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Abstract

Firms nowadays need to make decisions with fast information obsolesce. In this
paper I deal with one class of decision problems in this situation, called the “one-
sample” problems: we have finite options and one sample of the multiple criteria
with which we use to evaluate those options. I develop evaluation procedures based
on bootstrapping DEA (Data Envelopment Envelopment) and the related decision-
making methods. This paper improves the bootstrap procedure proposed by Simar
and Wilson (1998) and shows how to exploit information from bootstrap outputs
for decision-making.
Keywords: Multiple criteria; Bootstrap; Data envelopment analysis; Parametric
transformation; R&D project & supplier selection.

1 Introduction

Firms in today’s supply chains are faced with increasing pressure to respond to mar-

ket changes and potential problems in realtime. This competition also not only induces

frequent product introductions and technology advance and increased customer welfare

(Petrin, 2002), but also shortened product live cycles. Constant product innovation and

rapid introductions necessitate fast decision-making and planning under a high level of

uncertainty; Bourgeois and Eisenhardt (1988) point out that in the high-velocity envi-

ronment (for example in the computer industry), the incessantly changing market can

make information inaccurate, unavailable or obsolete.

One way to deal with uncertainty in decision-making is using Ranking & Selection

(R&S) methods, in which we used known stochastic processes to represent the uncertain

factors in the environment (i.e., parametric problems), and hence we can approximate

the statistics of interest with the help of random number generators. In high-velocity,

complex, or unstable environments, however, it is not always straightforward to prescribe
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probability distributions for factors beyond our control. The need for fast decisions

usually disallow us the luxury to conduct a large-scale and comprehensive survey or

experiment, and therefore the attempt to rely on comprehensive data become impractical.

On the other hand, the decision based on the robust optimization school of thought can

be too conservative (see, e.g., Ben-Tal and Nemirovski, 1999, and Bertsimas and Thiele,

2004).

In this paper, I deal with one class of decision problems in the “high-velocity” envi-

ronment: in these problems, we have only one observation (or estimation) of the inputs

and outputs of decision alternatives, and we want to distribute limited resources among

available options. The decision-making process is considered a two-step “evaluate-then-

decide” process. For instance, we rank different designs according to certain criteria first,

and then select best or the best few designs. A firm may have many parallel projects

competing in the new product development, but only the best or the best few only will be

selected—because of the consideration of product variety, market saturation, or simply

the budget constraint. So the resource constraint may be either expressed as the total

amount of resources available, or as the maximum number of alternatives selected.

To evaluate different options, I develop bootstrap algorithms based on Data Envelop-

ment Analysis (DEA) to tackle the above problem. DEA is a nonparametric approach

to measure relative efficiency of systems that use multiple inputs to produce multiple

outputs. DEA is also has its root in production economics, which provide a firm base

necessary for the development of bootstrap algorithms (Coelli, 2005). Simar and Wil-

son (1998) first develop the bootstrap algorithm based on the BCC DEA model (Banker

et al., 1984). Based on one sample of input and output variables, our method can be

used to approximate the true efficiency distributions of all evaluated units. From the

empirical result that will be shown later, we will see that the DEA model, as an effi-

ciency estimator, tend to be volatile for certain efficient units. Hence these efficient units

would be considered “risky” in their performance, which gives a contrary picture to the

underlying performance. I rectify this problem by modifying the cross-efficiency method

Sexton et al. (1986) to develop a new efficiency estimator.

In addition, Simar and Wilson (1998) do not indicate the decision-making procedure

based on the bootstrap outputs. This is a critical gap because the goal of evaluation

is to facilitate subsequent decision-making and planning activities. Therefore I propose

two approaches to extract information from the evaluation outcomes (i.e., the bootstrap

distributions). First I use the bootstrap distributions to estimate the mean-variance

statistics and use the estimates to solve the mean-variance formulation of the project se-

lection problem. We can then achieve the optimal mean-variance tradeoff in the efficiency

of project investment portfolios. Next I develop a normalization algorithm to transform

the nonparametric bootstrap distributions into normal ones. The normalization proce-

dure allows us to apply a wide range of statistical methods that require a normality
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assumption.

In the next section, I will introduce relevant backgrounds about the DEA model

and the bootstrap method. In Sec. 3 and 4, I elaborate on the probability models

and bootstrap algorithms constructed based on the original and modified cross-efficiency

method, respectively. In Sec. 5, the distinction between these two models is compared

through an illustration based on empirical R&D project data. In Sec. 6, we apply the

mean-variance formulation to the bootstrap distributions to solve project selection and

budgeting from an efficiency viewpoint. In Sec. 7, I use batch means and the method

of multiple statistical testings to develop a normalization algorithm for the bootstrap

distributions. The final section provides a summary of this paper.

2 Models and preliminaries

This section introduces the Cross-Efficiency (CE) method, and review the statistical

aspects of efficiency measuring in this section. The bootstrap principle is also briefly

discussed.

2.1 DEA model and CE method

Almost all production processes involve multiple production factors. A customary ap-

proach to deal with multiple factors in evaluation is to assign weights to each factor to

form a single performance indicator. In many situations, however, it can be difficult

to find weights that can properly represent the relative importance of all factors, and

thus we are not capable of separating the real inefficiency from the effect due to weight

specification in evaluation result (Cooper et al., 2006). DEA has been widely used to

evaluate the relative performance of units with multiple inputs and outputs. As opposed

to assigning fixed weights to inputs and outputs, DEA allows each evaluated unit to

determine weights to optimize the evaluated unit’s efficiency score.

Suppose there are n decision-making units (DMUs) under evaluation. For an arbitrary

DMU k, it requires inputs Xk = [Xk1, . . . , Xki] to yield outputs Yk = [Yk1, . . . , Ykj]. The

input-oriented CCR efficiency is defined to be the optimal value of the fractional linear

problem (Charnes et al., 1978):

max

j∑
q=1

µ1qY1q

/ i∑
p=1

ν1pX1p (1a)

subject to

j∑
q=1

µ1qYkq −
i∑

p=1

ν1pXkp ≤ 0, k = 1, . . . , n, (1b)

µ1q, ν1p ≥ 0, p = 1, . . . , i, and q = 1, . . . , j. (1c)
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The objective function of (1) is the weighted ratio of output and input factors, which

conforms to the classical definition of productivity. Therefore (1) will maximize the

evaluated DMU’s efficiency by choosing some nonnegative weights ν1p’s and µ1q’s. The

value of ν1p and µ1q can be interpreted as the relative importance of the variables in the

evaluation process. Constraint (1b) ensures that the weights will not render the efficiency

scores of any DMU larger than one.

By normalizing the the denominator of (1a), we obtain an equivalent LP to problem

(1):

max θ1 =

j∑
q=1

µ1qY1q (2a)

subject to
i∑

p=1

ν1pX1p = 1, (2b)

j∑
q=1

µ1qYkq −
i∑

p=1

ν1pXkp ≤ 0, k = 1, . . . , n, (2c)

µ1q, ν1p ≥ 0, p = 1, . . . , i, and q = 1, . . . , j. (2d)

The evaluation process completes after we repeatedly solve problem (2) for n times,

each time for one DMU; i.e., we substitute Xkp and Ykq in (2a) and (2b) in each round.

DMUs that obtain an efficient score of one are called efficient, and inefficient otherwise.

Now we are ready to define the cross-efficiency. Denote the optimal solution to (2) for

DMU k by the pair (ν̂k, µ̂k), where ν̂k = [ν̂k1, . . . , ν̂ki] and µ̂k = [µ̂k1, . . . , µ̂kj]. So after

the DEA evaluation, we can obtain n sets of weights corresponding to n DMUs. The

cross-efficiency (CE) for DMU k is then defined to be

CEk = n−1

n∑
r=1

∑j
q=1 µ̂rqYkq∑i
p=1 ν̂rpXkp

. (3)

In other words, the CE is the average of efficiency scores associated with optimal

weights determined by all DMUs. (3) reveals two main features of CE. In DEA models,

it often occurs that multiple DMUs are identified as efficient. It is also well-known that

the discrimination power (i.e., the proportion of DMUs being identified as efficient) will

be even weaker when we only have relatively small sample, as compared with the number

of input and output variables1. It is straightforward to show that CEk ≤ θk, and we

can almost always use CE scores to obtain non-tied rankings of DMUs because the CE

score takes in weights given by all evaluated DMUs. Thus we can use the CE method

1This is also known as the curse of dimension (see also the discussion in the next subsection). A rule
of thumb for practitioners is that the number of projects should be at least more than the square of the
number of input and output variables combined; see, e.g., Dyson et al. (2001).
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to effectively increase the discrimination in the evaluation result (Adler et al., 2002).

In addition, the CE method can also mitigate the influence of flexible weight selection

obtained from (2). Finally, Doyle and Green (1994) argue that the CE method is a

democratic evaluation process, as compare to traditional DEA models, because DEA

models determine the efficiency score according to the perspective of the evaluated DMU

only. Therefore, CE has been extensively applied in many evaluation problems; see,

among others, Oral et al. (1991); Doyle and Green (1994); Shang and Sueyoshi (1995);

Green et al. (1996); Chen (2002); Talluri and Narasimhan (2004); Liang et al. (2008b).

Determination of unique optimal weights

One implementation issue of the CE method is that the optimal solution to (2) is likely to

be degenerate and thus non-unique. The solution will then depend on the optimization

packages used (Despotis, 2002). Several studies provide antidotes to the problem. Doyle

and Green (1994) propose an auxiliary procedure to determine a set of unique weights,

given the evaluated DMU’s DEA efficiency score. Specifically, Doyle and Green use the

following optimization problem:

min

j∑
q=1

n∑
k=2

µ1qYkq

/ i∑
p=1

n∑
k=2

ν1qXkq (4a)

subject to

j∑
q=1

µ1qY1q

/ i∑
p=1

ν1qX1q − θ1 = 0, (4b)

j∑
q=1

µ1qYkq −
i∑

p=1

ν1pXkp ≤ 0, k = 1, . . . , n, (4c)

µ1q, ν1p ≥ 0, p = 1, . . . , i, q = 1, . . . , j. (4d)

In problem (4), the objective function is formulated as the weighted output-input ratio

of the other DMUs except DMU 1 (the evaluated DMU), while (4a) ensures the weights

are optimal to problem (2). So problem (4) searches, among the optimal solutions to

(2), the set of weights that minimizes the weighted output-input ratio related to other

DMUs. More specifically, constraint (4b) makes sure that the efficiency score θ1 obtained

from (2) is maintained. Problem (4) is thus called the aggressive formulation due to its

objective function. Sexton et al. (1986) develop a similar method, called the benevolent

formulation, that instead maximizes the same objective as in (4a). See also Liang et al.

(2008a) and Liang et al. (2008b) for variant methods to derive the weights.
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2.2 A statistical view of DEA models

Efficiency measuring has been deeply rooted in production economics. Over the years,

various econometrics methods, parametric or nonparametric, have been developed to “es-

timate” efficiency in different contexts and under different assumptions. Charnes et al.

(1978) coined the DEA model in the form of an LP formulation, which can also be re-

garded as a nonparametric efficiency estimator. However, many researchers have since

regarded DEA as a deterministic approach, which seems to detach DEA from its statis-

tical implications; see also the discussion in Simar and Wilson, 1999. From a statistical

viewpoint, the efficiency estimates from DEA hinges closely on its nonparametric esti-

mate of the unknown production function, and the production frontier estimate of DEA

is susceptible to finite sample errors and sample variations (Kneip et al., 1998). There-

fore an understanding of the statistical aspects of the scores can shed further light on the

precision and confidence of the evaluation results. We begin this section by reviewing the

statistical aspects of DEA and the bootstrap principle.

Properties of DEA as an efficiency estimator

The development of DEA as an efficiency estimator stems from the framework of conven-

tional production economics (Coelli, 2005). In the framework, we draw samples containing

the productive information of firms and use it to estimate the relation, which we call a

production function, between inputs and outputs in production. Simultaneously, we can

deduce the technical inefficiency of firms by comparing the samples with the production

function. Following this construction, DEA provides a nonparametric and piecewise lin-

ear estimation of the production function. The exploration of statistical properties of

DEA commences with the pioneer work of Banker (1993). He proves the consistency

of DEA in the univariate case (single input with multiple outputs) for any concave and

monotone production functions. He also proposes an asymptotic test procedure for sta-

tistical inferences on efficiencies estimated by DEA models (see also Banker and Chang

(1995) for a comparison between different testing methods). Korostelev et al. (1995) and

Kneip et al. (1998) give the convergence rate of DEA estimators in more general settings,

and show that, under a fixed sample size, the convergence rate decreases exponentially

as the number of input/output variables increase.

Simar and Wilson (1998) use a nonparametric smoothed bootstrap method to approx-

imate the sampling distribution of DEA efficiency estimates. However, they did not give

the standard error and confidence intervals of the efficiency estimate in their paper. Simar

and Wilson (1999) apply a similar bootstrap method to the Malmquist index. Further,

Simar and Wilson (2000a) extend the method proposed in Simar and Wilson (1998) to

a more general case which allows the efficiency distributions to be heterogeneous. Simar

and Wilson (2000b) provide a detailed overview about recent developments for the sta-
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tistical analysis of DEA. It should be stressed that the statical developments so far are

exclusively concerned about the “radial” or “envelopment” DEA model, i.e., the primal

formulation to problem (2). The view developed later in this paper is however related to

the multiplier model (2), which is still an unexplored area in the literature.

2.3 Bootstrap preliminaries

The primary goal in statistical inference is to use a random sample to infer about pa-

rameters associated with an unknown population F0. To draw a statistical conclusion

based on a sample, it requires sufficient information about the sampling distribution of an

appropriate statistic (or an estimator). Accessibility of sampling distributions, however,

relies heavily on both the analytical properties of F0 and the mathematical structure of

the estimator. Therefore, only under special assumptions on F0 can we give the analytical

description about the sampling distributions of certain estimators. This would impose

great restrictions on the applicability of statistical analysis in many real-world problems.

Bootstrapping is a collection of computational methods that can overcome the above

issues. Under fairly general conditions, we can use bootstrap methods to approximate

sampling distributions by resamplings from the obtained sample. Efron and Tibshirani

(1993) is the classic introduction to bootstrap methods, while Hall (1992) gives a com-

prehensive theoretical treatment of bootstrap theories. Below I briefly introduce the

bootstrap principle for nonparametric problems.

Bootstrap methods is mainly used to approximate sampling distributions that are

impossible for analytical representation. The basic principle is to use the observed sample

as an estimate of the population of interest2. We can then draw bootstrap samples

repetitively from the estimated population to approximate the sampling distribution of

interest.

The way in which we construct the estimated population will determine the bootstrap

to be parametric or nonparametric. In parametric bootstrap methods, the obtained sam-

ple will used to estimate the parameters associated with the predetermined probability

distribution; bootstrap samples are then drawn from the distribution given the estimated

parameters. Nonparametric bootstrap methods, on the other hand, do not require a

distributional assumption, and will be introduced next.

Let (x1, x2, . . . , xn) be a random sample drawn from the unknown F0, namely

(x1, x2, . . . , xn)
iid∼ F0. (5)

In the nonparametric method, F1 represents the empirical distribution of the sample

2Efron and Tibshirani (1993) contrast the true population and the estimated population by referring
them as the “real world” and “bootstrap world,” respectively; Hall (1992) vividly exemplifies the two
populations by Russian matryoshka dolls.
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of size n drawn from F0. Specifically, F1 is constructed by allocating 1/n probability

mass to each xi in the random sample:

F1 := P (x = xi) =
#(xj = xi, for j = 1, . . . , n)

n
, for i = 1 to n, (6)

#() being the cardinality function.

Let (x∗1, x
∗
2, . . . , x

∗
n) represent the random sample from F1:

(x∗1, x
∗
2, . . . , x

∗
n)

iid∼ F1. (7)

By sampling from F1, we can obtain the bootstrap distribution of the estimator of

interest g3. The relation resultant distribution F2 represents an approximation to the

sampling distribution given F0.

The bootstrap principle refers to the assumption that the relationship between F1 and

F2 is a close resemblance to the relation between F0 and F1. Since we have full knowledge

of the empirical distribution (6), we can use Monte Carlo simulation to approximate F2

based on F1.

3 Bootstrapping the CE model

Simar and Wilson (1998) pioneered the use of a smoothed bootstrap procedure to estimate

the sampling distribution of inefficiency score from the DEA BCC radial model (Banker

et al., 1984). They also detail the data generating process from the perspective of a DEA

radial model. Simar and Wilson (1999) extend the idea to bootstrapping the Malmquist

productivity index.

In this section, we introduce the bootstrap algorithm for the CE model. The bootstrap

algorithm helps us obtain approximated distributions of CE scores, which can be used

for inferences and comparisons on the CE scores of sampled DMUs. The methodology

developed in this paper enables one to assess the peer-appraisal efficiency and the under-

lying efficiency variations. More specifically, I use a nonparametric bootstrap method to

approximate the sampling distribution of CE scores.

The bootstrap framework developed in this paper has several distinctive features, as

compared with Simar and Wilson (1998). First, the CE model promotes an encompassing

assessment philosophy, as described earlier. Therefore the efficiency structure is different

from that considered in the literature. Mathematically, the proposed bootstrap method

views the problem from the dual programming perspective of the radial DEA model (i.e.,

the DEA multiplier model) as in Simar and Wilson (1998). So our model corresponds to

a “multi-parameter” estimation problem; see, e.g., Efron (1987).

3See Efron and Tibshirani (1993) for suggestions about the appropriate values of B for different
purposes of bootstrapping.
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3.1 Probability model and bootstrap algorithm

For all DMUs, the feasible region of problem (1) is a polyhedron associated with the

sample size n—that also means that the DEA results will depend on our estimate of the

polyhedron. For now, we assume that the sequence of polyhedra converges downwards

to a nonempty region of permissible weights, as the sample size tends to infinity:

(ν,µ) :=
∞⋂

k=1

{
(νkp, µkq) :

j∑
q=1

µkqYkq −
i∑

p=1

νkpXkp ≤ 0
}
⊂ <i×j

+ . (8)

By (1b), the estimate of (8) based on a sample of size n can be represented by

(ν̂n, µ̂n) =
n⋂

k=1

{
(νkp, µkq) :

j∑
q=1

µkqYkq −
i∑

p=1

νkpXkp ≤ 0
}
. (9)

We then arrive at the following convergence result:

Theorem 1. The set sequence defined in (9) is non-increasing and will converge in

probability to (8); i.e.,

(ν̂n, µ̂n)
P→ (ν,µ).

The above proposition can be deduced from the the primal, radial DEA formulation by

LP dualities; see Banker (1993), Korostelev et al. (1995), Kneip et al. (1998) and Simar

and Wilson (2000b) for the primal construction of the efficiency estimation problem4.

Therefore, we can regard (9) as a finite sample approximation of the true polyhedron

(ν,µ) in (8). Recall that after solving (2) for each DMU, we obtain a set of optimal

input-output weight vectors (µ̂kq, ν̂kp), k = 1, . . . , n, by which we can calculate the CE

scores. Following the notations introduced earlier, we construct the empirical distribution

of DMUs (F1) by putting probability mass 1/n on each DMU5. Then we can generate

bootstrap samples by drawing samples from F1:

F1→
(
(X1, Y1)

∗, . . . , (Xn, Yn)∗
)
, (10)

from which we can obtain bootstrap replications by computing ĈE
∗
k as in (3), for

k = 1, . . . , n. By repeatedly sampling from F1, we can approximate the distributions of

CE scores. The process of deriving ĈE
∗
k is referred to as the multiparameter problem

in the literature; see, e.g., Efron and Tibshirani (1986) and Efron (1987) for further

discussions. Note that the equivalence of problem (1) and problem (2) implies that

weight estimates obtained from (2) must be optimal for (1) as well.

4There are few assumptions necessary for the convergence results in the primal efficiency framework:
(1) i.i.d. sampling, (2) a convex production set, (3) efficient units will be observed with probability one
as n→∞.

5This approach is analogous to bootstrapping pairs in the regression analysis; see, e.g., Chap. 9 of
Efron and Tibshirani (1993).
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We summarize the above bootstrap procedure in Algorithm 1:

Algorithm 1 CE bootstrap algorithm

1: for b = 1 to B do

2: sample with replacement from the empirical input-output pairs to generate boot-

strap samples (Xkb, Ykb)
∗, k = 1 to n.

3: if the bootstrap sample is degenerate (all input-output pairs in the resample are

identical) then

4: set ŵ∗kb = (ν̂∗kb, µ̂
∗
kb), where ν̂∗kbp = 1

/∑i
p=1X1p, µ̂

∗
kbq = 1

/∑j
q=1 Y1q, ∀k, p, q.

5: else

6: estimate the input-output weight vector ŵ∗kb by using models (2) and (4), for

k = 1 to n.

7: compute ĈE
∗
kb according to (3), for k = 1 to n.

8: end if

9: end for

10: obtain the bootstrap distribution of ĈE
∗
k, for k = 1 to n.

In STEP 2, we resample the observed input/output firms to estimate the weight vector

in STEP 6. STEPs 3 and 4 are developed to avoid the degenerate case, where the resample

consist of only replicas of one specific empirical sample and thus we would be unable to

determine the optimal weight vector uniquely. Hence in the algorithm we regulate that,

if the bootstrap sample is degenerate, then the weights are specified as shown in STEP

4, in which input and output variables are assigned equal weights. The probability of

obtaining a degenerate resample, however, is fairly insignificant in practice. On the other

hand, if the resample is non-degenerate, we can proceed to compute the bootstrap weights

by invoking models (2) and (4) for the resample. Provided the bootstrap weights, the

bootstrap distributions of CE are straightforward (STEPs 7 and 10).

Finally, the model of efficiency estimation introduced in this section is based on the

DEA multiplier model (1). We can make an interesting comparison between our and

the estimation based on the DEA radial model. In the latter model, DEA provides

a downward biased estimate of the true production frontier under the concavity and

monotone assumptions; i.e., the estimated estimated production feasible set is a subset

of the true one. Therefore, the DEA model tends to give an overoptimistic estimate about

efficiencies. In our model, the estimated feasible region of weights (9) is an overestimate

of (8). Hence the actual freedom of weight selection should be smaller, which means

that the efficiency will tend to be overestimated. More specifically, model (1) tends to

get tighter bounds on weights when the sample size increases—for (2c), once a larger

sample is involved, more constraints will then be introduced in the problem. This can be

contrasted with the radial DEA model, in which the production feasibility set cannot be
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reduced by the addition of new observations. The above relation interestingly corresponds

to the primal-dual relationship between the two problem formulations.

4 The revised CE method

We introduced the bootstrap algorithm regarding the CE method in the previous section.

The CE method operates in parallel with the DEA model, which is sensitive to variations

of the extremely efficient DMUs (see, e.g., Zhu (2001)). In the numerical results shown

later, we will see evidence that the bootstrap distributions of efficient DMUs have ex-

ceptionally wide spreads. In this section, we propose an alternative CE model that can

circumvent this problem but still retain the merit of the CE method: Better discrimi-

nation and a democratic evaluation scheme. Based on the revised CE method (RCE), I

formulate a bootstrap algorithm that can offer different insights on efficiency variations.

4.1 Revised Cross-Efficiency (RCE) method: definition

In the CE method introduced in previous sections, the efficiency score is computed as

an average of the self- and peer-evaluations scores, which make use of the self- and peer-

evaluations weights, respectively. Specifically, the RCE score is defined by

RCEk(F0) =

j∑
q=1

E {µq}Ykq

/ i∑
p=1

E {νp}Xkp, (11)

where µq, νp are the weight distributions with respect to input p and output q; Xkp,

Ykq are known input and output levels, respectively. It is easy to show that, just like the

CE score, it holds that the RCE score is bounded between 0 and 1, and it is less than

or equal to the DEA score θk. In (11), the efficiency score is determined as the ratio of

the virtual input to virtual output (1a), which is similar to (3). Unlike the CE method,

however, the RCE method is defined on mean weights.

If we assume that input weight distributions are independent of output weight distri-

butions, an unbiased estimator of the RCE based on a size n sample is

RCEk(F0) =

j∑
q=1

ˆ̄µ∗qYkq

/ i∑
p=1

ˆ̄ν∗pXkp, (12)

where ˆ̄µ∗q and ˆ̄ν∗p are the estimates of µ̄∗q and ν̄∗p , respectively.

Let us now apply the RCE method for a better understanding of its relation with

the CE method. In the illustrative example, we evaluate 18 suppliers for outsourcing

activities based on four criteria (two inputs and two outputs); the data set can be found

in Kleinsorge et al. (1992). Table 1 lists the evaluation results of DEA, CE and RCE

methods. The results show that, based on a similar spirit to the CE method, the RCE
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method can also enhance discrimination power and provide scores and ranks close to

those of the CE method (p=0.617 in the Wilcoxon sign-rank test).

Table 1: Suppliers’ evaluation results for outsourcing (ranks in the parentheses)

Supplier DEA CCR model CE method RCE method
1 0.9969 (9) 0.8687 (12) 0.8727 (11)
2 1.0000 (1) 0.9000 (10) 0.9022 (9)
3 1.0000 (1) 0.9591 (1) 0.9583 (1)
4 1.0000 (1) 0.9157 (8) 0.9185 (7)
5 0.9925 (10) 0.9040 (9) 0.9074 (8)
6 1.0000 (1) 0.9543 (3) 0.9558 (2)
7 0.9659 (15) 0.7993 (16) 0.8045 (15)
8 0.9799 (12) 0.8437 (15) 0.8379 (14)
9 0.9809 (11) 0.8557 (14) 0.8518 (13)
10 0.8593 (18) 0.7214 (18) 0.7152 (18)
11 0.8615 (17) 0.7491 (17) 0.7458 (17)
12 0.9255 (16) 0.8591 (13) 0.8597 (12)
13 1.0000 (1) 0.9573 (2) 0.9547 (3)
14 1.0000 (1) 0.9235 (7) 0.9218 (6)
15 1.0000 (1) 0.9518 (6) 0.9509 (5)
16 0.9787 (14) 0.8290 (16) 0.8117 (16)
17 0.9791 (13) 0.8966 (11) 0.8985 (10)
18 1.0000 (1) 0.9522 (4) 0.9526 (4)

4.2 Probability model and bootstrap algorithm

The probability model in RCE is different from what we considered in the previous section.

Consider n DMUs under evaluation. For the evaluated DMU, n−1 other DMUs are ran-

domly drawn from an unknown population F0. Then for each evaluated DMU, the DEA

model produces n weight vectors (ω̂1, . . . , ω̂n), where ω̂k = (ν̂k1, . . . , ν̂ki, µ̂k1, . . . , µ̂kj), for

k = 1, . . . , n. A straightforward estimator for the mean weight vector is the sample mean:

ω̄ =
n∑

k=1

ω̂k/n = (ν̄k1, . . . , ν̄ki, µ̄k1, . . . , µ̄kj),

where ν̄q =
n∑

k=1

ν̂q/n, µ̄q =
n∑

k=1

µ̂q/n. (13)

Eqn. (13) leads to a plug-in estimator of RCE efficiency:

R̂CEk =

∑j
q=1 µ̄qYkq∑i
p=1 ν̄pXkp

=

∑j
q=1

∑n
k=1 µ̂kqYkq∑i

p=1

∑n
k=1 ν̂kpXkp

. (14)

Denote the probability distribution of ωk by F0. Since F0 is unknown, we can estimate
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F0 by its empirical distribution F1, which assigns probability mass 1/n on ω̂k for k = 1

to n.

Given F1, we can generate bootstrap samples of weight vectors:

F1 → (ω̂∗1, ω̂
∗
2, . . . , ω̂

∗
n). (15)

Based on the bootstrap samples we can calculate ω̄∗ and R̂CE
∗
k according to (13)

and (15). By repeating this procedure, we obtain the bootstrap distribution of R̂CE
∗
k,

for k = 1 to n. We summarize the above procedure in Algorithm 2.

Algorithm 2 CE weight bootstrapping algorithm

1: estimate the weight vectors (ω̂1, ω̂2, . . . , ω̂n) by using model (2) and (4).

2: for b = 1 to B do

3: for DMU k = 1 to n do

4: sample with replacement from the empirical weight vectors ω̂∗b1, ω̂
∗
b2, . . . , ω̂

∗
bn.

5: obtain a bootstrap sample ω̄∗b = n−1
∑n

k=1ω
∗
bd for d = 1, . . . , n.

6: compute R̂CE
∗
kb according to Eqn. (14).

7: end for

8: end for

Finally, it is worth mentioning that the RCE bootstrap method is computationally

more efficient than Algorithm 1 and the bootstrap method by Simar and Wilson (1998),

although they are constructed based on different efficiency models. This is because com-

puting RCE only requires few algebraic operations as shown in (14).

So far we have developed two bootstrap algorithms based on different definitions of

cross-efficiencies. In the next section, we will apply the algorithms to empirical project

performance data to see how the algorithms work out.

5 Empirical comparisons and results

Next we apply two bootstrap algorithms developed so far to empirical data, which consist

of 37 R&D project proposals in the iron and steel industry of Turkey. The data first

appeared in Oral et al. 1991 and were also used in Liang et al. (2008b) (see Tables

5). Each project requires a certain amount of budget (second column) and has five

contribution indicators (column 2 to 7). Our objective is to evaluate project performance

based on the required resources and intended contribution put forward in the project

proposals.

We applied Algorithms 1 and 2 to the project data. In the evaluation, Budget is

the only input variable, while we consider 5 output variables corresponding to different

aspects of intended contribution from the project. Figure 1 displays the bootstrap outputs
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by boxplots. The scores derived from the DEA CCR model (1) and the CE method are

also marked in the figures. From Figure 1 we can see that the bootstrap Project 17 shows

substantial variations. The reason is that Project 17 is extremely efficient in the DEA

evaluation, because its input/output pair cannot be represented as a convex combination

of other remaining projects, and therefore it will be sensitive to data variations; see also

Andersen and Petersen (1993) and Lovell and Rouse (2003) for a pertinent discussion

on the super-efficiency DEA model6. This can be an importance drawback in practice.

For instance, such extremely efficient DMUs may be considered less favorable if we see

variations in efficiency as an important evaluation criterion. The concomitant change in

the evaluation result with the addition of variance criterion, however, does not always

make sense, if we notice that extremely efficient DMUs at least dominate all the other

units in the deterministic sense.

Finally, we can also see that the CE scores do not dominate the associated DEA

scores.

In Figure 1, we see that the DEA score dominates the RCE score; this domination

arises from the definition of RCE scores (11). We also have an interesting observation

that the median and mean of bootstrap RCE scores are close to the CE scores7. This

also implies a fair degree of symmetry of the bootstrap distributions, as we can also see

in Figure 1. So, based on the probabilistic structure of wights, bootstrap RCE scores

have distributions that symmetrically encompass the CE scores. Also RCE scores are

in general less susceptible to the finite sample error, as compared to the CE scores (see

Figure 1; and the discussion in the previous paragraph).

So far we have introduced two bootstrapping algorithms based on the CE method.

However, the results of the algorithms do not automatically reveal how the information

can be used for decision-making. Many managerial decisions concern the likelihood of

certain events or variation revealed by distribution functions. Next, we present an appli-

cation of our bootstrap algorithms, which use the mean-variance formulation to perform

R&D project budgeting and supply chain configuration problem. In the next section,

we will show how to select projects and allocate project budget based on the bootstrap

outputs.

6 Application: R&D project selection and budgeting

In project selection problems, decision-makers need to apportion a limited amount of

resources to a set of projects, based on a number of evaluation criteria. The objective

is to select the set of most “preferred” projects to finance. The evaluation criteria we

6In fact, STEP 6 of Algorithm 1 corresponds to a variant of the super-efficiency model.
7The average absolute deviation between the median and the CE score is 0.0136, while for the mean

is 0.0011.
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(a) Bootstrap outputs from Algorithm 1
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Figure 1: Empirical examinations of bootstrap distributions
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often see are expected profits, time to market, and costs. The projects may be either

independent or share their contributions and resources used. The example application

considered in this section consists of the 37 independent projects that have been seen in

the previous section. In addition to evaluating project performance, our job here is to

allocate a fixed amount of resources across the candidate projects.

Product managers need to determine the new product portfolio and the related pro-

duction planning before their competitors enter the market. The product portfolio deci-

sion is usually based on projected costs, demand, and expected profits within the product

lifetime. Estimating these figures is particularly difficult for products that are new to the

market and the company. To earn competitive advantages, firms across different sectors

have to allocate limited resources to R&D projects according to the estimated project

performance and required budget. Purchasing managers responsible for procuring new

materials or products can only rely on limited data to select ideal suppliers. Decision

makers in the above situations all need a systematic approach to evaluate product lines,

products, or suppliers. Building an a priori probabilistic model about the risk involved

can be difficult due to the lack of information, and erroneous decisions can give rise to

huge financial loss. In face of the such uncertainty and substantial consequences, the

evaluation process in these decision problems should be comprehensive, objective, and

the results should be justifiable to all stakeholders, who may have their own viewpoints

about the relative importance associated with each evaluation criterion.

Decision problems of this class has several typical characteristics: First, limited or

no data, or no information are available. These dire situations are often coupled with

limited or no data available for decision support, due to shorten product life cycles and

market’s pressing demand for more product innovation. Second, decisions concern about

multiple performance indications of the process. Third, risk management.

6.1 Mean-variance formulation of portfolio optimization

In R&D project selections, huge investment is involved. Therefore it is crucial that

managers consider the underlying risks before making the decision (see Huchzermeier

and Loch, 2001). To incorporate risk factor into decision making, we have to know

the probability distribution of the statistic of interest to evaluate the risk of decisions—

however, the CE method cannot provide information about the distribution of CE scores,

and there seems no obvious evidence that can lead us to the usual parametric structure.

The mean-variance formulation proposed by Markowitz (1952) has been a classic

model in financial portfolio optimization. The model receives the name from it combi-

nation of the two most important factors, return and risk, by the mean and variance of

the return distribution of an investment portfolio. Markowitz and Todd (2000) further

conclude that the mean-variance model provides the maximum expected utility for most

16



most utility functions; see Wang and Xia (2002) for a detailed discussion. To construct a

mean-variance model, however, we need information about the mean vector and variance-

covariance matrix of the return distributions. The bootstrap methods developed in this

paper allow us to approximate efficiency distributions of R&D projects, from which we

can derive the estimated mean and variance of a project portfolio.

Consider an investor who receives n project proposals and has a fixed amount of

resources to invest. The decision variables are the proportions of resources allotted to

different projects, which is denoted by pi, for i = 1, . . . , n. We assume a budgetary

rule under which the selected project has to be financed at least 70% of its requested

budget. The vector p = [p1, . . . , pn]′ is called a portfolio. The efficiency of project k is a

random variable θk with mean E(θk). Denote Σ to be the variance-covariance matrix of

all project efficiencies and θ = [θ1, . . . , θn]T . It then follows that the mean and variance

of the efficiency of a portfolio p is

E(p′θ) = p′E(θ) and V ar(p′θ) = p′Σp, respectively. (16)

Suppose the investor wants the portfolio to be mean maximizing and variance minimiz-

ing. THen the portfolio selection can be naturally formulated as a bi-criterion problem,

which reflects the trade-off between risk and return8. In practice we often scalarize the

problem to a mix-integer quadratic problem (17), which is NP-hard (Jobst et al. 2001):

max p′E(θ)− κ(p′Σp) (17a)

subject to p′1n = δ (17b)

yiliδ ≤ pi ≤ yiuiδ, i = 1, . . . , n (17c)

yi ∈ {0, 1}, i = 1, . . . , n. (17d)

The parameter κ ≥ 0 specifies the investor’s degree of aversion to risk: the higher

the value, the more risk-averse the solution will be. Constraint (17b) states that the

portfolio ratios should sum up to one. The δ represents the budget available for allocation.

Constraints (17c) and (17d) express the 70% budget rule: so li is set to 70% and ui = 1.

The binary variable yi represent the choice whether project i is selected.

Based on the same mean-variance concept, we can also formulate an alternative model

by rearranging (17) and adding a portfolio efficiency constraint:

8The mean maximizing (given a upper bound for variance) and variance minimizing (given a lower
bound for return) portfolios are called mean-variance efficient portfolios.
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Table 2: R&D project budgeting: a comparison†

Project Green et al.
(1996)

Liang et al.
(2008b)

Algorithm 1 Algorithm 2

1 84.2 84.2 0.0 84.2(100%)
2 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0
4 0.0 0.0 0.0 0.0
5 0.0 0.0 0.0 0.0
6 0.0 0.0 0.0 0.0
7 0.0 0.0 0.0 0.0
8 0.0 0.0 0.0 0.0
9 0.0 0.0 0.0 0.0
10 0.0 0.0 54.3(70%) 0.0
11 0.0 0.0 53.5(70%) 76.5(100%)
12 47.5 47.5 47.5(100%) 47.5(100%)
13 0.0 0.0 58.5(100%) 58.5(100%)
14 95.0 95.0 0.0 0.0
15 0.0 83.8 0.0 0.0
16 35.4 35.4 35.4(100%) 35.4(100%)
17 32.1 32.1 32.1(100%) 32.1(100%)
18 46.7 46.7 46.7(100%) 46.7(100%)

† Percentage of the budget permitted.

min p′Σp (18a)

subject to p′1n = δ (18b)

p′E(θ) ≥ γ (18c)

yiliδ ≤ pi ≤ yiuiδ, i = 1, . . . , n (18d)

yi ∈ {0, 1}, i = 1, . . . , n. (18e)

In problem (18), γ in (18c) represents the lowest mean efficiency that the investor can

accept.

To obtain estimates of the mean vector and variance-covariance matrix, we apply

the bootstrap algorithms developed earlier to the project data (Tables 5). Here we only

illustrate the application via problem (17); problem (18) can be adopted similarly. We are

also given the constraint that the maximum budget for the R&D program cannot exceed

1000 monetary units. To solve the mean-variance model, we set κ = 0.7 in problem (17)

and use the branch-and-bound algorithm combined with the quadratic programming

solver of LINGO software to solve problem (17) to optimality.

Tables 2 and 3 list the project selection results in terms of the amount and the

percentage of budget allocated permitted. The second and the third columns are the
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Table 3: R&D project budgeting: a comparison (contd.)

Project Green et al.
(1996)

Liang et al.
(2008b)

Algorithm 1 Algorithm 2

19 0.0 0.0 0.0 0.0
20 0.0 0.0 0.0 0.0
21 74.4 74.4 52.1(70%) 0.0
22 0.0 0.0 0.0 0.0
23 75.6 75.6 75.6(100%) 75.6(100%)
24 0.0 0.0 0.0 0.0
25 0.0 0.0 0.0 0.0
26 69.3 69.3 69.3(100%) 69.3(100%)
27 57.1 57.1 57.1(100%) 69.3(100%)
28 0.0 0.0 0.0 0.0
29 72 0.0 71.6(99.9%) 72.0(100%)
30 0.0 0.0 0.0 0.0
31 44.6 44.6 44.6(100%) 44.6(100%)
32 54.5 54.5 54.5(100%) 54.5(100%)
33 0.0 0.0 52.7(100%) 0.0
34 28.0 28.0 28.0(100%) 28.0(100%)
35 36.0 36.0 36.0(100%) 36.1(100%)
36 64.1 64.1 64.1(100%) 64.1(100%)
37 66.4 66.4 66.4(100%) 66.4(100%)

selection results determined by the alternative CE methods proposed in Green et al.

(1996) and Liang et al. (2008b), respectively. The last two columns are the selection

results from the bootstrap algorithms and the mean-variance model. By comparing the

results from two categories of approaches (columns 2, 3 and columns 4, 5), we can first see

the advantages of our methodology. First, although Green et al. (1996) and Liang et al.

(2008b) have used alternative CE method to derive the CE scores, these two methods

basically select projects based on the ordinal ranking of the efficiency scores, and therefore

they are unable to incorporate “risks” into their selection process. Moreover, the previous

approaches have to select each project in isolation and cannot consider the risk-mitigating

effect of selecting several projects simultaneously, which is the cause of difference in the

selection results between two sets of approaches (see Tables 2 and 3). Graves and Ringuest

(2003) show that the former project selection approach will result in dominated project

portfolios.

Second, in the former approached, decision-makers are forces to make binary selections

if the projects based on the efficiency ranking without considering the integrated portfolio

performance, while my approach can allocate the budget to maximize the mean-variance

portfolio performance according to the variation within the efficiency estimation process.
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7 Normalization procedures for bootstrap distribu-

tions

In this paper we have developed two bootstrap algorithms for the cross-efficiency es-

timators. In making decisions about the evaluated units, however, we still need some

statistical procedures to elicit information from the bootstrap distributions. Many sta-

tistical procedures require a (multivariate) normality assumption on the populations; for

example, ANOVA, discriminant analysis (see, e.g., Sharma, 1995), and many Ranking &

Selection (R&S) methods and multiple comparisons methods (see, e.g., Kim and Nelson,

2006). The bootstrap distributions of efficiencies, however, are not guaranteed to be

normally distributed. See, for example, the normality plots in Fig. 2, in which we can

see the bootstrap distributions generated by our algorithms deviate from the hypothe-

sized normal distributions. Using the Shapiro-Wilk normality test under 5% significance

level shows these two distributions in the figure are significantly different from normal

distributions (p < 1%).

The non-normality poses a great problem when we intend to apply methods that

require normality assumptions to the bootstrap outputs. In this section, we introduce

a normalization procedure to preprocess the bootstrap data. In particular, we propose

an algorithm based on the non-overlap batch means method to convert the simulation

outputs to distributions of sample mean efficiencies. Formally, given a batch size k and

a sequence of stochastic processes Θ1,Θ2, . . . ,Θm with E(Θi) = θ and suppose that

m/k = n is an integer, we can divide the stochastic processes into n batches Θ(1) to

Θ(n). The batch means is then defined by

Θ̄(i) = (1′kΘ(i))/k, for i = 1 to n. (19)

If k is large enough, it can be shown that E(Θ̄(i)) = θ and the Θ̄(i)’s are uncorrelated

(Law, 2007). We should note that the batch means method is mostly used to mitigate

the influence of the startup problem in steady-state simulation experiments, for example,

of queueing systems (Law, 2007). Kim and Nelson (2007) suggest using the batch means

method to convert non-normal simulation outputs when normality is required.

In our case, we are concerned only about the normality condition of bootstrap distribu-

tions, rather than the dependence problem in most steady-state simulation experiments,

since we use Monte Carlo simulation in the algorithms. Yet we still need to determine

the batch size k, give a fixed number of bootstrap replications B. By the Central Limit

Theorem, we know for sure that, as k increases to infinity, the batch means will be nor-

mally distributed. However, since we have a fixed number of B observations, specifying

k too large will delete the samples of batched means. Therefore we can avoid this prob-

lem by searching for the minimal k that renders all batch means distributions normally
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Figure 2: Bootstrap distributions of supplier-3’s efficiency (Alg. 1 and 2, B = 500)
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distributed. For univariate normality test, we apply the Shapiro-Wilk test (Shapiro and

Wilk, 1965). Numerous tests exist for testing multivariate normality; for example, Roys-

ton’s Multivariate Normality Test (Royston, 1983); see Mecklin and Mundfrom (2005)

for a comparison of different testing procedures.

In determining the normality of distributions, however, we will perform multiple sta-

tistical testings. Therefore an appropriate procedure has to be applied to guard against

the rising Type-I error probability due to multiple testings. One instant method to this

problem is to make use of the Bonferroni inequality. Formally, let E1, E2, . . . , En denote

n events in the sample space, the Bonferroni inequality given the following relationship:

Pr(
n⋂

i=1

Ec
i ) ≤

n∑
i=1

Pr(E
c
i ). (20)

Therefore (20) assures that if we conduct n comparisons at the significance level α/n,

the overall Type-I error rate will be less than or equal to α. The Bonferroni method

has several merits: it is easy to implement, and it can be applied regardless of the data

structure. Unfortunately, one serious limitation of the method is its tendency to be

overly conservative (i.e., the nominal overall significance level is much higher than the

real value), and as a result the probability of Type II errors increases. We can also see

that the problem will become serious as n grows larger. Other improved methods based

on the Bonferroni’s inequality also exist (see, e.g., Troendle, 1995).

In Bonferroni’s procedure the overall significance level is divided by n because we can

potentially make Type-I errors for n times. A simple way to improve is to account for the

number of rejections in previous tests. So, for example, when we have already rejected

k hypotheses, the significance level in the next test can be set to α/(n − k), while the

overall Type-I error rate can still be bounded above by α. Hochberg’s procedure is an

extension of the idea Hochberg (1988), and we can easily prove that the procedure is

uniformly more powerful than Bonferroni’s. In Hochberg’s procedure, we consider n null

hypotheses H1, H2, . . . , Hn to be jointly tested. For hypothesis i, we can compute test

statistics ti and the associated p-value pi, for i = 1, . . . , n. Given an overall significance

level α, Hochberg’s procedure proceeds as follows:

Algorithm 3 Hochberg’s procedure

1: sort pi for i = 1, . . . , n to be p[1] ≥ p[2] ≥ . . . ≥ p[n]. Set i = 1.

2: if p[i] ≤ α/i then

3: reject hypotheses from Hi to Hn and STOP.

4: else

5: accept Hi, increase i by one, and go to STEP 2.

6: end if

We should note that Hochberg’s algorithm is constructed for a “static” situation. By
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static I mean the sample sizes are predetermined and therefore the p-values are available

beforehand. For the purpose of batch means, we need to adapt Hochberg’s algorithm to

accommodate the changing sample sizes.

Next we will propose an algorithm that deals with the issue of multiple hypothesis

testings and progressively increase k until all distributions of batch means agree with the

normality test. The steps are stated as follows:

Algorithm 4 The batch means procedure

1: set the batch size k = 1, and the batch means sample size n′ = bn/kc, and the

nominal overall significance level α.

2: for i = 1 to n do

3: generate distributions of batch means θi based on k and n′, for i = 1 to n.

4: calculate the Shapiro-Wilk test statistics Wi and the associated p-value pi of boot-

strap distribution for i = 1, . . . n.

5: end for

6: call Algorithm 3.

7: if all hypotheses are maintained (i.e., p[n] ≤ α/n) then

8: STOP.

9: else

10: increase the batch size by one, and return to STEP 2.

11: end if

We apply Alg. 4 to the bootstrap distributions shown in Fig. 2. The algorithm

terminates at the batch sizes of 5 and 6 for two distributions (with the replication size

B = 500), respectively. We can also see from Fig. 3 that the batch means distributions are

distributed closer to the hypothesized normal distribution, as compared to the original

bootstrap distributions shown in Fig. 2.

A problem of Alg. 4 is that we cannot guarantee that that B is sufficient for achiev-

ing the normality condition, as the batch size also depends on how “non-normal” the

bootstrap distributions are. In other words, we cannot determine a priori how large B

should be. This issue, of course, can be solved by inserting an interactive procedure in

Alg. 4, such that when the batch size increases to a certain extent we will need to do

more bootstrap replications. In our case, though, setting B = 500 is sufficient for the

procedure to stop before the batch size overflows the number of bootstrap replications

(i.e., the sample sizes fall below 3). However, if we can increase B when necessary, the

algorithm will always terminate in finite time by Central Limit Theorem and the principle

of bootstrapping.

Lemma 1. Alg. 4 will terminate in finite time given that B tends to infinity.

23



0.93 0.935 0.94 0.945 0.95 0.955 0.96 0.965 0.97 0.975 0.98
0.003

0.01 
0.02 

0.05 

0.10 

0.25 

0.50 

0.75 

0.90 

0.95 

0.98 
0.99 

0.997

Efficiency

P
ro

ba
bi

lit
y

Normal Probability Plot

(a) Batch means (k = 5) of the bootstrap distribution generated by
Alg. 1
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(b) Batch means (k = 6) of the bootstrap distribution generated by
Alg. 2

Figure 3: Supplier-3’s batch means of efficiency (B = 500)
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7.1 Application: Supplier segregation models

Firms nowadays pay careful attention to the relationship with other firms in the supply

network. By doing so, firms can stay closer to customers voice to reduce the uncertainty of

demands. By working closely with suppliers, firms can also reduce product development

costs, and improve the quality, and time-to-market of their new products (Handfield et al.,

1999). The close bond between the buying firms and their suppliers makes it beneficial

to improve and manage suppliers of products of strategic importance to create a win-win

situation. With successful supplier management programs, both the buying firm’s and

the suppliers’ strategic development road maps can be tightly coordinated (Krause et al.,

1998; Krause, 1999).

Managing suppliers, however, requires that the buying firm has the insight of its

suppliers performance or even can segregate them into different performance groups.

Based on supplier’s rating, the nature of the purchased items (e.g., strategic or non-

strategic) and other strategic considerations, managers then have to do the cost-benefit

analysis to decide whether to develop certain suppliers, or it is more beneficial to search

for new suppliers.

In this final application of this paper, we illustrate how our developed algorithms—

efficiency bootstrapping and batch means method—can be used to generate a supplier

rating system. The rating, for example, is essential to the supplier development program.

The buying firm can choose to interact with suppliers in different segregation clusters

by different sourcing strategies and types of supplier relationships. As in the previous

application, we consider the situation where we are given one observation (or estimation)

of suppliers’ inputs and outputs, either because the product or service is new to the mar-

ket, or simply the historical information is not (fully) accessible because of the supplies’

proprietary concern.

Fig. 4 shows the results of applying Alg. 2 and 4 to the supplier’s performance

data shown in Table 4, with the numbers indicating the class of suppliers. The classes

of suppliers are determined by the simultaneous confidence intervals (SCIs) generated

by Tukey’s method for all pairwise comparisons9. The results indicate that Suppliers 3,

6, 13, 15 and 18 belong to the first class suppliers, while the second suppliers include

suppliers 4 and 14, and so on. Based on the rating, the buying firm can formulate

its procurement policies with respect to suppliers in different performance groups. For

example, the buying firm can choose to do business only with the suppliers of the first

two classes. Or it can develop a long-term partnership with those superior suppliers in

the first two tiers, while foster competition for the under-performing suppliers. More

development efforts can be given to, for example, the second-tier suppliers to encourage

them to upgrade to be the first tier supplier so they can enjoy more benefits (e.g., balk

9Other approaches for multiple comparisons also exit; see, e.g., Hsu (1996).
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Figure 4: Simultaneous confidence intervals of supplier’s efficiency based on Alg. 1

buying volume, long-term contracts).

8 Conclusions

I develop bootstrap algorithms based on the cross-efficiency method in DEA to evaluate

policies, as well as decision-making methods for policy selection. Specifically, I formulate

the algorithm based on the original CE definition and a revised CE index. The revised

model rectify the sensitivity results that can arise in both the CE and DEA bootstrap

outputs. One promising follow-up direction is to further investigate the relationship

between CE and RCE methods. Although in the chapter we obtain some numerical

results that indicate a close relationship between the mean/median of the bootstrap

RCE distributions and the CE scores, we have yet to pinpoint the analytical connection

between these two methods. Revealing this linkage can help the user further interpret

the bootstrap results and its implication for the CE scores.

I also illustrate that we can use the bootstrap outputs to evaluate R&D projects

and allocate resources according to the evaluation results. The proposed normalization

procedure makes bootstrap outputs amenable to various statistical methods that require
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a normality assumption.
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Appendix: example data

Table 4: Supplier performance data set†

Supplier No. of
bills

No. on
time

Experience Credence Total
costs

No.
shipped

1 90 187 240 90 253 197
2 130 194 210 80 268 198
3 200 220 270 70 259 229
4 100 160 200 70 180 169
5 173 204 160 70 257 212
6 170 192 230 80 248 197
7 60 194 200 90 272 209
8 145 195 170 60 330 203
9 150 200 180 70 327 208
10 90 171 170 60 330 203
11 100 174 200 80 321 207
12 200 209 210 100 329 234
13 163 165 330 90 281 173
14 170 199 250 80 309 203
15 185 188 250 90 291 193
16 85 168 240 80 334 177
17 130 177 210 70 249 185
18 160 167 200 80 216 176

† Source: Kleinsorge et al. (1992).
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Table 5: R&D project proposal data set†

Project Econ.
contri.

Econ.
contri.

Tech.
contri.

Social
contri.

Sci.
contri.

Budget

1 67.53 70.82 62.64 44.91 46.28 84.20
2 58.94 62.86 57.47 42.84 45.64 90.00
3 22.27 9.68 6.73 10.99 5.92 50.20
4 47.32 47.05 21.75 20.82 19.64 67.50
5 48.96 48.48 34.90 32.73 26.21 75.40
6 58.88 77.16 35.42 29.11 26.08 90.00
7 50.10 58.20 36.12 32.46 18.90 87.40
8 47.46 49.54 46.89 24.54 36.35 88.80
9 55.26 61.09 38.93 47.71 29.47 95.90
10 52.40 55.09 53.45 19.52 46.57 77.50
11 55.13 55.54 55.13 23.36 46.31 76.50
12 32.09 64.04 33.57 40.60 29.36 47.50
13 27.49 39.00 34.51 21.25 25.74 58.50
14 77.17 83.35 60.01 41.37 51.91 95.00
15 72.00 68.32 25.84 36.64 25.84 83.80
16 39.74 34.54 38.01 15.79 33.06 35.40
17 38.50 28.65 51.18 59.59 48.82 32.10
18 41.23 47.18 41.01 10.18 38.86 46.70
19 53.02 51.34 42.48 17.42 46.30 78.60
20 19.91 18.98 25.49 8.66 27.04 54.10
21 50.96 53.56 55.47 30.23 50.44 82.10
22 53.36 46.47 49.72 36.53 50.44 82.10
23 61.60 66.59 64.54 39.10 51.12 75.60
24 52.56 55.11 57.58 39.69 56.49 92.30
25 31.22 29.84 33.08 13.27 36.75 68.50
26 54.64 58.05 60.03 31.16 46.71 69.30
27 50.40 53.58 53.06 26.68 48.85 57.10
28 30.76 32.45 36.63 25.45 34.79 80.00
29 48.97 54.97 51.52 23.02 45.75 72.00
30 59.68 63.78 54.80 15.94 44.04 82.90
31 48.28 55.58 53.30 7.61 36.74 44.60
32 39.78 51.69 35.10 5.30 29.57 54.50
33 24.93 29.72 28.72 8.38 23.45 52.70
34 22.32 33.12 18.94 4.03 9.58 28.00
35 48.83 53.41 40.82 10.45 33.72 36.00
36 61.45 70.22 58.26 19.53 49.33 64.10
37 57.78 72.10 43.83 16.14 31.32 66.40

† Indirect economic contribution, Direct economic contribution, Technical contribution, Social contri-
bution, Scientific contribution, Required budget. Source: Oral et al. (1991).
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