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Abstract 

Managing Product-Harm Crises 

Product-harm crises are among a firm’s worst nightmares. Since marketing investments may be 

instrumental to convince consumers to purchase the firm's products again, it is important to provide 

an adequate measurement of the effectiveness of these investments, especially after the crisis. We 

provide a methodology through which firms can assess the impact of product crises in a quantitative 

way. Based on the model estimates, firms can estimate the required level of investment to recoup 

from the crisis. A key finding of this paper is that it is not only important to assess the extent to which 

business is lost as a result of the crisis, but also to find the new, postcrisis response parameters to 

marketing activities. The study of an Australian product-harm crisis for peanut butter reveals that a 

product crisis may represent a quadruple jeopardy for a firm: (i) loss of baseline sales, (ii) a reduced 

own effectiveness for its marketing instruments, (iii) increased vulnerability, and (iv) decreased clout. 

We arrive at this conclusion by using a time-varying error-correction model that allows for (i) short- 

and long-term marketing mix effects, (ii) intercepts and response parameters that change over time as 

a result of the crisis, and (iii) missing observations, which result from the absence of the impacted 

brands during the product-recall period. The time-varying error-correction model is applicable to 

other marketing-research areas in which these three requirements (or any subset thereof) apply. 

 

Key words: Brand Management, Error-Correction Models, Time-Varying Parameters, Time-Series 
Models, Missing-Data Problems, Gibbs Sampling Methods 
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1. INTRODUCTION 
Most market-oriented firms allocate huge resources to build their brands.  A brand’s equity, however, 

can be very fragile. Among its biggest threats are product-harm crises, which can be defined as well-

publicized events wherein products are found to be defective or even dangerous (Dawar and Pillutla 

2000).1  Product-harm crises can distort long-standing favorable quality perceptions, tarnish a company’s 

reputation, cause major revenue and market-share losses, lead to costly product recalls, and devastate a 

carefully-nurtured brand equity.  Usually, the crisis relates to a particular brand.   In 2000, 

Bridgestone/Firestone recalled 6.5 million tires after news broke that more than a hundred people had 

died in accidents involving defective tires (Advertising Age 2000).  In 1999, Coca-Cola was forced to 

withdraw 30 million cans and bottles in Northern Europe following a scare in Belgium (The Guardian 

1999).  Other notorious cases include Intel’s flawed Pentium chip, Johnson & Johnson’s cyanide-laced 

Tylenol, and the benzene contamination of Perrier.  Occasionally, the crisis involves an entire product 

category, such as poultry (bird flu), silicon breast implants, and beef (mad-cow disease).  

Because of the increasing complexity of products, the closer scrutiny by manufacturers and policy 

makers, as well as the higher demands by consumers, product-harm crises are expected to occur ever 

more frequently (Dawar and Pillutla 2000), while the heightened media attention will also make them 

more visible to the general public (Ahluwalia, Burnkrant and Unnava 2000).  However, in spite of the 

devastating impact of product-harm crises, little systematic research exists to assess its marketing 

consequences.  Academic studies in the area have either experimentally investigated consumer reactions 

to hypothetical product crises (e.g. Ahluwalia et al. 2000; Dawar and Pillutla 2000), or have used 

aggregate, event-study based, financial measures (Davidson III and Worrell 1992; Marcus, Swidler, and 

Zivney 1987).  Very limited attention has been devoted to adequately quantify the impact of product 

crises on relevant marketing metrics such as sales, market share, and marketing-mix effectiveness.  Still, 

insights into these measures are crucial to managers who want to take appropriate corrective actions to 

restore brand performance to its pre-crisis level.    

                                                      
1 Sometimes the crisis can be triggered by malicious rumors, generated by consumers or competitors.   
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 In this paper, we argue that the implications of a brand-specific product-harm crisis often go 

beyond the “obvious” short-run sales or market-share loss, for a variety of reasons.  First, the brand’s own 

marketing-mix effectiveness may be reduced.  For instance, as customers’ trust may have been breached, 

advertising may now give less “bang for the buck” than before the crisis.  Moreover, the brand may now 

have less clout to attract potential switchers, and/or may have become more vulnerable to competitive 

activities.  The latter phenomenon may be especially relevant, as competitors may try to exploit the 

marketing opportunities that arise because of the brand’s misfortune by reducing their own price or 

increasing their advertising expenditures. Michelin North America, for instance, hiked its advertising 

budget to run a print campaign touting tire safety and quality in the wake of Bridgestone/Firestone’s tire 

recall (Advertising Age 2000).  Because of this changed own and/or cross-effectiveness, relying on the 

before-crisis estimates may seriously underestimate the extent of corrective action needed. 

We therefore develop a time-varying error-correction model that allows for crisis-induced 

changes in both short- and long-run response parameters.  In so doing, we integrate two research streams.  

First, we extend recent literature that accommodates differences in short- and long-run effectiveness (see 

e.g. Dekimpe and Hanssens 1999; Pauwels, Hanssens, and Siddarth 2002) by allowing for time-varying 

parameters in the error-correction model proposed by Fok et al. (2005).   While such time variation was 

allowed for in the Bayesian Dynamic Linear Model (DLM) of Van Heerde, Mela and Manchanda (2004), 

these authors did not yet distinguish short- from long-run marketing-mix effectiveness.  The current 

paper's methodological contribution is that it combines both aforementioned approaches.  Moreover, 

unlike traditional varying-parameter models (see e.g. Foekens, Leeflang and Wittink 1999), the Bayesian 

updating mechanism we advocate can handle prolonged (systematic) sequences of missing values caused 

by a complete loss of distribution, a phenomenon often encountered when the product-harm crisis triggers 

a product recall.  

We apply the proposed methodology to a devastating product-harm crisis that affected Kraft Food 

Australia in the summer of 1996.  More than 100 cases of salmonella poisoning potentially linked to 

Kraft-made peanut butter made management recall its two key brands for multiple weeks. Using weekly 
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advertising and store scanning data for a pre-crisis period of 1.5 years and a post-crisis period of 3.5 

years, we calibrate a model that quantifies the consequences of this crisis on both brands’ base sales, own 

effectiveness, clout and vulnerability, allowing management to make more informed decisions on how to 

regain the brands’ pre-crisis performance levels.   

The rest of the paper is structured as follows. First, we discuss the literature on product-crisis 

effects. Next, we present our model, discuss the data and results, and conclude with managerial 

implications and suggestions for further research.  

2. PRODUCT-CRISIS EFFECTS 

Even though product-crisis incidents are increasingly prevalent, fairly little systematic research 

has been conducted on the topic (Klein and Dawar 2004).  Existing research can broadly be classified into 

three streams.   The first stream consists of descriptive, often case-based, studies suggesting which 

strategies work, or do not work, in the marketplace.   Checklists are typically provided detailing the 

appropriate managerial actions to avoid product crises, and how to respond when they occur (e.g., Mitroff 

2004; Mitroff and Kilmann 1984; Rupp and Taylor 2002; Smith, Thomas, and Quelch 1996; Weinberger, 

Romeo and Piracha 1993).   These studies, while offering sound advice, provide little direction for 

understanding the underlying mechanisms through which product crises harm the company or brand 

(Ahluwalia et al. 2000), nor do they quantify the extent of  the damage incurred (or averted).    

Such an understanding of the underlying mechanisms is explicitly sought in a second research 

stream where lab experiments are used to assess the impact of hypothetical crises and moderating 

variables on brand evaluations,  such as consumer expectations (Dawar and Pillutla 2000), commitment to 

the brand (Ahluwalia et al. 2000),  brand loyalty (Stockmeyer 1996), the perceived locus of the problem 

(Griffin, Babin and Attaway 1991), and prior corporate social responsibility (Klein and Dawar 2004).  

Lab experiments have also been used to determine whether gender differences matter in blame 

attributions with a product-harm crisis (Laufer and Gillespie 2004).  While these studies are well 

grounded in various psychological theories, their use of experimentally-manipulated, hypothetical product 
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crises is likely to limit the external validity of the insights.  Moreover, these studies typically do not 

attempt to quantify the financial implications of the crisis.   

The third stream of research focuses on gauging the effects of actual product-harm crises on a 

variety of performance measures including security prices (e.g., Chu, Lin and Prather 2005; Govindaraj, 

Jaggi and Lin 2004; Davidson III and Worrell 1992; Marcus, Swidler, and Zivney 1987) and category 

consumption (Burton and Young 1996; Marsh, Schroeder, and Mintert 2004; Pesaran and Samiei 1991; 

Piggott and Marsh 2004). However, both aforementioned performance metrics are aggregate indicators, 

and may not be as informative as more disaggregate analyses.   Primary-demand measures, for example, 

do not account for the fact that not all incumbents may be affected to the same extent by a crisis.  Indeed, 

the locus of the problem may be internal to some, but external to others (Klein and Dawar 2004), while 

they may also have reacted differently to the crisis (Griffin, Babin and Attaway 1991).  Stock-price 

reactions, while being firm specific, do not identify the underlying mechanisms through which the 

resulting value loss emerged.  Is it entirely due to a loss in baseline sales, or do investors also penalize the 

company for a potential loss in marketing-mix effectiveness because of the crisis? Do they fear that the 

brand has lost so much equity that it will become more vulnerable to future competitive actions?  

Moreover, if the company has umbrella-branded its products, what part of the combined stock-market 

reaction can be attributed to, respectively, the product affected directly by the crisis and negative 

spillovers to other products sold under the same label (Sullivan 1990)?  

Our paper contributes to the third research stream, in that we explicitly quantify the performance 

implications of the crisis.  However, unlike previous studies in this tradition, we present a much more 

disaggregate picture of the post-crisis situation, in that (i) we explicitly distinguish between the different 

incumbent firms, recognizing that some players may actually benefit from the misfortune of their 

competitor(s), (ii) we allow for differential performance implications for different brands owned by the 

same company, and, most importantly, (iii) identify various ways through which the brand may be 

affected, both in the short and in the long run: a loss in baseline sales, a reduced own marketing-mix 

effectiveness, an increased vulnerability to competitive actions, and a reduced clout for the own actions.  
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2.1 Own effects 

The most obvious effect (# 1) of a product-harm crisis is the immediate loss in own-brand sales or 

market share.  For example, sales at Wendy’s restaurants in the San Francisco Bay area dropped 30% 

after a woman claimed to have found a finger in her chili (Financial Times 2005).  Similarly, following a 

food-poisoning scandal in June 2000, sales of Snow Brand milk in Japan dropped 88 percent compared to 

a year earlier, while the brand’s market share tumbled from 40 percent to less than 10 percent (Finkelstein 

2005).  To revive the brand’s sales (and in some case the entire category), managers may feel inclined to 

reduce the product’s price, or to substantially increase its advertising support.  For example, after years of 

disastrous quality problems and product recalls, General Motors ran a major “Road to Redemption” 

campaign claiming that the company was “building the best cars and trucks in our history” (The New 

York Times 2004).   Advertising and promotional efforts could be increased to create awareness about the 

comeback, and regain trust from risk-averse consumers (Byzalov and Shachar 2004).  

Perhaps less obvious is that the crisis may have affected the effectiveness of marketing 

instruments (effect # 2). The crisis could have damaged the brand’s equity (Dawar and Pilluta 2000) and 

the firm's credibility (MacKinsey and Lutz 1989), which may negatively affect the effectiveness of its 

subsequent advertising investments (Aaker 1991, Goldberg and Hartwick 1990).  Similarly, when 

customers are exposed to negative information about the product, its perceived differentiation may be 

reduced (Ahluwalia et al. 2000), which could in turn increase the magnitude of its price elasticity 

(Boulding, Lee and Staelin 1994, Nicholson 1972).   Moreover, one should take into account that 

marketing-mix effects may reach well into the future (Dekimpe and Hanssens 1999), making it important 

to consider the crisis’ long-run effects as well.  Product-harm crises may imperil long-standing favorable 

impressions, and have performance implications that linger well into the future.  Indeed, negative 

information is known to be more informative and persistent than positive information (Skowronski and 

Carlston 1989), and customer trust is more easily lost than restored (Holmes and Rempel 1989).  To that 

extent, we will quantify the crisis’ impact not just in terms of baseline share or sales losses, but also in 

terms of its implications on various instruments’ short- and long-run effectiveness.  
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2.2 Vulnerability 

A product-harm crisis may not only affect a brand’s marketing-mix effectiveness, but also various 

cross-effects.   The higher a brand’s equity, the smaller its vulnerability to price promotions or advertising 

attacks by competing brands, while its own actions are expected to have a greater effect on the sales of  

other brands (Aaker 1991).  Because of its potential impact on the brand’s equity, the product crisis could 

result in an increased vulnerability and  reduced clout as well.  

We first consider the cross-effect of other brands on the affected brand (vulnerability; effect # 3).    

Because of the product-harm crisis, customers may now classify the affected brand in a lower-quality 

brand tier, leading to stronger sales losses due to cross-brand price cuts (Blattberg and Wisniewski 1989), 

while competitors’ advertising may now have more pronounced competitive effects (Steenkamp et al. 

2005).   An increased vulnerability is especially relevant as some rivals may see the product-harm crisis 

as a unique opportunity to increase their own share.  The aforementioned Belgian Coca-Cola crisis was 

widely seen as giving its No. 1 competitor, Virgin Cola, a unique “chance to reach the Belgian Customer” 

(Business Week 1999), allowing it to double its market share over the course of one summer, while 

Goodyear and Michelin undertook a multipronged effort to increase their own business following the 

well-publicized recall of Firestone tires (Advertising Age 2000).  Moreover, as the product category is 

likely to be under close public scrutiny during the crisis, increased advertising efforts by one’s 

competitors may well result in higher awareness and returns than under normal circumstances (Dawar 

1998).   

 

2.3 Clout 

The impact of a brand’s marketing instruments on other brands is commonly defined as clout 

(e.g., Kamakura and Russell 1989). An affected brand’s clout may decrease as a result of the product-

harm crisis (effect # 4). The crisis may cause a decrease in a brand’s perceived quality, leading to a 

reduced ability to attract switchers (Bronnenberg and Wathieu 1996). As a result, its advertising becomes 
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less impactful on other brands. In case post-crisis advertising for the affected brand has mostly an 

informational role about the re-established safety to consume products in the category (Dawar and Pillutla 

2000), post-crisis cross-advertising effects may even turn out to be positive.   Indeed, consumers that 

stopped buying the product category may first consider to again buy non-affected brands in order to limit 

the perceived risk involved (Byzalov and Shachar 2004). Similary, since the crisis may impact brand 

differentiation adversely, fewer consumers may be inclined to switch to the affected brand when it 

decreases its price (Bell, Chiang, and Padmanabhan 1999), which offers further evidence of its reduced 

clout.  

 

 2.4 Same-company brands 

Finally, in many product categories firms own multiple brands. Therefore, a full understanding of 

the ramifications of a product-harm crisis implies that we should also consider the impact of the crisis on 

other brands of the same company. In particular, if brand B is owned by the same company as the affected 

brand A, the negative impact of the crisis may spill over to brand B.  Following allegations of a sudden-

acceleration defect with the Audi 5000, for example, demand for the Audi 4000 and Quattro dropped as 

well (see Sullivan 1990 for an in-depth discussion).   Both brands may now be perceived as belonging to 

a lower quality tier in the postcrisis period, making them more vulnerable to competitive brands.  

However, it is unclear a priori how their relative position to each other will be affected.  That is, the 

overall (i.e., across all competing brands) decrease in clout of one affected brand can be compensated by 

the increase in vulnerability of the other affected brand. Whether the net change in the impact of one 

brand on the other brand is zero, positive or negative is an empirical issue to which we return in the 

results section. 
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3. MODEL 

 3.1. The base error-correction model 

To assess the impact of a product-harm crisis on each of the aforementioned own- and cross-

effects, a time-varying error-correction model is developed that separately estimates short- and long-run 

elasticities.  These elasticities vary according to a transfer function which accounts for crisis-induced 

structural breaks. The model is estimated using a Bayesian updating procedure, which allows one to 

estimate the various parameters of interest, even when several key variables have prolonged sequences of 

missing observations.     

Our point of departure is the following vector error-correction model, 

 (1)
 

t
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kt
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kt
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kt XASXAS νβ +


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
 −Π+∆+=∆ ∑∑

=
−−

= 1
1,1

1
0 lnln , ),0(~ VNtν  

where 

∆   = first difference operator: 1−−=∆ ttt XXX . 

tS  =  Vector (Bx1) with sales (in kilo) of brands b=1,..,B in week t 

ktX  =  Vector (Bx1) with marketing mix variable k (k = 1, …, K) of brands b=1,…,B in week t 

0β  =  Vector (Bx1) with intercepts of brands b=1,…,B  

sr
kA  =  Matrix (BxB) with short-run effects of marketing-mix variable k  

lr
kA  =  Matrix (BxB) with long-run effects of marketing-mix variable k  

Π  =  Diagonal matrix (BxB) with adjustment effects 

tν  =  Vector (Bx1) of  error terms of brands b=1,…,B in week t 

V  =  Variance-Covariance matrix (BxB) of the error term tν  

The diagonal elements of sr
kA and lr

kA  give the own effects of the k-th marketing-mix variable of 

each brand, while the off-diagonal elements (which need not be symmetric) capture the corresponding 

cross-effects.  If the ktX  are specified in the ln space (e.g., ln prices), these effects can be interpreted as 

elasticities since the dependent variable is in natural log as well.  Alternatively, if the ktX  are 
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untransformed, the elements of sr
kA  and lr

kA  are quasi-elasticities2. The elements of sr
kA are the 

instantaneous or short-run (quasi-)elasticities, while the parameters in lr
kA  give the marginal effect of a 

permanent change in Xt on the long-run level of ln sales. As such, the lr
kA parameters describe the long-run 

equilibrium relationship between the levels of marketing support and sales.  Such equilibrium may exist 

between cointegrated, non-stationary variables (Dekimpe and Hanssens 1999; Franses, Kloek and Lucas 

1999), or between a set of stationary variables (Bass and Pilon 1980).  In the latter case, lr
kA  can be 

shown to also equal the cumulative effect on current and future ln(sales) of a temporary change in Xt.  In 

ERWK� LQVWDQFHV�� WKH� � SDUDPHWHUV� UHIOHFW� WKH� VSHHG� RI� DGMXVWPHQW� WRZDUGV� WKH� XQGHUO\LQJ� ORQJ-run 

equilibrium.  We refer to Fok et al. (2005) for a formal proof of these various properties, and to Franses 

(1994) or Paap and Franses (2000), among others, for previous applications.  An attractive feature of the 

error-correction specification is that it disentangles the short- and long-run effects of the marketing mix 

into two distinct sets of parameters.  As such, it differs from recent impulse-response based 

operationalizations (see e.g. Nijs et al. 2001; Pauwels et al. 2002) which use complex, non-linear 

functions of the model parameters to quantify marketing-mix effectiveness over different planning 

horizons, and typically result in quite large standard errors (Fok et al. 2005).   

 

3.2. The time-varying error-correction model 

To assess the impact of the product-harm crisis, one could estimate model (1) twice, once before 

the crisis and once after the crisis. Such an approach was adopted in Pauwels and Srinivasan (2004) in the 

context of private-label introductions.   To allow the market to reach a new equilibrium after the product-

harm disturbance, one could opt to estimate the second model on data starting some time after the crisis.  

However, Van Heerde et al. (2004) recently criticized such an approach as it (i) results in an efficiency 

                                                      
2 We do not take the ln of weekly advertising expenditures, since these expenditures are zero in a number of weeks. 
Hence, the parameters for advertising are quasi-elasticities. 
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loss, and (ii) assumes constant parameters within each subsample, which may be too stringent an 

assumption in dynamic markets. To that extent, we allow for time-varying parameters in (1), and obtain: 

(2a)
  

t

K

k
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kttt
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After multiplying through, we can rewrite (2a) as: 

(2b)
  

t

K

k
tk

lr
kttt

K

k
kt

sr
kttt XASXAS νβ ++Π+∆+=∆ ∑∑

=
−−

= 1
1,

*
1

1
0 lnln , ),0(~ VNtν ,  

where lr
ktt

lr
kt AA Π−=* . 

We model the typical scalar element tφ of t0β , sr
ktA  or *lr

ktA via a transfer function: 

(3) tttt Z φφφ ωψφλφ ++= −1 ,  

where ),1( tt sAfterCrisiZ = = (intercept, step dummy After Crisis), ),( 0 ′= ACφφφ ψψψ and tφω is a 

normally-distributed error term ( ),0(~ φφω WNt ), which is independent from other ω ’s and 

independent from tν  in (2b). For identification purposes, we exclude the AfterCrisis effect from the 

transfer function of the adjustment parameters t; hence, its typical scalar element tπ evolves as in: 

(4) ttt ππ ωππλπ ++= − 01 .  

In the empirical application, we allow the crisis to impact any marketing-mix parameter that involves the 

affected brands, both in the equations of the affected brands themselves, and in their impact on other 

brands.3    

Equation (3) shows how, prior to the crisis, the parameter fluctuated around a fixed mean, 

)1/(0 φφ λψ − , with random disturbances ( tφω ) from that mean having a geometrically decaying impact 

on the value of φt.  A structural break is allowed for at the end of the crisis, which causes the parameter to 

                                                      
3 We may extend the vector Zt with a step dummy that is one during the crisis to capture the impact of the crisis on 
parameters from brands that remained available during the crisis. In the empirical application, we allow for such an 
impact on the intercept of the unaffected brand, Sanitarium. For parsimony reasons, we do not allow for effects of 
the crisis on own-brand effectiveness parameters of Sanitarium. 
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settle at a new level of )1/()( 0 φφφ λψψ −+ AC .4  In the results section we report these pre- and postcrisis 

steady-state values for intercepts and short-run effects. Since the long-run effects lr
ktA equal *1 lr

ktt A−Π− ,  

their steady state values are obtained as: [ )1/(0 φφ λψ − ]/[− )1/(0 πλπ − ] (before) and 

[ )1/()( 0 φφφ λψψ −+ AC ]/[− )1/(0 πλπ − ] (after).   

 

3.3. Estimation 

For model estimation purposes, we transform model (2b)-(4) into a transfer function dynamic 

linear model (West and Harrison 1999, p. 284) by defining tt Sy ln∆= , 

( ) ( )( )11211121 ,,,),ln(,,,,, −−−− ′⊗′⊗′⊗′⊗′∆⊗′∆⊗′∆⊗=′ KtBtBtBtBKtBtBtBBt XIXIXISIXIXIXIIF ��

 

with BI a BxB identity matrix, and ( )K
k

lr
ktt

K
k

sr
kttt AA 1

*
10 )}(vec{),(vec,)}(vec{, == Π= βθ : 

(5) tttt Fy νθ +′= ,   ),0(~ VNtν  

(6) tttt ZG ωψθθ ++= −1 ,  ),0(~ WNtω  

where ),,(diag 1 θ
λλ nG �= , ( )),1( tnt sAfterCrisiIZ ⊗=

θ
, and θn is the number of elements in tθ . 

Equations (5) and (6) are estimated by Bayesian techniques as outlined in the appendix.  

A product crisis in which a product is removed from the shelves for an extended period of time 

leads to a prolonged sequence of missing values in both the dependent variable (the affected brand’s ln 

sales) and the independent variables (various elements of the affected brand's marketing mix, such as its 

ln price).  In the salmonella case we study in this paper, two major brands were absent for 21 consecutive 

weeks.  As a result, there are no data to estimate the affected brands’ response models during their 

absence. Moreover, also the response models for the unaffected brands cannot be estimated when there is 

a missing value in any of the independent variables (the relevant cross-effects in those models cannot be 

assessed).  A typical solution in classical approaches such as OLS, VAR models or maximum-likelihood 

                                                      
4 As such, in line with previous research (see e.g. Deleersnyder et al. 2002, Perron 1994), we model the crisis as an 
intervention in the deterministic part of the transfer function.   
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estimation is to remove all observations for which there is any missing value on the left- or right-hand 

side of the equation (see Lemieux and McAlister 2005 for a recent review). However, such list-wise 

deletion leads to a potentially severe loss of observations and statistical precision (Kamakura and Wedel 

2000). Alternatively, data-imputation methods may lead to severe biases in regression estimates (e.g., 

Cooper, de Leeuw and Sogomonian 1991).  In contrast, Bayesian estimation of a DLM as specified in (5) 

and (6) enables the estimation of the full model even in the presence of missing values, preserving all 

available observations. Estimation is achieved by sequentially updating the posterior distribution of each 

parameter running through the data from time t=1 till t=T, the final observation. Only when there is data 

on both the y-(dependent) and X-(independent) variable, the posterior of the corresponding response 

parameter is updated. In case there is a missing y and/or X-variable, the posterior is set equal to the prior. 

More details are provided in the appendix.  

 

4. DATA 

In this paper, we study a very severe example of a product crisis: the salmonella poisoning of 

Kraft peanut butter in Australia in 1996. We already referred to this crisis in the introduction. On the 

evening of Thursday June 20, Tom Park, managing director of the Kraft Australia, received a call from 

the health authorities. A potential link had been identified between peanut butter made by Kraft and 

salmonella poisoning. As a consequence, Kraft Australia faced the worst crisis in its 70-year history 

(Business Review Weekly 1996). On Tuesday June 25, Kraft was told by suppliers that contaminated 

peanuts had made their way into Eta peanut butter (Sydney Morning Herald 1996a).  As a result, Kraft 

decided to widen the recall to all sizes and forms of Eta and Kraft peanut butter, its top-line brand in the 

category.  The Kraft brand was included as a purely precautionary measure: Kraft used different raw 

materials and product specifications for the core brand (ABC Radio 1996).  Seventy percent of Australia’s 

peanut-butter market had been affected by the recall (Sydney Morning Herald 1996a). By June 30, all 

Kraft-made peanut butter had been removed from stores nationwide.  This crisis was severe from several 

points of views (Business Review Weekly 1996). Over 100 cases of salmonella poisoning were reported. 
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More than 100,000 angry and confused customers rang the company over a five-day period. The media 

and health authorities attacked Kraft for responding slowly to the crisis. A law firm launched a class 

action against Kraft on behalf of 540 people. The distribution of all Kraft brands was completely down for 

more than four months (June 30-November 17, 1996). The total cost of the recall and lost sales for Kraft 

was estimated to be around AU$ 15 million.5 After upgrading the monitoring and testing procedures at 

Kraft’s Melbourne plant and its peanut supplier, all Kraft brands were re-introduced in Fall 1996. Kraft 

spent up to AU$ 3 million on advertising to relaunch its peanut-butter brands (Sydney Morning Herald 

1996b). In this study, we investigate to what extent the crisis led to the various effects discussed in 

Section 2.  

 We also investigate how the competition fared during the crisis. In that respect, it is relevant to 

note that the source of the contamination was Kraft’s external peanut supplier, the Peanut Butter 

Company of Australia. After the Kraft products were recalled, its primary peanut-butter competitor 

Sanitarium ran newspaper and radio ads to tell consumers that its peanut butter was not contaminated. In 

July 1996, it launched a major television commercial campaign promoting the fact it had always been 

roasting its own peanuts.  

To study the effects of this product-harm crisis on the three major players, Kraft, Eta, and 

Sanitarium, we use retail-scanner data from AC Nielsen Australia. The dataset covers weekly volume 

sales and retail prices for Woolworth, the leading retailer in New South Wales.  Our dataset also includes 

advertising spending across all key media in the state for all brands in the category. The dataset spans 

more than a year before the start of the crisis (April 1995-June 1996), the five months of the crisis (July 

1996-November 1996), and more than three years after the crisis (December 1996-December 1999). The 

marketing instruments in model (2b) are operationalized as: )ln,(),( 21 tttt PAdXX = , where tAd is a 

vector with the brands’ advertising expenditures in week t , and tPln is a vector with the ln of the brands’ 

prices in week t (in AU$ per kilo). 

                                                      
5 1 AU$ = ± 0.78 US$ in 1996. 
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In Figure 1, we show the sales patterns of the three brands, illustrating the major impact of the 

crisis.  Kraft and Eta sales were down to zero during the crisis, as these brands were not distributed during 

this 21-week period. Hence, during the crisis their price and advertising series are missing, which implies 

that the effects on own- and cross-brand sales are not updated in our Bayesian model estimation 

framework. The benefit of this framework is that it keeps updating those parameters for which the 

dependent and independent variables are observed during the crisis (e.g., the effect of Sanitarium’s price 

on its sales), something that cannot be achieved by traditional methods such as OLS.  

In the first four weeks after the crisis, average Eta sales were down by 59% relative to the final 

four weeks before the crisis, whereas Kraft lost 29%. In contrast, Sanitarium sales tripled during the crisis 

(see Table 1). Table 1 also shows that Sanitarium spent 36 times more on weekly advertising during the 

crisis than before. Kraft responded by increasing weekly advertising expenditures after the crisis as well, 

while it cut down Eta advertising by a small amount. Brand prices were not changed very much after the 

crisis. 

[Insert  Table 1 and Figure 1 about here] 

5. RESULTS 

 5.1 Overall results 

We apply model (2b)-(4) to the dataset, and report parameter summaries in Table 2 (Eta) and 

Table 3 (Kraft). The parameters are the steady state values described in section 3.  The parameter 

estimates tend to have the expected signs. Advertising effects are quasi elasticities, and give percent 

change in sales due to a one million Australian dollar increase in advertising. Own advertising has 

significant positive or zero effects in all cases (short and long run, before and after crisis). The average 

short-run advertising quasi-elasticity6 (2.02) is smaller than the average long-term quasi-elasticity (10.54), 

which is consistent with positive carry-over effects of current advertising on future sales (Leone 1995). 

Cross-advertising effects are positive or zero, consistent with positive primary-demand effects of 

advertising (Lancaster 1984, Schultz and Wittink 1976).  

                                                      
6 The averages reported in this subsection are across four cases: pre- and postcrisis Eta and pre- and postcrisis Kraft. 
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The average short-run own-price elasticity is –2.75, which is close to the average price elasticity 

(–2.62) reported in the literature (Bijmolt, Van Heerde, and Pieters 2005). Similar to Fok et al. (2005), we 

find that the average long-term own price elasticity (–.58) is closer to zero than the average short-run own 

price elasticity (–2.75). This finding is consistent with the notion that short-term price-promotion bumps 

are partially offset by postpromotion dips (Van Heerde, Leeflang, and Wittink 2000). All significant 

short-run cross-price elasticities are in the [0,2] range, which is the case for 85% of the reported cross-

price elasticities in the literature (Sethuraman, Srinivasan, and Kim 1999).  

[Insert Tables 2 and 3 about here] 

5.2 Parameter changes 

We find that the number of significant response effect changes is higher for advertising (nine) 

than for price (four). To judge to what extent these changes are in the expected direction, we use the same 

classification of own effects, vulnerability, clout, and same-company brands as in section 2. 

 

5.2.1. Own effects Eta 

Consistent with our expectations, we find that the product-harm crisis has a devastating impact on 

both the intercept and advertising effects of Eta (Table 3). We illustrate the temporal pattern of these three 

parameters in panels a, b, and c of Figure 2. Eta experiences a significantly positive intercept before the 

crisis (2.78), which becomes insignificant after the crisis (0.99). Both the short- and long-run advertising 

parameters are significantly positive before the crisis (3.77 and 13.36, respectively), but reduce to 

insignificant and smaller magnitudes after the crisis (.59 and 2.50, respectively). In contrast, the short- 

and long-run price elasticities do not change significantly due to the crisis. 

[Insert Figure 2 about here] 

 

5.2.2. Vulnerability of Eta 

As we expected, the crisis also decreases the benefits that Eta derives from advertising by its 

larger "sister brand" Kraft.  The short-run effect reduces from 1.80 (significant) to 0.34 (insignificant), 
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and the long-term effect collapses from 11.11 (significant) to 1.59 (insignificant). The crisis also 

decreases Eta’s short-term (primary-demand) benefit from advertising by Sanitarium, from a significant 

3.65 to an insignificant 0.46.  Whereas the long-run effect of Sanitarium price on Eta sales is insignificant 

before the crisis (–1.05), this effect turns significant after the crisis (2.21). This increase in vulnerability is 

again as we expected. However, there are no significant changes in Eta's vulnerability to Kraft price. This 

finding suggests that even though both Eta and Kraft suffered from the crisis, their relative strength may 

have stayed rather constant. 

 

5.2.3. Clout of Eta 

We also find that the crisis reduces the short-run benefits Kraft derives from advertising by Eta, 

i.e. from .57 (insignificant) to –1.63 (significant). Moreover, Eta's advertising becomes beneficial for 

Sanitarium in the long run (jump from an insignificant 3.45 to a significant 5.70). This is also illustrated 

in Figure 3, panel d. Thus, Sanitarium benefits from Eta's efforts to recover from the crisis by means of 

advertising, suggesting that Eta’s advertising informs consumers that it is safe again to consume products 

in the category (Dawar and Pillutla 2000). Nevertheless, some consumers seem to prefer to first try out 

the non-affected brand Sanitarium rather than the affected brands Eta or Kraft. Also,  Eta's price has less 

short-run clout on Sanitarium after the crisis (0.12, insignificant) than before (1.48, significant). This 

corresponds with the notion that postcrisis Eta becomes a less attractive brand to switch to when it is on 

discount (Bell, Chiang, and Padmanabhan 1999). The price impacts of Eta on Kraft do not change 

appreciably, which is again consistent with constant relative strengths.  

 

5.2.4. Same-company brands 

Although the Kraft brand was not affected by the salmonella poisoning, as a precaution it was 

taken from the shelves by Kraft Australia for the same 21-week period as Eta. Table 3 shows that the 

crisis had a substantial impact on Kraft as well. Its post-crisis intercept turns from significant (1.44) to 

insignificant (–0.44). Kraft's own short-term advertising effect shows an interesting phenomenon: 
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although it becomes (as expected) lower in magnitude (from 2.04 to 1.67), it turns from insignificant into 

significantly positive (counter to the expectation). Table 3 shows that the postcrisis confidence bound 

becomes narrower, and excludes zero. A possible reason is that since Kraft spends more on advertising 

(with a higher standard deviation) postcrisis (Table 1), the effectiveness can be estimated with a higher 

precision. Kraft’s own long-run advertising suffers from the expected reduced effectiveness (Aaker 1991, 

Goldberg and Hartwick 1990), and its quasi elasticity estimate reduces significantly from 15.61 

(significant) before the crisis to 10.71 (significant) after. 

While Kraft’s pre-crisis short-run price elasticity is only –0.50 and insignificant, its post-crisis 

elasticity is –3.00 and significant (see also Figure 3, panel e). Thus, whereas its insignificant price 

elasticity indicates that Kraft was strongly differentiated before the crisis (Boulding, Lee, and Staelin 

1994, Nicholson 1972), it becomes much less so postcrisis. In other words, the Kraft brand can no longer 

raise its price unpenalized in the postcrisis era. 

Finally, advertising of Kraft and Sanitarium have mutually beneficial effects in the post-crisis era. 

That is, postcrisis advertising by Kraft may play an informational role (Dawar and Pillutla 2000). As a 

result it significantly benefits Sanitarium sales more after the crisis (short-run: 0.81; long-run: 2.41) than 

before (short run: –1.20; long run –5.63). However, counter to our initial prediction, post-crisis 

advertising by Sanitarium helps Kraft more after the crisis (short-run effect = 2.36, significant) than 

before (–1.67, insignificant). This finding, however, is in line with Dawar’s (1998) argumentation that 

because of the crisis, the whole category has come under closer public scrutiny, making it easier to create 

higher levels of awareness and returns with one’s advertising.   Sanitarium’s advertising may therefore 

help to bring the message across that is safe to again consume peanut butter.  Once the crisis is over, some 

consumers, in response to this message, apparently start to switch back to the pre-crisis market leader 

Kraft. This signals that Kraft was able to bounce back and reclaim some of its market share lost to 

Sanitarium.  Ahluwia et al. (2000) found that consumers who have a high level of commitment to a brand 

are more likely to counterargue with negative information.  Hence, a strong brand like Kraft’s core brand 

might be better able to weather a product-harm crisis (see also Hoeffler and Keller 2003). 
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5.2.5. Other results 

While Sanitarium’s pre-crisis intercept is insignificant (–0.60)7, it becomes significantly positive 

during the crisis (2.46), but turns insignificant again after the crisis (1.53).  We illustrate this pattern in 

Figure 2, panel f.  These findings match well with Sanitarium's sales graph in Figure 1. As indicated 

before (see footnote 3), we do not allow the own-effectiveness parameters of Sanitarium to differ in the 

pre-, during, and postcrisis intervals.  Its own-price elasticities in the short run (–2.52, significant) and 

long run (–2.01, insignificant) are comparable to the results from respectively, Bijmolt, Van Heerde, and 

Pieters (2005) and Fok et al. (2005). It is interesting to note (see also section 5.3) that Sanitarium’s own-

brand advertising quasi-elasticities in the short run (1.89, significant) and in the long run (4.56, 

significant) are weak relative to the pre-crisis quasi-elasticities of Eta (Table 2) and Kraft (Table 3). 

 

5.3 Managerial implications 

An important managerial question is how much marketing investment an affected brand should 

make to recover losses in baseline sales, based on the updated post-crisis parameters. To answer this 

question, we take the perspective of an affected brand’s manager who finds out that his/her brand 

experienced a major sales loss in the first four weeks after the crisis. In the Australian salmonella case, 

average Eta sales were down by 59% relative to the final four weeks before the crisis, corresponding to a 

ln sales loss of .93 (see Table 4). Eta’s post-crisis long-run quasi-elasticity of advertising is 2.50, 

indicating that a permanent weekly advertising investment of 1 million AU$ leads to a 2.50 ln sales 

increase in the long run.  Hence, to re-establish its pre-crisis (ln) sales level, Eta’s brand manager should 

have spent a whopping (.93/2.50)*106 = AU$ 373,578 on permanent weekly advertising, even ignoring 

the finding that 2.50 is an insignificant estimate. The incorrect required spending level based on the pre-

crisis long-run advertising quasi elasticity (13.36) is much lower, (.94/13.36)*106  = AU$ 69,782 (see 

Table 4). Interestingly, Eta’s manager may have realized spending advertising dollars on post-crisis Eta 

                                                      
7 The parameter estimates for Sanitarium are available from the first author upon request. 
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would be a waste of money. Accordingly, in reality s/he did not spend a dime on advertising during the 

four weeks after the crisis (see Table 4).  

[Insert Table 4 about here] 

Relative to the final four weeks before the crisis, Kraft lost 29% sales in the first four weeks after 

the crisis. Right after the crisis, Kraft actually spent on average AU$ 44,177 on weekly advertising, which 

compares favorably to the permanent weekly advertising spending of AU$ 32,444 required to equalize 

post- to precrisis long-run sales levels (see Table 4).  If Kraft management had believed that the pre-crisis 

effectiveness (15.61) still applied after the crisis, the implied (but incorrect) required weekly advertising 

spending would have been AU$ 22,268. In order to validate the robustness of these findings, we 

performed similar calculations for Eta and Kraft based on eight- (rather than four-) week pre- and 

postcrisis periods, which did not lead to substantively different conclusions. 

Although in the pre-crisis period the long-run advertising quasi-elasticity estimates for Eta 

(13.36) and Kraft (15.61) were quite similar, after the crisis Kraft Australia decided to invest heavily in 

advertising for the Kraft brand rather than for Eta. Our model corroborates the appropriateness of this 

decision, given that in the postcrisis period, the long-run advertising quasi-elasticity estimate for Kraft 

(10.71) is more than four times larger than the insignificant estimate for Eta (2.50). This focus on the 

Kraft brand seems to have paid off, given its relatively quick postcrisis recovery in sales (see Figure 2). 

Sanitarium responded quite opportunistically by spending 36 times more on weekly advertising 

during the crisis (AU$ 21,925) than before (AU$ 607; see Table 1). However, its long-run advertising 

quasi-elasticity (4.56) is much lower than for postcrisis Kraft (10.71). Hence, Sanitarium has been trying 

to benefit from the crisis by investing a lot of money in a relatively weak marketing instrument. 

Moreover, the high advertising spending levels were not sustainable in the postcrisis period (down to 

AU$ 2,448).  Additional investments in advertising would not have been very beneficial anyway, given 

its relatively low effectiveness.  

It also seems that Sanitarium missed the opportunity to use its increased price clout to hurt Eta 

and Kraft. Sanitarium’s long-run price impact on both brands increases significantly after the crisis (see 
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Tables 3 and 4). However, Sanitarium decided to increase its kilo price from on average AU$ 6.6 before 

the crisis to AU$ 7.2 after, an increase of 8%. In case Sanitarium would have decided to permanently 

decrease its price by the same percentage after the crisis, the long-run sales level of Eta would have 

decreased by 17% (= % price change*long-run cross-price elasticity of Eta to Sanitarium = –8*2.21 ). 

This price decrease would have inflicted a 13% sales loss for Kraft. One of the possible reasons that 

Sanitarium missed this opportunity is that they may not have realized their brand gained so much clout 

because of the crisis. The model proposed in this study is uniquely suited to provide such insights. 

6. CONCLUSIONS 

Product-harm crises are among the worst disasters that can happen to firms. This paper provides a 

methodology to assess the impact of such crises in a quantitative way.  Specifically, we propose a time-

varying parameter error-correction model, cast in a Dynamic Linear Model format and estimated by 

Bayesian techniques, that separates short- and long-term marketing-mix effects, allows for intercepts and 

response parameters that change as a result of the crisis, and that copes with missing observations due to 

the absence of the impacted brand during the product-recall period.  

The single-best strategy is to avoid product-harm crises altogether by implementing very careful 

business processes with sufficient checks and balances. The second-best strategy is to react in an 

appropriate fashion when, despite all pre-cautions, a product crisis occurs which endangers the health and 

well-being of the firm’s customers. The management literature provides various qualitative guidelines on 

how to regain consumer confidence (e.g., Smith, Thomas, and Quelch 1996). Since marketing 

investments may be instrumental to convince consumers to again purchase products of the firm, it is 

important to provide an adequate measurement of the effectiveness of marketing investments, especially 

after the crisis.  

A key take-away from this paper is therefore that it is not only important to assess the extent to 

which business is lost as a result of the crisis, but also to find the new, post-crisis response parameters to 

marketing activities. The study of an Australian product-harm crisis for peanut butter showed that we 

have to reject the naive idea that firms can recoup from the crisis by advertising investments that are 
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equally effective as before the crisis. Instead, the required investments are much higher. On top of that, 

the impacted brands became more vulnerable to competitors, whereas their clout on competitors was 

strongly reduced.  

The marketing literature has identified several double (or higher) jeopardies. For example, 

Ehrenberg, Goodhardt, and Barwise (1990) underscore that a small brand faces a double jeopardy relative 

to a larger brand: a small brand has far fewer buyers, and its buyers tend to buy it less often, while Jones 

(1990) argues that sales promotions could lead to a multiple jeopardy: less profits on more sales in the 

short run, and a worrying long-term legacy: no increase in sales, increased competition, and a diluted 

brand image.  This paper concludes that a product-harm crisis may represent a quadruple jeopardy to 

firms: (i) loss of baseline sales, (ii) loss of effectiveness of own marketing instruments, (iii) increased 

vulnerability, and (iv) decreased clout. Even though each of the four jeopardies we identified was present 

in the peanut-butter case under investigation, this need not always be the case. More research is needed to 

assess their relative importance in other product crises, and determine whether the jeopardies are 

moderated by brand or category characteristics. 
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Technical Appendix: Model Estimation 

The model is estimated by using the filtering forward, backward sampling algorithm (Carter and 

Kohn 1994, Frühwirth-Schnatter 1994).  The forward filtering equations assume that G, V, and Wt are 

known, an assumption we shall relax shortly (West and Harrison 1999, p. 103-104) 

1. Posterior at 1−t  

(7)  ),(~| 1111 −−−− tttt CmNDθ  

2. Prior at t 

(8)   ),(~| 1 tttt RaND −θ where 1−+= tttt mGZa ψ and WGCGR tttt +′= −1  

3. One-step forecast 

(9)  ),(~| 1 tttt QfNDy − where ttt aFf ′=  and VFRFQ tttt +′=  

4. Posterior at t 

(10)  ),(~| tttt CmNDθ , 

where )( ttttt fYAam −+= , tY is the realization of ty , ttttt AQARC ′−=  and 1−= tttt QFRA . 

The backward filtering part samples the parameters, tθ , as described by West and Harrison 

(1999, p. 570). We simulate the individual state vectors 11 ,,, θθθ �−TT as follows: 

(11)  Sample Tθ from ),(~)|( TTTT CmNDθ , then 

(12)  For each t = 0,1,,2,1 �−− TT sample tθ  from p( tθ | 1+tθ , tD ), where the conditioning value of 

1+tθ is the value just sampled.  The required conditional distributions are: 

),(~),|( 1 ttttt HgND+θθ , where )( 11 ++ −+= ttttt aBmg θ and 

ttttt BRBCH ′−= +1 with 1
1

-
ttt RGCB +′= . 

As noted above, the process assumes that λ, V, W and ψ are known. By using Gibbs sampling techniques 

(Gelman, Carlin, Stern and Rubin 1995), we can sample from each of these distributions: 
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1) W.  We assume a time-constant diagonal state equation covariance matrix W.  The diagonality 

assumption is not that restrictive, as it does not imply jtθ are independent – because we allow correlations 

via the equations for the brands.  Rather, the assumption of diagonal W implies only conditional 

independence and thus W captures longitudinal rather than cross sectional variance.  The prior on 

diagonal element Wmb (for brand b, independent variable m) is Inverse Gamma ( 2/Wν , 2/WS ).  Then 

the full conditional distribution for Wmb is Inverse Gamma ~ 

( ) 




 −−++ ∑

=
− 2/2/,2/)(

1

2
1W

T

t
mbttmbmbtW ZGST ψθθν , where mbG is the row fromG corresponding to 

mbtθ .  We choose a diffuse prior for W: 3=W and
1000

1=WS .   

2) V. We allows for nonzero covariances between the errors of the brand ln sales equations. We 

specify the prior on the covariance matrix V is Inverse Wishart ( V , VS ).  The full conditional 

distribution for V is Inverse Wishart ~ 




 ′′−′−++ ∑

=

)F(y)F(yST, ttt

T

t
tttVV

1

. We use a diffuse prior 

for V, with V = B + 2 = 5 and Bv IS *
1000

1= . 

3) λ. We use the same prior specification for each element of λ.  Specifically, for brand b, 

independent variable m we assume a truncated normal prior: 0),(~ >Σ
mb

ITNmb λλλµλ .  The likelihood 

may be derived as follows.  Note that, by rearranging (6) and stacking the observations for parameter 

mbtθ across time in ),,( 2 mbTmbmbT θθθ �=′  and in ),,( 111 −− =′ mbTmbmbT θθθ � , we obtain 

mbTmbTmbmbmbTmbTmbT Zy ωθλψθλ +=′−≡ −1 , where ),,0(~ mbmbt WNω mbλ  is a scalar and mbW is the 

diagonal element from W corresponding to mbθ .  Then this yields the standard form for a regression with 

the likelihood [ ] ( ) [ ]( ) ),( ,~ -1
111

-1
11 mbmb

SlNWyN mbmbT-mbT-mbTmbT-mbT-mbT-mb λλλ θθθθθλ ≡′′′ . Given that the 

prior and likelihood are normal, the full conditional posterior distribution is given by  



 24

mbλ ~ 0
11111111 ))(),()(( >

−−−−−−−− +Σ+Σ+Σ
mbmbmbmbmb

ISlSSTN λλλλλλλλλ µ , i.e., we draw mbλ  from a normal 

distribution truncated at zero. For λ we use a diffuse prior: λµ = 0.50 and λΣ =100.  

4) ψ . For brand b, independent variable m we assume a normal prior: ),(~ ψµψ ΣNmb .  We 

construct the likelihood as follows.  Rearranging equation (6) yields 

mbTmbmbTmbTmbTmbT Zy ωψλθψ +=−≡ −1 where ),0(~ mbmbT WNω .  This is a standard regression 

equation.  Thus the likelihood for mbψ ~ ),SN(dW)ZZ, (yZ)ZZN((
mbmbmb

-
mbTmbT�����mbT

-
mbTmbT ≡)′′′ 11 .  

When combined with the normal prior, the full conditional posterior distribution is given as  

mbψ ~ ))(),()(( 11111111 −−−−−−−− +Σ+Σ+Σ
mbmbmbmbmbmbmb

SdSSN mb ψψψψψψψ µ .  We use diffuse priors: µ =0, ψΣ = 

100.  

Inferences 

The model is estimated by sequentially running through the forward-filtering, backward sampling 

equations (7)-(12). Next we draw the parameters specified at 1)-4) above, and that completes one Gibbs 

draw. We generate 400,000 draws in total of which we use the first 200,000 draws for burn-in purposes; 

based on visual checks the chain converges already after approximately 10,000 draws. We use every 100th 

of the final 200,000 draws for inferences, since thinning the series of draws reduces autocorrelation 

(Gelman et al. 1995). Hence, the effective sample size is 2,000. 

Missing values 

The DLM copes naturally with missing data. A missing brand in week t causes missing values in 

the dependent variables (vector y) and in the independent variable (matrix F). The corresponding rows are 

omitted from y and F, as are the corresponding rows and columns in matrix V (see also Van Heerde, 

Mela, and Manchanda 2004). The parameters associated with the missing brand are not updated in week t, 

which is achieved by equaling the posterior distribution to its prior. Specifically, for such parameters we 

use in equation (10) tt am = and tt RC = (West and Harrison 1999, p. 351).   
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Table 1 
Descriptive statistics: weekly means and standard deviations 

 
 

Variable Brand Overall 
(n=247 for Sanitarium and 
n=226 for Eta and Kraft) 

Before crisis 
(n=64) 

During crisis 
(n=21) 

After crisis 
(n=162) 

Sales (kilo) Eta 2,097 
(602) 

2,427 
(348) 

. 1,967 
(632) 

      
 Kraft 10,742 

(2,141) 
10,052 
(1,088) 

. 11,015 
(2,383) 

      
 Sanitarium 2,627 

(1,304) 
1,780 
(684) 

5,319 
(1,611) 

2,612 
(927) 

Advertising (AU$) Eta 3,023 
(10,158) 

3,357 
(9,371) 

. 2,891 
(10,477) 

      
 Kraft 10,551 

(20,246) 
7,006 

(11,289) 
. 11,952 

(22,716) 
      
 Sanitarium 3,627 

(12,616) 
607 

(2,766) 
21,925 

(22,510) 
2,448 

(11,339) 
Price (AU$) Eta 6.3 

(0.3) 
6.0 

(0.1) 
. 6.4 

(0.3) 
      
 Kraft 7.7 

(0.2) 
7.5 

(0.2) 
. 7.7 

(0.2) 
      
 Sanitarium 7.0 

(0.4) 
6.6 

(0.4) 
6.8 

(0.4) 
7.2 

(0.3) 
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Table 2 
Empirical results for Eta: steady-state posterior distributions 

Effect Independent variable Period Before crisis 
Median 

(2.5th, 97.5th 
percentiles) 

After crisis 
Median 

(2.5th, 97.5th 
percentiles) 

Significant 
Changeb 

Own effects Constant  2.78* 
(1.50,4.47) 

0.99 
(-0.12,1.54) 

Decrease 

 Advertisinga Short run 3.77* 
(1.07,5.32) 

0.59 
(-0.26,1.59) 

Decrease 

  Long run 13.36* 
(7.50,23.12) 

2.50 
(-0.69,5.43) 

Decrease 

 Price Short run -3.65* 
(-6.72,-1.09) 

-3.83* 
(-4.33,-3.22) 

No 

  Long run -0.06 
(-4.61,4.97) 

-1.60 
(-3.01,2.75) 

No 

Vulnerability Advertising Kraft Short run 1.80* 
(0.80,2.51) 

0.34 
(-0.32,1.25) 

Decrease 

  Long run 11.11* 
(1.40,20.86) 

1.59 
(-3.34,6.03) 

Decrease 

 Advertising Sanitarium  Short run 3.65* 
(1.06,5.78) 

0.46 
(-1.52,1.28) 

Decrease 

  Long run 3.32 
(-3.13,20.17) 

2.30 
(-5.62,10.70) 

No 

 Price Kraft Short run 0.97* 
(0.19,2.15) 

1.54* 
(0.72,2.41) 

No 

  Long run -0.37 
(-4.39,3.46) 

0.48 
(-3.43,3.93) 

No 

 Price Sanitarium Short run 0.82* 
(0.09,1.49) 

1.00* 
(0.34,2.14) 

No 

  Long run -1.05 
(-5.36,1.27) 

2.21* 
(1.00,3.72) 

Increase 

Clout Advertising impact on Kraft Short run 0.57 
(-0.65,1.78) 

-1.63 
(-2.39,0.24) 

Decrease 

  Long run 4.44 
(-10.63,11.59) 

2.98 
(-10.17,12.09) 

No 

 Advertising impact on 
Sanitarium 

Short run 0.52 
(-0.82,4.23) 

0.82 
(-1.08,4.37) 

No 

  Long run 3.45 
(-0.08,5.68) 

5.70* 
(3.77,8.01) 

Increase 

 Price impact on Kraft Short run -0.58 
(-1.98,1.13) 

0.38 
(-0.45,1.42) 

No 

  Long run 4.79 
(-5.53,12.33) 

4.24* 
(1.74,11.01) 

Increasec 

 Price impact on Sanitarium Short run 1.48* 
(0.13,3.76) 

0.12 
(-0.56,0.98) 

Decrease 

  Long run 1.96 
(-0.77,4.90) 

0.30 
(-0.18,1.33) 

No 

Adjustment 
effect 

Lagged ln kilo sales Eta  -0.25* 
(-0.40,-0.14) 

-0.25* 
(-0.40,-0.14) 

nad 

A * indicates that zero is not included in the 95% posterior density interval. 
a. Advertising expenditures are measured in millions of AU$. 
b. Underlined changes are significant at the 5%-level, other changes at the 10% level. 
c. Although the magnitude decreases, the estimate becomes positively significant. 
d. This parameter is assumed to be unaffected by the crisis (see equation (4)). 
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Table 3 
Empirical results for Kraft: steady-state posterior distributions 

Effect Independent variable Period Before crisis 
Median 

(2.5th, 97.5th 
percentiles) 

After crisis 
Median 

(2.5th, 97.5th 
percentiles) 

Significant 
Changeb 

Own Constant  1.44* 
(0.77,2.77) 

-0.44 
(-1.61,1.13) 

Decrease 

 Advertisinga Short run 2.04 
(-0.43,3.86) 

1.67* 
(0.51,2.84) 

Increasec 

  Long run 15.61* 
(7.65,161.63) 

10.71* 
(5.24,37.48) 

Decrease 

 Price Short run -0.50 
(-5.16,0.95) 

-3.00* 
(-4.24,-2.19) 

Decrease 

  Long run -0.93 
(-9.63,3.31) 

0.26 
(-7.06,2.98) 

No 

Vulnerability Advertising Eta Short run 0.57 
(-0.65,1.78) 

-1.63 
(-2.39,0.24) 

Decrease 

  Long run 4.44 
(-10.63,11.59) 

2.98 
(-10.17,12.09) 

No 

 Advertising Sanitarium  Short run -1.67 
(-2.88,1.26) 

2.36* 
(0.27,3.62) 

Increase 

  Long run 13.09 
(-23.36,33.62) 

10.54 
(-0.30,30.74) 

No 

 Price Eta Short run -0.58 
(-1.98,1.13) 

0.38 
(-0.45,1.42) 

No 

  Long run 4.79 
(-5.53,12.33) 

4.24* 
(1.74,11.01) 

Increasec 

 Price Sanitarium Short run 0.20 
(-1.04,1.63) 

0.32 
(-0.84,1.36) 

No 

  Long run -2.05 
(-10.97,2.06) 

1.74 
(-2.73,6.16) 

Increase 

Clout Advertising impact on Eta Short run 1.80* 
(0.80,2.51) 

0.34 
(-0.32,1.25) 

Decrease 

  Long run 11.11* 
(1.40,20.86) 

1.59 
(-3.34,6.03) 

Decrease 

 Advertising impact on 
Sanitarium 

Short run -1.20 
(-3.27,0.58) 

0.81* 
(0.06,1.57) 

Increase 

  Long run -5.63 
(-10.74,2.96) 

2.41 
(-0.14,5.52) 

Increase 

 Price impact on Eta Short run 0.97* 
(0.19,2.15) 

1.54* 
(0.72,2.41) 

No 

  Long run -0.37 
(-4.39,3.46) 

0.48 
(-3.43,3.93) 

No 

 Price impact on Sanitarium Short run 0.90 
(-0.37,1.75) 

0.83 
(-0.23,1.89) 

No 

  Long run 0.46 
(-0.90,2.34) 

0.36 
(-0.54,1.68) 

No 

Adjustment 
effect 

Lagged ln kilo sales Kraft  -0.24 
(-0.49,-0.05) 

-0.24 
(-0.49,-0.05) 

nad 

A * indicates that zero is not included in the 95% posterior density interval. 
a. Advertising expenditures are measured in millions of AU$. 
b. Underlined changes are significant at the 5%-level, other changes at the 10% level. 
c. Although the magnitude decreases, the estimate becomes positively significant. 
d. This parameter is assumed to be unaffected by the crisis (see equation (4)). 
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Table 4 
Required weekly advertising spending to recover from product-harm crisis 

 Eta Kraft 
Average sales (kg) in final 4 weeks before crisis 2,491 10,471 
Average sales (kg) in first 4 weeks after crisis 1,013 7,453 
Difference -1,478 

(-59%) 
-3,018 
(-29%) 

   
Average ln sales in final 4 weeks before crisis 7.82 9.25 
Average ln sales in first 4 weeks after crisis 6.89 8.91 
Difference -0.93 -0.35 
   
Postcrisis long-term advertising quasi-elasticity 2.50 10.71 
Implied (correct) advertising level (AU$) to recover difference  373,578 32,444 
  
Precrisis long-term advertising quasi-elasticity 13.36 15.61 
Implied (incorrect) advertising level (AU$) to recover difference  69,782 22,268 
  
Actual advertising spending (AU$)in first 4 weeks after crisis  0 44,177 
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Figure 2 
Illustrations of time-varying parameters 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

a. Intercept Eta 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

b. Short-run own advertising effect Eta 
 
 
 
 
 
 
 
 
 
 
 
 

c. Long-run own advertising effect Eta 

 
 
 
 
 
 
 
 
 
 
 
 

d. Long-run advertising effect Eta on Sanitarium  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

e. Own price effect Kraft  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

f. Intercept Sanitarium 
 


