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Abstract

In the classical approach to determine how many spare parts to stock, the spare
parts shortage costs or the minimum fill rate are a key factor. A difficulty with this ap-
proach lies in the estimation of these shortage costs or the determination of appropriate
minimum fill rates. In an attempt to overcome this problem, we propose to use the data
gathered in reliability centered maintenance studies to determine shortage costs. We
discuss benefits of this approach. At the same time, the approach gives rise to complica-
tions, as the RCM study determines downtime costs of the underlying equipment, which
have a complex relation with the shortage cost for spare parts in case multiple pieces of
equipment have different downtime costs. A further complication is redundancy in the
equipment. We develop a framework that enables the modelling of these more compli-
cated systems. We propose an approximative, analytic method based on the model that
can be used to determine minimum stock quantities in case of redundancy and multiple
systems. In a quantitative study we show that the method performs well. Moreover, we
show that including redundancy information in the stocking decision gives significant
cost benefits.

1 Introduction

Availability of spare parts is important for companies, because spares are needed for ef-
ficient operation of capital goods. When equipment breaks down, the downtime can be
significantly reduced if all spares needed for the repair are immediately available. If on the
other hand spares are not immediately available, the waiting time for the spares can cause
costly production losses. Because the costs of keeping spare parts on stock can be high,
it is not obvious whether we should keep stock - either how many - to avoid downtime,
or whether we should refrain from keeping stock to avoid holding costs. It is apparent
from overviews of spare parts inventory control [1, 2] that most models aiming to support
inventory decisions assume that certain pieces of information regarding the spare parts are
available. Such pieces of information include the price and leadtime of the spare part, the
usage of the part, and the shortage costs that are incurred during the waiting time for
the part. The price and the leadtime of the part are in general available to the inventory
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controller. The shortage costs and, in cases without demand history, the usage, are hard to
estimate in practice. A method to circumvent the former problem is the setting of so-called
service level targets, but finding appropriate values for these targets may prove difficult as
well.

The research we report on was performed at a large petrochemical company. When
determining stock quantities, obtaining reasonable estimates for the shortage costs was
troublesome because of lacking data.

The company carries out reliability centered maintenance studies in order to improve
maintenance practice at their plants. Reliability centered maintenance is a structured ap-
proach to ensure that all available data and knowledge is used to arrive at an optimal
maintenance regime. As part of the particular type of RCM study carried out by the com-
pany the production loss incurred during equipment downtime and the estimated frequency
of occurrence of different failure modes are quantitatively determined. The RCM study thus
enables the use of downtime costs that are based on a thorough analysis by people that are
actually working with the equipment.

We however find that while in inventory models often shortage costs consisting of a single
number are assumed, in practice all equipment in which the spare part is used is a potential
source of downtime costs, and the downtime costs of different pieces of equipment need not
be equal. Another complication that came forward is redundancy. When there are two
pieces of equipment, of which only one is needed to keep the plant running, a breakdown of
one does not necessarily have severe economic consequences. In summary, it is not clear in
what manner the downtime costs translate to shortage costs for the spare parts.

We contribute by proposing a new, versatile inventory model that can be used to tackle
the above-mentioned complications resulting from the use of RCM in inventory control.
While using RCM data for spare part inventory control has to our best knowledge not been
described in literature before, there are some contributions on spare parts inventory control
for redundant systems. In De Smidt-Destombes et al. [3] the tradeoff between repair
capacity and spare part inventory control is investigated for a single k out of N system
under condition based maintenance; i.e. when the number of defect pieces of equipment
exceeds some previously defined limit, maintenance is initiated. They propose exact and
approximate methods to analyze the system availability. In a later paper [4] the possibility
that pieces of equipment degrade before failing is included, which complicates the analysis
significantly and allows for more refined policies.

De Smidt-Destombes et al. [5] consider M identical k out of N systems under block
replacement. For each system all defect pieces of equipment are replaced every fixed time
interval. Two methods are proposed to analyze the system availability as a function of
the number of spare parts stocked and the block replacement interval. Their most recent
contribution [6] on the subject considers the optimization of the control parameters in the
models presented earlier [3, 4, 5] to reach the target availability at minimal cost.

Chakravarthy and Gómez-Corral [7] also consider a single k out of N system, spare pieces
of equipment, and a single repair man. A matrix analytic approach is used to evaluate the
performance of these systems. Their model distinguishes itself from the models considered
by De Smidt-Destombes et al. because they assume that spare parts are not requested
when a piece of equipment fails with some positive, exogenous, state-dependent probability.
Otherwise, their assumptions regarding the repair process are more restrictive than the
assumptions investigated by De Smidt-Destombes et al.

Our model differs significantly from the models mentioned above. Neither the model
we introduce, nor the existing models mentioned above are more general. The differences
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between the models result from a difference in application. In the application examples
given for the studies by De Smidt-Destombes et al., initiating maintenance involves a major
setup cost and a significant setup time, elements that are both incorporated in their model.
In discussion with the company at which this research was performed, we concluded that
neither a setup cost nor a setup time play a significant role for our application. Both were
not included in our model. Conversely, while other contributions only consider a single
system [3, 4, 7] or multiple identical systems [5, 6], our model is very flexible in the sense
that it allows an arbitrary combination of redundant systems, between which both the
failure rate and the amount of redundancy may vary. The flexibility is needed to make the
model applicable because many practical cases involve combinations of redundant systems
with different redundancy levels and failure rates. Finally, our model is specifically designed
to work with a detailed cost structure. It is therefore possible to model a system in which
the throughput depends on the number of defect pieces of equipment in a gradual manner,
another feature that is needed to make the model applicable for use with data coming from
an RCM study.

Another related work is the paper by Dekker and Plasmeijer [8]. They advocate setting
quantitative estimates for unit downtime costs in complex systems in order to facilitate
decision making both on maintenance and on spare parts inventory levels. They provide
methods to estimate these downtime costs. We take a different perspective. We will not
estimate the downtime costs of individual pieces of equipment but instead directly estimate
the shortage costs of spares in the combined system.

Besides proposing an inventory model specifically aimed towards working with RCM
data, we contribute the following. In order to avoid the drawbacks of Monte Carlo simula-
tion, such as long computation times and lack of insight, we propose two analytic approxi-
mations of the downtime costs. As a result of the difference in models, the approximations
we propose are totally different from the approximations developed by De Smidt-Destombes
et al. We develop an algorithm that can be used to determine the optimal reorder points
based on the approximative methods. In a numerical experiment, we show that the cost
increase as a result of using one of the approximations is small, while the other method
has some performance issues, but is more intuitive to grasp and easier to implement. Fur-
thermore, we give a number of qualitative arguments for the use of RCM data in inventory
control. Finally, we present quantitative evidence that the value of using the detailed RCM
data is significant. In particular, we compare the costs of the proposed methods with the
costs of more traditional methods, and find significant cost benefits of the former over the
latter.

This work expands on an earlier contribution (Van Jaarsveld and Dekker [9]). In the
present work, we propose a new approximation with a significantly improved performance.
We also add an extensive numerical experiment, from which many insights are derived.

The remainder of this paper is organized as follows. In Section 2 we give a problem
setting including a motivation for the use of RCM data in inventory control. We also
discuss the requirements of the model in terms of functionality and applicability. In Section
3 we give a formal description of the model itself. We discuss the practical issues that were
taken into consideration when designing the model. In Section 4 a method is proposed to
approximate the downtime costs using the model. In Section 5 we describe the setup of
a numerical study. In Section 6 we give the results of this study, including investigations
of the quality of the approximation and the benefits of using redundancy information over
more traditional approaches. In the last section, we formulate conclusions.
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2 Problem setting

2.1 Motivation for using RCM data for inventory control

Spare parts inventory control and reliability centered maintenance are related, in that the
ultimate aim of both is to enable the efficient operation of equipment. Even so, the perspec-
tive taken differs between RCM and spare parts inventory control. Below we will describe
RCM and inventory control while highlighting this difference in perspective, and we moti-
vate the use of RCM data in inventory control.

From the perspective of spare parts inventory control, maintenance is primarily the
source of the spare part demand. The specific maintenance requirements are kept more
or less abstract, depending on the precise assumptions in each particular inventory model.
Some contributions to inventory control assume the requirements of maintenance are trans-
lated to fill rate requirements on the overall or individual availability of parts. Others take
the perspective that shortage costs are known. In the spare parts literature, little research
is devoted to the actual determination of appropriate service targets and/or shortage costs.
Notwithstanding, we run the risk of managing the inventory haphazardly in spite of the
use of sophisticated inventory models if a well-defined procedure to determine the shortage
costs is lacking, because without such a procedure we rely on parameters that cannot be
managed nor controlled.

The influence of the availability of spare parts on the ability to perform efficient op-
eration may however be quite complex. In certain environments, detailed knowledge of
the equipment being maintained is needed to define appropriate availability targets for the
spare parts. At the company at which this research was performed, a single spare part
may be used in different pieces of equipment, each having different redundancy and differ-
ent criticality. In that case, knowledge of redundancy and criticality is crucial to arrive at
appropriate stock quantities.

From the perspective of RCM, maintenance is used to ensure that equipment continues
to fulfill its intended function (see e.g. Moubray [10]). In order to successfully perform
a reliability centered maintenance study, a thorough knowledge of the equipment to be
maintained is indispensable. The team performing a RCM study contains people that
are actually working with the equipment, with a lot of affinity with the equipment and a
good knowledge of the consequences of downtime. Because of this knowledge, the team
performing the RCM study is able to provide data of good quality on the downtime costs
of the equipment, as well as data on the failure rates and redundancy structure of the
equipment. This data is valuable for determining stock quantities. Furthermore, this data
is delivered in well-structured reports, with standard data fields that allow the use of (semi-
)automatic inventory models for a lot of different parts. And even though different RCM
studies may differ, the exact procedure of each study is often well-defined. These properties
make that data coming from an RCM study is particularly valuable when managing spare
parts inventory, and they make RCM a good basis for a well-defined procedure to determine
spare parts shortage costs.

In summary, since RCM data is well-structured and delivered by a team with a lot of
knowledge of the equipment, and since it contains information directly related to the costs
of waiting for spares, integrating RCM data in inventory control gives opportunities for
cost effectively improving the inventory decisions. Moreover, integrating RCM in inventory
control ensures that the inventory decisions are based on the best information and knowledge
available to the company.
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2.2 The company

This research is a result of a cooperation with a company that is active in the petrochemical
industry. The company at which this case study was performed is stakeholder in large
refineries and oil production platforms. RCM studies are performed on critical equipment
for both greenfield and existing projects. Equipment assessed in the study includes feeding
pumps, power generators, valves and other components that perform important functions.
Equipment failure may lead to production loss, which can be translated to downtime costs.
As discussed before, the target of the study is to incorporate the RCM data in inventory
control to improve inventory decisions and to ensure that all information available to the
company is used in the best way to ensure optimal inventory control.

The RCM study carried out by the company at which the research was performed is
quantitatively oriented, quantitative estimates of the effect of equipment downtime and
failure rates are estimated by the RCM team. This makes this type of RCM study partic-
ularly valuable for inventory control. Another aspect that comes forward from the study
is redundancy. In particular, the study identifies redundancy and estimates the downtime
costs as a function of the number of pieces of equipment functioning within the group of
equipment for which the redundancy is involved. This information is crucial when deter-
mining spare parts shortage costs. At the same time, to be able to use this information, an
inventory model is needed capable of using it.

Even though the research was performed in cooperation with a company in this particular
industry, the developed model is quite general and can be applied across a wide range of
industries, as long as reliable estimates of the required data are available.

2.3 Model requirements

The model we develop should enable the use of data coming from the RCM study for the
purpose of inventory control. We should be able to apply the model cost-effectively and
with good results for the majority of the equipment for which the RCM study is carried out.
Not all data coming from the RCM study needs to be used. Aspects for which the added
value of including them does not outweigh the decreased usability of the model because of
the increase in complexity should be excluded. The primary reason to refrain from using
complex models is the increased burden they put on the data collection. It must not be
forgotten that RCM studies are primarily carried out in order to optimize maintenance, and
that information needed for that purpose is not necessarily essential for stock control.

The balance between realism and applicability evidently depends on the specific applica-
tion. For specific, very costly equipment with huge downtime costs (≥ $106/day), a detailed
simulation may be a cost-effective approach to determine appropriate stock quantities for
very expensive spares (≥ $105). We aim at spare parts with somewhat lower, but still
considerable, costs, and high downtime costs. The cases considered in Section 5.2 give a
good picture of the type of the applications for which the model was developed. In a single
RCM study, hundreds to thousands of pieces of equipment may be considered. Because the
time spent by a stock analyst is expensive, we should limit the effort required to find an
appropriate stock quantity for each part. Therefore, the decision making process for these
parts should be (semi-) automatic. When developing the model we must therefore limit the
number of details included, because each included detail requires data to be collected. At
the same time, we must make sure that the most important characteristics are included to
ensure that the quality of the decision is sufficiently high.
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3 The model

The model that resulted from the development is described in this section. The model
assumes that failures can occur in multiple pieces of equipment in the plant, which need
not have the same downtime costs. The model can also cope with redundancy. This
structure enables the use of the model in combination with the data coming from the RCM
study. In addition to giving a formal description of the model, we discuss the practical
considerations that were taken into account when designing the model. In particular, we
mention some aspects that were omitted from the model with the purpose of simplifying
the data collection. The discussion of these aspects will be based upon the application for
which this model was developed. It can be helpful when determining whether the model is
suitable for use in another application.

3.1 The spare part

A spare part with deterministic leadtime L is given. The spare part is stocked in a single
location, and it is used solely in the repair of some pieces of equipment. We assume that the
part is controlled in a continuous review policy. We concentrate on expensive spare parts;
we assume a base stock policy with base stock level S is used for the part. We will refer to
this base stock level as a reorder point in the rest of this paper. Under a continuous review
base stock policy a part is ordered each time it is withdrawn from stock (see e.g. Axsäter
[11, pp. 49-50]). The total number of parts on order plus the number of parts on stock
is kept constant, and equal to S. We assume that the holding cost per unit of time for a
base stock policy S are given by hS, where h is the holding cost per part per unit of time.
Often a fixed percentage of the value of the part is used for this. Note that we assume that
holding costs are paid for parts in replenishment as well.

We mention an important issue that needs to be resolved in order to apply the model.
Data on leadtime and cost must be obtained from the supplier in a standard format. We will
not go into details on this issue, but we mention that a well-defined procedure to obtain
reliable data on the spare parts themselves is essential for successful inventory control.
Furthermore, data must be obtained describing which parts are used in the repair of which
equipment. Even though this may not be standardly included in an RCM study, this data
can be obtained during the study. The data can also be obtained in a separate study.

3.2 Redundancy and downtime costs

We model the redundancy by assuming that the pieces of equipment are partitioned in N
functional groups. Pieces of equipment in the same functional group perform the same
function together involving redundancy. The number of equipment pieces in functional
group n ∈ N will be denoted by Rn. E.g. consider a case with 3 pumps. One pump
performs a single function on its own, while two pumps perform another function together.
Than, we have 2 functionality groups 1 and 2, with R1 = 1 and R2 = 2.

In each functional group, equipment may break down. We assume that as long as there
are active pieces of equipment in functional group n, breakdowns occur in the functional
group with rate λn. The probability of a failure in a functional group in some small time
interval is thus assumed to be independent of the number of pieces of equipment that are
down in the functional group (as long as at least one is still running), and independent of
the time that the system has been running without failures.
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A possible issue is that the failure rate in a functional group may in practice depend on
the number of pieces of equipments that are running. E.g. for multiple pumps running in
parallel in a two out of two (denoted as 2oo2 from now on) configuration, the failure of one
pump may increase the stress on the other pump, which may increase the failure rate of the
functional group. On the other hand, when only one pump is running, only this pump can
possibly fail, which may in turn reduce the failure rate of the functional group. As stated
above, we ignore these subtleties, and assume a failure rate that does not depend on the
number of active pieces of equipment in the functional group. The main motivation for this
simplification is that the estimation of the dependence of the failure rate on the number of
running pieces of equipment requires a lot of additional effort during the RCM study and
when preparing the data for the model. The return for this effort in terms of improved
results is probably limited.

Depending on the number of pieces of equipment defect in functional group n, we incur
downtime costs. For i ∈ {1, . . . , Rn} pieces of defective equipment in group n we assume
that downtime costs of cni ≥ 0 per time unit are incurred. These downtime costs will be
estimated in the RCM study. Note that we are interested in the marginal costs of having
a unit of extra downtime, the fixed repair costs should be excluded from cni since they are
not affected by the number of spares.

The assumption of marginal downtime costs linear in the downtime need not always
hold. In some cases, the downtime cost may depend non-linearly on the downtime interval
because of pipeline capacity. Again and for the same reasons, we ignore this subtlety.

3.3 Repair process

When equipment breaks down, we assume a single spare part is needed. In case the part is
available from stock, it is immediately withdrawn. If stock is depleted, parts are assigned
on a first come first serve basis to the repairs. As soon as a part is available for the repair,
the repair of the part is commenced. The repair time from that moment on is given by t5.

We acknowledge that first come first serve need not be optimal, because the downtime
costs for different pieces of equipment are not equal. It may even be suboptimal to always
withdraw stock when it is available. In order to keep stock for future, more critical, demands,
some stock may be rationed for use in more critical equipment (see Kleijn and Dekker [12]
for an introduction to inventory rationing and an overview of relevant literature).

The possibility of spares failing before being used or upon demand is not taken into
account. Most suppliers ar not willing to share information regarding failures upon demand
because of commercial reasons, and this data is hard to collect in another manner. For
parts in which failure upon demand plays an important role the method is not suitable.

Cannibalization of parts from other, less critical equipment is excluded. The expediting
of orders for spare parts when the spare parts are really needed is also excluded. Including
these would require an estimate of the cost- and time- parameters related to these special
operations, which would decrease the usability of the model.

The assumption that obtaining the spare part and repairing the equipment commence
immediately after the equipment breaks down does not hold in general. Systems in which
repairs on redundant systems are deliberately postponed are considered by De Smidt-
Destombes et al. [3, 5]. Postponement of the repairs are in these cases justified by fixed
setup costs. We consider systems in which repairing multiple pieces of equipment within the
same functional group simultaneously does not give an economic advantage. Repairs should
thus in principle be immediately commenced once they are detected. In redundant systems
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however, a failure need not be immediately detectable. For instance in a 1oo2 system, the
piece of equipment not running may degrade and break down, which happens undetected
until one attempts to activate the equipment. Undetected failures are a big threat that
should be mitigated by frequent testing, for instance by switching of the running equip-
ment. If testing is so frequent that failures are detected within a time span much smaller
than the other time scales of the problem, the applicability of the model is not hurt by the
undetected failures.

A further limitation of the assumption of immediate repairs and constant repair times
is finite repair capacity. When a lot of parts fail in a short time interval, there may not be
sufficient repairmen to finish all repairs in regular working hours. Note however that the
repairmen perform the maintenance for all equipment on the site, while the spare parts are
only used in a very limited number of equipment. The relative variation in the workload
of the repairmen is thus considerably less than the relative variation in the usage of the
spare parts, as a result the capacity problem related to repairmen is relatively less costly
to mitigate. Furthermore, to finish at least the repair of the critical equipment considered
in this paper overtime should be considered. Especially for redundant systems one may
however be tempted to postpone a repair rather than using overtime because there are no
immediate consequences of delaying the repair. One should however always keep in mind
that the system was designed as a redundant system primarily because it has high criticality,
and using the redundancy to provide repair flexibility reduces the mitigating effects of the
redundancy. In summary, we argue that the effects of finite repair capacity should be limited
if the system is properly controlled.

4 Approximate analysis

The purpose of the model presented in the previous section is the optimization of the reorder
point. In order to optimize the reorder point, we need to determine the downtime costs
for different values of the reorder point. The amount of downtime incurred in a certain
time interval depends on coincidental circumstances. We will make decisions based on the
average value over all possible outcomes. We are thus interested in the long term expected
downtime costs.

One method to obtain downtime costs is Monte-Carlo simulation. However, the systems
that we are considering are rare event systems, especially for high reorder points and re-
dundancy. We will show in Section 6 that using Monte Carlo simulation for optimization
requires very long CPU times, which may hamper applicability. Furthermore, simulation
does not give much insight into the problem.

To overcome the problem of long simulation times and to gain insight in the model, in
this section we will propose two approximative methods for determining long term expected
downtime costs. Both methods are based upon decoupling the warehouse process and the
repair process for the different functionality groups.

In Section 4.1 we show that under deterministic waiting times for spares, the expected
amount of downtime and the downtime costs can be easily evaluated. In Section 4.2 we
use this observation to propose two approximative methods for evaluating the downtime
costs for a given reorder point. In Section 4.3 we show how to use the approximations to
determine reorder points. In Section 4.4 we present two traditional methods that will be
used to benchmark our approach, and to gain insight in the relative value of using the more
sophisticated approaches described in Sections 4.1-4.3.
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4.1 The repair process

The total repair time is composed of the waiting time for spares and the remaining repair
time after spares are available (t5). The waiting time for individual repairs depends on
the state of the warehouse at the moment of failure. This couples the different functional
groups, and gives the systems its complexity.

In this section, we show how to calculate the long term expected downtime costs for a
single functional group under the assumption that the waiting time for spares, and thus
the total repair time, is fixed and deterministic. While this assumption is not satisfied
in our model, the theory developed in this section will serve as a building block for the
approximations for the downtime cost of the whole system that will be presented in the
next section. We denote the deterministic waiting time for spares by tw,d. The total repair
time is then also deterministic, and has length t5 + tw,d, which will be denoted by td.

Note that under the assumption of deterministic waiting times, the functionality groups
decouple. Consider functionality group n ∈ N (using the notation introduced in Section
3.2). This functionality group can be represented by a closed queueing network with Rn
customers and two stations: (i) an ample server with mean service time td, representing the
repair process; (ii) an exponential server with mean service time 1/λn, which represents the
failure process. This network belongs to the class of so-called BCMP networks and thus has
a product-form solution (see Baskett et al. [13]). The steady state probabilities of having
i ∈ {0, . . . , Rn} defect pieces of equipment in this functional group is thus equal to

pn(i, td) =
(

(λntd)i

i!

)/ Rn∑
j=0

(λntd)j

j!

 . (1)

The long term expected downtime costs Cn for functional group n can be calculated
from the steady state probabilities given by Eq. (1) using the following relation

Cn(td) =
Rn∑
i=1

cnipn(i, td). (2)

The total downtime costs are the sum of the downtime costs for the individual functional
groups,

Ctotal(td) =
∑
n∈N

Cn(td). (3)

4.2 Approximating the downtime costs

In the previous section we showed that under the assumption of deterministic waiting times
for spares, the downtime costs can be computed efficiently. In this section we will present
two methods to approximate the total downtime costs for the dynamic system.

For both approximations, we will approximate the total demand rate for spares by a
Poisson demand stream. We have assumed that the rate at which failures occur is given
by λn for every functional group n, as long as there is any equipment running in that
functional group. Each time a failure occurs, a spare part is needed. In practice, downtime
of equipment is short in comparison to the uptime of the equipment even in case no spare
parts are stocked. Each functional group thus gives rise to a demand stream which can be
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approximated by a Poisson process with rate λn. It is thus reasonable to approximate the
total demand rate for spare parts as a Poisson process with rate

λ =
N∑
n=1

λn. (4)

The average waiting time approximation will be based upon the average waiting time for
spares, which will be denoted by t̄w. It depends on the total demand rate (approximated
by λ), the leadtime L, and the number of spare parts kept on stock S. It will be calculated
analytically based on Little’s formula:

t̄w = L− S

λ
+

1
λ

S−1∑
i=0

(S − i)(λL)i

i!
e−λL. (5)

The total average expected repair time is now given by

t̄ = t̄w + t5. (6)

We will use this average in Eq. 3 to approximate the downtime costs:

Caverage = Ctotal(t̄) (7)

The approximation is similar to the one used in the analysis of the METRIC model, proposed
by Sherbrooke [14]. In Section 6 we will see that the approximation sometimes performs
poorly. It has the advantage of being easy to grasp and easy to implement.

To improve the performance we propose a second approximation, the dynamic-static
waiting time approximation. The repair resulting from an arbitrary breakdown incurs a
stochastic delay due to the waiting time for spares, which can be zero or positive. Under the
approximative assumption of a Poisson demand stream for spares, a simple expression can
be derived for the distribution of this stochastic delay. We will first derive this expression.
Then we will show how to use the expression to obtain an approximation for the downtime
costs.

Consider an arbitrary breakdown, which we assume to occur at time t. Recall that we
assume a base stock policy with reorder point S is used and that stock is allocated on a
first come first served basis. Consequently, the part that was ordered when the Sth break-
down preceding the current breakdown occurred, will be used in the repair of the current
breakdown. Say this earlier breakdown occurred at time t −X. Recall the approximative
assumption of a Poisson repair stream. Then X is Erlang-k distributed, with k = S: it is
the sum of S exponentially distributed variables with mean 1/λ. When S = 0 then X = 0
with probability 1. The part arrives at time t−X + L. Therefore, at time t the remaining
waiting time is max(0, L−X). This random variable will be denoted by Y .

The dynamic static waiting time approximation is based on the approximative assump-
tion that we may take the expectation of the deterministic waiting time expression of the
downtime over the steady state waiting time distribution:

Cdyn.-st. = E(Ctotal(Y + t5)) (8)

where Ctotal is determined using Eq. (3). Note that the average waiting time approximation
differs because

Caverage = Ctotal(t̄) = Ctotal(E(Y ) + t5)
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Compared with simulation, it is relatively easy to evaluate Eq. (8) numerically, a number
of standard methods are available. For completeness, we describe how we evaluated the
expression in our numerical experiments. We use that

Cdyn.-st. =E(Ctotal((L−X)+ + t5)),
=P (X > L)Ctotal(t5) + P (X < L)
× E(Ctotal(L−X + t5)|X < L).

Since an analytic expression for the CDF of the Erlang distribution is known, the first term
can be easily calculated. The PDF of the Erlang distribution is also known, let’s denote it
by f(x). We have that

P (X < L)E(Ctotal(L−X + t5)|X < L)

=
∫ L

0
f(x)Ctotal(L− x+ t5)dx,

≈ 1
N

N−1∑
i=0

f(i/N)Ctotal(L(1− i/N) + t5).

In our numerical tests, we use N = 105.

4.3 Optimization

We now show how to find S that minimizes the average waiting time approximated costs,
and S that minimizes the dynamic-static waiting time approximated costs. The overall
costs are given by

hS + Caverage/dyn.-st.(S) (9)

where Caverage and Cdyn.-st. are given by Eqs. (7) and (8), respectively. These optimizations
are optimizations over a single, discrete parameter, which we can easily perform if we can
determine a suitable upper bound.

An upper bound can be obtained if we make the reasonable assumption that the down-
time costs of a functional group are nondecreasing with an increasing number of defective
equipment (i > j → cki > ckj). In that case, it is clear that

Ctotal(t5) (10)

is a lower bound on the downtime costs, both when calculated using Caverage and when
using Cstatic. For later reference, note that it is also a lower bound for the true downtime
costs. To optimize S we start by setting S = 0, and we determine the costs. We then
repeatedly increase S by 1, and keep track of the solution with minimal total costs. It is
not hard to see that the search can be terminated once a value is for S is reached for which
hS + Ctotal(t5) exceeds the cost of the best solution found so far.

4.4 Traditional methods

We will also examine two methods for solving the problem, that will be used as a benchmark
in the numerical experiment. The traditional methods do not take into account detailed
redundancy information, and they represent what companies might do if data regarding
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redundancy is not available or if they lack the know-how or organizational structure needed
to couple the redundancy information with spare parts stock control.

The first method assumes that an estimate is used for the total demand rate (equal to
λ, as given by Eq. (4)) and the leadtime. The system is modelled as a base stock model in
which demand is back ordered. Then, it is easy to evaluate the fraction of parts that are
delivered from stock in the steady state of the system, a fraction often referred to as fillrate
(see e.g. Axsäter [11, pp. 94-95]).

In the method, we then use a fill rate target to determine the reorder point. The
lowest reorder point for which the target fillrate is reached is chosen. This method assumes
that there is no additional information available regarding the downtime costs and the
redundancy structure. Therefore, in practice there would be no information on which we
could base the setting of different fill rate targets for different parts. We will therefore
assume that a fixed target is used for all cases. Notwithstanding, we wish to gain some
insights into the dependency of the results on the overall fill rate target. Therefore, the
overall fill rate target is varied to obtain different types of the fill rate target traditional
method. We will denote these different types by their target fill rate in quotation marks,
so “95%” denotes the method that uses a fillrate target of 95% over all cases.

In the second traditional method, we assume that the highest possible downtime cost
for all pieces of equipment in which the part is installed can be determined. This downtime
costs is then used as the penalty cost per time period in the system, again modelling the
system as a Poisson demand system in which demand is back-ordered. The overall costs
(downtime + holding) are then minimized to obtain the optimal reorder point. This method
is similar to the method currently used by the company as a recommendation to the stock
analysts (Trimp et al. [15]). Note that while it has some awareness of the downtime costs,
it does not use any redundancy information. We will refer to this second traditional method
as benchmark method later on.

5 Experimental setup

5.1 Simulation

The analysis discussed in the previous section gives approximative estimates of the downtime
costs, based on which approximately optimal reorder points can be determined. In order to
test the quality of these approximations and the resulting recommendations, we describe in
this section a simulation approach that enables us to find asymptotically exact estimates
of the downtime costs. We also describe the approach that was used to find the optimal
reorder point using simulation.

To avoid confusion, let us first stress that in the simulation we aim to find downtime costs
for the model described in Section 3. All assumptions discussed in that section thus remain
in place. Our aim is to estimate the quality of the approximations and the traditional
methods presented in Sections 4.2 and 4.4, and the quality of the recommendations that
result from using the approximations.

In order to assess the effect of these assumptions we need the true costs of the system.
To this end, we simulate the system. We use event-driven simulation. Events correspond
to breakdowns, arrivals of orders for spare parts, and repairs finishing. The system is
simulated for a long period of time. This time period is divided in a number of different
batches with a length of 1000 years. To make sure that the costs in the different batches can
be safely assumed to be independent estimators of the true costs, in between the batches
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we keep periods of 100 years that are not used for statistics. Autocorrelation tests indicate
that 100 years is much longer than the autocorrelation of any of the systems considered.
For each of the 1000 year periods, the costs can be obtained. This allows us to determine
asymptotically correct estimates of the downtime costs and the associated variances for an
arbitrary instance of the model and a given reorder point.

To find the optimal reorder point using simulation, we would like to find the associated
cost for all base stock levels up to some upper bound with very high precision. However,
since the models correspond to rare-event systems, this is impossible for some cases. In
order to obtain consistent results, the following procedure has been developed.

We start by considering S = 0, and increment S each step. For each reorder point, we
simulate the system until we have 1000 periods of 1000 years for which the total downtime
costs are positive. Based on the simulation period obtained in this way, we obtain an initial
estimator of the downtime costs and its associated standard deviation. While for most
systems in each 1000 year period downtime costs are incurred, in some systems in only
1 out of more than 250 periods positive costs are found. The described method is used
to ensure that it is reasonable to apply the central limit theorem for the estimator. We
continue increasing S until both the following conditions are met:

• The current reorder point exceeds the “optimal” reorder points calculated using the
different approximative methods described in Sections 4.2 and 4.4.

• The holding cost for the current solution plus the lower bound for the downtime
cost (see Section 4.3) exceed the sum of the estimate for the total costs for the best
reorder point found so far plus five times its standard deviation. This last measure is
used to ensure against cutting off the optimization prematurely because of statistical
variation.

Using the above method we obtain an estimator for the downtime costs of each of the
solutions. Note that we have taken extensive measures to assure that the optimal reorder
point is included.

The relative deviation of the estimators may however be quite high at this point. In
order to decrease the variance of the estimators, we continue by simulating for each reorder
point until the resulting estimator reaches a target relative deviation. We set the target
precision at 2−10 ≈ 10−3. Note that there is no target precision for which we can guarantee
that the reorder point with minimal estimated cost is the reorder point corresponding to the
minimum true costs. Based on the central limit theorem is however reasonable to assume
that the costs of deviations from the true minimum will not be much larger than a few
times the target precision.

For some systems, reaching this target costs too much computation time, which forces
termination if we want results at all. Therefore, we choose to gradually increase the target
for each considered case. We start with a target of 2−0 = 1. We then increase the precision
by iteratively halving the target precision. We stop this procedure when a target precision of
2−10 ≈ 10−3 is reached. When the simulation time for a reorder point exceeds a predefined
limit on the simulation time, we will terminate the simulation for the case considered without
reaching the target precision. However, we will still have reached a relatively consistent
precision over all reorder points for that case. We set the limit at a simulation time of
106 periods of 1000 years. When the search is terminated before attaining the required
precision, we obtain an estimate of the required additional CPU time that would be needed
to attain the target. To obtain this estimate we use that the standard deviation of the

13



estimator is ∼ 1/
√
n, where n is the number of 1000 year periods.

installed functional cn1 cn2 cn3 λn

base descr. group (n) (×365k$/yr) (/yr)
business 1 4 - - 0.5

case 2 0 30 - 0.66
3 0 20 100 1

5 × 1oo2 1 0 30 - 0.5
2 0 30 - 0.5
3 0 30 - 0.5
4 0 30 - 0.5
5 0 30 - 0.5

2 × 1oo2 1 0 100 - 0.5
2 0 100 - 0.5

1oo1 1 10 - - 0.5
1oo2 1 0 20 - 0.66
1oo3 1 0 0 100 1
2oo3 1 0 40 100 1

Table 1: The configuration of the installed bases used in the numerical study.

parameter uom values
leadtime × weeks 1/7, 1, 4, 8, 22, 52
holding costs ×k$/yr 0.125, 0.625, 2.325, 6.25
repair time × weeks 1/7, 1, 6

Table 2: The other parameters that were varied in the numerical study.

5.2 Cases

We now describe the cases that are considered in the numerical study. We consider all
combinations of a set of leadtimes, a set of repair times, a set of part costs, and a set of
installed bases (a number of functional groups in which the part is used). We use 7 different
possible settings for the installed bases, the values are given in Table 1. The values for the
other parameters that are considered are given in Table 2. In total, 504 cases are considered.

In the design of the cases, we have taken into account some empirical knowledge that will
be summarized in the following. The leadtime may vary significantly over different parts,
and also over different locations. In some cases, the parts are made to order. In case of
complex equipment, this may induce leadtimes of a year or even more. Other factors that
may cause significant leadtimes are customs delay, and the fact that some equipment can
only be moved using special transport. On the other hand, some parts may be obtained
from a central warehouse in less than a day.

Repair times may be anything from a few hours to a number of weeks. In our discussion
with the company, it became clear that it would be unlikely that a repair would take more
than a few weeks if all spare parts that are needed are available.

The holding cost is generally fixed at 25% of the value of the spare part annually. For
the value of the spare part, anything between a few dollars and k$200 seems reasonable. We
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however did not include spare parts of over k$25, since for them we expect a more thorough
analysis including some factors that were omitted from the model to be cost effective. We
also did not take into account parts with a value less than k$0.5 because it seems unlikely
that a detailed study of the redundancy will be cost effective for them. Moreover, such
low-value parts will be ordered in batches to reduce marginal ordering costs, which puts
them out of scope of this research since our analysis is based on the assumption of a base
stock policy.

For the functionality groups, it is hard to come up with a range that includes all possibil-
ities. We have included some basic systems: 1oo1, 1oo2, 1oo3, 2oo3. We have also included
three combinations of a number of these systems. In general, we let more redundant systems
have higher associated downtime costs, because systems are often made redundant because
they perform an important function. For the downtime costs, anything between a few k$
per day and 1000k$ per day seems reasonable. However, we again do not include cases with
very high downtime costs, because for them we expect a more detailed analysis.

6 Results & discussion

The results of the numerical experiments are presented and discussed in this section.

6.1 Computation times

As stated before, the main reason for using approximative methods to optimize the reorder
point instead of simulation are the significant CPU times required for simulation optimiza-
tion. The required processor times for the simulation optimization of the considered cases
are shown in Table 3. The simulations were performed on a 2.33 GHz CPU dual core with
3.23 GB of RAM, on two separate threads running in parallel.

attained # of proc. time (avg. per case)
precision cases performed for target

2−10 368 9 min -
2−9 44 34 min 2 hrs
2−8 40 51 min 13 hrs
2−7 28 30 min 32 hrs
2−6 12 28 min 482 hrs
2−5 7 22 min 1478 hrs
2−4 5 22 min 5882 hrs

Table 3: The statistics regarding the attained precision and the CPU times in the simulation.
We also tabulate an estimate of additional CPU time that would be needed to attain the
precision target.

The target precision was set at a normalized standard deviation smaller than 2−10 ≈
10−3. For the cases for which the target was attained, the average simulation time was 9
minutes. Note that such a computation time may already severely hamper the applicability,
since it will discourage practitioners to use the system as a decision support tool because
they might not be willing to wait.

Some simulations were terminated before the target relative deviation was attained.
Statistics regarding this point are also tabulated. An estimate of the additional simulation
time that would be required to attain the target is tabulated as well. The table shows
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that while the target precision is relatively modest, attaining it would require a prohibitive
amount of effort for some cases. This limits the applicability of using simulation for op-
timization: if a reasonable precision cannot be attained for the different estimators of the
downtime, the resulting reorder point could be far from the optimum.

The computation time of the other, approximative methods to determine the optimal
reorder point was such that it will not be a practical issue. Of the approximative methods,
the dynamic static waiting time approximation consumed the most CPU time, but it was
still very fast. The average time it took to perform one optimization using this method was
70 ms, the maximum optimization time was 400 ms. Users will experience this as practically
instantaneous, which is a major advantage of the approximate methods over using simulation
to optimize the reorder points. Another advantage of the approximative methods is that it
requires much less effort to implement them then to implement a simulation approximation
approach.

6.2 Precision of downtime cost approximations

Another subject of interest is the performance of the different approximate models. We
distinguish two types of performance: the precision of the estimates of the downtime costs,
and the quality of the recommended reorder points.

The results regarding the precision of the approximations are shown in Table 4. The
statistics are based on all 2443 considered case - reorder point combinations for which the
target precision was reached. The 746 combinations for which the target precision was
not reached were omitted from the statistics in the Table, since it is impossible to gauge
the performance of the statistics when we cannot rely on the downtime estimate obtained
using simulation. While some cases were not taken into consideration, the cases that were
considered still represent a very broad range of systems. Therefore, the conclusions that we
draw regarding the performance of the approximations have a strong predictive power for
other instances of the model.

We distinguish three approximations: the two approximations developed in Section 4.2
(Cdyn.-st. and Caverage), and the second traditional method developed in Section 4.4 (which
is denoted by Cbmrk). We cannot use the method based on the fill rate target at this point,
since that method does not estimate downtime costs.

statistic Cdyn.-st. Caverage Cbmrk

|(Ce − µ)/µ| < 1% 83.1% 73.4% 3.6%
|(Ce − µ)/µ| < 5% 97.5% 78.5% 6.2%
|(Ce − µ)/µ| < 10% 99.5% 82.8% 13.2%
|(Ce − µ)/µ| < 50% 100% 95.0% 15.7%

maxCe/µ 1.14 1.27 1823
maxµ/Ce 1.002 5.4 0.999

avg|(Ce − µ)/µ| 0.007 0.07 96

Table 4: Different statistics regarding the precision of the proposed methods. µ denotes the
estimate of the downtime costs based on simulation, Ce denotes the approximated costs.

To gauge the performance of the different approximations, we consider a number of
performance statistics. We tabulated the percentage of case - reorder point combinations
for which the deviation between the approximation and the asymptotic simulation estimate
was smaller than some threshold. This was repeated for different thresholds. We also
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appr. difference Sappr − Sopt

method < −1 −1 0 1 > 1
Optimal 0% 0% 100% 0% 0%
Dyn.-st. 0% 0% 91% 9% 0%
Average 1% 10% 83% 6% 0%
Bmrk 0% 0% 20% 58% 22%
“90%” 21% 26% 44% 10% 0%
“95%” 10% 23% 52% 15% 0%
“98%” 7% 16% 51% 26% 0%
“99%” 3% 10% 43% 43% 2%

“99,5%” 2% 7% 35% 51% 6%
“99,9%” 0% 2% 15% 53% 30%

Table 5: Deviations between the optimal reorder point and the reorder point that is deemed
“optimal” based on the different approximations.

tabulated the maximum relative overestimate and the maximum relative underestimate of
the different methods. Finally, we tabulated the average absolute relative deviation.

The table shows that the dynamic static waiting time approximation has excellent per-
formance. It never over- or under- estimates the costs significantly. In some rare cases, it
slightly overestimates the costs, but for almost all cases the deviation between approxima-
tion and asymptotic estimate is very small. The average relative deviation is only 0.7%.
Note that target precision of the simulation was 0.1%, so the real precision of this approxi-
mation may even be higher.

The average waiting time approximation performs less well: it severely underestimates
the downtime costs for some cases. The main reason is that the approximation ignores
the fact that subsequent waiting times from the warehouse are dependent, which results
in an underestimation of the length of downtime of multiple pieces of equipment in the
same functionality group. Later on, we will see that in some cases, this has impact on
the quality of the recommended reorder points. The main lesson is that, for redundant
systems, the dependency of repair times through spare parts cannot be ignored without
severe performance consequences. The dynamic static waiting time approximation does not
have this problem. On the other hand, the average waiting time model has an advantage
over the dynamic static waiting time approximation. The former is relatively easier to
implement and to understand intuitively than the latter, and can for instance be easily
implemented in a spreadsheet application.

Finally, the table shows that the benchmark method does not perform at all. We can
conclude that detailed knowledge regarding redundancy is needed to obtain reasonable
estimates of the long run average downtime costs.

6.3 Deviations from the true optimum

We are also interested in the quality of the reorder points that result from the different ap-
proximations. Note that a good performance regarding the precision of the approximations
need not yield high quality reorder points. Conversely, the quality of the reorder points
does not necessarily suffer from a bad approximation of the cost. Therefore, we make a
separate assessment of the deviations of the approximations from the real optimum. We
base the assessment of the quality of the reorder points on the cases for which the simula-
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appr. sum of costs over all cases (×103k$/yr) Relative cost deviation
method holding downtime total < 0.05 < 0.5 < 1 < 5 average
Optimal 1.73 (100%) 18.30(100%) 20.03(100%) 100% 100% 100% 100% 0%
Dyn.-st. 1.78 (102.7%) 18.27 (99.8%) 20.05 (100.1%) 100% 100% 100% 100% 0.05%
Average 1.65 (95.5%) 18.53(101.3%) 20.18(100.8%) 92.4% 99.2% 100% 100% 2.1%
Bmrk 2.65(152.8%) 18.04(98.6%) 20.69(103.3%) 59.8% 91.3% 96.5% 98.6% 38%
“90%” 1.53(88.3%) 21.66(118.4%) 23.19(115.8%) 56.5% 78.3% 86.1% 96.2% 82%
“94%” 1.82(105.0%) 18.84(103.0%) 20.66(103.2%) 70.1% 90.2% 94.0% 98.6% 40%
“98%” 2.06(119.0%) 18.49(101.0%) 20.55(102.6%) 70.4% 90.5% 95.4% 98.6% 38%
“99%” 2.37(136.8%) 18.13(99.1%) 20.50(102.4%) 69.6% 91.8% 96.2% 98.6% 37%

“99,5%” 2.55(147.0%) 18.08(98.8%) 20.62(103.0%) 65.2% 90.5% 95.7% 98.4% 51%
“99,9%” 3.08(177.7%) 18.01(98.4%) 21.09(105.3%) 51.9% 86.4% 92.9% 98.1% 74%

Table 6: The performance of the different heuristics with respect to the cost of using the
approximately optimal reorder points.

tion attained the precision target. This means that 368 cases were taken into account, and
136 cases were omitted from the statistics. Again, while some cases were not taken into
account, the considered cases still represent a wide range of systems, giving the statistics
strong predictive power for other instances of the model. In addition to the approximations
that were considered in Section 6.2, we now also consider the fill rate target traditional
methods described in Section 4.4.

Let us first examine the deviations of the approximately optimal reorder points from
the true optimum. The results are shown in Table 5. The dynamic static waiting time
approximation again performs well, finding the optimal reorder point in 91% of the cases.
For the other cases, it stocks one more than the optimum. We will see later that this has
only relatively small cost consequences.

The average waiting time approximation performs less well. It finds the optimum in only
83% of the cases. Furthermore, in 1% of the cases it under stocks significantly. We will see
that this has significant cost consequences.

The benchmark method (see Section 4.4), being unaware of redundancy, is unable to
find the true optimum for many cases. The same conclusion can be drawn when looking at
the deviations for the reorder points that are based on setting a service level target. While
the risk of over (under) stocking can be reduced by decreasing (increasing) the service level
target, it is impossible to find a single target that fits well on all cases. Detailed redundancy
information is thus indispensable to find suitable reorder points for all parts.

6.4 Cost impact

Finally, we examine the cost impact of using the approximately optimal reorder points
instead of the truly optimal ones. To assure that we obtain a complete picture of the
performance of the approximate models, we use two different ways to aggregate the statistics
of individual cases. First of all, we consider the real costs (as determined using simulation)
of implementing the approximately optimal reorder points for all cases. These costs can be
interpreted as the costs of implementing a certain policy at a company, i.e. for a diverse
range of cases. Also, we gather statistics regarding the number of cases for which the relative
deviation between the optimal costs and the cost of the approximately optimal reorder point
(both costs determined using simulation) exceeds some threshold. The results are shown in

18



Table 6. The two ways to aggregate the information give a somewhat different perspective.
Let us now first discuss the cost totals over all different cases when using the different

approximations. The dynamic static waiting time approximation performs well. In com-
parison to the optimal policy, the cost increase is 0.1%. Later on, we will argue that a more
accurate comparison is obtained when focusing more on the relative stock increase. The
dynamic static waiting time approximation uses 2.7% more stock than the optimal solution,
of which ∼ 65% is offset because of reduced downtime costs.

The average waiting time approximation has a slightly worse performance. It stocks
somewhat less than the optimal policy, but incurs severe additional downtime costs as a
result. The deteriorated performance is closely related to the fact that the average waiting
time approximation significantly underestimates the downtime costs for some cases. The
additional downtime costs are 0.23× 103k$/yr. This is about 14% of the total stock costs.
The decrease in stock cost is only 4.5% of the total stock costs, resulting in a nett cost
increase of 9.5% of the total stock cost, or 0.8% of the total cost.

Let us now discuss the other approximations. The benchmark method severely over-
stocks, but realizes some additional availability. However, this additional availability is not
realized in a cost effective manner: the overall costs increase by 3.3%. Even though this
might seem a small effect, comparing the cost increase with the total cost does not give
an accurate picture. In an organization, the downtime costs are often hidden, since they
translate to production that was not made. Moreover, a large fraction of the downtime
costs are unavoidable, because even without any stock outs, downtime costs are still signif-
icant because of the remaining repair times. A more accurate picture of the impact on the
company performance is obtained by concentrating on the holding cost (which are linear
in the stock value). The benchmark method uses 52.8% more stock than the optimal stock
quantity. Only ∼ 28% of this 52.8% is offset by the increased availability. This means that
the benchmark method leaves huge opportunities for improvement.

Note that in order to apply the benchmark method we do not need detailed information
regarding the redundancy. A relevant practical question might thus be: will the costs of
collecting this data be offset by the value of being able to make informed decisions (i.e. using
the dynamic static waiting time approximation). The answer to this question is company
-and case- specific, but we have shown that the potential for improvement is significant.

Let us now discuss the results for the fill rate target traditional methods, described in
Section 4.4. The results for the use of the fill rate target show a significant cost increase
with respect to the optimal reorder points. These results depend on the specific service
level target that is set. When the service level target is too low (90%), availability is too
low resulting in costly downtime. The cost increase of this is 3.36×103k$/yr, which is more
than two times the total optimal annual holding costs. Only a small fraction of this cost
increase is offset by reduced holding costs. Conversely, by setting a very high service level
target the holding cost increase significantly. When using a service level target of 99.9%,
the holding cost increase by 177%. Only a small percentage of this cost increase is offset
by improved availability, so the nett result is a cost increase larger than the total optimal
annual holding costs.

The results improve somewhat if an intermediate service level target is chosen. When
using a service level target of 98%, the realized availability is comparable to the availability
that is realized when using the optimal policy. But this availability is realized at holding
costs that are 19% higher.

Finally, we consider relative deviations of the cost of the approximative solution when
compared with the cost of the optimal solution. We determine both costs using simulation.
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The results show again that the performance of the dynamic static waiting time approx-
imation is excellent: the cost increase is always lower than 5%, and the average relative
deviation is only 0.05%.

The average waiting time clearly performs worse: in 0.8% of the cases it proposes so-
lutions that have more than 50% cost increase in comparison to the cost of the optimal
reorder point. For most cases however, it performs reasonable: it has an average relative
deviation of 2.1%.

For the benchmark method, the relative deviation is large in some cases. For each
benchmark method, in more than 1% of the cases the relative deviation is higher than 5.
This means that the costs when using the approximation are more than 6 times as high as
the cost of the optimal solution.

In conclusion, we have shown that the performance of the static dynamic waiting time
approximation is good, leading to solutions that are optimal or close to optimal. We have
identified some performance issues of the average waiting time approximation. Using two
traditional methods, we have shown that ignoring the redundancy leads to significant cost
increases, also when considering the total costs for a lot of cases. Finally, we have shown
that for some cases, using methods that ignore the redundancy leads to solutions with a
large cost deviation from the optimal solution.

7 Conclusions

In this study we have argued that in order to apply inventory models, we need a well-defined
method to estimate shortage costs. We have argued that data coming from an RCM study
can be a valuable source of information for this purpose. However, different downtime costs
for different pieces of equipment and redundancy complicate the relation between shortage
costs and the outcomes of the RCM study. In order to resolve this, we argued that an
inventory model was needed capable of using the data from the RCM study. The model
should be kept simple, because a very complex model would require too much effort on data
collection to be applied. We developed such a model. The redundancy was modelled using
functional groups, viz. groups of equipment for which the downtime costs depend on the
number of pieces of equipment working within the group.

We developed approximate methods to determine the downtime costs from the model.
We have shown how to find the reorder point using the methods. We also assessed the
quality of the methods. We have shown that the dynamic static waiting time model has
excellent performance. The average waiting time approximation has a somewhat degraded
performance, but is more easy to implement.

Using two benchmark methods that mimic the approaches that are often applied in prac-
tice, we have shown that using detailed redundancy information can significantly improve
the stocking decision.

Remark

The detailed numerical results including the results per case are available from the first
author on request.
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