110, 111

. If fused to a heterologous DBD, p160 coactivators 

can autonomously transactivate through two activation domains, AD1 and AD2 (see Figure 5). 

AD1 coincides completely with the CBP/p300 binding domain, and partly with the PCAF 

binding domain, which also contains the Q-rich region 
100, 105, 112

. To some extent, SRC-1 and 

SRC-3 can acetylate histones by their weak intrinsic HAT domain, formed by the Q-rich region 

and AD2 
65, 66

. AD2 can bind to the HMTs CARM1 and PMRT1 
74, 76

. 

 

 

 

 

 

Figure 5.  Schematical repesentation of  a p160 NR coactivator. NID = nuclear receptor interacting domain, AD = 
activation domain, Q-rich = Q-rich region. 

 

  The physiological function of p160 coactivators has been established in knock-out and null 

mutant mice (reviewed in refs 98, 113). SRC-1 inactivation led to decreased growth of steroid 

target organs, like uterus, mammae, testes and prostate, indicating a role for SRC-1 in ER, PR 

and AR function 
114
. Pituitary resistance to thyroid hormone was also observed, whereas PPARα 

regulated genes were unaffected in SRC-1 null mice 
114, 115

. These mice showed compensatory 

overexpression of TIF-2/SRC-2, indicating redundancy between these two coactivators 
114
. 

Furthermore, SRC-1 null mice exhibit moderate motor dysfunction and delayed development of 

cerebellar Purkinje cells 
116
.  

  SRC-2 plays a critical role in reproductive behaviour and function, and is the most prominent 

SRC family member expressed in the testis. Both male and female SRC-2 knock out mice 
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showed reduced fertility 
117
. An AR mutation, which disrupts the interaction with SRC-2 was 

reported in some men with oligospermic infertility 
118
. SRC-2 is a coactivator of PPARγ as 

reflected in fat accumulation in mice lacking SRC-2 
119
. In addition, SRC-2 was found to form a 

fusion oncoprotein, as a result of a translocation causing leukemia 
120
. 

  SRC-3 null-mutant mice showed dwarfism, deficiency in mammary gland development, and 

other abnormalities in the female reproductive system 
121, 122

. Very high levels of SRC-3 mRNA 

were found in many ER-positive breast and ovarian tumors 
123, 124

. This indicates an important 

role in estrogen stimulation of these tumors as substantiated by the observation that SRC-3 

depletion in MCF-7 cells inhibited their estrogen-dependent growth 
125, 126

. SRC-3 is also 

thought to facilitate the estrogen mediated vasoprotective effects of estrogens via ER activation 
127, 128

. 

  P300 inactivation is lethal in the embryonic stage, indicating potential redundancy of related 

CBP cannot overcome p300 deficiency 
110
. Inactivation of CBP is associated with the severely 

disabling Rubinstein-Taybi syndrome 
129
. As compared with the p160 coactivators, the higher 

importance of CBP/p300 proteins correlates with their evolutionary strong conservation.   

  The viability and fertility of SRC-1 and SRC-3 null mutants are indications for redundancy 

among SRC family members. Indeed, analysis of knock-out mice lacking SRC-1 and SRC-2 

revealed that SRC-1 can partially compensate for loss of SRC-2/TIF2. A TIF2
-/- 
 mutant showed 

an impaired testicular function, which was further decreased by inactivation of one or both 

SRC-1 alleles 
130
. A p/CIP

-/-
SRC-1

-/- 
mouse displayed impaired brown fat development and 

defective adaptive thermogenesis, which are due to absence of activation of certain PPARγ 

target genes 
131
. 

  Based on the data on mutant mice and the tissue specific expression patterns it can be assumed 

that each member of the SRC family has preferential functions. During recent years, a number 

of studies has been published that are consisitent with this observation (reviewed in refs 132-

134). The individual SRC proteins each preferentially bind to a different subset of NRs. They 

even can distinguish between different NR subtypes. For example, ERα has a higher affinity for 

SRC-1 and SRC-3 than ERβ, and PR-A interacts more efficiently with SRC-1 than PR-B. The 

GR has an extra level of binding preference through a second charge clamp in the LBD. 

Moreover, the three different NR boxes of SRC proteins show NR binding specificities. The GR 

shows the highest affinity to NR-box 3 of SRC-2, whereas TRβ prefers NR-box 2. Ligands can 

specify NR box affinity of a particular NR or even NR subtype. Different peptides, selected by 

phage-display, were found to bind to ERα activated by different ligands. For several NRs, 

crystallographic studies have revealed different conformations of the coactivator binding 

interface in LBDs bound by different ligands. SRC recruitment can be promoter dependent as 

was found for the MMTV promoter on which the GR recruits SRC-1 and SRC-3, but not SRC-2 
135
. The functionality of the interactions between SRC-1 and the AR NTD or LBD was also 

found to vary in a promoter-dependent fashion 
136
. 

   A large number of other NR coactivating proteins with less defined function has been 

identified, many of which contain LXXLL motifs. These factors are thought to bind directly to 

multiple NRs through these motifs in a ligand-dependent manner. In addition to the numerous 

coactivators that interact with DNA bound NRs, another category of coactivators is formed by 

proteins that positively influence NR activity prior to or after DNA binding. These proteins are 

involved in: synthesis, proper folding and stabilization, nuclear trafficking, nuclear import and 

export, or degradation of the NR. A detailed description of those kinds of coactivators is beyond 

the scope of this thesis.  
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1.1.6  Nuclear receptor corepressors  

  In addition to transcription activation, transcriptional silencing is required for balanced 

regulation of transcription. Unliganded type I receptors, antagonist bound type III receptors, and 

orphan receptors, are able to repress transcription, also called transrepression. To inhibit 

transcription, NRs recruit corepressors, which bind HDACs that tighten nucleosomal structures 

by their histone deacetylating capacities 
44
. In this way  a non-permissive environment is created 

for appropriate transcription initiation.  

  Several corepressors are known, including the related corepressors NR corepressor (NCoR) 

and silencing mediator for retinoid and thyroid hormone receptor (SMRT) 
72, 137

. NCoR and 

SMRT show high sequence similarity and share key functional domains (Figure 6).  

 

 

 

 

 

Figure 6.  Schematical repesentation of the NR corepressor NCoR. RD = repression domain, mSin3BS = mSin3 
binding site, RID = receptor interacting domain. 

 

  Corepressors have two or three NR interacting domains (RIDs) through which they bind to NR 

LBDs. Each RID contains a receptor interaction motif (CoRNR box) with a consensus sequence 

LxxI/HIxxxI/L. This motif is predicted to adopt an amphipathic α-helical conformation similar 

to that of the LXXLL motifs in coactivators 
43, 138, 139

. Like LXXLL motifs, the hydrophobic 

residues of the CoRNR boxes are essential in receptor interaction, flanking amino acid residues 

play a modulating role in this interaction. The coactivator binding cleft in the LBD is also 

involved in corepressor binding. However, compared to the LXXLL motif, the CoRNR box 

helix is NH2-terminally extended, which most likely prevents binding of the corepressor to the 

hydrophobic cleft in the agonist activated LBD. In the unliganded state of type I receptors or 

antagonist bound type III receptors, helix 12 of the LBD is thought to be displaced by the 

extended CoRNR helix 
43
. 

  SMRT and NCoR recruit different classes of HDAC subtypes through three or four different 

repressor domains (RDs), respectively 
140-143

. This recruitment might be direct or via the Sin3A 

protein 
144-146

. To deacetylate histones in association with corepressor and DNA bound NRs, 

HDACs have to gain access to their target site. Therefore, chromatin-remodeling activity is also 

required. Indeed, the Mi-2/NURD remodeling complexes were found to contain HDAC activity 
147-149

.  

  Like for the coactivators, receptor specificity has been established for NCoR and SMRT. The 

TR prefers to recruit NCoR, whereas the RAR isoforms bind much better to SMRT than to 

NCoR. PPARα and PPARδ only bind to SMRT, whereas the orphan receptor Reverb 

exclusively binds to NCoR. In the two corepressors, specific CoRNR box motif residues of 

individual RIDs have been identified to confer these receptor specificities 
150
. 

  The three-dimensional structures of several NR LBDs bound to agonists and antagonists have 

been elucidated (reviewed in ref. 151). The agonistic and antagonistic forms provide interaction 

interfaces suitable for binding to coactivators or corepressors, respectively. The interaction 

interfaces are overlapping, which is illustrated by a single mutation in the TR LBD that changes 

its interaction interface from a SRC-1-binding to an NcoR-binding interface 
152
.  

  Whether a ligand acts as an agonist or antagonist is not only determined by the conformation it 

induces to an NR LBD, but is also dependent on the coactivators and corepressors present in a 
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cell. To which extent coactivators and corepressors influence NR function is determined by their 

stoichiometry, which is cell-type specific and depends on cell activity state 
54
. In case of NCoR 

excess, the vitamin D analog Gemini was found to shift from an agonist to an inverse agonist by 

disabling coactivator interaction and stimulating corepressor recruitment 
153
. This indicates a 

coregulator interface conformation that is dynamic rather than static, and the equilibrium 

between the different conformations is dependent on the ligand structure, the cell-specific 

coactivator/corepressor ratio and presumably other factors like the promoter context of the 

receptors target genes. This is also substantiated by the fact that corepressors and coactivators, 

to some extent, can compete for binding to agonist bound RAR and ERβ 
154, 155

. Additionally, 

two proteins, transducin β-like R1 and Ski-interacting protein, were found to mediate exchange 

of NR corepressors for coactivators 
156, 157

. 

  Another kind of corepressors includes receptor interacting protein 140 (RIP 140) and ligand-

dependent corepressor (LcoR) 
158, 159

. These corepressors resemble the p160 coactivators in that 

they are recruited by agonist bound NR LBDs through their LXXLL motifs. LCoR has one, and 

RIP140 even has ten LXXLL motifs. Both corepressors function by HDAC-dependent and -

independent mechanisms. 

  Like for the coactivators, the number of proteins identified to have corepressing activity is still 

growing. Further details on this subject are beyond the scope of this thesis.  

 

1.1.7  Post-translational modifications of nuclear receptors 

  In addition to cofactors that modulate the chromatin structure, NR function is also regulated by 

different kinds of direct post-translational modifications, like acetylation, methylation, 

ubiquitylation, sumoylation and phosphorylation. These modifications are reviewed in refs 160-

162. 

  P300 and CBP, which are recruited by p160 coativators, can acetylate histones, but also 

transcription factors, among which the AR and ERα. Through acetylation, activation of ERα is 

attenuated, whereas AR activation is stimulated 
163
. TRβ1 acetylation was found to be associated 

with p300 recruitment 
164
.   

  P160 coactivators recruit, in addition to HATs also HMTs, like CARM1 and PMRT1 (see 

section 1.1.4) 
74, 165

. Although these HMTs can methylate histones and other proteins in the 

transcription initiation complex, no methylation of NRs and their coregulators by these HMTs 

has been reported.  

  Ubiquitin is a well-conserved 76-amino acid protein, which is conjugated to many different 

substrates, including NRs. Poly-ubiquitylation of proteins leads to their proteasome-mediated 

degradation, whereas mono-ubiquitylation is involved in transcriptional regulation. The AR, 

ERα, GR, PPARα, RARγ, RXRα, and TR were all found to be degraded by the ubiquitin-

proteasome system 
166-171

. However, overall activity of the GR is increased by this system, 

suggesting that a high turn-over of GR on target promoters favors the opportunity for other GR 

molecules to start another round of transcription 
63
.  

  Sumoylation involves the conjugation of the 101-amino acid small ubiquitin-like molecule-1 

(SUMO-1) protein (18% homology with ubiquitin) to lysines of a target protein. Sumoylation 

influences proteins with respect to their subcellular localization, subnuclear sequestration, 

stability, or ability to regulate gene transcription. Sumoylation of the GR increases its 

transcriptional activity probably by stabilization of this receptor, whereas AR-dependent 

transcription is repressed by sumoylation 
172-175

. However, the effect on AR may be caused by 

sumoylation of GRIP1, which probably impairs their co-localization 
176
. In contrast, 
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sumoylation of SRC-1 was shown to enhance PR-SRC-1 interaction thereby increasing PR 

activity 
177
. 

  NRs can be phosphorylated at serine, threonine and tyrosine residues in their NTDs and LBDs 

as well as in their DBDs. The kinases involved are mitogen-activated protein kinases (MAPKs), 

cyclin dependent kinases (CDKs), Akt, protein kinase A (PKA), and protein kinase C (PKC). 

The number of phosphorylation sites ranges from one in the VDR to at least 13 in the PR. 

Phosphorylation of ERα, ERβ, PPARα and AR NTDs by MAPKs or Akt stimulates recruitment 

of coactivators and of the transcription machinery, thereby facilitating chromatin remodelling 

and transcription initiation 
178-183

 The GR and PPARγ are inhibited by phosphorylation of their 

NTDs, probably by promoting the ubiquitin-proteasome mediated degradation 
184-189

. 

Phosphorylation of the ERα and RARα LBDs favors receptor dimerization and coactivator 

recruitment 
183, 190-192

. DBD phosphorylation has been observed for the VDR, ERα, and RARα, 

which interferes with DNA binding and receptor dimerization 
193-196

. Excessive kinase activity 

may activate NRs in a ligand-independent manner. This was illustrated in breast, ovarian and 

prostate cancers, which showed estrogen and androgen-independent growth and had abberant 

MAPK and Akt activities 
180, 197-200

.  

  NR coregulators are also subject to the post-transcriptional modifications described above. 

SRC-3 can be acetylated by CBP, which modulates one of its lysines leading to an inhibition of 

binding to CBP. This modification may form a negative feedback loop 
201
. For the ER, which is 

not sumoylated and the PR, which can be sumoylated, it has been established that sumoylation 

of SRC-1, but not of these receptors, increased their binding to this coactivator 
177
. Sumoylation 

of p300 leads to recuitment of a HDAC, which represses its activity. HDACs, in turn are also 

regulated by sumoylation 
202
. P160 family members and CBP/p300 are particularly subject to 

become phosphorylated by the different kinase pathways 
203-206

. Phosphorylation of the 

corepressor SMRT inhibits its interaction with NRs and causes its redistribution from the 

nucleus to the cytoplasm 
207
. Phosphorylation-dependent ubiquitylation was found for RARγ, 

indicating a mechanism of initial receptor activation followed by tagged degradation 
208
. The 

liganded PR is also degraded upon phosphorylation, however, its degradation pathway is not 

clear yet 
209, 210

. Taken together, cross-talk with other signal transducing pathways can 

sophistically modulate NR and cofactor function. This might result in stimulation or inhibition 

of transcription regulation. 

 

1.1.8  Additional nuclear receptor functions  

  In addition to the classic ligand-induced transcriptional regulation of target genes NRs can be 

involved in other pathways, including ligand-independent transactivation, DNA-binding-

independent transactivation, and even transcription-independent function. Illustrating examples 

are described below. 

  For several NRs ligand-independent functions have been described. Unliganded TR and RAR 

can bind to HREs and recruit corepressors thereby repressing transcription 
211-213

. Ligand 

binding to these receptors causes dissociation of the corepressors, allowing coactivator binding. 

Another mode of ligand-independent action involves the orphan receptors (type V NRs). These 

are constitutively active, have an LBD structure similar to that of agonist-bound 

transcriptionally active NRs, but have an empty ligand-binding pocket or no ligand-binding 

pocket at all 
214, 215

. Mutations of a conserved tyrosine in the LBD induce constitutive activation 

of the ERα and ERβ. However, antiestrogens could completely abolish this ligand-independent 

activation 
216, 217

.  
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  Several ligand responsive NRs can also be activated in the absence of ligand. For example, in 

reporter assays the chicken progesterone receptor (cPR) could be activated by 8-Br cAMP 
218
. 8-

Br cAMP activated p42/p44 MAPK and increased phosphorylation of SRC-1, which then 

contributed to the ligand-independent activation of the cPR 
219
. Dopamine can activate a number 

of NRs including cPR and ERα in the absence of their cognate ligands 
220, 221

. Treatment with 

dopamine causes PR-dependent induction of mating behavior in female rats and mice, whereas 

PR null mice are not responsive 
222-225

. The ERα is also responsive to cell signaling pathways in 

the absence of ligand. In cells maintained in phenol red-free, charcoal-stripped serum, the ERα 

shows substantial basal transcriptional activity. This activity can be inhibited by a pure anti-

estrogen such as ICI 182780 
221
. Epidermal growth factor (EGF)-dependent activation of human 

ERα was observed in transfected hormone depleted HeLa cells, whereby Ser118 was 

phosphorylated 
226
. Substitution of serine by alanine abrogated the hormone-independent 

activation 
227
. In the absence of ligand, AR activity can be induced by EGF, keratinocyte growth 

factor (KGF), interleukin 6 (IL-6), and forskolin (see for more details section 1.2.5.1.3.4) 
228-230

. 

Aberrant activation of AR by cell signaling pathways is presumed to be involved in many cases 

of androgen-independent prostate cancer (see section 1.2.5.1.3.4). The GR needs ligand for 

activation, but can be extra stimulated by activators of PKA and PKC 
220, 231-233

. RARα can be 

activated in the absence of retinoic acid by the catalytic subunit of PKA 
191
. In CV1 cells, 

RARα, RARβ, RXRα, RXRβ, and RXRγ, but not RARγ, could be activated in the absence of 

ligand and after treatment with the phosphatase inhibitor okadaic acid, which was not observed 

if the cells were treated with dopamine 
234
. The VDR could be acivated by okadaic acid or by 

dopamine 
234
. 

  NRs can also regulate transcription independent of HRE binding, which is referred to as 

'transcriptional cross-talk'. For example, in the presence of agonists, GR, TR, RAR, and ERβ 

inhibit AP-1-dependent transcription, whereas ERα is activating. Antiestrogen bound ERβ can 

activate AP-1 directed transcription 
235, 236

. 

  Non-genomic signaling mechanisms of NRs have also been reported and include recruitment 

of signaling pathways that are often associated with cell membrane receptors such as G-protein-

coupled receptors (GPCRs), ion channels or enzyme-linked receptors 
237
. For plasma membrane 

associated ERs it has been suggested that they are involved in the regulation of cell membrane 

ion channels, GPCRs, and tyrosine kinases and MAPKs 
238-242

. They also can activate adenylate 

cyclase production, and induce phospholipase C activation 
243, 244

. This results in a rapid 

increase in intracellular Ca
2+
 concentration due to Ca

2+
 mobilization from the endoplasmic 

reticulum and to the formation of inositol 1,4,5-trisphosphate and diacylglycerol 
244
. The ER is 

also supposed to be involved in the Src/Ras/MAPK signal transduction pathway by interaction 

with c-Src 
238
. In breast cancer cells, the B isoform of the PR stimulates the activated ER to 

recruit the Src/p21ras/ERK pathway 
245
. A specific polyproline motif in the NH2-terminal 

domain of PR mediates direct progestin-dependent interaction of PR with SH3 domains of 

various cytoplasmic signaling molecules, including c-Src tyrosine kinases 
246
. Testosterone is 

also able to regulate the MAPK family of protein kinases. Recent work indicates that, via a cell 

membrane associated AR, testosterone induces a rapid rise in the intracellular free Ca
2+
 

concentration in macrophages 
247
. Similar findings were reported for the VDR 

248
. In addition to 

protein kinase signaling pathways, non-transcriptional actions of NRs can be mediated by the 

recruitment of lipid kinases. E2-bound ERα interacts with the regulatory subunit of the lipid 

kinase PI3K, triggering activation of the catalytic subunit and increasing intracellular production 

of phosphoinositides 
249
. Interaction with PI3K was also found for other NRs, such as the AR 

and the GR 
250
.  
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1.2  THE ANDROGEN RECEPTOR 

 

  The AR is essential in development of the male phenotype and controls male fertility and 

sexual behaviour. High AR levels are present in the tissues of the male urogenital tract, 

including the prostate. Low AR expression was found in many other tissues including mammary 

gland, kidney, liver brain, genital skin fibroblasts and keratinocytes, hair follicles, cardiac and 

skeletal muscle, and salivary glands 
251, 252

. The androgens, T and DHT are the main AR ligands. 

T is produced in the Leydig cells of the testis. In target tissues it can be converted into the more 

active DHT by 5α-reductase 
253, 254

. 

  In addition to its role in prostate development and maintenance, the AR is involved in prostate 

carcinogenesis. Orchiectomy or inhibition of AR activity by anti-androgens causes shrinkage of 

the normal prostate and of tumor prostatic tissue, including loss of luminal epithelial cells (see 

for review ref. 255). Therefore, AR signaling is an important subject of research. 

 

1.2.1  General features of the AR 

  The AR gene maps to chromosome band  Xq11.2-q12 and is composed of 8 exons spanning 

186 kbp 
256-258

. Two hAR mRNA species of approximately 8.5 and 11 kb have been identified 
256, 259-262

. These transcripts differ only in the sizes of their 3'-UTRs. The AR NTD is encoded by 

part of exon 1. Exons 2 and 3 code for the AR DBD, each for one zinc cluster domain. The AR 

LBD is encoded by part of exon 4, exons 5, 6, and 7, and part of exon 8.  

  The size of the human AR can be variable, due to variation in the length of poly-glutamine and 

poly-glycine stretches in its NTD (Figure 7) 
256, 259

. In the AR from other species these stretches 

are absent or have a considerably different size and are located in a different part of the NTD. 

Amino acid numbering in this thesis corresponds to an AR length of 919 amino acids, as 

employed by The Androgen Receptor Gene Mutations Database 

(http://www.mcgill.ca/androgendb) 
263
.  

  The AR can be phosphorylated in the absence or presence of androgens resulting in isoforms 

displayed as a 110-112-114 kDa triplet in an SDS-PAGE gel. As a result of alternative 

translation initiation, a truncated 87 kDa AR has been found in fetal tissues and genital skin 

fibroblasts 
264, 265

. It constitutes 10% of the total AR protein level, but its in vivo relevance is not 

known. 

  The AR DBD and LBD primary struture are well conserved between species. The AR NTD 

contains only short conserved regions, the homology of amino acid stretches 1-36, 234-247 and 

501-529 are most obvious. These regions are expected to be of functional importance and are 

discussed in the next section.  

 

 

 

 

 

 

 

 

 

Figure 7.  Schematical overview of AR NTD functional subdomains. FXXLF = FXXLF motif, polyQ = poly-
glutamine stretch, polyG = poly-glycine stretch, TAU = transactivation unit.  
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1.2.1.1  The AR NH2-terminal domain 

  In the AR NTD several functional subdomains have been identified (Figure 7). The NTD 

harbours the transcription activation unit 1 (TAU1). TAU1 comprises a region of approx. 250 

amino acid (aa) residues (100-370) and is active in the full-length ligand activated AR. 

However, in a truncated AR lacking the LBD, another region containing aa 360-485, termed 

TAU5, functions as a constitutively active transactivation domain 
266
. Depending on the cellular 

context, deletion of TAU5 causes a small or more pronounced decrease in activity of the full 

length AR 
266, 267

. In contrast, TAU1 is indispensible for ligand-induced activation of the full-

length AR 
266
. These findings indicate that the unliganded LBD prevents TAU1 activity, which 

is reversed upon ligand binding. Indeed, the TAU1 region by itself shows a constitutive activity 

that is approx. 40% of the activity of the complete NTD 
267
. TAU1 in the rat AR was even 

further narrowed to two regions, AF-1a and AF-1b, which correspond to aa 172-185 and aa 296-

360 in the human AR. Deletion of either subdomain caused a minor reduction of AR 

transcriptional activity, but absence of both AF-1a and AF-1b resulted in a 90% decrease in 

activity 
268
. However, another study indicated that AF-1b was dispensible 

267
.  The importance 

of TAU1 and TAU5 in AR activity is further substantiated by the finding that the NTD is 

essential in p160 coactivator binding. Although the AR LBD can bind to p160 coactivators, the 

AR NTD also interacts with these coactivators. TAU5 directly interacts with the glutamine-rich 

region of SRC-1, whereas TAU1 seems to attenuate indirectly this interaction 
267
. 

  It has been predicted that the NTD contains several small α-helical structures, but a well-

defined structure of the  complete AR NTD could not be established. It is presumed that the AR 

NTD adopts an induced fit conformation in response to binding other proteins, as proposed for 

binding of the general transcription factor TFIIF 
269
. 

 The region aa 234-247, which constitute the most conserved part of AR NTD was found to bind 

to the carboxy terminus of the Hsp70-interacting protein (CHIP), a negative regulator of AR 

(see also section 1.2.2.2) 
270
.  

  The highly conserved region aa 16-36 is predicted to fold in a long amphipathic α-helix, 

indicating a protein-protein interaction domain. Aa 23-27 is located within this region and 

comprise the LXXL-like motif, FQNLF. This motif is essential in the direct ligand-dependent 

interaction between the AR NTD and AR LBD, the so-called N/C interaction. This interaction 

will be extensively discussed in section 1.2.3 and Chapter 2. Some AR coregulators have also 

been found to contain FxxLF motifs, through which they, like the motif in AR NTD, bind to the 

AR LBD coactivator groove, thereby competing with the N/C interaction (reviewed in ref. 271, 

see also section 1.2.2.1). Recently, the melanoma antigen gene protein 11 (MAGE-11) has been 

identified as a protein that interacts with a region in the AR NTD overlapping with the FXXLF 

motif. Binding of MAGE-11 increases AR activity (see section 1.2.2.1) 
272
.  

  The region aa 501-529 is the third part of the NTD that is highly conserved between ARs from 

different species. However, for this region no specific function has been established as yet. 

  In addition to the proteins described above, many other proteins, including other coactivators 

and corepressors, have been found to interact with the AR NTD and influence AR function. An 

overview of these proteins can be found in The Androgen Receptor Gene Mutations Database 

(http://www.mcgill.ca/androgendb) 
263
. A selection of these proteins is given in section 1.2.2.  

 

1.2.1.2  The AR DNA binding domain  

  The AR binds with high affinity to the consensus androgen response element (ARE) 5'-

AGAACAnnnTGTTCT-3', which is shared with the GR, PR and MR. Also, more or less AR 
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specific AREs have been reported in the regulary regions of genes that show androgen-specific 

transcriptional regulation. These AREs contain one perfect or almost perfect half-site, whereas 

the second half-site can vary considerable from the consensus sequence (reviewed in ref. 55). 

Based on crystallographic data of the AR DBD bound to an AR specific ARE, the mechanism of 

AR binding to a specific ARE has been elucidated. One AR binds to a high affinity consensus 

half-site, the second AR can have a weaker affinity to the second half-site, because the AR 

DBD, unlike other steroid receptors, contains an additional interface that stabilizes the AR 

dimer/ARE complex. Dimerization strength of the other steroid receptors would not be 

sufficient to retain stable binding to an AR-specific ARE. The orientation of the AR dimer on 

the ARE is in a head-to-head fashion on both non-specific and AR-specific AREs (Figure 8) 
24
. 

More details on this subject are described in section 1.2.4 and Chapter 3.  

  Like other NRs, the AR DBD was found to contain a non-classical NES, which is necessary 

and sufficient for nuclear export, indicating a role for the DBD in nucleo-cytoplasmic shuttling 

of the AR
26
. In addition, a second NES has been postulated in the AR LBD (see section 1.2.1.4) 

45
.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.  Overall architecture of the AR DBD complexed to an AR-specific ARE. The two AR DBD subunits are 
in red and blue, repectively, the hexameric ARE half-site is in gold, the spacer and flanking base pairs are black. 

From ref. 24. 

 

1.2.1.3  The AR hinge region 

  The hinge region of the androgen receptor contains a bipartite nucleoplasmin-like NLS (aa 

605-624), which is essential for nuclear import of the receptor 
273, 274

. The NLS is blocked by the 

unliganded LBD, because only in the presence of androgens the AR is transported to the 

nucleus. AR mutants lacking the LBD are constitutively localized to the nucleus. 

  Between aa 628 and 646 a domain has been identified that inhibits AF-2 activity of AR LBD. 

Mutations in this region enhanced the weak (see 1.2.1.4) AF-2 transactivation by TIF2 

indicating that the hinge region plays an inhibitory effect on coactivator-mediated AF-2 function 

of AR 
275, 276

. Alternatively, region 628-646 might bind an inhibitory protein, thereby negatively 

influencing the overall activity of the AR. 
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 1.2.1.4  The AR ligand binding domain 

  Crystallographic data have revealed the three-dimensional structure of the AR LBD (Figure 9) 
277
. Although no helix 2 has been identified, helix numbering is further consistent with the 

general NR 12-helical LBD structure, as was previously predicted by comparison modeling 
278
. 

AR LBD helices 10 and 11 actually form one long helix, and helix 12 appeared to be longer 

than proposed by modeling. The crystallographic structure was elucidated for the AR LBD 

complexed with DHT and complexed with the synthetic androgen R1881. A dynamic structure 

was indicated for the AR LBD, because binding of DHT induced a continuous helix 12, which 

was apparently split into two separate helices upon binding of R1881. Indications for the 

influence of the ligand on LBD conformation were earlier provided in limited proteolytic 

digestion experiments, in which the AR bound to either agonists or antagonists showed protease 

protected fragments of different sizes 
279
. 

  The ligand binding pocket in the AR LBD is primarily formed by 18 amino acid residues 

scattered throughout helices 3, 4, 5, 10 and 11 
277
. The positions of all individual amino acid 

residues relative to the bound ligand have been identified. Substitutions of amino acids that are 

in contact with or in the vicinity of the ligand have been found in prostate cancer specimens and 

in the androgen insensitivity syndrome 
280-282

. These substitutions impair AR function or render 

the AR, also responsive to female sex hormones, glucocorticoids, and even antagonists 
283
. More 

details on AR related diseases and AR ligand specificity can be found in section 1.2.5 and in 

Chapter 4.   

   Like was found for other NRs, helix 12 of the AR LBD is folded like a lid over the ligand-

binding pocket when occupied with an agonist 
277
. The resulting conformation of the LBD 

provides an interface for coactivator binding. In case of antagonist binding, the resulting 

conformation might lead to corepressor recruitment and/or inhibition of coactivator binding. 

However, although the coactivators SRC-1, TIF2 and GRIP1 can bind to the AR LBD through 

their LXXLL motifs, this binding is not essential for AR function. This is reflected by an AR 

deletion mutant lacking the NTD, that can itself not be activated by androgens 
266
. This mutant 

needs overexpression of a p160 coactivator to be activated, indicating very weak AR AF-2 

activity 
40, 284

. 

  Although p160 coactivator binding to the AR LBD might not be essential for full length AR 

function, different LBD conformations induced by different ligands might influence coactivator 

binding to the NTD. Indications for this were found in interactions with coregulators. The anti-

androgen bicalutamide (BCA) is unable to activate the AR. It cannot induce coregulator 

recruitment, although a BCA-bound AR is able to bind to DNA 
285, 286

. However, as indicated by 

FRAP experiments the time period of interaction with DNA is very short 
287
. Cyproterone 

acetate (CPA) elicits a transcriptionally productive AR-GRIP1 interaction, reflecting its partial 

antagonistic character. CPA was also found to induce recruitment of the corepressor SMRT to 

the AR NTD 
288
. So, the outcome of CPA activity may depend on the ratio of coactivators and 

corepressors present in a cell.  

  A separate category of AR coregulators, including ARA54, ARA70 and RAD9 (see section 

1.2.2), were found to bind to the LBD through their FXXLF motifs, which are related to the 

LXXLL motifs found in most coactivators 
289
. An FXXLF motif (see also section 1.2.1.1), 

which can bind to the AR LBD, was also found in the NTD. This motif establishes a ligand-

dependent interaction between these two domains, the N/C interaction. This interaction might 

contribute to AR activity, dependent on the promoter context 
290
. 

  The AR LBD shows a preference for FXXLF motifs over LXXLL motifs. Computer modeling 

and crystallographic analyses of AR LBD bound to FXXLF and LXXLL motif containing 
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peptides, have revealed a larger coactivator groove for the AR LBD compared to the ER-LBD. 

This larger groove provides suitable contact sites for the bulky phenylalanine side chains of the 

FXXLF motif, whereas LXXLL motifs have less favorable interactions with the amino acids 

lining the AR coactivator groove 
162, 291, 292

. Detailed information on the N/C interaction and 

FXXLF motifs can be found in section 1.2.3 and Chapter 2.  

  An AR NES is localized in the AR LBD between amino acids 742 and 817. In the absence of 

ligand, this NES is active and dominant over the NLS in the hinge region (see previous section). 

Ligand binding inhibits the NES and simultaneously releases repression of the NLS, leading to 

an increase of AR nuclear localization 
45
. The AR LBD also plays an important role in 

stabilization of AR-DNA interaction as revealed by  FRAP analysis 
293
.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9.  AR LBD helical structure. Numbers of the helices are indicated, coact = helix of a coactivator that 
interacts with the coactivator groove, androgen molecule is in red. 

 

1.2.2  AR coregulators 

  Many proteins have been found to interact with the AR. A portion of these proteins was 

identified as AR coregulators, either coactivator or corepressor. In addition, a number of 

proteins have been descibed that do not interact directly with the AR, but can indirectly 

influence receptor activity. These proteins might also be considered as AR coregulators. An 

overview of AR-interacting proteins is presented in the AR mutations database 

(http://www.mcgill.ca/androgendb) 
263
. In this section, an overview of AR coactivators and 

corepressors is given, in Tables 1 and 2, respectively. Selected proteins are discussed in sections 

1.2.2.1 and 1.2.2.2.  
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1.2.2.1  AR coactivators 

  The most studied group of NR coactivators is the family of p160 (SRC) proteins. All three 

members are capable of enhancing AR activity. SRC-1 and TIF2 (SRC-2) were found to bind to 

the ligand-activated AR LBD through their LXXLL motifs, but this interaction, as compared to 

other NRs, is weak. SRC-1 also binds to the AR NTD region 360-494 (TAU5) through its 

glutamine-rich region, which is essential for its recruitment, whereas the LXXLL motif is 

dispensable for coactivation of the AR 
108
. However, depending on the promoter context, 

LXXLL-guided SRC-1 binding to the AR LBD contributes to the total AR activity 
136
. 

  Male SRC-1 knockout mice do not display a significant androgen-insensitive phenotype 
114
. 

They are fertile, but their testes are smaller than those of wild-type mice. Androgen treatment of 

castrated SRC-1 knockout mice showed prostate growth albeit less if compared to wild-type 

castrated mice. These data suggest compensation of the SRC-1 absence by other coactivators. 

Indeed, in SRC-1 knockout mice the TIF2 mRNA level is elevated 
114
. This might explain why 

the SRC-1 knockouts showed normal fertility. Combinatory knockout models have provided 

more insight in the redundancy of SRC coactivators. SRC-1
-/-
/TIF2

-/-
 mice, which were not 

viable after birth, and SRC-1
+/-
/TIF2

-/-
 mice showed severe testis degeneration. The latter were 

sterile, whereas SRC-1
+/+
/TIF2

-/-
 mice were hypofertile 

130
. These findings indicate that SRC-1 

can partially compensate for the lack of TIF2 in a dose-dependent manner. Also SRC-3 seems 

important in androgen-regulated development of the male phenotype, since its glutamine-repeat 

was found to be shorter in undermasculinized subjects 
294
. This observation might indicate 

absence of redundancy by SRC-1, TIF2 or non-SRC coactivators. However, details of the 

mechanism of inhibition of AR function by the shortened poly-glutamine stretch in SRC-3 

remains to be established. More recently it has been reported that in a transgenic mouse model, 

in which the AR DBD was swapped by the Gal4-DBD, AR
GAL4DBD

 mice, the AR activity in 

testes was decreased in a TIF2 +/- background, and even more decreased in TIF2 null mutants 

compared to wild type. However, SRC-1 +/- mice showed no significant changes in AR
GAL4DBD

 

activity. These findings indicate that TIF2 might serve as the preferential coactivator of AR in 

the testis 
295
. 

  The general coactivator CBP, SRC-1, and AR are coexpressed in luminal epithelial cells of the 

prostate and in a subpopulation of prostate stromal cells. If transfected in CV-1 cells, CBP 

enhances AR-dependent transcription. Coimmunoprecipitation experiments have revealed that 

the AR and CBP can be found in the same multi-protein complex. An AR deletion mutant 

lacking the LBD and region aa 38-296 of the NTD is still capable to bind CBP, indicating a 

ligand-independent interaction 
296
. 

  Tip60 (Tat-interactive protein, 60 kDa), first identified in complex with the Tat protein of the 

human immunodeficiency virus-1, is an NR type III-specific coactivator 
297, 298

. It displays HAT 

activity and can directly acetylate the AR, which is necessary for Tip60-mediated AR 

coactivation 
299, 300

. PIRH2 can interact with both Tip60 and the AR, and enhances AR activity 
301
. PIRH2 also binds to the AR corepressor HDAC1, which leads to inhibition of transcriptional 

repression 
301
. 

  AR-associated protein 70, ARA70, binds to the AR LBD and was shown to enhance androgen-

induced AR transcriptional activity 
302
. Overexpression of ARA70 changes the AR antagonists 

OH-FL and BCA into agonists and it also induces AR transcription at physiological E2 

concentrations in females 
303-305

.  

  ARA55 binds to the AR LBD and, when hypophosphorylated, is thought to act as an AR 

coactivator in the nucleus 
306, 307

. Like ARA70, it can enhance the AR(T877A) mutant response 

to OH-FL 
305
. The phosphorylated form of ARA55 is found in focal adhesions that are 
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connected with the extracellular matrix 
307, 308

. This property indicates that phosphorylated 

ARA55 might be involved in regulation of anchorage-dependent growth, differentiation and 

apoptosis. ARA55 contains LIM domains known as protein-protein interaction sites, but it is not 

known whether ARA55 recruits other coregulators via these domains 
309
. 

  ARA70, ARA55, and ARA54 contain the LXXLL-related motif FXXLF (see sections 1.2.1.1 

and 1.2.1.4). The FXXLF peptide motifs of ARA70 and ARA54 specifically bind to the AR 

LBD. However, the ARA55 FXXLF motif was unable to bind to the AR LBD, indicating that 

other regions in ARA55 are responsible for AR interaction 
289
. FXXLF and related motifs will 

be discussed extensively in section 1.2.4.  

  ARA267β, which is homologous to mouse NSD1 (NR-binding SET(Su(var)3-9, Enhancer of 

Zeste, and Trithorax)-domain-containing protein), and its amino-terminal shortened isoform, 

ARA267α, can bind both the AR NTD and AR LBD and enhance DHT induced transcription 
310
. Both ARA267 proteins contain a SET domain, which is known to interact with components 

of the SWI/SNF complex. Whether the SET domains of the ARA267 proteins play a role in the 

recruitment of the SWI/SNF complex to the AR remains to be established. NSD1 contains an 

FXXLL motif, through which it can bind to the AR LBD 
311
. 

  MAGE-11 (see also section1.2.1.1) has been identified as a protein that binds to the region in 

the AR NTD that contains the FXXLF motif. It stabilizes the unliganded AR and in the presence 

of an agonist it competes with the N/C interaction, thereby increasing the exposure of the LBD 

coactivator groove to the recruitment and activation by coactivators 
272
. 

  Two related AR coactivators, PIASαx and PIAS1, are members of the protein inhibitor of 

activated signal transducer and activator of transcription (STAT) family. STATs are 

transcription factors that are phosphorylated in response to interferon, interleukines, and EGF 
312
. So, it is possible that the PIAS proteins mediate cross-talk between cytokines and androgen 

signalling, but AR activation by these proteins may also be a distinct regulatory process. PIAS1 

is a target of androgen receptor-interacting nuclear kinase (ANPK) and is expressed in Sertoli 

and Leydig cells, and in spermatogenic cells 
313, 314

. PIASxα, identified as androgen receptor 

interacting protein 3 (ARIP3), is also expressed in the testis and was found to facilitate the AR 

N/C interaction (see section 1.2.4) 
315
. PIAS proteins contain amino-terminal LXXLL motifs 

and bind to the AR in an androgen-dependent manner. The LXXLL motifs of PIASxα were 

found to interact with GRIP1, but it is not clear as yet whether the motifs are also involved in 

AR binding 
176
.  

  Filamentous actin (F-actin) binding proteins β-catenin, gelsolin, supervillin, and filamin-A 

determine cell morphology by regulating actin polymerization and depolymerization. β-catenin 

also acts as a coactivator of downstream transcription factors of the Wnt signalling pathway 
316
.  

Interactions between the Wnt and AR signalling pathways, can both activate or inhibit AR 

activity 
317, 318

. β-catenin was found to function as an AR coactivator in prostate cancer cells 
319
. 

The histone methyltransferase activity of CARM (see section 1.2.2.4) can function in synergy 

with β-catenin and p300 as a coactivator of the AR. Through β-catenin, CARM1 binds 

indirectly to the AR, but no methylation of AR has been found 
76
. The exact AR coactivating 

mechanism of CARM1 is still to be elucidated. Recently, β-catenin was found to be involved in 

insulin-like growth factor 1 (IGF-1) mediated activation of the AR 
320
. Gelsolin interacts with 

the AR LBD by an FXXFF motif in a T-dependent manner and functions as an AR coactivator 

in the prostate cancer cell line DU145 
321, 322

. Supervillin can coactivate the AR and binds to 

both the AR NTD and AR LBD 
88
. It also activates the GR and is predominantly localized to the 

plasma membrane at sites of intercellular contacts 
323
. This suggests a role for supervillin in 

transducing signals from cellular adhesion sites to the nucleus, thereby influencing NR function. 
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Filamin-A is a protein that can cross-link F-actins. It can also interact with the AR hinge region. 

Mutant filamin-A disables the AR to translocate to the nucleus, thereby inhibiting AR regulated 

transcription 
324
. 

  Androgen receptor trapped clone 27, ART27, is an AR coactivator that binds to the AR NTD. 

It is expressed in prostate epithelial cells, in muscle, and in breast tissues, but not in AR positive 

stromal cells of the prostate 
325
. ART27 is associated with growth suppression and cell 

differentiation, which is illustrated by its enhancement of PSA production 
326
. 

  The four and a half of LIM-only protein 2 (FHL2) is an AR coactivator that is predominantly 

expressed in the heart and to a lesser extent in epithelial and stromal prostate cells. FHL2 

requires the full-length AR to enhance its activity 
327
. It contains an FXXLF motif, but a peptide 

fragment with this motif is unable to interact with the AR LBD 
289
. FHL2 interacts also with β-

catenin (see above), but stimulation of AR activity by both FHL2 and β-catenin was found to be 

additive and not synergistic 
328
.  

  The ubiquitin-protein ligase E6 associated protein (E6-AP) (see also section 1.2.3) has an 

intrinsic transactivation function, and can act as a coactivator for RARα, TR, ER, PR, GR and 

AR, in a ligand-dependent manner. Coactivation is independent of the ubiquitylation capacity of 

this enzyme, which indicates that coactivation and ubiquitylation are distinct processes 
329
. It 

could be presumed that the ubiquitinating activity contributes to NR activity by targeting 

degradation of corepressors, as was found for NCoR, or it could be involved in degradation of 

components of the preinitiation complex, thereby facilitating reinitiation of transcription. The 

AR interaction domain of E6-AP has not been identified as yet. Ubc9 (or UBE2I) (see also 

section 1.2.3) is related to the ubiquitin-conjugating enzymes and can act as a coactivator for the 

ligand-bound AR. Instead of ubiquitylation, Ubc9 rather is involved in covalent linking of 

SUMO-1. Similar to E6-AP, the coactivation function of Ubc9 is independent of its sumoylation 

capacity. Ubc9 binds to the AR DBD-hinge region 
172
. 

 

Table 1. AR coactivators. Modified and extended from ref. 271. 
Coactivator Alternative name Binding  to Comments References 
SRC-1 NCoA-1, p160 NTD, DBD, 

LBD 
Enhances AR N/C interaction; Interacts with 
CBP/p300; General nuclear receptor coactivator; Weak 
acetyltransferase activity. 

66, 99, 108, 

136, 330 

TIF2 GRIP1,NcoA-2, 
SRC-2 

NTD, DBD, 
LBD 

General nuclear receptor coactivator; Facilitates AR 
N/C interaction. 

100, 104, 284, 

331 

SRC-3 AIB1, NcoA-3, 
ACTR, p/CIP, 
Rac3, TRAM1 

unknown Enhances transcription by AR,  PR, TR and RAR; 
Interacts with CBP/p300; Acetyltransferase activity. 

65, 101, 303, 

332 

Tip60 - hinge-LBD Acetylates AR; Also coactivates PR and ER; Family 
member of the MYST/SAS histone acetyltransferases.  

298-300 

hPIRH2 - unknown Binds to AR, Tip60, and HDAC1. Enhances AR by 
reducing HDAC1 protein levels 

301 

SNURF RNF4 DBD RING finger protein; Interacts with AR, ER and PR; 
May recruit cromatin remodeling factor HMGI(Y). 

313 

ARA54 - LBD Ring finger protein; Ligand dependent coactivator of 
AR and PR.  

333 

ARA55 Hic5 LBD Contains a LIM domain; Ligand dependent coactivator 
of AR, PR, GR and ER. 

289, 305-307, 

309, 334 

ARA70 ELE1, RFG DBD, LBD Ligand dependent coactivator of AR, GR, ER and 
PPARγ; Bridging factor to p/CAF and TFIIB. 

302-305, 335, 

336 

FHL2 DRAL, Slim3 unknown Ligand dependent and prostate-specific coactivator of 
AR; LIM only protein. 

327, 328 

ARA160 TMF NTD Enhances AR, PR and GR function; Synergistic with 
ARA70. 

337 

ARA267β NSD1 NTD, LBD Interacts with AR, ER, TR, RAR and RXR; Contains 
SET and domains ARA267α is N-terminal shortened  
ARA267β 

310, 311 

ARIP3 PIASαx DBD Facilitates AR N/C interaction; represses transactivation 
of the probasin promoter at high levels (AR:ARIP3 = 
1:200) 

315 
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Coactivator Alternative name Binding  to Comments References 
1:200) 

PIAS1 - DBD, LBD Coactivator of AR and GR, but a corepressor of PR; 
Expression in rat testes at onset of spermatogenesis 

314 

E6-AP - unknown Interacts with AR, ER, PR and GR; Ubiquitinylates 
target protein, which is separate from coactivation. 

329 

Ubc9 - DBD-hinge Interacts with AR and GR; Sumoylates target protein, 
which is separate from coactivation.  

172, 338 

Gelsolin - LBD Enhances AR in prostate and muscle cells; Actin 
filament severing and capping protein. 

321 

Caveolin-1 - NTD, LBD Membrane protein associated with caveoli membrane 
structures. 

339 

β-catenin - unknown Ligand dependent coactivator; Also interacts with 
FHL2 to activate Wnt-responsive genes (independent of 
AR). 

319, 320, 328 

Filamin-A - hinge Involved in AR nuclear import; Represses AR function 
by interfering with the N/C interaction and competing 
for TIF2.  

324, 340 

Supervilin - NTD, LBD Interacts with AR and GR; Actin-binding protein. 88 

ANPK PKY DBD Stabilizes AR protein 313 

ARA24 Ran NTD Interacts with AR NTD polyglutamine repeat. 341 

BRCA1 - NTD, LBD Enhances AR transcription synergistically with ARA55 
and ARA70. 

342 

BRCA2 - NTD, LBD Enhances AR function, which may be antiproliferative 
in (male) breast cancer. 

343 

Cyclin E - NTD Enhances AR activity independent of cell cycle 
progression. 

344 

pRb - NTD, DBD Tumor suppressor; Enhances AR transcription and 
represses TR by binding to the TR coactivator Trip230 
(hMED12).  

345 

BAG-1L - unknown Enhances AR activity; Regulates Hsp70 function. 345 

Hsp40 dnaJ, ydj1p LBD Mutation of Hsp40 in yeast reduces AR transactivation; 
Member of the chaperone heterocomplex. 

346, 347 

CBP p300 NTD, DBD Facilitates AR N/C interaction; interacts with SRC 
family members; acetyltransferase activity; Coactivator 
of multiple transcription factors. 

296, 330, 348 

RIP140 - NTD, DBD, 
LBD 

Coactivator at low receptor-coactivator ratios, but 
repressor at high ratios; Influences activity of AR, ER, 
PPARα and PPARγ 

349 

ZAC1 - LBD Interacts with AR, GR, ER and TR; AR coactivator in 
HeLa cells (synergistic with TIF2) and AR corepressor 
in 1471.1 cells.  

350 

PGC-1 LEM6 unknown General nuclear receptor coactivator. 351 

SRA - unknown Enhances transcription of AR, PR, GR and ER; 
Functions as a RNA transcript and associates with an 
SRC-1 containing coregulator complex. 

352 

RAF IDE NTD Enhances AR and GR DNA binding. 353 

HMG-1/-2 - unknown Enhances DNA binding of AR, PR, GR and ER; 
Abundant chromatin-associated protein; Does not 
recognize a specific DNA binding sequence. 

354 

MAGE-11 - NTD Binds  the AR NTD FXXLLF motif; Competes with the 
AR N/C interaction; Stabilizes the unliganded AR   

272 

ART-27 - NTD Associated with growth suppression and cell 
differentiation of prostate epithelial cells, low or 
negligible levels in prostate cancers showing 
dedifferentiation. 

325, 326 

CARM1 - indirect Functions in synergy with β-catenin and p300; Binds 
through β-catenin indirectly to the AR; Overexpressed 
in prostate carcinoma. 

355, 356 
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1.2.2.2  AR corepressors 

  Although the number of identified AR corepressors is less than that of AR coactivators, the list 

of AR inhibiting proteins is still growing 
357
. The best-studied AR corepressors so far are NCoR 

and SMRT.  

  AR transcription activity can be inhibited by cotransfection of small amounts of the 

corepressor NCoR in the presence of partial antagonists, higher NCoR expression levels can in 

the presence of agonists even inhibit AR activity 
358, 359, 360

. Possibly NCoR can easily compete 

with coactivators for binding to the agonist-bound AR, because interaction of coactivators with 

the AR LBD via its coactivator binding groove is not strong 
358
. These results indicate that AR 

activity will not only be determined by the presence of agonists and/or (partial) antagonists, but 

also by the ratios of coactivators and corepressors in a cell. The partial antagonist CPA and the 

antagonist OH-FL show agonistic activities for the AR mutant T877A, present in the lymph node 

derived prostate cancer (LNCaP) cell line. These activities were hardly affected by NCoR. 

However, cotransfection of the coactivator TIF2 strongly enhanced the activity of the AR-

mutant 
359
. This indicates that the antagonist-bound T877A mutant preferentially binds to 

coactivators reflecting its activation by antagonists. NCoR mediated repression of AR seems 

independent of HDACs, as was shown by deletion of the HDAC-interacting domain of NCoR 
358
. Both the AR NTD and LBD are required for NCoR binding, which is dependent on the 

CoRNR boxes and independent of ligand and helix 12 
358, 360

. The observations that AR and 

NCoR are present in the same complexes, as shown by co-immunoprecipitation and ChIP 

analysis of endogenous proteins, is strong evidence that NCoR is of relevance for regulation of 

AR function under physiological conditions 
358, 360

. 

  Like NCoR, SMRT can bind to both the AR NTD and LBD. It interacts with the LBD via the 

RID2 corepressor motif. This interaction is enhanced by the presence of the AR DBD-hinge 

region 
361
. SMRT binding to the AR can occur in CV1 cells in the presence of R1881 or the 

partial antagonist CPA, but not with the antagonists BCA or OH-FL 
288
. However, in human 

kidney 293 cells SMRT can be recruited to the AR in the presence of OH-FL or BCA, indicating 

cell-dependent SMRT function 
361, 362

. SMRT weakly decreases AR activition by agonists, but 

strongly enhances the AR inhibiting activity of (partial) antagonists 
288, 361

. In addition, the 

antagonist mifepristone (RU486) induces binding of the AR to SMRT, and also to NCoR. This 

interaction seems even stronger than that induced by CPA, OH-FL and BCA 
363
. It was also 

found that the coactivator SRC-1 can compete with SMRT for binding to the AR NTD, 

indicating a modulating role for relative coregulator levels in AR function 
364
.  

  RAD9, a member of the Rad family of checkpoint proteins involved in DNA damage 

detection, DNA repair, and cell cycle arrest, was found to interact with the AR LBD. An 

FXXLF motif in the C terminal region of RAD9 mediates this interaction, thereby inhibiting the 

AR N/C interaction 
365
. In this way, cross talk between checkpoint proteins and AR signalling 

can occur.  

  Dosage-sensitive sex reversal adrenal hypoplasia congenita critical region on the X-

chromosome gene I (DAX1) is an atypical nuclear receptor, lacking a DBD 
366
. It binds to the 

AR LBD and can sequester the AR in the cytoplasm 
367
.  

  Short heterodimeric partner (SHP) is an orphan nuclear receptor that can bind to the AR NTD 

and LBD and inhibits the activation functions of both AR subdomains. Through its LXXI/LL 

motifs SHP binds to the AR LBD in an androgen-dependent manner. SHP was shown to 

compete with the AR coactivators TIF2 and FHL2 for AR LBD binding 
368
. SHP induced AR 

repression was found to be mediated by recruitment of HDACs 
369
.   
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  The highly conserved region aa 234-247 was found to have an AR inhibiting function if bound 

to CHIP (see also section 1.2.1.1). CHIP binds to the unliganded AR, which might promote AR 

degradation 
270
. Two mutations, A234T and E236G (see also 1.2.5.2.3), detected in a transgenic 

mouse prostate cancer model, reduced the interaction with CHIP 
370
.  

 

Table 2.  AR corepressors. Modified and extended from ref. 357. 
Corepressor Alternative name Binding to Comments References 

ARR19 - DBD Inhibits AR activity by recruitment of HDAC4; co-

translocates in the nucleus with AR 

371 

DJBP - DBD Recruits  a HDAC1 and mSin3A containing complex. 372 

HDAC1 - DBD-LBD Inhibits AR activity; no effect on AR protein levels. 300, 373 

NCoR - LBD Antagonist-dependent corepressor; competes with 

TIF2; binding to AR depends on corepressor nuclear 

receptor boxes, but is independent of ligand. 

358-360 

PIASγ - unknown Represses AR activity independent of its sumoylation 

activity, probably by recruiting HDACs. 

374 

SMRT 

 

- NTD, LBD Ligand-dependent corepressor by inhibiting AR N/C 

interaction and competing for p160 coactivators.  

288, 361-364 

TGIF - DBD Represses AR activity through the HDAC pathway 375 

Calreticulin - DBD Corepresses AR, GR, RAR and RXR; inhibits DNA 

binding and transcription. 

376 

Tip110 - LBD Binds to AR through its LXXLL motif; prevents  

binding of AR to AREs. 

377 

DAX1 - LBD Inhibits ligand-dependent transactivation and AR N/C 

interaction; relocalizes AR in nucleus and cytoplasm; 

inhibits ER and SF1. 

367 

LATS2 KPM LBD Inhibits AR N/C interaction; lower expression in 

prostate tumors than in normal prostate. 

378 

RAD9 - LBD FXXLF motif within C-terminus; interrupts AR N/C 

interaction. 

365 

ARA67 PAT1 NTD (strong), 

DBD, LBD 

Promotes cytoplasmic retention of AR. 379 

PAK6 - hinge, LBD Inhibits nuclear translocation of the ligand-bound 

AR; also inhibits ER. 

380-382 

Akt - unknown Phosphorylates the AR; represses AR-ARA70 

binding 

383, 384 

PTEN - DBD Inhibits AR via a PI3K/Akt independent pathway in 

early passages of LNCaP cells. 

384, 385 

CHIP - NTD Binds to the unliganded AR, which is thought to 

promote AR degradation  

270, 370 

Cyclin D1 - unknown Reduces AR activity independent of cell cycle 

progression; coactivator of ER. 

386, 387 

HBO1 - DBD, LBD Ligand-dependent corepressor; member of the 

MYST/SAS protein family. 

388 

RIP140 - NTD, DBD, 

LBD 

Coactivator at low receptor-coactivator ratios, but 

repressor at high ratios; influences activity of AR, 

ER, PPARα and PPARγ 

349 

SHP - NTD. LBD LXXLL motif mediated interaction with AR LBD; 

inhibits AR and ER. 

368, 369, 389 

SMAD4 - DBD, LBD Inhibits SMAD3-enhanced AR activity by decreasing 

AR-SMAD3 interaction.  

390-392  

SRY - DBD Inhibits AR activity. 393 

TR2 - unknown Inhibits androgen-mediated transactivation in PC3 

cells; overexpression causes suppressed PSA 

expression 

394 

ZAC1 - LBD Interacts with AR, GR, ER and TR; AR coactivator in 

HeLa cells (synergistic with TIF2) and AR 

corepressor in 1471.1 cells.  

350 
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1.2.2.3  The AR in transcription regulatory complexes 

  During the last decade many studies have addressed the question of AR function in cooperation 

with the plethora of transcription regulatory proteins. Data are ranging from direct interactions 

with coactivators and corepressors through complex participation in chromatin remodeling, 

Mediator function, and ultimately to recruitment and activation of the general transcription 

machinery. In the majority of the studies on this subject the PSA promoter and enhancer have 

been used as AR target. A comprehensive overview of the relationship between the AR and 

transcription regulatory complexes is given below.  

AR regulated recruitment of coregulators 

  In several studies the complex process of recruitment of coregulators to AR regulated genes 

has been described, however, the outcomes of the different studies are in some cases conflicting. 

First, it has been shown that androgens induce recruitment of TIF2, SRC-3, and CBP/p300 to 

the prostate specific antigen (PSA) enhancer. ChIP experiments in LNCaP cells revealed that the 

coactivators are preferentially recruited to the strong 4 kbp upstream enhancer of the PSA gene 

and much less efficiently to the proximal PSA promoter. Remarkably, promoter-independent 

recruitment of RNApolII to the enhancer and subsequent induction of transcription has been 

observed. SRC-3 was found to facilitate RNApolII recruitment 
395
. A second study revealed that 

for both PSA and the closely related kalikrein gene KLK2 more AR is loaded onto the enhancers 

than onto the promoters, but the residence time of the AR on the enhancers was more transient 
396
. However, in contrast to the previous study, RNApolII was found to be assembled on the 

promoters. The reason for this discrepancy is not understood. Binding by different anti-

androgens resulted in different AR occupation on enhancer/promoter regions: BCA-bound AR 

is able to bind to the PSA promoter, but not to the enhancer, whereas the partial antagonists CPA 

and RU486 were capable of promoting AR loading on both the PSA enhancer and promoter 
396
. 

CPA and RU486, but not BCA, bound AR led to occupation of both the PSA enhancer and 

promoter by GRIP1, p300, and RNApolII. Like BCA, CPA and RU486 were also able to induce 

recruitment of NCoR to the PSA promoter. Consistent with these findings, treatment with the 

pure anti-androgen BCA does not result in histone acetylation 
396
. 

  In an earlier report androgen-induced association of RNApolII with both the PSA promoter and 

enhancer has been described 
362
. However, quantitative differences between both AR target 

regions were not addressed. Based on this study a model was proposed in which protein-protein 

contact between the PSA enhancer and promoter is via RNApolII, thereby looping out the 

interval DNA. A scenario of a 'facilitated tracking' mechanism was proposed, whereby 

RNApolII trails from the enhancer along the entire 4 kb PSA upstream sequence to the promoter 
395
. This would be in accordance with the finding that the AR can reside for a longer time period 

on the promoter and RNApolII mainly occupies the promoter, indicating an analysis time point 

at which AR and RNApolII have reached the end point of the 'preinitiation trail' 
396
.  

AR interplay with components of chromatin remodeling complexes 

  Although many aspects of chromatin remodeling in AR function remain to be elucidated, a few 

of the large number of components of chromatin remodeling complexes have been identified to 

be directly involved in AR function.  

  An interaction of AR with Brahma (BRM), one of the core ATPases of the SWI/SNF 

chromatin remodeling complex, was found, correlating with the agonistic or antagonistic 

properties of the tested ligands 
397
. The two largest subunits of the human SWI/SNF chromatin 

remodeling complex, hOsa1, which is identical to BRM related gene 1(BRG1)-associated factor 

250 (BAF250) or ARID1A, and hOsa2 , which is similar to hOsa1, were found to stimulate AR 

and GR transcriptional activity 
398
. Both Osa proteins can interact with hBRM and BRG1, which 
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are necessary for activation of the PSA promoter, but addition of the PSA enhancer sequence to 

the reporter gene overruled this requirement. In contrast, the promoter of the probasin gene 

maintained a low activation level in the absence of SWI/SNF. Addition of the PSA enhancer to 

the probasin promoter did not bypass the requirement of the chromatin remodeling complex to 

achieve increased AR induced activation of this promoter 
399
. These findings suggest different 

mechanisms of chromatin remodeling for enhancer and promoter regions and also for different 

promoters. 

  BAF57 is an accessory component of SWI/SNF that can directly bind to the AR. It is recruited 

to endogenous AR targets such as the PSA enhancer upon ligand activation, and loss or 

inhibition of BAF57 inhibits AR activity 
400
.  BAF57, together with hBRM, was found to be 

required for the proliferation of androgen-dependent prostate cancer cells 
400
. In addition, 

BAF57 can cooperate with p160 coactivators and ARA70 and ARA55 to activate transcription 

of AR target genes 
400
.   

  SWI3-related gene product (SRG3), a component of the mouse SWI/SNF complex, is a 

homologue of human BAF155 and recruits SRC-1. Coactivation of the AR by SRG3 is 

independent of BRG1 and BRM, indicating that the complete SWI/SNF complex is not required 
401
. 

  AR interaction protein 4 (ARIP4) is a SNF2-like protein with DNA-dependent ATPase 

activity. It was found to modestly enhance AR activity on minimal promoters, but not on the 

probasin promoter 
402
. It remains to be established whether ARIP4 is needed for activation of 

AR regulated natural promoters. 

AR interactions with the Mediator complex  

  Ligand-dependent transcription by the AR in LNCaP cells was found to be enhanced by the 

TRAP220 (MED1, according to the unified nomenclature for Mediator subunits 
86
), TRAP170 

(MED14), and TRAP100 (MED24) components of the Mediator complex 
403
. In lysates from a 

Hela-derived cell line, E19, pull-down experiments have shown that in the presence of T or DHT 

the AR directly binds to TRAP220 through its LBD. ChIP assays have revealed that TRAP220 

is recruited to the PSA promoter in R1881 treated LNCaP cells 
403
. 

AR interactions with the general transcription machinery 

  Three components of the general transcription machinery have been identified that interact 

with the AR. These are the general transcription factors II F and H (TFIIF, TFIIH) and the 

positive transcription elongation factor b (P-TEFb). 

  AR NTD strongly binds to the TFIIF subunit RAP74 (TFIIF is a tetramer of two RAP74 and 

two RAP30 subunits), modest binding was found with the TFIIF subunit RAP30 
404
. RAP74 to 

AR NTD interaction, which is mainly via the C-terminal domain of RAP74, resulted in 

increased protease resistance of the AR NTD, indicating that the assumed flexible structure of 

this AR subdomain can fold into a more stable conformation upon interaction with TFIIF 
269, 405

.  

  The highly conserved AR NTD region 224-258 contains several conserved hydrophobic 

residues that are involved in TFIIF binding: M244, L246, and V248 
406
. Outside this region also 

S159, S162, S340, and S343 were found to be involved in binding to TFIIF 
405
. So, interaction 

sites for TFIIF are scattered throughout TAU1 in the AR NTD. None of the residues involved in 

TFIIF binding are binding sites for SRC-1, because this coactivator binds to the C-terminal part 

of the AR NTD, aa 360-494, which includes TAU5 
108
. The distinct binding sites for TFIIF and 

SRC-1 enable the AR NTD to make multiple protein-protein interactions simultaneously with 

coactivators and components of the general transcription machinery 
405
. TFIIF was found to play 

a role in cooperation with TFIIE and TFIIH to overcome stalling of RNApolII after the 
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formation of the initial phosphodiester linkage 
407
. So, the AR might be linked to transcription 

elongation through TFIIF binding. 

  TFIIH contains a kinase moiety, CAK, that interacts with AR NTD and enhances AR activity. 

This interaction may provide efficient communication between AR, GTFs and RNApolII. 

Transfection of CAK in LNCaP and PC3 cells enhanced AR activity in a ligand-dependent 

manner, whereas in DU145 cells AR activation by CAK was ligand-independent. It was 

suggested that CAK can phosphorylate the AR, thereby enhancing the activity of the receptor 
408
.  

  The AR can interact with PITALRE, a kinase subunit of P-TEFb. Mutation of this kinase 

resulted in preferential inhibition of AR-mediated transcription activation. A nuclear run-on 

transcription assay of the PSA gene revealed that transcription efficiency of the distal region of 

this gene was increased after androgen treatment 
409
. So, interactions of AR with TFIIF and P-

TEFb are both suggested to influence transcription elongation. 

  AR NTD was also shown to bind to the general transcription factor TATA binding protein 

(TBP) 
404
. The second largest subunit of RNApolII (RPB2) is able to bind to the AR and can 

enhance AR transactivation 
410
. However, more detailed information of these interactions is 

lacking.  

1.2.2.4  Post-translational modifications of the AR 

  AR function can be regulated by post-translational modifications like phosphorylation, 

acetylation, ubiquitinylation, and sumoylation. 

  Phosphorylation mainly occurs at the AR NTD 
411
. Serines at positions 16, 81, 256, 308 and 

424 are phosphorylated in an androgen-dependent manner, whereas S94 is constitutively 

phosphorylated. Phosphorylation of S650 in the hinge region is also induced by androgens and 

necessary for optimal AR activity depending on cell and promoter context. Specific agonists 

might differentially regulate the AR phosphorylation status. The functional role of AR NTD 

phosphorylation is not clear yet. PKA, PKC and epidermal growth factor (EGF) up-regulate the 

androgen-induced phosphorylation of S650, and can also phosphorylate the AR independent of 

androgen. This strongly suggests that kinase pathways influence AR function by ligand-

independent AR activation or by sensitization of the AR to reduced ligand levels 
412, 413

. 

Apparently, cross-talk occurs between androgen and growth factor signaling pathways 
414
. 

  E6 associated protein (E6-AP) (see also section 1.2.2.1) is an E3-type ubiquitin-protein ligase 

with an intrinsic transactivation function. It can function as a coactivator of many NRs, 

including AR, in a ligand-dependent manner. However, this coactivation is independent of the 

ubiquitinylation capacity of this enzyme 
329
. A defect in the E6-AP ubiquitinylation function 

causes the Angelman syndrome, a genetic neurological disorder, but a role of disturbed AR 

ubiquitylation in this disease has not been established 
415, 416

. Recently, the proto-oncogene 

Mdm2 E3 ligase has been shown to catalyze AR ubiquitylation and proteolysis in vivo. ChIP 

analysis has revealed that Mdm2 associates with the PSA promoter and is a component of a 

promoter-bound multi-protein complex  containing AR and HDAC1 
417
. 

  Ubc9 (see also section 1.2.2.1) is a homologue of the E2-type ubiquitin-conjugating enzymes 

and was found to act as a coactivator of the ligand-bound AR. In stead of ubiquitylation, Ubc9 

rather is involved in covalent linking of the small ubiquitin-like molecule-1 (SUMO-1). Similar 

to E6-AP, the coactivation function of Ubc9 is independent of its sumoylation capacity. Ubc9 

binds to the AR DBD-hinge region and has been shown to sumoylate the AR at K386 as the 

principal sumoylation site and to a lesser extent K520 
172
. A corresponding lysine in the PR 

(K388) can also be sumoylated 
177
. Sumoylation defective mutants of AR and PR showed higher 
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transactivating activity than the wild-type receptors, indicating an attenuating role for 

sumoylation 
172, 177

. Ubc9 can also bind to and sumoylate the GR DBD, but its effect on receptor 

activity has not been established yet 
172
. Potential SUMO-1 acceptor sites in the GR (K277, 

K293, K703) and AR (K386 and K520) are located in negative control motifs that restrict the 

transcriptional synergy of these two receptors 
418
.  Whereas ubiquitylation is often involved in 

protein degradation, sumoylation plays a role in subcellular localization, especially in 

intranuclear targeting, protein stability, and gene transcription 
419, 420

. Because these protein 

modifying mechanisms each have lysine residues as their targets, they might compete with each 

other, depending on the cellular needs 
421
.  

  In addition to acetylation of histones, CBP/p300 and p/CAF are also able to acetylate 

transcription factors 
422
. AR acetylation augments its ligand-dependent transcriptional activity. 

A highly conserved lysine-rich motif, 
630
KLKK

633
, is the acetylation target site in the AR 

423
. 

Acetylation neutralizes positively charged lysines, which may lead to conformational changes 

that affect protein-protein or protein-DNA interactions of the AR. The HAT activity of Tip60 

can activate the AR by direct acetylation 
299, 300

. 

  Although CARM1 (see section 1.2.2.1) can increase AR activity it was not found to methylate 

the AR protein 
356
. Possibly this activation is mediated by histone or coactivator methylation.  
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1.2.3  AR LBD interaction with AR NTD and AR coactivators  
 

1.2.3.1  AR N/C interaction 

  In full-length AR, TAU1 (aa 100-370) has been identified as essential in transcription activity 

of the AR NTD. However, deletion of AR LBD shifted the main transcription activation unit in 

AR NTD from TAU-1 to TAU-5 (aa 360-485) 
266
. This finding led to the hypothesis of an 

interaction between the AR NTD and the AR LBD. Indeed, an androgen-dependent functional 

NTD-LBD interaction, designated AR N/C interaction, has been detected in protein-protein 

interaction systems. This interaction could be blocked by anti-androgens 
424, 425

. The N/C 

interaction is direct, as assessed by in vitro pull down experiments 
331
.     

  Initial deletion mapping studies from our group indicated three regions in the AR NTD to be 

involved in the functional interaction with the AR LBD: aa 3-36, aa 172-185 (AF-1a), and aa 

370-494 
268, 284

. The first region appeared to be an essential interaction domain 
284
. Mutational 

analysis of AF-1a decreased the functional N/C interaction as well as AR transactivation, but an 

AF-1a peptide was not able to interact with the AR LBD, indicating an indirect role for this 

domain in N/C interaction 
40, 267

 (and Steketee, unpublished). As region 370-494 encompasses 

TAU-5, which probably is a p160 coactivator binding site, it contributes to the transcriptional 

function of the AR NTD/AR LBD protein complex rather than to the N/C interaction itself 
267, 

284
. Initial studies from others pointed to the aa 14-150 region as the AR N/C interaction domain 

425
. Combined, these findings indicated that the most important interaction domain of the AR 

NTD is constrained to residues 14-36. 

  For aa 16-36 a remarkably long amphipathic α-helical structure was predicted, suggesting an 
important protein interaction interface. In vivo and in vitro protein interaction experiments have 

shown that aa 16-36 can interact autonomously with the AR LBD and is essential for N/C 

interaction. Within aa 16-36, the motif 
23
FQNLF

27
 appeared to be pivotal for direct N/C 

interaction 
426, 427

. Protein interaction assays showed that the hydrophobic residues F23, L26 and 

F27 each were indispensable. Amino acids flanking the 
23
FQNLF

27 
motif modulate AR N/C 

interaction 
290, 291, 427-429

. Therefore, aa 23-27 is referred to as an FXXLF motif in which X can 

be any amino acid. Region aa 370-494 (encompassing TAU5) contains an FXXLF-related motif, 
433
WHTLF

437
, which was postulated to affect the 

23
FQNLF

27
 mediated functional interaction 

with the LBD 
426
. However, a peptide containing this region was not able to interact with the AR 

LBD, which excluded 
433
WHTLF

437
 as an autonomous interaction motif in AR NTD (Steketee 

unpublished results). 

  Like for the AR NTD, AR LBD amino acids involved in AR N/C interaction have been studied 

in detail. The AR FXXLF motif 
23
FQNLF

27
 shows similarities to LXXLL motifs present in NR 

boxes of p160 coactivators, and therefore it was hypothesized that the FXXLF motif could bind 

to the coactivator groove in the AR LBD in a similar manner as LXXLL motifs 
106, 430, 431

. As 

described in section 1.2.2, these LXXLL motifs are essential in the interaction with NR LBDs. 

They bind to a hydrophobic cleft in LBDs, which is lined by the highly conserved charged 

lysine residue in helix 3 and the glutamic acid residue in helix 12 
106
. In AR, amino acid residues 

corresponding to this 'charged clamp' are K720 and E897, respectively. Both were shown to be 

involved in the ligand-dependent interaction between the AR FXXLF motif and AR LBD, but 

solely K720 is involved in LXXLL-AR LBD binding 
40, 284, 291, 292, 331, 432-434

. So, the FXXLF-

mediated AR N/C interaction is comparable, but not completely identical to the LXXLL-
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mediated coactivator-AR LBD interaction. In section 1.2.4.4, a detailed mechanistic description 

of the FXXLF-AR LBD interaction is given.  

  The AR functions as a homodimer to regulate transcription of its target genes. Initial studies 

aiming at unraveling the AR N/C interaction have been carried out with the FXXLF motif and 

LBD coactivator groove present in separate AR protein fragments. Therefore it could not be 

determined from those experiments whether the interaction is intra- or intermolecular or a 

dynamic combination of both. More recent FRET experiments in living cells with cyan 

fluorescent protein (CFP) and yellow fluorescent protein (YFP) attached to either end of the AR 

(CFP-AR-YFP) showed that after androgen treatment an N/C interaction occurs both in the 

cytoplasm and in the nucleus 
435
. A FRET signal between single tagged CFP-AR and AR-YFP 

fusion proteins indicated dimerization of AR (intermolecular interaction). This interaction is 

preferentially found in the nucleus. Deletion or mutation of the FXXLF motif in both CFP-AR 

and AR-YFP did not alter the dimerization signal, but clearly diminished the FRET signal of 

CFP-AR-YFP. These results indicate that the AR N/C interaction is intramolecular in the 

cytoplasm as well as in the nucleus, and that AR dimerization does not rely on FXXLF-

mediated intramolecular interaction.  

1.2.3.2  Relevance of AR N/C interaction in receptor function 

  The exact role of N/C interaction in full-length AR function has not been completely 

established as yet. However, several studies have given clues that contribute to elucidating the 

relevance of the interaction.  

  Ligand-dependent AR N/C interaction was found to slow ligand dissociation thereby 

increasing AR activity 
291, 331, 426, 436

. Several AR LBD mutations in androgen insensitivity 

syndrome (AIS) patients have been found with a reduced or completely abolished N/C 

interaction 
331, 436-438

. However, not all AIS mutants cause similar conformational changes 

leading to disturbance of AR N/C interaction. So, disturbance of N/C interaction cannot be used 

as a general indicator of AIS. However, if disruption of AR N/C interaction is found for an AIS 

mutant, this may give a clue for the mechanism of that particular AR mutant. An N/C interaction 

deficient AR mutant can be translocated to the nucleus, which implies that the N/C interaction is 

not necessary for nuclear import 
439
.  

  Both the ligand-dependent N/C interaction and the transactivating function of the AR (T877A) 

mutant found in LNCaP prostate cancer cells could not only be induced by androgens, but also 

by non-cognate ligands as estrogens, progestagens and anti-androgens at physiological or 

therapeutic concentrations 
424
. This reflects the broadened ligand-specificity of this AR mutant 

(see section 1.2.5.1.3.2), and thus indicates a physiological role of the N/C interaction.  

  The N/C interaction was proposed to be a prerequisite for p160 coactivator recruitment, 

supporting an important role of AR NTD in p160 interaction 
40, 108

. This would also be 

consistent with the exclusion of TIF2 binding to the AR LBD reported as an effect of the N/C 

interaction 
440
. However, the AR N/C interaction was found to be influenced in a negative or 

positive manner by different coactivators as well as corepressors 
441
. So, there is no clear 

correlation as yet between the N/C interaction and coactivator/corepressor interaction with AR. 

  The N/C interaction might play a modulating role in AR-mediated transcription. N/C 

interaction disrupting AR mutants tended to be less active on non-specific AREs than on 

androgen-specific AREs (see section 1.2.5.4) 
290
. 

  Recently, it was found that an AR deletion mutant lacking the FXXLF motif does not bind to 

the MMTV promoter and PSA enhancer assembled on chromatin in Xenopus or mammalian 

cells 
439
. However, this AR mutant can bind to a consensus ARE in vitro and activates the 
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MMTV promoter in transient transfection, which are supposed to be experimental conditions 

without proper chromatin structures. The mutant is also diminished in its binding to the ATPase 

subunit of SWI/SNF, Brg1 
439
. These findings indicate a role of N/C interaction in chromatin 

embedded AR function. In section 1.2.2.3 a more detailed description of interplay of AR with 

components of chromatin remodeling complexes has been presented. 

  An artificial chromatin embedded promoter containing 4 linked AREs could be activated by 

the AR FXXLF deletion mutant, indicating that multiple AREs can overcome the chromatin 

constraints for the N/C interaction deficient AR 
439
. Although the MMTV promoter also 

contains 4 AREs, the ARE arrangement might be insufficient to accommodate the AR mutant 

properly if packaged in chromatin. In transient transfected LNCaP cells an AR deletion mutant 

lacking aa 1-36 was able to activate an MMTV-driven reporter, but much less efficient the 6 

kbpPSA promoter/enhancer (Steketee, unpublished results). Apparently, PSA transcription has 

specific demands with respect to the AR N/C interaction, which may be chromatin-independent.   

1.2.3.3  N/C interaction in other nuclear receptors 

  Using a mammalian two-hybrid system, N/C interaction has been found for the rat AR, 

indicating a universal mechanism of AR function in different species 
442
.  

  An N/C interaction has also been described for other NRs. The ERα displays a ligand-
dependent N/C interaction, which is disrupted by amino acid substitutions that affect receptor 

function 
42, 443

. The ERα N/C interaction is claimed to be direct and can be induced by the 
agonist estradiol (E2) and the antagonist hydroxytamoxifen, but not by the antagonist 

ICI164,384. It was found that the N/C interaction of ERα was required for SRC-1 mediated 
synergism between AF-1 and AF-2 function 

41, 42
. The coactivator TIF2 was also found to 

synergize AF-1 and AF-2 functions in ERα 41. Recently, FRET experiments have shown that 
ERα N/C interaction can occur intramolecularly 435, 444. Although ERβ AF-1 is able to bind to 
SRC1 and to TIF2, it is not known whether AF-1 and AF-2 synergize and, so far, a direct N/C 

interaction has not been reported for this receptor 
179, 445

.  

  For both PR isoforms, PR-A and PR-B, an N/C interaction was reported in the presence of an 

agonist, but not in the presence of an antagonist 
446
. This interaction was much stronger for PR-

B, which is the strongest transcriptional activator. This activating capacity is attributed to its N-

terminal 164 amino acids, which are lacking in the PR-A. An AF-3 function has been mapped to 

this region and it contains two LXXLL motifs 
447, 448

. These motifs are essential for PR-B 

transcriptional activity. However, they are thought to bind sites in the PR-LBD which are 

different from the coactivator binding groove.       

  For a number of other NRs there are indications of communication between their NTD and 

LBD. Addition of the MR NTD does not restore the diminished ligand induced activity of an 

NTD-deleted GR
449
. This suggests a GR N/C interaction. For PPARγ communication between 

its NTD and LBD has been supposed to regulate ligand binding 
450
. However, experiments with 

CFP-PPARγ2 and PPARγ2-YFP did not result in a detectable FRET signal 
435
. For TRβ, it has 

been observed that its NTD can bind p160 coactivators in a ligand-independent manner. 

Because its LBD binds ligand-dependently to those coactivators, this suggests an indirect N/C 

interaction bridged by a p160 coactivator 
451-453

. Also the NTD and LBD of RARα1 were found 

to be bridged by SRC-1, which resulted in synergistic transcription activity 
109
.  

  So, NTD-LBD communication has been proposed for other NRs, but a direct N/C interaction is 

most clearly established for AR and might even be unique for this receptor.  
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1.2.3.4  AR LBD specifically binds to FXXLF motifs in AR NTD and AR 

coactivators 

   Overexpression of coactivator TIF2 can enhance AR LBD AF-2 function, but less efficiently 

full length AR activity 
284
. SRC1 does not need its LXXLL motifs for enhancement of full 

length AR activity 
108
. AR NTD can, through its FXXLF motif, compete with p160 coactivators 

for binding to AR LBD 
440
. These findings indicated that coactivation through LXXLL-AR LBD 

interaction is not essential in AR function. However, the AR candidate cofactors ARA54, 

ARA55, ARA70, and RAD9 have been identified to enhance AR activity by binding to its LBD 
302, 306, 333, 365

. Importantly, these coregulators mediate this function by FXXLF motifs, which 

bind to the AR LBD 
289
. Random peptide phage display experiments using the AR LBD as well 

as the full-length AR revealed almost exclusively FXXLF or related motifs, as high affinity 

interaction motifs 
292, 429

. Although some LXXLL motifs, i.g. TIF2 motifs 1 and 3, do have 

affinity for AR LBD that might equal that of the AR FXXLF motif, most LXXLL motifs tested 

have a low affinity for AR LBD 
289, 291, 292, 428, 432-434, 454

. So, FXXLF motifs in cofactors seem to 

be specifically involved in AR function.  

1.2.3.4.1 Structural background of the preference for FXXLF motifs of the AR coactivator 

groove 

  The question of high affinity of AR LBD to FXXLF motifs compared to LXXLL motifs has 

been addressed by elucidation of the structure of AR LBD complexed with FXXLF motifs. Like 

reported for LXXLL motifs, the FXXLF motif has a short α-helical structure, of which the 
phenylalanines fit in the hydrophobic coactivator groove 

32, 33
. The +1 phenylalanine binds a 

hydrophobic part of the AR coactivator groove that is formed by L712 (H3), V716 (H3), M734 

(H5), I737 (H5), Gln738 (H5), M894 (H12), and I898 (H12). The +5 phenylalanine binding site 

is formed by V716 (H3), K720 (H3), F725 (H4), V730 (H5), Gln 733 (H5), M734 (H5), and 

I737 (H5). The +4 leucine contacts L712 (H3) and V716 (H3) 
292, 434

. The AR coactivator 

binding groove is much deeper than that on the surface of ERα LBD (Figure 10) 
291, 292, 433

. This 

space allows phenylalanine residues, which have bulkier side chains than leucine residues, to 

enter the groove. In turn, although LXXLL motifs can enter the AR groove, they might lack 

sufficient hydrogen bonding and hydrophobic interaction necessary for tight interaction. F to L 

substitutions in FXXLF motifs abolished AR LBD interaction, whereas L/F swaps increased 

interaction with peptide motifs or even induced AR LBD interaction capacity in non-binding 

LXXLL motifs 
432, 454

. 

  The specificity of the AR groove for FXXLF-like motifs is further substantiated by the prostate 

cancer AR mutant V730M, which showed an increase in binding of LXXLL motifs , whereas it 

slightly decreased FXXLF binding 
455
. The methionine might provide additional interactions to 

the +5 leucine of an LXXLL motif without condiserably changing the interaction with the 

corresponding phenylalanine in FXXLF motifs. So, V730 seems important in FXXLF 

specificity of the AR LBD. 

  It was expected that, like for LXXLL motifs, the FXXLF motif is stabilized by interaction with 

the charged clamp lining the AR LBD coactivator groove 
32, 33

. Indeed, structural analysis of an 

FXXLF peptide-AR coactivator groove complex indicated E897 binding to the +1 

phenylalanine of the FXXLF motif, and K720 binding to the +5 phenylalanine 
291, 292, 433, 434

. In 

contrast, LXXLL motif binding to the AR LBD needs K720, but E897 is not involved (Figure 

11) 
270, 292, 433

. This may, together with the larger size of the coactivator groove, explain the 

lower binding affinity of LXXLL motifs for the AR LBD if compared to FXXLF motifs. 
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Figure 10. Side views of the coactivator binding grooves/peptide motifs of A, the ER LBD/LXXLL and B, AR 
LBD/FXXLF. Meshes represent the extent of the ER LBD and AR LBD molecular surfaces, respectively. The 

LXXLL and FXXLF motifs are represented in green coils. Side chains at positions +1 and +5 are in space-filling 

representation and colored in yellow. The positions of the charge clamp Lys and Glu are indicated. From ref. 291.  

 

 

 

 

 

 

 

 

 

  

 

 

 

 

Figure 11. Model of  FXXLF (green) and LXXLL (yellow) binding modes to DHT bound AR LBD. +1, +4, and 
+5 positions as well as the X positions in the motifs are indicated. This picture was kindly provided by H.J. 

Dubbink.   

 

  Like observed for LXXLL motifs, residues flanking FXXLF motifs underlie AR LBD binding 

specificity 
291, 429, 430, 432, 433, 456

. Electrostatic interactions between residues flanking the motif 

and the charged clamp are supposed to affect this specificity 
428
. For example, in addition to 

binding to the +5 phenylalanine of the AR FXXLF motif, K720 also makes contact with the +8 

valine 
434
. At the N-terminal side of the motif, E897 binds not only to the +1 phenylalanine, but 

also to the -1 alanine. This is consistent with a study described in chapter 3, showing that 

mutations of residues flanking the AR FXXLF motif affected interaction with the AR LBD 
427
. 

The peptides found in phage display studies mostly have positively charged residues N-terminal 

and negatively charged residues C-terminal to the peptide motif enabling electrostatic 

interaction with AR LBD 
292, 429

. A G21E mutation, N-terminal to the FXXLF motif in AR 

NTD, impaired the AR N/C interaction 
290
. A crystal structure of AR LBD in complex with the 
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third LXXLL motif of TIF2 has shown that four negatively charged amino acid residues 

following this motif (DKDD) interact with positively charged patches on the receptor surface. 

This might explain the selective binding of AR LBD to this TIF2 motif and indicates that certain 

LXXLL motifs are appreciated by the AR LBD 
433
. 

  Residues at positions +2 and +3 in FXXLF motifs may also play a role in affinity for AR LBD. 

Phage display studies have shown a variety of residues on these positions, which are compatible 

with strong AR LBD interaction. However, at position +2 E and S residues were found more 

often, and for position +3 preference for K was reported 
432, 457

. Peptides containing the FXXLF 

motifs of TAFII250 (FLRLF) or TFIIEα (FEDLF) interacted weakly with AR LBD. FXXLF 

motifs found in CBP (FGSLF) and p300 (FGSLF) could not interact with AR LBD possibly due 

to a glycine at position +2 
289
. The FETLF motif found in the AR coactivator FHL2 (see also 

section 1.2.2.1) was also not capable to bind AR LBD 
289
. This might be due to the T residue at 

position +3, but also to sequences flanking the motif. Obviously, not all FXXLF motifs can bind 

to AR LBD. 

  Taken together, AR LBD binding preference for FXXLF motifs compared to LXXLL motifs is 

mainly determined by the hydrophobic phenylalanines, but specific flanking residues may play a 

role as well.  

1.2.3.4.2  Variations of the FXXLF motif 

  In order to elucidate the mechanism and relevance of FXXLF motifs in AR function and to 

identify AR specific peptide antagonists, phage display studies and screening of randomized 

peptide libraries have been carried out using AR LBD or full-length AR as a bait. These 

experiments have revealed many FXXLF motif variants containing exclusively hydrophobic 

amino acid substitutions at positions +1, +4, and +5, including F/WXXLF/W, FXXLY/MW, 

WXXVW, FXXFF, FXXFY, FXXYF, FXXVF, and sporadically LXXLL 
291, 292, 429, 457

. Many 

of these motifs showed a weaker interaction with AR LBD than the AR FXXLF motif. 

However, like AR FXXLF, many FXXFF, FXXYF, and FXXFY motifs had a high affinity for 

AR LBD 
292, 457

. Crystallographic experiments have revealed that the conformation of FXXYF 

mimicked closest that of  FXXLF if bound to the AR LBD coactivator groove, by making direct 

backbone interactions with E897. Binding of an FXXFF motif resembled binding of the FXXYF 

and FXXFY motifs by interaction with its -2 serine residue to E897 
292
. Substitution of the 

leucine of AR and ARA54 FXXLF motifs by phenylalanine or methionine did not decrease their 

AR specificity, and the same variants of the less AR-selective ARA70 FXXLF motif even 

increased its AR specificity 
322
. 

  Some FXXLF or related motifs found in the phage display and peptide screening studies have 

also been found in AR LBD binding proteins. In addition to its FXXLF motif, the AR 

coactivator FHL2 also contains an FXXLY motif. Although a peptide with its FXXLF motif 

cannot bind AR LBD on its own (see also section 1.2.4.4.1), both motifs are supposed to be 

necessary for FHL2 to bind AR LBD 
289, 429

. As mentioned before in section 1.2.5.1, the 

WXXLF motif in the AR NTD only weakly contributes to the AR N/C interaction 
289, 428

. An 

FXXFF and FXXMF motif found in the AR binding proteins gelsolin and PAK6, respectively, 

showed direct, efficient and specific interaction with AR LBD 
322
.  

  Several of the peptides containing FXXLF variant motifs that bind to the AR LBD were able to 

suppress AR N/C interaction. However, this did not always result in inhibition of AR 

transactivation 
429, 457

. Putative implications of such motifs in inhibiting AR function in order to 

treat prostate cancer is further discussed in Chapter 5. 
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1.2.4  Androgen-specific gene transcription 
 

1.2.4.1  General mechanism of androgen regulated gene transcription  

  For an increasing number of androgen regulated genes, the mechanism of androgen action has 

been at least partially elucidated 
52, 458-497

. Identification of novel androgen regulated genes has 

been accelerated during the last 5 years, because techniques have evoluated from subtractive 

hybridization and differential display to the high-throughput expression microarrays. Array 

technology has been used for gene expression profiling of prostatic tissue and different prostate 

cancer cell lines in the presence and absence of androgens 
498-504

 (reviewed in ref. 505). This has 

resulted in an extensive and still growing catalogue of genes being up- or down-regulated by 

androgens. Bioinformatics assisted analysis of the transcription regulation mechanisms of this 

huge number of genes will help to further elucidate the mechanism of action of androgens. In 

the near future whole genome identification of androgen regulated genes is to be expected, as 

now already started for ER regulated genes 
506
. 

  Basically, androgen induced transcriptional regulation occurs through ligand-activated AR 

dimers that bind to AREs in the regulatory regions of target genes. AREs have been found in 

promoters and in enhancers upstream or downstream of the promoter. Many AREs deviate 

considerably from the inverted repeat high affinity ARE consensus sequence 5'-

AGAACAnnnTGTTCT-3' and, in many cases, have a relatively low affinity for the AR. In 

transfection experiments, those AREs are individually not able to show detectable androgen 

inducibility, but together act synergistically, thereby conferring very effective androgen induced 

transcriptional regulation. Cooperatively acting AREs can be located in close vicinity of each 

other, but can also be separated by long distances.  

  An illustrative example of androgen regulated transcription is that of the extensively studied 

prostate specific antigen (PSA) gene. Its proximal core promoter contains two AREs, ARE-I at -

170 (AGAACAgcaAGTGCT) and ARE-II at -394 (GGATCAgggAGTCTC) 
463, 491

. These 

AREs act cooperatively, albeit that their total activity is still weak 
463
. A third ARE, ARE-III 

(GGAACAtatTGTATC), which is present in an enhancer region at -4.2 kbp of the PSA gene, is 

able to confer considerable androgen induced transcriptional activation of a reporter gene. 

Combination of the enhancer region and the core promoter synergistically results in a strong 

androgen inducibility 
462
. In the vicinity of ARE-III, five additional candidate AREs have been 

reported: ARE-IIIA, ARE-IIIB, ARE-IV and ARE-VI, which have a low affinity for the AR, 

and ARE-V with moderate affinity to the AR. These AREs might increase PSA enhancer 

activity.  

1.2.4.2  Androgen-specifically regulated genes 

  Many androgen regulated genes, like the PSA gene, have been found to be also regulated by 

other steroids, because GR, MR, PR and AR recognize the same sequences in the DNA. 

However, during the last decade, genes have also been found that can be specifically regulated 

by androgens. As mentioned in section 1.1.2, this specificity can be caused by different 

mechanisms, including tissue specific AR expression, specific coactivator/corepressor 

expression, ligand availability and local chromatin structure 
4, 7, 51, 53-55, 59

.  

  A mechanism leading to receptor specificity can also be found in the hormone response elements. 

Deviations from the HRE consensus sequence have been found to lead to receptor specific 

transcriptional regulation by AR, PR, GR, and MR. Flanking sequences can also contribute to 
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receptor preference 
507
. However, for the AR a clear specificity appears to exist. For several genes 

identified as specifically regulated by androgens, a distinct class of HREs has been found to be 

highly androgen specific. Most of these AREs deviate considerably in one half-site from a standard 

ARE 
52, 494, 496, 508-512

.  

  Up to date, five genes harboring androgen specific AREs have been identified. Features of 

these genes and their androgen responsiveness are described below. An overview of their 

androgen specific AREs is presented in Table 3. 

Probasin 

  The rat probasin gene encodes a nuclear and secreted protein, which is expressed in epithelial 

cells of the dorsolateral prostate 
513
. Its transcription can be induced by both androgens and 

glucocorticoids, but its androgen inducibility is much stronger than its regulation by 

glucocorticoids 
481, 514-516

. The probasin gene was the first gene described to be preferentially 

regulated by androgens. Its promoter contains two cooperative AREs, PbAREI and PbAREII, 

which were initially found not to function individually, but if duplicated in front of a 

heterologous minimal thymidine kinase promoter, androgen inducibility for PbAREII was 

observed 
52, 481, 490

. PB-ARE1 shows a classical inverted repeat sequence and has a low affinity 

for the AR. PB-ARE2 (see Table 3) is specifically responsive to androgens 
52
. PbAREII can 

bind to the AR, but not to the GR, and it has a higher AR binding affinity than PbAREI 
52, 517

. 

The left hand half-site of PbAREII, 5'-GGTTCT-3', determines its AR specificity by excluding 

GR binding, as was deduced from experiments using chimeric response elements with swapped 

half-sites 
52
. In an upstream enhancer fragment of the probasin gene two additional AREs were 

identified, ARBS3 and ARBS4. Like PbAREII, ARBS3 is also androgen specific and has also 

one half-site that deviates considerably from a consensus half site (see Table 3) 
518
. Two 

additional low affinity AREs with atypical half-site sequences, G-1 and G-2, are located near 

ARBS1 and ARBS2. These were postulated to stabilize AR binding to ARBS1 and ARBS2 and 

result in synergistic transcriptional activity and increased hormone sensitivity 
519
. All AREs 

found in the probasin gene appeared to be necessary for full androgen induction of probasin 

transcription 
518
. 

Secretory component 

  The rat Secretory component (Sc) is the transepithelial transporter of immunoglobulins A and 

M 
520
. In many tissues, expression of the Sc gene is constitutive. In the prostate and the lacrimal 

gland its expression is modulated by androgens 
521, 522

. In the -3.5 kbp enhancer region of the Sc 

gene, an androgen specific ARE, designated ScARE1.2, has been found, which has a relatively 

high affinity for the AR (see Table 3) 
496
. Exon 1 of the Sc gene contains a second androgen 

specific ARE, ScARE (see Table 3), which is responsive to glucocorticoids, but, despite of a 

low AR affinity, its androgen response is much stronger 
475
. Mutational analysis of ScARE1.2 

and ScARE showed that their left half-sites excluded or decreased GR binding. AR selectivity 

disappeared by mutating these half-sites to more consensus-like sequences 
496, 508, 511

.  

Slp 

  The mouse sex-limited protein (Slp) gene is a duplicated C4 gene encoding a liver-specific 

protein. Its transcription is regulated by androgens. The Slp gene contains an enhancer region at 

-2 kbp, which was introduced by insertion of an ancient provirus 
523
. A fragment of this 

enhancer is specifically responsive to androgens 
524
. It contains three candidate AREs. One is 

not functional, a second one is active with both AR and GR, and the third one, SlpHRE2 (see 

Table 3), is androgen specific 
511, 525

. The SlpHRE2 was initially considered as an ARE of which 

the flanking sequences could bind other transcription factors, thereby allowing AR binding, but 

excluding GR binding. However, although additional factors do contribute to its specific 
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androgen regulation, the SlpHRE2 was proven to confer androgen specificity autonomously 

with a relatively high AR affinity 
511, 525-529

. Like in the probasin and Sc androgen-specific 

AREs, the left half-site of the SlpHRE2 determines the exclusion of the GR to function via this 

HRE 
511
. 

Pem 

  The Pem homeobox transcription factor gene is highly conserved between rat and mouse, and 

is expressed in reproductive organs as well as in muscle and placenta 
530
. For its expression the 

rat Pem gene was shown to use two different promoters. A distal promoter is independent of 

androgens and active in testis, ovary, muscle, and placenta. A proximal promoter is located in 

intron 2, close to exon 3 which harbors the translation start codon. This proximal Pem promoter 

is androgen-dependent and controls expression in testis and epididymis 
530
. Analysis of the 

mouse Pem proximal promoter revealed that this promoter contains two androgen specific 

AREs, PemI and PemII (see Table 3), which act cooperatively and are both selectively 

responsive to androgens 
458
. The Pem AREs have a preference for the AR, but are also 

responsive to GR and PR, albeit to a lesser extent. Both PemI and PemII show a low relative 

affinity for the AR. In contrast with standard AREs, PemI contains a 5 bp spacing. This does not 

prevent responsiveness to androgens, but reducing the spacing to three nucleotides increases its 

activity 
458
.  

SARG 

  The specifically androgen regulated gene (SARG) was identified in the human LNCaP subline 

LNCaP-1F5, which expresses AR and GR in comparable amounts. In this cell line, transcription 

of SARG can be up-regulated by androgens but not by glucocorticoids, whereas PSA 

transcription is stimulated by both hormones 
531
. In intron 1 of the SARG gene, at +4.6 kbp, an 

androgen specific ARE, designated SARG+4.6ARE (see Table 3) is present 
494
. SARG+4.6ARE 

has a lower affinity for AR, compared to probasin PB-ARE2. SARG+4.6ARE cannot bind GR, 

and in transfection it is not responsive to glucocorticoids. The identification and a detailed 

analysis of the SARG gene is described in Chapter 4 of this thesis. 

 

 

Table 3. Androgen-specific androgen response elements. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  ARE name       ARE sequence 
       -6  -5  -4  -3  -2  -1                            +1 +2 +3 +4 +5 +6    References 

   PbAREII  GGTTCT tgg AGTACT 52 

   ARBS3   AGAACC tcc AGTTCC 518 

   ScARE1.2  GGCTCT ttc AGTTCT 496 

   ScARE   AGCAGG ctg TGTCCC 475 

   SlpHRE2  TGGTCA gcc AGTTCT 511 

   PemI  AGATCTcattcTGTTCC 458 

   PemII  AGCACA tcg TGCTCA 458 

   SARG+4.6ARE  TGTGCT aac TGTTCT 494 
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1.2.4.3  Mechanism of AR binding to androgen-specific AREs 

  Like for non-specific AREs, androgen-specific AREs with different AR affinities have been 

found 
52
. SARG+4.6ARE and SC-ARE weakly bind the AR, but are both highly androgen-

specific, they cannot bind to the GR. However, the low AR affinity Pem ARE1 and Pem ARE2 

show weak glucocorticoid responses. PB-ARE2, Slp HRE2 and SC-ARE1.2 have relatively 

high affinities for the AR, but also show differences in androgen specificity. PB-ARE2 and Slp 

HRE2 are not responsive to glucocorticoids, but SC-ARE1.2 can confer weak glucocorticoid 

induced transcriptional activation. So, it is not their relative affinity for the AR, but their 

preferential binding to the AR over the GR that may contribute to the androgen specific 

responsiveness of AREs. Additional indications for this hypothesis were provided by AR-GR 

chimeric receptor studies which revealed a crucial role for the AR DBD in androgen-specific 

activation of the Slp HRE2 
532
. 

  For most androgen-specific AREs it has been established that the left half-sites diminish GR 

binding (see Table 3). It has been postulated that in this half-site a T at position -4 is responsible 

for GR exclusion 
511
. However, Pem-ARE2 and SC-ARE have an A at this position and 

SARG+4.6ARE a G. In addition, the G at position -3 of the SC-ARE is indispensable for 

androgen specificity, but no other androgen-specific ARE has a G at this position 
508
. A T at 

position -2 was also supposed to contribute to androgen specificity, but is also not present in all 

androgen-specific AREs 
511
. So, specific nucleotides in the androgen-specific AREs seem not to 

be individually responsible for androgen specificity. 

  Since androgen specificity of AREs could not be explained by their relative affinity for the AR 

or specific nucleotide composition, it was proposed that another characteristic of androgen 

specific AREs is the determining factor. Most of the natural and synthetic androgen-specific 

AREs investigated so far can be considered as (im)perfect direct repeats rather than inverted 

repeats. Several crystallographic studies have shown a head-to-head orientation of NR DBD 

dimers binding to an inverted repeat response element and a head-to-tail orientation for direct 

repeat elements (reviewed in ref. 21). Therefore, it was suggested that an AR dimer binds to an 

androgen specific ARE in a head-to-tail orientation 
508, 510, 511

. This would imply an alternative 

dimerization of the AR DBD when bound to an androgen-specific ARE. In this way, the GR 

would be more or less excluded from binding to the androgen specific AREs, because it could 

not form head-to-tail DBD dimers. Unlike the first zinc cluster, the second zinc cluster of a 

DBD does not contact the DNA, but is an important part of the dimerization interface. Indeed, 

the second zinc cluster and a C-terminal extension of the AR DBD were previously found to be 

involved in DNA-specificity 
509
. This was substantiated by mutation to GR homologues of 

second zinc cluster residues Thr585, Gly610, and Leu617, which caused a lower affinity of the 

AR for PB-ARE2 
510
. Although these findings indicate that specific AR DBD dimerization plays 

a role in AR binding to androgen specific AREs, AR DBD dimer orientation on these AREs 

could not be determined from those experiments. 

  Ultimately, the orientation of AR DBD dimers on androgen-specific AREs was elucidated by a 

crystallographic study that showed that AR DBDs dimerize in a head-to-head fashion to a 

synthetic androgen-specific ARE (ADR3) (Figure 8 in section 1.2.1.2) 
24
. This head-to-head 

oriented DBD dimer indicated that an important part of the mechanism underlying androgen-

specific transcriptional regulation indeed could be found in the AR protein itself. So, the 

previously proposed head-to-tail dimerization of AR DBD, compared to that of the GR-DBD, is 

related to the non-standard ARE character of androgen-specific AREs. All androgen-specific 

AREs (Table 3) are comprised of one half-site with a complete or almost complete consensus 

sequence, which is known to bind AR as well as GR with high affinity. The specific half-site 
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can be designated as non-consensus, and will have a very low affinity for both AR and GR. It is 

thought that one DBD binds to the consensus half-site and that the second DBD can 

cooperatively bind to the non-consensus half-site only when there is a strong interaction 

between the DBDs. Indeed, crystallographic data revealed three extra hydrogen bonds between 

the second zinc clusters in the AR DBD dimer if compared to the GR DBD dimer (Figure 12) 
24, 

510
. A hydrogen bond can be formed between S580 of both AR DBD monomers, and T585 of 

each AR DBD monomer can hydrogen bond to A579 of the opposite monomer. So, the 

dimerization of AR DBDs is supposed to be strong enough to overcome a low affinity half-site, 

and as also previously proposed, the GR tends to be excluded from the non-consensus half-site 

of an androgen specific ARE because of a much weaker dimerization interface.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12.  Molecular mechanisms of  AR and GR dimer interfaces A) The AR DBD dimer interface. The 
molecular surfaces of the AR subunits are shown in red and blue. Dashed black lines are hydrogen bonds. (B) A 

similar view of the GR DBD dimer interface. A “glycine hole” is noted by the dashed circle. Adapted from ref. 24. 

1.2.4.4  Role of androgen-specific AREs  

  Recently, several studies have revealed possible roles for the androgen-specific AREs. 

Androgen specific AREs seem to reduce the need for the AR N/C interaction for transcription 

regulation (see section 1.2.5.1) 
290
. The non-specific AREs TAT-GRE, slp-HRE3, and C3 (1)-

ARE, are responsive to wild type AR, but not to a N/C interaction defective mutant, whereas the 

androgen specific Slp HRE2 and sc-ARE1.2 (see section 1.2.6.2) are equally responsive to the 

wild type and mutant AR. Mutation of the latter AREs to non-specific ones decreased their 

responses to the AR mutant. However, the androgen-specific Pb-ARE2 required the AR N/C 

interaction for its androgen responsiveness. The better resemblance of its left half-site to high 

affinity binding sites may play a role in this regard (see section 1.2.6.3). The N/C interaction-

dependent AREs were no longer dependent on the interaction if they were present in their 

natural enhancer/promoter regions. It was suggested that the higher complexity of these regions 

might overcome the need for AR N/C interaction in androgen responsiveness.  

  A second study also described the requirement of N/C interaction for AR activity on non-

specific elements 
533
. These AREs were all tested in the context of their corresponding 

enhancer/promoter sequences, like the PSA enhancer/promoter and the probasin enhancer, 

which is in conflict with the first report in which N/C interaction requirement was only found 

Ala 

Ala 

Ala 

Ala 
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for isolated non-specific AREs. In contrast, the same study reported that for the MMTV-

promoter, the AR N/C interaction was dispensable, although it contains non-specific AREs. 

  The function of several AR associated proteins could be differentially influenced by androgen-

specific and non-specific AREs. Overexpression of the AR coactivators TIF2 and ARA55 was 

reported to increase AR activation on androgen specific AREs rather than on non-specific AREs 
534
. Two proteins involved in mediating AR SUMO-ylation, (PIAS)xα and Ubc9 (see section 

1.2.2), had, if overexpressed, different effects on non-specific and androgen specific AREs 
534
. 

(PIAS)xα repressed AR activity much more on androgen-specific ARE driven genes than on 

genes regulated by non-specific AREs. Ubc9 showed little effect on androgen-specific AREs, 

whereas it enhanced AR activity on non-specific elements. Additionally, mutational analysis of 

an AR SUMO-ylation site revealed that overexpression of SUMO-1 repressed AR-mediated 

transcription only on non-specific elements 
535
. 
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1.2.5  The AR in disease 

  The AR is, next to its central role in normal development and maintenance of the male 

phenotype, also an important player in several diseases. AR associated diseases are androgen 

insensitivity syndrome (AIS), spinal and bulbar muscular atrophy (SBMA) or Kennedy’s 

disease, and prostate cancer.  

  AIS is a rare inherited defect of male development in which 46, XY individuals have a partial 

or complete lack of virilization, referred to as partial AIS (PAIS) or complete AIS (CAIS) 
536, 

537
. In this disorder, over one hundred different amino acid substitutions in the AR in different 

individuals or families have been documented 
263
. These substitutions partially or completely 

inactivate AR function by affecting its ligand or DNA binding. AIS can also be caused by 

coactivator defects 
538
.  

  SBMA or Kennedy’s disease is a spinobulbar motor neuropathy with an adult-onset and 

associated with mild PAIS 
539, 540

. This disease is caused by an expanded CAG repeat in the AR 

NTD, which results in a longer poly-glutamine stretch 
541
. AR containing aggregates are formed 

in the cytoplasm of motorneurons, but the exact molecular mechanism of this disease is still 

unknown 
542, 543

. 

  In Western countries prostate cancer forms a significant health problem as it is the most 

frequently diagnosed male cancer and second leading cause of cancer deaths in men 
544
. The role 

of AR in prostate cancer is discussed in the 1.2.5.1 subsection below. 

1.2.5.1  The AR in prostate cancer 

1.2.5.1.1  Prostate cancer development and progression 

  The prostate is a walnut-sized gland located below the bladder and surrounding the urethra. It 

produces approximately 30% of the seminal fluid, which contains secreted proteins like 

prostatic acid phosphatase (PAP) and the semen liquefying serine protease PSA 
545, 546

. 

Measurement of PSA serum levels is a well known diagnostic tool of prostate cancer. Benign 

prostatic hyperplasia (BPH), which is a common disorder in men over age 50, arises in the 

transitional zone of the prostate, whereas most prostate cancers originate in the peripheral zone 

(see for review ref.  547). 

  The glandular acini of the prostate are lined by a double-layer of epithelial cells. A basal layer 

of cuboidal cells is attached to the basal lamina. The basal layer is covered by a layer of 

columnar mucus-secreting cells lining the lumen of the gland. The luminal epithelial cells 

express cytokeratins 8 and 18, AR, PAP, and PSA 
548
. The basal cells express cytokeratins 5 and 

14, p63, and bcl-2 
434, 548, 549

. Most prostate cancers have a predominantly luminal phenotype 

with expression of keratins 8 and 18, and AR. However, a small percentage of the cells in a 

prostate tumor might express keratins 5 and 14 indicating a basal cell type. Like in normal 

tissues, in several cancers tumor-initiating cells have been found, which are called cancer stem 

cells (CSCs) 
550-556

. The keratin 5 and 14 positive prostate tumor cells were suggested to be 

prostate CSCs (PCSCs). Additionally, cells with an intermediate phenotype have been found to 

express either keratin 17 or 19, and low levels of keratin 8 and 18 
557-559

. These cells are 

considered to form an androgen-independent transit amplifying (TA) population. This led to the 

hypothesis of keratin 5 positive and AR negative PCSCs, which are androgen-independent and 

give rise to androgen-dependent, fully differentiated luminal cells via a TA population 
560
. 

PCSCs are supposed to arise from normal stem cells, which are believed to reside in the basal 

layer 
561
. Evidence for this is provided by the finding of CD133 and α2β1-integrin, which have 
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been identified as normal prostate epithelial stem cell markers, in 0.1% of prostate tumor cells, 

regardless of Gleason grade and metastatic states 
562-565

. In vitro these cells can, like normal 

stem cells, give rise to a mixed population of CD133
+ 
and AR

-
 cells, and more differentiated 

CD133
-
 and AR

+
 cells 

563, 564
. The more differentiated cells develop through subsequent TA and 

intermediate stages into non-proliferating mature cells 
566
. Whether the CD133+ cells indeed can 

form tumors remains to be established. 

  Like normal development and maintenance of the prostate, prostate tumor growth depends on 

continuous stimulation by androgens 
567
. Because of this androgen dependence, prostate cancer 

therapy is generally based on androgen withdrawal, which is achieved by inhibition of testicular 

androgen production using LHRH agonists, and/or blockade of AR function by antiandrogens 

such as BCA or OH-Fl. However, after an initial regression, essentially all prostate tumors 

continue to grow and become androgen-independent, which means independent of androgenic 

stimulation. Although loss of AR expression has been found in some tumors, studies of prostate 

tumors of various clinical stages have revealed that most androgen-independent prostate cancers 

retain AR expression 
558
. In androgen-ablated progressive prostate cancer the AR is still 

primarily located in the nucleus and androgen-regulated genes are expressed 
568-571

. That the AR 

indeed still is playing an important role in androgen-independent prostate cancer is further 

substantiated by RNAi driven AR inhibiton in androgen-independent prostate cell lines, which 

decreased PSA expression, cell proliferation and survival 
572-576

. 

  Important and challenging questions in prostate cancer research are how prostate tumors 

develop and how transition from androgen-dependent to androgen-independent prostate cancer 

occurs and which role the AR plays in these processes.  

1.2.5.1.2 Androgen-dependent prostate cancer 

  Because early stages of prostate tumor growth are dependent on androgens, the underlying 

mechanisms are expected to involve AR function. Although a large number of androgen 

regulated genes has been identified in expression array experiments, until recently none of these 

was specifically identified to play a direct role in the androgen-dependent tumor stage. 

However, recently, the androgen regulated TMPRSS2 gene was found to be highly relevant in 

androgen-dependent prostate cancer 
577, 578

. Fusions of the promoter and first exon(s) of the 

TMPRSS2 gene with members of the ETS transcription factor family, ERG or ETV1, have been 

found in the majority (estimate of 60%) of primary prostate tumors. These gene fusions are 

caused by interstitial deletions and translocations 
577-581

. The fusion genes are androgen-

responsive and highly expressed in tumor tissue, and therefore ETS factors are overexpressed if 

compared to normal prostate tissue 
582, 583

. Expression of the TMPRSS2:ERG fusion genes was 

found to correlate with a higher recurrence rate 
584
. In addition, different isoforms seem to be 

associated with clinical and pathological variables of aggressive disease, and therefore might 

serve as prognostic factors for tumor progression 
585, 586

. 

1.2.5.1.3 Mechanisms of AR activation in androgen-independent prostate cancer  

  For androgen-independent prostate tumor growth G. Jenster (personal communication) has 

proposed several mechanisms in which, despite of androgen withdrawal, the AR is still able to 

stimulate tumor growth (Figure 13). These mechanisms include: AR amplification and/or 

overexpression, AR mutations,  intraprostatic conversion of adrenal androgens to DHT, ligand-

independent AR activation, and aberrant AR coregulator expression and function. In addition, 

several cellular pathways that by-pass the AR have been found to influence prostate tumor 

growth (See for reviews refs 505, 587-591). 
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Figure 13.  Schematic overview of the role of the AR in prostate tumor growth. Proposed and designed 

first by G.Jenster 

 

1.2.5.1.3.1  AR amplification and overexpression 

  AR overexpression, as found in a subset of prostate cancers, can be caused by several 

mechanisms of which gene amplification is the best studied. In approximately 30% of androgen-

independent prostate tumors, AR gene amplification has been detected, whereas this is a rare 

event in untreated primary tumors 
592-597

. In a study of matched paired androgen-sensitive and 

androgen-independent tumors, 80% of androgen-independent tumors with AR gene 

amplification showed an increase in AR protein 
598
. Although AR amplification is not always 

accompanied by increased AR levels, it was found to correlate with a shorter life expectancy 

after relapse of prostate cancer 
598
. Of androgen-independent tumors without AR amplification, 

35% showed increased AR levels 
598
. Comparable observations were done in a study of seven 

paired androgen sensitive and androgen independent prostate cancer xenografts 
599
. Increased 

AR expression was suggested to enable the tumor cells to respond to low androgen levels 

present during androgen withdrawal therapy. This finding was substantiated by experiments in 

which overexpression of AR in LNCaP cells by transfection led to a higher sensitivity of these 

cells to low androgen levels followed by more rapidly progress to hormone-refractoriness 
599
.  

  Because not all cases of increased AR expression can be explained by gene amplification, also 

other mechanisms that regulate AR levels are supposed to be involved in androgen-

independence of prostate tumors. These include increased AR transcription, stabilization of AR 

mRNA, and stabilization of the AR protein (reviewed in ref. 588). 

1.2.5.1.3.2  AR mutations 

  AR mutations are rare in primary and locally progressive untreated prostate tumors, but are 

more common in high grade androgen-independent prostate cancer and distant metastases of 

patients following endocrine therapy. The relative prevalence of AR mutations found in 

androgen-independent prostate cancer varies between different studies, but is estimated to be 

approximately 10% 
600
. A proportion of the prostate cancer related AR mutations enhance AR 

activity, although there are also examples of AR inactivating mutations. Most AR mutations 

lead to gain-of-function by altering the ligand specificity of the AR allowing adrenal androgens, 

non-androgen steroids, and even antiandrogens to activate the receptor. The majority of AR 

mutations found in prostate cancer are confined to 8% of the coding region dispersed over 
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distinct regions of the receptor, but they are most common in the LBD 
601
. AR mutations 

identified in prostate cancer are deposited in the Androgen Receptor Mutations Database 

(http://www.mcgill.ca/androgendb)
263
. 

  Mutations in the NTD are rare, but they might affect AR interaction with coregulators 
602
. A 

E236G mutant is thought to increase AR activity through reduced binding of CHIP (see 1.2.2.1) 

and concomitantly increased responsiveness to coactivators ARA160 and ARA70 
370
. This 

mutation caused rapid development of intraepithelial neoplasia that progressed to invasive and 

metastatic prostate carcinoma in a mouse model 
370
. Several mutations in the hinge region affect 

AR activity. S646F substitution was detected in a high grade tumor and increased AR activity 
603
. A Q640Stop nonsense mutant, which appears as a truncated AR, is constitutively active in 

the absence of ligand 
604
. A C619Y substitution is thought to inactivate and change localization 

of the AR 
605
. AR mutations at the boundary of the hinge region and LBD show an enhanced 

response to androgens, but also to other steroidal and nonsteroidal ligands 
606
. A748T 

substitution in the LBD caused rapid degradation, has a higher ligand dissociation rate and a low 

expression level, if compared to the wild-type AR 
607
. 

  Best studied are the mutations in the AR LBD. Often, these mutations considerably alter the 

ligand-specificity, which includes responsiveness to adrenal androgens, glucocorticoids, 

progesterone, estrogens, and even antiandrogens. The first AR mutation identified was T877A 

in the LNCaP cell line, which was derived from a orchidectomized and E2 treated patient 
608, 609

. 

Subsequently, this mutation was repeatedly found in prostate cancer tissue specimens of patients 

with advanced disease and treated with OH-Fl 
280, 610-614

. Less frequently found mutations are 

H874Y in the androgen-independent  prostate cancer xenograft CWR22 and in a few androgen-

independent OH-Fl treated prostate cancer specimens, and T877S, which is found twice in 

androgen-independent OH-Fl treated tumors 
281, 615, 616

. The T877A substitution rendered the AR 

responsive to progesterone, E2, DHEA, cortisol, OH-Fl, and cyproterone acetate. Both H874Y 

and T877S induce, albeit to a lesser extent, similar properties to the AR (see Chapter 4) 
280, 281, 

494, 613, 615-618
. A double AR mutant, L701H/T877A, found in the MDA PCa 2a cell line, which 

was derived from a bone metastasis of a orchiectomized prostate cancer patient, has properties 

similar to that of the T877A mutant, but it binds cortisol with a higher affinity 
614, 619, 620

. 

Incubation of MDA PCa 2a cells with cortisol is associated with PSA expression and 

stimulation of growth 
620
. AR V715M was found in a OH-Fl treated metastasis and V730M was 

from an organ-confined untreated prostate cancer. Both mutants can be activated by adrenal 

androgens 
621-623

. In a BCA treated prostate cancer, a W741C mutation was found. The same 

mutation and another one at the same position, W741L, were detected in an LNCaP subline 

chronically treated with BCA 
624, 625

. This mutant could not be activated by OH-Fl 
626
. 

  AR T877A mutation seems a hot spot in androgen-independent prostate cancer 
280, 610-613

. It is 

believed that it has arisen by selection of an AR mutant that could be activated by E2 or OH-FL 

that have been used as treatment. This selection process was mimicked by screening of AR 

expression libraries with random mutations at codons 874 or 877 in a yeast read out system in 

the presence of Pg. This hormone was chosen because it is the best activating non-cognate 

ligand of the AR H874Y and T877A mutants found sofar. The T877A mutant was obtained 

most frequently, followed by the T877S and H874Y mutants (see Chapter 4) 
494
. When tested in 

mammalian cells, these mutants showed broadened ligand responses, including responsiveness 

to OH-FL. This indicates that the mutants found in prostate cancer could be selected with non-

cognate ligands that can activate the mutant ARs and therefore prostate tumor growth. It is 

assumed that therapeutic anti-androgen levels are sufficiently high to confer growth advantage 

to cells harboring those mutants and thus favor tumor growth.    
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  Homology modeling and crystallographic analysis of wild-type and mutant AR LBD bound to 

agonists or non-cognate ligands have revealed possible structural mechanisms of the broadened 

ligand responsiveness of AR mutants identified in prostate cancer 
277, 278, 626-630

. The ligand 

binding pocket of the AR is lined by 18 amino acid residues, of which most are hydrophobic, 

except N705, Q711, R752, and T877 
278, 630

. N705 and T877 form hydrogen bonds to the 17β 

hydroxyl group of the D-ring of R1881, R752 forms a hydrogen bond to O-3 in the A-ring of 

R1881. Q711 binds to O-3 through a H2O molecule. T877 is a very important amino acid in 

determining ligand specificity, because substitution by a less bulkier amino acid, like in the 

frequently found T877A mutant, enables binding of other ligands like progesterone, estrogens, 

adrenal androgens, antiandrogens, and even glucocorticoids 
277, 278

. The alanine residue in 

T877A is not able to form a hydrogen bond to the 17β hydroxyl group of the ligand, either DHT 

or R1881, but N705 binding is still sufficient for ligand binding (see Figure 14) 
277, 278

. In 

addition, L880 makes van der Waals contact with the 17β oxygen atom of R1881. On its 

corresponding position, the PR has a threonine (T894), which has a less bulkier side chain. This 

amino acid is supposed to be responsible for binding of progesterone to the PR and not to the 

wild-type AR 
278
. 

   Homology modeling has predicted that binding of the wild-type AR to non-steroidal 

antagonists like OH-Fl includes N705, Q711, and R752 
629
. Crystallographic analysis of the 

wild-type AR LBD bound to agonists that resemble the OH-Fl structure, has shown that 

hydrogen bonding to T877 is not involved, and that the side chain of this amino acid is rotated 

180˚ compared to its position in the receptor bound to steroidal ligands 
627
. This leaves some 

space between T877 and the non-steroidal ligand, which is increased in the T877A mutant and 

becomes occupied then by a water molecule that bridges the ketone group of the non-steroidal 

ligand to the backbone oxygen of L873 
627
. This interaction is thought to increase the agonistic 

activity of such a ligand. Similarly, crystallographic data on the T877A mutant bound to the 

partial agonist CPA have shown that this ligand induces movement of the L701 side-chain. This 

leads to an expansion of the ligand binding pocket that is supposed to enable the bulky CPA 

molecule to act as a full agonist 
628
.  

  Compared to the T877A mutant, in the AR double mutant L701H/T877A there is even more 

space to accomodate non-cognate ligands with bulkier substituents at position 17. The crystal 

structure of this mutant complexed with 9α-fluorocortisol showed favorable hydrogen bonding 

between the C17 and C21 of this synthetic ligand with the mutant protein 
631
. This might explain 

its activation by cortisol. 

  H874 is not directly lining the ligand binding pocket. In fact, it projects away from it, and is 

not able to bind the ligand 
630, 632

. This suggests a conformational change induced by the H874Y 

substitution that indirectly affects ligand binding. 

  In the W741L AR mutant the bulky tryptophan residue is replaced by leucine, which allows 

accomodation of large molecules like BCA, thereby maintaining the agonist bound LBD 

structure. In the wild-type AR, M895 is displaced by BCA, whereas in the W741L mutant this 

residue can be accomodated near L741 
626
. This may explain the presence of this mutation in 

BCA treated prostate cancer patients and in BCA treated LNCaP cells 
624, 625

. Why the W741L 

mutant can not be activated by OH-Fl is not clear yet, but it is thought that a water-mediated 

interaction does not occur between OH-Fl and L873 as was found for the T877A mutant 
627
. 
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Figure 14.  Comparison of (A) binding of DHT to AR LBD with (B) binding of DHT to the AR LBD T877A 
mutant. From ref. 277. 

 

 

  In vitro time-resolved FRET analysis of the wild-type and T877A mutant AR LBD revealed 

that DHT, R1881, E2, spironolactone, Pg, and cortisol, conferred recruitment of the peptide 

D11FXXLF and the SRC-3 LXXLL motif 1 in a way that correlated with the rank order potency 

of these ligands to induce receptor transactivation 
633
. These findings indicate that ligand 

binding and NTD or coactivator binding can be conformationally associated. Also, the extent of 

partial antagonistic activity of antiandrogen might be reflected by differential motif binding. For 

example, the usually antagonistic OH-Fl conferred a better binding of the FXXLF and LXXLL 

peptides to AR T877A LBD than to wild-type AR LBD, whereas the partial antagonist CPA 

conferred recruitment of the LXXLL motif, but not of the FXXLF motif to the mutant LBD 
633
.  

V715M and AR H874Y showed an increase in both FXXLF and LXXLL motif binding as 

compared to the wild-type AR 
634
. The V730M mutant showed an increase in LXXLL motif 

binding, and slightly decreases FXXLF binding 
455
. Androgen dissociation was not altered for 

this mutant 
634
. These findings suggest that several AR LBD mutations found in prostate cancer 

could confer aberrant AR activity through conformational changes that influence coactivator 

recruitment by the non-cognate ligand bound LBD.  

1.2.5.1.3.3  Intraprostatic conversion of adrenal androgens to T and DHT 

  The most common (90%) circulating androgen is T, which is synthesized by the Leydig cells in 

the testes. The remaining 10% are produced by the adrenals and include androgens like 

dehydroepiandrosterone (DHEA), androstenediol, and androstenedione. Upon entrance in target 

cells T can be converted to more potent DHT by 5α-reductase. LHRH agonists used as prostate 

cancer therapy inhibit production of T, thereby leaving adrenal androgen production unchanged. 

In normal and prostate cancer tissues, adrenal androgens have been found to be converted in 

vitro and in vivo to several different androgens among which T and DHT 
635-638

. This might be 

caused by increased expression of aldo-keto reductase family 1, member C3 (AKR1C3) 
639
. This 

enzyme, also called 17-β hydroxysteroiddehydrogenase type 5, converts androstenedione into T, 

which in turn can be converted to DHT. An additional mechanism could be that the conversion 
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of prostatic DHT to 5α-androstane-3α,17β-diol is reversed by a 11-cis retinol dehydrogenase 

like oxidative 3α-hydroxysteroid dehydrogenase (RL-HSD) and/or L-3-hydroxyacyl coenzyme 

A dehydrogenase. These two enzymes were found to be highly expressed in normal prostate 

tissue and are suggested to contribute to castrate prostatic DHT levels 
636
. Whatever the 

mechanism after LHRH induced castration there is an intraprostatic reduction of DHT levels by 

only 50-70%, while serum castrate levels of T are reduced by 90-95% 
640-643

. As described in 

1.2.5.1.3.2, adrenal androgen levels are thought to be able to activate particular AR mutants 

found in a subset of prostate cancers, but not wild-type AR. Moreover, prostatic castrate DHT 

levels are supposed to be sufficient for wild-type AR activation. Therefore a combination of a 

LHRH agonist and an antiandrogen is often used as prostate cancer therapy. 

1.2.5.1.3.4  Ligand-independent activation of the AR through cross-talk with other 

signaling pathways  

  An increasing number of manuscripts describes modulation of AR activity by complex cross 

talk with other signal transduction pathways. Cross-talk with other signaling pathways might be 

both ligand-dependent or -independent. Here several relevant examples of “alternative 

activation” of AR are presented. 

  Overexpression of the epidermal growth factor (EGF) receptor related human epidermal 

growth factor receptor-2 (HER-2) has been found in a subpopulation of prostate cancer patients. 

It has been described that HER-2 activates the AR via the MAPK pathway 
180
. Use of a MAPK 

inhibitor reduced PSA levels in prostate cells and the antagonistic action of antiandrogens is 

decreased in the presence of activated MAPK 
644
. Constitutively expressed active Ras stimulates 

MAPK activity and sensitizes prostate cells to low androgen levels, as examplified in the 

androgen independent C4-2 LNCaP subline where dominant-negative Ras restored sensitivity to 

BCA 
645, 646

. MAPK activity was found to increase during androgen ablation. Its 

phosphorylation, which is thought to be due to TGF-β action, correlates with prostate tumor 

metastatic potential 
647-650

.  

  Interleukin-6 (IL-6) activates the AR in a ligand-independent manner through p300 and SRC-1 
651
. It also activates signal transducers and activators of transcription (STAT3), MAPK, and 

phosphatidylinositol 3-kinase (PI3K), which all might activate the AR 
652,653

. 

  Recently, it was found that AR can be phosphorylated on Y534 by Src 
654, 655

. This 

phosphorylation increased AR activity at low androgen levels and stimulated prostate tumor 

growth in castrated mice 
655
. Src in turn can be activated by growth factors including EGF, 

heregulin, and IL-6 
655, 656

. Src is constitutively expressed in an androgen-independent LNCaP 

subline with a high passage number 
657
. Tyrosine phosphorylation of the AR is increased in 

androgen-independent clinical prostate cancer and correlates with a high Gleason score 
655
.   

  Contradictory reports have been published on the effect of the protein kinase Akt on AR 

activity. It has been described that activation of Akt is associated with advanced prostate cancer 

and that Akt enhances AR activity 
658
. However, inhibition AR activity by Akt has also been 

described 
659
. Possibly, differential phosphorylation of  AR by Akt in different cell lines might 

explain these discrepancies. For example Ser phosphorylated AR was found in LAPC-4 cells, 

but not in LNCaP cells 
660
. HER-2 might activate AR not only through MAPK but also by Akt 

stimulated phosphorylation of S213 and S791 
198
. The Akt downstream target Forkhead box O 1 

(FoxO1) transcription factor activates AR by interaction with the receptor, thereby inhibiting 

apoptosis 
661
.  

  Elevated serum levels of insulin-like growth factor-1 (IFG-1) have been associated with an 

increased prostate cancer risk and with the transition of prostate cancer xenografts to an 
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androgen-independent state 
662
. IGF-1 can activate the AR by inducing the PI3K/Akt or 

Ras/MAPK pathways, which results in AR phosphorylation and sensitization to low androgen 

levels 
271
. IGF-1 receptor (IGF-1R) expression in LNCaP cells can be induced by androgens, 

however, this seems independent of binding of AR to DNA,  but dependent on the Src/MAPK 

pathway 
663
. Increased levels of IGF binding proteins IGFBP-2 and IGFBP-5 have been found in 

prostate cancer patients. These proteins bind to the extracellular matrix thereby maintaining a 

relatively high IGF-1 concentration in the vicinity of the IGF-1R 
664-666

. Taken together, several 

lines of evidence indicate that the IGF signaling pathway can be involved in androgen-induced 

cell proliferation causing androgen-dependent prostate tumor growth, moreover it is a good 

candidate to subsequently promote progression to androgen-independent prostate cancer.   

1.2.5.1.3.5  Aberrant AR coregulator expression and function 

  Although the relative contributions of coregulators to AR function have not been fully 

determined as yet, several are considered to contribute to the development of androgen-

independent prostate cancer.  Aberrant expression of coregulators has been described in prostate 

tumor samples and cell lines, which could lead to stimulation of AR activity in the presence of 

low androgen levels, or, like some AR mutations do (see section 1.2.5.2.2), alter ligand 

specificity of the AR (reviewed in ref. 667). Below several examples are described in more 

detail. It has to be realized, however, that this still is a controversial subject, and that not all data 

are conclusive. 

 For all members of the SRC family, SRC-1, TIF2, and SRC-3, overexpression has been 

reported in subsets of androgen-independent tumors 
668, 669

. Microarray analysis of a large 

patient cohort has revealed that increased SRC-1 expression in prostate cancer is correlated with 

more aggressive disease 
670
. Another important finding is that phosphorylation of SRC-1 by 

MAPK can activate the AR in the absence of androgens to the same extent as physiological 

levels of DHT 
671, 672

. TIF2 expression and phosphorylation were found to be increased in an 

androgen-independent xenograft model by EGF stimulation 
668, 673

. The partial antagonist CPA 

and the antagonist OH-FL are agonists for AR mutant T877A (see section 1.2.5.2.2), and these 

activities were hardly affected by small amounts of the corepressor NCoR. However, TIF2 

strongly enhanced antagonist-induced AR activity 
359
. This indicates that the antagonist-bound 

T877A mutant prefers to bind a coactivator. So, AR activity will not only be determined by the 

ligand (agonist or antagonists), but also by the ratio of coactivator to corepressor ratio in a cell. 

Some prostate tumors show SRC-3 overexpression 
674, 675

. SCR-3 increases PSA levels in the 

presence of very low adrenal androgen levels 
395
. Furthermore there is a correlation between 

SRC-3 expression and a decreased time of prostate cancer relapse 
669
.  

  CBP expression in LNCaP cells is down-regulated by androgens, and seems overexpressed in 

androgen-independent clinical prostate cancer, possibly due to androgen withdrawal 
676
. In 

addition, the agonistic action of the AR antagonist OH-FL is increased by transiently transfected 

CBP in prostate cancer cells containing either wild-type or antiandrogen sensitive mutant AR 
677
. Increased level of CBP-related p300 also correlated with prostate cancer progression 

678
. 

  ARA55 expression was found to be increased in primary prostate tumors, and even more in 

androgen-independent tumors 
679
. It is also associated with shorter recurrence free survival and 

overall survival in androgen-independent prostate cancer patients 
680
. ARA55 is phosphorylated 

by proline-rich tyrosine kinase-2 (PYK-2), which inhibits its binding to AR. In progressive 

prostate cancers PYK-2 expression was found to be reduced, which increases AR-ARA55 

binding and therefore AR activity 
307
. 

  ARA70 is overexpressed in prostate tumors and androgen independent CWR22 xenografts, and 

enables OH-Fl and BCA to function as AR agonists 
569, 681-683

. E2 levels in the stroma of benign 

prostatic hypertrophy and in some prostate cancer samples were found to be relatively high by 
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an increased level of aromatase, which converts T to E2 
684-687

. In vitro increased ARA70 

expression was found to activate AR in the presence of low adrenal androgen or E2 levels 
304
. In 

addition, expression of ARA70 itself is induced by E2, which can further enhance the AR 

response to E2 
688
. Because of these effects of ARA70 on the ligand response of the AR, use of 

E2 or antiandrogens as therapy may be disadvantageous in prostate cancers with elevated 

ARA70. 

  Like ARA70, other AR coactivators were also found to allow AR activation by adrenal 

androgens. β-Catenin is mutated in 5% of prostate cancers 
689
. This seems to increase AR 

activation by androstenedione at the physiological nanomolar level 
319
. Supervillin is able to 

enhance AR activity in the presence of 10 nM androstenediol 
690
.  

  Upon androgen withdrawal, expression and nuclear localization of Tip60 are increased in 

LNCaP cells and CWR22 xenografts. In androgen-independent tumors Tip60 was exclusively 

localized in the nucleus 
691
. However, another study revealed that Tip60 is down-regulated in 

prostate cancer metastases, which indicates that it can have different roles in different tumor 

stages 
692
. Tip60 is also related to PSA expression in androgen-independent cell lines, probably 

by modulating AR acetylation 
300
.  

  Gelsolin, which is up-regulated upon androgen withdrawal in LNCaP cells, LNCaP xenografts, 

and human prostate tumors, was shown to enhance OH-Fl induced AR activity 
321
.  

  ART-27 is supposed to be differentiation-related and is expressed at low or negligible levels in 

prostate cancer specimens compared to well differentiated normal prostate tissue 
326
. However, 

the AR mutant P340L in prostate cancer showed an increased interaction with ART-27. This 

indicates that the role of ART-27 switches during prostate cancer progression. 

  Overexpression of CARM1 has been detected in both early stage prostate carcinoma and in 

androgen-independent prostate carcinoma 
355
.   

1.2.5.1.3.6  Signaling pathways in prostate cancer cells bypassing the AR  

  Several cellular signaling pathways that show cross-talk with AR function might also play a 

role in prostate tumor growth without involvement of AR. These bypass pathways include 

MAPK, Akt, and PKC signaling. 

  Members of the MAPK cascade were found amplified in androgen-independent prostate cancer 
693
. Transfection experiments have indicated that Ras may induce androgen-independence by 

increasing MAPK expression and activation 
646
. AP1, a c-Jun/c-Fos heterodimer, activated by 

the MAPK cascade, can increase expression of androgen-regulated genes by binding to its 

recognition site present in the promoters of some of these genes 
694
. In PC3 cells, which are 

androgen-independent, the levels of c-Jun and c-Fos showed a seven-fold increase as compared 

to androgen-dependent LNCaP cells 
695
. 

  Akt was found to play a role in apoptosis and proliferation of prostate cancer cell lines by 

suppressing pro-apoptotic processes and stimulating G1 cell-cycle progression. It inactivates the 

FoxO transcription factors, which has been claimed to decrease p27kip, a cell-cycle regulator 
661, 696, 697

.   

  Increased PKC expression is correlated with decreased survival time after development of 

androgen-independence 
695
. PKC has at least 12 isoforms, which activate different pathways, 

and since it is not known which isoforms are higher expressed in androgen independent prostate 

cancer it is not possible to determine which PKC induced mechanism is involved 
698
.     
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1.3  AIM AND SCOPE OF THIS THESIS 
 

 The AR, which is the target protein of androgens, is essential in development and maintenance 

of the male phenotype, and therefore plays a key role in diseases like AIS, SBMA or Kennedy's 

disease, and prostate cancer.  

  Androgens stimulate prostate tumor growth, and a generally applied therapy is androgen 

ablation and in case of metastatic prostate cancer anti-androgens are subscribed. This treatment 

initially causes a decrease of tumor size. However, unfortunately, almost all tumors ultimately 

relapse and have started to grow independent of androgens. In a number of patients the AR 

seems still involved in androgen-independent prostate tumor growth through an alternative 

mechanism for activation of the receptor which would not require binding of an androgenic 

ligand to the AR. Therefore, a thorough knowledge of the mechanisms underlying normal and 

aberrant AR function is essential for development and improvement of prostate cancer therapies.  

  Investigation of the molecular mechanisms of AR functions was done at the level of the AR 

protein itself, AR regulated gene transcription and AR mutations. The study 'Molecular 

mechanisms of androgen receptor functions' described in this thesis can be subdivided in three 

topics:  

1) interactions between AR subdomains,  

2) androgen specific transcriptional gene regulation, 

3) aberrant AR function caused by AR mutations found in prostate cancer. 

  Ad 1) A ligand-dependent functional interaction can occur between the AR NTD and AR 

LBD. Deletion mapping of the AR NTD has revealed an important interaction domain. This 

domain contains an interaction motif that is essential in the interaction with the AR LBD. A 

detailed study of this motif is described in Chapter 2.  

  Ad 2) The specifically androgen regulated gene SARG has been identified in the AR and GR 

positive LNCaP-1F5 subline. Its transcription can be up-regulated by androgens, but not by 

glucocorticoids. Chapter 3 describes the characterization of the SARG gene, and the 

bioinformatics-based identification and functional analysis of an androgen specific response 

element in intron 1.  

  Ad 3) Chapter 4 describes a random mutagenesis screening and the subsequent isolation of AR 

mutants, which are not only responsive to androgens, but also to other non-cognate steroids and 

even antiandrogens and cortisol. This broadened ligand specificity might have implications for 

prostate cancer patients carrying such AR mutations.  

  Chapter 5 summarizes the findings described in Chapters 2, 3, and 4, and places these in the 

context of recently published studies and indicates directions of future research. 
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SUMMARY 

 

  The NH2-terminal domain (NTD) and the ligand-binding domain (LBD) of the androgen 

receptor (AR) exhibit a ligand-dependent interaction (N/C interaction). Amino acids 3 to 36 in 

the NTD (AR3-36) play a dominant role in this interaction. Previously, it has been shown that a 

ΦxxΦΦ motif in AR3-36, 
23
FxxLF

27
, is essential for LBD interaction. We demonstrate in the 

current study that AR3-36 can be subdivided into two functionally distinct fragments: AR3-13 and 

AR16-36.  AR3-13 does not directly interact with the AR LBD, but rather contributes to the 

transactivation function of the AR.NTD-AR.LBD complex. AR16-36, encompassing the 
23
FxxLF

27
 motif, is predicted to fold into a long amphipathic α-helix. A second ΦxxΦΦ 

candidate protein interaction motif within the helical structure, 
30
VREVI

34
, shows no affinity to 

the LBD.
 
Within AR16-36, amino acid residues in and flanking the 

23
FxxLF

27 
motif are 

demonstrated to modulate N/C interaction. Substitution of Q24 and N25 by alanine residues 

enhances N/C interaction. Substitution of amino acids flanking the 
23
FxxLF

27 
motif by alanines 

are inhibitory  to LBD interaction.  

 

 

INTRODUCTION 

 

  The androgen receptor (AR) is a member of the steroid receptor subgroup of the nuclear 

receptor family of transcription factors. Nuclear receptors have a modular structure, composed 

of a moderately conserved carboxy-terminal ligand-binding domain (LBD) folded in 12 α-
helices, a highly conserved central DNA-binding domain (DBD) and a non-conserved amino-

terminal domain (NTD). Most nuclear receptors contain two transactivation functions: AF-1 in 

the NTD, and AF-2 in the LBD. Ligand-activated nuclear receptors bind as homo- or 

heterodimers to hormone response elements in the regulatory regions of their target genes. 

Together with coactivators, general transcription factors and RNA polymerase II they form a 

stable transcription initiation complex (see for recent reviews [1-4]). 

  Upon ligand binding the LBD acquires a conformation that facilitates the interaction with 

coactivators. Best studied in this regard are the interactions with the p160 coactivators SRC1, 

TIF2/GRIP1 and ACTR/RAC3. The nuclear receptor interaction domains of p160 coactivators 

contain LxxLL motifs (NR boxes), which bind to a hydrophobic cleft in the agonist-activated 

LBD. Antagonists induce a different LBD conformation, which inhibits the interaction with 

coactivators and enables the binding of corepressors [5] (see for review [3]).  

  P160 coactivators not only bind to the LBD, but also to the NTD [6,7]. This interaction is 

independent of the NR boxes. As shown for the estrogen receptor α (ERα), simultaneous NTD 
and LBD binding by one coactivator can confer synergism of AF-1 and AF-2 activities, which 

might be necessary for optimal functioning [8].  

  Like shown for other nuclear receptors, p160 coactivators can bind the AR LBD by their 

LxxLL motifs, and they interact with the AR NTD, independent of these motifs [9-11]. In 

contrast to AR AF1, which is strong, AF-2 needs overexpression of a p160 coactivator to 

become manifest [9,10,12-15]. Many other proteins with known or unknown functions have 

been found to interact with the AR. An overview of AR-interacting proteins is presented in the 

AR mutations database (http://www.mcgill.ca/androgendb) [16]. 

  Previously, a ligand-dependent functional interaction between the AR subdomains NTD and 

LBD, has been described [17-19]. This N/C interaction might be intra- or intermolecular [15,17-

19]. In vitro pull down experiments indicated that AR N/C interaction is direct [11]. The AF-2 
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core domain in helix 12 of the AR LBD was shown to be involved this interaction [11,15]. In 

the AR NTD two regions are involved in the functional interaction with the AR LBD: AR3-36, 

including the 
23
FxxLF

27
 motif, and AR370-494, which encompasses a transactivation function and 

a presumed supplementary protein interaction domain [15,20]. In the present study, AR3-36 is 

subdivided into two fragments: AR3-13  and AR16-36, which are further characterized. 

 

 

EXPERIMENTAL PROCEDURES  

 

Materials and plasmid construction 

  Dihydrotestosterone (DHT) was purchased from Steraloids (Wilton, NH), R1881 

(methyltrienolone) was from NEN (Boston, MA). 

  Standard procedures were utilized for PCR and molecular cloning [21]. PCR products were 

inserted in pGEM-T Easy (Promega, Madison, WI). All plasmids were sequenced to verify their 

correct construction. Primer sequences are shown in Table 1. AR numbering corresponds to a 

length of 919 amino acids, as employed by The Androgen Receptor Gene Mutations Database 

(http://www.mcgill.ca/androgendb). 

 

 

Table 1. Primers for construction of plasmids   

Primer name Primer sequence 

pr14 5’-TCTAGATTCCCGGGTCCGCCGTCCAAGACCTACCGAGG-3’ 

pr1B 5’-CAGCAGCAGCAAACTGGC-3’ 

pr23/27RR 5’-CTGGGGCCCGGGTTCTGGATCACTTCGCGGACGCTCTGGCGCAGATTCTGGCGAGCTCCT-3’ 

pr30/33RR 5’-CTGGGGCCCGGGTTCTGGATCCGTTCGCGGCGGCTCTGGAACAGATTCTGGAA-3’ 

pr24/25AA 5’-CTGGGGCCCGGGTTCTGGATCACTTCGCGGACGCTCTGGAACAGAGCCGCGAAAGCTCC-3’ 

pr26/27AA 5’-CTGGGGCCCGGGTTCTGGATCACTTCGCGGACGCTCTGGGCCGCATTCTGGAAAGCTCC-3’ 

pr2-36sense 5’-AATTGGGGATCCGAGAAGTGCAGTTAGGGCTGGGAAGG-3’ 

pr2-36anti-sense 5’-GATCGAATTCGTTCTGGATCACTTCGCGCACGCTC-3’ 

pr1-14sense 5’-GATCGAAGTGCAGTTAGGGCTGGGAAGGGTCTACCCTCGGCCGG-3’ 

pr1-14anti-sense 5’-AATTCCGGCCGAGGGTAGACCCTTCCCAGCCCTAACTGCACTTC-3’ 

pr16-36sense 
5’-GATCTCCAAGACCTACCGAGGAGCTTTCCAGAATCTGTTCCAGAGCGTGCGCGAAGTGATC 

CAGAACG-3’ 

pr16-36anti-sense 
5’-AATTCGTTCTGGATCACTTCGCGCACGCTCTGGAACAGATTCTGGAAAGCTCCTCGGTAGG 

TCTTGGA-3’ 

pr17-32sense 5’-GATCAAGACCTACCGAGGAGCTTTCCAGAATCTGTTCCAGAGCGTGCGCG-3’ 

pr17-32anti-sense 5’-AATTCGCGCACGCTCTGGAACAGATTCTGGAAAGCTCCTCGGTAGGTCTT-3’ 

pr24-39sense 5’-GATCCAGAATCTGTTCCAGAGCGTGCGCGAAGTGATCCAGAACCCGGGCCCCG-3’ 

pr24-39anti-sense 5’-AATTCGGGGCCCGGGTTCTGGATCACTTCGCGCACGCTCTGGAACAGATTCTG-3’ 

pr172B 5’-CGGAGCAGCTGCTTAAGCCGGGG-3’ 

pr-242 5’-AAGCTTCTGCAGGTCGACTCTAGG-3’ 

PDsense 5’-GATCCATATCGATAAGCTTAGATCTGAATTCA-3’   

PDanti-sense 5’-AATTCAGATCTAAGCTTATCGATATG-3’ 

 



 92

Yeast expression constructs  

  pGalAD-AR.NTDwt (AR3-503), originally derived from the yeast expression vector pACT2 

(Clontech, Palo Alto, CA), and pGalDBD-AR.LBD (AR661-919), originally derived from the 

yeast expression vector pGBT9 (Clontech), were previously described as AR.N8(high) and 

pGAL4(DBD)AR(LBD), respectively [15,18]. pGalAD-AR.NTD∆1-13 was obtained by 
exchange of a 75 bp SmaI fragment of pGalAD-AR.NTDwt with a corresponding fragment 

derived from a PCR product synthesized with primers pr14 and pr1B, utilizing pSVAR0 [22] as 

template. pGalAD-AR.NTD∆3-36 was obtained by excision of a 117 bp SmaI fragment from 
pGalAD-AR.NTDwt. For generation of pGalAD-AR.NTD23/27RR, pGalAD-

AR.NTD30/33RR, pGalAD-AR.NTD24/25AA and pGalAD-AR.NTD26/27AA, a 117 bp SmaI 

fragment of pGalAD-AR.NTDwt was exchanged with corresponding fragments containing the 

indicated mutations, which were obtained by PCR on the template pGalAD-AR.NTDwt 

utilizing primer G4AD1 (Clontech) in combination with one of the following oligonucleotides: 

pr23/27RR, pr30/33RR, pr24/25AA, and pr26/27AA (mutated codons are underlined in Table1). 

  The AR peptide construct pGalAD-AR2-36 was obtained by insertion of a 117 bp  

BamHI/EcoRI fragment, which was synthesized by PCR on the template pSVAR3 [23], utilizing 

primers pr2-36sense and pr2-36anti-sense, into the corresponding sites of pACT2 (Clontech). 

All other pGalAD-ARpeptide constructs were generated by BamHI/EcoRI in frame insertion of 

double-stranded oligonucleotides into the corresponding sites of pACT2 (Clontech), yielding 

pGalAD-AR1-14, pGalAD-AR16-36, pGalAD-AR17-32, pGalAD-AR24-39, pGalAD-AR17-

32(18/19AA), pGalAD-AR17-32(20/21AA), pGalAD-AR17-32(23A), pGalAD-AR17-32(24/25AA), 

pGalAD-AR17-32(26/27AA), pGalAD-AR17-32(28/29AA) and pGalAD-AR17-32(30/31AA). 

Oligonucleotides for these AR peptide expression constructs were: pr1-14sense, pr1-14anti-

sense, pr16-36sense, pr16-36anti-sense, pr17-32sense,  pr17-32anti-sense, pr24-39sense, and 

pr24-39anti-sense. Primers pr18/19AA, pr20/21AA, pr22A, pr24/25AA, pr26/27AA, 

pr28/29AA, and pr30/31AA sense and anti-sense oligonucleotides were modified pr17-32 sense 

and anti-sense oligonucleotides, containing GCTGCA (sense) and TGCAGC (anti-sense) as two 

adjacent alanine codons at the indicated positions. 

 

 Mammalian cell expression constructs 

  pMMTV-LUC, pSVAR.NTDwt (AR1-503) (originally described as pSVAR(TAD1-494)) and 

pSVAR.DBD.LBD (AR537-919) (originally described as pSVAR-104) were previously published 

[18,23,24]. Insertion of a 1.9 kb HindIII fragment from pSVAR3 in HindIII digested pGAD424 

(Clontech) yielded pGAD3. pGAD3.NTD∆3-13 was obtained by insertion of a 75 bp SmaI 
fragment synthesized by PCR on the pSVAR0 template, utilizing primers pr14 and pr172B, into 

the XbaI(Klenow-filled)/SmaI sites of pGAD3. Exchange of a 1.5 kb HindIII/BstEII fragment of 

pSVAR.NTDwt with the corresponding fragment of pGAD3.NTD∆3-13 yielded 

pSVAR.NTD∆3-13. pGAD3∆3-37 was obtained by excision of a 108 bp fragment from pGAD3 

by XbaI(Klenow-filled)/SmaI digestion. pSVAR8 was obtained by exchange of a 1.8 kb HindIII 

fragment of pSVAR3 with the corresponding fragment of pGAD3∆3-37. For construction of 
pSVAR.NTD∆3-37, a 1.7 kb HindIII/Asp718 fragment of pSVAR.NTDwt was exchanged with 
the corresponding fragment of pSVAR8. pSVAR.NTD23/27RR, pSVAR.NTD30/33RR, 

pSVAR.NTD24/25AA and pSVAR.NTD26/27AA were obtained by exchange of a 348 bp 

HindIII/SmaI fragment of pSVAR.NTDwt with corresponding fragments synthesized by PCR 

on the pSVAR0 template, utilizing primer pr-242 and one of the mutant primers pr23/27RR, 

pr30/33RR, pr24/25AA or pr26/27AA. 
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Pull-down constructs  

  For pSVAR.NTDwt and pSVAR.NTDmutant see Mammalian cell expression constructs. 

pCMV-GST-AR.LBD (AR664-919) was generated as follows: pGEX-2TK-CHB was obtained by 

BamHI/EcoRI in frame insertion of a double-stranded oligonucleotide in the corresponding sites 

of pGEX-2TK (Amersham Biosciences, Uppsala, Sweden). Oligonucleotides were PDsense and 

PDanti-sense. Insertion of the AR.LBD ClaI/BglII fragment from pAR34 [23] into the 

corresponding sites of pGEX-2TK-CHB yielded pGST-AR.LBD. Insertion of the AR LBD 

BamHI/SalI fragment of pGST-AR.LBD into the corresponding sites of pCMV-GST [25] 

yielded pCMV-GST-AR.LBD. 

 

Yeast growth, transformation and β-galactosidase assay 
  Yeast strain Y190 (Clontech), containing an integrated Gal4 driven UASGAL1-lacZ reporter 

gene, was utilized for two-hybrid experiments. Yeast cells were grown in the appropriate 

selective medium (0.67% w/v yeast nitrogen base without amino acids, 2% w/v glucose, pH5.8), 

supplemented with the required amino acids. Yeast transformation was carried out according to 

the lithium acetate method [26]. A yeast liquid β-galactosidase assay was performed to quantify 
the interaction of GalAD-AR.NTDwt, GalAD-AR.NTDmutant and GalAD-ARpeptide proteins 

with GalDBD-AR.LBD. In short, stationary phase cultures of Y190 yeast transformants grown 

in selective medium were diluted in the same medium supplemented with 1 µM DHT or without 
hormone, and grown until an OD600 between 0.7 and 1.2. Next, β-galactosidase activity was 
determined as described previously [18].  

 

Mammalian cell culture, transfection, and luciferase assay 

  CHO cells were maintained in DMEM/F12 culture medium, supplemented with 5% dextran-

coated charcoal-treated FCS (Life Technologies, Gaithersburg, MD). Cells were plated in 24 

wells-plates at a density of 2 x 10
4
 cells per well, in a total volume of 0.5 ml. Cells were 

transfected with MMTV-LUC reporter plasmid (50 ng/well) and pSVAR.DBD.LBD (10 

ng/well) together with increasing amounts of pSVAR.NTDwt or pSVAR.NTDmutant (10, 30, 

100, 300 ng/well), supplemented with pTZ19 as carrier DNA to a total amount of 300 ng/well, 

utilizing 0.5 µl FuGENE transfection reagent (Roche Inc, Mannheim, Germany) per well. After 

overnight incubation with or without 1 nM R1881, cells were harvested and luciferase 

measurement was performed as described previously [27]. 

 

Protein extraction and Western blot analysis 

  Yeast protein extracts were obtained by direct lysis of yeast cells in 2x SDS gel-loading buffer 

by a freeze/thawing cycle and boiling, according to Sambrook and Russell (2001) [21]. Western 

blot analysis for detection of GalAD fusion proteins was performed as previously described, 

utilizing a GAL4AD monoclonal antibody (Clontech) [18]. 

  CHO cells were plated at a density of 1.5 x 10
6
 cells per 80 cm

2
 flask and the next day 

transfected with 1 µg pSVAR.NTDwt or pSVAR.NTDmutant, utilizing 12 µl FuGENE 
transfection reagent. After overnight incubation, cells were harvested by scraping in 1 ml PBS 

and centrifugation (5 min. 800xg). Protein extracts were obtained by lysis of the pelleted cells 

in 60 µl lysis buffer A (20  mM Tris, 1 mM EDTA, 0.1% Nonidet P40, 25% glycerol, 20 mM 
Na-molybdate, pH 6.8), with addition of 0.3 M NaCl, followed by three cycles of 

freeze/thawing and centrifugation (10 min. at 400,000xg). Western blot analysis for detection 

of AR.NTD proteins was performed as previously described, utilizing AR antibody SP061 

[18,28].  
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Pull-down assay  

  CHO cell plating, transfection, harvesting, and protein extraction were done as described in 

the previous section, except that 3 µg pCMVGST-AR.LBD and 1 µg pSVAR.NTDwt or 

pSVAR.NTDmutant were utilized, and that transfection and cell lysis were in the absence or 

presence of 100 nM R1881. 5 µl protein lysate was directly applied on a 10% SDS-PAGE gel 

(10% input). 50 µl lysate was mixed with 150 µl buffer A, with or without 100 nM R1881, 

and rotated for 5 h at 4°C with 25 µl glutathione-agarose beads (Sigma-Aldrich, Deisenhofen, 

Germany). Next, agarose beads were washed 5 times with buffer A supplemented with 0.1 M 

NaCl with or without 100 nM R1881, boiled in 30 µl Laemmli sample buffer and 25 µl 

supernatant was separated over a 10% SDS-PAGE gel. After Western blotting, visualization of 

input and precipitated AR.NTD proteins was done as described above. 

 

 

RESULTS 

 

Systems for detection of androgen receptor N/C interaction  

  The ligand-dependent interaction between AR NTD and AR LBD, N/C interaction, was 

studied in yeast and mammalian in vivo protein interaction systems, and in pull down assays. In 

the yeast two-hybrid system, vectors encoding the Gal4 transactivating domain (GalAD) fused 

to AR NTDwt, AR NTDmutant or ARpeptides derived from AR NTD, were transfected to a 

yeast strain, which expressed the Gal4 DNA-binding domain (GalDBD) linked to AR.LBD 

(Figure 1A). Upon incubation with DHT, N/C interaction mediated the expression of an 

integrated UASGAL1-lacZ reporter gene, which was assessed in a β-galactosidase assay. Note 
that in this assay the transactivating function is provided by both AR NTD and GalAD.  

  In the mammalian protein interaction system, vectors encoding wild type or mutated AR NTD, 

and AR DBD-LBD were cotransfected to CHO cells (Figure 1B). R1881-induced activity of a 

transiently transfected androgen-inducible MMTV promoter was assessed in a luciferase assay. 

Note that in this assay the transactivating function is solely contributed by AR NTD.  

  In pull down assays the fusion protein GST-AR.LBD and wild type or mutated AR.NTD 

proteins were transiently expressed in CHO cells.  

 

AR 3-13 modulates the androgen receptor N/C interaction 

  As assayed in the yeast protein interaction system, deletion of AR3-36 (GalAD-AR.NTD∆3-36) 
completely abolished the ligand-dependent functional N/C interaction (Figure 2A). Deletion of 

the amino-terminal 13 amino acids (GalAD-AR.NTD∆1-13) resulted in a slightly diminished 
(approximately 20%) N/C interaction. Because GalAD-AR.NTD∆1-13 was expressed at a 
higher level than GalAD-AR.NTDwt (Figure 2C), the decrease of AR N/C interaction caused by 

AR1-13 deletion might actually be more than observed.  

  Similar to the yeast assay, in the mammalian protein interaction assay, deletion of AR3-37 

completely prevented N/C interaction (Figure 2B). A much more pronounced effect of AR3-13 

deletion on N/C interaction was observed as compared to the yeast assay. The approximately 

90% drop in activity is indicative of an important role of AR3-13 in N/C interaction. The 

diminished interaction was not due to a lower expression level of AR.NTD∆3-13. In fact, 
AR.NTD∆3-13 expression was higher than AR.NTDwt expression (Figure 2C). 
To investigate whether AR3-13 directly binds to AR LBD, pull down experiments were carried 

out. The results are presented in Figure 3. In the absence of ligand, none of the AR NTD 
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proteins showed LBD interaction. However, in the presence of ligand, both AR.NTDwt and 

AR.NTD∆3-13 bound to AR LBD with similar affinity (Figure 3). In contrast, AR.NTD∆3-37 
did not interact.  

 

AR2-14 cannot autonomously interact with the androgen receptor LBD   

  To substantiate the modulating role of AR2-14 in N/C interaction, as suggested by the 

experiments described above, the individual peptides AR2-36, AR2-14 and AR16-36 coupled to 

GalAD (Figure 4A) were assayed in the yeast protein interaction system (Figure 4B). No 

substantial interaction with AR.LBD was found for GalAD-AR2-14. Activity was retained for 

approximately 60% in the GalAD-AR16-36/AR.LBD complex. Because the GalAD-AR2-36 

expression level was lower than that of GalAD-AR16-36 (Figure 4C), the actual difference in 

activity between GalAD-AR2-36 and GalAD-AR16-36, might be larger.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.   Schematic representation of in vivo protein interaction systems utilized in this study. 
(A) Yeast protein interaction (two-hybrid) system. DHT dependent interaction between GalAD-AR.NTD and 

GalDBD-AR.LBD induces expression of the UASGAL1 regulated lacZ reporter gene. Cotransfection of pGBT9 and 

pACT2, which encode GalDBD and GalAD, respectively, does not induce reporter gene expression (data not 

shown). Similarly, individually expressed GalDBD-AR.LBD and GalAD-AR.NTD are not active in this assay. (B) 

Mammalian (CHO cells) protein interaction system. R1881 dependent interaction between AR.NTD and 

AR.DBD.LBD induces MMTV-promoter driven luciferase expression. Separately expressed AR.DBD.LBD and 

AR.NTD are unable to activate the MMTV promoter (data not shown). 
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Figure 2.   AR3-13 modulates androgen receptor N/C interaction. 
(A) Interaction of AR.NTDwt and NH2-terminal deletion mutants with AR.LBD in the presence of 1 µM DHT in 
the yeast protein interaction system. In each experiment the activity of GalAD-AR.NTDwt was set at 100%. Each 

bar represents the mean (±sem) β-galactosidase activity of three independent experiments. (B) Interaction of 
AR.NTDwt and deletion mutants with AR.LBD in the presence of 1 nM R1881 in the mammalian protein 

interaction system. pSVAR.DBD.LBD was cotransfected with increasing amounts of pSVAR.NTDwt or mutant 

(see Experimental Procedures). In each experiment, carried out in triplicate, the mean of the highest AR.NTDwt 

value was set at 100%. Each bar represents the mean (±sem) luciferase activity of three independent experiments. 
Fold induction is shown to the right of each bar and represents the ratio of activities determined in the presence and 

absence of R1881. (C) Western analysis of indicated GalAD-AR.NTD proteins in the yeast protein interaction 

system (left panel) and of indicated AR.NTD proteins in the mammalian protein interaction system (right panel). 

See Experimental Procedures for details. 
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Figure 3.   AR3-13 is not involved in direct binding of AR NTD to AR LBD. 
Interaction of AR.NTDwt and NH2-terminal deletion mutants with GST-AR.LBD as studied by pull down assays. 

Proteins were produced in CHO cells by cotransfection of pCMVAR.LBD and pSVAR.NTDwt or indicated 

deletion constructs. CHO cells were cultured in the absence (-) or presence (+) of 100 nM R1881. Input is 1/10 of 

the lysate utilized in a pull down experiment. See Experimental Procedures for details. 

 

 

Analysis of 
30
VREVI

34
 in androgen receptor N/C interaction  

  Prediction programs of protein secondary structures (see http://npsa-pbil.ibcp.fr) indicated a 

long α-helical structure for AR20-34. A helical wheel drawing of this region predicted an 

amphipathic character of this helical structure (Figure 5A) [29]. At positions 15 and 37, the 

putative α-helix is flanked by proline residues. Within the helix, two candidate ΦxxΦΦ protein 
interaction motifs (Φ is any hydrophobic amino acid residue; x is any amino acid residue) are 
present: 

30
VREVI

34
 and the previously identified 

23
FQNLF

27
 motif (Figure 5B) [20,30,31]. To 

investigate whether like 
23
FQNLF

27
, 

30
VREVI

34
 could contribute to N/C interaction, two 

constructs were generated, expressing either the complete 
30
VREVI

34
 or the complete 

23
FQNLF

27
 motif linked to GalAD (Figure 5B). As expected, in the yeast protein interaction 

system, ligand-dependent interaction with AR LBD could easily be detected for GalAD-AR17-32. 

However, the interaction was weak for GalAD-AR24-39 (Figure 5C). Low activity was not due to 

decreased protein expression (Figure 5D).  

  In a complementary yeast protein interaction experiment, the 
30
VREVI

34
 motif in GalAD-

AR.NTDwt was modified by substitution of two hydrophobic amino acids by arginine residues, 

resulting in GalAD-AR.NTD30/33RR. These substitutions might cause sterical hindrance in the 

interaction with the AR LBD surface, change the charge and disrupt the proposed amphipathic 

α-helical structure of AR16-36. GalAD-AR.NTD23/27RR was utilized as control. Substitution of 

V30 and V33 partially reduced the interaction, whereas the F23R,F27R mutation completely 

abolished the interaction (Figure 6A). Expression levels of GalAD-AR.NTDwt and GalAD-

AR.NTD30/33RR were similar (Figure 6C).  

  Results obtained in the mammalian protein interaction system, utilizing the AR.NTD30/33RR 

mutant and AR.NTD23/27RR, were essentially identical to the observations made in the yeast 

input pull-down

- + - +

wt

∆3-37

A
R
.N
T
D

∆3-13

input pull-down

- + - +

wt

∆3-37

A
R
.N
T
D

∆3-13



 98

system (Figure 6B). A partial inhibition of AR N/C interaction was observed for 

AR.NTD30/33RR, and an almost complete inhibition for AR.NTD23/27RR. 

  Pull down experiments confirmed and extended the in vivo protein interaction experiments 

(Figure 6D). AR N/C interaction was diminished due to 30/33RR substitutions, and completely 

abolished by 23/27RR substitutions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.   AR2-14 cannot autonomously interact with AR LBD.  
(A) AR peptides utilized in GalAD-ARpeptide fusion proteins in the yeast protein interaction system. (B) 

Interaction of indicated GalAD-ARpeptides with GalDBD-AR.LBD in yeast in the presence of 1 µM DHT. In each 
experiment the activity of GalAD-AR2-36 was set at 100% (see also legend to Figure 2A). (C) Western analysis of 

indicated GalAD-ARpeptide proteins in yeast. For details, see Experimental Procedures.  
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Figure 5.   Analysis of a predicted long amphipathic αααα-helix of  AR18-35 in AR N/C interaction.  
(A) A helical wheel drawing of AR18-35 predicts a long amphipathic α-helical structure. Grey circles represent 
hydrophobic amino acids. (B) ) GalAD-ARpeptide fusion proteins utilized in the yeast protein interaction system. 

The ΦxxΦΦ motifs 23FQNLF27 and 30VREVI34 are underlined. (C) Interaction of GalAD-ARpeptides with 
GalDBD-AR.LBD in yeast in the presence of 1 µM DHT. In each experiment the activity of GalAD-AR16-36 was 

set at 100% (see also legend to Figure 2A). (D) Western analysis of indicated GalAD-ARpeptide proteins in the 

yeast system. For details, see Experimental Procedures. 
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Figure 6.   

30
VREVI

34
 is not essential for AR N/C interaction. 

(A) Interaction of GalAD-AR.NTDwt and mutants with AR.LBD in the presence of 1 µM DHT in the yeast protein 
interaction system. In each experiment GalAD-AR.NTDwt activity was set at 100% (see legend to Figure 2A). (B) 

Interaction of AR.NTDwt and mutants with AR.LBD in the presence of 1 nM R1881 in the mammalian protein 

interaction system. pSVAR.DBD.LBD was cotransfected with increasing amounts  of pSVAR.NTDwt or indicated 

mutants (see Experimental Procedures and legend to Figure 2B). (C) Western analysis of indicated GalAD-

AR.NTD proteins in the yeast system (left panel) and indicated AR.NTD proteins in the mammalian system (right 

panel). See also Experimental Procedures. (D) Pull down assays showing interaction of AR.NTDwt and mutants 

with GST-AR.LBD (see also legend to Figure 3).  
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Amino acid residues flanking F23, L26 and F27 modulate androgen receptor N/C interaction 

  To study in more detail the role of 24/25QN in  the 
23
FQNLF

27
 motif in AR N/C interaction, 

these amino acids were substituted by 24/25AA. In both the yeast and mammalian protein 

interaction assay, GalAD-AR.NTD24/25AA and AR.NTD24/25AA formed even more active 

complexes with AR LBD than wild-type AR NTD (Figures 7A and 7B) (note the low 

expression levels of the 24/25AA mutants in both systems; Figure 7C). As expected, 

AR.NTD26/27AA was incapable to interact with AR.LBD.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7.   Alanine substitutions of Q24 and N25 stimulate AR N/C interaction. 
(A) Interaction of GalAD-AR.NTDwt and mutants with GalDBD-AR.LBD in the presence of 1 µM DHT in the 
yeast protein interaction system. In each experiment GalAD-AR.NTDwt activity was set at 100%. See also legend 

to Figure 2A. (B) Interaction of AR.NTDwt and mutants with AR.LBD in the presence of 1 nM R1881 in the 

mammalian protein interaction system. pSVAR.DBD.LBD was cotransfected with increasing amounts of 

pSVAR.NTDwt or mutants (see Experimental Procedures and legend to Figure 2B). (C) Western analysis of 

indicated GalAD-AR.NTD proteins in the yeast protein system (left panel) and indicated AR.NTD proteins in the 

mammalian system (right panel). For details, see Experimental Procedures. 
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  To extend these findings, an alanine scan was carried out for peptide GalAD-AR17-32 (Figure 

8A). Results of the yeast protein interaction assay are shown in Figure 8B. Substitution of amino 

acids 23, 26 and 27 completely abolished interaction with GalDBD-AR.LBD and alanines at 

positions 24 and 25 increased the interaction capacity. All alanine substitutions of amino acids 

flanking 
23
FQNLF

27
 reduced the binding to AR LBD. Most prominent inhibitory effects were 

found for amino acid residues directly flanking 
23
FQNLF

27
. Note that expression levels of the 

peptide constructs were similar (Figure 8C).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8.  Alanine scanning of AR17-32: amino acids flanking F23, L26 and F27 modulate AR N/C 

interaction.  
(A) GalAD-ARpeptide fusion proteins in the yeast protein interaction system. (B) Interaction of GalAD-

ARpeptides with AR.LBD in the presence of 1 µM DHT in the yeast protein interaction system. In each experiment 
the activity of GalAD-AR17-32 was set at 100%. See also legend to Figure 2A. (C) Western analysis of indicated 

GalAD-ARpeptide proteins in the yeast assay. For details, see Experimental Procedures. 
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DISCUSSION 

 

  Previously, we and others demonstrated a ligand-dependent functional interaction between AR 

NTD and AR LBD. Amino acids 3-36 in the NTD (AR3-36), including the 
23
FxxLF

27
 motif, play 

a pivotal role in N/C interaction [15,20]. Here we studied the function of the AR3-36 subdomain 

AR3-13 in N/C interaction and the role of individual amino acid residues in and flanking the 
23
FQNLF

27
motif in AR16-36 in N/C interaction.  

  Yeast protein interaction assays indicated that AR3-13 contributed to the ligand-induced 

transactivation function of the AR.NTD/AR.LBD complex (Figures 2 and 4). Pull down 

experiments provided evidence that AR3-13 does not directly interact with AR LBD (Figure 3). 

On first sight, conflicting results were obtained in the yeast and mammalian protein interaction 

assays (Figure 2). In the yeast assay, reporter gene activity, which monitored the N/C 

interaction, was partly reduced by AR3-13  deletion, whereas in the mammalian assay almost all 

reporter gene activity was lost. The most obvious difference between both assays is the coupling 

of AR.NTD to GalAD in the yeast assay, and the absence of a second transactivation domain 

linked to AR NTD in the mammalian assay. The latter assay completely depends on the intrinsic 

transactivating function of AR NTD and thus does not allow discrimination between loss of 

AR.NTD-AR.LBD binding and loss of AR.NTD transactivating function. In the yeast assay, 

loss of transactivation function of AR NTD mutants, which retain AR LBD interacting capacity, 

like AR.NTD∆3-13, will be masked by the GalAD transactivating function. So, AR3-13 is not 

essential, but rather modulates N/C interaction, most likely by affecting the transactivation 

function of AR.NTD. Alternative explanations might be induction of a more favorable NTD 

conformation or stabilization of the in vivo N/C interaction, which are not reflected in the pull 

down assays and peptide interaction experiments. Unfortunately, the primary structure and the 

predicted secondary structure of AR3-13 do not give a clue to a more precise description of its 

function (data not shown). However, the fact that, between species, AR3-13 is one of the most 

conserved regions of AR NTD, underscores a presumed important role in AR function [32]. 

  The second domain that was studied, AR16-36, is essential in N/C interaction. The predicted 

structure indicated that AR16-36 can fold in a remarkably long amphipathic α-helical structure, 
suggesting an important protein interaction interface [29]. AR16-36 contains two ΦxxΦΦ putative 
protein interaction motifs: 

23
FxxLF

27
, which was found to be pivotal for direct N/C interaction 

[20, this study], and 
30
VxxVI

34
 (Figures 5 and 6). The latter sequence modulates N/C 

interaction. Amino acid residues in this sequence might contribute to the stability of the 

predicted α-helix. Alternatively, they might make additional contacts to the LBD surface. This 
is also true for other amino acid residues flanking the 

23
FxxLF

27 
motif  (Figure 8). Remarkably, 

substitution of Q24 and N25 by alanines increased N/C interaction (Figures 7 and 8). 

  The AR FxxLF motif shows similarities to LxxLL motifs [5,33,34] present in nuclear receptor 

interaction domains (NR boxes) of p160 coactivators. LxxLL motifs are essential in the 

interaction with LBDs [33]. They bind to a hydrophobic cleft in nuclear receptor LBDs, which 

is marked by a charged clamp composed of a highly conserved lysine and glutamate residue in 

helix 3 and helix 12 of the LBD, respectively (K720 and E897 in AR) [35-37]. AR K720 and 

E897 are both involved in the ligand-dependent interaction between AR LBD and the 

coactivator TIF2 [9,11,15]. However, in the FxxLF-mediated AR N/C interaction, E897 is 

essential, but K720 can be replaced by many other amino acids, without affecting N/C 

interaction [9,11,15,38]. So, the AR N/C interaction is comparable, but not identical to LxxLL-

mediated coactivator-LBD interaction.  
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  The 3D structures of agonist bound LBD/LxxLL peptide complexes of several nuclear 

receptors have been elucidated, and interactions of the peptide backbone and its amino acid side 

chains with the LBD surface have been identified [5,36,37,39]. It is presumed that upon binding 

to the LBD surface, the LxxLL motif adapts a short α-helical structure, which is stabilized by 
interaction with the charged clamp [5,36,37]. The first and last leucine residue in the LxxLL 

motif enter the hydrophobic cleft in the LBD, and directly contact amino acid residues within 

the cleft. The variable amino acids (xx) in the LxxLL motif point away from the cleft and seem 

not to interact directly with the LBD surface. Structural data for AR.LBD/LxxLL peptides are 

not available, but, because AR.LBD/coactivator interaction also depends on K720 and E897, it 

might be predicted that they will be similar to LBD/LxxLL peptide complexes studied so far 

[9,11,15]. Because K720 is not essential for AR
23
FxxLF

27
/AR.LBD interaction, the structure of 

this complex might be different. A different complex would also explain the stimulation of 

AR
23
FxxLF

27
/AR.LBD interaction by substitution of Q24 and N25 by alanine residues. 

Structural analyses of AR.LBD/AR16-36 complexes have to reveal the function of amino acid 

residues flanking F23, L26 and F27 and answer the question whether or not the entire long 

amphipathic AR16-36 α-helix is required for a stable AR NTD/LBD complex. 
  The LxxLL-like motifs LxxIL, FxxLL, and L/IxxI/VI, have been found in LBD binding 

coactivators or corepressors [40-43]. FxxLF motifs that are able to contact AR LBD, have only 

been found in AR NTD and most recently in the AR coactivators ARA54 and ARA70, 

suggesting a specific role of these motifs in AR function [44-47]. The increasing number of 

proteins found to interact with the AR LBD raises the question of the physiological relevance of 

the many interactions. It remains to be established whether all interactions take place in living 

cells under physiological conditions, whether interactions with different proteins are 

simultaneous or consecutive events, and which interactions are most stable and most specific. 

Recently, a start has been made to the identification of factors, including the AR, present in the 

transcription initiation complex of the prostate specific antigen enhancer/promoter, using 

chromatin immunoprecipitation (ChIP) [48].  

  Another question concerns the interaction of AR16-36 with other proteins. One candidate might 

be the TFIID TATA box-binding protein associated factor 31, TAFII31, which has been found to 

interact with FxxΦΦ motifs in acidic transcription activation domains of p65 (NF-κB), VP16, 
p53 and related proteins [31,49-51]. 

  AR NTD has previously been proposed to accommodate more than one AR LBD interacting 

domain [9,15,20]. A candidate second domain is 
433
WHTLF

437
, which was found to modulate 

23
FxxLF

27
 function [20]. Another candidate motif is 

179
LxxIL

183
 [9]. However, peptides 

containing these motifs were unable to interact with AR LBD in the yeast protein interaction 

assay, excluding their role as a second autonomous interaction motif in AR NTD (data not 

shown).   

  N/C interaction is not unique for the AR, but has also been described for other nuclear 

receptors. ERα ligand-dependent direct N/C interaction has been demonstrated, which was 
disrupted by amino acid substitutions that affect receptor function [52,53]. The ERα N/C 
interaction could be induced by the agonist estradiol (E2), but not by the antagonist ICI164,384 

[53]. Recently, it was found that the ERα N/C interaction was required for SRC-1 mediated 
synergism between AF-1 and AF-2 function [8,53]. The progesterone receptor (PR) showed 

direct N/C interaction in the presence of agonist R5020, but not in the presence of antagonist 

RU486 [54]. LxxLL motifs in the PR-B form were most likely not involved, because the shorter 

PR-A form, lacking these motifs, also showed N/C interaction [55].  
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  The role of N/C interaction in full-length AR function is not well understood. Ligand-

dependent AR N/C interaction affects ligand dissociation [11,20,56]. Whether this is a direct or 

an indirect effect is unknown. Disruption of the N/C interaction by mutation of the 
23
FxxLF

27
 

motif has a limited effect on full length AR transactivation function [20, Steketee unpublished]. 

However, several AR LBD mutants with reduced or completely abolished N/C interaction have 

been found in androgen insensitivity patients [11,56,57]. Additionally, both N/C interaction and 

transactivating function of the AR prostate cancer mutant T877A can be induced by natural low 

affinity ligands like progesterone or E2 or the AR antagonist cyproterone acetate [18].  

  In conclusion, we propose that AR3-36 is involved in a dynamic sequence of protein interaction 

events, including N/C interaction, in regulation of AR function. Detailed knowledge on the role 

of the AR N/C interaction would require the elucidation of its function under more physiological 

conditions, including the study of mouse models carrying AR mutants defective in N/C 

interaction. 
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Chapter 3  A bioinformatics-based functional analysis 

shows that the specifically androgen-regulated gene 

SARG contains an active direct repeat androgen 

response element in the first intron. 
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ABSTRACT 

 

  We characterized the specifically androgen-regulated gene SARG, which is expressed in the 

androgen receptor and glucocorticoid receptor positive cell line LNCaP-1F5. SARG mRNA 

expression can be up-regulated by androgens, but not by glucocorticoids. SARG mRNA 

expression is high in prostate tissue. SARG is composed of 4 exons and spans a region of 14.5 

kbp on chromosome 1q32.2. Transcripts of 5.5, 3.3 and 2.3 kb are the result of alternative 

polyadenylation. SARG mRNA splice variants lack exon 2 and vary in length of exon 1. The 

SARG protein has a length of 601 amino acids and is located in the cytoplasm. By screening 18 

kbp genomic sequence flanking the transcription start site we identified the imperfect direct 

repeat 5’-TGTGCTaacTGTTCT-3’ in intron 1 as an active androgen response element (ARE-

SARG+4.6). A 569 bp genomic DNA fragment, containing this element functioned as an 

androgen-specific enhancer in transiently transfected LNCaP-1F5 cells. ARE-SARG+4.6 

cooperated with flanking sequences for optimal activity. Inactivation of ARE-SARG+4.6 

completely abolished the androgen response of the enhancer. ChIP experiments showed 

chromatin structural changes of the enhancer in the presence of R1881. ARE-SARG+4.6 was 

able to bind to the androgen receptor, but not to the glucocorticoid receptor, correlating with its 

androgen-specific activity in transfections. 

 

 

INTRODUCTION 

 

  Androgens are essential in the development and maintenance of the male phenotype. They 

mediate their function by activation of the androgen receptor (AR), which is a member of the 

nuclear receptor family of ligand-activated transcription factors. Nuclear receptors have a 

modular structure composed of a moderately conserved carboxyl-terminal ligand-binding 

domain (LBD), a highly conserved central DNA-binding domain (DBD) and a non-conserved 

amino-terminal domain (NTD). Most ligand-activated nuclear receptors bind as homodimers or 

heterodimers to hormone response elements (HREs) in the regulatory regions of their target 

genes. HREs are composed of an inverted or direct repeat of two 6 bp half-sites separated by a 

spacer of variable size (Khorasanizadeh and Rastinejad 2001). Together with coactivators, 

chromatin remodelling complexes, general transcription factors and RNA polymerase II, nuclear 

receptors initiate the transcription of target genes in a tightly controlled fashion (Glass and 

Rosenfeld 2000, Lee and Lee Kraus 2001, McKenna and O'Malley 2002). 

  An important class of nuclear receptors is the family of steroid hormone receptors, which is 

composed of AR, glucocorticoid receptor (GR), mineralocorticoid receptor (MR), progesterone 

receptor (PR) and estrogen receptors alpha and beta (ERα and ERβ) (Thornton 2001). Steroid 
hormone receptors display distinct physiological functions, reflected in their tissue-specific 

expression pattern and to some extent in their spectrum of target genes. However, AR, GR, MR 

and PR all bind with high affinity to the same inverted repeat consensus sequence 5’-

AGAACAnnnTGTTCT-3’ (Nordeen et al. 1990, Roche et al. 1992, Lieberman et al. 1993, 

Lombes et al. 1993). As a result, the activity of several promoters can be regulated by more than 

one of these receptors. Examples are the MMTV promoter, and the promoters of the C3, the CRP 

and the PSA gene (Ham et al. 1988, Claessens et al. 1989, De Vos et al. 1994, Cleutjens et al. 

1997, Devos et al. 1997). The consensus high affinity binding site of ERα and ERβ is slightly 
different, 5’-AGGTCAnnnTGACCT-3’ (Klein-Hitpass et al. 1989). Therefore, ERα and ERβ 
direct the expression of a different panel of target genes. Because GR, MR, PR and AR recognize 
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the same DNA sequence, it has been postulated that additional mechanisms are necessary to 

explain their specificity. These include differences in expression levels of the various receptors in 

specific cell types (Strahle et al. 1989), selective interaction with specific transcription factors, 

coactivators and corepressors, and ligand availability (Glass and Rosenfeld 2000, Aranda and 

Pascual 2001, Heinlein and Chang 2002). 

  In spite of the identical high-affinity recognition sequence for AR, PR, GR and MR, steroid 

response elements can also direct receptor specificity. In natural promoters steroid receptor binding 

sites can deviate considerably from the consensus high-affinity binding site. These sequences might 

have a different affinity to the various receptors. Additionally, sequences directly flanking the 

response element can contribute to receptor affinity and preference (Nelson et al. 1999, Haelens et 

al. 2003). On top of this, the AR seems to have adopted an exclusive mechanism of specificity. A 

few genes are known to be preferentially regulated by AR (Claessens et al. 2001). The structures of 

the androgen response elements (AREs) that direct androgen-specificity to these genes more 

resemble direct repeats of the sequence 5’-TGTTCT-3’ than classic inverted repeats of this 

sequence.  

  The androgen-sensitive human prostate carcinoma cell line LNCaP expresses AR, but lacks GR 

and PR (Horoszewicz et al. 1983, Berns et al. 1986). It was previously shown that growth of 

LNCaP cells, and PSA mRNA expression in these cells can be stimulated by androgens 

(Schuurmans et al. 1988, Riegman et al. 1991, Young et al. 1991). In order to compare directly the 

molecular and biological function of AR and GR, the LNCaP-1F5 subline, containing a stably 

integrated GR expression vector, was generated (Cleutjens et al. 1997). PSA mRNA expression in 

LNCaP-1F5 can be induced by both androgens and glucocorticoids, but cell growth is selectively 

induced by androgens. We identified in LNCaP-1F5 cells a novel gene that is specifically 

regulated by androgens (Cleutjens et al. 1997). In the present study an integrated experimental 

and bioinformatics-based approach was applied to characterize the gene, designated SARG, and 

to decipher the molecular mechanism of androgen-specific regulation of the gene.  

 

 

MATERIALS AND METHODS 

 

Materials 

  Methyltrienolone (R1881) was purchased from NEN (Boston, MA), dexamethasone (Dex) was 

obtained from Steraloids (Wilton, NH). Cell culture media were from Bio Whittaker (Verviers, 

Belgium), fetal calf serum (FCS) was from Roche Diagnostics (Almere, The Netherlands). 

 

Plasmid construction 

  pLUC and pPSA-4-LUC have been described previously (Cleutjens et al. 1996). pHisXpress-

cSARG, expressing (His)6-Xpress-SARG protein, contains the SARG cDNA fragment 209-

2579 (SARG ORF is from 251 to 2053) inserted in the eukaryotic expression vector 

pcDNA3.1His (Invitrogen, Carlsbad, CA). 

  The SARG genomic fragments SARG-8.5, SARG-7.3 and SARG+4.6, with sizes of 510 bp, 

476 bp and 569 bp, respectively, were obtained by PCR on PAC90L18 DNA (GenomeSystems, 

St Louis, MO) as template with the primer sets:  

-8.5F: 5'-GATCAGCTGGATCCCAGGGACATGGATGAAGCTG-3' 

-8.5R: 5'-GATCAGCTGGATCCTGCCTCAACCTCCCAAGTAG-3' 

-7.3F: 5'-GATCAGCTGGATCCGTCATAATGACTTGGCCATG-3' 

-7.3R: 5'-GATCAGCTGGATCCTGTCCAACATTTGAGGCCAG-3' 
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+4.6F: 5'-GATCAGCTGGATCCGTATCGTAGCGGTGGTTGTG-3' 

+4.6R: 5'-GATCAGCTGGATCCTGGAGAGGCAGTCTAGTCAG-3' 

The resulting amplified fragments were inserted in pGEM-T Easy (Promega, Madison, WI), 

sequenced and subsequently inserted as BamHI/BamH1 fragments in pPSA-4-LUC, yielding 

pSARG-8.5-PSA-LUC, pSARG-7.3-PSA-LUC and pSARG+4.6-PSA-LUC, respectively. 

  The -55 to +168 genomic fragment SARG-S was obtained by PCR on PAC90L18 DNA, 

utilizing the primers SARG-A: 5'-GCTAAGAGGGAACAGCACCAC-3' and SARG-B: 5'-

CCCGGGAGATCTACTAGTCCACTGGGTTG-3'. The PCR product was inserted in pGEM-T 

Easy, verified by sequencing and inserted as a 240 bp PvuII/BglII fragment in pLUC, yielding 

pSARG-S-LUC. To generate pSARG-L-LUC, the –3012 to -1559 HindIII/PvuII SARG genomic 

fragment was isolated from PAC90L18 and inserted in the corresponding sites of pSARG-S-

LUC, yielding pSARG-L∆-LUC. Subsequently, the -1559 to –55 PvuII/PvuII genomic SARG 
fragment was inserted into the PvuII site of pSARG-L∆-LUC. The resulting construct pSARG-
L-LUC contains SARG bp -3012 to +168. 

  SARG+4.6 was inserted as a BamHI/BamH1 fragment upstream of the SARG-S promoter or 

SARG-L promoter in pSARG-S-LUC and pSARG-L-LUC, respectively, yielding pSARG+4.6-

SARG-S-LUC and pSARG+4.6-SARG-L-LUC. pSARG+4.6m-SARG-S-LUC was generated 

by mutagenesis utilizing the QuikChange Site Directed Mutagenesis Kit (Stratagene, LaJolla, 

CA) on pSARG+4.6-SARG-S-LUC as template. Primers: mut-4603S: 5’-

CAACTAAACTATGATAACTATTATCTCATTTAATC-3’ and its complementary strand: 

mut-4603AS. 

  SARG+4.6-(+4447/+4659)-S-LUC and SARG+4.6-(+4548/4659)-S-LUC were constructed by 

insertion of the respective BamH1/BamH1 fragments upstream of the S promoter in pSARG-S-

LUC. The fragments SARG+4.6-(+4447/+4659) and SARG+4.6(+4548/+4659) were generated 

by PCR utilizing the primers 

  S+4.6-A (5’-GATCAGCTGGATCCCCTTCTTTTCTGAGATCCTG-3’) and 

 S+4.6-B (5’-GATCAGCTGGATCCCTCATGAGGTCTTAGGGTAT-3’) as respective 

forward primers, and S+4.6-C (5’-GATCAGATGGATCCGGCAAATTACTCTGAGTCTG-3’) 

as reverse primer. Amplified fragments were sequenced prior to insertion into pSARG-S-LUC 

as BamH1/BamH1 fragments.  

  pRIT2TAR, encoding rat AR DBD, was described previously (De Vos et al. 1991). prGR-

DBD-PRIT2T, encoding rat GR DBD, was constructed by BamHI/SalI insertion of a PCR 

fragment, synthesized with primers rGR-DBD-1: 5'-

CAGCGGATCCGCAGCCACGGGACCACCTCCC-3' and rGR-DBD-2: 5'-

CTATTGTCGACTAAGGATTTTCCGAAGTGTCTTG-3' on pSTC-GR3-795 (Rusconi and 

Yamamoto 1987) as template, in pRIT2T (Amersham Biosciences, Bucks, UK). 

 

Screening of a prostate cDNA library 

  Screening of a λgt10 human prostate cDNA library (BD Biosciences Clontech, Palo Alto, CA) 
was performed according to the manufacturer's protocol. Hybridization probes were the SARG 

differential display PCR (DD-PCR) fragment (GenBank Accession Number AF007835) and 

SARG cDNA fragment 855-1957 (see GenBank Accession Number AY352640)
 
. 

 

RACE-PCR 

  For RACE-PCR we applied the Marathon-Ready prostate cDNA cloning kit (BD Biosciences 

Clontech). Primers: SARG-RACE: 5'-CCTGAAGTTCTGGCTTCTGGCAATGTG-3' and the 

standard AP1 primer of the  
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kit. Amplified cDNA fragments were inserted in pGEM-T Easy and sequenced.  

 

Analysis of alternative splicing of mRNA by RT-PCR  

  cDNA was synthesized from 1 µg total RNA isolated from LNCaP cells incubated for 24 h in 
RPMI 1640 supplemented with 5% (v/v) dextran-coated charcoal treated FCS (FCS-DCC), 

antibiotics and 1 nM R1881. cDNA synthesis was performed at 55°C utilizing M-MuLV reverse 
transcriptase and an oligo-dT primer. Subsequently, PCR was carried out under standard 

conditions on the LNCaP cDNA template utilizing either forward primer SARG-F1A: 5’-

CCAGGCAGCACAGATGAAGC-3’ or SARG-F1B: 5’-AGCCTCTGTCTCCATCTCTGC-3’ 

in combination with the reverse primer SARG-R: 5’-CTTCAGTGGACAGGAAGTCG-3’. RT-

PCR products were inserted in pGEM-T Easy and sequenced. 

 

RNA isolation and Northern analysis 

Total RNA from LNCaP and LNCaP-1F5 cells was isolated by the guanidinium thiocyanate 

method (Sambrook and Russell 2001). RNA (10 µg per lane) was separated by electrophoresis on a 
1% (w/v) agarose formaldehyde gel in TBE. Following electrophoresis RNA was transferred to a 

Hybond-N
+
 membrane (Amersham Biosciences). The blot was hybridized under standard 

conditions at 65°C utilizing the 32P-labelled HindIII/HindIII SARG cDNA fragment (854-1957) 
as a probe (Sambrook and Russell 2001). Actin cDNA was utilized as a hybridization control. 

Blots were exposed to X-ray film with intensifying screens at -80°C. 
 

Analysis of tissue specific expression of mRNA by PCR  

  Tissue specificity of SARG mRNA was assayed by semi-quantitative PCR on Human MTC Panel 

II cDNA (BD Biosciences, Clontech), containing cDNAs from spleen, thymus, prostate, testis, 

ovary, small intestine, colon and peripheral blood lymphocytes, essentially according to the 

procedure described in the User Manual. G3PDH primers from the cDNA kit were used as a 

control (30 amplification cycles). SARG primers utilized were 5’-

AGTCTGAGCCAGCCACAACT-3’ (F-ex3) and 5’-TGTGGATATTCCTAGGGAGG-3’ (R-ex4) 

(30 amplification cycles; primer annealing was at 55°C). 
 

Immunocytochemistry 

  LNCaP cells were seeded at a density of 3 x 10
5
 cells per well on sterile micro-slides in four-well 

tissue culture plates (Heraeus Instruments, Hanau, Germany), cultured until 50% confluence in 

RPMI 1640, supplemented with 5% (v/v) FCS and antibiotics, and subsequently transfected with 5 

µg pHisXpress-cSARG. After overnight incubation, cells were washed twice in phosphate buffered 
saline (PBS), and fixed in acetone for 10 min. Next, slides were rinsed twice in PBS, followed by 

overnight incubation in mouse anti-Xpress antibody solution (Invitrogen) diluted 1:500 in PBS at 

4°C. Incubation was stopped by four PBS washes. Next, slides were incubated for 30 min at room 
temperature in goat anti-mouse peroxidase conjugate antibody (DAKO, Glostrup, Denmark) 

solution (1:100 dilution in PBS). After four PBS washes, immunoreactivity was visualized by 

diaminobenzidine (DAB) staining. The reaction was stopped in water. Cells were counterstained 

with Mayers Hematoxylin.  

 

Isolation of genomic DNA fragments 

  The SARG DD-PCR fragment was randomly 
32
P-labelled and utilized to screen a genomic 

human PAC library on gridded filters (GenomeSystems, St. Louis, MO) according to the 

manufacturer's protocol. DNA was isolated from positive PACs by standard procedure 
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(Sambrook and Russell 2001). For Southern blot analysis 10 µg PAC90L18 DNA was HindIII, 
PstI or EcoRI digested, electrophoresed on a 0.8% TAE-agarose gel and subsequently transferred 

to a Hybond-N
+
 membrane. Filters were hybridized at high stringency with randomly 

32
P-labelled 

SARG probes under standard conditions (Sambrook and Russell 2001). HindIII, PstI or EcoRI 

digested PAC DNA was shot-gun cloned in the corresponding sites of pBSKS
+/-
 (Stratagene). 

Clones were utilized for isolation of genomic fragments by screening with randomly 
32
P-

labelled SARG cDNA fragments and for SARG gene walking with overlapping HindIII, PstI and 

EcoRI fragments. Hybridizing inserts were sequenced. 

 

Search for candidate androgen response elements 

  The MatInspector professional program (www.genomatix.de/mat_fam) (Quandt et al. 1995) was 

utilized for detection of candidate AREs with queries for the inverted repeat 5’-

RGWACANNNTGTTCT-3’ (R=A/G, W=G/T) and the direct repeat 5’-TGTTCTNNNTGTTCT-

3’. The threshold for candidate AREs was set at 9 out of 12 matches. The Matinspector program 

searched both the sense and anti-sense strand. Identified sequences were manually further selected 

according to additional criteria. Candidate inverted repeat AREs should contain G and C at the 

double-underlined positions in the sequence above, and at least one of either single underlined C or 

G. Candidate direct repeat AREs should contain three out of four single-underlined C and G 

residues.  

 

Cell culture, transfection and luciferase assay 

  LNCaP and LNCaP-1F5 cells were cultured in RPMI 1640 supplemented with 5% (v/v) FCS 

and antibiotics. Four hour prior to transfection, medium was substituted by Dulbecco's 

Modification of Eagle's Medium (DMEM) supplemented with 5% (v/v) FCS-DCC. Transient 

transfections were performed according to the calcium phosphate precipitation method 

(Sambrook and Russell 2001) utilizing 1 x 10
6
 cells per 25 cm

2
 flask and 5 µg of one of the 

pLUC-constructs. After 4 h the medium was removed and cells were incubated for 90 sec at 

room temperature in PBS containing 15% (v/v) glycerol. Next, transfected cells were cultured in 

DMEM-FCS-DCC medium for 24 h in the absence or presence of 1 nM R1881 or 10 nM Dex. 

Transfected cells were washed in PBS, and subsequently incubated in 300 µl lysis buffer (25 
mM Tris-phosphate, pH 7.8/ 8 mM MgCl2/ 1mM DTT/ 1% (v/v) Triton X-100/ 15% (v/v) 

glycerol). Next, 100 µl 0.25 mM luciferin (Sigma, St. Louis, MO)/ 0.25 mM ATP in lysis buffer 
was added to 150 µl lysate, and luciferase activity was measured in a LUMAC 2500 M 
Biocounter (LUMAC, Landgraaf, The Netherlands).  

 

Electrophoretic mobility shift assay 

  AR DBD and GR DBD were produced in Escherichia coli, and purified as described 

previously (De Vos et al. 1991). AR DBD and GR DBD were expressed from pRIT2TAR and 

pRIT2TrGR-DBD, respectively. 

Oligonucleotide electrophoresis mobility shift assay (EMSA) probes: 

PSA ARE I:     5'-GATCCTTGCAGAACAGCAAGTGCTAGCTG-3' 

              3'-GAACGTCTTGTCGTTCACGATCGACCTAG-5' 

Probasin ARE II: 5'-TCGACTAGGTTCTTGGAGTACTTTG-3' 

    3'-GATCCAAGAACCTCATGAAACAGCT-5' 

ARE-SARG+4.6: 5’-TCGACACTGTGCTAACTGTTCTCTG-3’ 

    3’-GTGACACGATTGACAAGAGACAGCT-5’ 

DR:   5’-TCGACACTGTTCTAACTGTTCTCTG-3’ 

    3’-GTGACAAGATTGACAAGAGACAGCT-5’ 
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ARE-mSARG+4.6: 5’-TCGACACTATGATAACTATTATCTG-3’ 

       3’-GTGATACTATTGATAATAGACAGCT-5’ 

Probes were filled in by standard M-MuLV-RT reaction in the presence of α-32P-dATP, and 
subsequently purified on a non-denaturing polyacrylamide gel. For EMSA, 50 x 10

3
 cpm probe 

was added to 20 µl reaction mixture, containing 2 µg poly dIdC, 2 µg BSA, 10 µM ZnCl2, 1 
mM DTT and 2 µl 10x binding buffer (100 mM Hepes, pH 7.6/ 300 mM KCl/ 62.5 mM MgCl2/ 
4% (v/v) ficoll 400), and 5 pmol AR DBD or GR DBD. Incubation was for 30 min on ice. 

Samples were electrophoresed on a 4% (w/v) polyacrylamide (19:1 mono/bis acryl ratio) gel in 

a 25 mM Tris.HCl/ 41.5 mM boric acid/ 0.5 mM EDTA buffer for 2 h at 150 V at room 

temperature. Subsequently, gels were fixed, dried and exposed to X-ray film. 

 

Chromatin immunoprecipitation  

  Chromatin immunoprecipitations (ChIP) were done essentially according to the method 

described in the Acetyl-Histone H3 ChIP assay kit (Upstate Biotechnology, Chicago, Il). In 

short, LNCaP cells were grown for at least 3 days on 5% FCS-DCC supplemented RPMI 1640 

medium. To half of the cultures R1881 was added to a final concentration of 10 nM. After 1 h 

cells were cross-linked with formaldehyde (1% final concentration) at 22
o
C for 10 min. Cross-

linking was stopped by addition of glycine to a final concentration of 125 mM. Next, cells were 

washed in ice-cold PBS and harvested in PBS supplemented with protease inhibitors (Roche 

Diagnostics). Cell pellets were resuspended in SDS lysis buffer and sonicated to shear the DNA. 

Sonicated samples were centrifuged, diluted in Chip Dilution Buffer and precleared by 

incubation with salmon sperm DNA/Protein A agarose slurry for 1 h at 4
o
C with rotation. After 

centrifugation, immunoprecipitation of the supernatant was performed overnight at 4 
o
C with 

Acetyl-Histone H3 antibody. Next, salmon sperm DNA/Protein A agarose slurry was added, and 

the incubation was continued for another hour. Agarose beads were washed according to the 

procedure described by the manufacturer. Eluates were heated overnight at 65
o
C to reverse the 

cross-linking. DNA fragments were purified with a QIAquick Spin Kit (QIAGEN, Hilden, 

Germany). One µl from 50 µl DNA solution was used in a standard PCR (35 amplification 

cycles). Primer sequences were: 

-8.5F: 5’-CAGGGACATGGATGAAGCTG-3’ 

-8.5R: 5’-GAACCCGTCATCTACATTAG-3’ 

-7.3F: 5’-GTAAGTCCAACACAGCTAGTC-3’ 

-7.3R: 5’-CTGAGATGCTGAGAGGCTGA-3’ 

+4.6F: 5’-CAAGTCTACAGTCTCCCATC-3’ 

+4.6R: 5’-CTCAAATCCCAGTTTAGCCA-3’. 

PCR fragments were separated over an agarose gel. 

 

 

RESULTS 
 

SARG mRNA expression in LNCaP-1F5 cells 

  Utilizing DD-PCR technology, we previously identified in LNCaP-1F5 prostate cancer cells, 

which express both AR and GR, a novel androgen-specific  regulated gene, denoted 21.1 in the 

initial study and SARG in the present study (Cleutjens et al. 1997). SARG mRNA expression 

was found to be up-regulated by the synthetic androgen R1881, but not by the synthetic 

glucocorticoid Dex. Utilizing the DD-PCR fragment as hybridization probe, a 5.5 kb transcript 

was identified in R1881-incubated LNCaP-1F5 cells. 
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Figure 1.  SARG cDNA, and androgen-regulated and prostate specific SARG mRNA expression. 
(A) Schematic overview of the isolation of the complete SARG cDNA. The start and stop codons are indicated. An 

asterisk indicates a polyadenylation signal. DD-PCR indicates the original differential display fragment (Cleutjens et al. 

1997). RACE1, RACE2 are two related 5' ends of SARG cDNA. (B) Northern blot of SARG mRNA expression in 

LNCaP-1F5 cells incubated for 24 h without hormone (-), with 1 nM R1881 or 10 nM Dex. Transcript sizes are 

indicated. Actin was utilized as a loading control. (C) RT-PCR analysis of SARG mRNA expression in spleen (1), 

thymus (2), prostate (3), testis (4), ovary (5), small intestine (6), colon (7) and lymphocytes (8). cDNAs were 

normalized for G3PDH expression as loading control. 

 

 

  For further characterization of SARG we first isolated full-length SARG mRNA. Overlapping 

SARG cDNA fragments were obtained by repeated screening of a human prostate cDNA library. 

In the first screen the DD-PCR fragment was utilized as hybridization probe (Figure 1A). The 

longest cDNA, containing a polyadenylation signal and a polyA tail, was 3.6 kbp. Screening of the 

cDNA library with a 5' fragment of this cDNA as a probe resulted in the detection of an 

overlapping 2.7 kbp cDNA with a second polyadenylation signal and a polyA tail. This cDNA 

fragment extended the cDNA sequence to approximately 4.9 kbp. Further 5' SARG cDNA 

sequence was obtained by RACE-PCR, utilizing a primer in the 2.7 kbp cDNA. Two related 5' 
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cDNA fragments of 665 bp and 537 bp, respectively, were found. The shorter fragment (RACE2) 

lacked nucleotides 42-169 of the longer fragment (RACE1) (Figure 1A). The longest SARG cDNA 

sequence of 5487 bp was deposited in GenBank under Accession Number AY352640. 

  A BLAST search of the EST database (www.ncbi.nlm.nih.gov/) identified two EST clusters 

overlapping the SARG cDNA sequence. The first group represented the 3’ parts of the 5.5 kb and 

3.3 kb transcripts, as detected in the cDNA library (Unigene cluster Hs.32417), the second cluster 

represented a 2.3 kb transcript, which contained SARG 5’ cDNA sequences, and a third 

polyadenylation sequence and polyA tail (Unigene cluster Hs.223394). We confirmed the presence 

of three polyadenylation signals in the 5.5 kbp SARG cDNA sequence (Figure 1A). A 1.1 kbp 

SARG cDNA fragment (nucleotides 854 to 1957) hybridized with all three predicted SARG 

mRNAs in a Northern blot of LNCaP-1F5 RNA (Figure 1B). The 3.3 kb transcript showed the 

highest expression. All SARG transcripts were up-regulated by R1881, but their expression could 

not be induced by Dex. Semi-quantitative RT-PCR indicated high SARG mRNA expression in 

prostate tissue (Figure 1C, lane 3) as compared to spleen, thymus, testis, ovary, small intestine, 

colon and lymphocytes.  

 

SARG protein 

  The SARG open reading frame (ORF) encodes a 601 amino acid protein (Figure 2A). This ORF 

is identical to that of the hypothetical protein MGC2742 (Genbank). Because Unigene cluster 

Hs.23417 encompasses the 3’ part of the two longest SARG transcripts, a predicted protein from 

this EST cluster (MGC4309) is unlikely.  

  To determine its cellular localization, SARG protein was Xpress-tagged and transiently expressed 

in LNCaP cells. Immunocytochemical staining with anti-Xpress antibody showed that SARG 

protein was exclusively present in the cytoplasm (Figure 2B). 

 

SARG gene structure and splice variants   

  The complete SARG gene was isolated in one PAC (90L18) by screening of a human genomic 

PAC library with the SARG DD-PCR fragment (see Figure 1A) as probe. To characterize SARG, 

subcloned overlapping HindIII, PstI and EcoRI fragments of PAC 90L18 were hybridized with 

appropriate cDNA fragments. Comparison with the cDNA sequence revealed that SARG was 

composed of 4 exons, and spanned 14.5 kbp (Figure 3A). The two cDNA fragments obtained by 

RACE-PCR represented two forms of exon 1, the short exon 1A, and the extended exon 1AB. All 

splice junctions were consistent with the GT/AG rule (Figure 3B). The SARG ORF started in exon 

2 and ended in the large exon 4 (Figure 3A). SARG is part of BAC RP11-564A8 (Genbank 

Accession Number AC098935.2). The transcription start site is at position 184,776 in this clone. 

SARG maps at chromosome band 1q32.2.  

  RACE-PCR and RT-PCR revealed four different SARG splice variants (Figure 3C). The largest 

variant contained all 4 exons, smaller variants lacked either part B of exon 1AB, exon 2 or both. 

The splice variants lacking exon 2, which formed a minority, are predicted to encode a protein of 

355 amino acids, starting at methionine 247 (Figure 2A). The corresponding ATG codon is in exon 

4, in frame with the long SARG ORF  (Figure 3C).    
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Figure 2.  The SARG open reading frame and the cellular localization of the SARG protein. 
(A) The SARG ORF encodes a protein of 601 amino acids. Methionine 247 (in bold) is the first amino acid residue 

of the shorter SARG protein translated from mRNA lacking exon 1B and/or exon 2 sequences. (B) The SARG 

protein is located in the cytoplasm. LNCaP cells were transfected with pcHisXpress-cSARG encoding Xpress-

tagged SARG protein. Xpress-SARG was visualized by immunostaining with anti-Xpress antibody. 
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Figure 3.  SARG gene structure and splice variants.  
(A) Schematic presentation of the SARG gene. The ATG start codon in exon 2 and the TAG stop codon in exon 4 are 

indicated. The three asterisks indicate polyadenylation signals. (B) Splice donor and acceptor sites at the exon/intron 

boundaries in the SARG gene. Numbering is according to the genomic SARG sequence. (C) Four different splice 

variants of the SARG gene. Start and stop codons are indicated. 

 

 

Functional and bioinformatics-based selection of candidate androgen response elements 

  To establish androgen response of SARG, the promoter fragments SARG-L (-3012 to +168) and 

SARG-S (-55 to +168) were inserted in front of the luciferase reporter gene in the constructs 

pSARG-L-LUC and pSARG-S-LUC, respectively. Transient transfection of these constructs to 

LNCaP cells showed in both cases a very weak androgen response, indicative of the absence of 

strong AR binding sites (see Figure 4D).  This prompted us to screen for candidate AREs in a 

region of approximately 18 kbp, from 9 kbp upstream to 9 kbp downstream of the transcription 

start site, by a bioinformatics-based approach. This sequence is present in BACs AC098935.2 and 

AC023534. The MatInspector program was applied to search both DNA strands for sequences 

homologous to the direct repeat 5’-TGTTCTnnnTGTTCT-3’ or to the inverted repeat consensus 

ARE sequence 5’-A/GGA/TACAnnnTGTTCT-3’ (see Materials and Methods). We selected 

sequences that showed at least 9 out of 12 matches in the two half sites. Out of the sequences 

obtained candidate AREs were further selected manually, based on the criteria of presence of at 
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least 3 out of 4 underlined C or G residues in the direct repeat, or presence of the double-underlined 

C and G residue, and at least one of the two single-underlined C and G residues in the inverted 

repeat. Utilizing this approach we identified 34 candidate AREs in the 18 kbp region, 12 inverted 

repeats and 22 direct repeats. None of these was completely identical to the consensus inverted 

repeat. One was a perfect direct repeat and two sequences deviated at one position from a perfect 

direct repeat. Four sequences matched the inverted or direct repeat at 10 out of 12 positions. 

Several candidate AREs clustered in the genome. At approximately –8.5 kbp a cluster of 4 

candidate AREs was present, including the imperfect direct repeat 5’-TGAACAatgAGAACA-3’ 

(11/12 matches); at +4.6 kbp a cluster of 5 candidate AREs was detected, including the imperfect 

direct repeat 5’-TGTGCTaacTGTTCT-3’ (11/12 matches). The latter cluster is located in SARG 

intron 1. The perfect direct repeat 5’-TGTTCTcctTGTTCT-3’ mapped at -7.3 kbp, one ARE-like 

sequence was close to this repeat (Figure 4 A,B). 

  Next, it was investigated whether three genomic fragments containing the indicated direct repeats 

and flanking candidate AREs could function as enhancer regions. Genomic fragments with a size 

of approximately 500 bp, SARG-8.5, SARG-7.3 and SARG+4.6, respectively, were coupled to 

PSA4-LUC, containing the 600 bp promoter of the PSA gene. This promoter was weakly 

responsive to androgens, but combination with an upstream PSA enhancer fragment resulted in a 

strong androgen-inducible promoter (Cleutjens et al. 1997). In transfected LNCaP cells, SARG-8.5 

and SARG-7.3 had no significant effect on the weak R1881 induction of the PSA4 promoter. In 

contrast, SARG+4.6 clearly increased R1881 induced PSA4 activity (Figure 4C). Next, SARG+4.6 

was linked to SARG-S (-55 to +168) and SARG-L (-3012 to +168), which both showed, as 

mentioned above, a very low androgen induction. Similar to the PSA promoter experiment, linkage 

of SARG+4.6 to both SARG-L and SARG-S showed androgen response in transfected LNCaP 

cells (Figure 4D).  

 

SARG intron 1 contains a functional direct repeat androgen response element 

  To determine whether the imperfect direct repeat 5’-TGTGCTaacTGTTCT-3’ in SARG+4.6 

was responsible for androgen induction, it was mutated to 5’-TATGATaacTATTAT-3’. The 

mutated fragment was coupled to SARG-S and tested in LNCaP cells for its response to R1881. 

As shown in Figure 5A, the androgen induction of SARG+4.6 was completely abolished by the 

mutations. 

  Next, the direct repeat 5’-TGTGCTaacTGTTCT-3’ in SARG+4.6, designated ARE-SARG+4.6, 

was tested in an EMSA for its ability to bind to AR DBD (Figure 5B). Control AREs were PSA 

ARE I (5’-AGAACAgcaAGTGCT-3’), which has been shown to bind strongly to the AR DBD, 

and rat probasin ARE II (5’-AGTACTccaAGAACC-3’), which is considered as a direct repeat, 

strongly interacting with AR DBD (Riegman et al. 1991, Rennie et al. 1993, Claessens et al. 1996, 

Cleutjens et al. 1996). ARE-SARG+4.6 bound to AR DBD, albeit weaker than the PSA and 

probasin AREs. The change of ARE-SARG+4.6 into the perfect direct repeat 5’-

TGTTCTaacTGTTCT-3’ (DR) did not affect its capacity to bind AR DBD. AR DBD was unable 

to bind inactive mutant ARE-mSARG+4.6 (5’-TATGATaacTATTAT-3’). 
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Figure 4.  Three direct repeat candidate androgen response elements in the SARG gene. 
 (A) Positions (kbp) of the 3 direct repeat candidate AREs (♦) in the SARG gene. (B) Sequences and location of the 

3 direct repeat candidate AREs in the SARG gene. Numbering is according to the genomic SARG sequence. 

Matching to the direct repeat 5’-TGTTCTnnnTGTTCT-3' is indicated below the sequences. (C) Androgen-induced 

activity of the SARG fragments, containing a direct repeat candidate ARE, coupled to the PSA4 promoter. LNCaP 

cells were transiently transfected with pPSA-4-LUC, pSARG-8.5-PSA-LUC, pSARG-7.3-PSA-LUC or 

pSARG+4.6-PSA-LUC. Luciferase activity was measured after 24 h incubation with or without 1 nM R1881. (D) 

Androgen-induced activity of SARG+4.6 coupled to SARG-S and SARG-L, respectively. LNCaP cells were 

transfected with pSARG-S-LUC, pSARG+4.6-SARG-S-LUC, pSARG-L-LUC or pSARG+4.6-SARG-L-LUC. 

After 24 h incubation with or without 1 nM R1881 luciferase activity was measured. Value +/- SEM in (C) and (D) 

are from two experiments carried out in duplicate. Fold induction is the ratio of luciferase activity measured in the 

presence and absence of R1881. 
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Figure 5  The direct repeat in SARG+4.6 is a functional androgen response element. 
(A) Effect of mutation of ARE-SARG+4.6 on the transcriptional activity of SARG+4.6. LNCaP cells were 

transfected with pSARG-S-LUC, pSARG+4.6-SARG-S-LUC or pSARG+4.6m-SARG-S-LUC and incubated for 

24 h with or without 1 nM R1881. Transcriptional activity was measured in a luciferase assay. Values +/- SEM are 

from two experiments carried out in duplicate. Fold induction is the ratio of luciferase activity measured in the 

presence and absence of R1881. (B) EMSA of indicated AREs and AR DBD. ARE sequences are shown below the 

figure. The arrowhead indicates the position of the AR DBD-ARE complex. 
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Characterization of enhancer SARG+4.6  

  To further decipher the role of the 569 bp enhancer SARG+4.6-(+4297/+4865) in androgen 

regulation, two deletion constructs of SARG+4.6-S-LUC were generated. Construct SARG+4.6-

(+4447/4659) lacked all four candidate weak ARE sequences present in the SARG+4.6 

enhancer, but contained the imperfect direct repeat ARE (ARE-SARG+4.6).  The 112 bp 

enhancer fragment SARG+4.6-(+4548/4659) lacked even more upstream sequences, but also 

still contained ARE-SARG+4.6. In transfection experiments the shortened enhancer SARG+4.6-

(4447/4659) was less active than the 569 bp fragment, suggesting that clustering of ARE-

SARG+4.6 with weak ARE-like sequences is important for full enhancer activity (Figure 6A). 

Interestingly, further shortening of the enhancer completely abolished its activity although ARE-

SARG+4.6 was still present. However, in the deleted region we could not detect an obvious 

ARE-like sequence. 

  We carried out ChIP assays in order to investigate the in vivo function of enhancer SARG+4.6. 

Utilizing an antibody directed against acetylated histone H3 we observed a difference in H3 

acetylation over SARG+4.6 between LNCaP cells grown in the presence and in the absence of 

R1881, showing a difference in chromatin structure on this part of the gene (Figure 6B). The higher 

signal with AcH3 antibody in the presence of R1881 indicated an active structure of the enhancer 

region. Such a difference was not detected for the genomic fragments SARG-8.5 and SARG-7.3. 

These findings were in accordance with the transient transfection studies, as shown in Figure 4C. 

Unfortunately, ChIP assays with a large series of different antibodies against the AR were not 

successful, probably due to the low affinity of AR for ARE-SARG+4.6. 

 

ARE-SARG+4.6 is androgen receptor specific 

  To address the question whether ARE-SARG+4.6 is involved in androgen specificity, 

SARG+4.6 coupled to both SARG-S-LUC and PSA4-LUC was tested for activation by Dex. 

The constructs were transfected to LNCaP-1F5 cells cultured in the presence of 1 nM R1881 or 

10 nM Dex, or in the absence of hormone  (Figure 7A,B).  SARG+4.6 did not significantly 

stimulate Dex induced activity of SARG-S and PSA4. In contrast, R1881 induced activity of 

these two promoters was clearly increased by SARG+4.6. 

  ARE-SARG+4.6 was also tested in an EMSA for its ability to bind to GR DBD (Figure 7C). 

Control PSA ARE I did bind to GR DBD, but rat probasin ARE II did not. Importantly, ARE-

SARG+4.6 was also not able to bind to GR DBD, which correlated with the R1881 specificity of 

SARG+4.6 in the transfection assay. 
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Figure 6. Characterization of enhancer SARG+4.6. 
(A) Deletion mapping of enhancer SARG+4.6 in transiently transfected LNCaP cells. See legend to Figure 5A and 

Materials and Methods for experimental details. (B) ChIP assay of the candidate –8.5 kb, -7.3 kb and +4.6 kb 

enhancer regions of SARG in the presence and absence of R1881. Acetyl-Histone H3 antibody was used for 

immunoprecipitation. Experimental details are described in Materials and Methods. Input: DNA prior to 

immunoprecipitation. 
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Figure 7.  ARE-SARG+4.6 is androgen receptor specific. 
LNCaP-1F5 cells were transfected with pSARG-S-LUC and pSARG+4.6-SARG-S-LUC (A) and pPSA4-LUC and 

pSARG+4.6-PSA-LUC (B). Luciferase activity was measured after 24 h incubation with 1 nM R1881 or 10 nM Dex 

or without hormone. R1881 and Dex induced activities of SARG-S-LUC (A) and PSA4-LUC (B) were set at 1. 

Relative inductions +/- SEM are from 2 experiments carried out in duplicate. (C)  EMSA of AREs with GR DBD. 

Sequences of the DNA fragments analysed are shown in figure 5 (B). GR DBD-ARE complexes are indicated by 

the arrowhead. 
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DISCUSSION 

  The androgen-specific regulated SARG gene was identified in the LNCaP-1F5 subline that 

expresses endogenous AR, and GR from a stable-integrated cDNA expression vector (Cleutjens et 

al. 1997). We showed that SARG mRNA expression could be up-regulated by androgens, but not 

by glucocorticoids. SARG is a 4 exon gene of 14.5 kbp mapping to chromosome band 1q32.2. 

Exon 1 can appear in a short or long form, 1A and 1AB, respectively. The 2.3, 3.3 and 5.5 kb 

transcripts result from alternative polyadenylation. Splice variants might lack either exon 2, part B 

of exon 1 or both. The predicted genes MGC2742 and MGC4309 are both part of SARG. SARG is 

preferentially expressed in the prostate (Figure 1C). Our findings are substantiated by data in the 

expression profile database GeneNote (http://bioinformatics/weizmann.ac.il/cards/). In this 

database high SARG expression was only documented for prostate and lung.  

  The SARG ORF encodes a protein of 601 amino acids; splice variants lacking exon 2 are 

expected to code for a carboxyl-terminal fragment of 355 amino acids of the full-length protein. 

Transient transfection experiments showed that the SARG protein is located in the cytoplasm. No 

homology to other proteins was found. Unfortunately, the amino acid composition of SARG does 

not indicate motifs that could predict its function. The Sarg mouse ortholog is 605 amino acids 

with a homology to human SARG of 65%. Highest homology is in the amino-terminal and 

carboxyl-terminal regions of the proteins (data not shown). 

  To explain androgen specificity of SARG expression we first studied a 3 kbp promoter region 

in transfection assays. Because these experiments were unsuccessful, we decided to carry out an 

in silico search for candidate AR binding sites in 18 kbp flanking the SARG transcription start 

site. The search criteria were based on three or less deviations from a perfect direct repeat or the 

consensus high affinity ARE inverted repeat. We identified 34 candidate AREs. Functional 

studies, based on clustering of candidate AREs indicated that an imperfect direct repeat in intron 

1, 5’-TGTGCTgcaTGTTCT-3’ (ARE-SARG+4.6) was active and AR-specific. Importantly, 

ARE-SARG+4.6 cooperated with surrounding sequences in a 569 bp enhancer region for full 

activity. Part of the cooperating sequences might be weak AR binding sites. However, others 

might be binding sites for prostate specific and more common transcription factors. The 

properties of these factors remain to be identified.   

  Mutation of ARE-SARG+4.6 to a perfect repeat did not affect AR DBD binding. However, 

SARG-7.3, which contains a perfect direct repeat, did not show any detectable androgen-

induction in transfections. Also, linkage of SARG-7.3 to SARG+4.6-SARG-S did not increase 

the activity of SARG+4.6-SARG-S in transfections (data not shown). In contrast to ARE-

SARG+4.6, ARE-SARG-7.3 might lack favourable modulating flanking sequences (Nelson et 

al. 1999) or binding sites for other transcription factors in its close vicinity. This might also be 

true for inactivity of ARE-SARG-8.5.   

  The present study shows that a bioinformatics-based search for AR binding sites followed by 

selected functional studies can successfully identify active regulatory elements. However, it 

shows also the limitations of such an approach, due to the complexity of the regulation 

mechanism of gene expression. The functional studies were limited to the two largest clusters of 

candidate AREs, and to a small cluster containing a perfect direct repeat in an 18 kbp region. 

Without clustering as a selection criterion, the bioinformatics approach would not have been 

selective, because of the high density of candidate AREs (1 per 500 bp). We realize that 

functional AREs in enhancers and promoters might also cluster with binding sites for other 

transcription factors. Moreover, although less likely, it cannot be excluded completely that some 

candidate ARE sequences did not pass the selection criteria. One such ARE should be in SARG-

S (-55 to +168), which is weakly androgen inducible. A candidate is the sequence 5’-
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GGGCCAggcAGCACA-3’ (+5 to +17) in exon 1, which deviates at 4 positions from a perfect 

direct repeat.  

  A complicating factor in direct repeat ARE search is the lack of a consensus sequence for high-

affinity, high-specificity AR binding, due to the limited number of this type of AREs identified 

so far. Rat probasin ARE II (5’-GGTTCTtggAGTACT-3’), which deviates from a perfect direct 

repeat at 3 positions, seems at present the specific ARE with highest AR affinity (Rennie et al. 

1993, Kasper et al. 1994, Claessens et al. 1996, Kasper et al. 1999, Claessens et al. 2001). 

However, a search of the 18 kbp SARG sequence did not detect candidate AREs closely 

resembling this sequence (data not shown). Our data provide the first evidence that an almost 

perfect direct 5’-TGTTCT-3’ repeat as present in SARG+4.6, can function as an AR-specific 

element in a natural enhancer. Other direct repeat-like functional AREs, with variable AR 

specificity, as detected in the SC (Secretory Component) gene, the mouse Slp (Sex limited 

protein) gene and the PEM (placenta and embryo) homeobox gene all deviate at least at three 

positions from a perfect direct repeat (Verrijdt et al. 1999, Verrijdt et al. 2000, Barbulescu et al. 

2001).   

  Comparison of functional AREs of a large series of preferentially androgen regulated genes 

should reveal the sequence of a consensus high-affinity, high-specificity AR binding site in a 

natural context. Such genes might be identified by expression profiling of the AR and GR 

positive LNCaP-1F5 cell line followed by an unbiased functional study of a large series of 

overlapping fragments flanking the transcription start sites of these genes. This should also give 

a better insight in selection criteria for a bioinformatics-based search for functional AR binding 

sites in novel genes. Such an approach might also include comparison with data from other 

species.  

  It may be possible that the composition of an ARE can influence receptor activity by 

transduction of a particular conformation via the DNA-bound DBD to other AR domains. 

Recent evidence indicates that binding to different AREs indeed induces different 

conformational changes (Geserick et al. 2003). A different DBD conformation might directly or 

indirectly affect the association with coactivators, as shown for ER (Wood et al. 2001, Hall et 

al. 2002). In addition, it remains to be elucidated whether the ARE sequence is the major 

molecular determinant of AR specificity, or whether AR protein-protein interactions, including 

interactions with other specific transcription factors can contribute significantly to receptor 

specificity (Karvonen et al. 1997, Scheller et al. 1998). 
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ABSTRACT 

 

  In a subset of endocrine therapy resistant prostate cancers, amino acid substitutions H874Y, 

T877A and T877S, which broaden ligand specificity of the ligand binding domain (LBD) of the 

androgen receptor (AR), have been detected. To increase our knowledge about the role of amino 

acid substitutions at these specific positions in prostate cancer, codons 874 and 877 were 

subjected to random mutagenesis. AR mutants were screened in a yeast read out system for 

responsiveness to 5α-dihydrotestosterone, progesterone and dehydroepiandrosterone. At 
position 874, only the histidine to tyrosine substitution could broaden AR ligand specificity. At 

position 877, four ligand specificity broadening substitutions were found: T877A, T877S, 

T877C and T877G. The latter two were not found in prostate cancer. The AR mutants were 

tested in mammalian (Hep3B) cells for responsiveness to thirteen different ligands. All mutants 

displayed their own ligand specificity spectrum. Importantly, AR(H874Y) and AR(T877A) 

could be activated by cortisol. According to the three-dimensional structure of the AR LBD, 

T877 interacts directly with the 17β-hydroxyl-group of androgens. All amino acid substitutions 
identified at position 877 had smaller side chains than the threonine in the wild-type receptor, 

indicating that increased space in the ligand binding pocket is important in broadened ligand 

specificity. Because H874 does not interact directly with the ligand, its substitution by a tyrosine 

is expected to change the ligand binding pocket conformation indirectly. For T877C and T877G 

substitutions two point mutations are required, and for H874Y, T877A and T877S substitutions, 

only one point mutation is sufficient. This most likely explains that the latter three have been 

found in prostate cancer.  

 

 

INTRODUCTION 

 

  Androgens (T and DHT) are essential for development and maintenance of the male 

phenotype. They mediate their function by activation of the AR, which is a member of the 

nuclear receptor family of transcription factors. The AR also plays a pivotal role in prostate 

tumor growth. Because growth of the majority of prostate cancers depends on continuous 

androgenic stimulation, therapy of metastatic disease is generally based on androgen withdrawal 

or blockade of AR function by antiandrogens. However, after an initial regression, essentially all 

tumors continue to grow.  

  Like other nuclear receptors, the AR displays a modular structure: a carboxy-terminal LBD, a 

central DBD, and an amino-terminal TAD. Upon ligand binding, the AR regulates transcription 

by binding to specific androgen response elements in regulatory regions of target genes. 

Together with coactivators, general transcription factors and RNA polymerase II, a stable 

transcription initiation complex is formed (see for reviews refs 
1-3
). The size of the AR can be 

variable, due to variation in the length of poly-glutamine and poly-glycine stretches in the TAD. 

Amino acid numbering in this manuscript corresponds to an AR with a length of 919 amino 

acids, which is employed by The Androgen Receptor Gene Mutations Database 

(http://www.mcgill.ca/androgendb). 

  One of the causes of transition from androgen-dependent to apparent androgen-independent 

prostate tumor growth is modification of AR functioning. In a proportion of endocrine therapy 

resistant tumors, AR gene amplification has been detected.
4-6
 This can lead to AR 

overexpression. Another mechanism, which directly affects AR function, can be activation of 

the AR by aberrant cross talk with other signal transduction pathways.
7-11

 A third mechanism is 
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modification of AR properties by missense mutations. In a subgroup of endocrine therapy 

resistant prostate cancers, amino acid substitutions in the AR LBD have been found, which 

result in a broadened ligand response spectrum. The most common substitution, T877A, has first 

been described in the LNCaP prostate cancer cell line.
12
 Subsequently, it was repeatedly found 

in prostate cancer tissue specimens of patients with advanced disease.
13-18

 The T877A 

substitution renders the AR responsive to natural low affinity ligands and antiandrogens; T877S 

and H874Y substitutions, which have also been found in prostate cancer, induce similar 

properties to the AR.
12,17,19-23

  

   During the last years, the three dimensional structures of many nuclear receptor LBDs have 

been elucidated.
24-33

 The crystallographic data revealed a three-layer structure composed of ten 

to twelve α-helices. Ligand binding induces a specific conformational change in the helical 
LBD structure, which makes it accessible to coactivators.

34,35
 Antagonists induce a different 

LBD conformation than agonists, indicatig the importance of the LBD conformation for 

activation or inhibition of nuclear receptor function.
27,31,34

  

  Knowledge of the LBD structure is invaluable for explanation of the molecular and the 

biological effects of specific amino acid substitutions in the AR in prostate cancer. 

Homology modeling predicted a three-dimensional structure of the AR LBD that is similar to 

other nuclear receptors.
36-38

 The crystal structures of the DHT and R1881 complexed wild-type 

AR LBDs and DHT complexed T877A mutant AR LBD have recently been elucidated and 

confirmed most of the earlier assumptions.
39,40

 

  In this study we investigated the biological effects of amino acid substitutions at positions 874 

and 877, which are both in helix 11 of the AR LBD.
36,37,39,41

 We addressed the question whether 

in addition to H874Y, T877A and T877S other, as yet unidentified, amino acid substitutions at 

these positions could give rise to similar functional alterations. Previously, we have shown that 

both wild-type AR and AR(T877A) retained their ligand specificity in yeast.
42
 Therefore, AR 

expression libraries with random mutations at codons 874 or 877 were screened for ligand 

specificity in a yeast read out system. AR mutants with an altered ligand specificity as identified 

in the yeast system, were analyzed in mammalian cells for their responsiveness to a large series 

of sex steroids, antiandrogens and adrenal steroids, including glucocorticoids.  

 

 

MATERIAL AND METHODS 

 

Hormones  

  DHT, ASD, Pg, E2, DHEA, DEX, cortisol, aldosterone and TAA were purchased from 

Steraloids (Wilton, NH), R1881 (methyltrienolone) was from NEN (Boston, MA). CPA was a 

gift from Schering AG (Berlin, Germany), OH-Fl from Schering USA (Bloomfield, NJ), and 

bicalutamide (Casodex) from Zeneca Pharmaceuticals (Macclesfield, UK).  

 

Construction of androgen receptor cDNA libraries with random mutation of codons 874 and 

877 

  The yeast AR cDNA expression vector pG1ARII
42
 was used to generate pG1ARII∆(863-919) 

as a cloning vector for the construction of the control AR expression vector pG1ARIII, and the 

AR expression libraries pG1ARIII(874X) and pG1ARIII(877X). All deletions and mutations 

were generated essentially as described.
43
 First, a PCR fragment was synthesized utilizing 

pG1ARII as a template, with the forward primer 5’-CACTGAGGAGACAACCCAGAAGCT-3’ 

and the reverse primer 5’-AAGACGTCGACTACGCGGCGCGCAATAGGCTGCACGG-3’. A 
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SalI restriction site in the reverse primer is boldfaced and underlined; a BssHII site in this 

primer is underlined. The amplified fragment was TthIII and SalI digested and exchanged with 

the corresponding AR fragment in pG1ARII, resulting in pG1ARII∆(863-919). To generate the 
pG1ARIII(874X) library, PCR mutagenesis was carried out on the pG1ARII template, utilizing 

the forward primer 874X: 5’-ATTGCGCGCGAGCTGNNNCAGTTCACTTTTGACCTG-3’ 

(BssHII boldfaced and underlined, codon 874 underlined) combined with the reverse primer RP 

5’-AAGACGTCGACCGGATCCGCTTCACTGGGTGTGG-3’ (SalI boldfaced and underlined; 

BamHI underlined; stop codon boldfaced). The amplified fragment was BssHII-SalI digested 

and inserted in the corresponding sites in pG1ARII∆(863-919). The pG1ARIII(877X) AR 
cDNA library was generated by the same procedure, utilizing the forward primer 877X 5’-

ATTGCGCGCGAGCTGCATCAGTTCNNNTTTGACCTGCTAATC-3’ and the RP reverse 

primer. Similarly, PG1ARIII was generated, utilizing forward primer 5’-

ATTGCGCGCGAGCTGCATCAGTTCAC-3’ and the reverse primer RP, resulting in an AR 

cDNA expression vector with an internal BssHII site and a BamHI site in the slightly shorter 3’-

UTR, as compared to pG1ARII. The internal BssHII site does not result in an altered AR amino 

acid composition. Random codon representation at codons 874 and 877 in the pG1ARIII(874X) 

and pG1ARIII(877X) libraries was verified by sequencing of fourteen clones of each library. In 

both libraries the sequenced clones were unique.  

 

Yeast LacZ-reporter plasmids 

  The androgen inducible yeast integration vector pGRE3LacZi was constructed by insertion of a 

100 bp HindIII-EcoRI fragment of pARE3tkCAT
44
, containing a triple arranged repeat of the -

174/-152 prostate specific antigen (PSA) promoter region, in the corresponding sites of pLacZi 

(Clontech, Palo Alto, CA). The androgen inducible yeast LacZ-reporter plasmid pUC∆SS-26X, 
containing a triple arranged 26 bp GRE oligonucleotide, was provided by Dr. Picard.

45
  

 

Construction of mammalian androgen receptor  expression plasmids  

  Mammalian AR expression plasmids pSVARIII, pSVARIII(H874Y), pSVARIII(T877A), 

pSVARIII(T877C), pSVARIII(T877G) and pSVARIII(T877S) were constructed by exchanging 

the TthIII-BamHI fragments of pG1ARIII(mutant) constructs with the corresponding fragment 

of pSVAR0.
46
 

 

Yeast strains, growth and transformation 

  Yeast strain YM4271(GRE3LacZ) was utilized for AR cDNA library screening. 

YM4271(GRE3LacZ) was derived from YM4271 (Clontech, Palo Alto, CA) by integration of 

NcoI linearized pGRE3LacZi into its non-functional ura locus. Yeast strain BJ2168, a gift from 

Dr. Picard, was used for quantitative measurement of AR activity.
42
 Yeast cells were grown in 

the appropriate selective media (0.67% w/v yeast nitrogen base without amino acids, 2% 

glucose, pH 5.8) supplemented with the required amino acids. Yeast transformation was carried 

out according to the lithium acetate method.
47
 

 

Yeast screening of androgen receptor mutants 

  Approximately four hundred clones of YM4271(GRE3LacZ) transformed with 

pG1ARIII(874X) or pG1ARIII(877X) were grown on a master plate with the appropriate 

selective medium. After replica plating on Hybond-N filters (Amersham, Buckinghamshire, 

UK), colonies were grown for 16 h on the same medium supplemented with different hormones: 

DHT (10
-8
 M), Pg (10

–7
 M) and DHEA (10

-6
 M) or in the absence of hormone. Yeast colonies 
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were made permeable by freezing the filters in liquid nitrogen. Next, LacZ expression was 

visualized by incubation on Whatmann paper soaked in Z-buffer (60 mM Na2HPO4, 40 mM 

NaH2PO4, 10 mM KCl, 1 mM MgSO4, pH 7.0) supplemented with 0.27% β-mercaptoethanol 
and 0.1% X-GAL.  

  AR expression plasmids were isolated from LacZ-positive yeast clones as described.
48
 

Plasmids were sequenced to identify specific mutations at codons 874 and 877 and to confirm 

proper PCR amplification of the inserted fragments in the pG1ARIII vectors. 

 

Quantitative analysis of androgen receptor mutants in yeast 

  A liquid β-galactosidase assay was performed to quantify the activity of selected AR mutants, 
utilizing yeast strain BJ2168 containing the pUC∆SS-26X LacZ-reporter plasmid. Overnight 
cultures of yeast transformants grown in selective medium were diluted to OD600 of 0.3 in the 

same medium supplemented with ligand (DHT, Pg or DHEA) or without hormone and grown 

until an OD600 of approximately 1.0. Next, β-galactosidase activity was determined as described 
previously.

42
  

 

Mammalian cell culture, transfection, and luciferase assay    

  Hep3B (human liver) cells were maintained in α minimal essential medium (α-MEM) 
supplemented with 5% fetal calf serum and antibiotics. Cells were seeded at a density of 5 x 10

4
 

cells/well (1.9 cm
2
) and grown for 24 h.. Four h. prior to transfection, the medium was replaced 

by 250 µl α-MEM, supplemented with 5% charcoal-stripped fetal calf serum, antibiotics and 
one of the following hormones: DHT, R1881, ASD, Pg, E2, OH-Fl, CPA, bicalutamide, DHEA, 

DEX, cortisol, aldosterone or TAA. For transfection, 25 µl α-MEM containing 1 µl Fugene 6 
(Boehringer Mannheim, Germany), 0.5 µg AR expression plasmid (pSVARIII constructs), and 1 
µg MMTV-LUC reporter plasmid were added per well. Following 24 h incubation, cells were 
lysed and luciferase activity was assayed as described previously.

49
 In the absence of ligand, 

wild-type and mutant ARs displayed comparable background activities. 

 

 

RESULTS 

 

Detection of androgen receptor H874 and T877 mutants in a yeast screening system 

  Using random mutagenesis, two AR cDNA libraries were generated in a yeast expression 

vector: one with mutations in codon 874, AR(874X), and one with mutations in codon 877, 

AR(877X). Approximately four hundred independent yeast colonies from each library were 

screened for activation of an AR-inducible LacZ reporter by DHT, Pg and DHEA (see Materials 

and Methods). Pg was tested because H874Y, and T877 mutant ARs showed an increased 

response to this hormone.
12,19-23,50

 DHEA was chosen because the H874Y and T877A mutant 

ARs were known to be responsive to this adrenal androgen.
21
 In each library, approximately two 

hundred out of the four hundred colonies were β-galactosidase positive upon incubation with 
DHT, indicating that the other half of the colonies contained inactivating AR mutations. 

  Screening of the AR(874X) library resulted in four yeast colonies, which were positive after 

DHT, Pg and DHEA incubation. Colonies positive with two tested hormones, or with Pg or 

DHEA alone were not found. Sequencing revealed that the DHT+/Pg+/DHEA+ colonies 

contained at codon 874 the sequences TAC or TAT, which both encode a tyrosine residue. From 

this finding it was concluded that a tyrosine residue at position 874 is unique in the generation 

of an AR, which can not only be activated by DHT, but also by Pg and by DHEA.     
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  Screening of the AR(877X) library resulted in sixty-three colonies, which were 

DHT+/Pg+/DHEA+; fourteen colonies were DHT+/Pg+/DHEA-. Sequencing of the 

DHT+/Pg+/DHEA+ colonies revealed three different amino acid substitutions at 877: T877A, 

T877G and T877S. The DHT+/Pg+/DHEA- colonies contained a cysteine residue at 877. 

Interestingly, as described above, H874Y, T877A and T877S have been found in prostate 

cancer, whereas T877C and T877G substitutions have not been detected in these tumors. 

 

Hormone induced transcriptional activity of the androgen receptor H874Y mutant  in yeast and 

in mammalian cells   

  Activation of AR(H874Y) by DHT, Pg and DHEA was quantified in a yeast liquid β-
galactosidase assay. The results are summarized in Figure 1. AR(H874Y) showed a decrease in 

AR activation by DHT, as compared to wild-type AR (Fig. 1a). At the highest hormone 

concentrations, Pg and DHEA responses of AR(H874Y) were clearly stronger than that of wild-

type AR (Fig. 1b,c).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  FIGURE 1 ─ Transcriptional activity of wild-type AR and AR(H874Y) in yeast. Yeast cells were 
cotransfected with the wild-type AR or AR(H874Y) yeast expression vector and the androgen inducible LacZ 

reporter pUC∆SS-26X. (a) DHT activation. (b) Pg activation. (c) DHEA activation. Values (±SEM) are the mean 
of three independent experiments each carried out in duplicate. 
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  For direct comparison with the yeast data, Hep3B mammalian cells were cotransfected with the 

AR(H874Y) mutant or wild-type AR expression plasmid and a MMTV-luciferase reporter 

plasmid. Transfected cells were incubated in the absence of hormone or in the presence of serial 

dilutions of a large set of different ligands: the androgens DHT, and R1881; the steroidal 

antiandrogen CPA, the non-steroidal antiandrogens OH-Fl and bicalutamide, and the steroids Pg 

and E2. R1881 activated wild-type AR and AR(H874Y) equally; bicalutamide was inactive on 

both wild-type AR and AR(H874Y) (data not shown). The activities of wild-type AR and 

AR(H874Y) induced by DHT, Pg, E2, OH-Fl and CPA are shown in Figures 2a and 2b, 

respectively. As expected, wild-type AR activation was DHT specific. Only at high 

concentrations, some agonistic activity of Pg, E2 and CPA was observed; OH-Fl was unable to 

activate the wild-type AR at all concentrations tested. Like in yeast, DHT was found to be a less 

potent activator of AR(H874Y) than of wild-type AR, which was not due to a lower expression 

level (data not shown). Both E2 and Pg induced AR(H874Y) activity to almost the same extent 

as DHT. At high concentrations, OH-Fl showed some agonistic activity; agonistic activity of 

CPA on AR(H874Y) was as low as on wild-type AR.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  FIGURE 2 ─ Transcriptional activity of wild-type AR and AR(H874Y) in mammalian cells. Hep3B 
cells were cotransfected with the wild-type AR or AR(H874Y) mammalian expression vector and a MMTV-LUC 
reporter, and activated by different hormones. (a) wild-type AR. (b) AR(H874Y). Ligands: (�) DHT, (�) Pg, (�) 
E2, (�) CPA, (�) OH-Fl. Values (±SEM) represent the mean of three independent experiments each carried out in 
duplicate.  

 

 

Hormone induced transcriptional activity of the androgen receptor T877 mutants in yeast and 

mammalian cells 

  Activation of the AR 877 mutants by DHT, Pg and DHEA was analyzed in the quantitative 

yeast assay as described above for AR(H874Y). The results are summarized in Figure 3. DHT 

activation of all mutants, AR(T877A), AR(T877S), AR(T877G) and AR(T877C), was 

comparable to wild-type AR (Fig. 3a). AR(T877A) and AR(T877S) displayed the most 

prominent altered ligand specificity at the two Pg and DHEA concentrations tested. Both 

showed increased activation by Pg and DHEA as compared to wild-type AR (Fig. 3b,c). 

AR(T877C) and AR(T877G) were activated by Pg (Fig. 3b), but only AR(T877G) was DHEA-

inducible (Fig. 3c), in agreement with the qualitative yeast screening.  

  Ligand specificity studies of the four AR 877 mutants were extended to mammalian Hep3B 

cells, using the same set of ligands as used for the wild-type AR and AR(H874Y) studies shown 
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in Figure 2. R1881 activation, which was identical for wild-type AR and the four 877 mutants, 

is not shown. Bicalutamide did not activate any of the 877 mutants (data not shown). The 

T877A and T877S substitutions introduced the most dramatic alterations in ligand specificity 

(Fig. 4; see for wild-type AR Fig. 2a). Both AR(T877A) and AR(T877S) exhibited a strong 

activation by Pg, E2 and the antiandrogen CPA (Fig. 4a,d). AR(T877A) was more responsive to 

OH-Fl than AR(T877S) (Fig. 4a,d). AR(T877C) and AR(T877G) ligand specificity was less 

altered. Although Pg activation could clearly be established, agonistic activity of other ligands 

was limited (Fig. 4b,c). Differences in ligand responses between the AR mutants were not due to 

different protein levels (data not shown). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
  FIGURE 3 ─ Transcriptional activity of wild-type AR and AR(T877) mutants in yeast. Yeast cells 
were cotransfected with wild-type AR yeast expression vector, or AR(T877A), or AR(T877C), or AR(T877G), or 
AR(T877S) mutant yeast expression vectors and the androgen inducible LacZ-reporter pUC∆SS-26X. (a) DHT 
activation. (b) Pg activation. (c) DHEA activation. Values (±SEM) represent the mean of three independent 
experiments each carried out in duplicate. 
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  FIGURE 4 ─ Transcriptional activity of AR(T877) mutants in mammalian cells. Hep3B cells were 
cotransfected with (a) AR(T877A), (b) AR(T877C), (c) AR(T877G), and (d) AR(T877S) mammalian expression 
vector and a MMTV-LUC reporter. Ligands: (�) DHT, (�) Pg, (�) E2, (�) CPA, (�) OH-Fl. Values (±SEM) 
represent the mean of three independent experiments each carried out in duplicate.  

 

 

Transcriptional activation of androgen receptor H874 and T877 mutants by adrenal steroids 

and synthetic glucocorticoids  

  The AR 874 and AR 877 mutants were also assayed in Hep3B cells for their activation by the 

adrenal steroids DHEA and ASD (androgens), cortisol (glucocorticoid) and aldosterone 

(mineralocorticoid), and the synthetic glucocorticoids DEX and TAA. Activation of wild-type 

AR and all mutant ARs by ASD was identical; TAA was unable to activate wild-type and 

mutant ARs (data not shown). For the other ligands a remarkable variation in activation patterns 

of the different mutants was observed. Figure 5a displays the activities of wild-type AR and all 

AR mutants induced by high concentrations DHEA, cortisol, DEX and aldosterone (10
-6
 M). In 

Figure 5b-e the ligand concentration dependent activation of selected mutants is shown. 

AR(H874Y), AR(T877A) and AR(T877S) were clearly responsive to DHEA (Fig. 5a,b). Also, a 

concentration dependent activation of AR(H874Y) and AR(T877A) by aldosterone, cortisol and 

DEX was observed (see Fig. 5a,c-e). In contrast, AR(T877S) and AR(T877G) could hardly be 

activated by these ligands (Fig. 5a). AR(T877C) did not respond to any of the ligands (Fig. 5a).  
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  FIGURE 5 ─ DHEA and corticoid induced transcriptional activity of wild-type AR and AR 
mutants. Hep3B cells were cotransfected with the wild-type AR, AR(H874Y) or AR(T877) mutant mammalian 
expression vector and a MMTV-LUC reporter. (a) incubation in the absence of hormone, or in the presence of 
DHEA, Cortisol, DEX or ALD (all at 10

-6
 M). (b) DHEA activation. (c) ALD activation. (d) Cortisol activation. (e) 

DEX activation. (�)WT:  wild-type AR, (�)Y: AR(T874Y), (�)A: AR(T877A), and (�)S: AR(T877S). Values 
(±SEM) represent the mean of three independent experiments each carried out in duplicate. 
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     TABLE 1 ─ LIGAND RESPONSIVENESS1 OF AR MUTANTS TO THIRTEEN DIFFERENT   
      HORMONES AS TESTED ON A MMTV-LUC REPORTER IN TRANSIENTLY TRANSFECTED  

      MAMMALIAN (HEP3B) CELLS  

 wild-type 

AR 

AR 

(H874Y) 

AR 

(T877A) 

AR 

(T877C) 

AR 

(T877G) 

AR 

(T877S) 

       androgens       

DHT +++ +++ +++ +++ +++ +++ 

R1881 +++ +++ +++ +++ +++ +++ 

sex steroids       

Pg + ++ +++ +++ ++ +++ 

E2 + ++ ++ + + ++ 

antiandrogens       

CPA + + +++ + + +++ 

OH-Fl - + ++ - + + 

Bicalutamide - - - - - - 

adrenal androgens       

DHEA - + + - ± + 

ASD ++ ++ ++ ++ ++ ++ 

glucocorticoids       

Cortisol - + + - - - 

DEX - + + - - - 

TAA - - - - - - 

mineralocorticoid       

Aldosterone - + + - - - 
            1

Degree of ligand responsiveness: - no activity; + low activity; ++ moderate acivity; +++ high activity,  
       comparable to wild-type AR responsiveness to DHT.  

 

 

DISCUSSION 

 

  Mutations in the AR have been described in several diseases. In androgen insensitivity, which 

is an inherited defect of male development, over one hundred amino acid substitutions in the AR 

LBD have been documented (http://www.mcgill.ca/androgendb).
1,51
 These mutations 

completely or partially inactivate AR function. In Kennedy’s disease or SBMA (spinal and 

bulbar muscular atrophy), an expanded (CAG)n repeat results in a longer glutamine-stretch in 

the AR TAD.
52
 In prostate cancer, AR mutants are rare in primary and locally progressive 

tumors, but more frequent in metastatic disease, following endocrine therapy.
16-18,22,53-57

 The 

relevance of most AR mutants in progressive prostate cancer remains to be established. The 

mutants investigated in more detail are functionally different from AR mutants in androgen 

insensitivity, and tend to cluster in different regions of the LBD.
57
   

  The most frequently described AR mutations in prostate cancer are substitutions of H874 and 

T877, which are both in helix 11 of the AR LBD.
36,37,39,41

 AR(T877A), which has originally 

been detected in the LNCaP cell line, seems to be the preferred amino acid substitution in 

endocrine therapy resistant prostate cancer.
12,14-17

 Like the less common H874Y and T877S 

amino acid substitutions, T877A broadens AR ligand specificity in such a manner, that not only 

androgens, but also other sex steroids, and antiandrogens can activate the AR.
12,19-23

 The 

recently identified T877A&L701H AR double mutant exhibited an even broader ligand 

specificity than the T877A single mutant,
58
 adding cortisol to the spectrum of strong activators. 

There is increasing evidence that the AR LBD mutants with less specific ligand responsiveness 

are of clinical relevance in a subset of endocrine therapy resistant prostate cancers.
16,17
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  In the present study two types of experiments were carried out. First, ARs randomly mutated at 

positions 874 or 877 were screened for broadened ligand specificity in a yeast read out system. 

Second, AR mutants with broadened ligand responsiveness were assayed in mammalian cells 

for activation by thirteen different ligands, including sex steroids, adrenal steroids and 

antiandrogens. From our findings, several important conclusions can be drawn. 

1. In the AR cDNA library randomly mutated at codon 874, AR(H874Y) was the only mutant 

able to broaden AR ligand specificity. In the 877 AR cDNA library, an alanine, serine, 

glycine or cysteine residue at position 877 broadened AR ligand response. As pointed out 

above, AR(H874Y), AR(T877A) and AR(T877S) are well known from prostate cancer; 

AR(T877G) and AR(T877C) have never been described in prostate cancer. The random 

mutagenesis system used in this study allowed the screening of all triplets possible for 

codons 874 and 877. As expected, among the identified AR mutants, one, two and three base 

deviations from the wild-type codon were detected. In nature, the chance of more than one 

point mutation within a codon is extremely low. Indeed, all amino acid substitutions found at 

AR codons 874 and 877 in prostate cancer are due to single point mutations: H874Y: 

CAT>TAT,
17,21,22

 T877A: ACT>GCT,
12-17,22

 T877S: ACT>TCT.
17,22

 For T877C or T877G 

substitutions, at least two bases need to be mutated. This can explain their absence in 

prostate cancer. In conclusion, the H874Y substitution is not only unique at this position in 

prostate cancer, but is also the only possibility at this position to broaden AR ligand-

specificity. The T877A and T877S substitutions in prostate cancer are not unique, in that 

they are not the only substitutions that can broaden AR ligand-specificity at this position, but 

seem to be sequence-driven selections of four possible amino acid substitutions.  

2. The results of the extensive series of transactivation experiments with wild-type and mutated 

ARs in mammalian cells are summarized in Table 1. Importantly, each mutant displayed its 

own characteristic spectrum of ligand responsiveness. Differences in ligand affinities, as 

well as differences in ligand-induced conformational changes may account for this variation. 

Most remarkable are the similarities between activation of AR(H874Y) and AR(T877A) by 

the various ligands. Although completely different, both show identical responses to the 

glucocorticoids cortisol and DEX, and the mineralocorticoid aldosterone. Zhao et al.
58
 

described activation of the AR double mutant T877A&L701H by cortisol, but they did not 

find cortisol responsiveness of the single mutant AR(T877A). The apparent discrepancy 

with our data might be due to a less sensitive assay, or different cell line used for 

transfection experiments. Our findings warrant a further investigation of the role of 

glucocorticoids in prostate cancer patients carrying a mutated AR. 

  Based on the crystal structures of closely related steroid hormone receptor LBDs, homology 

models of the AR LBD have been constructed.
36-38

 These models indicated that T877 is part of 

the ligand-binding pocket and directly interacts with the ligand, H874 does not participate 

directly in ligand binding. Recently, the predictions of AR LBD folding and ligand interaction 

were modified and extended by the elucidation of the crystal structures of the wild-type and 

T877A mutant AR LBD complexed with androgens.
39,40

 For the wild-type AR LBD, eighteen 

amino acids were found to contact the ligand directly. Importantly, T877 in helix 11 of the LBD, 

together with N705 in helix 3, form hydrogen bonds to the 17β-hydroxyl group of R1881, which 
is also present in DHT (Fig. 6). As predicted, H874, which is also in helix 11, projects away 

from the ligand binding pocket. 

  The crystal structure of the T877A mutant AR LBD complexed with DHT revealed an 

increased space in the ligand binding pocket.
40
 The amino acid residues serine, glycine and 

cysteine at position 877, have in common that, like alanine, they all are smaller than the  
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FIGURE 6 ─ Chemical structures of steroids used in this study. 
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threonine residue at this position in the wild-type AR.
59
 So, substitution of T877 by S, G or C 

will also increase the space of the ligand binding pocket. This larger space will facilitate 

appropriate entering by ligands with more bulky side chains at C17 like Pg, cortisol, DEX and 

aldosterone (Fig. 6). This may allow a conformational change in the LBD, which is favorable 

for the AR transactivation function. A larger binding pocket may also explain appropriate 

folding of the LBD induced by the antiandrogen CPA, resulting in agonistic activity. The 

synthetic glucocorticoid TAA might be too big for proper entering an enlarged AR ligand 

binding pocket (Fig. 6). Not only the size of the C17 side chain, but also slight differences in 

overall conformation of a steroid, as determined by the A- to D-ring moities, might contribute to 

positioning in the ligand binding pocket. Particularly in case of E2 and DHEA, which both have 

a small C17 side chain (Fig. 6), but not excluding other ligands, the larger binding pocket might 

be needed for appropriate binding of these different conformations. Elucidation of the crystal 

structures of the various AR mutants complexed with different ligands has to prove and extend 

these hypotheses.  

  Many other mutations have been described in the AR LBD in prostate cancer, but most of the 

mutants have not been characterized.
22,55,56,60,61

 In contrast to L701 and T877, none of the 

mutated amino acid residues can be predicted to contact directly the ligand.
39,40

 This is also true 

for mutant V715M, which clearly displays broadened ligand response.
23,61,62

 So, like for H874Y, 

for the V715M mutant a different mechanism of activation can be predicted. 

  One of the most important questions, which remain to be addressed, is the identification of the 

physiological ligand of the AR mutants in endocrine therapy resistant prostate cancer. Most AR 

LBD mutants with a broadened ligand response seem to be induced or selected during 

antiandrogen therapy.
17
 Our findings suggest that in androgen depleted patients following 

antiandrogen withdrawal, Pg or cortisol might be the physiological ligands for activation of a 

mutated AR. The concentration of circulating Pg in men (0.3-0.9 nM)
63
 seems sufficient for 

such a function, because of the strong response of especially AR(T877A) and AR(T877S) to this 

ligand (Fig. 4). Although cortisol is a less potent activator of the mutants (Fig. 5), its high 

concentration in the circulation (70-550 nM)
63
 warrants further investigation of its role in 

patients carrying a AR(H874Y) or AR(T877A) mutation. Activation of these mutants by cortisol 

would be in line with activation of the AR(L701H) single and AR(L701H/T877A) double 

mutant by cortisol.
58
 Circulating E2, DHEA and aldosterone concentrations (73-184 pM, 6-28 

nM and 83-832 pM, respectively),
63
 seem too low to account for such a function. However, 

inactive DHEA sulfate, with a serum level of 1-9 µM,63 can be converted into DHEA in the 
prostate, and resulting local DHEA concentrations may be sufficient for activation of the various 

AR mutants (Fig. 5, Table 1).
64
  

  To obtain relevant data on non-cognate ligands as activators of mutant ARs, extended studies 

with prostate cell lines containing mutated ARs are needed. In a previous study with DEX 

incubated LNCaP cells, applied hormone concentrations were too low to be able to observe an 

effect on the endogenous AR(T877A).
65
 Monitoring of the response of LNCaP (T877A) and 

CWR22 (H874Y)
12,21,66

 cells to physiological concentrations of different ligands, including 

glucocorticoids and DHEA, will give important supportive information about the role of 

mutated ARs in prostate cancer. 
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5.1  Aim of AR research 

  The AR plays a prominent role in development of the male phenotype, and therefore also in 

diseases like Kennedy's disease, AIS, and prostate cancer. Prostate cancer is the second leading 

cause of cancer deaths in men in Western countries and therefore it is a major research topic. 

Normal growth, development, and maintenance of the prostate depends on androgens which act 

through AR mediated regulation of androgen target genes. Prostate tumor growth also depends 

on androgens. Androgen withdrawal therapy initially inhibits tumor growth and leads to a 

decrease of tumor size. However, eventually prostate tumors relapse and become apparantly 

androgen-independent. The tumor then appears to grow without androgen, although in most 

cases the AR is still present. In androgen-independent tumors, the receptor might be activated by 

other mechanisms, like overexpression, mutations, aberrant coactivator function, and cross-talk 

with other signaling pathways. Even intraprostatic conversion of adrenal androgens to DHT 

might occur. So, the AR is a key player in both androgen-dependent and -independent prostate 

cancer and therefore it is a major subject of research in this disease and an important target for 

therapy. 

  In this thesis research on several aspects of AR function have been described. These include: 1) 

the functional interaction between the AR NTD and LBD, also known as N/C interaction, 2) 

androgen specific regulation of gene expression, and 3) AR LBD mutations. In this Chapter 5 

the findings are placed in the general context of AR function, and directions of future research 

are discussed. 

 

5.2 Molecular mechanisms of AR functions 

5.2.1  N/C interaction 
  In Chapter 2, the androgen-dependent interaction between the amino-terminal AR NTD and 

the carboxy-terminal AR LBD, the N/C interaction, is described. In this interaction an FXXLF 

motif (
23
FQNFL

27
) in the AR NTD is essential. The phenylalanine and leucine residues are 

indispensible, but X can be any residue. Residues flanking the AR FXXLF motif have a 

modulating role in the interaction 
1, 2
. 

  Like LXXLL motifs, the FXXLF motif can form an α-helical structure that fits in the 

coactivator groove of the AR LBD. The groove in the AR LBD is relatively deep compared to 

that in other steroid receptors and therefore it can harbor phenylalanine residues, which are 

bulkier than leucines 
3, 4
. Several AR coregulators, like ARA54, ARA70, and Rad9, also contain 

an FXXLF motif that can interact with the AR LBD 
5-7
. However, not all FXXLF motifs found 

in AR coregulators can bind to the AR LBD. For example, the coactivator FHL2 contains an 

FXXLF motif, but this motif can not bind to the AR LBD 
5, 8
. So, residues flanking the motif 

might prevent interaction. 

  Indeed, hydrophylic residues surrounding the groove and forming a charged clamp are very 

important in binding of FXXLF motifs 
1
. Like was found for LXXLL motifs, this clamp can 

interact with the charged residues flanking the AR FXXLF motif 
1
. Structural data have revealed 

that in principle E897, but not K720, is necessary for LXXLL-AR LBD binding, whereas both 

residues are needed for the N/C interaction 
4, 9
. However, crystallographic analysis of various 

peptides containing either LXXLL or FXXLF motifs indicates a more differentiated induced-fit 

model in which other residues lining the coactivator groove, like K717 and R726, also can play 

an important role depending on the residues that flank the motif 
9, 10

. This can explain that in 
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some studies K720 was found to be indispensible for FXXLF motif binding, whereas in 

experiments whith other peptides, K720 appeared to be less important 
1, 4, 9-13

. Similar 

differences were found for E897. 

  So, binding of the FXXLF motif is similar, but not identical to LXXLL binding, and most 

LXXLL motifs bind to the AR LBD with less affinity than FXXLF motifs. However, the third 

LXXLL motif of TIF2 was found to have C-terminally flanking negatively charged residues that 

interact with positively charged patches on the AR LBD surface 
14
. This might explain the 

relatively strong binding of this motif to the AR LBD and AR preference for TIF2 over other 

p160 coactivators 
15
. So, AR coactivators that contain an FXXLF or LXXLL motif could 

compete with the N/C interaction and/or with each other. Therefore, it might also be possible 

that there is redundancy between p160 coactivators and FXXLF containing coactivators, like the 

redundancy between SRC-1 and TIF2, and between SRC-1 and SRC-3/p/CIP as observed in 

p160 coactivator knock-out mice 
15-19

. 

  Screening of peptide libraries has revealed that variations of the FXXLF motif are allowed. 

These include exclusively hydrophobic bulky residues at positions +1, +4, and +5 of the motif, 

with preference for F at +1, F, M or Y at +4, and F or Y at +5 for strong interaction with AR 

LBD 
20, 21

. However, although in some peptides a W was found at position +1 of the motif, these 

peptides showed a very weak interaction with the AR 
8, 9
. In addition, a peptide containing a 

WXXLF motif found in the AR NTD that was proposed to be involved in the N/C interaction, is 

not able to bind to the AR LBD (Steketee unpublished results) 
22
. A W residue might not 

properly fit in the coactivator groove, or does not make sufficient contacts to allow stable 

binding. Crystallographic analysis has provided evidence for the preference for bulky 

hydrophobic residues at the +1, +4, and +5 position of AR LBD interacting motifs 
9
. The 

structural observations correspond with the strength of the interaction between the AR LBD and 

the motifs identified with random screening. Illustrative of the prefered motif residues are an 

FXXFF motif in gelsolin and an FXXMF motif in PAK6, that show high affinity binding to AR 

LBD 
21
. It may be expected that more AR LBD binding proteins will be found that contain 

FXXLF or variant motifs that can interact with the AR LBD. 

  To further unravel the molecular mechanism of AR function it was investigated whether the 

FXXLF mediated N/C interaction is intra- or intermolecular or both. FRET experiments with 

CFP-AR-YFP, CFP-AR, and AR-YFP fusion proteins have indicated that the FXXLF mediated 

N/C interaction can be intramolecular in the cytoplasm as well as in the nucleus, whereas AR 

dimerization was predominantly found in the nucleus 
23
. Mutation of the FXXLF motif affected 

the FRET signal of the AR-YFP/AR CFP combination, but not the affinity between these two 

AR monomers, from which it was concluded that the FXXLF motif influences the dimerization, 

but it is not clear yet whether and to which extent this is contributed by intermolecular N/C 

interaction. In another study, it was investigated whether the N/C interaction occurs in the DNA 

bound AR. Wild type AR and the N/C interaction deficient mutant E897A, both double tagged 

with CFP and YFP, were used for FRET analysis in a cell line containing approximately 200 

copies of an MMTV Ras tandem array 
24
. In this system an N/C interaction was established on a 

spot in the nucleus representing the AR bound to the MMTV array. In contrast with this study, 

FRET-FRAP experiments in wild-type cells with a wild-type AR and a DNA binding deficient 

mutant, showed a clear N/C interaction in nuclei for the mutant AR, whereas that of the wild 

type AR was considerably less 
25
. This indicated that the N/C interaction does not occur when 

the AR is bound to DNA, which could imply interactions with coactivators that prevent the N/C 

interaction. This observation was substantiated by binding of an ARA54 peptide to the wild type 

AR and not to the DNA binding deficient mutant 
25
. Similarly, GST pull-down assays and ChIP 
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on a MMTV-reporter have shown that ARA54 and ARA70 are able to bind to the AR LBD and 

to an N/C interaction defective full-length AR, but not to the wild type AR 
26
. So, the AR N/C 

interaction could prevent premature/improper cofactor binding in both the cytoplasm and 

nucleus. Detection of N/C interaction on the MMTV array might be explained by a short-lived 

existence of the interaction prior to coactivator binding, that is measurable because of the 

concentration of many HREs on this array. 

  Several studies have indicated that the N/C interaction is needed for optimal functioning of the 

AR 
3, 12, 22, 27-33

. Under different experimental conditions FXXLF deletion or mutations partially 

inhibits AR activity. In mouse mammary adenocarcinoma cells the AR LBD mutant E897A has 

a clearly impaired N/C interaction and is not functional, whereas in another study with the same 

mutant tested in monkey kidney (CV1) cells, still AR activity could be measured 
24, 34

. It can be 

speculated that in a specific cellular environment the impaired activity of the E897A mutant is 

mainly due to an abolished interaction with FXXLF and LXXLL containing coactivators, which 

need the E897 residue for AR binding, rather than to a disturbed N/C interaction. Indeed, in the 

mouse mammary cells the E897A mutant was not able to recruit PolII, GRIP1 or CREB 
24
. 

GRIP-1 binds through its LXXLL motif for which E897 is essential, subsequently followed by 

CREB and PolII. The same might count for a number of AR mutants found in AIS, which show 

a disturbed N/C interaction 
12, 30, 31, 33

. Here also other mechanisms needed for AR function may 

be affected, including increased ligand dissociation.  

   The N/C interaction was also found to have variable influence on AR function on different AR 

target sites in the DNA. This was illustrated by N/C interaction defective AR mutants, which 

had, compared to the wild-type AR, a decreased activity on a transient transfected reporter 

driven by a promoter with non-specific AREs, but not with androgen-specific AREs 
27
. In 

addition to DNA sequence requirements of the N/C interaction, the interaction was also 

proposed to play a role in accessibility of the AR to chromatin embedded DNA. An AR deletion 

mutant lacking the FXXLF motif does not bind to the MMTV promoter and PSA enhancer 

when assembled in chromatin in Xenopus or mammalian kidney cells 
32
. However, on naked 

DNA the mutant was able to bind the MMTV promoter and the PSA enhancer. The role of the 

N/C interaction in chromatin access of the AR is further substantiated by the finding that the 

FXXLF deleted AR mutant is also diminished in its binding to the ATPase subunit of SWI/SNF, 

Brg1 
32
.  

  The AR FXXLF motif is highly conserved, which indicates that it is an important domain. 

Although deletion or mutation of this motif only partially inhibits AR activity in functional 

assays, in vivo it might have a more pronounced long term effect on AR function. So far, 

however, no mutations in the FXXLF motif were found in prostate cancer or other AR related 

diseases (mcgill.ca/androgendb/). 

  Inhibition of AR function by androgen depletion and administration of antiandrogens is the 

standard treatment of metastatic prostate cancer. Another method of blocking AR function could 

be inhibition of coactivator action. Therefore structural knowledge on interactions between the 

AR and its coactivators is essential. One target of inhibition could be the coactivator groove by 

blocking it with AR specific peptides, e.g. a peptide containing the AR FXXLF motif. However, 

this would not only prevent binding of AR coactivators, but it would also interupt the N/C 

interaction. Hereby the FXXLF motif in the AR NTD becomes available for interaction with 

other proteins, like MAGE-11, which can specifically bind to the FXXLF motif , stabilizes the 

AR in the absence of ligand, and in the presence of an agonist, augments exposure of AF-2 to 

the recruitment and activation by the SRC/p160 coactivators. 
20, 35

. This way, a net inhibition of 

the AR might not be achieved. For the ER antagonistic peptides were developed that can 
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succesfully block the LBD coactivator groove 
36, 37

. However, in the ER, AF-2 substantially 

contributes to the receptor transcriptional activity, whereas in the AR, AF-1 is much more 

important for transactivation than the LBD 
11, 38-41

. Therefore it could be an option to combine a 

peptide antagonist that binds to the AR LBD coactivator groove with an additional AF-1-

blocking approach. This way p160 coactivators, other AR NTD interacting coactivators, and 

FXXLF motif containing coactivators could be inhibited in an AR specific manner. 

  Taken together, the AR N/C interaction may play a fine-tuning role in stabilizing ligand bound 

AR, effective traveling of the ligand bound AR from the cytoplasm to the nucleus, access of the 

AR to chromatin embedded DNA, proper deposition of the AR on its target ARE's, and 

inhibition of premature cofactor binding. Determination of the physiological role of the AR N/C 

interaction awaits a mouse model in which the FXXLF motif is deleted. Such a model  could 

also be used for microarray analysis to determine which androgen target genes need the N/C 

interaction for their optimal regulation and under which cellular conditions. Furthermore, ChIP 

experiments with an FXXLF deletion mutant could establish the requirement of the FXXLF 

motif in protein complexes involved in regulation of expression of particular androgen 

responsive genes. 

5.2.2 AR specific target genes 

  All steroid receptors (except ER) can bind to the same high affinity consensus GRE (5’-

AGAACAnnnTGTTCT-3’). Steroid specific gene regulation is conferred by several mechanisms 

including receptor expression levels, selective interactions of receptors with specific and general 

transcription factors and coregulators, relative coregulator levels, ligand availability, and local 

chromatin structure at regulatory sites of target genes. However, although many GREs are 

recognized by AR, as well as by GR and PR, also AR specific AREs have been identified. These 

AREs are present in androgen-specifically regulated genes like SC, Slp, probasin, PEM, and 

SARG 
42-47

. 

  The SARG gene was identified in the AR
+
/GR

+
 LNCaP subline 1F5, using differential display. 

The function of the SARG protein is not known yet. It does not have any known domains that 

could predict its function. Recently, differential display data were confirmed and extended by 

micro-array analysis of 1F5 cells. This revealed several genes of which the expression is highly 

induced by androgens (van der Korput, unpublished results). Among these was SARG, which 

indicates an important role for this gene in androgen regulation of prostate cells. Together with 

the observation that 1F5 cells depend on androgens for their growth, SARG is a candidate to 

play a role in prostatic (cancer) cell growth. Elucidation of the SARG function awaits RNAi 

experiments and a mouse knock-out model. 

  Initially, models of AR DBD bound to AR specific AREs suggested that the direct repeat-like 

character of the AR specific AREs, like that of SARG, determines the mode of AR binding. This 

interaction was proposed to involve head-to-tail dimerization, similar to the orientation of NR 

heterodimers that bind to direct-repeat HREs like VDR/RXR. However, it now has been proven 

by crystallographic analysis that an AR dimer has a head-to-head conformation on both AR 

specific and non-specific AREs 
48
. The mechanism underlying AR specificity of AREs involves 

strong homo-dimerization between AR DBDs. This interaction is less strong between other 

steroid receptors. Three extra hydrogen bondings between two AR DBDs, if compared to the 

GR DBD, confer this stronger binding. In fact, one AR binds to a high-affinity left half-site of 

the AR specific ARE and the second monomer can bind to the second half-site, which might 

deviate considerably from the high affinity consensus site sequence and has a low affinity for 

the AR. Apparently, the dimerization interaction is strong enough to keep the AR dimer intact. 
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This might also explain why the AR was able to bind to the Pem1 ARE with a 5 bp spacing, 

while the GR cannot 
42
. Although the mechanism of the PemI ARE could be complex, one 

aspect might be that the strong AR dimerization overcomes the extra spacing and concomittant 

phase change of the major groove to which the AR binds if compared to a normal 3 bp spacing, 

by resisting the tension put on it by bending of the spacer in order to accomodate the AR dimer. 

  The physiological roles of androgen-specific regulated genes are not known, but knowledge on 

these genes might be important for development of specific AR targeting prostate cancer 

therapies. Mutations have been found in AIS patients at the positions of the three amino acids 

involved in the extra hydrogen bondings between AR DBDs. In PAIS patients A596T, S597G, 

S597T, S597R, and T602P substitutions were identified 
49-56

. Some of these were shown to 

impair AR function 
50, 51, 56

. It would be informative to test whether these AR mutants are active 

on non-specific AR target genes and less active on AR-specific genes. Indeed, one of the 

mutants, A596T, was tested and showed reduced activity on AR specific AREs, but not on non-

specific AREs 
57
. 

  Recently, a transgenic mouse model, SPARKI (SPecificity-affecting AR KnockIN), was 

generated in which the second zinc cluster of the AR was swapped with the second zinc cluster 

of the GR 
58
. This AR mutant showed a significant loss of function on androgen specific AREs, 

but not on non-specific AREs. SPARKI males have an apparently normal phenotype. However, 

they are subfertile. The reproductive organs are decreased in weight and spermatogenesis is 

disturbed. This model can help reveal which pathways are involved in androgen specific gene 

regulation.  

  Micro-arrays are very important tools for the identification of androgen-specific regulated 

genes. To find AREs in those genes a very useful approach can be a bioinformatics based search 

for AREs. However, to identify a real AR specific ARE, functional studies always will be 

needed. For example, by using bioinformatics at 7.5 kb upstream of the SARG transcription 

start site, a candidate ARE was found, which is identical to an artificial AR specific ARE 

previously tested as an oligonucleotide 
59
. In contrast to the artificial ARE, the -7.5 kb candidate 

ARE appeared to be non-functional and even no AR binding was found 
45
. This clearly 

illustrates that half-site sequences alone are not sufficient, but need flanking and/or more distant 

sequences to determine the androgen response of a candidate ARE. The concomitant local 

chromatin structure in which the ARE is embedded, and binding of other transcription factors to 

the flanking sequences, might also determine whether a candidate ARE is functional or not.  

  Another difficulty in finding androgen regulated genes by using bioinformatics, is that many 

known functional AREs differ considerably from the consensus sequence. So, genome wide 

screening for ARE sequences would involve a huge variety of sequences to be used as search 

string. This would result in a too high number of candidate AREs to be suitable for further 

analysis. Searching exclusively for AR specific AREs would even be more problematic. For 

this, one half site must be a high affinity, mostly near consensus sequence, and one half site 

should considerably deviate from the consensus sequence. However, this would imply screening 

with one half-site sequence, which means using a search string with only 6 bases. This would 

reveal far too many candidate AREs to handle. As the second half-site can be extremely 

variable, it would be very complicated and may be impossible to define a consensus sequence 

for AR specific AREs.  

  An approach to solve the problem of too many candidate AREs in screening of genomic 

sequences is the ChIP-on-chip technique 
60
. This technique combines protein-DNA binding with 

microarray analysis. A genome wide screening has been done to identify ER binding sequences, 

which is one step forward in limiting the number of candidate HREs 
61
. Recently, ChIP-on-chip 
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for the AR was performed on a so-called ENCODE chip, which represents approximately 1% of 

the whole genome 
62
. Several novel androgen response genes have been identified. Most AREs 

appeared to be located in regions other than proximal promoter regions. The intronic androgen 

specific ARE in the SARG gene is an example of this (Chapter 3) 
45
. ChIP-on-chip analysis of 

the complete chromosomes 21 and 22 has revealed 90 AR binding sites, among which one 

upstream of the TMPRSS2 gene 
63
. In a ChIP-on-chip approach with more than 24,000 gene 

promoter regions, 92 genes were identified as strong candidate AR regulated genes, and this 

corresponded with expression data sets of those genes 
64
. In another study, a few hundred 

androgen-regulated genes were identified with expression profiling and subsequent ChIP-on-

chip analysis of the promoter regions of those genes. This revealed more than 500 AR binding 

regions of which 22 were tested in a reporter gene assay, and 20 of these were androgen 

inducible 
65
. Most of these AR binding regions contained two or more AREs. Clustering of 

candidate AREs may indicate an androgen regulated region, but a single ARE may have no 

measurable activity in transfection experiments and therefore can be difficult to identify 
66
. 

Using ChIP-on-chip analysis may also help overcome this problem. Identification of all 

androgen regulated genes and all existing AREs, both androgen specific and non-specific, 

awaits a ChIP-on-chip analysis of the complete genome.  

5.2.3 AR LBD mutations 
  AR mutations have been found in pathological conditions as Kennedy's disease and AIS, and 

in a subset (up to 10%) of endocrine therapy resistant prostate cancers. In prostate cancer most 

mutations are found in the LBD, which could imply changes in ligand and cofactor binding. 

Well characterized mutations are T877A, L701H, H874Y, and W741C/L, which cause a 

broadened ligand specificity of the AR. These mutations render the AR, in addition to T and 

DHT, also responsive to non-cognate ligands like progesterone, estradiol, adrenal androgens, 

glucocorticoids, and even anti-androgens 
45, 67-77

. For some of these mutants the mechanism of 

broadened ligand specificity has been elucidated. Crystallographic analysis has shown that the 

T877A mutant has a modified ligand binding pocket size that can explain accomodation of 

ligands larger than T and DHT 
78
. However, also mutations of residues that do not line the 

ligand binding pocket, e.g. in AR H874Y, can confer broadened ligand specificity, most likely 

by structural changes that indirectly influence ligand binding. Crystallographic analyses of the 

different mutants bound to different non-cognate ligands explain and confirm the mechanisms 

underlying the broadened ligand specificity, such as the recently elucidated crystal structure of 

the T877A AR LBD complexed to CPA 
79
. In this mutant residue L701 in the LBD is displaced 

resulting in expansion of the ligand binding pocket. This enables CPA, which is a partial agonist 

for the wild-type AR and is bulkier than AR steroidal agonists like DHT, T, or R1881, to fit the 

pocket properly so that it can act as a full agonist for the T877A AR mutant. Similarly, an 

L701A mutant can also be activated by CPA at the same nanomolar concentrations as the 

T877A mutant 
79
. These kind of structural studies provide insight in ligand-induced 

conformational changes and could be helpful in structure-based drug design.   

  Agonistic action of antagonists on the AR mutants could be determined by proper coactivator 

interactions as a result of the changed ligand accomodation. For example, in the presence of 

ligands such as estradiol, progesterone, spironolactone, and OH-Fl, the T877A mutant showed 

an increased ligand potency in recruitment of LXXLL and FXXLF peptides 
80
. Likewise, it 

might be expected that the AR FXXLF motif interacts differently with the mutant LBD as with 

the wild-type LBD in the presence of an antagonist. So, crystallographic data of wild-type and 

mutant AR LBDs complexed with peptides in the presence of different ligands could give more 
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insight in the mechanism of AR function. This could be useful for the design of new approaches 

to specifically block AR LBD-coactivator interactions in both wild-type and mutant ARs. 

  Androgen ablation by LHRH agonists used for treatment of metastatic prostate cancer does not 

reduce serum T levels such that DHT levels in the prostate will become low enough to 

completely inhibit the AR 
81-84

. Therefore, also anti-androgens are used to counteract DHT 

action. It is believed that use of antiandrogens in prostate cancer treatment can induce androgen-

independent tumor growth in a subset of patients. Strong indications for this are provided by 

experiments in a yeast system and in prostate cancer cell lines, in which AR mutants could be 

selected for their response to non-cognate ligands, among which anti-androgens 
45, 69, 85

. The AR 

mutations found in these experiments are the same as found in antiandrogen treated patients. 

Although it is possible that those AR mutants are already present in non-treated tumors, these 

must be rare as they have not been found in primary tumors. This implies that those mutants 

could not have growth advantage in the untreated stage when DHT is at physiological levels. 

This is in accordance with the responses of wild-type and AR mutants to DHT, which are 

comparable as measured in transfection.  

  The W741C mutant can be activated by bicalutamide, but not by nilutamide and OH-Fl, 

whereas the T877A mutant does not respond to bicalutamide, but can be activated by OH-Fl and 

nilutamide 
86
. Structural modeling has revealed the possible underlying mechanisms of these 

mutants with the respective ligands 
79, 86-88

. This has led to the hypothesis that switching of anti-

androgens during prostate cancer treatment could abolish the effects of appearing AR mutations. 

This would also be in line with the phenomenon 'anti-androgen withdrawal syndrome' in which 

prostate tumors decrease in size when anti-androgen administration is temporarily stopped 
89
. 

However, only a small proportion of the cases of antiandrogen withdrawal syndrome carry AR 

mutations, which means that also growth pathways other than those regulated by AR mutants 

must be involved in tumor progression. Nevertheless, it has been argued that a therapy in which 

use of different anti-androgens and withdrawal of these compounds is alternated, could inhibit 

progression of at least a subset of prostate cancers 
86, 90

. 

  Prostate cancer related AR mutations are not only found in the LBD, but, albeit much less 

frequent, also in the NTD and DBD. In the transgenic adenocarcinoma of mouse prostate 

(TRAMP) model, AR LBD mutations were found in the tumors of non-treated mice, whereas in 

castrated TRAMP mice AR NTD mutations were found 
91
. Apparently, the androgen-depleted 

hormone status leads to mutations in the androgen-independent NTD. However, androgen 

depletion, mostly by using LHRH agonists, is often combined with antiandrogens. This 

substantiates why most AR mutations in anti-androgen treated prostate cancers are found in the 

ligand-dependent LBD as these mutations may appear under selection pressure by the anti-

androgens that can activate them. As AR mutations in the TRAMP model developed under 

physiologically normal hormone conditions, it also raised the question whether AR mutations 

could induce oncogenesis. Indeed, in all transgenic mice harboring the AR NTD mutant E231G, 

oncogenic transformation of the prostate was found 
92
. So far, the E231G mutation has not been 

found in human prostate cancer (mcgill.ca/androgendb/). The underlying mechanism could be 

an increased AR activity caused by a disturbed interaction with the negative AR regulator CHIP. 

Recently, an AR DBD mutation, K580R, which was found in a lymph node metastasis, was 

found to be oncogenic in transfection. Activation of the Akt signalling pathway might be 

involved, because this mutant increases p-Akt and p-p70 S6K levels 
93, 94

. These findings 

indicate that it is important to investigate mutations in all three AR domains, which will lead to 

a better understanding of the role of the AR in prostate cancer.  
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5.3 AR in further research and future perspectives 
  Although there is already an extensive knowledge on the molecular mechanisms of AR 

functions, many aspects remain to be elucidated, of which a few important ones are discussed 

below.  

  One feature of the AR that still is to be established is the structural conformation of the NTD. 

So far, only an α-helical structure for the 
23
FXXLF

27
 motif was found  

4, 9
. It is thought that the 

NTD, if not bound to other proteins, is very flexible and that it adopts different induced fit 

conformations depending on the proteins that bind to this AR domain. So, structural analysis of 

AR NTD might only be succesful in the context of its interacting proteins like CHIP, MAGE, 

SHP, SMRT, CBP, and p160 coactivators (see section 1.2.2). 

  Although AR mutations are found in only a subset of prostate cancer patients, further 

unraveling the functional consequences of these mutations will highly contribute to general 

understanding of AR function, which could be useful for development of new or better 

therapies.  

  RNAi could be an effective therapy for prostate cancer treatment. As the AR plays a key role 

in prostate cancer, androgen responsive genes might be selected as targets of RNAi in addition 

to RNAi of the AR itself. For this it will be important to develop a therapy that can balance 

expression of androgen up- and down-regulated genes so precisely that cell proliferation is 

completely shut down in a prostate specific manner. To develop such an approach, more 

detailed knowledge is needed on (specifically) androgen regulated genes, which has been 

achieved by using micro- array technology and now also with the recently developed ChIP-on-

chip technique 
60-62

. A good candidate for RNAi might be the recently identified 

TMPRSS2:ERG fusion gene. It is highly expressed in a substantial proportion of prostate 

cancers, androgen responsive, and correlates with recurrence and aggressiveness of the disease 
95-99

. This gene is suggested to play a role in the androgen-dependent stage of prostate cancer 
96
.  

  The AR can also have a function in mechanisms other than regulation of gene transcription. 

Recently, the AR was found to be a licensing factor for DNA replication in androgen-dependent 

prostate cancer cells, but not in normal prostate cells 
100, 101

. In the prostate cancer cells, the AR 

has to be degraded before AR signalling can promote a next round of DNA replication. So, 

paradoxically, AR stabilizing approaches would inhibit DNA replication and therefore disturb 

the cell cycle. A new approach for prostate cancer treatment could be intermittent androgen 

blockade (IMAB). This would anticipate on the effect of selection of AR mutants responding to 

antiandrogens and inhibit cell proliferation on a more general level by diminishing DNA 

replication. 

  In summary, knowledge on the molecular mechanisms of AR functions is important to 

understand AR function in order to be able to improve existing therapies and to develop new 

treatments for AR-related diseases like prostate cancer. Our current knowledge still needs 

further extension to find targets for improvement of current prostate cancer treatment or develop 

new therapies. 
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Summary 
 

  The androgens testosterone (T) and dihydrotestosterone (DHT) are steroid hormones, which 

are necessary for development and maintenance of the functions of the male sex organs, 

including the prostate. Androgens also play an important role in benign abnormalities of the 

prostate and in the growth of prostate cancer. Prostate tumors, which are not yet metastatic, are 

treated with radiotherapy or by surgical removal of the complete prostate. Therapy of 

metastasized prostate cancer aims on inhibition of androgen action, by inhibtion of the 

production of T in the testis (chemical castration) and by administration of anti-androgens. T 

and DHT exert their function by specific binding as a ligand to the androgen receptor (AR). The 

AR is a member of the family of nuclear receptors. It is expressed in androgen target cells, and 

functions as a ligand induced transcription factor. In this thesis described research project 

focusses on several molecular mechanisms of AR functions.  

  Chapter 1 gives an overview of the current knowledge on nuclear receptors in general and 

different aspects of AR functions in particular. Among the latter are: receptor structure, 

interaction with other proteins involved in transcription, the ligand-dependent interaction 

between the N-terminal domain (NTD) and the ligand binding C-terminal domain (LBD) of the 

AR (N/C interaction), expression of androgen-specific regulated genes, and the role of AR 

mutations in prostate cancer. 

 In Chapter 2 a motif in the AR NTD, 
23
FXXLF

27
, that is essential for the N/C interaction is 

described. Mutation of the phenylalanine residues or leucine in this motif completely disturbs 

the interaction. Flanking residues have a modulating role in the N/C interaction. The FXXLF 

motif can adopt an α-helix conformation and binds to the LBD surface at the same postition as 

some coactivators. Coactivators can contain one or more LXXLL or FXXLF motifs. 

Coactivators with an FXXLF motif are specific for the AR. The function of the AR N/C 

interaction is not clear as yet. The interaction can play a role in the stability of ligand binding. 

There are also indications that the N/C interaction is important for expression of endogenic 

genes, but less important in model systems that transiently express a reporter gene.  

  In Chapter 3 the characterization of the specifically androgen-regulated gene SARG is 

described. This gene was identified in the LNCaP-1F5 sub cell line, which in addition to the AR 

also stably expresses the glucocorticoid receptor (GR). In this way it is possible to distinguish 

between genes that can be activated by more than one steroid receptor and genes that are 

regulated by one specific receptor. SARG transcription in 1F5 cells can be regulated by 

androgens, but not by glucocorticoids. The SARG gene contains 4 exons and alternative splicing 

results in transcripts missing exon 2 and with an exon 1 that varies in length. Variable 

polyadenylation  leads also to transcripts of different lengths. The SARG protein consists of 601 

amino acids and is localized in the cytoplasm. However, its function has not been established 

yet. A bioinformatics-based screening of the SARG gene, including up- and down-stream 

sequences, revealed a number of candidate AR binding sites (androgen response elements or 

AREs) on the DNA, of which one that is localized in intron 1, is AR specific. EMSA and ChIP 

experiments have shown that the GR cannot bind to this ARE, and an enhancer containing this 

ARE cannot be activated by GR. It is now known that AR specific AREs have one half-site with 

a high affinity for the AR, and one low affinity half-site. Hydrogen bonds between the DBDs in 

an AR dimer are responsible for a strong AR-AR interaction, so that a relatively weak binding 

to one of the half-sites is permitted. These hydrogen bonds are not present in the GR dimer, 

which can explain why the GR dimer does not bind to an AR-specific ARE.  
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  Prostate tumors initially are dependent on androgens for their growth. In a late stage of tumor 

growth this is much less the case. Then the tumors are called endocrine therapy resistant. In part 

of these resistant tumors, amino acid substitutions have been found in the AR through which it 

cannot only be activated by T or DHT, but also by other steroids and even by anti-androgens. In 

Chapter 4 research is decribed in which the prostate cancer mutation hot spots H874 and T877 

are randomly mutated and mutants are selected for their activation by progesterone. This screen 

identified the same mutations as found in prostate cancer: H874Y, T877A, and T877S. These 

mutants are subsequently tested with a variety of hormones and, next to the expected activation 

by progesterone, estradiol, and hydroxyflutamide, these mutants also appeared to be sensitive to 

physiological concentrations of cortisol. This could mean that prostate tumors have obtained 

these mutant ARs by selective pressure by anti-androgens, after which these could also be 

maintained by cortisol. The broadened ligand-specificity of the mutant ARs caused by a 

substitution on position 877 can be explained by the substitution of threonine by a smaller 

amino acid residue, like alanine or serine. The amino acid at position 877 is within the ligand 

binding pocket and binds to the 17β-hydroxyl-group of androgens, whereby a smaller amino 
acid residue means that there is more space in this pocket, so that ligands larger than T or DHT, 

e.g. progesterone, also can bind, which is not possible in the wild-type receptor. Apparently, the 

interactions left are sufficient for stable binding of the ligand and/or new interactions might be 

formed. H874 is not located in the ligand binding pocket, but it is presumed that the H874Y 

substitution changes the conformation of the AR LBD, in such a way that the ligand binding 

pocket becomes available for non-androgenic hormones.  

  In Chapter 5 the research which is described in the previous chapters is placed in the broader 

context of recent literature on molecular mechanisms of AR functions. In this chapter also a 

perspective for further research on these mechanisms is given. 
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Samenvatting 
 

  De androgenen testosteron (T) en dihydrotestosteron (DHT) zijn steroïdhormonen, die 

noodzakelijk zijn voor de ontwikkeling en het instandhouden van de functies van de mannelijke 

geslachtsorganen, waaronder de prostaat. Daarnaast spelen androgenen een belangrijke rol in 

benigne afwijkingen van de prostaat en bij de groei van prostaatkanker. Prostaattumoren, die 

nog niet zijn uitgezaaid, worden behandeld door middel van radiotherapie of door chirurgische 

verwijdering van de gehele prostaat. De therapie van gemetastaseerd prostaatkanker is erop 

gericht om de werking van androgenen tegen te gaan, door de productie van T in de testis te 

remmen (chemische castratie) en door het toedienen van anti-androgenen. T en DHT oefenen 

hun werking uit door specifiek te binden als ligand aan de androgeenreceptor (AR). De AR 

behoort tot de familie van kernreceptoren. De AR komt tot expressie in doelwitcellen van 

androgenen en functioneert als een ligand-geïnduceerde transcriptiefactor. Het in dit proefschrift 

beschreven onderzoek richt zich op een aantal moleculaire mechanismen van AR functies.  

Hoofdstuk 1 geeft een overzicht van de huidige kennis van kernreceptoren in het algemeen en 

verschillende aspecten van de AR functies in het bijzonder. Onder deze laatste zijn: structuur 

van de receptor, de interactie met andere eiwitten betrokken bij de regulering van transcriptie, de 

ligand-afhankelijke interactie tussen het N-terminale domein (NTD) en het ligand-bindende of 

C-terminale domein (LBD) van de AR (N/C interactie), de expressie van androgeen-specifiek 

gereguleerde genen, en de rol van AR mutaties in prostaat kanker. 

  In Hoofdstuk 2 is een motief in de AR NTD, 
23
FXXLF

27
, beschreven dat essentieel is voor de 

N/C interactie. Mutatie van de fenylalanine residuen of van leucine in dit motief verstoort de 

interactie compleet. Omliggende aminozuur residuen hebben een modulerende rol in de N/C 

interactie. Het FXXLF motief kan een α-helix conformatie aannemen en bindt aan het LBD 

oppervlak op dezelfde plaats als sommige coactivatoren. Coactivatoren kunnen één of meerdere 

LXXLL of FXXLF motieven bevatten. Coactivatoren met een FXXLF motief zijn specifiek 

voor de AR. De functie van de AR N/C interactie is nog niet geheel duidelijk. De interactie kan 

een rol spelen bij stabiliteit van de binding van een ligand. Ook zijn er aanwijzingen dat de N/C 

interactie belangrijk is voor de expressie van endogene genen, maar van minder belang in model 

systemen, waarbij een reportergen transient tot expressie wordt gebracht.  

  In Hoofdstuk 3 wordt de karakterisering van het specifiek androgeen-gereguleerde gen SARG 

beschreven. Dit gen werd geïdentificeerd in de LNCaP-1F5 subcellijn die naast de AR ook 

stabiel de glucocorticoidreceptor (GR) tot expressie brengt. Hierdoor is het mogelijk om 

onderscheid te maken tussen genen die door meerdere steroidreceptoren geactiveerd kunnen 

worden en genen die door één specifieke receptor gereguleerd worden. SARG transcriptie kan in 

1F5 cellen wel door androgenen gestimuleerd worden maar niet door glucocorticosteroïden. Het 

SARG gen bevat 4 exonen en alternatieve splicing resulteert in transcripten die exon 2 missen en 

een exon 1 hebben dat varieert in lengte. Variabele polyadenylering leidt ook tot transcripten 

van verschillende lengtes. Het SARG eiwit bestaat uit 601 aminozuren en is gelokaliseerd in het 

cytoplasma. De functie ervan is echter nog niet vastgesteld. Een op bioinformatica gebaseerde 

screening van het SARG gen, inclusief sequenties voor en achter het gen, leverde op het DNA 

een aantal kandidaat bindingsplaatsen voor de AR (androgeen respons elementen of AREs) op, 

waarvan er één, die zich in intron 1 bevindt, AR-specifiek is. EMSA, ChIP experimenten 

hebben laten zien dat deze ARE niet in staat is de GR te binden en ook dat de enhancer die deze 

ARE bevat niet geactiveerd kan worden door de GR, maar wel door de AR. Van de AR-

specifieke AREs is nu bekend dat ze één half-site met hoge affiniteit voor de AR hebben en één 
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half-site met een veel lagere affiniteit. Waterstofbruggen tussen de twee DBDs in een AR 

dimeer zorgen voor een sterke AR-AR interactie, waardoor een zwakkere binding aan één van 

de ARE half-sites gepermitteerd lijkt. Deze waterstofbruggen komen niet voor in een GR 

dimeer, wat kan verklaren waarom de GR niet goed bindt aan een AR specifieke ARE.  

  Prostaattumoren zijn in het begin van hun groei afhankelijk van androgenen. Dit is in een laat 

stadium van tumorgroei veel minder het geval. Deze laatste tumoren zijn dus resistent geworden 

tegen de endocriene therapie. In een deel van deze resistente tumoren zijn aminozuursubstituties 

in de AR gevonden waardoor deze niet alleen geactiveerd kan worden door T of DHT, maar ook 

door andere steroïden en zelfs door anti-androgenen. In Hoofdstuk 4 is een onderzoek 

beschreven waarin de in prostaatkanker gevonden mutatie hot spots H874 en T877 random 

gemuteerd zijn en mutanten geselecteerd zijn voor hun activering door progesteron. Hierbij 

werden dezelfde mutanten gevonden als ook in prostaatkanker voorkomen:  H874Y, T877A en 

T877S. Deze mutanten zijn in vervolgexperimenten getest met een heel scala aan hormonen en 

naast de verwachte activering door progesteron, estradiol en hydroxyflutamide bleken deze 

mutanten ook gevoelig voor fysiologische concentraties cortisol. Dit zou kunnen betekenen dat 

prostaattumoren deze mutante ARs door selectiedruk van anti-androgeen hebben verkregen, 

waarna deze bovendien in stand gehouden zouden kunnen worden door cortisol. De bredere 

ligand-specificiteit van de mutante ARs veroorzaakt door een substitutie op positie 877 kan 

worden verklaard door de substitutie van threonine door een kleiner aminozuur residu, zoals 

alanine of serine. Positie 877 is onderdeel van de ligand-bindende pocket en bindt de 17β-
hydroxyl-groep van androgenen, waarbij een kleiner aminozuur betekent dat er meer ruimte is in 

deze pocket, zodat liganden groter dan T of DHT, bv. progesteron, ook kunnen binden, wat ze 

niet kunnen met de wild-type receptor. Blijkbaar zijn overgebleven interacties voldoende voor 

stabiele binding van het ligand en/of worden nieuwe interacties gevormd. H874 ligt niet in de 

ligand-bindende pocket, maar verondersteld wordt dat de H874Y substitutie een verandering in 

de conformatie van het AR LBD teweegbrengt, die de ligand-bindende pocket ook geschikt 

maakt voor niet-androgene hormonen. 

  In Hoofdstuk 5 zijn de onderzoeken die beschreven zijn in voorgaande hoofdstukken in de 

bredere context van recente literatuur over de moleculaire mechanismen van AR functies 

geplaatst. Ook is in dit hoofdstuk een perspectief aangegeven voor verder onderzoek naar deze 

mechanismen.  
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