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Abstract 
 
 
 
Credit risk is the most important type of risk in terms of monetary value. Another key 

risk measure is market risk, which is concerned with stocks and bonds, and related 

financial derivatives, as well as exchange rates and interest rates. This paper is 

concerned with market risk management and monitoring under the Basel II Accord, 

and presents Ten Commandments for optimizing Value-at-Risk (VaR) and daily capital 

charges, based on choosing wisely from: (1) conditional, stochastic and realized 

volatility; (2) symmetry, asymmetry and leverage; (3) dynamic correlations and 

dynamic covariances; (4) single index and portfolio models; (5) parametric, 

semiparametric and nonparametric models; (6) estimation, simulation and calibration 

of parameters; (7) assumptions, regularity conditions and statistical properties; (8) 

accuracy in calculating moments and forecasts; (9) optimizing threshold violations and 

economic benefits; and (10) optimizing private and public benefits of risk management. 

For practical purposes, it is found that the Basel II Accord would seem to encourage 

excessive risk taking at the expense of providing accurate measures and forecasts of 

risk and VaR. 

 

 

Keywords and phrases: Dail;y capital charges; excessive risk taking; market risk; 
risk management; value-at-risk; violations. 
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“We regulators are often perceived as constraining excessive risk-taking more 
effectively than is demonstrably possible in practice. Except where market discipline is 
undermined by moral hazard, owing, for example, to federal guarantees of private debt, 
private regulation generally is far better at constraining excessive risk-taking than is 
government regulation.” 
Alan Greenspan, Conference on Bank Structure and Competition, 8 May 2003 

 

 
Elizabeth Turner: “Wait! You have to take me to shore. According to the Code of the 
Order of the Brethren ...” 
Captain Barbossa: “First, your return to shore was not part of our negotiations nor our 
agreement so I must do nothing. And secondly, you must be a pirate for the pirate’s 
code to apply and you’re not. And thirdly, the code is more what you’d call 
“guidelines” than actual rules.” 
Pirates of the Caribbean: Curse of the Black Pearl 

 

 

1. Introduction  

 

The cataclysmic financial meltdown worldwide that seems to have started in 

September 2008 has made it manifestly obvious that self-regulation in the finance and 

banking industry has been far from adequate. A period of soul searching is likely to be 

followed by much needed regulatory changes in the industry. Some changes to 

regulations governing the finance industry, especially as regards the monitoring and 

management of excessive risk, overseeing new financial instruments, and increased 

regulation of banks, are likely to be warranted, whereas others may have little or no 

effect.  

 

Following the 1995 amendment to the Basel Accord (see Basel Committee on Banking 

Supervision (1988, 1995, 1996)), banks were permitted to use internal models to 
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calculate their Value-at-Risk (VaR) thresholds (see Jorion (2000) for a detailed 

discussion of VaR ). This amendment was in response to widespread criticism that the 

standard approach to calculate and forecast VaR thresholds led to excessively 

conservative forecasts and higher mean daily capital charges that are associated with 

higher perceived risk. In short, the Basel II Accord was intended to encourage risk 

taking through self regulation.  

 

Despite the well known antipathy of Alan Greenspan, the former Federal Reserve 

Chairman, to government regulation of excessive risk taking, it is no longer possible to 

argue logically that self regulation alone is a viable option in the banking and finance 

industry.  

 

The primary purpose of this paper is to evaluate how best to forecast VaR and to 

optimize daily capital charges in an attempt to manage excessive risk taking as 

efficiently as possible, and to offer some idiosyncratic suggestions and guidelines 

regarding how improvements might be made regarding practical strategies for risk 

monitoring and management, especially when there is a strong and understandable 

movement into holding and managing cash (circa late-2008) than in dealing with risky 

financial investments.  

 

The plan of the remainder of the paper is as follows. Section 2 presents the 

optimization problem facing authorized deposit-taking institutions. The data for a brief 

empirical analysis of VaR and daily capital charges are illustrated in Section 3. Section 

4 provides a brief discussion of regression models and volatility models. Ten reasons 

for modelling time-varying variances, covariances and correlations using high and 

ultra high frequency data are given in Section 5. The Ten Commandments for 
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optimizing VaR and daily capital charges are discussed in Section 6. Some concluding 

comments are given in Section 7. 

 

2. The Optimization Problem for Authorized Deposit-taking Institutions  

 

Value-at-Risk (VaR) may be defined as “a worst case scenario on a typical day”. As 

such, it is concerned with relatively unlikely, or extreme, events. Given the financial 

turmoil in 2008, especially after September 2008, extreme events have become more 

commonplace, such that an extreme event would probably now need to be catastrophic 

to qualify as such.  

 

Insofar as financial meltdowns tend to encourage Authorized Deposit-taking 

Institutions (ADIs) to shift financial assets into cash, VaR should still be optimized. 

However, ADIs may decide not to entertain the excessive risk associated with financial 

assets by holding a higher proportion of their portfolio in cash and/or relatively low 

risk assets. 

 

Under the Basel II Accord, VaR forecasts need to be provided to the appropriate 

regulatory authority (typically, a central bank) at the beginning of the day, and is then 

compared with the actual returns at the end of the day.  

 

For purposes of the Basel II Accord penalty structure for violations arising from 

excessive risk taking, a violation is penalized according to its cumulative frequency of 

occurrence in 250 working days, and is given in Table 1. 

 

A violation is defined as follows: 
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Definition: A violation occurs when >tVaR  negative returns at time t.  

 

As encouraged by the Basel II Accord, the optimization problem facing ADIs, with the 

number of violations and forecasts of risk as endogenous choice variables, is as 

follows: 

 

{ }tVARk, 
Minimize ( )

⎭
⎬
⎫

⎩
⎨
⎧ −+−= −160

______

VaR  ,VaR3max tt kDCC ,   (1) 

 
where   
 
DCC = daily capital charges, 
 

tVAR  = Value-at-Risk for day t, 
 

tttt zYVAR σ̂ˆ ⋅−= , 

 

60

______

VaR  = mean VaR over the previous 60 working days, 

 

tŶ = estimated return at time t, 

 
tz = 1% critical value at time t,  

 

tσ̂ = estimated volatility at time t, 
 

10 ≤≤ k   is a violation penalty (see Table 1). 

 

As tŶ  is typically difficult to predict, and as tz  is unlikely to change significantly 

especially on a daily basis), changes in tσ̂  are crucial for modelling VaR. Substantial 
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Table 1: Basel Accord Penalty Zones 

Zone Number of Violations k 

Green 0 to 4 0.00 

Yellow 5 0.40 

 6 0.50 

 7 0.65 

 8 0.75 

 9 0.85 

Red 10+ 1.00 

Note: The number of violations is given for 250 business days. 

 

Note: The penalty structure under the Basel II Accord is 

specified for the number of penalties and not their 

magnitude, either individually or cumulatively.   
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Note: This is Figure 10 in McAleer and da Veiga (2008a).  
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research has been undertaken in recent years to develop univariate and multivariate 

models of volatility, under the conditional, stochastic and realized volatility 

frameworks, in order to estimate tσ̂ . Although VaR may also be estimated directly 

using regression quantiles (see, for example, Engle and Manganelli (2002)), this 

approach is not as popular as modelling volatility and then calculating VaR. 

 

Although considerable research has been undertaken on higher-order moments, 

especially in the context of  conditional volatility models, these are not considered in 

the paper. Model uncertainty for univariate and multivariate processes is also not 

considered (see Pesaran, Schleicher and Zaffaroni (2008) for an analysis of model 

averaging techniques for portfolio management). 

 

As discussed above, the amendment to the Basel Accord was designed to reward 

institutions with superior risk management systems. For testing performance, a 

backtesting procedure, whereby the realized returns are compared with the VaR 

forecasts, was introduced to assess the quality of a bank’s internal model. In cases 

where the internal models lead to a greater number of violations than could reasonably 

be expected, given the confidence level, the bank is required to hold a higher level of 

capital (see Table 1 for the penalties imposed under the Basel Accord).  

 

If a bank’s VaR forecasts are violated more than nine times in any financial year (see 

Table 1), the bank may be required to adopt the standard approach. As discussed in 

McAleer and da Veiga (2008b), the imposition of such a penalty is severe as it affects 

the profitability of the bank directly through higher daily  capital charges, has a 

damaging effect on the bank’s reputation, and may lead to the imposition of a more 
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stringent external model to forecast VaR thresholds, which would have the result of 

increasing daily capital charges for ADIs. 

 

It should be noted that DCC is to be minimized, with k and tVAR  as endogenous 

choice variables. [The acronym DCC should be distinguished from a widely used 

multivariate conditional volatility model, which will be discussed below.] 

 

It is worth giving a caveat with respect to the minimization of daily capital charges in 

times of extreme financial fluctuations, such as the period starting in September 2008. 

When excessive risk is very high, and is changing dramatically on a daily basis, daily 

capital charges should still be minimized, but sensible portfolio management may 

involve greater access to cash after VaR and daily capital charges have been 

determined.   

 

3. Data  
 

The data used in the empirical applications in McAleer and da Veiga (2008a, 2008b), 

and given as portfolio returns in Figure 10 above, are daily prices measured at 16:00 

Greenwich Mean Time (GMT) for four international stock market indexes, namely 

S&P500 (USA), FTSE100 (UK), CAC40 (France), and SMI (Switzerland). All prices 

are expressed in US dollars. The data were obtained from DataStream for the period 3 

August 1990 to 5 November 2004. At the time the data were collected, this period was 

the longest for which data on all four variables were available.  

 

The synchronous returns for each market  i  at time  t )( itR  are defined as: 
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, , 1log( / )it i t i tR P P −= , 

 

where tiP ,  is the price in market  i  at time  t, as recorded at 16:00 GMT.  

 

For the empirical analysis, it was assumed that the portfolio weights are equal and 

constant over time, although both of these assumptions can easily be relaxed. The 

various conditional volatility models were used to estimate the variance of the 

portfolio directly for the single index model, and to estimate the conditional variances 

and correlations of all assets and asset pairs to calculate the variance of the portfolio 

for the portfolio model. Apart from the Standardized Normal and RiskmetricsTM 

models, all the conditional volatility models were estimated under the assumption that 

the distribution of the unconditional shocks was (1) normal; and (2) t, with 10 degrees 

of freedom. 

 

The empirical results will be discussed further in the context of the last two 

Commandments, but the following points should be highlighted:  

 

(i) There is a trade-off between the number of violations and daily capital 

charges, with a higher number of violations leading to a higher penalty and lower 

daily capital charges through lower VaR.  

(ii) Apart from Standardized Normal, which does not estimate any parameters, 

and RiskmetricsTM , where the parameters are calibrated rather than estimated, 

the number of violations is higher for single index models than for their portfolio 

model counterparts, and the mean daily capital charges are correspondingly 

higher.  
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(iii) The use of the t distribution with 10 degrees of freedom always leads to 

fewer violations, and hence higher mean daily capital charges, for both the single 

index and portfolio models.  

 

The two curves in Figure 10, as reproduced below, represent daily returns on the 

portfolio of the four aggregate indexes, as well as the forecast VaR thresholds using the 

VARMA-GARCH model of Ling and McAleer (2003). From the figure, it can be seen 

clearly that there are very few violations, which could mean one or more of the 

following: 

 

(1) the volatility model provides an accurate measure of risk and VaR; 

(2) the volatility model provides a conservative measure of risk and VaR;  

(3) the number of violations is not being used as an endogenous choice variable.  

 

4. Regression Models and Volatility Models 

 

The purpose of a (linear) regression model is to explain the conditional mean, or first 

moment, of tY : 

 
 

ttt XY εβα ++= ,        (2) 
 

such that 
 

( ) ttt XXYE βα += , 

 

where α and β  are taken to be scalar parameters for convenience. 
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The purpose of a (univariate) volatility model is to explain the variance, or second 

moment, of tY  in (2): 

 

ttt hηε = , )1,0(~ iidtη        (3) 

 

where tε  is the unconditional shock to the variable of interest, tY  (typically, a stock 

return in empirical finance), which thereby has a risk component, tη  is the 

standardized residual (namely, a riskless shock, or fundamental), and th  denotes 

volatility (or risk). One of the primary purposes in modeling volatility is to determine 

th  to enable tη  to be calculated from the observable returns shock, tε . The volatility, 

th , may be latent or observed (though it is also likely to be subject to measurement 

error). 

 

In the class of conditional volatility models, which are widely used for analysing 

monthly, weekly and daily data (though they can also be used for hourly data), th  is 

modelled as: 

 

1
2

1 −− ++= ttt hh βαεω ,       (4) 

 

where there are (typically sufficient) conditions on the parameters ,,, βαω  to ensure 

that conditional volatility, th , is positive. The specification for th  in (4) is the widely 

used generalized autoregressive conditional heteroskedasticity, or GARCH(1,1), 

model of Engle (1986) and Bollerslev (1986). As the model is conditional on the 

information set at time t-1, current shocks do not affect th . For recent surveys of  

univariate and multivariate conditional volatility models, see Li, Ling and McAleer 
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(2002), McAleer (2005a), and Bauwens, Laurent and Rombouts (2006).  

 

Stochastic volatility models can incorporate leverage directly through the negative 

correlation between the returns and subsequent volatility shocks (see, in particular, 

Zhang, Mykland and Aït-Sahalia (2005), Aït-Sahalia, Mykland and Zhang (2006), and 

Barndorff-Nielsen, Hansen, Lunde Shephard (2008)). For a recent review of a wide 

range of stochastic volatility models, see Asai, McAleer and Yu (2006). 

 

Realized volatility models can incorporate leverage as this is not explicitly excluded in 

the specification. However, realized volatility models are typically not specified to 

incorporate leverage. 

 

At the multivariate level, it is not entirely clear how to define leverage in the context of 

conditional, stochastic or realized volatility models (for further details, see McAleer 

and Medeiros (2008a)). 

 

5. Ten Reasons for Modelling Time-varying Variances, Covariances and 

Correlations Using High and Ultra High Frequency Data 

 

Regression models are used to explain the conditional first moment of tY  when it is 

not constant. Similarly, volatility models are used to explain the second moment of tY  

when it is not constant. It is well known that neither the first nor second moments of tY  

is constant, especially in the case of financial returns data. 

  

Ten reasons for modelling time-varying variances, covariances and correlations using 

high frequency (namely, monthly, weekly, daily and hourly) and ultra high frequency 
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(namely, minute and second) data are as follows: 

 

(1) Volatility from high frequency data can be aggregated, whereas aggregated data at 

low frequencies typically display no volatility; 

(2) Enables prediction of uncertainty regarding the imposition of tourism taxes on 

international tourist arrivals; 

(3) Enables prediction of uncertainty regarding the imposition of environmental taxes 

on polluters; 

(4) Enables prediction of risk in finance; 

(5) Enables the prediction of dynamic correlations for constructing financial portfolios; 

(6) Enables the computation of dynamic confidence intervals; 

(7) Enables the computation of dynamic Value-at-Risk (VaR) thresholds; 

(8) Enables the computation of dynamic confidence intervals for dynamic VaR 

thresholds; 

(9) Enables the prediction of dynamic variances and covariances for constructing 

dynamic VaR thresholds for financial portfolios; 

(10) Enables the derivation of a strategy for optimizing dynamic VaR. 

 

 
6. The Ten Commandments for Optimizing Value-at-Risk and Daily Capital 

Charges   

 

Credit risk is the most important type of risk in terms of monetary value, while market 

risk is typically concerned with stocks and bonds, and related financial derivatives, as 

well as exchange rates and interest rates. Operational risk involves credit and market 

risk, as well as other operational aspects or risk.  
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For market, credit and operational risk, choose wisely from: 

 

(C1) Conditional, stochastic and realized volatility.  

(C2) Symmetry, asymmetry and leverage.  

(C3) Dynamic correlations and dynamic covariances.  

(C4) Single index and portfolio models.  

(C5) Parametric, semiparametric and nonparametric models.  

(C6) Estimation, simulation and calibration of parameters.  

(C7) Assumptions, regularity conditions and statistical properties.  

(C8) Accuracy in calculating moments and forecasts.  

(C9) Optimizing threshold violations and economic benefits.  

(C10) Optimizing private and public benefits of risk management.   

 

The commandments progress from the theoretical to the practical. The remainder of 

this section briefly discusses each self-explanatory commandment.  

 

(C1) Choose Wisely from Conditional, Stochastic and Realized Volatility  

 

Different volatility models provide different estimates and forecasts of risk, while 

different data frequencies lead to different choices of volatility model. 

 

(i) Conditional volatility, which is typically used to model monthly and daily 

data, is latent (see Li, Ling and McAleer (2002) and Bauwens, Laurent and 

Rombouts (2006) for recent reviews). The ease of computation, even for 

some multivariate models, as well as its availability in several widely used 

econometric software packages, has made this class of models very 
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popular. 

(ii) Stochastic volatility is typically use to model and forecast daily data, and is 

also latent (see Asai, McAleer and Yu (2006) for a recent review of 

multivariate stochastic volatility models). A distinct advantage of stochastic 

volatility models is the incorporation of leverage, at least at the univariate 

level. However, the computational burden can be quite severe, especially 

for multivariate processes. Moreover, standard econometric software 

packages do not yet seem to have incorporated stochastic volatility 

algorithms. 

(iii) Realized volatility is observable, but is subject to measurement error (see 

McAleer and Medeiros (2008a) for a recent review). Such models are used 

to calculate observed volatility using tick data. The generated realized daily 

volatility measures are then typically modelled using a wide variety of long 

memory or fractionally integrated time series processes. It should be 

emphasized that microstructure noise (or measurement error) is a standard 

problem that arises where realized volatility is used as an estimate of daily 

integrated volatility. 

 

(C2) Choose Wisely from Symmetry, Asymmetry and Leverage  

 

Distinguish carefully between asymmetry and leverage, and models that incorporate 

asymmetry and leverage, either by construction or through the use of parametric 

restrictions.  

 

Asymmetry is a straightforward concept, but leverage seems to be the subject of much 

misunderstanding in practice.  
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Definition: Asymmetry captures the different impacts of positive and negative 

shocks of equal magnitude on volatility.  

 

Definition: Leverage captures the effects of negative (positive) shocks of equal 

magnitude on increasing (decreasing) the debt-equity ratio, thereby increasing 

(decreasing) subsequent volatility and risk (see Black (1976)). 

 

Thus, leverage is a special case of asymmetry, with volatility decreasing progressively 

as returns shocks change progressively from negative to positive. 

 

It follows that symmetry is the absence of asymmetry, including leverage. The widely 

used ARCH and GARCH models are symmetric. 

 

Several popular models of volatility display asymmetry, though not necessarily 

leverage. For example, the GJR model of Glosten, Jagannathan and Runkle (1992) is 

asymmetric but does not display leverage (see McAleer, Hoti and Chan (2008) for a 

multivariate extension of the asymmetric GJR model, VARMA-AGARCH), while the 

EGARCH model of Nelson (1991) is asymmetric and can display leverage, depending 

on the signs of the coefficients relating to the size and sign effects.  

 

In the context of stochastic volatility models, leverage is imposed through a negative 

correlation between returns and subsequent volatility shocks. There are many 

alternative types of asymmetry at the univariate and multivariate levels (see, for 

example, Asai and McAleer (2005, 2008c) and McAleer and Medeiros (2008b)).  
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Although realized volatility models may be modified to incorporate both intra- and 

inter-day leverage, this does not seem to have been accomplished to date. 

 

Extensions of leverage to multivariate processes are somewhat more difficult. 

 

(C3) Choose Wisely between Dynamic Correlations and Dynamic Covariances  

 

Covariances and correlations are used to model relationships between pairs of assets 

for portfolio risk management: 

 

Correlations are used in the construction of a portfolio. Consider two financial assets, 

X and Z: 

 

(a) correlation (X,Z)   +1   specialize on the asset with the higher historical 

and/or expected returns;  

(b) correlation (X,Z)   -1   hedge (or diversify);   

(c) correlation (X,Z)    0   need to balance risk and returns. 

 

On the other hand, dynamic variances and covariances are used to calculate the VaR of 

a given portfolio. 

 

As a multivariate extension of equation (3), consider the relationship between 

covariances and correlations, as follows: 

 

tttt DDQ Γ= ,               (5) 
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in which tQ  is the conditional covariance matrix, tΓ  is the conditional correlation 

matrix, and tD  is the diagonal matrix of conditional standard deviations, namely 

ith , where  

 

1,
2

1, −− ++= tiitiiiit hh βεαω , 

 

and i= 1,…,m is the number of assets in the portfolio. 

 

The matrix tQ is used to calculate VaR forecasts, while the matrix tΓ  is used to 

construct and update portfolios. 

 

It should be emphasized that tQ  can be modelled directly, as in the BEKK model of 

Engle and Kroner (1995), or indirectly through modelling tΓ , and using (5), such as 

using the dynamic conditional correlation (DCC) model of Engle (1992), of which the 

constant conditional correlation (CCC) model of Bollerslev (1990) is a special case 

(for an application of the scalar BEKK versus indirect DCC models, see Caporin and 

McAleer (2008)). 

 

The BEKK model is given as follows: 

 

''' 1
'

11 BBQAAQQQ tttt −−− ++= εε ,           (6) 

 

where BAQQt ,,,  are m dimensional matrices. It is clear that the specification in (6) 
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guarantees a positive definite covariance matrix. However, as the dimensions of the 

three parameter matrices, namely BAQ ,, , are the same as for tQ , a computational 

difficulty can arise frequently in the BEKK model of tQ as it suffers from the 

so-called “curse of dimensionality” in having far too many parameters. 

 

It follows from (5) that 

 

11 −−=Γ tttt DQD ,              (7) 

 

so that tΓ  can be modelled directly, or indirectly through modelling tQ . A 

parsimonious model of tΓ  is given in the DCC model, as follows: 

 

12
'

1,1,121 )1( −−− Γ++−−=Γ ttitit θηηθθθ ,         (8) 

 

where 21, θθ  are scalar parameters. As the specification does not guarantee that the 

elements along the main diagonal are all unity, and all of the off-diagonal terms lie in 

the range [-1, 1], Engle (2002) standardizes the matrix in (8) so that the elements 

satisfy the definition of a conditional correlation. 

 

Although the DCC model is parsimonious in terms of parameters, a common empirical 

finding, especially for stock indexes, is that the long run conditional correlation matrix 

is constant (namely, 1,0 21 == θθ ), with the outcome being that news has little 

practical effect in changing the purportedly dynamic conditional correlations. This is 

not altogether surprising as, apart from the positive diagonal elements in a matrix 
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version of DCC (see, for example, the GARCC model of McAleer, Chan, Hoti and 

Lieberman (2008)), the off-diagonal terms of the coefficient matrix can be positive or 

negative. The imposition of an unrealistic constraint that all the elements of the matrix 

are the same constant has the effect of making 1θ  very close to zero and 2θ  very 

close to unity, especially for a portfolio with a large numbers of assets. This practical 

problem associated with DCC is alleviated with various extensions of the the model, 

such as GARCC. 

 

Dynamic correlations have recently been developed for multivariate stochastic 

volatility models using the Wishart distribution (see Asai and McAleer (2008b)), but 

the computational burden can be quite severe. 

 

To date there does not seem to have been any research undertaken on modelling the 

dynamic correlations for pairs of standardized residuals for multivariate realized 

volatility models. 

 

(C4) Choose Wisely between Index and Portfolio Models  

 

Estimation and forecasting of VaR thresholds of a portfolio requires estimation and 

forecasting the variance and covariances of portfolio returns. Volatility models can be 

used to estimate the variance of portfolio returns either by (1) fitting a univariate 

volatility model to the portfolio returns (hereafter called the single index model (see 

McAleer and da Veiga (2008a, 2008b)); or (2) using a multivariate volatility model to 

forecast the conditional variance of each asset in the portfolio to calculate the 

forecasted portfolio variance (hereafter called the portfolio model). Asai and McAleer 

(2008b) have extended the idea of a portfolio index model to a multivariate GARCH 
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process. 

 

The central issue is the signal to noise ratio. Single index models require only a 

univariate model to calculate the variance of the single index, and hence require no 

covariances or correlations. There is little signal, but there is also little noise. Portfolio 

models have a lot of signal because of all the pairs of covariances and correlations, but 

there is also a lot of noise in the estimated parameters or coefficients. 

  

As an illustration in the case of two assets, let ttt zxy )1( λλ −+= , 

 

where 

 

ty = single index return to the portfolio of two assets, 

 

tx = return to financial asset, tX  

 

tz = return to financial asset, tZ  

 

tt zx )1( λλ −+ = portfolio return on two assets, 

 

1
2

1 −− ++= ytyytyyyt hh βεαω  

1
2

1 −− ++= xtxxtxxxt hh βεαω  

1
2

1 −− ++= ztzztzzzt hh βεαω  

111 −−− ++= xztxzztxtxzxzxzt hh βεεαω . 
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As the two conditional variances and single covariance are estimated, it follows that: 

 

xztztxtyt hhhh )1(2)1( 22 λλλλ −+−+≠ , 

 

even though 

 

),cov()1(2)var()1()var()var( 22
ttttt zxzxy λλλλ −+−+= . 

 

Therefore, the single index and portfolio approaches can lead to different results when 

the time-varying variances and covariances are estimated. 

 

The number of covariances increases dramatically with m, the number of assets in the 

portfolio. Thus, for m = 2, 3, 4, 5, 10, 20, 30, 40, 50, 100, the number of covariances is 

1, 3, 6, 10, 45, 190, 435, 780, 1225 and 4950, respectively. This increases the 

computational burden significantly, unless some structure can be imposed to increase 

parsimony. 

 

(C5) Choose Wisely from Parametric, Semiparametric and Nonparametric 
Models  
 

Conditional volatility is latent, and conditional volatility models are typically 

semiparametric or parametric.  

 

Stochastic volatility is latent, and stochastic volatility models are typically parametric. 

 

Realized volatility is observable, and realized volatility models are nonparametric.  
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Each type of model typically has an optimal method of estimation, as follows: 

 

(1) Conditional volatility models are typically estimated by the maximum 

likelihood (ML) method when the standardized residuals are normally distributed, or  

by the quasi-maximum likelihood (QML) method when they are not normal (for 

further details, see Li, Ling and McAleer (2002) or Bauwens, Laurent and Rombouts 

(2006);  

 

(2) Stochastic volatility models are typically estimated by the Bayesian Markov 

Chain Monte Carlo (MCMC), Monte Carlo Likelihood (MCL), Empirical Likelihood 

(EL), or Efficient Method of Moments (EMM) methods (for further details, see Asai, 

McAleer and Yu (2006));  

 

(3) Realized volatility models are typically estimated by nonparametric methods 

(for detailed analyses, see Zhang, Mykland and Aït-Sahalia (2005), Aït-Sahalia, 

Mykland and Zhang (2006), and Barndorff-Nielsen, Hansen, Lunde Shephard (2008); 

for recent reviews of the literature, see Bandi and Russell (2007) and McAleer and 

Medeiros (2008a)). 

 

(C6) Choose Wisely from Estimation, Simulation and Calibration of Parameters  
 

RiskmetricsTM calibrates the parameters in both univariate and multivariate models, 

and hence is concerned with forecasting volatility. As there are no estimated 

parameters, there are no standard errors, and there can be no inference. 
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Conditional volatility models are concerned with estimation and forecasting. The 

statistical properties of consistency and asymptotic normality for univariate and 

multivariate conditional volatility models are now well established in the literature (see, 

for example, Ling and McAleer (2002a, 2002b, 2003)). 

 

Stochastic volatility models are concerned with simulation and forecasting. As the 

Bayesian MCMC, MCL, EL or EMM methods are typically used for estimation, the 

small sample or asymptotic properties of the estimators are well known. 

 

Realized volatility models are based on nonparametric estimation methods, and their 

asymptotic properties are well known. Large samples are typically required for the use 

of nonparametric methods. In analyzing ultra high frequency tick data on financial 

returns, very large samples are usually available. 

 
 
(C7) Choose Wisely from Assumptions, Regularity Conditions and Statistical 
Properties  
 

It is essential to distinguish between assumptions and regularity conditions that are 

derived from the assumptions of the underlining model. 

 

Assumptions are required to obtain the moment conditions (otherwise known as 

regularity conditions), especially the second and fourth moments, as well as 

log-moments. Moment conditions are required to obtain the statistical properties of 

consistency and asymptotic normality, thereby also providing diagnostic checks of the 

model. 
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The regularity conditions for univariate and multivariate GARCH models are now well 

known in the literature. The log-moment conditions for GARCH(1,1) and GJR(1,1) 

were established by Lee and Hansen (1994) and McAleer, Chan and Marinova (2007), 

respectively, and the second and fourth moments for the multivariate extensions of 

GARCH and GJR, namely the VARMA-GARCH and VARMA-AGARCH models, by 

Ling and McAleer (2003) and McAleer, Hoti and Chan (2008)). The statistical 

properties of BEKK were established by Jeantheau (1998) and Comte and Lieberman 

(2003), and for a generalization of DCC, namely the Generalized Autoregressive 

Conditional Correlation (GARCC) model, by McAleer, Chan, Hoti and Lieberman 

(2008). 

 

The Bayesian statistical properties of the univariate and multivariate stochastic 

volatility models are well known, as they are also for realized volatility models.  

 

(C8) Choose Wisely between Accuracy in Calculating Moments and Forecasts  

 

Derive appropriate measures to determine the accuracy of estimates and forecasts, 

including economic benefits, and evaluate dynamic checks of second moments and 

log-moment conditions for univariate and multivariate conditional volatility models. 

 

The moment and log-moment conditions should be calculated as diagnostic checks of 

the underlying volatility models. The second moment conditions for univariate 

GARCH and GJR are straightforward to calculate, but the log-moments are typically 

not calculated. The corresponding moment and log-moment conditions for 

multivariate processes are typically ignored in practice. Moment conditions are not 

necessary for the EGARCH model as it is a function of the standardized residuals 
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rather than the unconditional returns shocks. 

 

Typically, only the second moment conditions for univariate ARCH and GARCH 

models are checked, despite the ease of computing the log-moment conditions for 

GARCH(1,1) and GJR(1,1) (see Lee and Hansen (1994) and McAleer, Chan and 

Marinova (2007), respectively. 

 

The accuracy of estimating models of the respective underlying processes should be 

weighed against any improvements in forecasting performance.  

 

(C9) Choose Wisely between Optimizing Threshold Violations and Economic 

Benefits  

 

As the daily capital charge is to be minimized with respect to both k and VaR, when the 

estimated volatility increases, the penalty from violation (k) tends to decrease, while 

VaR increases, with the end result being that capital charges increase. 

 

Similarly, when the estimated volatility decreases, the penalty from violation (k) tends 

to increase, while VaR decreases, with the end result being that capital charges 

decrease. 

 

Therefore, daily capital charges should be minimized, and economic benefits should be 

maximized, using k and VaR as an endogenous decision variables. 

 

Tables 2 and 3 make it clear that increasing the number of violations leads to lower 

mean daily capital charges across all the volatility models considered, and for both the 
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single index and portfolio approaches.  

 

The Basel II penalty structure would seem to be too lenient for violations, especially 

for large violations, as the penalty structure focuses on the number, rather than the 

number and magnitude, of violations in (1). 

 

A strategy to minimize daily capital charges has been devised by McAleer, 

Jiménez-Martin and Peréz-Amaral (2008), with k and VaR as endogenous choice 

variables. The strategy seems to work much better than treating k as exogenous.  

 

In short, there is a need to change the penalty structure under the Basel Accord, 

otherwise there is likely to be continuing excessively high risk taking.  

 

(C10) Choose Wisely between Optimizing Private and Public Benefits of Risk 

Management 

 

In summary, ADIs should balance violations (which may be crucial to avoid for public 

relations purposes) against daily capital charges. 

 

As the regulations stand at present, the Basel II Accord would seem to encourage risk 

taking as the penalties for violations are exceedingly low, and hence would seem to 

favour violations rather than managing and monitoring excessive risk taking (see 

Tables 2 and 3). 

 

It is essential to determine whether increasing the number of violations, which 

subsequently leads to lower mean daily capital charges, is in the public interest in 
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terms of monitoring and managing excessive risk and VaR.  

 

There is an urgent requirement to balance risk taking with prudent self regulation or 

government regulation in the banking and finance industry (as seen earlier in the 2003 

remarks by Alan Greenspan). There may, in fact, be moral hazard in self regulation in 

the banking and finance industry, as qualified by Greenspan in 2003, especially in 

terms of federal guarantees of private debt. 

 

The financial meltdown in September and October 2008 (and still counting) demands 

more careful and responsible regulation of the industry. 

 

7. Concluding Remarks  

 

The largely self-regulated management of excessive risk taking in the world of 

banking and finance has led to the worst financial disaster in September-October 2008 

since the market collapse of 1929. Government and private regulation of credit risk, 

which is the most important type of risk in terms of monetary value, and market risk, 

which is typically concerned with stocks and bonds, related financial derivatives, and 

exchange rates and interest rates, have been found to be largely inadequate. 

 

This paper analysed market risk management and monitoring under the Basel II 

Accord, and presented the optimization problem facing authorized deposit-taking 

institutions. Ten reasons for modelling time-varying variances, covariances and 

correlations using high and ultra high frequency data were given, and the Ten 

Commandments for optimizing Value-at-Risk (VaR) and daily capital charges were 

analysed.  As the Basel II Accord would seem to encourage risk taking at the expense 
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of providing accurate measures and forecasts of risk and VaR, the paper gave some 

idiosyncratic suggestions and guidelines regarding how improvements might be made 

regarding optimal strategies for risk monitoring and management, especially when 

there is a strong and understandable movement into holding and managing cash than in 

dealing with risky financial investments. 

 

8. Epilogue 

 

“Rules are made to be broken.” 
Anonymous 
 
 
“Ignore all rules.” 
Anonymous  
 
 
“One of the quickest ways to break something is to fix it when it ain’t broken.” 
Anonymous  
 
 
Butch Cassidy: “Every day you get older. Now that’s a law.”  
Butch Cassidy and the Sundance Kid 
 
 
Etta Place: “Do you know what you’re doing?” 
Butch Cassidy: “Theoretically.” 
Butch Cassidy and the Sundance Kid 

 

Commandments, laws, rules, regulations, guidelines, codes, call them what you will. 

They are all made to be ignored and/or broken. The frequency of breaking 

commandments may be testament to the indefatigability of human beings to ignore the 

blindingly obvious, or to the blindingly obvious fact that such commandments may not 
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always be particularly useful.  

 

The fact remains that commandments are routinely ignored, for whatever reason. The 

Ten Commandments for organizing a conference (McAleer (1997)), for attending a 

conference (McAleer and Oxley (2001), for presenting a conference paper (McAleer 

and Oxley (2002), for ranking university quality (McAleer (2005b)), and for 

academics (McAleer and Oxley (2005)), are frequently downloaded (using download 

statistics) and read, but are also frequently ignored, although the financial penalties are 

not quite as frightening as when the Ten Commandments for optimizing VaR and daily 

capital charges are broken.  
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Table 2: Mean Daily Capital Charge and AD of Violations for the Single Index Model 

AD of Violations 

Model 

Number of 
Violations 

Mean Daily 
Capital 
Charge Maximum Mean 

Standardized Normal 35 12.329 3.506 0.631 

RiskmetricsTM 27 9.113 2.772 0.456 

ARCH 62 8.319 2.758 0.552 

ARCH-t 36 8.832 2.302 0.551 

GARCH 34 8.095 2.430 0.464 

GARCH-t 14 8.981 2.302 0.441 

GJR 34 8.095 2.430 0.464 

GJR-t 13 9.903 1.701 0.521 

PGARCH 31 8.041 1.205 0.362 

PGARCH-t 9 9.034 1.708 0.510 

EGARCH 30 7.968 1.154 0.298 

EGARCH-t 9 8.986 1.556 0.489 

Notes:  

(1) The daily capital charge is given as the negative of (3+k) times the greater of the previous day’s VaR or the 

average VaR over the last 60 business days, where k is the violation penalty.  

(2) AD is the absolute deviation of the violations from the VaR forecast. 

 
Note: This is Table 8 in McAleer and da Veiga (2008b).  
The models are as follows: ARCH was developed by Engle (1982), GARCH by Bollerslev 
(1986), GJR by Glosten, Jagannathan and Runkle (1992), EGARCH by Nelson (1991), and 
PGARCH is the asymmetric power GARCH model of Ding, Granger and Engle (1993). 
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Table 3: Mean Daily Capital Charge and AD of Violations for the Portfolio Model 

AD of Violations 

Model 

Number of 
Violations 

Mean Daily 
Capital 
Charge Maximum Mean 

Standardized Normal 36 12.916 3.509 0.617 

RiskmetricsTM 28 8.509 2.516 0.413 

ARCH 19 9.132 2.271 0.540 

ARCH-t 9 10.581 1.691 0.463 

CCC 7 9.685 2.125 0.498 

CCC-t 1 11.498 1.489 1.489 

GJR 7 9.724 1.657 0.505 

GJR-t 2 11.571 0.857 0.549 

EGARCH 6 9.692 1.566 0.466 

EGARCH-t 2 11.544 0.727 0.482 

PGARCH 6 9.787 1.485 0.472 

PGARCH-t 2 11.658 0.623 0.490 

VARMA-GARCH 6 9.760 1.974 0.454 

VARMA-GARCH-t 1 11.633 1.287 1.287 

PS-GARCH 7 10.700 1.902 0.442 

PS-GARCH-t 1 11.833 1.321 1.321 

Notes:  

(1) The daily capital charge is given as the negative of (3+k) times the greater of the previous day’s VaR or 

the average VaR over the last 60 business days, where k is the violation penalty.  

(2) AD is the absolute deviation of the violations from the VaR forecast. 

 
Note: This is Table 9 in McAleer and da Veiga (2008b). 
In addition to the models described in the note to Table 2, the models are as follows: CCC 
was developed by Bollerslev (1990), VARMA-GARCH by Ling and McAleer (2003), and 
PS-GARCH by McAleer and da Veiga (2008a).  
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