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l)STOCHASTIC MODELLING AND ANALYSIS OF WAREHOUSE OPERATIONS

This thesis studies stochastic models and analysis of warehouse operations. Based on a
review of stochastic research in warehouse operations, where we identify uncertainty
sources of warehousing systems and present typical warehouse operations from a
viewpoint of stochastic systems, we explore three types of warehouses.

Firstly, we study warehouses with online order arrivals. We employ a sample path
optimization and perturbation analysis algorithm to search the optimal batch size for a
warehouse with online order arrivals, and a finite difference algorithm to search the
optimal batch size for its customers. We then build stochastic polling models to describe
and analyze a polling-based dynamic order picking system for online retailers, find closed-
form expressions for the order waiting times, and apply polling-based picking to online
retailers. Subsequently, we study service distribution centers. We present closed-form
analytic expressions for pick rates of bucket brigades order picking systems with different
storage profiles, and show how to combine storage policies and bucket brigades protocols
to improve order picking productivity. Finally, we consider a booming industry, public
storage. We propose a novel facility design approach to improve the revenue management
of public storage. Our results show existing public-storage warehouses can be redesigned
to bring larger revenues. We also develop the robust design to reduce the loss from the
variance of demand to the least.
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Introduction to the dissertation

1.1 Introduction to warehouse operations

A warehouse is an important facility to consolidate products to reduce trans-

portation cost, achieve economies of scale in manufacturing or in purchasing

(Bartholdi III and Hackman, 2006), provide value-added processes, shorten re-

sponse time (see, e.g., Gong and De Koster (2008)), or to gain revenue by leasing

warehouse space (Gong et al., 2009a).There are various types of warehouses:

Ghiani et al. (2004) briefly classify warehouses into production warehouses and

distribution centers. Frazelle (2001) classify warehouses by their roles in the sup-

ply chain, as raw materials warehouses, work-in-process warehouses, finished

good warehouses, distribution warehouses, fulfillment warehouses, local ware-

houses direct to customer demand, and value-added service warehouses. Ghi-

ani et al. (2004) also classify warehouses by the ownership, and identify three

main types: company-owned, public, and leased warehouses. Bartholdi III and

Hackman (2006), categorize warehouses, by customer service types, as a retail

distribution center, a service parts distribution center, a catalogue fulfillment or

e-commence distribution center and a 3PL warehouse.

Admittedly, these heterogeneous warehouses have different operations. How-

ever, most of them share some general pattern of material flow, and typical ware-

house operations include: receiving, putaway, internal replenishment, order pick-

ing, accumulating and sorting, packing, cross docking, and shipping (see Figure-

1.1 from Tompkins et al. (2003)). Mainly based on Frazelle (2001) and Tompkins
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et al. (2003), these operations may be described as follows. Receiving includes the

receipt of all materials into warehouses, assuring the quantity and quality of these

materials as ordered and transferring received materials to storage or other places.

Receiving typically accounts for about 10% of warehouse operation cost (Drury,

1988). Putaway is to put items in storage, which includes material handling, lo-

cation verification, and item placement. Putaway typically accounts for about

15% of warehouse operation cost (Drury, 1988). Internal replenishment refers to

relocating material from a bulk storage area to an order pick storage area, and

documenting this relocation. Order picking is the process of removing items from

storage to meet customers’ demand; this is rather costly, and typically accounts

for about 55% of warehouse operation cost (Drury, 1988). Accumulating and

sorting is to group picked items into individual orders. Packing includes checking

the completeness of orders and putting items in an appropriate container. Ship-

ping is to transfer the orders to customers, which may involve weighing orders

to determine shipping charges, staging and accumulating shipments, and loading

trucks.

Warehouse operations must deal with different types of uncertainties, which

can be classified by the variance structure as (1) unpredictable events like war,

strikes, floods, and hurricanes, which usually are rare events, (2) predictable

events like demand seasonality, and (3) internal variabilities like variance of order

waiting time for batching, which could be caused by internal randomness. These

uncertainty sources can be located at different positions: outside the supply chain,

in the supply chain but outside the warehouse, inside the warehouse, or within
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warehouse control systems. Warehouse uncertainty sources can affect decisions

at strategic, tactical and operational levels, classified by the planning horizon.

Strategic decisions have a long-term effect, tactical decisions have an effect over

the medium term (monthly or quarterly), and operational decisions are made

on a daily basis. Decisions on warehouse automation level, layout and systems

have a strategic effect. Tactical decisions mainly include a tactical storage plan

and a tactical order picking plan. Warehouse operational decisions include daily

order picking planning, daily resource planning, and daily warehouse information

system management.

To handle these uncertainties, many warehouses have attempted innovative

approaches to order receiving, putaway, internal replenishment, order picking,

accumulating and sorting, packing, cross docking, and shipping to mitigate risks.

This has also led to a bigger complexity of warehouse operations (Frazelle, 2001),

which raises our academic curiosity and leads to the research objective and re-

search problems, described in the next section.

1.2 Research objectives and research problems

Warehouses have been going through various challenges: “supply chains are

shorter and, hopefully, more integrated, the world is smaller, customers are more

demanding, and technology changes occur rapidly” (Tompkins et al. (2003), Page

401). To handle these challenges, warehouses employ techniques like pick-to-light,

pick-to-voice, RF communication, and RFID picking, and use new warehouse op-

erations like dynamic storage, real-time processing, dynamic picking, self-storage,

and self-organizing order picking to improve warehouse operations. It is unclear

whether existing models can be applied to describe these new operations in un-

certain settings. Existing models can also be found to improve warehouse perfor-

mance, like minimizing order throughput time and maximizing warehouse space

utilization. However, it is unclear whether similar models can be also applied to

uncertain business settings. This research will provide insights into improving

both responsiveness and efficiency of warehouse systems in a stochastic setting.

On the other hand, stochastic models and theories have evidently evolved in

the last 20 years. But their application to warehouse research is limited. Stochastic
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models may help understand the impact of different parameters like the batch

size in order batch picking (a method to group a set of orders into a number

of sub-sets so that they can be retrieved by a single picking tour) and number

of zones on the system performance, understand which models are best-suited

in new dynamic settings, e.g., in an on line order setting, where the waiting

time a customer can tolerate is short, and balance the trade-off between system

responsiveness and system efficiency. This thesis attempts to bridge this gap and

apply state-of-the-art stochastic models and theories to new-emerging warehouse

systems.

To achieve this research objective, we will demonstrate the effective applica-

tion of stochastic models and analysis to warehouse systems, and identify four

research problems. First, we explore optimal batching problems in an e-commence

distribution center via stochastic optimization. Second, we model real-time or-

der picking systems by stochastic polling models for the warehouses in online

retailers. Third, we research bucket brigades order picking systems with various

storage profiles by applied probability models and dynamic systems. Finally, we

examine public warehouse design problems and revenue management by queuing

models.

1.3 Research methodology

The main methods in this thesis are analytical methods, especially stochastic

modelling methods like applied probability modelling, stochastic queue mod-

elling, stochastic network modelling, stochastic analysis methods like infinites-

imal perturbation analysis and sample path optimization. Stochastic models are

constructed to explore warehouse problems such as real-time picking, batching,

storage policies decisions and warehouse revenue management.

I also have conducted empirical research, which is mainly used to formulate

models and validate their results. For example, for the warehouse revenue man-

agement problem in Chapter 6, I have visited self-storage warehouses in America,

Europe and Asia. For the research on dynamic picking systems in Chapter 4, I

have visited warehouses of online retailers like “buy.com.cn” to help deepen my

understanding of the corresponding warehouse operations.
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Another method used in this thesis is simulation, which is mainly used to

verify models. My main simulation tools were C++ and Matlab.

1.4 Contribution

This PhD research makes contributions by reviewing stochastic modelling and

analysis of warehouse operations, computing the approximate optimal order batch

sizes in a parallel-aisle warehouse, studying the performance of Bucket Brigades

order picking systems with various storage profiles, improving a polling-based

dynamic order picking system for online retailers, and redesigning a self-storage

warehouse to improve its revenue management.

(1) A review on stochastic modelling and analysis of warehouse

operations

Chapter 2 provides an overview of stochastic research in warehouse opera-

tions. We identify uncertainty sources of warehousing systems and systemati-

cally present typical warehouse operations from a stochastic system viewpoint.

Stochastic modelling methods and analysis techniques in existing literature are

summarized, along with current research limitations. Through a comparison be-

tween potential and existing stochastic warehouse applications, we identify poten-

tial new research applications. Furthermore, by comparing potential and existing

solution methods, methodological directions relevant to practice and largely un-

explored in warehouse literature are identified. This research is based on Gong

and De Koster (2009b).

(2) Approximate optimal order batch sizes in a parallel-aisle

warehouse

Much of the past warehousing literature dealing with order picking and batching

assumes a pre-determined batch size. However, selecting a suitable batch size can

significantly enhance system performance. Chapter 3 determines optimal batch

sizes in a general parallel-aisle warehouse with stochastic order arrivals. We em-

ploy a sample path optimization and perturbation analysis algorithm to search
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the optimal batch size for a warehousing service provider facing a stochastic de-

mand, and a central finite difference algorithm to search the optimal batch sizes

from the perspectives of customers and the total system. We prove the existence

of optimal batch sizes, and find that past researches underestimate the optimal

batch size, as they focus on warehouse service (lead times) only. This research is

based on Gong and De Koster (2009a).

(3) A polling-based dynamic order picking system for online retailers

One of the challenging questions online retailers are facing is how to organize

the logistic fulfillment processes during and after transaction. As new informa-

tion technologies become available to convey picking information in real time

and with the ongoing need to create greater responsiveness to customers, dy-

namic picking can be applied to the warehouses of online retailers. In a DPS

(dynamic picking system), a worker picks orders that arrive in real time during

the picking operations while the picking information dynamically changes in one

picking cycle. In Chapter 4, we build models to describe and analyze such sys-

tems via stochastic polling theory and find closed-form expressions for the order

line waiting times in a DPS. These analytical results are verified by simulation.

By applying polling-based picking to two cases, we show it can generally lead

to shorter order throughput times and higher on-time service completion ratios

than traditional batch-picking systems using optimal batch sizes. We show how

our analysis method can be applied to minimize warehouse cost or to improve

service. This research is based on Gong and De Koster (2008). For an exten-

sion of this research to consider the sorting and the second moment performance

measure, see Gong, Winands, and De Koster (2009b).

(4) Improving order picking productivity via storage profiles and

bucket brigades

In Chapter 5, we present closed-form analytic expressions for order pick rates of

bucket brigades order picking systems with different storage profiles, and show

how to combine storage policies and bucket brigade protocols to improve order

picking productivity. We further shed light on reasons why the bucket brigades
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system can outperform some zone picking systems for a range of storage profiles.

This research is based on Eisenstein and Gong (2009).

(5) A novel facility design approach to improve revenue management

of public storage warehouses

Public storage is a booming industry. Both private customers and companies

can rent temporary space from such facilities. A major question is how to design

public storage facilities to fit market segments and accommodate volatile demand

in order to maximize revenue. Customers that cannot be accommodated with a

space size of their choice can either be rejected or upgraded to a larger space.

Based on our survey on 54 warehouses in America, Europe and Asia, we propose

models for three different cases: an overflow customer rejection model, and two

models with customer upgrade possibilities: one with reservation and another

without reservation in Chapter 6. We solve the models for several real warehouse

cases, and our results show for all cases the existing public-storage warehouses

can be redesigned to bring larger revenues. Finally, we develop the robust design

to reduce the loss from the variance of demand to the least. This research is based

on Gong, De Koster, Frenk, and Gabor (2009a). A relevant research of mine is

Zhang, Gong, De Koster, and Van de Velde (2008).

In my PhD study, I develop a novel framework to evaluate the integral per-

formance of order picking systems with different combinations of storage and or-

der picking policies (see Chen, Gong, De Koster, and Van Nunen (2009)). I also

use stochastic optimization to research the multi-location transshipment problem

with positive replenishment lead times (see Gong and Yucesan (2009)).





2

A review on stochastic modelling and analysis of

warehouse operations

2.1 Introduction

In a dynamic business environment full of uncertainties, today’s warehouse oper-

ations face challenges like the need of shorter lead times or real-time response, to

handle a larger number of orders with greater variety, and to deal with innova-

tive processes with a far greater complexity than before. Some online retailers, for

example, face customers who purchase by impulse, then change their minds and

cancel orders with impunity. Warehouses of these online retailers face uncertainty

from real-time order information updates (Gong and De Koster, 2008). Therefore

warehouse managers must consider uncertainties from various sources, both from

the outside supply chain and from within the warehouse itself. These uncertain-

ties may come from unpredictable rare events, predictable trends, and internal

variability of supply chain processes. Each of the uncertainty sources may cause

an unanticipated impact on strategic, tactical, or operational decisions, yet must

be met on a daily basis in practice.

Deterministic models and algorithms have successfully been applied to ware-

house systems (e.g., Ratliff and Rosenthal (1983), Van den Berg et al. (1998),

Karasawa et al. (1980), Lowe et al. (1979), White and Francis (1971)). Even

though real-world business problems always have some stochastic factors, deter-

ministic models can provide a good approximation in a stable business setting.

However, deterministic models may not always suffice in highly variable environ-
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ments such as systems with strongly fluctuating order patterns and responsive

operations (e.g., an online order setting).

To handle problems with internal variability, a number of stochastic warehouse

models have been developed (e.g., Bozer and White (1990), De Koster (1994),

Chew and Tang (1999), Bartholdi III et al. (2001)). These pioneering researches

provide a valuable start for the exploration of stochastic research methods for

warehouse operations. One of our motivations is to provide an overview of exist-

ing stochastic research in warehousing, and to identify potential application direc-

tions. On the other hand, stochastic models and theory have evidently evolved in

the last 20 years. Warehouse practitioners and researchers need suitable methods

to research warehouse problems in a stochastic environment. Stochastic models

may help understand the impact of stochastic factors on operational processes

and system performance. While stochastic models are potentially efficient tools

for warehouse research, their application to warehouse research is limited. There-

fore, another motivation is to bridge this gap by identifying promising stochastic

methods for warehouse research.

Several literature reviews on warehousing research exist. Gu et al. (2007) give

a comprehensive overview of warehouse research. Van den Berg and Zijm (1999)

present a classification of warehouse management problems. Other researchers fo-

cus on one particular aspect of warehouse research. De Koster et al. (2007) review

the order picking problem. Cormier and Gunn (1992) have classified the ware-

house models into three categories, namely, throughput capacity models, storage

capacity models, and warehouse design models. Our research takes a totally dif-

ferent view, and provides insights into method issues in a stochastic setting by

identifying the uncertainty sources of warehouse operations, presenting a system-

atic overview of the stochastic models and analysis of warehouse operations, and

further presenting promising research directions.

To identify the relevant academic warehouse literature, we searched via

“ScienceDirect”, “ISI Web of Knowledge” and “Google Scholar”, using key

words and their derivatives like “warehouse”,“distribution center”,“order pick-

ing”,“storage”,“order retrieval”,“order receiving” and “order shipping”. We iden-

tified 583 articles and 41 books on warehousing from 1948 to May 2008 (for a

comprehensive list before 2008, see www.roodbergen.com). Literature on subjects
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such as Automated Guided Vehicles (AGV), facility layout (other than directly

applied to warehousing), facility location and inventory models, has not been

included. By carefully reading abstract, introduction and conclusion parts, and

checking the remaining parts for research methods used in these 583 articles and

41 books, we identify the research using stochastic methods for warehouse op-

erations. Furthermore, we group these papers by modelling types and methods,

by analysis types and methods, and by warehouse processes studied. For each

group, we discuss representative papers to illustrate the application of a method.

We chose such papers mainly by the degree of fit with the category (e.g. full

adoption of a method rather than partial adoption).

2.2 Warehouse operations: a stochastic view

This section identifies uncertainty sources of a warehouse system at strategic,

tactical and operational levels, and presents uncertainties of a warehouse system

in the warehouse arrival, service, and departure processes, three main processes of

a stochastic system. The analysis in this section explains the necessity to research

warehouse systems by stochastic methods in uncertain business settings, identifies

promising opportunities of warehouse research by stochastic models and analysis,

and provides a foundation for the further analysis in subsequent sections.

2.2.1 Uncertainty sources of warehouse systems

Uncertainty sources faced by warehouse systems are quite diverse, both within

and external to the warehouse systems (Chopra and Sodhi, 2004). We first present

the classification of uncertainty sources, and then study the influence of uncer-

tainty sources on warehouse operations and decisions.

According to the location of uncertainty sources, we classify them as (1)

sources outside the supply chain, (2) sources in the supply chain but outside

the warehouse, (3) sources inside the warehouse, and (4) sources within ware-

house control systems. We present this scope dimension on the horizontal axis of

Fig. 2.1. According to the variance structure of uncertainties, we classify uncer-

tainty sources as (1) unpredictable events like war, strikes, floods, and hurricanes,
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Fig. 2.1. Uncertainty sources of warehouse operations

which usually are rare events, (2) predictable events like demand seasonality, and

(3) internal variabilities like variance of order waiting time for batching, which

could be caused by internal randomness. We present this classification dimen-

sion on the vertical axis of Fig. 2.1. The figure also shows typical examples of

uncertainty sources for different types. Examples in Fig. 2.1 primarily distribute

along the diagonal of the matrix. External uncertainty sources usually are more

unpredictable, and will often bring higher variance to warehouse operations. On

the other hand, inside uncertainty sources usually are more predictable and only

bring low variance to warehouse operations.

Uncertainty sources can affect decisions at three levels, strategic, tactical and

operational, classified by the planning horizon. Strategic decisions have a long-
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term effect, tactical decisions have an effect over the medium term (monthly or

quarterly), and operational decisions have an immediate short-term effect (Ghi-

ani et al., 2004). Decisions on warehouse automation level, layout and systems

have a strategic effect. Tactical decisions mainly include storage tactical plan

and order picking tactical plan. Warehouse operational decisions include daily

order picking planning, daily resource planning, and daily warehouse information

system management. We further illustrate the impact of uncertainty sources on

these decision levels.

(1) Strategic uncertainty sources

Some system-wide uncertainty sources like natural disaster, war and terrorism

can impose a long-term impact on warehouse operations. Other uncertainties, like

those in facility price and labor cost, in relation with facility productivity and

labor productivity will influence the trade-off between operational capabilities

and economic efficiency, and further influence strategic decisions on warehouse

automation. Uncertainties in total ownership costs of costly resources (including

staff, and key equipment like storage and sorting systems), may affect the financial

performance of a warehouse over years.

(2) Tactical uncertainty sources

Tactical uncertainty sources originate from both outside and inside the ware-

house’s supply chain. Outside sources include economic fluctuation, labor avail-

ability, and cost changes of important resources. Preemptive overhaul of key

equipments and labor disputes are examples of uncertainty sources inside the

warehouse.

(3) Operational uncertainty sources

Uncertainties from human factors have a short-term impact on order picking

daily planning, consisting of order batching, routing, and picker task assignment.

Among these are manual handling risks and musculoskeletal disorders in distri-

bution centers, as reported by Wright and Haslam (1999). Order information
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distortion caused by order cancellation can affect daily picking planning. Facility

daily planning faces uncertainties of equipment failure and equipment mainte-

nance. Modern warehouses depend heavily on the proper function of information

systems. In this respect, they are sensitive to information infrastructure break-

down and errors in the communication with external systems.

We further shed light on the relationship between uncertainty source types

and impact levels. Based on the examples distributed along the horizontal axis

in Fig. 2.1, we find unpredictable uncertainty sources usually have more strategic

or tactical impacts than predictable sources. On the other hand, from examples

distributed along the vertical axis in Fig. 2.1, we find outside sources usually

have more strategic or tactical impacts, and inside sources usually have more

operational impacts. We therefore conclude that, more unpredictable outside

uncertainty sources usually have more strategic or tactical impacts, and more

predictable inside sources usually have more tactical or operational impacts in

warehouse operations.

2.2.2 Uncertainties of warehouse operations

A typical stochastic system can be divided into arrival, service and departure

processes. Warehouse operation processes can also be classified likewise. Classi-

fying warehouse processes in these three groups helps us to identify appropriate

stochastic models as a clear distinction among arrival, service and departure pro-

cesses exists. We present the typical warehouse operations in Figure 2.2. This
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Fig. 2.2. Typical warehouse operations from a stochastic process view
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framework is helpful for us to capture the heterogenous stochastic essence and

heterogenous uncertainty sources in different operation processes.

In the framework of Figure 2.2, we view warehouse operations associated with

inbound flows as arrival processes, which include product arrivals typically fol-

lowed by an “inspection and receiving” operation, and order arrivals typically

followed by an “acceptance and reject” operation. We view warehouse operations,

which create or add value and are main processes to support core warehousing

functions and mainly deal with internal flows, as core service processes, including

putaway, storage in reserve area, replenishing the forward area, order picking,

packing, sorting and accumulating. We group warehouse operations associated

with outbound flows as departure processes, which mainly includes inspection

and shipping. We further describe uncertainty factors in these three processes

and summarize them in Table 2.1.

Uncertainties in arrival processes

There are two main arrival processes in a warehouse system. One arrival process is

the physical product arrival. The inventory level at suppliers and transportation

will influence the arrival rate and uncertainties in the arrival processes. For exam-

ple, Wilson (2007) investigates the effect of a transportation disruption. Return

product arrivals will also increase the arrival variance. After the products have

arrived at a warehouse, inappropriate inspection and receiving operations can

lead to congestion or delay, and increase the variance of the internal transporta-

tion time to the next warehouse operation. Receiving scheduling, prereceiving,

receipt preparation have been applied to decrease the uncertainty of the arrival

process. Another arrival process is the order arrival process, determined by cus-

tomer demand, usually a stochastic variable (e.g., seasonality and sales will affect

the customer demand; order cancellation will disturb the arrival rate.)

Uncertainties in service processes

Main warehouse operation processes include putaway, storage, order picking,

packaging, accumulation and sorting. Not all warehouses will include all these

processes.
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(1) Putaway. Putaway is a critical operation, since it determines the efficiency,

accuracy, and cost of retrieval, and accounts for about 15% of warehouse opera-

tional cost (Bartholdi III and Hackman, 2006). Direct putaway eliminates staging

and inspection activities. However, without the inspection process, the uncertain-

ties will possibly increase, since potential errors cannot be identified in time. With

an efficient WMS, directed putaway can improve efficiency by maximizing loca-

tion and cube utilization and retrieval productivity.

(2) Storage. Typical storage consists of forward and reserve storage (not all

warehouses have their storage system split in forward and reserve). A forward-

reserve area storage strategy will improve the efficiencies of order retrieval and

picking. In the reserve area, products are stored in pallet racks or block-stacks

to achieve a high space utilization. In the forward area with compact size, bin

shelving and gravity flow racks are applied to facilitate order picking, and reduce

the fluctuation of order picking productivity, compared with the picking in an

undivided storage system. The reserve-forward system is a two-echelon inventory

system, and imbalance of the inventory level between reserve and forward areas

can lead to a greater variance of throughput (e.g., inventory shortage in the

forward area will reduce the throughput of order picking).

(3) Order picking. Order picking can be divided in two types of systems: picker-

to-parts and parts-to-picker. Parts-to-picker systems include automated storage

and retrieval systems, using mostly aisle-bound cranes that retrieve one or more

unit loads and bring them to a pick position. Such an automated system may

streamline the service process, and can reduce its uncertainty and thereby improve

service. In end-of aisle order picking systems, tailored balancing of humans and

machines helps to reduce the throughput variance. In picker-to-parts systems,

an order picker walks or drives along the aisles to pick items. Two types can be

distinguished: low-level picking and high-level picking. In low-level order-picking

systems, the order picker picks requested items from storage racks or bins, while

traveling along the storage aisles. Pick inaccuracies, i.e., picking a wrong item,

can increase the uncertainty of the pick service process. High-level (also called

man-aboard) order-picking is used in warehouses with high storage racks. Order

pickers travel to pick locations on board of a lifting order-pick truck or crane,

which automatically stops in front of the appropriate pick location and waits for
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the order picker to perform the pick. If multiple order pickers are used, congestion

may occur.

(4) Accumulation, sortation and packaging. Accumulation and sortation of

picked orders into individual customer orders is a necessary activity if the orders

have been picked in batches. Accumulation and sortation processes usually apply

mechanical devices like conveyors, carousel systems and sorters, and man-machine

balance will affect the throughput. Mechanical errors like faulty sortations can

also cause inaccuracies in accumulation and sortation. Such inaccuracies will in-

crease the uncertainty of the departure process, and may reduce the departure

rate. During packing, laborers can check whether customer orders are complete

and accurate (Bartholdi III and Hackman, 2006), which can again decrease these

uncertainties.

Uncertainties in departure processes

One of the main uncertainties during shipping stems from shipping inaccuracy,

i.e., shipping the wrong product to the wrong customer, at the wrong time. Er-

rors in electronic messages can further cause or magnify these uncertainties. Other

uncertainties in the departure process arise from departure operations like con-

tainer loading (e.g., wrong order batch, wrong space calculation for containers),

and shipment staging (e.g., human factors cause fluctuations in departure rate).

Failure of shipping equipment like trucks, pallet jacks, and counterbalance lift

trucks, can also cause uncertainties in this process.

2.3 Stochastic methods in warehouse operations research

Classical deterministic models assume that perfect information is available about

the objective function and this information can be used to determine the search

direction. However, due to existing uncertainties in warehouse processes (see Ta-

ble 2.1), such perfect information is usually unavailable. Some researchers there-

fore resort to stochastic models to analyze warehouse operations. Methods for

stochastic models provide a means of coping with inherent system noise and

coping with models or systems that are dynamic, stochastic, even unstable, or

otherwise inappropriate for classical deterministic methods.
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Table 2.1. Warehouse operations with uncertainty factors

Stochastic
process

Operation pro-
cess

Practice Issues associated with uncertainties

Arrival pro-
cess

Product arrival Transportation Transportation disruption directly affects arrival process and
increases the uncertainty.

Cross-docking Reduce the variability of throughput time by simplifying op-
eration processes.

Receiving
scheduling

Reduce uncertainty and improve arrival time accuracy by
scheduling the receiving resources like dock doors, personnel,
equipment, staging space.

Prereceiving Reduce uncertainties by capturing information like location
assignment and product identification ahead of time.

Receipt prepara-
tion

Decrease arrival uncertainties and improve arrival rate.

Order arrival Customer de-
mand

Seasonality and sales will affect the customer demand, order
cancellation will disturb the arrival rate.

Communication Information system errors between customer and warehouse
will increase the uncertainty.

Core service
process

Putaway Direct putaway Service rate will be improved since direct putaway eliminate
staging and inspect activities. Without inspection the uncer-
tainties will possibly increase.

Directed put-
away

Streamline putaway process by maximizing location and
cube utilization, and reduce variability of productivity.

Batch and
sequenced put-
away

An efficient way to stabilize service rate of putaway and re-
duce the variability of productivity.

Storage Reserve area
storage

Achieve the space utilization and reduce the uncertainty of
replenishment shortage.

Forward area
Storage

Improve the service rate and reduce the fluctuation of order
picking productivity.

Order picking Picker-to-parts Suitable batch and routing polices will improve the service
rate. Pick inaccuracy and pick error increase uncertainty.

Parts-to-picker The automated system will reduce the uncertainty and im-
prove service rate. Balancing human system and machine
systems is helpful to streamline process and reduce uncer-
tainty.

Packaging,
accumulation,
sortation

Packaging Packaging order inaccuracy increase the uncertainty and re-
duce the departure rate.

Accumulation
and sortation

Sorter mechanical errors can lead to order inaccuracy of ac-
cumulation and sortation and increase uncertainty.

Departure
process

Shipping Container load-
ing

Optimization can maximize the cube and utilization of each
container and also reduce the uncertainty of utilization.

Staging activity The automated operation and direct loading can eliminate
staging and its the uncertainty, and improve the departure
rate.

Shipping inaccu-
racy

Trailer technique can decrease the uncertainty.
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Table 2.2. Stochastic models in warehouse operations

Type method Research examples Problem statement
Classical
probability
models

Urn models Chew and Tang (1999) Analyzing the picking systems by
urn models.

Le-Duc and De Koster (2005) Travel distance estimation in a 2-
block class-based storage strategy
warehouse.

Classical
stochastic
models

Renewal process
models

Bozer and White (1990) The basic configuration is modeled
as a renewal process in end-of-aisle
order picking system.

Markov chain
model

Gue et al. (2006) Model the circular picking area
with two workers as a Markov pro-
cess.

Queueing
models

Single queueing
models

Lee (1997) Analyzing a unit-load AS/RS by a
single-server queueing model with
two queues and two different ser-
vice modes.

Queueing networks
models

De Koster (1994) Performance approximation of
pick-to-belt order picking systems.

Polling models Gong and De Koster (2008) A polling-based warehouse dy-
namic picking system for online re-
tailers.

Bozer and Park (1999) Single-device polling-based mate-
rial handling systems.

Others Fluid models Bartholdi III et al. (2001) Bucket bridges problem when work
is stochastic.

Petri-net models Hsieh et al. (1998) Present a Petri-net-based structure
to describe and model AS/RS op-
erations.

Lin and Wang (1995) Modelling an automated storage
and retrieval system using Petri
nets.

Various stochastic models have been applied by warehousing researchers (see

Table 2.2). First, much order picking work adopts classical probability models, de-

fined by a sample space, events within the sample space, and probabilities of each

event, including basic probability models like the binominal, the Bernoulli, the ge-

ometric, the hypergeometric models and their derivatives like the urn model. For

example, Chew and Tang (1999) analyze order picking operations in a 1-block

warehouse and Le-Duc and De Koster (2005) analyze warehousing operations

in a 2-block class-based storage strategy warehouse by basic probability models
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Table 2.3. Stochastic analysis in warehouse systems

Type Method Research examples Problem statement
Optimization Stochastic

constrained
optimization

Azadivar (1986) To determine the maximum number of storage
and retrieval requests in automated warehous-
ing systems.

Perturbation
analysis

Gong and De Koster
(2009a)

Approximate optimal order batch sizes in a
parallel-aisle warehouse.

Kuhn-Tucker
condition

Jucker et al. (1982) The simultaneous determination of plant and
leased warehouse capacities for a firm facing
uncertain demand in several regions.

Petri-net
based tech-
nique

Archetti et al. (1991) Adopted Petri-net models and a stochastic op-
timization method to study optimal control
policies of an AS/RS.

Heuristic Analytical
approxima-
tion

Bozer and White
(1996)

Present two efficient heuristic algorithms for
design and performance analysis for end-of-
aisle order-picking system.

Simulation A tool based
on Promodel

Macro and Salmi
(2002)

Invented a simulation tool to determine ware-
house efficiencies and storage allocations based
on Promodel.

MC simula-
tion

Rosenblatt and Roll
(1988)

Analyzing warehouse capacity in a stochastic
environment by MC simulation.

Petri-net
based simula-
tion

Hsieh et al. (1998) Propose a Petri-net based four-layer simula-
tion structure for the AS/RS.

Enumeration Stadtler (1996) Optimize dimensions for automated warehouse
systems by a procedure consisting of enumer-
ation simulation.

Others Determine
limiting
behavior

Litvak (2006) Determine a limiting behavior of the shorted
rotation time needed to collect large orders in
a carousel system

Matrix ge-
ometric
analysis

Bastani (1990) Analyze closed-loop conveyor systems by
M/M/s system and an matrix geometric so-
lution.

(specifically, the binominal model and urn models) to determine the locations

from which articles must be picked in a pick tour and thereby the tour length.

Yu and De Koster (2009) have studied the impact of order batching and picking

area zoning on order picking system performance by classical probability models.

Second, classical stochastic models (like renewal process models, Markov mod-

els, Martingales models) are also helpful to describe warehousing operation pro-

cesses. For example, Bozer and White (1990) model order picking operations in

an end-of-aisle order picking system as a renewal process, where an event occurs
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when both pickers and the storage/retrieval (S/R) machine begin service. Gue

et al. (2006) model a circular picking area with two workers as a Markov process

when they research the effects of pick density on order picking areas with narrow

aisles.

Third, various queueing models (including single-server queueing models like

M/M/1 and M/G/1, queueing network models, and their derivatives like the

polling model) are frequently used in warehousing research. Lee (1997) has ex-

amined a unit-load AS/RS by a single-server (an S/R machine) queueing model

with two queues and two different service modes(storage requests and retrieval

requests). According to Bozer and Cho (2005), this is the first study using stochas-

tic analysis of a unit-load AS/RS by an analytical method. Queueing networks

are also helpful for warehouse modelling. De Koster (1994) has researched per-

formance approximation of zoned order picking systems by a Jackson queueing

network. Polling models, a special queueing network type, have also drawn the

attention of warehousing researchers. Bozer and Park (1999) have studied single-

device, polling-based material handling systems. Gong and De Koster (2008)

apply stochastic polling models to a warehouse dynamic order picking system for

an online retailer.

Besides the above three main types of methods, several other techniques have

been introduced to warehouse research. For example, Bartholdi III et al. (2001)

have researched bucket brigades where the work is stochastic by fluid models.

Hsieh et al. (1998) and Lin and Wang (1995) model an automated storage and

retrieval system using stochastic Petri nets, and their models can be used to eval-

uate the performance and optimize control policies. These pioneering researches

provide new exploration in warehouse research by stochastic methods.

To analyze these stochastic models, researchers have adopted various methods

like optimization, heuristics, and simulation. Some typical examples of each of

these methods are listed in Table 3. Stochastic optimization refers to the mini-

mization (or maximization) of a function in the presence of randomness in the

optimization process, which applies to one or both of the following conditions.

(1) There is random noise in the measurement of the objective function; (2) A

random (Monte Carlo) choice is made in the search direction as the algorithm

iterates towards a solution. By a stochastic constrained optimization algorithm
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(a simulation optimization algorithm), Azadivar (1986) has determined the maxi-

mum number of storage and retrieval requests that can be handled by automated

warehousing systems under physical and operational constraints. Jucker et al.

(1982) develop an efficient algorithm based on Kuhn-Tucker conditions for si-

multaneously determining the plant and leased warehouse capacities for a firm

facing uncertain demand in several geographical regions. Archetti et al. (1991)

have adopted Petri-net models and a stochastic optimization method to study

optimal control policies of an AS/RS.

Heuristic methods have also achieved successful application. For example,

Bozer and White (1996) present two efficient heuristic algorithms for design and

performance analysis of end-of-aisle order-picking operations based on a miniload

AS/RS. The algorithm is based on an approximate analytical model developed

to estimate the expected picker utilization for a general system configuration.

Simulation has been widely adopted by warehousing researchers. Macro and

Salmi (2002) analyze the storage capacity and rack efficiency of a medium vol-

ume, low stock-keeping unit (SKU) warehouse and a medium volume, large SKU

warehouse by Promodel. The model can be applied to simulate various warehouse

configurations like bulk floor storage, push-back, flow-through, drive-in and drive-

through racks. Rosenblatt and Roll (1988) have analyzed warehouse capacity in

a stochastic environment by Monte Carlo simulation. Stadtler (1996) optimizes

dimensions for automated warehouse systems by a procedure consisting of enu-

meration simulation. Hsieh et al. (1998) propose a Petri-net based four-layer

simulation structure as a general tool to model the operations, evaluate the per-

formance and develop control policies of an AS/RS.

Besides these approaches, some other stochastic analytic methods exist. For

example, Litvak (2006) determines the limiting behavior of the shortest rotation

time needed to collect large orders in a carousel system. Bastani (1990) analyzes

closed-loop conveyor systems with breakdown and repair of unloading stations by

an M/M/s queueing system and provides an approximation of the steady-state

probabilities of the system in different operating states by the matrix geometric

technique.

In the last 20 years, we can witness a rapid development of stochastic opti-

mization techniques, including stochastic programming and stochastic approxi-
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mation. From our review, however, we find while simulation and heuristics are

widely applied to warehouse research, stochastic optimization is hardly used.

2.4 Stochastic applications in warehouse operations

This section examines the application of stochastic methods in main warehouse

operations, including storage, order picking, packing, sorting, accumulation, and

distribution. For order picking, where many stochastic researches exist, we ex-

amine applications in three systems: picker-to-parts systems, parts-to-picker sys-

tems, and automated picking systems (Van den Berg, 1999).

(1) Storage

Storage is a main function of a warehouse, and a large number of papers re-

search it by deterministic methods. Stochastic research in this area, however, is

not abundant (compared with order picking). Noteworthy examples include Van

den Berg et al. (1998), who have studied forward-reserve allocation in a ware-

house with unit-load replenishments. Roll et al. (1989) present analytical and

simulation methods to determine the size of storage containers in a warehouse

with an objective to minimize the storage cost. Chang and Wen (1997) research

the impact on the rack configuration on the speed profile of storage and retrieval

machines and present an analytical procedure to obtain the optimal rack config-

uration in an AS/RS.

(2) Order picking: picker-to-parts systems

Stochastic research in this area is abundant. For example, Gue et al. (2006)

build a stochastic throughput model to explore the effect of pick density on order

picking areas with narrow aisles.

(3) Order picking: parts-to-picker systems

Parts-to-picker systems in general have a high automation level, and it is

convenient to model such systems by stochastic models. For instance, Bozer and

Cho (2005) derive closed-form analytical expressions for throughput performance

of an AS/RS under stochastic demand, and also derive an analytical estimate

for the expected S/R machine utilization. Park et al. (1999) model an end-of-

aisle order picking system as a two-stage cyclic queueing system consisting of
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Table 2.4. Stochastic application in warehouse operations

Warehouse opera-
tions

Research examples Problem statement.

Storage Van den Berg et al.
(1998)

Study forward-reserve allocation in a warehouse with
unit-load replenishments.

Roll et al. (1989) Present an approach to determine the size of a ware-
house container.

Chang and Wen (1997) Present an analytical procedure to obtain the optimal
rack configuration in an AS/RS.

Order picking: Picker
to parts

Gue et al. (2006) Build a stochastic throughput model to explore the ef-
fects of pick density on order picking areas with narrow
aisles.

Roodbergen and Vis
(2006)

Apply probability models to the layout design in a
picker-to-parts warehouse.

Order picking: Parts
to picker

Bozer and Cho (2005) Present an analytical result of throughput perfor-
mance of AS/RS under stochastic demand.

Park et al. (1999) Present queue models for end-of-aisle order picking
systems with buffer positions.

Order picking: Auto-
mated picking

Azadivar (1986) Maximize the throughput in a computerized auto-
mated warehousing system.

De Koster et al. (2008) Consider a newly designed compact three-dimensional
AS/RS with automated picking.

Packing, sorting, ac-
cumulation

Johnson (1998) Study the impact of sorting strategies on automated
sortation system performance.

De Jong and Anderson
(1995)

Study the setting of shelf heights and the distribution
of box sizes in two-dimensional shelf packing.

Distribution Yu and De Koster (2008) Research performance approximation and design of a
pick-and-pass system.

Le-Anh (2005) Study intelligent control of vehicle-based internal
transport systems.

one general and one exponential server queue with limited capacity, and present

closed-form expressions for system performance measures like throughput.

(4) Order picking: automated picking systems

The number of implementations of automated picking systems is growing.

However, only few papers in this area exist. An example is Yu (2008), who studies

dynamic picking systems where the pick face is replenished automatically and

dynamically from bulk stock. Since automated picking is a rapidly growing area

of interest and since order profiles and storage location selection are stochastic,

stochastic modelling of these systems could be explored further.
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(5) Packing, sorting, accumulation

Although several papers research packing, sorting, accumulation combined

with order picking, few papers focus on these processes using stochastic methods.

An exception is Johnson (1998), who studies the impact of sorting strategies on

automated sortation system performance by a stochastic analytical model.

(6) Distribution

Distribution, including internal transport, inbound and outbound shipping, is

critical to improve the overall performance of a warehouse system. Research in

internal transport is quite abundant. Many papers research vehicle-based internal

transport systems like AGVs. Le-Anh and De Koster (2006) present an overview

paper on this topic. However, receiving and shipping processes are not especially

studied in current literature.

This section is summarized in Table 2.4. By comparing existing warehouse

operations with uncertainties (see Table 2.1 and Figure 2.2) and warehouse op-

erations with stochastic studies (Table 2.4), we can identify interesting academic

blanks. These potential research directions will be further presented in Section

6.1.

2.5 Current research limitations: model, parameter, process

details

In this section we present limitations of past studies on warehousing, from a

stochastic modelling angle. We focus on model inaccuracies referring to limita-

tions from adopting inaccurate mathematical (specially probabilistic or stochas-

tic) models, parameter estimation inaccuracies due to errors in parameter esti-

mation, and process inaccuracies due to oversimplifying warehouse processes or

overlooking important processes.

2.5.1 Arrival process

The order arrival process is often modeled as a Poisson process, possibly with

a time-varying arrival rate. However, the typical Poisson model cannot always

accurately describe arrival processes in practice.
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(1) Model inaccuracies. The arrival process might not be well modeled by

a Poisson process. One reason is that customer orders can be dependent. For

example, students in one business school could order the same book at Amazon.

Order arrivals from these students are then correlated. Many researchers model

order line arrivals as a Poisson process(e.g., Lee (1997), Axsäer (1995)). However,

one order can include several line items, and these line items are dependent.

Hence it is inaccurate to model the order line arrival stream as a Poisson process.

Some researchers explicitly model correlated products. Frazelle and Sharp (1989)

conduct a simulation of a miniload AS/RS where correlated products are stored

in the same bins, and report a reduction of 30-40% in the number of retrieval

trips compared with that in a setting of random product assignment. A non-

homogeneous Poisson process, with a time-dependent rate parameter, may be

more suitable for some warehouses. An example of a non-homogeneous Poisson

process would be the order arrival rate to the warehouse of an online food retailer,

where the arrival rate increases before dinner time and decreases during the

remaining parts of the day.

(2) Parameter inaccuracies. Usually we do not know arrival rates or product

correlation coefficients and must estimate them. For a time-varying arrival rate,

we even need to estimate the arrival rate function. In a warehouse, there are a

variety of information sources to use for the estimation. However, existing research

usually has not provided a convincing justification for the parameter estimation.

A more accurate estimation of the order arrival rate from demand data and

the product arrival rate from supplier information is needed. One can assume a

parametric form for the arrival-rate function, such as linear or quadratic. Massey

et al. (1996) have explored the method to estimate the coefficients of linear arrival

rate functions from nonhomogeneous Poisson process data.

(3) Process inaccuracies. Both order and product arrival processes may be

inaccurately described. For example, in order arrivals, all research on receiving

operations assume a warehouse does not reject orders. But in many cases, a

warehouse can reject part of the orders to maximize the revenue. In the case of

online retailers, customers can cancel orders, forming a negative arrival process.

For product arrivals, existing research hardly considers arrival uncertainty due to
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product quality variance, transportation disturbance, and associated rework and

product reject flows.

2.5.2 Service process

Warehouse service processes include picking at a storage position, travel between

positions, packing, and other processes. However, unsuitable model selection, im-

practical parameter estimation, process oversimplification can induce inaccura-

cies.

(1) Model inaccuracies. Many order picking papers assume picking time is

constant, but it is not always acceptable to overlook the variance of picking time.

Others modeled service time as a sequence of independent and identically dis-

tributed random variables, each with an exponential distribution. Bozer and Cho

(2005) point out that the coefficient of variation for single command and dual

command cycles are known to be considerably less than one in an AS/RS, and

“exponentially distributed S/R service times produces results inconsistent with

simulation”. We can also find other cases where the actual service-time distribu-

tion is not exponential. For example, pick time can depend on item types (e.g.,

the pick time for large items can be longer than for small items) and ergonomic

factors (e.g. the pick time of laborers can become longer due to fatigue).

(2) Parameter inaccuracies. Parameters (e.g., pick rate) may be inaccurately

estimated. Examples causing parameter inaccuracies include ergonomic factors,

which may cause productivity to decrease over time, dependent on, for example,

the frequency and length of short breaks, and item heterogeneity which causes

the variance of service time. Better parameter estimation can be obtained by

analyzing historical data or ergonomic experiments.

(3) Process inaccuracies. The existing literature often pays no attention to

several important factors in service processes. First, in several queueing models

studying order picking, capacity limitations, including order picker capacity and

cart capacity, are overlooked. But this capacity limitation changes the pick pro-

cess. The second noticeable problem is order correlation, which will affect the

order pickers’ behavior and picking process, and make an exponential serve time

assumption unrealistic. Finally, most literature overlooks the congestion problem,
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which has a significant effect on service processes. For example, in the forward-

reserve problem (see Van den Berg et al. (1998) ), concurrent replenishments may

cause congestion in the order picking process. Gue et al. (2006) are among the

first to consider the factor of congestion in order picking systems, and describe

this process more accurately.

2.5.3 Departure process

The departure process is often modeled as a Poisson process or even overlooked.

However,the departure process is directly associated with customer satisfaction. It

is important to enhance warehouse performance by improving delivery accuracies

and velocities of the departure process.

(1) Model inaccuracies. Departure streams are possibly dependent. For ex-

ample, departures to the same destination are highly correlated. Furthermore,

irregularity uncertainties exist (see Table 2.1). Shipping inaccuracies (e.g., wrong

product, wrong destination), which frequently occur in practice,will disturb the

departure process (e.g., by changing the destination during the shipping process).

In that case, a Poisson process may be unsuitable to model the departure process.

(2) Parameter inaccuracies. Parameter inaccuracies exist also in warehouse

shipping. The estimation of departure parameters will benefit by explicitly con-

sidering transportation distortion and shipping inaccuracy. It can be done by

analyzing historical data.

(3) Process inaccuracies. Existing research often assumes the departure pro-

cess to be a Poisson process, which may not accurately capture its essence. Batch

delivery, a typical departure process in practice, cannot be described by a classi-

cal Poisson process. Furthermore, customers may be not satisfied with a shipped

product and return it, a process typical for online retailers. Therefore a return

flow may exist in the departure process.

2.6 Concluding remarks

In this chapter, we present a literature review of stochastic modelling and analysis

of warehouse operations. We identified strategic, tactical, and operational uncer-

tainty sources, and systematically explored uncertainties of arrival, service, and
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departure processes in a warehouse. These uncertainties explain why researchers

might resort to stochastic rather than deterministic models in some uncertain

environments.

In the past, deterministic models have achieved successful applications in ware-

house research. Researchers may be inclined to think stochastic research is limited

in this field. However, we find not only a large number of stochastic applications,

but also a great variation in methods. These improve our understanding of ware-

house research.

Nevertheless, we find the application of stochastic methods in warehouse re-

search could be explored further. We identify several directions highly relevant

to practice and largely unexplored in warehouse literature, including real-time

response models, warehouse revenue management, receiving management, and

shipping management which can be explored by methods like stochastic program-

ming, stochastic combinatorial modelling, and stochastic networks modelling.
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3

Approximate optimal order batch sizes in a

parallel-aisle warehouse

3.1 Introduction

Order picking - the process of retrieving products from storage (or buffer areas)

in response to a specific customer request - is the most labor-intensive opera-

tion in warehouses with manual systems, and a very capital-intensive operation

in warehouses with automated systems (see Goetschalckx and Ashayeri (1989),

Tompkins et al. (2003)). Managing order picking systems effectively and effi-

ciently is a challenging process in many warehouses. Order picking efficiency can

often be improved by order batching (Gademann and Van de Velde, 2005), which

is a method to group a set of orders into a number of sub-sets, each of which can

then be retrieved by a single picking tour (De Koster et al., 2007).

Many of the earlier papers dealing with the order batching problem assume

the batch size is directly given. In some cases, the batch might be determined

by the capacity of the picking cart. When the cart capacity is not restrictive,

a natural question is: Are these given batch sizes suitable? Considering setup

time and unit service time for order picking, the total service time and batch

size are not related linearly: The setup time will take a bigger proportion in

the total service time for a small batch, while the unit service time will take

a bigger proportion in the total service time for larger batches. Therefore it

is an interesting question to explore the optimal batch size when orders arrive

according to a stochastic process. A following research question is: How to find

an optimal batch size if it exists? Most research involved in optimizing batch
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sizes, with the objective to minimize total service times assumes the order set is

given. Gademann and Van de Velde (2005) have pointed out that the deterministic

version of the batching problem with optimal routing is NP- hard when the batch

size is larger than 2, in a parallel-aisle layout. It is tough to determine optimal

order batching for the stochastic version of the problem. Few papers explore

optimum batching, including batch size determination in a stochastic context. In

this chapter, we focus on the batch size problem and assume orders arrive online

and orders are batched in a FCFS sequence. Chew and Tang (1999) assume

orders arrive according to a Poisson process and approximate the travel time in a

rectangular warehouse and use this approximate expression to minimize the total

throughput time of the first order in a batch. They compare their results with

simulation. Le-Duc and De Koster (2007) extend these results by determining the

optimal batch size minimizing the throughput time of a random order in a two-

block warehouse. All methods use approximation methods and do not directly

optimize the batch size, as this is very cumbersome. In this paper we opt for a

different approach, by efficient simulation optimization. Simulation optimization

can help the search for an improved policy while allowing for complex features

that are typically outside the scope of analytical models. We employ SPO (sample

path optimization), a simulation optimization technique with the advantage of

high efficiency and convenience. However, SPO requires a technique to estimate

the gradient of the objective function with respect to the batch size.

A large number of gradient estimation techniques exist, such as Infinitesimal

Perturbation Analysis (IPA), Likelihood Ratios, Symmetric Difference, and Si-

multaneous Perturbation (Fu, 2002). IPA is mainly used to calculate a sample

path derivative with respect to an input parameter in a discrete event simula-

tion (Heidelberger, Cao, Zazanis, and Suri, 1988).We will employ this technique

since it is an “efficient gradient estimation technique” (Ho, Eyler, and Chien,

1979), which can “expedite the process of performing experiments on discrete

event simulation models” (Johnson and Jackman, 1989). The implicit assump-

tion of IPA is that the average of the change which results from the perturbation

equals the change in expectation, and it yields an unbiased estimator. Conver-

gence is an important issue for the implementation of IPA. Heidelberger, Cao,

Zazanis, and Suri (1988) have studied the convergence properties of IPA sample
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path derivative, and derived the necessary and sufficient condition for the conver-

gence. Applications of perturbation analysis have been reported in simulations

of Markov chains (Glasserman, 1991), inventory models (Fu, 1994), supply chain

problems (Gong and Yucesan, 2009), manufacturing systems (Glasserman, 1994),

finance (Fu and Hu, 1997), and statistical process control (Fu and Hu, 1999). In

some formulations in this chapter, we will face complicated objective functions.

In order to obtain optimal batch sizes, we need to compute the gradient of these

objective functions. However, either their gradients are not available in explicit

forms or they are given by complicated expressions. We therefore resort to a fi-

nite difference method, which makes it possible to use arithmetic operations to

determine the gradient.

In this chapter, we consider the optimal order batch size problem with stochas-

tic demand in a parallel-aisle warehouse (see Figure 3.1), with cross aisles at the

front and back of the aisles. The warehouse faces a demand with a given distribu-

tion. An order picker travels at a constant velocity with a S-shape routing policy,

one of the most common routing policies in practice. In order to improve picking

efficiency, orders are batched.

The research objective in this paper is to minimize the operational costs by

optimizing the order batch size, defined as the set of orders that are picked by one

order picker in one route, and batch size q is the number of items in the batch,

with constraint qLB ≤ q ≤ qUB , where the upper bound qUB is determined by the

capacity of pick devices (pallets or bins) and the lower bound qLB is specified by

an additional condition like system stability. To achieve this research objective,

we consider three major research questions and build corresponding models as

follows.

First of all, we examine the operational cost from the perspective of a ware-

housing service provider and build the corresponding Model-1. This model focuses

primarily on an internal objective by minimizing the average total service time,

which is the sum of setup time and travel time. We exclude retrieval time as this

is not influenced by the batching policy. Orders are picked in a FIFO sequence.

Model-1 emphasizes the impact of order batching on performance of a warehous-

ing service provider. Secondly,we examine the cost for customers and build a

corresponding Model-2, which is taken from Chew and Tang (1999). The contri-
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bution in Model-2 is to provide an efficient finite difference algorithm. While using

straightforward simulation takes much time to obtain a solution by enumeration,

our method takes on average 6 seconds to get one solution. Finally,we consider

the total cost for both the warehousing service provider and the customers by

combining Model-1 and Model-2 into a new Model-3. The contribution of this

research is twofold. First we show SPO and perturbation analysis algorithms are

efficient in deriving optimal values. Second we combine the perspectives of both

customers and a warehousing provider in one model and show it can also be

solved by perturbation analysis and an SPO algorithm.

The remainder of the chapter is organized as follows: in the following sec-

tion, we search optimal batch sizes for warehousing service providers in a general

stochastic parallel-aisle warehouse by sample path optimization and infinitesimal

perturbation analysis techniques. Section 3.3.1 is devoted to an efficient finite dif-

ference algorithm to search optimal batch sizes for customers. In Section 3.4, we

present a model with the objective of minimizing the total cost, and provide an

efficient finite difference algorithm to search the optimal batch size. We conclude

with final discussion, contribution summary and further research in Section 3.5.

3.2 Optimal order batch sizes to minimize the cost of a

warehousing service provider

3.2.1 Model

Model-1’s objective is to minimize the total expected operation time of a ware-

housing service provider E[Tp(q,D)], where q is the decision variable, the sub-

script p indicates a warehousing service provider, and D is the demand, the

number of order lines per period, generated from a given distribution f(D).

E[TP (q,D)] is the product of the expected number of batches E[D/q] and the

expected operational time of one batch. Following Chew and Tang (1999), we do

not explicitly consider retrieval time since the batching policy does not influence

the total retrieval time for a given demand. But the batch size does influence the

total setup time and the total expected travel time. Therefore, in our model the

expected operational time of one batch is the sum of a setup time β and an ex-

pected travel time E[L(q)/v], where E[L(q)] is the expected travel distance and
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v is a constant travel velocity. E[L(q)] depends on the warehouse layout and the

routing method. We assume a rectangular, parallel-aisle layout and an S-shape

routing method (see De Koster et al., (2007)). For this environment, Chew and

Tang (1999) have found a closed form approximate expression for E[L(q)]. We

have

Model − 1 : min
D∼f(D),0≤q≤E[D]

E[TP (q,D)]

s.t. E[TP (q,D)] = E[L(q)/v + β]E[D/q]

3.2.2 Algorithm

This section demonstrates how to obtain the optimal batch size quantities in

a parallel-aisle warehouse with stochastic demand. Our scheme is to use the

simulation optimization algorithm by combining sample path optimization and

perturbation analysis to examine optimal order batch sizes.

Algorithm Description

To compute the optimal batch size values, we adopt a sample path optimization

technique as main algorithm, where we use IPA (Infinitesimal Perturbation

Analysis) to calculate the gradient value. We start with an arbitrary batch size

q1. After randomly generating an instance of the demand, we construct and

solve Model-1 in a deterministic fashion. Then, we compute gradient values by

the decision tree from the perturbation analysis. The procedure is summarized

in a pseudo-code format in the following procedure, where K denotes the total

number of steps taken in a search path of the main algorithm, U represents

the total number of steps in one inner cycle which is to provide a gradient

estimation at one step of the main algorithm, αk represents the step size at the

each iteration k, and qk represents the batch size at the kth step. The choice

of step size is important to guarantee convergence of the batch size. A proper

choice will be explained further in Lemma 3.4.

Algorithm 1
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(I)Initialization.

(I.1) Initialize K.

(I.2) Initialize U .

(I.3) Initialize q1.

(I.4) Initialize α1 = α/1 for a constant α.

(II) Set k ← 1.

Repeat.

Set u ← 1.

Repeat.

(II.1)A. Generate the demand dk
u from f(D).

(II.1)B. Compute the objective value of Model-1 in a deterministic fashion.

(II.1)C. Compute and accumulate gradients dLk
u by perturbation analysis.

u ← u + 1,

Until u=U.

(II.2)Compute the desired gradients ∂E[L]
∂q |q=qk = 1

U

∑U
u=1 dLk

u,

E[D]k = 1
U

∑U
u=1 dk

u, and E[L]k = 1
U

∑U
u=1 Lk

u at the k step.

(II.3)Calculate the desired gradients dE[T ]kq = 1
v

∂E[L]
∂q |q=qk

E[D]k

qk

+( 1
vE[L]k + β)(−E[D]k

(qk)2
).

(II.4)Update the batch size by qk+1 ← �qk − αkdE[T ]kq�, where αk = α/k.

k ← k + 1,

Until k = K.

(III) Return the {qk}K
k=1 and the objective function value.

We explain the procedure as follows:

I)Initialization. The algorithm starts with an arbitrary value for the batch

size q1. K and U are given and can be determined by a pilot study to solve the

following trade-off: while a small K cannot provide sufficient data, and output

will have a big variance, a too large K is inefficient to improve the optimal value.

II) The main loop in step (II) is an outer loop with K steps. Each step includes

a U -step inner loop computation in step (II.1), IPA analysis in step (II.2),the

desired gradient calculation in step (II.3), and the updating of batch sizes in step

(II.4).
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We first run an inner loop with U steps. At each step of the inner loop,

we generate the demand from distribution f(D), solve the problem of Model-1

in a deterministic fashion once the demand is observed, and calculate the per-

turbation value dLk
u. Secondly, we conduct critical computation ∂E[L]

∂q |q=qk =
1
U

∑U
u=1 dLk

u , which is just the IPA technique. Thirdly, we compute the gra-

dient of the expected travel time with respect to the batch size by dE[T ]kq =
1
v

∂E[L]
∂q |q=qk

E[D]k

qk +( 1
vE[L]k +β)(−E[D]k

(qk)2
). Finally, we update batch sizes qk+1 by

qk+1 ← �qk −αkdE[T ]kq� at the kth step. Also note that since the algorithm stops

at k = K, we do not need an extra stopping rule here.

(III) Return the qk and objective function value at each step. Then we can

conduct the output analysis.

Algorithm Justification

If an algorithm converges and the objective function subject to minimization

is convex, the algorithm can provide a global optimal value. In order to justify

Algorithm 1, we build four lemmas. Lemma 3.1 is to justify the convexity of

our objective function. Lemma 3.2, 3.3, and 3.4 will show the convergence of

Algorithm 1. In the following,we use the notation below:

M=the number of aisles;

H=the length of aisles. We assume a bin containing one kind of item has one

unit length;

ω =the cross distance between two consecutive aisles;

D= the mean of demand;

Na=the number of visited aisles;

E = the even number set;

Θ= the odd number set;

ξi= the aisle position of item i, ξi = 1, ...,M ;

ηi= the location position of item i within an aisle, ηi = 1, ...,H;

Ωq=the position set covered by a route when the batch size is q. The position

of an item i ∈ {1, .., q} is indicated by (ξi, ηi);

ξ∗ = max(ξi, i ∈ {1, .., q}) be the farthest aisle visited;
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η∗ = max(ηi,∀i, s.t.ξi = ξ∗) be the farthest position at the farthest aisle

visited.

In order to examine the convexity of objective function E[TP (q,D)]. We first

establish Lemma 3.1 as follows.

Lemma 3.1. The objective function E[TP (q,D)] = E[L(q)/v + β]E[D/q] is a

convex function of q.

Proof: For item locations with uniform distribution, Chew and Tang (1999)

have given an approximate distance estimation for the S-shape routing policy.

Chew and Tang (1999) obtained the approximate travelling time by assuming

that an additional of half aisle length is traversed regardless whether the number

of total aisles visited is odd or even, and the approximate value is within H
2v of

the exact expected travelling time. Based on their result, we have

E[
L(q)

v
+ β] =

M

v
H[1 − (1 −

1

M
)q] + 2

ω

v
[M −

M−1∑
j=1

(
j

m
)q] +

H

2v
+ β. (3.1)

For a constant θ with 0 < θ < 1, f(q) = −θq is a concave function of q. So

E[L(q)/v+β] here is a concave function. E[D]/q is nonincreasing convex function

of q. From Boyd and Vandenberghe(2004), the product E[L(q)/v + β]E[D/q] of

a concave function E[L(q)/v + β] and a nonincreasing convex function E[D]/q is

convex. �

In this algorithm, it is critical to find an efficient gradient estimator. We

use perturbation analysis to compute this gradient. Perturbation analysis is a

powerful technique for the efficient performance analysis of dynamic systems. Its

fundamental approach is to keep track of information along a perturbed path.

The main principle behind perturbation analysis is that if a decision variable of

a system is perturbed by a small amount, the sensitivity of the response of the

system to that variable can be estimated by “tracing its pattern of propagation

through the system ” (Carson and Maria, 1997). This will be a function of “the

fraction of the propagations that die before having a significant effect on the

response of interest” (Carson and Maria, 1997). The fact that all derivatives can

be derived from the same simulation run represents a significant advantage to
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IPA in terms of the efficiency. With the support of this technique, we have the

Lemma 3.2.

Depot

A batch with even aisles

Depot

Perturbation pattern 1

Depot

Perturbation pattern 2

X
X

Depot

Perturbation pattern 3

X

Depot

A batch with odd aisles

Depot

Perturbation pattern 4

X

Depot

Perturbation pattern 5

X

Depot

Perturbation pattern 6

X

Depot

Perturbation pattern  7

X

Fig. 3.1. Perturbation analysis for a batch in a parallel-aisle warehouse with S-shape
routing policy

Lemma 3.2. The gradient of expected travel time with respect to batch size can

be computed by dE[T ]p = 1
v

∂E[L]
∂q

E[D]
q + (E[L]

v + β)(−E[D]
(qk)2

), where ∂E[L]
∂q can be

calculated by the perturbation analysis and decision tree method.
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Proof: From Model-1, we have

∂E[Tp(q)]

∂q

∣∣∣∣
q=qk

=
1

v

∂E[L]

∂q

∣∣∣∣
q=qk

E[D]

qk
+ (

E[L]

v
+ β)(−

E[D]

(qk)2
). (3.2)

In this formula, the critical issue is to compute the gradient of the travel

distance with respect to batch sizes. Gong and Yucesan (2009) have provided

an implementation framework and theoretical justification of SPO and IPA, and

they compute the gradient by an analytical duality method. Different from them,

we conduct direct perturbation analysis, and then derive a decision tree from

perturbation patterns.

We conduct a perturbation analysis for a single batch with S-shape routing

policy here. For a batch with batch size q , we give the system a perturbation,

i.e., let the batch size increase by 1. In Figure 3.1 the item with a cross “X” is

the perturbed item. By comparing the distance before and after perturbation, we

can compute the perturbation of distance.When the number of visited aisles is

even, there are three perturbation patterns. (see perturbation patterns 1, 2, 3 in

Figure 3.1). When the number of visited aisles is odd, there are four perturbation

patterns. (see perturbation patterns 4, 5, 6, 7 in Figure 3.1).

By tracing its pattern of propagation through the system, we can build a

decision tree for the gradient computation in Figure 3.2. Lemma 3.2 follows from

IPA analysis in Figure 3.1 and the decision tree in Figure 3.2. �

Lemma 3.3. If demand D has a density on (0,∞)and E[D] < ∞, batch size

q ∈ 	+ and q < ∞ , the gradients obtained by Lemma 3.2 are bounded with

probability 1.

Proof: There are several ways to prove this lemma. We employ the following

argument, which is also used to show the computation process in (II.1).C of

algorithm 1.

Generate the aisle position ξq+1 and location position ηq+1 of a perturbed item.

For S-shape routing policy, from the decision tree in Figure 3.2, the gradient can

be computed as follows:



3.2 Optimal order batch sizes to minimize the cost of a warehousing service provider 45

Fig. 3.2. Decision tree from perturbation analysis

∂L

∂q
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2[ηq+1 + ω(ξq+1 − ξ∗)], ξq+1 > ξ∗ and Nv ∈ E

2η∗, ξq+1 < ξ∗, (ξq+1, ηq+1) /∈ Ωq and Nv ∈ E

0, ξq+1 = ξ∗, (ξq+1, ηq+1) /∈ Ωq and Nv ∈ E

2[H − η∗ + ω(ξq+1 − ξ∗)], ξq+1 > ξ∗ and Nv ∈ Θ

2(H − η∗), ξq+1 < ξ∗, (ξq+1, ηq+1) /∈ Ωq and Nv ∈ Θ

2(ηq+1 − η∗), ξq+1 = ξ∗, ηq+1 > η∗and Nv ∈ Θ

0, (ξq+1, ηq+1) ∈ Ωq and Nv ∈ Θ.

(3.3)

From Equation 3.3, we have

∂L

∂q
≤ max{2[ηq+1 + ω(ξq+1 − ξ∗)], 2η∗, 2[H − η∗ + ω(ξq+1 − ξ∗)],

2(H − η∗), 2(ηq+1 − η∗)} ≤ 2H + 2ω(M − 1). (3.4)

The boundedness of gradient follows from Equation 3.4. �
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Lemma 3.4. By the sample path optimization in Algorithm 1 for a proper choice

of step size, the batch size {qk}∞k=1 converges with probability 1.

Proof: In order to ensure the convergence, a key issue is the selection of a suitable

step size αk , where we have

Condition (1): A criterion for choosing αk is to let step size go to zero fast

enough so that the algorithm can converge, but not so fast that it will in-

duce a wrong value. One condition to meet that criterion is
∑∞

k=1 αk = ∞ and∑∞
k=1 α2

k < ∞.

For instance, αk = α/k for some fixed α > 0 satisfies Condition (1). The

first part of this condition facilitates convergence by ensuring that the steps do

not become too small too quickly. However, if the algorithm is to converge, the

step sizes must eventually become small, as ensured by the second part of the

condition.

For a convex objective function E[Tp(q)] , a bounded gradient (see Lemma 3.2

and Lemma 3.3 ), and a step size αk which satisfies the condition (1), according to

Robbins and Monro (1951), we have a limit point of {qk}∞k=1, which is stationary

with probability 1. �

3.2.3 Results

We implement Algorithm 1 in Matlab. Experiments are conducted on a computer

with 1.73GHz CPU and 516MB RAM. After acquiring characteristic information

like warehouse size and generating the demand by a normal distribution N(μ, σ2)

to specify the problem, the distance computation program can return batch sizes

and objective values at each step to the main program. Then by the gradient

computing algorithm, the main program can update the batch size until it con-

verges. Here we adopt an initial step size α1 = 0.5 by a pretest experiment. Since

the objective function is convex, this convergence will lead to a global optimum.

Without loss of generality, the position of our depot is the first aisle and

the first location. The probability to visit an aisle is equal for all aisles and

uniformly distributed. We have aisle number ξi ∼ U(1,M),∀i ∈ {1, .., q}. The

probability to visit a location in a visited aisle is also equal, i.e. , location position

ηi ∼ U(1,H),∀i ∈ {1, .., q}. In order to verify the result from the simulation
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optimization, we compare it with the result of enumeration, where we enumerate

all the possible batch size values from qLB to qUB. In combination with Monte

Carlo simulation, the enumeration is conducted as follows. First, we generate a

very large order number, and then generate the position of each item by given

distributions ξi ∼ U(1,M) and ηi ∼ U(1,H),∀i ∈ {1, .., q}. Then, for every value

of q, we determine the batches of size q in an FCFS sequence. Third we compute

the routing length and corresponding warehouse operation time of each batch by

the S-shape policy. For every batch size we compute the expected warehousing

operation time and hence finally find the optimal batch size.

We present experiments in Table 3.1. We have conducted two groups of ex-

periments: varying the aisle number M(experiments 1 to 5) and varying the aisle

length H(experiments 6 to 10). The computation results include the items below:

qE= the optimal batch size obtained by enumeration;

q̂ = the statistical estimation of batch size by the stochastic simulation algo-

rithms, which includes the mean batch size q and half width (HW ) of the 95%

confidence interval (CI) ;

R(q)= the rounded integer value of the estimated batch size;

Δ1= |q − qE|/qE , the direct bias of statistical estimation;

Δ2= |R(q) − qE |/qE , the indirect bias of rounded statistical estimation;

We compute the average direct bias Δ1=1/N
∑

n |q − qE
n |/qE

n = 0.255% and

the average indirect bias Δ2=1/N
∑

n |R(q)− qE
n |/q

E
n = 0% . The average direct

bias of statistical estimation is less than 1%, and the average indirect bias of

rounded statistical estimation is negligible.

From the experiment, we observe that

the optimal batch size for Model-1 equals to the upper bound q∗ = qUB,

which is robust in both groups of simulation experiments. We can understand

this result from the limiting system behavior. By increasing the batch size, the

travel and setup time per batch will converge to a constant.
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Table 3.1. Experiment results for Model-1

No. M H ω qUB qLB qE bq1 = q ± HW R(q) Δ1 Δ2

1 25 20 3 50 1 50 49.8694±0.0876 50 0.26% 0
2 30 20 3 50 1 50 49.7793±0.0773 50 0.44% 0
3 35 20 3 50 1 50 49.8895±0.0271 50 0.22% 0
4 40 20 3 50 1 50 49.9391±0.0763 50 0.12% 0
5 45 20 3 50 1 50 49.8394±0.0745 50 0.32% 0
6 40 25 3 60 1 60 59.7696±0.0876 60 0.38% 0
7 40 27 3 60 1 60 59.9196±0.0773 60 0.13% 0
8 40 28 3 60 1 60 59.8195±0.0272 60 0.30% 0
9 40 30 3 60 1 60 59.9093±0.0765 60 0.15% 0
10 40 32 3 60 1 60 59.8597±0.0743 60 0.23% 0

lim
q→∞

E[
L(q)

v
+ β] = lim

q→∞

M

v
H[1 − (1 −

1

M
)q] + 2

ω

v
[M −

M−1∑
j=1

(
j

m
)q] +

H

2v
+ β

=
2MH + 4Mω + H

2v
+ β. (3.5)

However, with an increasing batch size q, the number of batches E[D]/q will

continue to decrease, and therefore the total operation time, which is the product

of the two items, will also decrease. That is the reason why the optimal batch

size will converge to its upper bound.

3.3 Optimal order batch sizes to improve customer service

3.3.1 Model

Model-1 in Section 2 considers the main operation time from the perspective of a

warehousing service provider. It does not measure the waiting time of customer

orders and the service level. It is also necessary to examine the time spent by

customer orders in a warehousing system. We therefore adopt the throughput

time of a consumer order, which is from Chew and Tang (1999), as the objective

to build the Model-2 as follows.

Model − 2 : MinqLB≤q≤qUB TTO(q)
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s.t. TTO(q) = W1(q) + W2(q) + E[S]

In Model-2, the objective TTO(q) is the throughput time of a customer order,

i.e., the duration an order stays in the system, when the batch size is q with

qLB ≤ q ≤ qUB, where qLB is determined by the system equilibrium condition

since if the arrival rate λ is too high the system will become unstable and qUB

is specified by the capability of picking carts. TTO(q) consists of three parts:

expected batch time W1(q), expected waiting time W2(q) and expected service

time E[S]. We assume single-line orders and let the order arrival rate be λ.

The expected batch time W1(q) is given by Chew and Tang (1999) as W1(q) =

(q − 1)/λ. The expected waiting time W2(q) is approximately computed by a

linear combination of expected waiting times of M/M/1, M/D/1, and D/M/1

queueing systems. When the coefficient of variation of both the interarrival time

and service time distribution functions are less than or equal to 1, this standard

approximation works well for any GI/G/1 queueing systems. The expected service

time E[S] consists of travel time, picking and sorting time.

3.3.2 Algorithm

The essential problem in searching for the optimal batch size is the choice of

the computation method. From Chew and Tang (1999), our objective function is

a complicated function of q, and an analytical gradient computation method is

infeasible. Perturbation analysis is also highly complicated in Model-2, especially

for the perturbation analysis of W2. Even if we had obtained the decision tree by

perturbation analysis, its computation will not be efficient. Therefore we use the

finite differences (FD) as our gradient computation method.

We use the following central finite difference optimization algorithm to solve

the order batch problem in a parallel-aisle warehouse, and demonstrate how

to obtain the optimal batch size quantities. The procedure is summarized in a

pseudo-code format in Algorithm 2, where we start with a batch size q1, usually

q1 = qUB, K denotes the total number of steps taken in a search path, αk

represents the step size at the each iteration k, and qk represents the batch size

at the kth step.
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Algorithm 2

(I)Initialization.

(I.1) Initialize K.

(I.2) Initialize q1 to qUB.

(II) Set k ← 1.

Repeat.

(II.1) Compute E[T ]kTO(qk + h) and E[T ]kTO(qk − h), when k >1.

(II.2)Compute the desired gradients.

dE[T ]kTO =
T k

TO
(qk+h)−T k

TO
(qk)

h , when k =1.

dE[T ]kTO =
T k

TO
(qk+h)−T k

TO
(qk−h)

2h , when k >1.

(II.3)Update the batch size,qk+1 ← �qk − αkdT k
TO�.

k ← k + 1,

Until k = K.

(III) Return the {qk}K
k=1 and the objective function value.

Lemma 3.5. By the finite difference algorithm 2 and a step size αk which can

satisfy Condition (1) , the batch sizes {qk}∞k=1in Model-2 can converge.

Proof: From Bertsekas (1999), for a finite difference algorithm with a step

size which satisfies Condition (1), if the objective function in Model-2 is convex,

the batch size converge. Chew and Tang (1999) have showed that TTO(q) =

W1(q) + W2(q) + E[S] is a convex function of q for qLB ≤ q ≤ qUB. �

3.3.3 Results

Based on Chew and Tang (1999)’s formulation and our optimization algorithm,

we implement the optimization procedure in Matlab. One run of simulation takes

only 6 seconds on average. Let q1 = qUB, for the number of aisle ranging from

25 to 45, we obtain the search paths indicated in Figure 3.3. All the experiments

converge in the last 500 steps. We compute the statistical estimation by the

transient deletion technique (see Law and Kelton (2000)).

In order to verify the result from optimization algorithm 2, we compare the

result with that by enumeration, where we traverse all possible batch size values
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Fig. 3.3. Search path by Algorithm 2

from qLB to qUB. For all possible values of batch size q, we compute the expected

objective values from Chew and Tang (1999) and find the optimal batch size. We

present the result in Figure 3.4.

We present experiments in Table 3.2. The most left column of Table 3.2 repre-

sents the index of the experiments. The middle part of Table 3.2 is the experiment

setting: M , H, ω, qLB and qUB . We have conducted two groups of experiments:

varying the aisle number M (experiments 1 to 5) and varying the aisle length

H (experiments 6 to 10). The right part presents the computation results, which

includes the items below:

qE= the optimal batch size obtained by enumeration;

q̂ = the statistical estimation by Algorithm 2, which includes the mean batch

size q and HW of the 95%CI ;

R(q)= the rounded integer value of the estimated batch size;

Δ1= |q − qE|/qE , the direct bias of statistical estimation;

Δ2= |R(q) − qE |/qE , the indirect bias of rounded statistical estimation;
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Fig. 3.4. Turnover time versus batch sizes in Model-2

We compute the average direct bias Δ1=1/N
∑

n |q − qE
n |/qE

n = 2.785% and

the average indirect bias Δ2=1/N
∑

n |R(q) − qE
n |/qE

n = 0.769%. The average

direct bias of statistical estimation is less than 3%, and the average indirect bias

of rounded statistical estimation is less than 1%.

Table 3.2. Experiment results for Model-2

No. M H ω qUB qLB qE bq1 = q ± HW R(q) Δ1 Δ2

1 25 20 3 50 6 7 6.9129±0.0061 7 1.24% 0
2 30 20 3 50 7 8 7.7847±0.0046 8 3.08% 0
3 35 20 3 50 8 9 8.7647±0.0034 9 2.61% 0
4 40 20 3 50 9 10 9.8098±0.0025 10 1.90% 0
5 45 20 3 50 10 11 10.8911±0.0018 11 0.99% 0
6 40 25 3 50 10 12 12.4991±0.00005 12 4.16% 0
7 40 27 3 50 10 13 13.5003±0.00006 14 3.85% 7.69%
8 40 28 3 50 10 14 14.4994±0.00006 14 3.57% 0
9 40 30 3 50 10 15 15.4996±0.00007 15 3.33% 0
10 40 32 3 50 10 16 16.4998±0.00005 16 3.12% 0
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From the result we can observe that, the optimal batch size for customers is

close to its lower bound and less than its upper bound qLB < q∗2 < qUB, which is

robust in both groups of simulation experiments.

3.4 Optimal order batch sizes for the total system

The objective functions of both Model-1 and Model-2 focus on one part of ware-

house performance. The result from Model-2 is similar to Chew and Tang (1999)

and Le-Duc and De Koster (2007), and this result possibly underestimates the

positive effect of a batch procedure. The result from Model-1 possibly overes-

timates the positive effect of batch procedure. While a large batch size brings

short-run minimal cost to warehouse service providers, it will also cause long

throughput times for the customers, and may therefore harm the long-run in-

terest of warehouse service providers. Considering both sides, we therefore build

Model-3 and measure the total system cost.

3.4.1 Model

The objective in Model-2 is the turnover time for a single customer’s order while

the objective in Model-1 is the total service time for the total customers. So

we need to transform the data in Model-1, and compute the time spent by the

warehouse on a single customer, that is TP (q) = E[L(q)]/v+β
q . Without loss of

generality, we assume a single customer corresponds to a single order. Let c1 be

the operation cost per unit time for the service provider, and c2 be the waiting

cost per unit time for the customer. Then c1TP (q)+ c2TTO(q) is the total system

cost C(q) for one customer. We have:

Model − 3 : MinqLB≤q≤qUB C(q)
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s.t. C(q) = c1TP (q) + c2TTO(q)

TP (q) =
E[L(q)]/v + β

q

TTO(q) = W1(q) + W2(q) + E[S]

The ratio of c1 and c2 in Model-3 is used to measure the weight of both sides

in the system. We define: the unit cost ratio γ = c1
c2

.

3.4.2 Algorithm

We mainly use a central finite difference (FD) method as gradient computation

method since the objective function in Model-3 is a complicated function of q.

The procedure is summarized in a pseudo-code format in Algorithm 3, where we

start with an initial batch size q1 , for example q1 = qUB, K denotes the total

number of steps taken in a searching path, αk represents the step size at the

each iteration k, and qk represents the batch size at the kth step.

Algorithm 3

(I)Initialization.

(I.1) Initialize K.

(I.2) Initialize q1 to qUB.

(II) Set k ← 1.

Repeat.

(II.1) Compute Ck(qk + h) and Ck(qk − h), when k >1.

(II.2)Compute the desired gradients.

dCk = Ck(qk+h)−Ck(qk)
h , when k =1.

dCk = Ck(qk+h)−Ck(qk−h)
2h , when k >1.

(II.3)Update the batch size,qk+1 ← �qk − αkdCk�.

k ← k + 1,

Until k = K.

(III) Return the {qk}K
k=1 and the objective function value.
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Lemma 3.6. By the finite difference algorithm 3 and a step size αk which can

satisfy Condition (1), the batch sizes {qk}∞k=1in Model-3 can converge to a global

optimum.

Proof: From Bertsekas (1999), for the finite difference algorithm with a step

size which can satisfy Condition (1), if the objective function in Model-3 is con-

vex, the batch size can converge. In Section 2, we have proven TP (q) and therefore

c1TP (q) is a convex function. Chew and Tang (1999) have showed that the ob-

jective function TTO(q) is a convex function of q. So C(q) = c1TP (q) + c2TTO(q)

is a convex function of q. The convexity ensures the algorithm will converge to a

global optimum. �

3.4.3 Results

Table 3.3. Experiment results for Model-3

No. M H ω qUB qLB γ qE bq1 = q ± HW R(q) Δ1 Δ2

1 25 20 3 50 6 20 12 12.2801±3.5136e-004 12 2.33% 0
2 30 20 3 50 7 20 12 12.4999±1.1592e-005 12 4.17% 0
3 35 20 3 50 8 20 12 12.5000±1.3900e-005 13 4.17% 8.33%
4 40 20 3 50 9 20 13 12.7900±9.0225e-004 13 1.62% 0
5 45 20 3 50 10 20 13 13.4995±9.3120e-005 13 3.84% 0
6 40 25 3 50 10 20 14 14.9999±1.8239e-005 14 3.57% 0
7 40 27 3 50 10 20 15 15.4998±1.7737e-005 15 3.33% 0
8 40 28 3 50 10 20 16 15.5001±2.3669e-005 16 3.12% 0
9 40 30 3 50 10 20 16 16.9980±2.4165e-005 16 3.12% 0
10 40 32 3 50 10 20 17 17.5000±2.5194e-006 18 2.94% 5.88%
11 40 20 3 50 10 30 15 15.4992±9.7966e-006 15 3.33% 0
12 40 20 3 50 10 40 18 18.1962±6.0757e-004 18 1.09% 0
13 40 20 3 50 10 50 20 20.4999±6.3132e-006 20 2.50% 0
14 40 20 3 50 10 60 23 22.9373±1.3000e-003 23 0.27% 0
15 40 20 3 50 10 70 25 25.2757±7.0235e-004 25 1.10% 0

Based on the formulation in Model-3, we implement the optimization algo-

rithm 3 in Matlab. The running time ranges from 13 seconds to 19 seconds. For

the coefficient γ ranging from 20 to 70, λ = 0.011 order lines /second.we obtain

the search paths in the Figure 3.5. For all the experiments we conducted, we
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observe the search paths converge in the last 500 steps. We use the transient

deletion technique to conduct the statistical estimation.

In order to verify the result from the finite difference optimization, we compare

it with the result of enumeration, where we traverse all the batch size values from

qLB to qUB. We compute the expected objective values for all possible values of

q and find the optimal batch size.

For the aisle numbers ranging from 25 to 45, we respectively compute their

“total cost”, “part 1 cost” which is the cost of the warehouse operations, and

“part 2 cost” which is the cost for the customers. The result is presented in

Figure 3.6 and summarized in Table 3.3. We have conducted three groups of

experiments: varying the aisle number M (experiments 1 to 5), the aisle length

H (experiments 6 to 10) and the cost ratio γ (experiments 11 to 15). The third

part of Table 3.3 is the computational results by Algorithm 3 and enumeration,

containing qE, q̂, R(q), Δ1, and Δ2.
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We compute the average direct bias Δ1=1/N
∑

n |q − qE
n |/qE

n = 2.700% and

the average indirect bias Δ2=1/N
∑

n |R(q) − qE
n |/qE

n = 0.947%. The average

direct bias of statistical estimation is less than 3%, and the average indirect bias

of the rounded statistical estimation is less than 1%.
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Fig. 3.6. Cost versus batch sizes in Model-3

From the results, we can observe that the optimal batch size for the total

system is less than the optimal batch size q∗1 in Model-1 and larger than q∗2 in

Model-2. We have q∗2 ≤ q∗3 ≤ q∗1, which is robust in all the experiments with

a different number of aisles, different aisle length, and different cost ratios γ .

The result also shows that existing research underestimates the optimal batch

size. This underestimation is due to the warehouse internal objective function.
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Our problem is a basic economic equilibrium problem with two types of actors:

a warehousing service supplier and customers. From the perspectives of different

actors, the optimal batch sizes are different.

3.5 Concluding remarks

This chapter studies the optimal order batch size problem in a parallel-aisle ware-

house with stochastic order arrivals. The contribution of this chapter is twofold

in both application and methodology.

While much existing literature directly assumes the batch size value, this chap-

ter shows that an optimal batch size exists. A too large batch size will harm the

throughput time of consumers, and a too small batch size will bring a negative

impact to warehousing costs. Existing literature focusing on the customer per-

spective only claims a suitable batch size will be close to its lower bound. Our

research shows an optimal batch size will be larger than its lower bound when

the costs of warehousing service providers are considered.

This chapter provides an IPA and SPO stochastic approximate optimal imple-

mentation scheme to search the batch sizes for the warehousing service providers

in a general parallel-aisle warehouse setting. This chapter also presents an efficient

finite difference algorithm to search the optimal batch sizes for customers and the

total system. The estimation biases of the proposed algorithms are satisfactory.

A topic for further research could be to investigate the optimal batch size

with the different routing policies in a general parallel-aisle warehouse with

stochastic order arrivals. This chapter employs an S-shape routing method. It

is also possible to research the optimal batch size with other heuristic routing

policies like the mid-point routing policy and the largest gap routing policy, or

the optimal routing policy.
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A polling-based dynamic order picking system for

online retailers

4.1 Introduction

The number of online retailers has drastically increased since the commercializa-

tion of internet in the early 1990s (Ranganathan and Ganapathy, 2002). In this

novel business environment, customers, who can order with the ease of a click

of a button, expect inexpensive, rapid and accurate delivery (De Koster, 2003).

One of the challenging questions that online retailers are facing is how to organize

the logistic fulfillment processes during and after order receipt. Compared with

traditional retailers, online retailers have a disadvantage on immediacy (Otto

and Chung, 2000): When a shopper purchases an item from a physical store, the

product can immediately be taken home. But in the case of online retailers, the

customer must wait for the shipment to arrive. Besides, many purchases are by

impulse and, as customers can change their minds and legally cancel the order

within a certain time horizon (about one week in most EU countries), a fast

response is critical for online retailers. At the warehouse of Centraal Boekhuis,

which distributes the orders of BOL.com, next or same day delivery is necessary

to stay competitive. Wehkamp, the largest online retailer in the Netherlands has

a 24-hour delivery window. Albert, one of the internet home delivery services of

Ahold, is able to deliver in time windows specified by the customer, using different

pricing schemes for different windows.

Some online retailers adopt personalized material flows in order to achieve

a fast-response competitive advantage. Anckar, Walden, and Jelassi (2002, Page
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216) report that, Nettimarket (nettimarket.com), an online retailer in Finland,

spends only 45 minutes per order on personal service : “This includes the whole

process from obtaining the order to delivering the goods to the customer’s

doorstep”. Similar to this Finnish case, “China online shopping” (buy.com.cn),

a large-scale online retailer in China, provides a service of “delivery within two

hours upon order receipt” in large cities, and promises to home deliver the goods

within two hours after order receipt. Obviously, managing order picking systems

effectively and efficiently is a challenging process in the warehouses of these online

retailers. A prime objective is to shorten throughput times for order picking, and

to guarantee the meeting of due times for shipment departures. Many of these

online retailers have so-called fluid shipments, which means they ship using a

limited number of parcel carriers (like DHL, UPS, TNT, Fedex), who can accept

shipments the whole day round, sort them by delivery route in a sorting hub

and distribute them to the customers. With a fluid shipment system, the order

picking process can therefore start picking for any customer (in the region) at

any time.

A traditional way to organize the picking process in case of a large number

of daily order lines is to form pick batches and to release these to the shop floor

so that items can be picked, sorted by - for example - a sorting machine by

customer, and packed. However, batch formation takes time and, as the number

of daily orders to be processed increases and as the required lead time becomes

shorter, there may be more efficient ways to organize the order picking process. In

this chapter we propose a different way to organize it by using dynamic picking.

In a Dynamic Picking System (DPS), orders arrive online and are picked in

batch, followed by later sorting per customer order (a pick-and-sort system, see

De Koster et al. ( 2007)). More importantly, a picker travels the entire or a part

of the warehouse and picks all outstanding order lines in one pick route to a pick

cart, including those order lines arriving at the order picker’s current pick position

while working there, or arriving further downstream in his or her pick route. We

assume that the pick cart has sufficient capacity to accommodate these picks. In

the case of Wehkamp for example, the pick cart can contain over a hundred order

lines, far more than the average number of lines in a route (about sixty). During

a pick cycle, pick information is constantly updated by a pick-by-light, pick-by-
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RFID, pick by handheld terminal, or voice-picking system. No paper pick lists are

needed. Such systems even work with multiple pickers (pick-by-light, for example,

can use different LED colors for different pickers). Compared with static picking,

where the pick locations during a pick cycle are given and fixed, dynamic picking

can shorten the response time and can thereby improve the customer service.

Several companies apply dynamic picking. At “China online shopping”, for

example, order pickers are instructed through handheld terminals connected to

the order processing center, to pick order lines of newly arrived orders and add

these to their carts, even during a pick cycle. Currently there is no good way of

analyzing the performance of a DPS. A model matching a DPS is a multiple-queue

single-server model where the queues represent storage positions, the customers

represent the arriving order lines at these positions, and the server corresponds

to the order picker who travels from queue to queue in a specified sequence. This

system has not been described and analyzed in existing order picking models

before.

This chapter therefore has the following research objectives: (1) to identify

the stochastic essence of a DPS, and to describe and model it in an online set-

ting, and (2) to provide an analysis method to derive the stability condition of

these stochastic models and to analyze the performance of a DPS. To meet these

research objectives, the remainder of the chapter is organized as follows. In the

following section, we mainly introduce the problem description and stochastic

polling models for a DPS in a general parallel-aisle warehouse. Section 4.3 is

devoted to the analysis of models, including deriving stability conditions and

closed-form expressions for the performance measurement of a DPS with single

or multiple order pickers. In Section 4.4, we present our numerical experiments,

show the advantage of polling system over traditional batch picking, and show

how to apply it in practice. We conclude with final comments in Section 4.5.

4.2 Brief literature review and model

Two major types of order picking systems can be distinguished: parts-to-picker

and picker-to-parts systems. The picker-to-parts systems, where the order picker

walks or drives along the aisles to pick items, are most common (for a litera-
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ture review, see De Koster et al. (2007)). Picker-to-parts systems occur in two

types: pick by order and pick by article (batch picking). It is also possible to

distinguish picker-to-parts systems by the order arrival and release. This can be

either deterministic and planned (Gademann and Van de Velde, 2005) or on-

line and stochastic (Le-Duc, 2005). Only few papers study online order arrivals

(Chew and Tang, 1999; Van Nieuwenhuyse and De Koster, 2006; Le-Duc and

De Koster, 2007). All papers focus on batch picking, where a batch of multiple

orders is released to the shop floor and picked in a single pick route. The DPS

with online order arrivals and processing can be described by a so-called polling

model; a system of multiple queues accessed in cyclic or other specified sequence

by a single server, which has been extended to the cases with multiple servers

(Srinivasan, 1991). There is considerable literature on polling models, which are

used to model an abundant set of systems like computer and telecommunica-

tions networks (Takagi, 1988). There are also relevant applications in operations

management. For instance, Koenigsberg and Mamer (1982) consider an operator

who serves a number of storage locations on a rotating carousel conveyor. Mack

et al. (1957) also study an operator who patrols N machines unidirectionally with

constant walking and repair times. Xu et al. (2007) consider heavy traffic analy-

sis of a single-vehicle loop in an automated storage and retrieval system. Bozer

and Srinivasan (1991) consider tandem configurations for automated guided ve-

hicle systems and analyze single-vehicle loops. Bozer and Park (1999) present

single-device, polling-based material handling systems. Although polling systems

have been widely researched in these fields, they have not yet received systematic

treatment and application in the order picking area.

Warehouse literature studying order picking throughput time usually considers

a parallel-aisle layout as sketched in Figure 4.1. Fig.- 4.1(a) represents static

picking, where all pick locations are known at the beginning of a pick route and

static. Fig. - 4.1(b) represents the DPS, studied in this chapter.
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                          .                   

: ordered items.

(a) Static picking system.

: The queue of order lines at a storage position.

 (b) Dynamic picking system.

Fig. 4.1. Top view of a parallel-aisle warehouse with static picking (a) and dynamic
picking (b).
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We consider the dynamic order picking system in a general parallel-aisle ware-

house with K aisles and L storage positions at each side of one aisle. Without loss

of generality, we assume the number of aisles is even. We also assume an order

consists of a single order line, which particularly applies to online retailing. An

order picker picks the items following a two-sided picking policy, which means he

or she picks at both sides in one pass, so called two-sided picking, and therefore

we view the storage positions opposite to each other at both sides of an aisle as

one position. We assume the picking cart is uncapacitated. In the case of online

retailers, this is usually not a real restriction, as the route often finishes before the

cart is full. The server here represents the order picker and the queues correspond

to corresponding storage positions, each containing a different product. This is

a polling system consisting of N queues, attended by a single order picker-while

we will consider multiple order pickers later, here we temporarily take a single

order picker perspective.

The arrival order line stream at position i (each representing a certain prod-

uct) is a Poisson process with rate λi, 1 ≤ i ≤ N . We also assume there is no

replenishment required in one picking cycle, and each queue is assumed to have

infinite buffer capacity, as usual in the polling literature. At each queue, order

lines are served on a First-Come-First-Serve basis. The picking times are assumed

to be IID random variables with finite first and second moments. Let β
(h)
i denote

the hth moment of the service time at position i, i = 1, ...N, h = 1, 2.

The storage positions are visited according to a strict S-shape routing policy

in a cyclic sequence, which means that any aisle is traversed entirely. Since the

position and order information is updated in real-time, the order picker cannot

choose not to enter some aisles as might be possible in a static picking system.

From the last visited aisle, the order picker returns to the pick position 1 via

the depot: the depot is on the path from the position to the position 1. At the

depot, the order picker drops off the picked items so that other operators can

sort and transport them. The picker’s depot operating time is independent of

the travel time. The models in this chapter do not include sorting operations by

other operators.

Let t
(h)
i with i = 1, ..., N − 1 denote the hth moment of the travel times from

queue i to queue i + 1, t
(h)
N denotes the hth moment of the travel time from the
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position N to the position 1, and the depot operating time is denoted with the

first and second moments (τd, ξd). When the order picker travels from one aisle

k to the next one k + 1, the travel time will be larger than that between in-aisle

locations. The first and second moments are denoted by (τ1, ξ1).When the order

picker travels from the last position back to the position 1, the travel time is

largest with the first and second moments (τ2, ξ2). Within one aisle, the times

needed by the order picker to travel from one queue to the next are assumed to

be IID random variables with finite first two moments (τ3, ξ3). We therefore have:

t
(1)
i = τ1, i = Lk, k = 1, ..., (K − 1); τ2, i = N ; τ3, otherwise (4.1)

and

t
(2)
i = ξ1, i = Lk, k = 1, ..., (K − 1); ξ2, i = N ; ξ3, otherwise (4.2)

The mean and second moment of the total travel and depot operation time T

during a cycle of picking are respectively specified by,

t =
N∑

i=1

t
(1)
i + τd = τ1(K − 1) + τ2 + τ3(L − 1)K + τd (4.3)

and t(2) = [τ1(K − 1) + τ2 + τ3(L − 1)K + τd]
2 + (ξ1 − τ2

1 )(K − 1) +

(ξ2 − τ2
2 ) + (ξ3 − τ2

3 )(L − 1)K + (ξd − τ2
d )

The interarrival times of orders are assumed to be independent of the picking

times, travel times and depot operation time of the order picker. The traffic load

to queue i is defined by ρi = λiβ
(1)
i , 1 ≤ i ≤ N , and the total traffic load of the

system is ρ =
∑N

i=1 ρi.

At each queue, the service policy prescribes how the order lines (if any) at

each location should be picked. A large number of service policies have been

considered in the past polling research. But the main service policies applicable

to warehouse operations are:

Definition 1. 1-limited service policy. Each visit at most one order line (the

oldest one) is picked at a storage position.
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Definition 2. Exhaustive service policy. Each visit the order picker continues

to pick all order lines at a storage position until no more order lines are available

at the location.

Definition 3. Gated service policy. The order picker picks only those order

lines at a storage position which are found there upon his/her visit, and not the

order lines that arrive during the course of the current picking operations.

4.3 Analysis

In Section 4.3.1, we analyze the dynamic picking model with a single order picker,

including its stability condition and performance analysis. In Section 4.3.2, we

present the analysis of a dynamic picking model with multiple order pickers, an

extension of the model proposed in Section 4.2.

4.3.1 DPS with one order picker

Before conducting performance analysis, we need to establish stability conditions

of the system, which is a fundamental issue for both theoretical analysis and

application. Stability conditions also directly provide the guide for warehouse

design. Then we calculate the mean order line waiting times.

Stability condition

Kuehn (1979) was the first to establish the stability conditions for a basic polling

system. Furthermore, based on the stochastic monotonicity of the state process

at the polling instant, Fricker and Jaibi (1994) have derived the overall stability

condition for a polling system and furthermore analyzed the stability condition

of subsets of queues. Based on these researches, we have the stability condition

in a DPS as follows:

Theorem 4.1. The stability condition is ρ < 1 for a DPS with one order picker

and exhaustive or gated service policies, and ρ + max(λi)t < 1, 1 ≤ i ≤ N for a

DPS with one order picker and the 1-limited service policy.
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Proof. Let E[C] be the expected cycle time of the order picker, λiE[C] be the

expected number of arrivals at the storage position in one cycle, and gi be the

average number of order lines at the storage position i which can be picked in one

cycle. E[C] can be calculated as t + ΣN
i=1λiE[C]β

(1)
i , the sum of expected travel

and depot operation time t and expected picking time ΣN
i=1λiE[C]β

(1)
i . We have

E[C] = t/(1 − ΣN
i=1λiβ

(1)
i ) = t/(1 − ρ).

For the system with exhaustive or gated service, which does not impose restric-

tions on gi, the stability condition is ρ < 1 which is established by the finiteness

of cycle time. For 1-limited service, we need gi = λiE[C] = tλi/(1 − ρ) < 1, and

then the stability condition for 1-limited service policy is ρ + max(λi)t < 1.

Also notice that the first moment of travel and depot operation time t =

τ1(K − 1) + τ2 + τ3(L − 1)K + τd.

Performance analysis

In this section it is assumed that the stability condition in Theorem 4.1 is satisfied

and that the system is in steady state. The main performance measure concerned

in a DPS system is the mean waiting time EWi of each order line at position

i, i = 1, 2, ..., N . Since exact analysis is difficult, existing literature adopts the

approximation to calculate the mean waiting time EWi ≈ ωiER[Ci] (see Boxma

(1989)), where ωi is a known system parameter mainly determined by the service

policy, and ER[Ci] is the expected residual life time of the cycle time at position

i, i = 1, 2, ..., N . The critical issue is to compute ER[Ci]. A natural way is by

definition of the expected residual life time ER[Ci] = E[C2
i ]/2ECi, which is

mainly used in small-scale systems. In a parallel-aisle warehouse, the number of

positions is large, and the calculation of E[C2
i ] is cumbersome. Therefore we resort

to a pseudo-conservation law, an accurate expression for a weighted sum of the

mean waiting times, which can be used in combination with the approximation

of EWi to approximate the order line waiting times. The earliest applications of

a pseudo-conservation law to approximate mean waiting times are due to Everitt

(1986) for gated and exhaustive policies and Boxma and Meister (1987) for the 1-

limited service. Based on pseudo-conservation laws, Theorem 4.2 is established for

a DPS with exhaustive or gated service policies, and Theorem 4.3 is established

for a DPS with the 1-limited service policy.
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Theorem 4.2. For a stable DPS with one order picker, the approximate mean

order line waiting time EW E
i for the exhaustive service policy and EW G

i for the

gated service policy at each position i, i = 1, ...N can be respectively calculated by

EW E
i ≈ 1−ρi

ρ−ΣN
i=1ρ2

i

{ ρ
2(1−ρ)Σ

N
i=1λiβ

(2)
i + ρt(2)

2t + t
2(1−ρ) (ρ

2 − ΣN
i=1ρ

2
i )} and EW G

i ≈

1+ρi

ρ+ΣN
i=1ρ2

i

{ ρ
2(1−ρ)Σ

N
i=1λiβ

(2)
i + ρt(2)

2t + t
2(1−ρ)(ρ

2 + ΣN
i=1ρ

2
i )}.

Proof. From Watson (1984), the pseudo-conservation laws are respectively

established as:

For exhaustive service,

ΣN
i=1ρiEW E

i =
ρ

2(1 − ρ)
ΣN

i=1λiβ
(2)
i +

ρt(2)

2t
+

t

2(1 − ρ)
(ρ2 − ΣN

i=1ρ
2
i ). (4.4)

For gated service,

ΣN
i=1ρiEW G

i =
ρ

2(1 − ρ)
ΣN

i=1λiβ
(2)
i +

ρt(2)

2t
+

t

2(1 − ρ)
(ρ2 + ΣN

i=1ρ
2
i ). (4.5)

As the system is stationary, an amount of work ρi per time unit is offered to

the order picker at position i, so the probability that a picker is working is ρi.

Based on the assumption of equal mean residual cycle time ER[C] ≡ ER[C]i, we

have,

EW E
i ≈ (1 − ρi)ER[C], 1 ≤ i ≤ N. (4.6)

Based on Boxma (1989), the mean waiting time with gated service consists of

two parts: a mean residual cycle time since an order line is never picked in the

cycle in which it arrives, and the mean time from the instant the order picker

arrives at one position until the service completion. So

EW G
i ≈ (1 + ρi)ER[C], 1 ≤ i ≤ N. (4.7)

Theorem 4.2 is established by solving for via substituting (4.6) into (4.4) and

then applying (4.6) again for exhaustive service, and substituting (4.7) into (4.5)

and then applying (4.7) again for gated service. Also notice t is specified by (4.3).
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Theorem 4.3. For a stable DPS with one order picker, the approximate mean

order line waiting time EW L
i for the 1-limited service policy at each position i, i =

1, ..., N can be calculated by EW L
i ≈ 1−ρ+ρi

1−ρ−λit
1−ρ

ρ(1−ρ)+ΣN
i=1ρ2

i

{ ρ
2(1−ρ)Σ

N
i=1λiβ

(2)
i +

ρt(2)

2t + t
2(1−ρ)(ρ

2 + ΣN
i=1ρ

2
i )}.

Proof. From Watson (1984), the pseudo-conservation law is established as,

ΣN
i=1ρi(

1 − ρ − λit

1 − ρ
)EW L

i =
ρ

2(1 − ρ)
ΣN

i=1λiβ
(2)
i +

ρt(2)

2t
+

t

2(1 − ρ)
(ρ2 −ΣN

i=1ρ
2
i ).

(4.8)

Based on the assumption of equal mean residual cycle time ER[C] ≡ ER[C]i,

Boxma and Meister (1987) get,

EW L
i ≈

1 − ρ + ρi

1 − ρ − λit
ER[C], 1 ≤ i ≤ N. (4.9)

Theorem 4.3 is established by solving for via substituting (4.9) into (4.8) and

then applying (4.9) again.

To compare the service policies, we have Corollary 4.4.

Corollary 4.4. For a stable symmetric DPS with one order picker and the same

parameters, we have EW L
i > EW G

i > EW E
i .

Proof. The RHS of the pseudo-conservation laws for gated and 1-limited ser-

vice policies are the same in equations 4.5 and 4.8. So we have,

EW L
i = (

1 − ρ − λit

1 − ρ
)−1EW G

i > EW G
i . (4.10)

For a symmetric system, we also have, for exhaustive service,

EW E
i =

1

2(1 − ρ)
ΣN

i=1λiβ
(2)
i +

t(2)

2t
+

t

2(1 − ρ)ρ
(ρ2 −ΣN

i=1ρ
2
i ), 1 ≤ i ≤ N, (4.11)

and for gated service,

EW G
i =

1

2(1 − ρ)
ΣN

i=1λiβ
(2)
i +

t(2)

2t
+

t

2(1 − ρ)ρ
(ρ2 + ΣN

i=1ρ
2
i ), 1 ≤ i ≤ N. (4.12)
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The corollary is established by comparing (4.10), (4.11) and (4.12).

Besides the efficiency, we also examine the fairness at different positions, and

have Corollary 4.5.

Corollary 4.5. For a stable DPS with one order picker and βi = β, 1 ≤ i ≤

N ,we have EW L
i1

> EW L
i2

, EW G
i1

> EW G
i2

and EW E
i1

< EW E
i2

when ρi1 > ρi2 ,

1 ≤ i1, i2 ≤ N .

Proof. The corollary is established by examining the following equations,
EW E

i1

EW E
i2

=
1−ρi1
1−ρi2

,
EW G

i1

EW G
i2

=
1+ρi1
1+ρi2

, and
EW L

i1

EW L
i2

=
1−ρ+ρi1
1−ρ−λi1

t/
1−ρ+ρi2
1−ρ−λi2

t . For the 1-limited

case, just notice that ρi = λiβ.

Corollary 4.5 implies that order lines in light-traffic storage positions will have

longer average waiting times than order lines in heavy-traffic storage positions

under exhaustive service. The reason is that order lines arriving at heavy-traffic

storage positions have a higher probability that their storage positions are cur-

rently being picked than those arriving at light-traffic storage positions. The

1-limited service policy is usually considered to be a “fair” policy over different

positions and hence different orders since only one order line is picked at each

position during one cycle (Boxma, 1991). Exhaustive service is less fair since

one heavily loaded position can dominate the system, and will occupy the or-

der picker for a long time. This implies that, although the average waiting time

may be smaller for exhaustive service compared to 1-limited service, the maximal

waiting time may be larger, particularly in asymmetric systems. If orders cannot

be picked before their due time, this will affect the on-time service completion

ratio.

4.3.2 DPS with multiple order pickers

For the case with multiple order pickers, the specifications of order arrival, pick-

ing, and traveling processes are similar to the model description in Section 4.2.

The main difference is the behavior of the multiple order pickers. The storage

positions are attended by identical and independent order pickers, with the same

picking capacities. They travel from position to position by a strict S-shape policy

in a cyclic sequence. From the last visited aisle, the order pickers return to the
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first position via the depot. pickers can simultaneously visit a storage position.

We consider the exhaustive service policy in a warehouse with aisles which are

sufficiently wide for overtaking other pickers. A picker arriving at a storage posi-

tion will pick any order line he or she finds waiting at the storage position, and

leaves only when he or she has completed the picking operations and no order

lines are waiting. A second picker can overtake a first picker if the first picker is

picking a line at a location while the location’s queue is empty (Ajmone Marsan

et al., 1992).

Stability condition

For this system, we give a stability condition based on the observation that the

stability is guaranteed by finiteness of the average cycle times for an exhaustive

service policy.

Theorem 4.6. The stability condition is M >
∑N

i=1 λiβi for a DPS with multiple

order pickers and the exhaustive service policy.

Proof. Let E[C] be the expected cycle time of an order picker, that is, the

time between two consecutive arrivals of this order picker at one position i . The

expected cycle time includes two parts: the sum of the expected travel and depot

operation time t , and the total picking time tp . We have E[C] = t + tp , where t

is equal to τ1(K−1)+ τ2 + τ3(L−1)K + τd. The critical part is the calculation of

tp. The M order pickers are assumed to be identical, independent, and follow the

same visiting order. The expected work of one order picker is therefore 1/M of the

expected total amount of work arriving during one cycle in a stable system. So we

have tp = 1/M
∑N

i=1 λiE[C]β
(1)
i , where λiE[C] is the expected number of total

arrivals at the storage position i in one cycle, and β
(1)
i is identical for all order

pickers at the same position. From E[C] = t + 1/M
∑N

i=1 λiE[C]β
(1)
i , we have

E[C] = [τ1(K−1)+τ2+τ3(L−1)K+τd]M

M−
PN

i=1 λiβ
(1)
i

. The polling system is stable if 0 < E[C] < ∞.

Since [τ1(K−1)+τ2+τ3(L−1)K+τd]M > 0 , the stability condition is established

by setting M >
∑N

i=1 λiβi.
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Performance analysis

In this section, we assume the stability condition in Theorem 4.6 is satisfied.

The performance analysis of a DPS with multiple order pickers is tougher than

that of the single order picker problem. The power series algorithm (PSA) is

often used for the numerical analysis of polling systems with multiple servers.

However, the required running time of the PSA increases exponentially with the

number of queues, and therefore this method is limited only to systems with

a small number of queues (Blanc, 1992). Since the number of storage positions

and order lines in a parallel-aisle warehouse is usually large, we therefore resort

to approximation analyses (Borst and Van der Mei (1998); Brumelle (1971)) by

pseudo-conservation laws.

Theorem 4.7. For a DPS with multiple order pickers and exhaustive service

policy, the expected order line waiting time at the position can be calculated as,

EWi =
ρi(1 − qi)

qi

E[V ] − 0.5
∑N

i=1 λiβ
(2)
i∑N

i=1
ρ2

i (1−qi)
qi

,

where E[V ] is the mean amount of work in the system and qi is the steady-state

probability that at least one of the order pickers is busy at the storage position i .

Proof. From Brumelle (1971), we have the pseudo-conservation law,

N∑
i=1

ρiEWi = E[V ] −
1

2

N∑
i=1

λiβ
(2)
i . (4.13)

Borst and Van der Mei (1998) calculate the mean amount of work E[V ] , that

is, the sum of the picking time of all order lines in queues and the remaining

picking time of all order lines in service (Wolff, 1989), for polling systems with

exhaustive service policy as:

E[V ] = γ(ρ)

∑N
i=1 λiβ

(2)
i

2M [1 − ρ/M ]
+Ψ× [

ρt(2)

2Mt
+

t

2(1 − ρ/M)
((

ρ

M
)2−

∑
i

(
ρi

M
))2], (4.14)
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where Ψ = (1−α)[2 ρ
M

1+(M−1)t2/t(2)

M+1 +γ(ρ)(1−ρ/M)]+αM , γ(ρ) is a function of

ρ and α is used to measure the degree of clustering. α → 1 denotes a high degree of

clustering, and α → 0 for a low degree of clustering. Under the exhaustive service

policy, with the probability 1− qi, no order pickers work and the order lines must

wait at the position i, so EWi ≈ (1 − qi)ER[Ci]. Based on this relation, Borst

and Van der Mei (1998) have specified and established approximation equation:

EWi ≈ (1 − qi)ρiΓ/qi. (4.15)

Γ is a positive constant in 4.15. Theorem 4.7 is established by getting Γ via

substituting Equation (4.14) and Equation (4.15) into Equation (4.13) and then

applying Equation (4.15) again.

Theorem 4.7 uses approximation methods to derive expected order line wait-

ing times. For the multiple server system, Borst and Van der Mei (1998) have

pointed out that the approximations are accurate for symmetric systems, i.e.,

systems with identical arrival rates and service rates. In the case of asymmetrical

arrival rates and service times, the approximation is less accurate but acceptable.

Fortunately, even in asymmetrical cases, the approximation accuracy usually in-

creases with the number of queues. Boxma and Meister (1987) explain this phe-

nomenon by the “averaging out” effect which stabilizes systems in case of a large

number of queues. A warehouse usually has a large number of storage positions,

which positively influences the approximation accuracy.

4.4 Numerical results and application

In this section, we further look into the quality of approximation methods and

compare different service policies by numerical experiments in Section 4.4.1. In

Section 4.4.2, we compare the polling systems with the traditional batch picking

systems with optimal batch sizes, and show the advantage of polling systems.

Section 4.4.3 shows how online retailers can further apply polling theory to de-

termine the optimal number of order pickers.
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4.4.1 Numerical experiments

In order to establish quality of the approximation methods for the expected wait-

ing times, we compare the results with simulation. Fig. 4.2 presents the results of

the approximation method for the order line waiting time and simulated waiting

time with various values of ρ. The simulation was conducted with Matlab. Fig.

4.2 also shows half widths of 95% confidence intervals for simulated waiting times.
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Fig. 4.2. Approximation values versus simulation values.

The bias is defined as |EW A
i −EW S

i |/EW S
i × 100%, where EW A

i is the value

by analytical method in this chapter and EW S
i is the value by simulation. The

biggest bias is less than 6%, and the average bias is 3.3%. Fig. 4.2 shows all

analytical values are within the 95% confidence intervals of simulation values.
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Other scholars have found similar results for the pseudo-conservation methods

(e.g. Boxma and Meister (1987), Everitt (1986), Fuhrmann and Wang (1988)).
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Fig. 4.3. Performance comparison of different service policies.

Fig. 4.3 shows the values of EWi with different traffic load ρ and total non-

picking time t (travel and depot operation time). Other parameters are identical

to those of Fig. 4.2. We see the waiting time with 1-limited service policy is

consistently greater than those with exhaustive and gated service policies. The

exhaustive service policy leads to the lowest average waiting time. The difference

with 1-limited and gated service waiting time increases with a higher offered load

ρ or a larger value of t.
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4.4.2 Comparison of polling systems and non-polling systems
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This section presents two examples to compare polling systems and non-polling

systems, or traditional batch-picking systems. In the first example, we show a

polling system can achieve a shorter throughput time. The second case is based

on “China online shopping”. This company promises to home deliver the goods to

customers within two hours after order receipt. We show polling systems improve

the on-time service completion ratio and make this promise feasible.

(1) Case 1

By simulation, we compare the performance measure of a polling system and

a traditional batch picking system with optimal batch sizes, for the same arrival

rate and service capacity. For the batch picking systems, we use an enumeration

method to obtain the optimal batch size (see Le-Duc and De Koster (2007)). The

optimal batch size differs for different arrival rates and varies between 4 and 11.

For this system, we use an FCFS batching policy, an S-shape routing policy and

random storage. We assume single-line orders. The layout is given in Fig. 4.1. In

traditional batch picking, the pick locations during a batch-pick cycle are given

and fixed, and pick information is not updated during the cycle.

We simulate 20317 randomly generated order lines following a Poisson pro-

cess with arrival parameters λ varying from 0.1 to 0.2 and compute the average

order waiting time and average throughput time per order, consisting of waiting,

picking, and travel time. The performance comparison of a polling system and a

batch picking system is presented in Fig. 4.4. We can observe the expected order

waiting time of a batch picking system is larger than a polling system, and the

order throughput time of a polling system is shorter.

(2) Case 2

“China online shopping”, an online retailer in consumer electronics in China,

provides a “delivery within two hours upon order receipt” service in large cities.

This retailer sells over 20000 products in 226 cities. We mainly consider the

e-business at their headquarter in Shenzhen. Based on the operations in the

second quarter of 2007, the mean transport and delivery time is 96.5 minutes

in Shenzhen, the mean time for other operations (order processing / call-center

operation, picking, internal travel, sorting, and packing time) is 18.5 minutes.

To be able to deliver orders in time, orders should start processing within on

average 5 minutes upon receipt. Currently the company has adopted a dynamic
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order picking system with the aid of an information system based on mobile

technology and a call center (order processing center). Major difference between

their system and our model is the routing policy. They have not begun to design

an optimal or heuristic routing policy yet, and now just adopt a random routing

policy.
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Fig. 4.5. Service completion-on-time ratio versus the arrival rate in China Online
Shopping.

We compare the results of our method of polling-based systems with non-

polling batch-picking systems using the optimal batch sizes. We simulate one day

of work, consisting of 17280 randomly generated order lines following a Poisson

process with arrival parameters λ varying from 0.02 to 0.12 and compute on-time
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service completion ratios for a waiting time upper bound of five minutes beyond

the arrival time. In the simulation, we assume single line orders, which in reality

form 42.1% of all orders in the second quarter of 2007. Fig. 4.5 shows, for various

order arrival rates, the on-time service completion ratios of polling-based picking

systems are higher, compared with traditional batch-picking with optimal batch

sizes. Note that Fig. 4.5 also shows that differences between polling and batch

picking systems are small for small arrival rates. Batch picking with optimal

batch size reduces to picking single orders for small arrival rates, and may then

outperform polling-based picking due to shorter travel times.

Table 4.1. Parameters of China Online Shopping Shenzhen warehouse

Warehouse Warehouse area 985 m2 � Aisles 8 � Positions per aisle 30
Orders Ave. order

lines/day
17280 Arrival rate 0.01-

0.9/sec

Operations Travel speed 0.48 meter/sec Mean pick
time/order line

1.51 sec Depot time 120
sec

� Pickers 20 persons/shift � Shifts 3
shifts/day

� Total pickers 60

4.4.3 Applications

This section shows how to apply polling systems in practice, especially to op-

timize the number of pickers, for the two cases introduced in Section 4.4.2. An

important objective for warehouse operations is determining the optimal number

of order pickers. This optimum is usually found by trading off the labor cost and

service level: while increasing the number of pickers can improve the service level,

it will also increase the labor cost. The objective is to minimize the total oper-

ational cost, including labor and the customer waiting costs. Waiting costs arise

in case of lost sales or when order picking due time cannot be met. We assume

it is proportional to the total expected waiting time of all waiting orders (Wolff

(1989)).

(1) Case 1
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Fig. 4.6. The total cost versus the number of order pickers in Case 1.

The objective function is the sum of labor cost cLM and the customer waiting

cost
∑N

i=1 ciλiEWiT during an examined period T , where cL is the unit labor

cost per period per order picker, ci is the unit time waiting cost at the position i,

λiT is the expected number of arrived order lines in the period T at the position

i, λiEWiT is the total expected waiting time of these order lines and ciλiEWiT

is the total expected waiting cost at the position i. EWi is specified as a function

of fi(M) by Theorem 4.7. We have the system,
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minM cLM +
N∑

i=1

ciλiEWiT,

subject to

EWi = fi(M),∀i.

The optimal number of order pickers M∗ is determined by the trade-off of the

labor cost cLM which increases linearly with M and the customer waiting cost∑N
i=1 ciλiEWiT which decreases nonlinearly with M . Using data of Case 1, the

results are presented in Fig. 4.6 for different values of ρ. This example shows how

polling theory can be applied in practice to reduce cost. Here we propose a simple

model of waiting cost, linearly related to waiting time. For more sophisticated

ways of modelling waiting time and related cost, see Hopp et al.(2002).

(2) Case 2

Different from Case 1, “China online shopping” has a given upper bound W

of five minutes which stems from the promised “delivery within two hours upon

order receipt”. We are mainly concerned with minimizing the number of order

pickers M while keeping the expected waiting time EWi less than this given

upper bound W . We have the system,

min M

subject to

EWi ≤ W,∀i

Based on the case data, we present the results in Fig. 4.7. For a given upper

bound of waiting time W and with different offered loads, we can obtain the

optimal number of order pickers. This example shows how polling theory can be

applied to determine the number of pickers.
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Fig. 4.7. The expected waiting time versus the picker number in China Online Shopping.

4.5 Concluding remarks

In this chapter, we use polling models to describe and identify a dynamic order

picking system for online retailers, and provide a stochastic method to analyze

such operations in warehouses. We have derived the stability condition of these

models, and found approximate closed-form expressions for the order line waiting

times in systems with single or multiple order pickers. We show that, particularly

for high order arrival rates, polling-based picking systems generally lead to shorter

order waiting and throughput time and higher on-time service completion ratios

than traditional batch-picking systems using optimal batch sizes. For the case
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with multiple order pickers, based on the trade-off of labor cost versus service

level, we show how to obtain the optimal number of pickers given a maximal

waiting time or with an objective to minimize total cost.

This chapter is the first to introduce dynamic order picking systems, and use

polling models for their analysis. The models and methods in this chapter are

not limited to the settings of a parallel-aisle warehouse, but can be generalized

to other storage systems like carousels or paternosters. A carousel system with

moving storage positions and a fixed order picker is equivalent to a system with

fixed storage positions and a traveling order picker, i.e. a typical polling system

with multiple queues and a single server.

Our analysis of dynamic picking lends itself to potential extensions in several

directions. For example, the research could be extended to a DPS with multiple-

line orders, or to capacitated pick carts. It is also interesting to investigate the

optimal routing problem in polling systems. This chapter adopts a cyclic-server

routing assumption, which is close to the S-shape routing policy, one of the most

common policies used in practice. In an environment of dynamic picking, a policy

with local backward routing will probably improve the system performance. It

may also be possible to research the combination of DPS with zoning and class-

based storage strategies.
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Improving order picking productivity via storage

profiles and bucket brigades

5.1 Introduction

“Bucket brigades”(BB) are a way to coordinate the efforts of workers along a

product line so that the line balances itself. The simplest model (Bartholdi III and

Eisenstein, 1996) to capture the essential behavior of bucket brigades is the so-

called normative model. The operation of normative model is simple: Each picker

carries work forward, from work station to work station, until he either completes

an order or it is taken by a downstream colleague; then he walks back to get more

work, either from an upstream colleague or from a buffer at the start of the line.

If pickers are sequenced from slowest to fastest, the pickers will spontaneously

gravitate to the optimal division of work so that the pick rate is maximized.

Bucket brigade order picking has been shown to be an effective alternative to

zone order picking in many realistic situations (see Bartholdi III et al. ( 2006) and

bucketbrigades.com). The effectiveness of BB is due to its ability to dynamically

balance the work load among the pickers. In this research, we examine a new,

potential reason that bucket brigades may, in some cases, outperform zone picking

systems and show how to improve order picking productivity via storage profiles

and bucket brigades.

Picking items from forward storage has two primary cost components: the

picking of the items and the walking between picks. The actual cost of picking is

typically influenced by the level of technology: pick-to-light, hand-held RF device,

or simple printed pick list.
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Typical progressive zone picking divides a rack of forward storage (either static

or flow rack) into regions or zones. Each worker is assigned a zone. A customer

order is passed from one worker to the next, progressing from one zone to another

along the length of the pick line. In a pick-to-light implementation, order sequence

typically must be maintained, so even if an order were to complete early, it gets

passed along the line. The goal of management is to make balancing the zones

easy, and so item placement is geared toward smooth uniform demand along the

pick line.

The strategic placement of items along the pick line has inherent potential

to improve the pick rate of a bucket brigade system. This is because, if popular

items are concentrated together, the bucket brigade team can potentially pick

many orders within a shrunken or reduced pick line. That is, a bucket brigade is

able to expand or reduce the picking range of each worker dynamically, potentially

reducing the walking distance required of the team. This potential to save walking

distance with a BB team is predicated on a picker not needing to travel to the

start of the pick line to begin an order, nor travel to the end of the line to

deposit a completed order. So for example, empty totes might be stored along

an overhead rail so that a new order can begin at any point, and a completed

order can be deposited along an active conveyor running along the pick line. In

this research, we do not discuss demand profiles, and how to allocate products to

storage positions according to demand profiles. Instead we assume storage profiles

are given, and thereby measure and compare the performances of BB in these

profiles.

We ignore the congestion issue. One reason is that this is very implementation

specific. For example, a pick-to-light implementation may prohibit pickers from

picking different orders within a wide bay of flow rack. On the other hand a

hand-held or cart-held RF device may not prohibit pickers from picking the same

item simultaneously. Other site-specific attributes such as aisle width also affect

issues of congestion (see Gue et al. (2006) for example).

We examine various storage policies and model the impact on the picking rate

of BB order picking vs. zone order picking. This research obtains closed-form

analytic expressions for the main performance measure of order picking bucket

brigade systems in different storage profiles, and show how to combine storage
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policy and bucket brigade protocol to improve order picking productivity. We

further show the system outperforms zone picking systems in non-uniform storage

profiles.

5.2 Picking protocols

In this section, we consider three picking protocols: uni-directional BB (from

Bartholdi III and Eisenstein (1996)), bi-directional BB, and zone picking. This

research considers one order picking line with N positions for a unit position

length (e.g., 1 foot). At the position x, an order picker needs to pick an item

according to a storage density distribution function f(x). O order pickers will

work along this line. The oth picker has a travel velocity vo. We use a configuration

from Eisenstein (2008), where there is a conveyor along this line (see Fig. 5.1).

Conveyor

Picker

An item to be picked No item to be picked

Fig. 5.1. The configuration of bi-directional BB picking systems

In most pick lines, orders are progressed in one, forward, direction — for ease

of exposition we will say that picking in the “forward” direction corresponds to

orders progressing “left to right”.

The uni-directional BB protocol is:

• FORWARD: Pick forward until order taken over or or order completed. Then

walk back.

• BACK: Walk back to get more work, either from a predecessor, or at the start

of a new order.

In contrast, it may be possible to pick in both directions (see Fig. 5.1). That is

when an order is completed moving forward at one end of the pick line, the worker
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may then walk to the rightmost pick of a new order and begin picking moving

backward, or right-to-left. This may be impractical in some settings due to a

number of factors; in particular lack of support from the warehouse management

system, or simply lack of an active conveyor at both ends to carry completed

orders.

Fig. 5.2. The protocol of bi-directional BB

BB does not build WIP along the pick line, and thus a picker may effectively

move in both directions. When BB workers meet, they swap orders. See Fig.-

5.2. Since uni-directional BB protocol is explored in Bartholdi III and Eisenstein

(1996), we will study here the bi-directional BB protocol.

The bi-directional BB protocol is:

• FORWARD: Pick forward until an order swapped with successor picker or an

order completed. Then pick back with an order.
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• BACK: Pick back until an order swapped with predecessor, or an order com-

pleted. Then pick forward with an order.

Bi-directional picking may be particularly difficult to implement with zone

picking, since partially completed orders typically sit on a passive conveyor be-

tween zones. Workers would then have difficulty distinguishing forward from back-

ward moving orders and moving orders around those orders moving in the op-

posite direction. So we assume our zone protocol is typical, by only progressing

orders in a forward direction.

The zone protocol defined in this research is:

• Each worker begins an order at the start position (the leftmost or rightmost)

of the order in his zone and progresses it to the end position (the rightmost

or leftmost) of this order in his zone. A conveyor then takes it to the start of

the next zone.

• If no work is available at the start of his zone then he idles, waiting for work.

5.3 Picking rates

In this section, we outline the computation of pick rates ρ, which will be specified

combined with the analysis of storage profiles. Throughout the present research,

we assume each order consists of m picks. We define the unit of pick rates as

orders/ unit time, not picks/ unit time.

5.3.1 BB pick rates

Estimating the pick rate of a bucket brigade system is complicated for a number

of reasons.

(1) Walking Distance: The distance walked changes from order to order.

(2) Velocities: Workers walk and pick at different speeds.

(3) Hand-offs: Workers may be slowed due to hand-offs.

(4) Congestion: Workers may be idled due to congestion.
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(5) Blocking: Workers may be idled due to blocking, which is more serious than

congestion.

Our bucket brigades model will focus on the first two issues: Walking distance

and differences in worker velocities. The third issue, hand-off time is considered

negligible, and in the case of pick-to-light systems has been observed to be very

small. We ignore the fourth issue of congestion, primarily since it is very much

a function of a particular implementation — for example, is there room for two

workers to pick at neighboring locations? Finally, we do not explicitly model the

dynamics of the bucket brigade. We assume that blocking does not occur. Con-

gestion is a short delay which can be removed and blocking is a large delay which

may not be removed. Previous work has shown that blocking can be rendered

negligible if the workers are sequenced correctly (see, for example, Bartholdi III

and Eisenstein (1996), Bartholdi III, Eisenstein, and Lim (2006)).

We assume that the velocity of a worker, both picking and walking, is pri-

marily a function of his agility and motivation. For example, BB has been widely

implemented in pick-to-light systems along a flow rack. Since items are picked to

light, the velocity of a worker is not a function of product knowledge or learning.

So picking, like walking, is more a function of agility and motivation.

We let vo be the constant rate at which a worker o walks, so that it takes time

N/vo to walk the length of the pick line. Each pick will cost tp time, independent

of the worker. We let L be a random variable representing the leftmost pick in

an order, and R the rightmost pick. Then R − L is the pick length the BB team

must traverse to pick an order (or equivalently, one can view that the order must

travel distance R−L as it is passed from the first to the last BB team member).

The BB team has O pickers.

In this research, we mainly examine bi-directional BB protocol since it can

reduce efficiently blocking. We now approximate the walking distance, Wbi, re-

quired of a bi-directional BB team. The last worker will complete an order walking

forward, then walk to the rightmost pick of the next order, length WRR, and be-

gin to pick walking backward. The first worker will similarly complete an order

walking backward, then walk to the leftmost pick of the next order, WLL, and

begin to pick walking forward. The average amount of walking required for an

order is (R−L)+WLL+WRR. Since this work is completed by O pickers simulta-
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neously, the average travel time per order is (R−L)+WLL+WRRP
vo

. The average order

pick rate of the bi-directional BB line ρB is the reciprocal of the sum of average

travel time per order and expected picking time per order. A general expression

for the pick rate achieved via bi-directional BB systems is

ρB = 1/

[
(R − L) + WLL + WRR∑

vo
+ mtp

]
. (5.1)

5.3.2 Progressive zoning

In a progressive zone picking system, a bin with items for a single order moves

from one zone to another on a conveyor. In each zone, the picker picks the items

from their assigned zone for the order. Zone picking systems can have different

one-zone configurations (see, e.g. Yu and De Koster (2009)), including a depot

at the beginning position, a depot at the middle position, two depots, and a

configuration without depots. Eisenstein (2008) has shown that the performance

of the configuration without a depot is best, which configuration eliminates the

need to walk to and from depot locations. In this research, we therefore assume

a picker travels in each zone and picks along one storage line without depot

(see Eisenstein (2008)). This implies a conveyor is installed so that when a picker

completes an order, he immediately deposits the completed order on the conveyor.

We choose this configuration so that it is relatively fair for zone picking in the

performance comparison study with BB picking.

We consider a storage line with Z zones, where one order picker is assigned

to one zone. Zone picking does not need “hand-off” among pickers. The travel

distance includes three parts: |R−L|z, the pick length the picker must traverse to

pick items of an order in his zone z; after completing an order walking forward,

he will walk to the rightmost pick of the next order, with a length WRR,z , and

begin to pick walking backward; or after completing an order walking backward,

he will walk to the leftmost pick of the next order, WLL,z, in his zone and begin

to pick walking forward. Different from the bi-directional BB protocol, the sum of

average travel distances between two leftmost picks and two rightmost picks per

order is 1
2(WRR,z + WLL,z) since this picker does not need to travel both travel

distances between two leftmost picks and two rightmost picks for one order. The
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average amount of walking required for an order is |R −L|z + 1
2(WRR,z + WLL,z)

in this zone.

For zone picking systems, it is difficult to perfectly balance zones in terms of

both travel time and picking time. Picking rates of zone systems are decided by

its bottleneck zone. For a zone, the picker in zth zone has a travel velocity vz and

allocated workload of mz picks. A general expression for the pick rate achieved

via zone picking systems is

ρZ = 1/maxz=1,...,Z

[
|R − L|z + 1

2(WRR,z + WLL,z)

vz
+ mztp

]
. (5.2)

It is critical to identify the bottleneck zone for zone picking systems. We will

specify the pick rate for zone picking in section 6 and 7.What is now left for

analysis is first determining the pick rates for various storage profiles. And then

to compare the BB pick rate to a more traditional zone picking protocol.

5.4 Storage profiles

In practice, assigning products to storage bins has two fundamental components.

First, is how much of each product to store. Items of large physical size and

high demand might, for example, benefit from more space in order to minimize

overall restocking costs (see Bartholdi III and Hackman (2006) for a model to

minimize restocking costs in forward storage). And second is where to locate the

item within the forward picking rack. We simplify this discussion by assuming

each product receives the same linear facing space, so that the distance to walk

past a pick location is the same, regardless of the location of the item.

The decision of where to store an item along a pick line is then a discrete

problem of a combinatorial nature — how best to place items into N storage slots

in order to maximize the expected pick rate. However, to simplify the analysis we

consider the issue in a continuous form. An allocation of the items along the pick

line results in a storage density function f(x) which describes the proportion of

picking demand at position x, and so
∫ b
a f(x)dx is the proportion of picked items

slotted between positions a and b. And since
∫ N
0 f(x)dx = 1, then

∫ b
a f(x)dx is
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also the probability an item is slotted between positions a to b along the pick

line.

Of course, a warehouse must react to the demand for each item, not set it.

That is, the warehouse is not able to set f(x) freely. For example, in the unusual

circumstance that all items are equally demanded, then regardless of how items

are slotted, f(x) is a constant. But more realistically, a large warehouse has items

which differ significantly in their demand, and must therefore make allocation

decisions as to where to place these items in forward storage (if they are to be

placed in forward storage at all, see Bartholdi III and Hackman (2006)). And

within this decision a typical warehouse will place much of their items within

linear shelving (such as flow racks, each of which are picked independently).

This work is then concerned with how to best make this allocation decision —

should items of similar demand be placed together or should each flow rack be

designed with a wide range of demand? And if the latter, then how best to arrange

items with different demands? Storage policies are a set of rules to assign items

to storage positions before they can be picked to fulfil customer orders. For a

general review on storage assignment, see Section 4 in De Koster et al., (2007).

We consider three storage policies to allocate items along the pick line.

(1) Uniform storage system

The uniform storage system, also called random storage, assigns items a loca-

tion in the storage line that is selected randomly from all eligible empty locations

with equal probability f(x) = p, where p = 1
N is a constant. The random as-

signment method results in a high space utilization but often at the expense of

increased travel distance.

(2) Volume-based non-uniform storage system (VBS)

VBS assigns items according to their demand. So for example, for a pick line

with a depot used to retrieve and deposit orders, a VBS usually assigns items with

higher demand to locations near the depot. A VBS is very effective in theory, but

in practise can be difficult to manage as item demand changes and items enter

and exit the warehouse.

A common VBS policy is the triangle (f(x) = kx,k is a constant) storage

density distribution (see Figure 5.3-A), which is easier to implement compared
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Fig. 5.3. Storage distribution in VBS storage systems

with other VBS policies. From
∫ N
0 kxdx = 1, we have k = 2

N2 , and f(x) =
2

N2 x, 0 ≤ x ≤ N .

One of the most common storage policies is a Pareto-based VBS policy

(see Hausman, Schwarz, and Graves (1976)). We consider two cases. The first

is an “End-Peak Pareto VBS” as shown in Figure 5.3-C with a peak at the

end of the pick line. Here we have
∫ x
o f(x)dx = ϕxs, where s is a constant to

determine the shape of storage distribution curve, ϕ is a constant to grantee

storage cumulative distribution function (CDF) F (x = N) = ϕN s = 1 (see

Figure 5.3-B). So we have f(x) = s
Ns xs−1, 0 ≤ x ≤ N . The second case,

which we introduce here, we term a “Middle-Peak Pareto VBS” as shown in
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Figure 5.3-D. Here we consider a position range [−N
2 , N

2 ]. And based on Haus-

man, Schwarz, and Graves (1976),we have
∫ x
o f(x)dx = ϕ1

2 (2x)s, 0 ≤ x ≤ N
2 ,

and
∫ N

2
o f(x)dx = 1/2. Deriving f(x), we have its storage density function

f(x) = s
Ns (2x)s−1, 0 ≤ x ≤ N

2 ; f(x) = s
Ns (−2x)s−1,−N

2 < x ≤ 0.

(3) Class-based non-uniform storage system (CBS).

A CBS system is a common and more practical restriction to VBS storage.

Instead of managing storage down to the individual item level, a CBS partitions

items into classes, and then randomly assigns storage within each class (Peterson

and Aase, 2004).

A commonly used CBS is the α − β two-class storage system (0 ≤ α, β ≤ 1).

This system places items in α × 100% length of this product line to represent

β × 100% demand in the first storage class, and the remaining (1 − α) × 100%

length of this product line to represent (1 − β) × 100 % demand in the second

class (for three or more classes, we follow the same logic). Within one class, items

are evenly distributed. From
∫ αN
0 f(x)dx = β, we have its storage distribution

function f(x) = β
αN , 0 ≤ x < Nα, and similarly, f(x) = 1−β

(1−α)N , Nα ≤ x ≤ N .

5.5 Evaluating the pick rate for different storage policies

This section studies the impact of different storage policies on the bi-directional

bucket brigade protocol. We use the expected travel distance (per order) and pick

rate to measure and compare their performance. We have explored fixed points

and stability condition for Bucket Brigade Model with non-uniform storage pro-

files in Eisenstein and Gong (2009). The stability condition of nonlinear bucket

brigade models includes two parts: one is velocities condition to guarantee eigen-

values (|r(v)|) of iteration matrix |r(v)| < 1 ,which is determined by the bucket

brigade protocol; another is a storage condition to make Liapunov linearization

feasible, which is determined by storage profiles. Throughout this section, we

assume the stability condition have been satisfied.

Given the storage density function f(x), we compute the expected pick rates.

Let R be the rightmost and L be the leftmost item position in one order, the

expected travel time is E[R − L]. Note E[R − L] = E[R] − E[L]. Let m be the

number of items per order, and their independent positions be x1, ..., xm, with



98 5 Bucket brigades and storage profiles

corresponding CDF’s of FX1(x1), ..., FXm(xm). We have R = max{x1, ...xm} and

L = min{x1, ...xm}. The CDF of R is FR(r) = FX1(r)...FXm(r), and the CDF of

L is FL(l) = 1 − [1 − FX1(l)][1 − FX2(l)]...[1 − FXm(l)].

5.5.1 Uniform storage policy

The CDF of the position x of one item is specified as FX(x) = x
N in uniform

storage profiles. The CDF of the rightmost position R is FR(r) = rm

Nm . The PDF

of the position r is fR(r) = m rm−1

Nm . The expected position of the rightmost item

is

E[R] =

∫ N

0
m

rm−1

Nm
dr =

m

m + 1
N. (5.3)

The CDF of the leftmost position L is FL(l) = 1− [1− l
N ]m. The PDF of the

position l is fL(l) = m
N (1− l

N )m−1. The expected position of the leftmost item is

E[L] =

∫ N

0

m

N
(1 −

l

N
)m−1dl =

1

m + 1
N. (5.4)

Besides the expected distance from the leftmost to the rightmost in one order,

a picker also needs to travel from the rightmost of one order to the rightmost of

the next order, and from the leftmost of one order to the leftmost of the next

order. To compute the pick rate, we also need to compute these two expected

distances.

First, we compute the expected distance from the rightmost to the rightmost

of the next order. Let r1 be the position of the rightmost item in one order and

r2 be that of the rightmost item in another. We have gotten fR(r) = m rm−1

Nm .

The difference E[|R1 −R2|] (without loss of generality, let R1 > R2) between the

rightmost items of two independent orders is

E[|R1 − R2|] = 2

∫ N

0

∫ r1

0
(r1 − r2)m

2 rm−1
1

Nm

rm−1
2

Nm
dr2dr1 =

2m

(m + 1)(2m + 1)
N

(5.5)
Similarly, the difference E[|L1 − L2|] between the leftmost items of two inde-

pendent orders is
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E[|L1−L2|] = 2

∫
N

0

∫
l1

0

(l1−l2)
m

N
(1−

l1
N

)m−1 m

N
(1−

l2
N

)m−1dl2dl1 =
2m

(m + 1)(2m + 1)
N

(5.6)

We obtain the expected distance spent on one order in a uniform storage

distribution is

E[W ]U = E[R − L] + E[|R1 − R2|] + E[|L1 − L2|] =
2m2 + 3m − 1

(m + 1)(2m + 1)
N (5.7)

Based on the equation 5.7, we have proposition 5.1.

Proposition 5.1. For a BB order picking system with O order pickers, when

using a uniform storage policy and without blocking or congestion, its average

pick rate is 1/[ 2m2+3m−1
(m+1)(2m+1) N/

∑O
o=1 vo + mtp].

5.5.2 Class-based storage policies

We use a α − β two-class “End-Peak CBS” policy as an example to explain its

performance (for other CBS policies, see Eisenstein and Gong (2009)). Its storage

distribution function is f(x) = β
αN , 0 ≤ x < Nα; 1−β

(1−α)N , αN ≤ x ≤ N . Here we

outline the calculation of pick rates; for an analysis consisting of all details, see

Eisenstein and Gong (2009).

(1) The expected distance from the leftmost to the rightmost in one

order

The position of the rightmost one R = max{x1, ...xm}, and CDF of the position

R is FR(r) = ( β
αN r)m, 0 ≤ r < αN ; (β + 1−β

(1−α)N (r − αN))m, αN ≤ r ≤ N . PDF

of the position r is fR(r) = m( β
αN )m(r)m−1, 0 ≤ r < αN ; (1−β)m

(1−α)N (β + 1−β
(1−α)N (r −

αN))m−1, αN ≤ r ≤ N . The expected position of the rightmost item is

E[R] = (β)m
αm

m + 1
(
β

α
)mN+Σm

i=1(
m

i )(1−β)i(β)m−i[
(α − β)(−1 + βi) + i(1 − β)(−1 + αβi)

(1 + i)(1 − β)
]N

(5.8)
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The position of the leftmost pick L = min{x1, ...xm}, and CDF of the position

l is FL(l) = 1 − [1 − β
αN l]m, 0 ≤ x < αN ; 1 − [1 − β − 1−β

(1−α)N (x − αN)]m, αN ≤

x ≤ N . PDF of the position l is fL(l) = βm
αN [1− β

αN l]m−1, 0 ≤ x < αN ; (1−β)m
(1−α)N [1−

β − 1−β
(1−α)N (x − αN)]m−1, αN ≤ x ≤ N . The expected position of the leftmost

item is

E[L] = (1−β)m
(1 − β)m(1 + mα)

1 + m
N+Σm

i=1(
m

i )(β)i(1−β)m−i
1 − (1 − β)i − i(1 − β)iβ

(1 + i)β
N

(5.9)

(2) Pick rate

First, we compute the expected distance from the rightmost pick of an order

to the rightmost of the next order. Let r1 be the position of the rightmost

item in one order and r2 be that of the rightmost item in another. Without

loss of generality, let R1 > R2. We have gotten fR(r) = m( β
αN )m(r)m−1, 0 ≤

r < αN ; (1−β)m
(1−α)N (β + 1−β

(1−α)N (r − αN))m−1, αN ≤ r ≤ N . The differ-

ence E(|R1 − R2|) between the rightmost items of two independent orders is
2m2β2m

(αN)2m

∫ αN
0

∫ r1

0 (r1−r2)r
m−1
1 rm−1

2 dr2dr1 + 2(1−β)2m2

(1−α)2mN2m

∫ N
αN

∫ r1

αN (r1−r2)Π
2
i=1((1−

β)ri + (α − β)N)m−1dr2dr1. We have,

E[|R1 − R2|] =
2m2β2mα

2m + 1
N +

2mΘ1

(1 − α)2m(1 + m)(2m + 1)
N, (5.10)

where Θ1 = [(1+α− 2β)2m+1 − (2m+1)(−1+α)(1+α− 2β)m(−1+β)(2α−

β − αβ)m − (2α − β − αβ)2m+1].

PDF of the position l is fL(l) = βm
αN [1 − β

αN l]m−1, 0 ≤ x < αN ; (1−β)m
(1−α)N [1 −

β − 1−β
(1−α)N (x − αN)]m−1, αN ≤ x ≤ N , and the difference E[|L1 − L2|] between

leftmost items of two independent orders is 2m2β2

(αN)2

∫ αN
0

∫ l1
0 (l1−l2)[1−

β
αN l1]

m−1[1−

β
αN l2]

m−1dl2dl1+
2(1−β)2m2

(1−α)2N2

∫ N
αN

∫ l1
αN (l1−l2)Π

2
i=1[1−β− 1−β

(1−α)N (li−αN)]m−1dl2dl1.

We have
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E[|L1−L2|] =
2αm[1 − (1 − β)2m+1 − (2m + 1)(1 − β)mβ]

β(m + 1)(2m + 1)
N+

2(1 − β)2mmΘ2

(1 − α)2m(m + 1)(2m + 1)
N,

(5.11)

where Θ2 = Υ1+Υ2
Γ (m+1)Γ (m+2) , and Υ1 = −(1 − (1 − α)2m + (−1 − 2m + (1 −

α)m)(1−α)mα)Γ (m+1)Γ (m+2), Υ2 = (1+2m)Γ (m){−Γ (m+2)((1−α)m(1+

mα) − H[1,−m, 1 + m, 1]) + Γ (m + 1)((m + 1)(1 − α)m − H[2,−m, 2 + m, 1])}

and H is a hypergeometric function.

We obtain the expected distance E[W ]CBS spend on one order in a CBS system

is

E[W ]CBS = E[R − L] + E[|R1 − R2|] + E[|L1 − L2|] (5.12)

We have proposition 5.2.

Proposition 5.2. For a BB order picking system with O order pickers, when

using a α − β “End-Peak CBS” policy and without blocking and congestion, its

average pick rate is 1/[E[W ]CBS/
∑O

o=1 vo + mtp], and E[W ]CBS is specified by

equations 5.10,5.11, and 5.12.

5.5.3 Volume-based storage policies

We use an “End-Peak Pareto VBS” storage policy as an example to explain

performance calculation for VBS policies. For the performance analysis of other

storage policies, see Eisenstein and Gong (2009). The storage distribution func-

tion of “End-Peak Pareto VBS” is f(x) = s
Ns xs−1, 0 ≤ x ≤ N .

(1) The expected distance from the leftmost to the rightmost pick in

one order

We firstly compute the expected position of the rightmost item in one order. The

CDF of the position x of one item is FX(x) = xs

Ns . The position of the rightmost

one R = max{x1, ...xm}, and CDF of the position R is FR(r) = rsm

Nsm . PDF of the

position r is fR(r) = smrsm−1

Nsm . The expected position of the rightmost item is

E[R] =

∫ N

0

smrsm−1

N sm
rdr =

sm

sm + 1
N. (5.13)
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We compute the expected position the leftmost item in one order. The position

of the leftmost one L = min{x1, ...xm}, and CDF of the position l is FL(l) =

1− [1− ls

Ns ]m. PDF of the position l is fL(l) = sm
Ns (1− ls

Ns )m−1ls−1. This leads to

the following expected position of the leftmost item,

E[L] =

∫ N

0

sm

N s
(1 −

ls

N s
)m−1ls−1ldl =

mΓ [m]Γ [1s ]

sΓ [1 + m + 1
s ]

N, (5.14)

where Γ [m] is the Euler gamma function of m. We obtain the expected dis-

tance from the leftmost to the rightmost in one order E[R − L] = E[R]− E[L] =
sm

sm+1N −
mΓ [m]Γ [ 1

s
]

sΓ [1+m+ 1
s
]
N .

(2) Pick rate

First, we compute the expected distance from the rightmost pick of an order to

the rightmost pick of the next order. Let r1 be the position of the rightmost item

in one order and r2 be that of the rightmost item in another. Without loss of

generality, let R1 > R2. The PDF of the position r is smrsm−1

Nsm . The difference

E[|R1 −R2|] between rightmost items of two independent orders is 2
∫ N
0

∫ r1

0 (r1 −

r2)
smrsm−1

1
Nsm

smrsm−1
2

Nsm dr2dr1, and we have E[|R1 − R2|] = 2sm
(sm+1)(2sm+1)N .

Second, we compute the expected distance from the leftmost pick of an order

to the leftmost of the next order. Let l1 be the position of the leftmost item in one

order and l2 be that of the leftmost item in another. The difference E[|L1 − L2|]

between the leftmost items of two independent orders is 2
∫ N
0

∫ l1
0 (l1 − l2)

sm
Ns (1 −

ls1
Ns )m−1ls−1

1
sm
Ns (1−

ls2
Ns )m−1ls−1

2 dl2dl1 and the value of E[|L1−L2|] is approximately

0.

We obtain the expected distance E[W ]E,P spent on one order in an “End-Peak

Pareto VBS” storage policy is,

E[W ]E,P = (
sm

sm + 1
−

mΓ [m]Γ [1s ]

sΓ [1 + m + 1
s ]

+
2sm

(sm + 1)(2sm + 1)
)N (5.15)

We have proposition 5.3.
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Proposition 5.3. For a bucket brigades order picking system with O order

pickers, when using a “End-Peak Pareto VBS” storage policy and without

blocking and congestion, its average pick rate is 1/[( sm
sm+1 −

Γ [m]Γ [ 1
ms

]

sΓ [1+m+ 1
ms

]
+

2sm
(m+1)(2sm+1) )N/

∑O
o=1 vo + mtp].

The pick rate depends on Pareto parameter s. For a bucket brigades order

picking system using a Pareto storage policy and without blocking or congestion,

the smaller the s is the larger the pick rate is from Proposition 5.3. A smaller

s means a more focused storage density, and smaller travel distance. However, s

is limited by a lowerbound s, which is determined by the storage space available

per SKU. For example, in a garment pick line with 20 SKUs (the length of each

position is a), pickers handle and store on average 108 items per day with 4

storage replenishment operations for the product with the highest turnover; but

each position can store at most 15 items. In the position with highest storage

density, its stored items number should be smaller than the storage capacity. We

therefore have
∫ a
0

s
(20×a)s xs−1dx ≤ 15

108/4 , and can determine s ≥ 0.196. We have

Proposition 5.4.

Proposition 5.4. For a BB order picking system using a Pareto storage policy,

the optimal Pareto parameter equals to its lowerbound s∗ = s, where s is deter-

mined by the capacity available for the storage of SKU with the highest turnover.

5.5.4 A summary of performance evaluation of different storage

policies

We summarize the analytic results in Table 5.1. For further analysis to support

this table, see Eisenstein and Gong (2009). In section 5.7.1, we will verify these

analytic results by discrete simulation. By observation, we firstly find two analyt-

ical results in two subsequent sections. The remaining insights of Table 5.1 will

be uncovered with numerical experiments.
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Table 5.1. Comparison different storage profiles

Types Storage
Policies

Expected travel distance per order E(R−L) Pick rate

Uniformf(x) =
1
N

m−1
m+1

N 1/[ 2m2+3m−1
(m+1)(2m+1)

N/
PO

o=1 vo + mtp]

CBS α / β [(β)m αm
m+1

( β

α
)m + Σm

i=1Ci
m(1 −

β)i(β)m−i[
(α−β)(−1+βi)+i(1−β)(−1+αβi)

(1+i)(1−β)
]−

(1 − β)m (1−β)m(1+mα)
1+m

− Σm
i=1Ci

m(β)i(1 −

β)m−i 1−(1−β)i−i(1−β)iβ

(1+i)β
]N

1/(E[W ]CBS/
PO

o=1 vo + mtp)

VBS Pareto sm
sm+1

N −
mΓ [m]Γ [ 1

s
]

sΓ [1+m+ 1

s
]
N 1/[( sm

sm+1
−

Γ [m]Γ [ 1

ms
]

sΓ [1+m+ 1

ms
]

+

2sm
(m+1)(2sm+1)

)N/
PO

o=1 vo + mtp]

Central
Pareto

sm
sm+2

N 1/[( sm
sm+2

+
4sm

2
sm

2 (m+2)(sm+1)
)N/

PO
o=1 vo +

mtp]

Triangle 2m
2m+1

N − m
√

πΓ [m]
2Γ [1.5+m]

N 1/[( 2m
2m+1

− m
√

πΓ [m]
2Γ [1.5+m]

+
4m

1+6m+8m2
+ΘT

1 )N/
PO

o=1 vo+mtp]

Shrink effect

Based on Table 5.1, we find, for some non-uniform storage policies, its expected

travel distance per order is shorter than that in a uniform storage profile. We

define this phenomenon as follows,

Shrink effect: For a BB order picking system using some non-uniform stor-

age policies, its expected travel distance per order may be shorter than that in a

uniform storage profile, and look like a “shrunken” distance.

The shrink effect can be analytically proven in some storage policies. For

example, we compare expected travel distance in “ Central Pareto” with that of

uniform policy and find sm
sm+2N/m−1

m+1N < 1, when 0 < s < 1. For some expected

distances with complicated expressions (e.g.,CBS), we will further verify it with

numerical experiments in section 5.7.2. The shrink effect is interesting because

BB can efficiently use this effect, via its capacity of self-balancing, combined with

different storage profiles to improve order picking productivity, and this effect is

more significant in a BB protocol compared with that in other protocols without

self-balancing capacity like zone picking, which will be shown in 5.7.3.
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Limiting behavior

Based on Table 5.1, we can summarize the limiting behavior of bucket brigades

order picking systems in Proposition 5.5.

Proposition 5.5. For a BB order picking system without blocking or congestion,

its limiting behavior is specified by the limiting expected travel distance per order

limm→∞ E[R−L] = N and limiting pick rates limm→∞ E[ρ] =
∑O

o=1 vo/N for all

discussed storage policies if we assume tp = 0.

Order sizes m in most cases are smaller than 50 for a manual order picking

storage line according to authors’ observation. Based on the results in Table 5.1,

we will further discuss the impacts of different storage policies on the performance

of bucket brigades models with numerical experiments in section 5.7.2 to derive

management insights of storage policies when m is in a practical range.

5.6 Comparison of bucket brigades with zone picking systems

In this section, we compare the BB order picking with sequential zone picking

systems since both configurations can adopt multiple pickers to work along one

product line. We mainly compare the BB system with sequential zone picking

systems where there is no depot but a conveyor along zones (see Section-5.3.2).

We consider two ways to partition zones in a sequential zone picking system

along a storage line. One is to divide zones by line length, which has an ad-

vantage of easy implementation. Another way is to partition zones by an even

workload. It can improve the pick rates; but managers can hardly accurately

compute the work loads in time, especially in warehouses with dynamic storage

profiles where products are daily updated and replenishment is conducted fre-

quently, e.g., warehouses for online retailers, see Gong and De Koster (2008). We

consider their performances in two storage environments, uniform storage and

non-uniform storage environments.

Taking the Pareto distribution as an example, we show the BB model out-

performs zone picking systems in both zoning methods in a non-uniform storage
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Fig. 5.4. Two zone systems

distribution environment. Picking systems zoned by line lengths have a produc-

tivity bottleneck in the head part of the storage distribution line, where the picker

must handle more items given equal line length (see Fig.5.4-A). Picking systems

zoned by workloads, however, have a productivity bottleneck in the tail part of

the storage distribution line, where the picker must travel more time given equal

picked items (see Fig.5.4-B).

5.6.1 Comparison with picking systems zoned by line lengths

(1) Uniform storage distribution environment

For a zone picking system with a uniform storage load, we assign each picker one

zone with an even line length. The average travel time per order includes three

parts, shown in Section 5.3.2. The average pick rate of the zone line ρZ is the

reciprocal of the sum of average travel time per order and expected picking time

per order in a bottleneck zone. The values of O and z are equal in this section

since we assume a picker works in one zone.

Let v = min{v1, ..., vO} be the slowest velocity, and E[T ]z,u be the expected

travel time per order of a zone system in a uniform storage profile. Using a

similar logic with equations 5.3 and 5.4, we get order picker team’s expected

travel distance |R −L|z,u = m−z
m+z

N
z for a zone picking system with z zones and z
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pickers. Based on equation 5.5, we have E[|R1 − R2|]z,u = 2m
(m+z)(2m+z)N . Based

on equation 5.6, we have E[|L1 − L2|]z,u = 2m
(m+z)(2m+z)N . From equation 5.2,

we obtain the order picker team’s expected travel time per order is E[T ]z,u =
2m2+mz−z2

2m2+3mz+z2
N
zv , and expected operation time (travel time plus picking time) per

order is 2m2+mz−z2

2m2+3mz+z2
N
zv + m

z tp.

For bucket brigades, based on Table 5.1, we obtain the expected travel time

spend on one order is E[T ]b,u = (2m2+3m−1
2m2+3m+1

N)/
∑O

o=1 vo and expected operation

time per order is (2m2+3m−1
2m2+3m+1N)/

∑O
o=1 vo + m

z tp. By these analyses, we find: (1)

Due to self-organization function, we can find variance in pick velocity has less

impacts on bucket brigades. For zone picking, the slowest velocity v will affect its

performance. However, in bucket brigades, the bottleneck effect of v will be offset

by faster velocities since the performance is dependant on
∑O

o=1 vo or the average

velocity. (2)In some special cases, zone picking can (but will not always) outper-

form bucket brigades in terms of the expected travel time spent on one order. We

present such an example: When all velocities equal v, both average picking times

are m
z tp, E[T ]z,u < 2m2+3mz−z2

2m2+3mz+z2
N
zv = (1 − 2

2m2/z2+3m/z+1
) N

zv . The right-hand side

of equation is a decreasing function of z, and (2m2+3mz−z2

2m2+3mz+z2
N
zv )z=1 = E[T ]b,u. We

therefore have E[T ]b,u > E[T ]z,u and ρb,u < ρz,u, when z ≥ 2.

Nevertheless, we should notice that we have chosen a protocol favorable to

zone picking to guarantee the fairness of comparison. Other typical zone picking

configurations include: (1) zone picking systems with one depot and a conveyor,

(2) zone picking systems with two depots and a conveyor, (3) a zone picking

without a conveyor so that pickers must conduct “hand-off” which means a picker

must travel until the end of his zone and leads to more travel distance and an

extra delay. These zone picking configurations will lead to a worse performance

compared with the zone picking used in this research.

(2) Non-uniform storage distribution environment

In a non-uniform storage distribution environment, we further compare the

bucket brigade model with the zone picking system. For a zone picking sys-

tem with Pareto storage load, its expected travel time is dependent on the

first zone Z1 = [0, N/z] with the heaviest workload. The expected number of
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items in the first zone is mFX(N
z ) = m/zs. Note the leftmost pick in the

first zone is just the leftmost pick of the whole zone, and we have gotten

E[L] =
mΓ [m]Γ [ 1

s
]

sΓ [1+m+ 1
s
]
N and E[L1 − L2] from the previous analysis in Section 5.5,

and need to compute E[R]. Note with probability P (R ∈ Z1) = 1/zs, an item

will be picked in the first zone and the conditional PDF in the first zone is

fR|R∈Z1
(r) = fR(r)/P (R ∈ Z1) = ( z

N )
sm
zs sm

zs r
sm
zs −1, where fR(r) is specified in sec-

tion 5.5.1. We have E[R] =
∫ N/z
0 ( z

N )
sm
zs sm

zs r
sm
zs −1rdr = sm

sm+zs
N
z and E[R1−R2] =

2
∫ N

z

0

∫ r1

0 (r1 − r2)(
z
N )

2sm
zs (sm)2

z2s r
sm
zs −1
1 r

sm
zs −1
2 dr2dr1 = 2sm

z(sm+zs)(2sm+zs)N . Based on

the analysis above, using E[T ]lz,p to denote expected travel time per order of a

picking system zoned by line length and a Pareto storage profile, we have propo-

sition 5.6.

Proposition 5.6. For an order picking system zoned by line length, using an

“End-Peak Pareto VBS” storage profile, its pick rate is E[ρ] = 1/(E[T ]lz,p + m
zs tp),

where the expected travel time per order E[T ]lz,p = [ sm
z(sm+zs) −

mΓ [m]Γ [ 1
s
]

sΓ [1+m+ 1
s
]

+
sm

z(sm+zs)(2sm+zs) ]N/v.

We compare performance of bucket brigades based on Table 5.1 and that of

zone picking systems based on proposition 5.6. We find the performance of the

bucket brigades picking system is better than zone picking systems in terms of

both pick rates and the expected travel time with a non-uniform storage distribu-

tion. The advantage of BB is larger in a heavy pick density, i.e., a larger m. The

result remains true for all non-uniform storage policies discussed in this research.

For an intuitive explanation, we examine the limiting behavior for systems

with z zones, z pickers, and equal velocities v. We obtain the limiting travel time

(E[T ]lz,p)m−→∞ = {[ sm
z(sm+zs) −

mΓ [m]Γ [ 1
s
]

sΓ [1+m+ 1
s
]
+ sm

z(sm+zs)(2sm+zs) ]N/v}m−→∞ = N
zv for

zone picking systems and the limiting travel time (E[T ]b,p)m−→∞ = {[( sm
sm+1 −

Γ [m]Γ [ 1
ms

]

sΓ [1+m+ 1
ms

]
+ 2sm

(sm+1)(2sm+1) )N ]/zv}m−→∞ = N
zv for BB systems are equal. How-

ever, considering 0 < s < 1, the picking time for zone picking is m
zs tp, larger than

that of BB, m
z tp. In a real parameter setting environment, e.g., a 20%/70% policy,

the difference in picking time is huge.
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5.6.2 Comparison with picking systems zoned by workloads

For order picking systems zoned by workloads in an environment of uniform

storage distribution, its performance analysis is the same with that zoned by line

length. This section therefore mainly considers the performance comparison in a

non-uniform storage distribution environment. We find the performance of zone

picking is again worse than that of bucket brigade when the storage line is zoned

by workloads.

For a picking system zoned by workloads with Pareto storage profiles, the

picking time is equal to m
z tp, and bottleneck is the the expected travel time in

the last zone [hN,N ] with the longest zone length, where hN is the left boundary

of the last zone. From F (hN) = 1 − 1
z , we obtain the scope of the last zone is

[(1− 1
z )

1
s N,N ]. Note the rightmost pick in the last zone is just the rightmost pick

of the whole zone, and we have obtained E[R] in Section 5.5. To compute the pick

rate we need to know E[L], given FL(l) = 1−[1−( lz
N )s]

m
z , which can be calculated

as
∫ N
hN

smzs−1

Ns (1− lszs

Ns )
m
z
−1ls−1ldl = mN

z2 [Γ (zs, 1+ 1
s , m

z )−Γ (zsh, 1+ 1
s , m

z )]. Based

on the analysis above, using E[T ]wz,p to denote expected travel time per order

of a picking system zoned by workload and a Pareto storage profile, we have

proposition 5.7.

Proposition 5.7. For an order picking system zoned by workload, using an

“End-Peak Pareto VBS” storage profile, its pick rate is E[ρ] = 1/(E[T ]wz,p + m
z tp),

where the expected travel time per order E[T ]wz,p = { sm
sm+1 + sm

(sm+1)(2sm+1) −
m
z2 [Γ (zs, 1 + 1

s , m
z ) − Γ (zsh, 1 + 1

s , m
z )]}N/v.

We compare performance of bucket brigades based on Table 5.1 and that of

zone picking systems based on proposition 5.7 by numerical experiments. We find

the performance of the bucket brigades picking system is better than zone picking

systems with a non-uniform storage distribution, which will be numerically illus-

trated in section 5.7. This result remains true for all non-linear storage policies

discussed in this research.
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5.7 Numerical cases and application

5.7.1 Comparison with discrete simulation experiments

In this section, in order to verify our analytic results, we present numerical cases

and compare our analytical results with that of discrete simulation experiments.

For I orders (we set I = 2000) and order sizes with a range from 2 to 25, we

generate their discrete positions according to storage distribution functions, and

then compute the expected distance per order(ft/order), and average pick rate

(order/second). We compare the simulation results with the analytic results in Ta-

ble 5.1. Simulation parameters are N = 50, v1 = 0.9ft/sec, v2 = 0.95ft/sec, v3 =

1ft/sec, v4 = 1.05ft/sec, and SKU unit lengh=1ft. We consider three cases re-

spectively with two pickers (with v1, v2), three pickers (with v1, v2, v3), and four

pickers (with v1, v2, v3, v4). This parameter setting is based on an order picking

line in a garment warehouse, and within the parameter range based on authors’

experiences.

For a uniform storage distribution, we present the comparison in Figure 5.5

(the top panel). For the expected travel distance, the relative error is 0.431%.

For the average pick rate, the relative error is 0.435%. We have conducted exten-

sive experiments with different parameter settings; relative errors of our analytic

results are less than 0.5 % in most cases.

For a non-uniform storage distribution, we firstly generate the position of an

item given a storage density function f(x) using inverse transform method (see

Law and Kelton (2000)). We take pareto distribution as an example. Setting

F (X) = Xs

Ns = U , we generate the positions by the following algorithm: 1.Gener-

ate random number U; 2. Set X = U
1
s N . We consider two cases with different s

value: for a 20%/70% policy, s = 0.221615, for a 20%/50% policy, s = 0.430677.

We present the comparison in Fig 5.5 (the lower panel). For the expected travel

distance, the relative error is 0.405 %; for the average pick rate, the relative error is

0.406%. We conduct extensive experiments in different parameter environments,

relative errors of our analytic results are less than 0.6 % in most cases. These

experiments show our analytic results are accurate.
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Fig. 5.5. Compare pick rate analytical results with that of discrete simulation

5.7.2 The impact of storage policies

This section examines the impact of different storage policies on bucket brigades

models. Based on the analytic expressions in Table 5.1, we first compute the

expected travel distance per order in Fig. 5.6 (the top panel), where experiment
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parameters are N = 50, s = 0.221615, v1 = 0.9, v2 = 0.95, v3 = 1ft/sec. To

derive more insights, particularly in order to highlight the shrink effect, only in

this section we temporarily disregard pick time since it is the same given a specific

storage profile and order picking policy. We then compute average pick rates in

Fig. 5.6 (the lower panel). By this comparison, we find the following management

insights.

(1)We can observe shrink effect in Fig. 5.6 (the top panel). The expected travel

distances per order in all 4 non-uniform profiles are “shrunken” compared with

that in uniform storage profiles. Correspondingly, we can observe pick rates of all

4 non-uniform profiles are higher than that of uniform storage profile in Fig. 5.6

(the lower panel).

(2)Shrink effects are different in these storage profiles. Volume-based stor-

age policies outperforms class-based storage policies for bucket brigades models.

Class-based storage policies outperforms uniform storage distribution. In volume-

based storage policies, “middle-peak VBS” outperforms “end-peak VBS” (e.g.,

see Pareto distribution with a middle peak and that with an end peak). The main

reason is that, this can further reduce the expected walk distance of order pickers

using the BB protocol.

(3)Parameter values α
β impose an influence on the shrink effect. We have

calculated the pick rates at different α
β values (see Fig.-5.7). When α

β is smaller,

the performance of bucket brigades models improve. When α
β is smaller, shrink

effect is larger, that is, items are slotted at a short part of the product line with

relatively high density, which can reduce the expected walk distance of order

pickers in BB protocol.

(4)When order sizes are small, the effect of different storage policies on perfor-

mance is significant. Note limm→∞ E(R − L) = N for all storage policies. When

order sizes are large, the expected walk distance per order will approach the line

length N , and the effect is slight. But in practice, m ≤ 50 in most cases. For

the high density case with m > 50, managers usually will consider automated or-

der picking systems. Therefore, we can conclude that storage profiles usually will

impose a significant impact on the performance of bucket brigades in practice.
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Fig. 5.6. Compare expected travel distances and pick rates in different storage policies

5.7.3 Comparison of bucket brigades model with zone picking systems

In this section, we compare bucket brigades model with the zone picking sys-

tems introduced in Section 5.2, including zoned by line length and workload, by

simulation. The motivation of this comparison is not just to identify a better
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protocol among them, but mainly to uncover management insights and show the

capacity of BB to use storage profiles and shrink effect to improve pick rates, in

non-uniform storage profiles.

We consider a Pareto storage profile with 20%/70% and 20%/50% storage poli-

cies, three order pickers with velocities v = 1, unit picking time tp = 2sec/item.

We examine 400 orders in one picking line, handle them by FCFS sequence, and

compare their pick rates.
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Fig. 5.7. Compare BB and picking systems zoned by line length

First, we compare BB with an order picking system zoned by line length

N = 50. We present one of our numerical experiments in Figure 5.7. We find,

(1)From Figure 5.7, the performance of BB is always better than that of zone

picking system. (2) The performance of BB in a 20%/70% policy, with more

skewness, is better than that in 20%/50%. However, zone picking systems cannot

handle skewed environments very well. Overall, performance of zone picking in a

20%/70% policy is worse than that in 20%/50% since more items will be located in

the first zone. This zone then becomes a bottleneck, which cannot be streamlined.
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(3) The pick rate curve of BB is more smooth than that of zone picking systems,

and BB produces less output variance.

We then compare BB with a picking system zoned by workload. For N =

[50, 200] and a 20%/70% policy, we present one of our numerical experiments in

Fig 5.8. We find, (1)From Figure 5.8, the performance of BB is consistently better

than that of zone picking system at all m and N . (2) When N and m increase,

the performance of zone picking becomes worse. (3) The pick rate surface of BB

is smoother than that of zone picking systems. We have further compared the

pick rates for a 20%/50% policy, and also find BB can handle the storage policies

with more skewness, better than zone picking .
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Fig. 5.8. Comparison of BB and picking systems zoned by workload

In sum, while a picking system zoned by line length cannot streamline the

unbalance from workload and thereby picking time, a picking system zoned by

work load cannot streamline the unbalance from line length and thereby travel

time. A BB picking system, however, can balance both sides simultaneously. The

shrink effect is mainly a positive factor for the BB protocol, but a negative factor
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for zone picking protocols without self-balancing capacity. Compared with other

order picking protocols, the BB protocol is an efficient method with a capacity to

capture shrink effect and transfer it to an advantage in productivity. Moreover,

the outputs,whatever 2-dimensional or 3-dimensional, from a BB picking system,

are smoother, which means a smaller variance in pick rates and less management

cost.

5.8 Concluding remarks

We uncover new management insights of applying bucket brigades, particularly

bi-directional BB, a new protocol proposed in this research, to warehouse op-

erations in a practical environment than the uniform storage environment. The

main contribution is as follows:

(1) We find a shrink effect of BB order picking in non-uniform storage profiles.

BB can efficiently use this effect, via its capacity of self-balancing, combined with

different storage profiles to improve order picking productivity, and this effect is

more significant in a BB protocol compared with that in other protocols without

the capacity of self-balancing.

(2) We give closed-form analytic expressions for the order pick rates of bucket

brigades model for different storage profiles.

(3) We shed light on reasons why the bucket brigades system outperforms two

zone picking systems in non-uniform storage profiles. While the shrink effect of

non-uniform storage profiles may be a negative factor for the two zone picking

protocols, the BB protocol is an efficient method with a capacity to capture shrink

the effect and transfer it to an advantage in productivity.

(4) We show how to use storage profiles and bucket brigade protocol to improve

order picking productivity. In general, managers can expect that VBS policies

outperform CBS policies for bucket brigades models, and CBS policies outperform

uniform storage distribution. In VBS policies, we suggest managers use “middle-

peak VBS”, which outperforms “end-peak VBS”. However, we also demonstrate

while a larger skewness may improve the productivity of BB order picking, the

storage profile design is subject to the available storage space capacity.
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Warehouses
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A novel facility design approach to improve revenue

management of public storage warehouses

6.1 Introduction

Public-storage warehousing is a considerable industry in USA and a booming

business in Europe and Asia. In the United States, for example, the Self Stor-

age Association (SSA, the official association representing this industry in the

USA) reported, while there were only 6,601 facilities at year-end 1984, the facil-

ity number has rocketed to over 51,250 at year-end 2008 (Self Storage Association,

2009). The SSA estimates that the industry had total sales in excess of $20 billion

(USD) in 2008 in the United States. In the European marketplace, according to

the 2008 industry annual report of the Self Storage Association of UK (the official

association representing this industry in the UK), the number of public storage

warehouse facilities sharply increased by 117% in Switzerland, 64% in Denmark,

55% in Sweden, 40% in Portugal, 36% in both the Netherlands and Austria,

19% in France and 17% in Belgium from 2007 to 2008, within just a single year

(Self Storage Association UK, 2009). In the rest of the world, public-storage is

also rapidly developing. For instance, the Self Storage Association of Australa-

sia reports that there are over 1,100 self storage facilities, and “ self storage is

one of the fastest growing industries in Australasia” (see selfstorage.com.au). Za-

wya, a leading Middle East business information media headquartered in Dubai,

reported that, Big Yellow, a UK self-storage operator, is building the world’s

largest public-storage warehouse in Dubai, offering a total rentable storage space

of 280,000 ft2 (see zawya.com).
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The reasons behind this rapid growth have to do with the public-storage busi-

ness model, which apparently fills a customer need. Public storage provides both

private persons and small businesses a temporary storage opportunity at a cen-

trally located facility. Small-sized rooms in a larger warehouse are rented out dur-

ing a usually short period of time and can be operated by the renters themselves.

One of the continual challenges for managers of such public-storage warehouses is

how to design facilities to improve their revenues. Our research has been inspired

by conversations with Shurgard-Public Storage (the world’s largest public-storage

warehouse company) and other public-storage companies. Shurgard is an interna-

tional corporation providing public-storage warehousing services to both private

and business customers. A manager at Shurgard complained he could not get

much help from current facility design theories, mainly emphasizing cost control

without dealing with revenue aspects. With decades’ management experiences in

cost control, this industry has been able to control the cost well. According to the

SSA at year-end 2008 the large self storage facilities only employed “an average

of 3.1 employees per facility” in the USA (Self Storage Association, 2009). For

example, a warehouse with about 5000m2 rentable space only hires two workers

per shift to run the facility. In traditional warehouses labor cost is the main cost

source (see De Koster et al. ( 2007)). With the self-storage operation mode, cus-

tomers handle storage operations themselves, without interference of warehouse

personnel (operational details can be found at www.shurgard.eu, for example).

The prime objective for these public storage companies is to maximize the ex-

pected revenue at a stable cost level. A typical public-storage warehouse contains

storage spaces of different sizes and qualities, each with a specific number of

storage units. A customer rents a storage unit of an appropriate size for one or

multiple months. However, the existing storage sizes or the number of storage

units available per size may not fit the needs of the market. The number of avail-

able units of some type may be insufficient, while other sizes are abundant. This

results in either lost customers and revenue, or inefficient utilization of capac-

ity of one type, which also may bring potential loss in another type. A natural

question is therefore whether it is possible to provide a facility design improving

the expected revenue, that is with a better fit between storage design (types and

numbers) and market demand.
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Designing public-storage facilities is an important business in itself. Several

storage space design companies like US-based Janus International Corporation

(see janusintl.com), UK-based Gliderol self storage solution (see gliderolselfstor-

age.co.uk), France and UK -based Steel storage (see steelstorage.net), are special-

ized in developing partitioned storage buildings for the public-storage industry.

Public-storage facility design is applied in two situations: the design of new ware-

houses and the reconfiguration of existing warehouses.

Figure 6.1 shows a typical example of a public storage warehouse (only the

second floor is shown), which contains storage rooms of 3, 4.5, 6, 7.5, 9, 12, 15,

and 18 m2, many of which can be merged into larger ones. The height of these

storage units is standard. In the USA, the free height is 8 feet. If the height of

a facility floor is larger than 8 feet, public storage warehouses will install a roof

or a meshwork to cover the storage units in order to standardize the height. In

Europe, the height of storage units is also standard in most cases. Throughout

this paper, we therefore consider the two-dimensional facility design problem only.

In this paper, we focus on the prime managerial issue, i.e., how to determine the

appropriate storage types and the number of storage units per type to fit the

market segments. We do not consider the remaining engineering problem, i.e.,

designing a specific storage layout given storage types and the number of storage

units per type. For this problem, many heuristics, optimization-based algorithms

(see, e.g., chapters 5 and 6 in Tompkins et al. (2003), or Francis et al. (1992)),

and commercial software tools (like FactoryCad, FactoryFlow, Flow Planner, and

others) are available.

Warehouse facility design is a tactical decision: once a facility has been de-

signed and realized it is difficult to adapt it to a changed environment. However,

in public storage, warehouse designs appear to be much more flexible than in

other warehouses since public storage warehouses widely apply modular steel-

base products like modular corridor, standardized internal wall panels, standard-

ized swing doors and roller doors. Particularly, the internal panel has a special

patented “snap together” interlocking seam (see steelstorage.co.uk), rather than

fixed jointing, which makes the repartition of warehouse space easier. The Steel

Storage Group, a global leader in the design and construction of public storage

facilities, can “transform an existing building into a self-storage complex” very
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Fig. 6.1. Typical facility layout in a public storage warehouse

rapidly, and claims that their modular units “allow for easily repeatable sizes for

rapid installation and easily calculable spaces based on standard metric dimen-

sions” (see steelstorage.co.uk). Most public-storage warehouses have a limited

number of storage sizes (in the USA, usually 8 types) and most sizes are an in-

teger multiple of a standard size. In fact, it is usually possible to remove or add

non-supporting walls to create for example one 9 m2 room from a 3 and a 6 m2

room. Of course there are some constraints: it is impossible to merge or split

rooms while they are still occupied and by adding a wall there should still be an

access door for both rooms. This space flexibility creates room for public-storage

managers to adapt the layout of their facility on a rather short term to changing

demand.

To further specify the research problem and understand our problem back-

ground, we visited 54 public-storage warehouses, including 33 in USA (Chicago,

Philadelphia, Washington DC, New York, Orlando), 14 in Europe (Rotterdam,

the Hague, Delft, Lyon, Lille, Brussels, Bonn), 7 in Asia (Hong Kong, Shanghai,

Singapore), from December 2007 to July 2009. We collected price, design, and

demand information, interviewed managers, customers and laborers. It appears

the operation modes are highly dependent on the geographical location. Among
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the 54 warehouses, 22.2% are located in or close to city centers. These warehouses

are inclined to reject customers when capacity is fully occupied as demand ap-

pears to be abundant. 64.8% of the warehouses attempt to upgrade customers to

larger storage sizes, when the desired storage size is fully occupied, and 13.0%

do not (or rarely) reject customers or upgrade customers. The latter group of

facilities are located in “wrong” places (e.g., remote outskirts) with low demand,

and a substantial amount of previous research addressing various facility loca-

tion problems (e.g., Ross and Soland (1977), Wesolowsky (1973)) can be applied

to solve problems in these kinds of warehouses. This paper thereby primarily fo-

cuses on the first two facility types. We build analytical models to provide designs

oriented to revenue management according to their demand, with and without

upgrade possibilities. Upgrading customers is possible in many cases, if the next

larger storage type is still available and price differences are not too large. In

practice, managers immediately show customers a larger storage type, when the

small one is not available, as customers often have difficulties in expressing their

exact space needs. Two situations can then be distinguished: a priori reserving

some space for upgraded customers, or no a priori reservations. For warehouse

employees the first policy is more convenient: if a space type is fully occupied

and the reserved space of the next larger type is not yet fully booked they can

offer it to the customer and ask whether he or she accepts this space. If there is

no a priori reservation it is not always obvious for an employee whether upgrade

space should be offered as this takes away space of the primary customers of the

larger space type. However, a policy of no a priori reservations might bring a

larger expected revenue.

Our contribution in this paper is twofold: (1) Based on practical international

public-storage warehouse cases, this paper proposes a facility design approach

with the objective to maximize the expected revenue. (2) This paper is one of

the earliest to apply revenue management theory in the area of facility design.

The remainder of the paper is organized as follows: In the following section, we

review the literature of related application areas and of related methods. Section

6.3 is devoted to a basic design model in an environment with high demand. In

Section 6.4, we incorporate the customer upgrade problem by an overflow queue

network. We do this both for the case with a priori space reservation for upgraded
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customers and for the case where no a priori space has been reserved. Section 6.5

shows results of the models for several warehouse cases. We conclude with final

comments and directions for future research in Section 6.6.

6.2 Literature review

Facility planning and design is important for management practice and the econ-

omy. The facility plan helps organizations to achieve supply chain excellence in

today’s competitive global marketplace (Tompkins et al., 2003). Approximately

8% of the US gross national product (GNP) has been spent annually on new

facilities in the United States since 1955 (Tompkins et al., 2003). Most facility

design methods mainly consider cost control, and focus on minimizing (internal)

distance-based cost. Some of the research focuses on optimally sizing the ware-

house and renting temporary storage space when demand is stochastic (e.g., Rao

and Rao (1998)). Zhang et al. (2008) model the problem of allocating customers

to different warehouse spaces given deterministic demand, using a scheduling

approach. Few facility design models adopt an objective to maximize the profit.

However, without considering the market segment problem, which is viewed as an

important common characteristic of revenue management research (see Weather-

ford and Bodily (1992)), simple profit maximization reduces to cost minimization.

Literature on revenue management (RM) is quite substantial (see Talluri and

Van Ryzin (2004)). Several authors have written overview papers on revenue man-

agement, like Mcgill and Van Ryzin (1999) and Weatherford and Bodily (1992).

These works discuss applications of revenue management to extensive fields (but

not warehousing). Solution techniques include mainly heuristics, dynamic pro-

gramming, and mathematical programming. Airline management is one of main

application fields of revenue management techniques (see Talluri and Van Ryzin

(2004)). Warehouse revenue management differs from airline revenue management

in a number of ways. The major difference lies in the fact that in public-storage

warehouses customers may rent a space for multiple periods of time. They also

can rent multiple spaces of different sizes, for different periods. Warehouse rev-

enue management is closer to hotel operations management. In the hotel revenue

management literature one typically uses (dynamic) Markov decision processes
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and (static) mathematical programming models to derive optimal or near-optimal

strategies for renting hotel rooms of different types to customers with random de-

mands from different market segments under the objective of profit maximization.

In case Markov decision processes techniques (dynamic programming) are used,

the dynamic arrival process is (in the simplest discrete case) given by a discrete

nonhomogeneous Poisson process. For mathematical programming formulations

the cumulative distribution function of the demand is assumed to be known in

advance. In this case one tries to solve nonlinear optimization problems. In case

the models are too complex, heuristics have been developed. The major difference

with our paper is that in hotel management one does not focus on design prob-

lems, but instead one tries to allocate the existing rooms over the different types

of customers given cumulative distribution function (CDF) information about

their random demand. An example among many others of a paper using math-

ematical programming techniques is given by Bitran et al. (1995). Examples of

papers using dynamic programming techniques are given by for example Bitran

and Gilbert (1996) and Bitran and Mondschein (1995).

We were not able to find papers on facility design focusing on revenue man-

agement in the presence of market demand with segments for different space

requirements.

6.3 Design model without upgrading

In this section we present a design model without the possibility of upgrading.

To introduce this model we assume that there are m different storage type units

requested by customers. A storage type i unit, 1 ≤ i ≤ m, has an integer storage

size area ci and its rent is given by ri per unit of time. In the remainder of this

paper customers requesting a storage type i unit are called type i customers. Type

i customers are arriving according to a Poisson process with arrival rate λi and the

different Poisson arrival processes are assumed to be independent. The following

rental policy is assumed. An available type i storage unit is rented to any arriving

type i customer. A type i customer finding upon arrival all storage type i units

occupied is lost (no upgrading). We assume that the occupation times of a storage

type i unit are given by independent and identically distributed random variables
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with expected occupation time βi. The goal is to determine how many storage

type i units should be constructed under the objective of revenue maximization.

To model this problem, we introduce the decision variable xi denoting the

number of constructed storage type i units. It is easy to see that the number

of occupied storage type i units, 1 ≤ i ≤ m, can be modeled as m independent

M/G/xi/xi queueing loss systems. Hence the total reward is given by
∑m

i=1 riLi

with Li the long-run average number of customers in such a M/G/xi/xi system.

To calculate this we will use the following application of Little’s law (see page

345 of Tijms (1982)):

In a G/G/x/x loss system with arrival rate λ and x servers, where customers

pay a rate r for service, the long-run average revenue is equal to

rL = rλ(1 − Prej )S , (6.1)

with L the long run average number of customers in the system, S the expected

service time and Prej the rejection probability.

By the PASTA (Poisson Arrivals See Time Averages) property the rejection

probability Prej equals (see Gross and Harris (1998) or Cohen (1976)) the Erlang

loss formula B(xi, ρi) with ρi := λiβi the load of the system and

B(x, ρ) :=
ρx

x!

(∑x

j=0

ρj

j!

)−1

. (6.2)

Notice that B(0, ρ) = 1 for every ρ > 0. Hence by the equation (6.1) the long-run

average revenue generated by accepted type-i customers equals riρi(1−B(xi, ρi)).

Under the restriction that the total area of the warehouse is given by the

integer C the problem of maximizing the long-run expected revenue can be for-

mulated as

max
{∑m

i=1
riv(xi, ρi) :

∑m

i=1
cixi ≤ C, xi ∈ Z+, 1 ≤ i ≤ m

}
, (P)

where

v(x, ρ) := ρ(1 − B(x, ρ)). (6.3)



6.3 Design model without upgrading 127

Problem (P) can be solved by the following dynamic programming algorithm.

Introduce for every 1 ≤ k ≤ m and c ∈ Z+ the feasible region Fk(c) := {x ∈

Zm+1−k
+ :

∑m
i=k cixi ≤ c} and let

Jk(c) := max
{∑m

i=k
riv(xi, ρi) : x ∈ Fk(c)

}
(6.4)

be the maximal long-run average revenue obtained from storage units of type

k, ...,m, if the decision maker assigns to these units a total integer capacity c

with c ≤ C. Clearly the optimal solution of problem (P) is given by J1(C). To

compute this value we first observe by the monotonicity of function x �→ v(x, ρ)

that Jm(c), c ∈ {0, ..., C}, is given by

Jm(c) = max{rmv(xm, ρm) : xm ≤ �cc−1
m �} = rmv(�cc−1

m �, ρm) (6.5)

with �z� denoting the largest integer smaller than or equal to z. For type 1 ≤

k ≤ m − 1, the value Jk(c), c ∈ {0, ..., C}, can be iteratively calculated by the

Bellman equation

Jk(c) = maxxk∈{0,...,�cc−1
k

	}{rkv(xk, ρk) + Jk+1(c − ckxk)}. (6.6)

An easy generalization of problem (P) is to include in this model a service restric-

tion that arriving type i customers, 1 ≤ i ≤ m, are rejected with a probability

at most equal to σi (this parameter is set by the decision maker). In this case we

need to solve the problem

max
{∑m

i=1
riv(xi, ρi) :

∑m

i=1
cixi ≤ C, xi ∈ Z+, B(xi, ρi) ≤ σi, 1 ≤ i ≤ m

}
.

Observe we always implicitly assume that the feasible region is nonempty. Since

the function x �→ B(x, ρ) is strictly decreasing, the above optimization problem

reduces to

max
{∑m

i=1
riv(xi, ρi) :

∑m

i=1
cixi ≤ C, xi ≥ B←

ρi
(σi), xi ∈ Z+, 1 ≤ i ≤ m

}
(Q)

with
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B←
ρ (u) := min{x ∈ Z+ : B(x, ρ) ≤ u}.

For solving optimization problem (Q) we can apply a dynamic programming

algorithm similar to the one used for problem (P).

6.4 Design model with upgrading

In this section we consider the following more realistic model: customers who

initially are interested in a storage type i unit, may accept with probability pi to

pay a price ri+1 for a storage type i + 1 unit when all storage type i units are

occupied. A customer willing to accept this is called an upgraded customer. If a

storage type i+1 unit is available, an upgraded customer will be served, otherwise

the customer is lost. As done previously, we will call a customer initially interested

in a type i storage unit a type i customer. We again model the arrival process

of type i customers as a Poisson process with rate λi. However, we now assume

that the holding times of a storage type i unit are independent and exponentially

distributed with mean βi . Given the price ri for each storage type i unit per unit

of time the goal is to decide how many units of each type to build (and reserve)

such that the long-run average revenue is maximized.

We consider two upgrading models. In the first one, units are reserved a pri-

ori for upgraded customers, while in the second, upgraded customers of type i

may rent upon their arrival any available unit at level i + 1. For the first model

we present an exact method for finding the long-run average revenue. The sec-

ond model, however, is more complex and as we will see in Section 6.4.2, less

tractable. The analysis of this model will be based on a reasonable first moment

approximation regarding the overflow process of upgraded customers.

6.4.1 Model with a priori reservations for upgraded customers

In this subsection we assume that in the construction phase one reserves units

for upgraded customers. The upgrading process can be described as follows. Let

xi, 1 ≤ i ≤ m, be the number of storage type i units built for type i customers

at level i and yi, 1 ≤ i ≤ m− 1, the type i+1 units reserved for type i customers

upgraded to level i + 1. A type i customer who finds upon arrival all the xi
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storage type i units occupied may choose to be upgraded and use one of the yi

reserved units, if one is available. If all yi units are occupied, the customer is lost.

Customers of type m finding upon arrival all xm units busy are directly lost. A

customer of type i + 1 is not allowed to occupy one of the yi units reserved for

upgraded type i customers, even if such a unit is available.

To analyze this model we first look at the process followed by each type of cus-

tomers separately. The long-run average revenue obtained from type i customers

can be split in the long-run average revenue obtained from the xi, respectively yi

units.

Long-run average revenue from the xi units:

The number of occupied storage type i units among the available xi can again

be modeled by a queueing loss system. Due to our assumption of exponentially

distributed occupation times this is an M/M/xi/xi loss queue. As before the

long-run average revenue obtained from the xi units is given by riv(xi, ρi) with

v listed in relation (6.3).

Long-run average revenue from the yi units:

To calculate the long-run average revenue obtained from the yi units, we

first need to characterize the arrival process of upgraded type i customers to

level i + 1. Clearly this is the same as the overflow process of rejected type i

customers willing to upgrade. Since the occupation times of type i units are

exponentially distributed, the arrival moments of type i customers finding all

xi storage type i units occupied are regeneration points of the M/M/xi/xi loss

queue (Wolff (1989)). Hence the overflow process of rejected type i customers is

a (delayed) renewal process. By the PASTA property the rate of this process is

given by λiB(xi, ρi). Since each rejected type i customer is willing to upgrade

with probability pi the overflow process of rejected customers willing to upgrade

is therefore a delayed renewal process with rate ηi+1(xi) given by

ηi+1(xi) = piλiB(xi, ρi). (6.7)

Again by Little’s formula, the long-run average revenue generated by the yi units

is equal to

ri+1ηi+1(xi)βi(1 − Prej(xi, yi)) (6.8)
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with Prej(xi, yi) the rejection probability that an upgraded type i customer will

find all the reserved yi units occupied. By Theorem 2, Ch.4, in Takacs (1982),

this rejection probability is given by

Prej(xi, yi) =
1∑yi

j=0

(yi

j

)
K−1

j

with K0 := 1 and

Kj :=

j∏
k=1

(
θ(xi, kβ−1

i )

1 − θ(xi, kβ−1
i )

)
. (6.9)

for 1 ≤ j ≤ yi. In relation (6.9) the function θ(xi, s) represents the Laplace-

Stieltjes transform of the inter arrival time at the yi units between two upgraded

type i customers

θ(xi, s) =
piγ(xi, s, φ)

1 − (1 − pi)γ(xi, s, φ)
(6.10)

with

γ(xi, s, φ) =

∑xi

j=0

(
xi

j

) ∏j−1
k=0

(
1−φ(s+kμ)

φ(s+kμ)

)
∑xi+1

j=0

(
xi+1

j

) ∏j−1
k=0

(
1−φ(s+kμ)

φ(s+kμ)

) (6.11)

and φ(α) = λi

α+λi
the Laplace-Stieltjes transform of the exponential distribution

with parameter λi.

The optimization problem of deciding how many units of each type to

build/reserve such that the long-run average revenue obtained from all types

of customers is maximized can now be written as:

max
∑m

i=1 riv(xi, ρi) +
∑m−1

i=1 ri+1ηi+1(xi)βi (1 − Prej(xi, yi))∑m−1
i=1 (cixi + ci+1yi) + cmxm ≤ C

xi, yi ∈ Z+

(6.12)

The above maximization problem can be solved via dynamic programming.

Let again Jk(c) be the maximal long-run average revenue obtained from storage
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units of type k, ...,m if for those units a total integer capacity c with c ≤ C

is available. The optimal value J1(C) of (6.12) can be computed recursively as

follows. Since x �→ v(x, ρ) is increasing we first obtain for each capacity c ∈

{cm, ..., C} that Jm(c) is given by

Jm(c) = maxxm∈{0,...,�cc−1
m 	} rmv(xm, ρm) = rmv(�cc−1

m �, ρm) (6.13)

Also for c ∈ {0, ..., cm − 1} it is obvious that Jm(c) = 0. Introducing for 1 ≤ k ≤

m − 1

Sk(c) := {(xk, yk) ∈ Z
2
+ : ckxk + ck+1yk ≤ c}

we obtain that the Bellman recurrence relations for the functions Jk, 1 ≤ k ≤

m − 1 are given by

Jk(c) = max
(xk,yk)∈Sk(c)

{f(xk, yk) + Jk+1(c − ckxk − ck+1yk)},

with

f(xk, yk) = rkv(xk, ρk) + rk+1ηk+1(xk)βk(1 − Prej(xk, yk)).

Note that in calculating Jk(c), c ∈ {0, ..., C}, one does not have to evaluate

all the pairs (xk, yk) ∈ Sk(c). Since the function y �→ f(x, y) is increasing in y,

for a fixed capacity c̃k reserved for storage units for type k customers (including

the reserved units on level k + 1), the maximal revenue obtained from type k

customers fixing xk is obtained reserving ỹk = �(c̃k − ckxk)c
−1
k+1� storage type

k + 1 units. Hence, one can evaluate Jk(c) by

Jk(c) = max
c̃k≤c

max
xk∈{0,...,�c̃kc

−1
k
�}

ỹk=�(c̃k−ckxk)c−1
k+1

�

{f(xk, ỹk) + Jk+1(c − ckxk − ck+1ỹk)}.

6.4.2 Model without a priori reservations for upgraded customers

In this subsection we assume that one does not reserve in advance capacity for

upgraded customers. Instead, a type i customer finding upon arrival all units of

type i occupied and choosing for upgrading, may get any available unit of type

i + 1 (if such an available unit exists). As before, we assume that the arrival of
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type i customers are independent Poisson processes with rate λi and the holding

times for all storage units are independent and exponentially distributed with

mean βi for type i customers.

Under this assumption the number of occupied storage type 1 units is a Marko-

vian loss model. Moreover, we have seen in the previous subsection (see also

Takacs (1982), Chapter 4) that the overflow process of rejected customers of an

M/M/c/c loss queue starting initially empty is a (delayed) renewal process with

arrival epochs the overflow epochs. The process at level 2 is however much more

complex. The arrival process of type 2 and upgraded customer is the superposi-

tion of a delayed renewal process with a given arrival rate and a Poisson process

with rate λ2. Since this loss system at level 2 with two different types of customers

is impossible to analyse and at level i ≥ 3 it becomes even more complicated,

we introduce the following approximating (first moment) Poisson assumption for

the overflow process of rejected customers. In the sequel H2 denotes a two-phase

hyper exponential distribution.

Assumption The overflow process of rejected customers in an M/H2/x/x

loss queue with arrival rate λ and mean service time β can be approximated by a

Poisson process with rate λB(x, ρ), ρ = λβ and B(x, ρ) the Erlang loss probability

that an arriving customer finds all x servers busy.

To analyze our model under the above approximation assumption we also need

the next result.

Lemma 6.1. Consider a queueing system with two types of customers and c

servers and assume a customer who finds all the servers busy is rejected. The

independent arrival processes of the two types of customers are Poisson with

rates γ1, γ2 and the service times are exponentially distributed with mean ζ1, ζ2

respectively. For such a queueing system the long-run probability that a rejected

customer is of type i, i = 1, 2 is given by γi

γ1+γ2
.

The above lemma also holds for independent and arbitrary distributed service

times with mean ζ1, ζ2 respectively. We will give a proof of this more general

form in the Appendix.
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As in the previous sections, we will calculate the long-run average revenue

for each type of storage units by using Little’s formula. For this, we first need

to compute the average occupation time of each type of storage unit and the

probability that a customer will find all units of a certain type occupied.

To characterize the rental process of type i storage units we proceed as follows.

Let xi be the number of type i storage units built, ηi the arrival rate of upgraded

type i − 1 customers to units of type i and B(xi, ρi, ηi) the probability that

a customer interested in a type i unit (an upgraded type i − 1 customer or a

type i customer) finds all type i storage units occupied. Clearly, η1 = 0 and

B(x1, ρ1, η1) = B(x1, ρ1), with B(x1, ρ1) given by (6.2).

As before the number of occupied storage units of type 1 can be modeled as

an M/M/x1/x1 queue. By the Poisson approximation assumption, the overflow

process of rejected customers is a Poisson process with rate λ1B(x1, ρ1). Hence

the rate of the arrival process of upgraded type 1 customers at level 2 is a Poisson

process with rate p1λ1B(x1, ρ1).

Iteratively, for every i ≥ 2, the arrival process is formed by upgraded customers

of type i − 1 and type i customers. By the Poisson approximation assumption

and induction, the arrival process is Poisson with rate λi +ηi. If there are storage

units available, a type i customer will rent a type i storage unit for an exponential

time with mean βi, while an upgraded type i − 1 customer will rent such a unit

for an exponential time with mean βi−1. Since an arriving customer is of type

i− 1 with probability ηi

λi+ηi
and of type i with probability λi

λi+ηi
, the service time

has a two phase hyper exponential distribution with mean

βi
λi

λi + ηi
+ βi−1

ηi

λi + ηi
.

We can thus conclude that the number of occupied storage units of type i can

be modeled by an M/H2/xi/xi loss queue. Also the load of arriving type i and

upgraded type i − 1 customers at level i (arriving at rate λi + ηi) is given by

βiλi + ηiβi−1 = ρi + ηiβi−1.
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Hence by the Poisson approximation assumption the overflow process of re-

jected customers at this M/H2/xi/xi queue is a Poisson process with rate

(λi + ηi)B(xi, ρi, ηi) = (λi + ηi)B(xi, ρi + ηiβi−1). This implies using also Lemma

6.1 that the arrival process of upgraded type i customers to storage units of type

i + 1 is therefore a Poisson process with rate ηi+1 given by

ηi+1 = pi
λi

λi + ηi
(λi + ηi)B(xi, ρi + ηiβi−1) = piλiB(xi, ρi + ηiβi−1). (6.14)

Since by the PASTA property

P(arriving customer not blocked at level i) = 1 − B(xi, ρi, ηi)

we also obtain again by Little that the long-run average revenue generated by

the xi type i storage units is given by

ri(ρi + ηiβi−1)(1 − B(xi, ρi, ηi)) = ri(ρi + ηiβi−1)(1 − B(xi, ρi + ηiβi−1))

= riv(xi, ρi + ηiβi−1)

(6.15)

with the function v defined in relation (6.3).

The problem of maximizing the long run average revenue for the model without

a priori reservation can now be formulated as follows:

max
{∑m

i=1
riv(xi, ρi + ηiβi−1) :

∑m

i=1
cixi ≤ C, xi ∈ Z+, 1 ≤ i ≤ m

}
(6.16)

First note that for each allocation x� = (x1, ..., xm) ∈ Z
m
+ satisfying the feasibility

condition
∑m

i=1 cixi ≤ C the (approximated) long-run average revenue can be

obtained by iteratively calculating v(xi, ρi + ηiβi−1) using (6.14).

Also observe that the above mathematical program is a nonlinear nonseparable

integer programming problem. Solving such a mathematical programming model

is extremely hard. Fortunately, by the interpretation of our problem, one can use

as follows dynamic programming to find the optimal allocation.
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Let M = max1≤i≤m{piλi} (with pm = 1). For every 1 ≤ k ≤ m introduce the

optimal value function Jk : {0, 1, ..., C} × (0,M) → R, 1 ≤ k ≤ m given by

Jk(c, η) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
The maximal long-run average revenue obtained from type i storage units

i ≥ k, if the available capacity for these units is c and the

arrival rate of upgraded type k − 1 customers at level k is η.

Clearly, when a capacity of c is available for constructing type m storage units,

it is most profitable to completely use this capacity and construct �cc−1
m � type m

storage units, for any arrival rate 0 ≤ η ≤ M of upgraded type m − 1 customers

at level m. This implies by relation (6.15) that

Jm(c, η) =

⎧⎨⎩
rmv(�cc−1

m �, ρm + ηβm−1) if c ∈ {cm, ..., C}

0 otherwise

(6.17)

To compute the functions Jk, 1 ≤ k ≤ m − 1 consider the set S of real valued

functions on the domain D = {0, ..., C}× (0,M ] with bounded supnorm

‖f‖∞ := sup(c,η)∈D |f(c, η)| (6.18)

and introduce the operator Pk : S → S given by

Pkf(c, η) = max
xk∈{0,1,...,�cc−1

k
	}
{f(c − ckxk, λkpkB(xk, ρk + ηβk−1)) + rkv(xk, ρk + ηβk−1)} .

(6.19)

It is easy to verify for every f1, f2 belonging to S that

‖Pkf1 − Pkf2‖∞ ≤ ‖f1 − f2‖∞. (6.20)

By relations (6.14) and (6.15) we obtain for each type k < m, that the maximal

long run average revenue Jk(c, η) obtained from type i storage units, i ≥ k, given

that a total capacity c is assigned to these units and η is the arrival rate of
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upgraded k − 1 customers satisfies the (Bellman) equation

Jk(c, η) = PkJk+1(c, η). (6.21)

It is easy to see that the maximum long-run average revenue is given by J1(C, 0)

and by backtracking we obtain the optimal allocation. However, the arrival rate

η in the recurrent relation (6.19) is continuous. Therefore to solve the equation

in relation (6.21) numerically we need to discretize it.

We will next present a discrete dynamic program that gives in each step a

lower and an upperbound for Jk(C, 0) based on upperbounds and lower bounds

of the arrival rates of upgraded customers which are multiples of a step h. We

will show for h converging to zero that the value obtained from the discretized

dynamic program converges to the optimal value of the continuous one. The

algorithm heavily relies on the following two lemma’s proven in the Appendix.

Lemma 6.2. For every fixed x ∈ N the function v : N × [0,∞) → R given by

v(x, ρ) = ρ(1 − B(x, ρ)) is increasing in ρ.

Lemma 6.3. For each k ≤ m, and capacity c ∈ {0, ..., C}, the function η �→

Jk(c, η) is increasing and Lipschitz continuous.

Before presenting the last lemma to be used, we introduce some notations.

Let h > 0 be chosen in such a way that M = max1≤i≤m{piλi} is a multiple

of h, say M = nh and let Sh denote the vectors (u(., h), ...u(., nh)) for any u

belonging to S. Also introduce the functions Uh : R+ → R and Lh : R+ → R

defined by

Uh(η) := �ηh−1�h and Lh(η) := �ηh−1�h

with �z� denoting the smallest integer greater than or equal to z. Clearly for

every η ≥ 0 we obtain

Lhη) ≤ Uh(η) ≤ Lh(η) + h. (6.22)

Also, for any function f ∈ S let the functions f (h) and f(h) be defined by

f (h)(c, η) := f(c,Uh(η))



6.4 Design model with upgrading 137

and

f(h)(c, η) := f(c,Lh(η))

For the operator Pk listed in relation (6.19) it is easy to show the following

result.

Lemma 6.4. If the function η �→ f(c, η) is increasing for every c ∈ {0, 1, ..., C}

and f belongs to S, then Pkf(h), Pkf and Pkf
(h) are increasing function in η and

Pkf(h) ≤ Pkf ≤ Pkf
(h) (6.23)

for every 1 ≤ k ≤ m − 1. Moreover, if for every c ∈ {0, 1, ..., C} the function

η → f(c, η) is Lipschitz continuous with Lipschitz constant Lmax, then

‖Pkf (h) − Pkf(h)‖∞ ≤ Lmaxh. (6.24)

For a given step h, the discretized dynamic program is given below.

Discretization algorithm yielding upperbound and lowerbound for

Jk(C, 0).

Step 1. Evaluate for every q ∈ {0, ..., n} and c ∈ {0, ..., C} the values

am(c, qh) = bm(c, qh) = Jm(c, qh)

with the function Jm listed in relation (6.17).

Step 2. For k = m − 1 down to 1 evaluate the vector ak = (ak(c, qh)) and

bk = (bk(c, qh)) with c ∈ {0, 1, ..., C} and q ∈ {0, 1, ..., n} given by

ak(c, qh) := Pkak+1(c,Uh(η)) (6.25)

and

bk(c, qh) := Pkbk+1(c,Lh(η)) (6.26)

Step 3. Output a1(C, 0) and b1(C, 0)
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The correctness of the discretized dynamic program is given by the following

theorem.

Theorem 6.5. The optimal reward, given by J1(C, 0), is bounded from below by

b1(C, 0) and from above by a1(C, 0). Also

0 ≤ a1(c, 0) − b1(c, 0) ≤ Lh

for L a Lipschitz constant of the functions η �→ Jm(c, η) for every c ∈ {0, ..., C}.

Proof: From the description of the algorithm it follows that

0 = am(c, qh) − bm(c, qh) ≤ Lh

for every c ∈ {0, 1, ..., C} and q ∈ {0, ..., n} and that both functions are increasing

in q for fixed c. Suppose now by induction that

0 ≤ ak+1(c, qh) − bk+1(c, qh) ≤ Lh

for some k + 1 ≤ m and q ∈ {0, 1, .., n} and both functions are increasing in

q. Replacing the supnorm by the discrete supnorm over qh, q ∈ {0, 1, ..., n} in

relation (6.20) and using relations (6.25) and (6.26) we obtain by our induction

hypothesis

ak(c, qh) − bk(c, qh) = Pkak+1(c,Uh(η)) − Pkbk+1(c,Lh(η)) ≤ Lh

Also by the first part of Lemma 6.4 we obtain by our induction hypothesis that

ak(c, qh) − bk(c, qh) = Pkak+1(c,Uh(η)) − Pkbk+1(c,Lh(η)) ≥ 0

and both functions are increasing in q. This completes the induction and the

desired result follows.

For a small value of the discretization step h, the running time of the approx-

imate dynamic algorithm may be high. Hence the model with reservations may

be faster to solve.
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6.5 Applications

In this section, we numerically investigate our design method for public storage

warehouses and explore its management insights. We first apply our method to

warehouses with high demand and customer rejections, then we incorporate up-

grade operations, followed by sensitivity analysis to test the robustness of the

solution approach. We have chosen to demonstrate the application of the method

for some real cases exhibiting a particular policy of customer rejection or upgrad-

ing, rather than randomly generated data.

6.5.1 Application in warehouses without upgrade operations

Public-storage warehouses in downtown areas primarily follow a customer rejec-

tion policy when a particular storage type is not available. Demand per storage

type can be modeled by an Erlang-B distribution. For example, at a “Public

Storage ” warehouse (W. Chicago) near the Hancock center in Chicago, the av-

erage demand per month for small storage units is higher than its capacity. The

Van Buren warehouse near the University of Illinois Chicago (UIC), has a similar

experience: students store their personal belongings in this warehouse during the

summer break. The receptionists directly reject customer requests when units of

a storage type are fully occupied.

Table 6.1. Design for warehouses without upgrade operations

Warehouse Items Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Reve. ($)
W. Chicagoa Type (ft2) 5 × 5 5 × 10 7.5 × 10 10 × 10 10 × 15 10 × 20 10 × 25

Prices ($) 81 93 170 170 305 348 397
Demand 10(2)c 15(2) 35(2) 45(2) 20(2) 5(3) 2(3)
O. design 21 30 43 120 30 20 15 42109
N. design 25 34 79 96 45 17 6 48233

Van Burenb Type (ft2) 5 × 5 5 × 10 7.5 × 10 10 × 10 10 × 15 10 × 20 10 × 25 10 × 30
Prices ($) 66 78 102 139 281 348 398 480
Demand 19(2) 61(2) 48(2) 80(2) 11(2) 10(3) 8(3) 9(3)
O. design 41 63 52 126 43 41 0 0 45649
N. design 40 103 23 101 19 24 16 19 52693

Notes: a For W Chicago, C = 29500ft2. bFor van Buren, C = 35325ft2 . c A(B) means the average
monthly demand(the average value of single storage duration).
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We used prices, design, and demand data (the average monthly demand and

the average single storage duration) from these two warehouses of the 2008 sum-

mer and applied the basic model with customer rejections. Results can be found

in Table 6.1. For the W. Chicago warehouse, its monthly average revenue im-

proves by 14.5% using our new design. This warehouse had just redesigned its

layout at the beginning of 2008, and sharply increased the number of units with

size 10’ × 10’ to 120. For the demand of the summer this number apparently

is too large; instead smaller size spaces should have been created. For the Van

Buren warehouse, its monthly average revenue improves by 14.7% adopting our

new design. The Van Buren warehouse has two major customer categories: UIC

students and business customers from Chicago Loop (the Chicago central busi-

ness district). Students in UIC typically rent storage units of size 5’ × 10’ which

are fit for families with “a studio or one-bed room” according to Public Storage’s

marketing brochure. By our calculation, the number of these small rooms should

be increased. In particular the number of 5’ × 10’ units should be increased to

103. Our optimization computing suggests this warehouse to increase the number

of units with sizes 10’ × 25’ and 10’ × 30’ to meet the demand from the business

customers who need large units.

6.5.2 Design application for warehouses with upgrade operations

Public-storage warehouses with less abundant demand usually try to upgrade

customers when they run out of space of a certain type. We apply the upgrade

model with a priori space reservation to the Spaanse Polder Rotterdam (SP

Rotterdam) warehouse and the model with upgrades, but without prior space

reservation to the N. Delaware Philadelphia warehouses (ND Philly). SP Rotter-

dam does not reject customers when the capacity in one class is fully occupied,

but instead will attempt to upgrade its customers. The ND Philly warehouse is

located near the B. Franklin bridge in Philadelphia, in the downtown area but

without convenient transport access, so its demand is not too large. Therefore

also the management of this warehouse is not inclined to reject customers but,

instead, will try to upgrade them, if space of a storage class runs out.

Based on the data from these two warehouses, we applied the upgrade model,

and present the results in Table-6.2. For the SP Rotterdam warehouse, its
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Table 6.2. Design for warehouses with upgrade operations

Warehouse Items Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Revenue
SP Rot. a Type(m2) 3 6 9 12 15 18 22 27

Prices (e) 109 132 177 225 254 372 436 468
Demand 31(2)b 31(2) 33(2) 13(2) 7 (3) 8(3) 2(4) 2(4)
Old design 34 44 58 25 18 27 3 4 38577 e
New design 15(7)c 11(16) 21(14) 53(0) 2(13) 23(6) 9(5) 20(0) 57882e

ND Phillyd Type (ft2) 5 × 5 5× 10 10 × 10 10 × 15 10 × 20 10 × 25 10 × 30 10 × 40
Prices($) 65 79 132 227 222 255 326 396
Demand 34(2) 90(2) 70(2) 50(2) 40(2) 30(3) 9(3) 2(4)
Old design 78 180 144 22 54 22 24 4 67017$
New design 70 171 129 101 63 6 0 0 71279$

Notes:a For SP Rotterdam, C = 2118m2 and p = [0.80.90.90.80.90.80.90]. b A(B) means the average
monthly demand(the average value of single storage duration). c A(B) means the total storage unit
number of a storage type(the reserved storage unit number of a storage type).d For ND Philly,
C = 53750ft2.

monthly average revenue can be significantly improved using our new design

with upgrading and reservation operations for the demand data of the summer

2008. Our computations show management should increase the large size units

(classes 6, 7, and 8) to admit upgraded orders. For the ND Philly warehouse with

demand data of fall 2008, its monthly average revenue can also be improved by

using our new design with upgrades. For this warehouse we did not include a

priori space reservations. It is suggested to substantially increase the number of

units of Class 4 to admit upgraded orders of classes 1, 2, and 3; three classes

with huge customer numbers. The larger storage units (classes 7 and 8) should

no longer be offered in this warehouse.

6.5.3 Sensitivity analysis

So far our results suggest it is possible to create designs that substantially improve

the revenue. Although facilities can be flexibly adapted to changing demand to

some extent, we here investigate the robustness of the designs by carrying out

some sensitivity analyses with respect to demand. We use the SP Rotterdam as

an example, since monthly demand data is available for a period of two years. In

addition, for the W Chicago warehouse, we use sample-based sensitivity analysis

(SBSA) to show the robustness of our approach.
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Table 6.3. Sensitivity analysis of the design for SP Rotterdam warehouse

Dem. Items Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Revenuea

Type(m2) 3 6 9 12 15 18 22 27
Pricesa 109 132 177 225 254 372 436 468
O. design 34 44 58 25 18 27 3 4

07 Sp. N. design 70(0)b 4(13) 17(13) 46(0) 2(12) 20(6) 10(6) 21(0) 49999(36049)
07 Su. N. design 61(0) 3(15) 19(11) 45(0) 2(15) 23(6) 10(5) 20(0) 44030(32622)
07 Au. N. design 15(7) 11(14) 18(16) 47(0) 2(13) 42(0) 4(6) 15(0) 50434(35709)
07 Wi. N. design 62(0) 4(13) 17(12) 45(0) 2(14) 22(6) 10(6) 21(0) 50201(35724)
08 Sp. N. design 14(7) 12(13) 18(13) 53(0) 2(14) 23(6) 10(6) 20(0) 63426(39449)
08 Su. N. design 15(7) 11(16) 21(14) 53(0) 2(13) 23(6) 9(5) 20(0) 57882(38577)
08 Au. N. design 74(0) 5(12) 18(11) 48(0) 3(9) 40(0) 3(3) 11(0) 53998(37557)
08 Wi. N. design 12(7) 11(13) 18(12) 40(0) 2(12) 41(0) 3(5) 20(0) 46499(34919)

Suggestion - ↓ ↓ ↑ ↓ ↓ ↑ ↑

Notes:a unit:e. b A(B)means the total storage unit number of a storage type(the reserved storage unit
number of a storage type).

For the SP Rotterdam warehouse the optimal design results have been pre-

sented in Table 6.3. Although we use monthly demand data, for space reasons

the table only summarizes average quarterly demand data. It appears that in all

seasons our design method can improve the monthly average revenue by at least

33.2%. Based on Table 6.3, we can derive some robust design rules. First, units of

classes 4, 7, and 8 should be increased, as in 100% of the demand cases a larger

number of storage units yield a larger revenue. Apparently, the increased capacity

in classes 7 and 8 can serve upgraded orders better. Second, the analysis advises

to decrease the number of units of classes 2, 3 and 5, as in 100% of the demand

cases a smaller number of storage units yield higher revenue. The number of class

6 should be reduced in 75% of the cases. The analysis gives no clue for redesigning

the smallest class 1, since in 50% of the cases a larger number of units gives an

increased revenue and in 50% of the cases a smaller number of units. However,

this is not serious as class 1 contributes rather little both in terms of revenue and

capacity and its demand is volatile. In Section 6.5.4 we will show how to design

a robust layout, good for most demand realizations.

For the W Chicago warehouse, we generated 1000 demand samples for ev-

ery storage type with uniform distribution and given demand upper and lower

bounds, which are based on the demand estimation of the last two years. For ev-

ery demand sample, we calculate the optimal storage design based as expressed
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Fig. 6.2. A sample-based sensitivity analysis for W Chicago case

in Table 6.1. The results for storage type 4 are presented in Figure 6.2 by a scat-

ter plot graph. Scatter plots of other storage types show a similar pattern. We

find that, with probability 98.9%, our layout can improve the revenue compared
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with the current revenue of the old design. This shows the robustness of our ap-

proach. If the demand increases, the revenue increases. For 1.1% of the samples

(see the left lower corner), the revenues are lower than the old revenue. These

stem from cases with very low demand realizations. With probability of 95.1%,

the old design has too many 10’ × 10’ storage units, showing our design results

and suggestion are robust for demand fluctuations.

6.5.4 Robust design

This section will further provide a robust design. Robust optimization plays an

important role in revenue management (see Birbil et al., (2009)). We take SP

Rotterdam warehouse as an example, to illustrate how to provide a robust design,

such that a warehouse can achieve the best revenue performance among the worst

revenues from demand data of D quarters. The motivation of robust design is to

reduce the loss from the variance of demand patterns to the least. Let Λ be the

set of D demand data in the last two years (see Table 6.3), we present a robust

model as follows,

max{minλd∈Λ,d=1,...,D [
∑m

i=1 riv(xi, ρi) +
∑m−1

i=1 ri+1ηi+1(xi)βi (1 − Prej(xi, yi))]}∑m−1
i=1 (cixi + ci+1yi) + cmxm ≤ C

xi, yi ∈ Z+

(R)

We apply a random search robust optimization algorithm to calculate the

design. We use optimal results from Table 6.3 to construct the search scope

[(x,y), (x,y)] for problem (R). For iterations t = 1, ..., T , we generate t samples

(x,y)τ , τ = 1, ..., t from the search scope with considering the capacity constraint.

For each of samples (x,y)τ , we compute its revenues in D different demand

patterns, and get the worst value Rτ = min{Rd((x,y)τ , λd), d = 1, ...,D} for

this design sample. The optimal revenue corresponding to the robust design is

R(t)∗ = max{Rτ , τ = 1, ..., t} when the iteration number is t. We can then
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return the (x,y) value corresponding to R(t)∗ as the robust design when iteration

number is t. The theoretical optimal robust revenue is R∗ = limt→∞ R(t)∗.
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Fig. 6.3. Robust optimization for SP Rotterdam warehouse

We present the result {R(t)∗, t = 1, ..., T} in Fig.- 6.3. With setting the cri-

terion of convergence as |R(t+1)∗−R(t)∗ |
R(t)∗ ≤ 0.3%, we observe the search converges

in the last 500 iterations. We therefore calculate the average value from the last

500 values {R(t)∗, t = 2500 : 3000}, and obtain the robust optimal revenue value

as 43912, which is a significant improvement compared with the current worst

revenue value 32622 based on the current design. We use the design value ob-

tained by 3000 iterations {50(6), 9(15), 19(16), 46(0), 2(15), 25(5), 9(4), 19(0)} as

the robust design, which also confirm the robust design rules from Table 6.3.
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6.6 Concluding Remarks

This chapter outlines a design approach to improve revenue management of

public-storage warehouses. Based on our visits to 54 of such facilities we can

distinguish three groups, based on their demand level, which in turn is for a

large part determined by the warehouse location. Facilities with high demand

mainly reject customers when space of a storage size runs out. The group with

medium demand tries to upgrade customers when space of a storage size runs

out. Warehouses with low demand are usually located in the wrong place. We

consider models for the first two demand types: models with customer rejection

and with customer upgrading. We distinguish two upgrade models: with prior

space reservation for upgraded customers and without. Models are solved using

dynamic programming. For the case of upgrading without prior reservation we

use a first moment approximation of the overflow process of customers from one

storage class to the next. Our experiments show the new facility design can sig-

nificantly improve the expected revenue of public storage warehouses, which is

further confirmed by sensitivity analysis.

This chapter is one of the first to apply revenue management, with consider-

ing market segments, to facility design. This problem appears to be very relevant

for public storage warehouses, but we expect it to be relevant for other facility

design situations as well. The design approach can be applied to other fields as

well, particularly hotel management. In hotel design, our method may be ap-

plied to deciding which room types to build, based on market data. The research

may further be applied to parking lot businesses, as parking lots have a similar

layout (e.g., different storage types) to that of a self-storage warehouse. In this

case the setting is slightly simpler than that in this chapter, as the number of

space classes is smaller. Another business where our methods may be applied to

is the construction equipment lease business. This is a huge market as most civil

construction engineering companies do not purchase all equipments (like bull-

dozers, shovels, windlasswa, and cranes) but rent it. Equipment lease companies

(see,e.g. nakamichi-leasing.co.jp) can determine their equipment types and equip-

ment numbers by our method. There may also be applications in air cargo space
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design and car rental business (to determine which car types and which numbers

to procure).

Appendix

In this Appendix we give a proof of the lemmas mentioned in this chapter. We

start with Lemma 6.1.

Proof of Lemma 6.1 Let tn denote the arrival time of the nth customer

and denote by L(t) the number of busy servers at time t. Moreover, introduce

the random variable In given by

In =

⎧⎨⎩
1 if nth arriving customer is of type 1

0 otherwise

Obviously,

P(rejected customer is of type 1) = limn↑∞ P(In = 1|L(t−n ) = c), (6.27)

with t−n denoting the time just prior to the arrival of the nth arriving customer.

To compute the conditional probability in relation (6.27) we first observe that

{L(t−n ) = c} = {L(t+
n−1) = c,min1≤j≤c B∗

j > tn − tn−1} (6.28)

with B∗
j , 1 ≤ j ≤ c, the residual service times after time t+

n−1 of the customers in

service at time t−n . Also by the memoryless property of the Poisson process we

obtain

{In = 1,L(t−n ) = c} = {X < Y,L(t+
n−1) = c,min1≤j≤c B

∗
j > min{X,Y}}

(6.29)

with X,Y exponentially distributed with mean γ−1
1 , γ−1

2 . Applying relation (6.29)

this shows
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P(In = 1|L(t−n ) = c) = P(In=1,L(t−n )=c)

P(L(t−n )=c)

=
P(X<Y,L(t+n−1)=c,min1≤j≤c B∗j >min{X,Y})

P(L(t−n )=c)
.

(6.30)

To compute the probability in relation (6.30) we introduce the defective distribu-

tion F (z) := P(X < Y,min{X,Y} ≤ z). By the conditional probability formula

P(X < Y,L(t+
n−1) = c,min1≤j≤c B

∗
j > min{X,Y})

=
∫ ∞
0 P(L(t+

n−1) = c,min1≤j≤c B∗
j > min{X,Y}|X < Y,min{X,Y) = z)dF (z).

(6.31)

Since the Poisson arrival process after time t+
n−1 is independent of the num-

ber of customers at time t+
n−1 in the system and their residual service

times from that time on the random vectors (1{L(t+n−1)=c},min1≤j≤c B∗
j) and

(1{X<Y},min{X,Y}) are independent. This shows that the conditional density

in relation (6.31) reduces to

P(L(t+
n−1) = c,min1≤j≤c B

∗
j > min{X,Y}|X < Y,min{X,Y) = z)

= P(L(t+
n−1) = c,min1≤j≤c B

∗
j > z, |X < Y,min{X,Y} = z)

= P(L(t+
n−1) = c,min1≤j≤c B

∗
j > z).

(6.32)

Also conditioning on X and using again the conditional probability formula we

obtain
F (z) = P(X < Y,X < z)

= γ1

∫ z
0 P(x < Y) exp(−γ1z)dz

= γ1

∫ z
0 exp(−(γ1 + γ2)z)dz

= γ1

γ1+γ2
(1 − exp(−(γ1 + γ2)z).

(6.33)

Hence it follows that
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F (z) = P(In = 1)P( min{X,Y} ≤ z). (6.34)

and by relations (6.28), (6.31), (6.32) and (6.34) we finally obtain

P(X < Y,L(t+
n−1) = c,min1≤j≤c B

∗
j > min{X,Y})

= P(In = 1)
∫ ∞
0 P(L(t+

n−1) = c,min1≤j≤c B
∗
j > z)dP( min{X,Y} ≤ z)

= P(In = 1)P(L(t+
n−1) = c,min1≤j≤c B

∗
j > min{X,Y})

= P(In = 1)P(L(t−n ) = c).

(6.35)

Applying relations (6.30) and (6.35) we have shown that P(In = 1|L(t−n ) = c) =

P(In = 1) and this implies by relations (6.33) and (6.34) the desired result.

Next we give a proof of the lemmas needed for the correctness of the dis-

cretization procedure. We start with Lemma 6.2 and continue with Lemma 6.3

and 6.4.

Proof of Lemma 6.2: We know that v(x, ρ) = E(Lρ(x)) with Lρ(x) denoting

the long-run average number of customers in the loss system with load ρ and x

servers. By the insensitivity of the Erlang loss formula we may assume without

loss of generality that we are dealing with a Markovian loss system with arrival

rate ρ and an exponential service time distribution with parameter μ = 1. Since

the Markovian loss system is a birth-death process it follows by Proposition

4.2.10 of Stoyan (1983) that Lρ1(x) ≥d Lρ2(x) for ρ1 ≥ ρ2 and this shows that

E(Lρ1(x)) ≥ E(Lρ2(x)). Hence the function v is increasing in ρ for fixed x.

Proof of Lemma 6.3: We will prove the claim by induction. First note by

Lemma 6.2 and relation (6.3) that for every k ≤ m and c ∈ {0, 1, ..., C}, the

function η �→ rkv(c, ρk + ηβk−1) is increasing and Lipschitz continuous. Hence by

relation (6.17) the function η �→ Jm(c, η) is increasing and Lipschitz continuous

for every c ∈ {0, 1, ..., C}. Suppose that η �→ Jk+1(c, η) is increasing and Lipschitz

continuous for every capacity c. Since the composition of two increasing Lipschitz
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continuous functions is increasing and Lipschitz continuous this yields by our

induction hypothesis that the function η �→ Jk+1(c − ckxk, λkpkB(xk, ρk, η)) is

increasing and Lipschitz continuous for every xk ∈ {0, ....�cc−1
k �}. Again using

the last property of Lipschitz continuous functions and the maximum of a finite

number of increasing and Lipschitz continuous functions is also increasing and

Lipschitz continuous, it follows by relation (6.19) that η �→ Jk(c, η) is increasing

and Lipschitz continuous for every c belonging to {0, 1, ..., C}.

Finally we list a proof of lemma 6.4.

Proof of Lemma 6.4: Since the function η �→ B(xk, ρ, η) is increasing for

every feasible xk, it follows by our assumption that the function η �→ f(c −

xkck, λkpkB(xk, ρk, η)) is also increasing for every feasible xk. This shows by

(6.19) that

Pkf(h) ≤ Pkf ≤ Pkf
(h).

Since also η �→ rkv(xk, ρk + ηβk−1) is increasing it follows again by (6.19) that

Pkf(h), Pkf and Pkf
(h) are increasing functions of η. From (6.20) follows that

‖Pkf
(h) − Pkf(h)‖∞ ≤ ‖f (h) − f(h)‖∞. (6.36)

Applying now relations (6.22), (6.36) and the function η → f(c, η) is Lipschitz

continuous for every c ∈ {0, 1, ..., C} the desired inequality in relation (6.24)

follows.
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Summary





7

Conclusion and summary of the dissertation

7.1 Summary

This thesis contributes to stochastic modelling and analysis of warehouse opera-

tions by the following parts.

(1) A review on stochastic modelling and analysis of warehouse

operations

We provide an overview of stochastic research in warehouse operations. We iden-

tify uncertainty sources of warehousing systems and systematically present typical

warehouse operations from a stochastic system viewpoint. Stochastic modelling

methods and analysis techniques in existing literature are summarized, along

with current research limitations. Through a comparison between potential and

existing stochastic warehouse applications, we identify potential new research ap-

plications. Furthermore, by comparing potential and existing solution methods,

methodological directions relevant to practice and largely unexplored in ware-

house literature are identified.

(2) Stochastic modelling and analysis for warehouses with online

order arrivals

Much of the past warehousing literature dealing with order picking and batch-

ing assumes batch sizes are given. However, selecting a suitable batch size can
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significantly enhance the system performance. This research tries to search op-

timal batch sizes in a general parallel-aisle warehouse with online order arrivals.

We employ a sample path optimization and perturbation analysis algorithm to

search the optimal batch size for a warehousing service provider facing a stochas-

tic demand, and a central finite difference algorithm to search the optimal batch

sizes from the perspectives of customers and total systems. We show the existence

of optimal batch sizes, and find past researches underestimate the optimal batch

size.

We then research a polling-based dynamic order picking system for online

retailers. One of the challenging questions online retailers are facing is how to

organize the logistic fulfillment processes during and after the transaction has

taken place. As new information technologies become available to convey picking

information in real time and with the ongoing need to create greater responsive-

ness to customers, dynamic picking can be applied in the warehouses of online

retailers. In a DPS (dynamic picking system), a worker picks orders arriving in

real time during the picking operations while the picking information dynamically

changes in one picking cycle. We build models to describe and analyze such sys-

tems via stochastic polling theory and find closed-form expressions for the order

line waiting times in a DPS. These analytical results are verified by simulation.

By applying polling-based picking to two cases, we show it can generally lead

to shorter order throughput times and higher on-time service completion ratios

than traditional batch-picking systems using optimal batch sizes. We show how

our analysis method can be applied to minimize warehouse cost or to improve

service.

(3) Stochastic modelling and analysis for service distribution centers

We present closed-form analytic expressions for pick rates of order picking bucket

brigades systems in different storage profiles, and show how to combine storage

policies and bucket brigade protocols to improve order picking productivity. We

further shed light on reasons why the bucket brigades system outperforms zone

picking systems in a range of storage profiles. We find a shrink effect of bucket

brigades order picking in non-uniform storage profiles. Bucket brigades can effi-

ciently use this effect, via their capacity of self-balancing, combined with different
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storage profiles to improve order picking productivity, and this effect is more sig-

nificant in a BB protocol compared with that in other protocols without the

capacity of self-balancing.

(4) Stochastic modelling and analysis for public storage

We propose a new facility design approach oriented to improving revenue man-

agement. Our experiments show a proper facility design can significantly improve

the expected revenue of public storage. This is the first research to apply revenue

management theory to a new field, facility design, and identify a new research

direction, the interface between revenue management and facility logistics.

7.2 Directions for future works

In this section, we present promising research directions with a potential to be

applied to warehouse operations. We focus on recent warehousing phenomena

which have received little academic attention, like warehouses with an online

front desk, self-storage warehouses, and third-party warehouses, and stochastic

research directions which can grasp the inherent decision essence and variability

structure in warehouse operations.

7.2.1 Application issues

By comparing Table 2.1, which presents existing warehouse operations with un-

certainties, and Table 2.4, which presents warehouse operations with stochastic

studies, we can identify warehouse operations with uncertainties but not yet fully

explored by stochastic methods.

(1) Warehouse receiving management

We could not find papers explicitly employing stochastic models for receiving

processes (see Table 2.4). However, receiving is an important issue for warehouse

operations (see Table 2.1) and several interesting research opportunities exist

here. The first opportunity is to study storage decisions for returned products.
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Many online retailers face this problem. To speed up return processes, it may be

helpful to not consolidate them with existing stock, but to store them at separate

locations. This will be at the expense of more space needed, which in turn may

also increase average storage, retrieval and travel time. The objective is to make

the proper decision to take this trade-off into account. Furthermore, warehouse

receiving operations (e.g., decentralized receiving, prereceiving) in uncertain en-

vironments call for further research by stochastic methods. For example, Yano

et al. (1998) conduct a successful research on decentralized receiving operations

(receiving occurs not at one or two clusters of receiving docks but at multiple

locations) by a mixed integer nonlinear optimization formulation with the objec-

tive of minimizing total cost of facilities and labor. Splitting receiving operations

over multiple areas can reduce congestion, but usually requires more resources

and reduces resource flexibility. It could be interesting to consider this trade-off

when product arrival times and order patterns are random.

(2) Warehouse revenue management

Comparing Figure 2.2 and Table 2.4, we find that order acceptance and rejection

has been overlooked by past literature. Order acceptance is particularly important

in the public storage warehouse, where storage capacity is limited. A manager of

such a facility can reject an order to maximize the revenue. For instance, Shurgard

(see shurgard.eu in the EU, and publicstorage.com in the USA), an international

corporation providing public storage warehouse services, uses stochastic revenue

management in allocating storage space to clients. While most warehouse re-

searches focus on cost management, revenue issues in warehouses are unexplored.

(3) Warehouse shipping management

Only few papers deal with outbound material flows (e.g. Yu and Egbelu (2008))

in a deterministic environment. Shipping operations are often overlooked. Never-

theless, many important shipping problems exist. For example, how to allocate

shipments to be shipped to different shipping docks. With the increase of inno-

vative warehouse shipping operations like automating pallet loading, automated
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outbound weight checking, advanced shipping notice preparation, dock assign-

ment optimization (see Frazelle (2001)), it could be an interesting topic to explore

shipping operations by stochastic methods.

(4) Real-time response systems

Real-time response constitutes one of most vibrant warehouse research fields. To

shorten response time (from order notification to the shipping to customers, see

Figure 2.2), new techniques have been introduced, such as online picking (using,

for example, pick-by-voice), RFID systems and fluid shipments. In a dynamic

environment, decision-makers have insufficient time to collect information, and

therefore the negative effect of uncertainties is larger. Deterministic models can-

not capture the inherent uncertainty in these systems. Stochastic models might

be used to model these systems, to measure the performance of real-time order

processing in a stochastic environment, and to optimize these systems.

7.2.2 Methodology issues

By comparing stochastic methods (e.g., see Yao (1994)) with currently used

stochastic methods in warehouse operations, and considering current develop-

ments in warehousing practice, we can identify promising methodological research

directions.

(1) Stochastic networks application

Queueing networks have been applied in warehouse research (e.g., Gong and

De Koster (2008), Meng and Heragu (2004)). However, more general stochastic

networks, one of the main recent exploration directions in stochastic research

(Yao, 1994), have appeared to be promising in the operations and manufacturing

areas (Buzacott, 2005), and can be explored further in warehousing. For instance,

stochastic fluids models can be used to represent customers in a service facility,

or jobs on the work floor(Chen and Mandelbaum, 1994). Stochastic networks are

potential tools to handle tough warehouse problems like large order flows in mul-

tiple work stations, multi-echelon warehouse, and dynamic scheduling problems.
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(2) Stochastic programming application

From our literature review, one of the most obvious blanks of stochastic method-

ology in warehousing research is stochastic programming (for an introduction, see

Birge and Louveaux (1997)). We could not find an application of this important

stochastic analytical method in warehouse research ( for an introduction to this

research stream, see stoprog.net). However, it benefits warehouse optimization

problems. Many papers (e.g., Van den Berg et al. (1998), Karasawa et al. (1980))

employ integer programming applications in warehousing since warehouse man-

agers face many integer decision variables like batch sizes and the number of zones.

But due to risks and uncertainties in these warehousing decisions (see Table 2.1),

stochastic integer models are closer to practice because while deterministic mod-

els only consider the first moment of measurements (e.g., the objective) and can

cause significant errors, stochastic models can research higher moments of mea-

surements and capture more abundant information. Recently polynomial time

algorithms for stochastic integer programming problems have seen increasing re-

search attention (Klein Haneveld and Van der Vlerk (1999)). They might be used

for various problems, including product assignment, storage space allocation, the

optimal batch size, and optimal zone problems.

(3) Stochastic combinatorial problems

Stochastic combinatorial optimization is a highly promising method in warehouse

research, especially the stochastic traveling salesman and stochastic knapsack

problems. The application of stochastic traveling salesman models has consti-

tuted a main foundation in the logistics field (Bertsimas and Van Ryzin 1991,

Bertsimas 1992, Bertsimas and Van Ryzin 1992), and can be applied to the in-

ternal picking routing problem in warehouses. Another promising method is the

stochastic knapsack model (see Ross and Tsang (1989) and Ross and Yao (1990)),

which can be applied to the warehouse storage space allocation problem. Further-

more, Kleywegt and Papastavrou (1998) and Kleywegt and Papastavrou (2001)

explore dynamic and stochastic knapsack problems. These methods may be ap-

plied to allocate warehouse storage space in static and dynamic environments.
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Stochastic researches could also shed light on other questions like, the opti-

mization of dynamic storage and putaway systems in a stochastic environment,

the optimal zone problem by using stochastic integer programming, and the op-

timal batch size problems by infinitesimal perturbation analysis techniques.
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Abstract

This thesis studies stochastic models and analysis of warehouse operations. Based on a 
review of stochastic research in warehouse operations, where we identify uncertainty 
sources of warehousing systems and present typical warehouse operations from a 
viewpoint of stochastic systems, we explore the following topics. 

Firstly, we search optimal batch sizes in a parallel-aisle warehouse with online order 
arrivals. We employ a sample path optimization and perturbation analysis algorithm to 
search the optimal batch size for a warehousing service provider, and a central finite 
difference algorithm to search the optimal batch sizes from the perspectives of 
customers and total systems. 

Secondly, we research a polling-based dynamic order picking system for online 
retailers. We build models to describe and analyze such systems via stochastic polling 
theory, find closed-form expressions for the order line waiting times, and apply 
polling-based picking to online retailers. 

We then present closed-form analytic expressions for order pick rates of bucket 
brigades order picking systems with different storage profiles, and show how to 
combine storage policies and bucket brigade protocols to improve order picking 
productivity. We further shed light on reasons why the bucket brigades system can 
outperform some zone picking systems for a range of storage profiles. 

Finally, we propose a new warehouse design approach to improve the revenue 
management of public storage warehouses. Based on our survey of 54 warehouses in 
America, Europe and Asia, we propose models for three different cases: an overflow 
customer rejection model and two models with customer upgrade possibilities: one 
with reservation and another without reservation. We solve the models for several real 
warehouse cases, and our results show for all cases the existing public-storage 
warehouses can be redesigned to bring larger revenues. Finally, we develop the robust 
design to reduce the loss from the variance of demand to the least. 



Samenvatting (Summary in Dutch) 

Dit proefschrift onderzoekt magazijnoperaties met behulp van stochastische modellen 
en analyses. Het proefschrift bestaat uit zeven hoofdsukken. Als eerste geven we een 
overzicht van stochastisch onderzoek in magazijnoperaties in hoofdstuk 2. 

In hoofdstuk 3 doen we onderzoek naar een optimale seriegrootte voor een magazijn 
met parallelle gangen en online orderaankomsten. We maken gebruik van sample-path 
optimization en perturbation analysis om de optimale seriegrootte voor een magazijn 
vast te stellen rekening houdend met zowel de order doorlooptijden als de operationele 
kosten.

In hoofdstuk 4 onderzoeken we een polling-based dynamisch orderverzamelsysteem, 
wat met name geschikt is voor online retailers. We ontwikkelen modellen om zulke 
systemen te beschrijven en te analyseren met stochastische polling theorieën. We 
vinden gesloten uitdrukkingen voor de order wachttijden en passen de resultaten toe 
op een bedrijfscase. 

Daarna presenteren we gesloten analytische uitdrukkingen voor de doorzet van bucket 
brigade orderverzamelsystemen, waarbij gebruik gemaakt wordt van verschillende 
opslagprofielen. Deze uitdrukkingen kunnen gebruikt worden om de combinatie van 
bucket brigades met verschillende opslagprofielen te evalueren. 

In hoofdstuk 6 stellen we een nieuwe methode voor om ontwerpen voor self-storage 
magazijnen te evalueren en te genereren. We tonen aan dat, vergeleken met bestaande 
magazijnen, de opbrengst aanzienlijk verhoogd kan worden door bij het ontwerp 
rekening te houden met de te verwachten vraag per type opslag. 
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l)STOCHASTIC MODELLING AND ANALYSIS OF WAREHOUSE OPERATIONS

This thesis studies stochastic models and analysis of warehouse operations. Based on a
review of stochastic research in warehouse operations, where we identify uncertainty
sources of warehousing systems and present typical warehouse operations from a
viewpoint of stochastic systems, we explore three types of warehouses.

Firstly, we study warehouses with online order arrivals. We employ a sample path
optimization and perturbation analysis algorithm to search the optimal batch size for a
warehouse with online order arrivals, and a finite difference algorithm to search the
optimal batch size for its customers. We then build stochastic polling models to describe
and analyze a polling-based dynamic order picking system for online retailers, find closed-
form expressions for the order waiting times, and apply polling-based picking to online
retailers. Subsequently, we study service distribution centers. We present closed-form
analytic expressions for pick rates of bucket brigades order picking systems with different
storage profiles, and show how to combine storage policies and bucket brigades protocols
to improve order picking productivity. Finally, we consider a booming industry, public
storage. We propose a novel facility design approach to improve the revenue management
of public storage. Our results show existing public-storage warehouses can be redesigned
to bring larger revenues. We also develop the robust design to reduce the loss from the
variance of demand to the least.
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