
Constructing seasonally adjusted data with

time-varying con�dence intervals�

Siem Jan Koopmany

Department of Econometrics, Free University Amsterdam

and

Philip Hans Fransesz

Econometric Institute, Erasmus University Rotterdam

January 24, 2001

Econometric Institute Report EI 2001-02

Abstract

Seasonal adjustment methods transform observed time series data into esti-

mated data, where these estimated data are constructed such that they show

no or almost no seasonal variation. An advantage of model-based methods

is that these can provide con�dence intervals around the seasonally adjusted

data. One particularly useful time series model for seasonal adjustment is the

basic structural time series [BSM] model. The usual premise of the BSM is

that the variance of each of the components is constant. In this paper we

address the possibility that the variance of the trend component in a macro-

economic time series in some way depends on the business cycle. One reason

for doing so is that one can expect that there is more uncertainty in reces-

sion periods. We extend the BSM by allowing for a business-cycle dependent

variance in the level equation. Next we show how this a�ects the con�dence in-

tervals of seasonally adjusted data. We apply our extended BSM to monthly

US unemployment and we show that the estimated con�dence intervals for

seasonally adjusted unemployment change with past changes in the oil price.

�We thank Jordi van Kessel for his excellent research assistance, and Marius Ooms for helpful

discussions.
yCorresponding author: Department of Econometrics, Free University Amsterdam, De Boele-

laan 1105, NL-1081 HV Amsterdam, email: s.j.koopman@econ.vu.nl

zEconometric Institute, Erasmus University Rotterdam, P.O. Box 1738, NL-3000 DR, Rotter-

dam, The Netherlands, email: franses@few.eur.nl

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Erasmus University Digital Repository

https://core.ac.uk/display/18512911?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Introduction

A key reason for the application of seasonal adjustment methods is that intra-year

seasonality can blur the analysis of the trend and the business cycle in macro-

economic time series variables. Seasonal adjustment methods transform observed

time series data into estimated data, where these estimated data are constructed

such that they show no or almost no seasonal variation. The two main methods

for seasonal adjustment are based on (versions of) the Census X-12 program, see

Findley et al. (1998), and on various parametric models, see for example Maravall

(1995). One of the advantages of the model-based methods is that these methods

not only give seasonally adjusted data but also can provide their associated con�d-

ence intervals. Indeed, to enable a proper interpretation of seasonally adjusted data,

it seems important that the estimated adjusted data come along with a measure of

their uncertainty.

One particularly useful time series model for seasonal adjustment is the basic

structural time series model [BSM], see Harvey (1989) among others. This model

assumes that an economic time series can be decomposed into trend, cycle, seasonal

and irregular components. Given certain assumptions on the model structure, these

unobserved components can be estimated for the available data. Once the seasonal

component is determined, a seasonally adjusted time series can be constructed in a

fairly trivial way. A nice feature of the BSM is also that con�dence bounds for such

a seasonally adjusted series can be easily constructed. These bounds are a function

of all the estimated variance parameters in the structural model, see Burridge and

Wallis (1985).

The usual premise of the BSM is that the variance of each of the components is

constant. Burridge and Wallis (1990) consider the extension to the case where the

seasonal component can have some seasonal heteroscedasticity, and, given the recent

empirical �ndings in Jaditz (2000), this can sometimes be a useful extension. In this

paper we take a slightly di�erent perspective by addressing the possibility that the

variance of the seasonal component in a macroeconomic time series somehow de-

pends on the business cycle. The empirical results in Canova and Ghysels (1994)
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and Franses (1995), among others, suggest that seasonal variation in several macro-

economic variables di�ers with the business cycle, and hence it seems important to

take account of such variation. The main purpose for doing so is that one can expect

that there is more uncertainty in recession periods, and somehow this uncertainty

should be assigned to each of the components. Ooms and Franses (1997) document

that in times of recession the seasonal component in US unemployment series be-

comes larger in the �rst quarter and smaller in other quarters, but the origin of

such variation is not exactly clear. On the other hand, while calculating con�dence

bounds for seasonally adjusted data, one would explicitly want to allow for possibly

more uncertainty during recession periods. In this paper we therefore extend the

BSM by allowing for a business-cycle dependent variance in the level equation. Next

we show how this e�ects the con�dence intervals of seasonally adjusted data.

The outline of our paper is as follows. In x2, we discuss some aspects of the basic

structural model, with a speci�c focus on the construction of con�dence intervals

for seasonally adjusted data. In x3, we extend the BSM by allowing for a business-

cycle dependent variance, and we show how this changes the con�dence intervals for

adjusted data. In x4, we apply our extended BSM to monthly US unemployment.

As an indicator for business cycle variation we take changes in the oil price1. We �nd

that our model �ts the data well, and in fact signi�cantly improves upon the BSM.

Additionally, we show that the estimated con�dence intervals for seasonally adjusted

unemployment change with past changes in the oil price. In x5, we conclude with
some remarks.

2 Basic Structural Time Series Model

In this section we discuss various aspects of the BSM, including the computation of

con�dence bounds for seasonally adjusted data.

1Needless to say that lots of other useful explanatory variables (indicators) can be considered.

Practitioners may want to make a choice between available leading indicators, business survey data,

or all kinds of key economic variables. In this paper we take the oil price mainly for illustrative

purposes and for convenience.
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2.1 Basic components

The structural time series model is based on the basic principle that a time series

consists of interpretable unobserved components such as a trend, seasonal, cycle and

irregular. The basic structural time series model (BSM) is given by

yt = �t + t + "t; t = 1; : : : ; n; (1)

where yt represents the actual time series with n observations. The time series

components, that is, level �t, seasonal t and irregular "t are unobserved and modeled

by stochastic processes. A simple model for the trend is the random walk as given

by

�t+1 = �t + �t; �t � N(0; �
2

�); (2)

with �1 � N(0; �) where one can take � as arbitrarily large. This initial condition

for �1 indicates that no information is available about �1. By introducing a slope

term �t which is also generated by a random walk, we obtain the model

�t+1 = �t + �t + �t; �t � N(0; �2�);

�t+1 = �t + �t; �t � N(0; �2�);
(3)

with �1 � N(0; �). If �t = �t = 0 then �t+1 = �t = �, say, and �t+1 = �t + �.

In that case, the trend is exactly linear and (3) reduces to the deterministic linear

trend model. The speci�cation (3) with �2� > 0 and �2� > 0 allows the trend level

and slope to vary over time.

Various speci�cations for the seasonal component t exist. In this paper we adopt

the trigonometric form which for the case of a monthly time series is given by

t = 1t + : : :+ 6t; (4)

where �
j;t+1


�

j;t+1

�
=

�
cos �j sin�j
� sin�j cos�j

��
jt


�

jt

�
+

�
!jt

!
�

jt

�
;

with frequency �j = �j=6, for j = 1; : : : ; 6. The disturbances are serially and mu-

tually uncorrelated and they are normally distributed with mean zero and variance

matrix

Var

�
!jt

!
�

jt

�
= �

2

!jI2;
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where Ik is the k � k identity matrix. Each initial seasonal value j1 and 
�

j1 for

j = 1; : : : ; 6 is modeled by the non-informative prior distribution N(0; �). Finally,

for 6t we have �6 = � and sin�6 = 0 so that �6t does not have an inuence on

6t and it can therefore be excluded from the model. The !jt's and !
�

jt's can be

restricted to have a common variance �2! but we allow them to have di�erent vari-

ances. Finally, we take the irregular as a normally random variable with mean zero

and variance �2". The irregular and all other disturbances are mutually uncorrelated,

both contemporaneously and between di�erent time periods. More details about the

basic model and its dynamic properties are given by, for example, Harvey (1989) and

Proietti (2000).

The unknown parameters in this basic model are the variances �2", �
2
� , �

2
� and

�
2
!1; : : : ; �

2
!6. These can be estimated by maximum likelihood and since these are

restricted to be non-negative, we estimate the logs of the variances rather than

the variances themselves. These transformed parameters will be collected in the

parameter vector  .

2.2 Parameter estimation

The Kalman �lter equations produce the one-step-ahead prediction errors vt = yt�
E(ytjy1; : : : ; yt�1) = yt � E(�t + tjy1; : : : ; yt�1) together with its variance ft =

Var(ytjy1; : : : ; yt�1) = Var(vt) for a given time series yt (t = 1; : : : ; n) and for a

given model represented in state space. An introduction to these matters is given

by Harvey (1993) and Durbin and Koopman (2001), among others. The classical

result of Schweppe (1965) implies that the likelihood can be presented in terms

of prediction errors using the so-called "prediction error decomposition". The log-

likelihood function is then given by

logL(y; ) = �fn log 2� +
nX

t=d+1

(log ft +
v
2
t

ft
)g=2;

where d is the number of initial components with the arbitrarily large variance �

in the model. For a given model, the errors vt depend on the given time series yt

and the parameter vector  and the variances ft depend only on  . Numerically
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maximizing logL(y; ) with respect to  leads to maximum likelihood estimates of

the unknown variances of the model.

2.3 Model speci�cation diagnostics

Once the parameter vector has been estimated, it is common practice to check

whether the model under investigation is correctly speci�ed. For this purpose, we

can compute some basic diagnostic statistics for testing the underlying assumptions

of normally distributed, serially uncorrelated and homoskedastic one-step-ahead pre-

diction residuals, which we standardize to obtain ut = vt=
p
f t (t = d+ 1; : : : ; n).

Furthermore, we can compute estimators of disturbances using all observations

and we refer to them as smoothed estimators. For example, the smoothed level

residual is de�ned as �̂t = E(�tjy1; : : : ; yn) with variance Var(�tjy1; : : : ; yn). Such

full-sample estimators can be computed using so-called smoothing algorithms. Time

series plots and basic diagnostics for testing against normality are useful in identify-

ing outlying residuals. In the case of "t, an outlying residual may indicate an outlying

observation while in the case of �t it may indicate a structural break in the time

series. Thus smoothing disturbances are used to identify and to distinguish between

outliers, structural breaks, slope breaks and other irregularities in the time series

process. Such diagnostic procedures have been discussed by Harvey and Koopman

(1992) and de Jong and Penzer (1998).

2.4 Seasonal adjustment with con�dence intervals

A satisfactorily estimated model can be used as a tool to further investigate the

properties of a time series. For example, we may estimate the level and seasonal

components using all observations. The estimated trend reects the underlying long-

term movement of the time series. The seasonal component informs us about the

seasonal variation within a year (or some other interval) which may change slowly

over time.

Economic theories usually apply to stable relationships in the long-term and

hence seasonal variation can be viewed as part of the noise in time series. This

explains why empirical work in economics is often based on seasonally adjusted data.
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In our view, the optimal strategy would be to analyze seasonally unadjusted data and

to model the seasonal variation simultaneously with other parts (components) of the

model. In any case, when seasonal adjustment is required, it should be based on a

model. When the structural time series model is used, seasonal adjustment is carried

out by simply subtracting the estimated seasonal component ̂t = E(tjy1; : : : ; yn)
from the time series yt (t = 1; : : : ; n). Since an analysis based on the Kalman �lter

and the associated smoothing algorithm also provides variances of the estimated

components such as Var(tjy1; : : : ; yn), we can construct con�dence intervals for the

estimated seasonal component but also for the seasonally adjusted time series. The

latter will be the main focus of the paper.

3 The BSM with heteroscedasticity

In this section we discuss various extensions of the BSM, which allow for time-varying

con�dence intervals around the estimated components in the BSM.

3.1 Seasonal heteroscedasticity

Various forms of heteroscedasticity may exist in time series data and they should

be modeled explicitly to obtain e�cient estimates. A particular form of seasonal

heteroscedasticity appears when di�erent variances of disturbances apply to di�er-

ent seasonal periods. For example, observations of December can perhaps be more

di�cult to predict than observations of other months due to the Christmas celebra-

tion. Therefore the variance associated with the measurement errors of December

should be larger compared to the errors of other months. Examples of this type

of heteroscedasticity are given by Harvey, Koopman and Riani (1997) and Proietti

(1998). Similar forms of heteroscedasticity can be applied to other disturbances in

a structural time series model.

3.2 Trigonometric seasonal heteroscedasticity

Another form of seasonal heteroscedasticity is associated with the trigonometric

speci�cation of the seasonal component in the structural time series model. For the
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trigonometric seasonal component (4) we usually assume that the disturbances !jt

and !
�

jt are homogeneous for j = 1; : : : ; 6 such that we restrict the variances of

these disturbances to be equal to each other, see Harvey (1989, x2.3.4). However,

it is regularly found for monthly time series that the seasonal cycle at a higher

frequency, say 1t, varies more over time compared to the seasonal cycle at a lower

frequency, say 6t. This requires that we should allow for di�erent variances for

di�erent frequencies. The implied generality is already introduced for the seasonal

component (4) of the structural time series model. The variances for !jt and !
�

jt

remain restricted to be equal since they both contribute equally to the variation of

jt, for j = 1; : : : ; 6.

3.3 Trend heteroscedasticity

Economic conditions vary over time and many economic variables display a cyclical

behaviour which is usually referred to as the business cycle. When the economy

is in a transition from a recession to an expansion, for example, the local dynamic

properties of the trend may be di�erent compared to the trend when stable economic

conditions apply. Therefore, time series properties of economic data are not neces-

sarily homogeneous between di�erent time periods. For example, the local properties

of a time series of house construction �gures will be di�erent depending on the state

of the economy.

An alternative strategy for allowing for this type of heteroscedasticity is to

identify, say, two di�erent conditions of the economy such as decline (recession)

and growth. Parameters a�ected by the di�erent conditions can switch between two

possible values. When the state of the economy in the business cycle cannot be

observed, Hamilton (1989) proposed a Markov-switching model in which the switch-

ing depends on a latent unobserved variable. The Markov-switching technique has

been later introduced to unobserved components models by Kim and Nelson (1999)

and Luginbuhl and de Vos (1999). In this paper we explicitly include explanatory

variables to indicate a recession.

Trend heteroscedasticity can be incorporated in the structural time series model

(1) by introducing time-varying variances for the level disturbances. In particular,
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we can specify the variance of the disturbance associated with the level component

as

�
2

�;t = exp(�0 + �1zt); (5)

where zt is an exogenous variable which may provide some information concern-

ing the business cycle. This speci�cation is easily generalized by including other

exogenous variables and lagged values of such variables.

3.4 Representation and estimation

The heteroscedastic model can be presented in a time-varying state space model.

The stochastic components are placed in the state vector �t to obtain the 13 � 1

vector

�t =

0
BBBBBBB@

�t

�t

1t


�

1t

...

6t

1
CCCCCCCA
:

The basic model in state space is given by

yt = Z�t + "t; �t+1 = T�t + �t; (6)

where row vector Z selects the appropriate elements for yt and is given by

Z = (1; 0; 1; 0; 1; 0; 1; 0; 1; 0; 1; 0; 1):

The transition matrix T is the 13� 13 identity matrix except for the elements

T (1; 2) = 1;

T (1 + 2j; 1 + 2j) = T (2 + 2j; 2 + 2j) = cos�j;

�T (2 + 2j; 1 + 2j) = T (1 + 2j; 2 + 2j) = sin�j;

T (13; 13) = �1;
for j = 1; : : : ; 5. The disturbance "t is normally distributed with mean zero and

variance �2". The vector �t consists of disturbances associated with the elements of

the state vector �t and is normally distributed with mean vector zero and diagonal

variance matrix 
 with elements

(�2�; �
2

� ; �
2

!1; �
2

!1; �
2

!2; �
2

!2; �
2

!3; �
2

!3; �
2

!4; �
2

!4; �
2

!5; �
2

!5; �
2

!6):
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All disturbances are mutually and serially uncorrelated. The initial state vector is

assumed to be a draw from a di�use distribution, that is,

�1 � N(0; �I13)

with � arbitrarily large.

The state space form of the basic model with trend heteroscedasticity is the same

except that the �rst diagonal element of 
, corresponding to the level residual �t, is

time-varying and given by (5). The variance matrix for the state disturbance vector

�t is therefore time-varying and denoted by 
t for t = 1; : : : ; n. The parameter

vector  consists of logged variances and of the coe�cients �0; �1 of the logged

variance �2�;t.

When the model in state space form is time-varying, the Kalman �lter can still be

used to compute one-step-ahead prediction errors together with their variances. The

likelihood function of the model can therefore be computed via the Kalman �lter.

Seasonally adjusted data with con�dence intervals can be obtained by applying a

smoothing algorithm which allows for time-varying state space matrices.

3.5 Explanatory variables and interventions

In our empirical analysis below we will introduce explanatory and intervention vari-

ables in the models. Explanatory variables and intervention e�ects are easily allowed

for in the basic structural model. Suppose that we have k regressors x1t; : : : ; xkt with

regression coe�cients �1; : : : ; �k which are constant over time and that we also wish

to measure the change in level due to an intervention at time � . We de�ne this

intervention variable wt as follows:

wt = 0; t < �;

= 1; t � � :

Adding the above variables to the model (1) gives

yt = �t + t +

kX
j=1

�jxjt + �
�

wt + "t; t = 1; : : : ; n: (7)

We see that �� measures the change in the level of the series at a known time � due

to an intervention at time � . The resulting model can readily be put into state space
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form. For example, if t = �
� = 0, k = 1 and if �t is determined by a random walk

model, we can take

�t =
�
�t �1t

�
0

; Zt =
�
1 x1t

�
;

T =

�
1 0

0 1

�
; �t =

�
�t

0

�
;

in (6). Here, although we have attached a su�x t to �1 it is made to satisfy �1;t+1 =

�1t so it is constant. We note here that row vector Z has become time-varying and

therefore requires a subscript t. Another example of an intervention variable is the

outlier intervention variable de�ned by

wt = 0; t < � ; t > � ;

= 1; t = � :

In the next section we consider the application of (7) with heteroscedasticity.

4 Seasonal adjustment of unemployment �gures

In this section we illustrate that taking into account explanatory variables and het-

eroscedasticity matters substantially for the width of con�dence intervals around

seasonally adjusted unemployment data.

4.1 Data and software

We investigate the seasonal adjustment of monthly US total unemployment (UN-

EMPL) for the period between January 1960 and July 1997, that is a total of 451

observations. The data had been obtained from the Bureau of Labor Statistics (BLS)

from which we also have obtained monthly oil prices (in logs) pt.

The time-invariant BSM of x2, including its extensions with explanatory and

intervention variables, can be analyzed using the program STAMP 6.0 of Koopman,

Harvey, Doornik and Shephard (2000) . Models with time-varying heteroscedastic

features such as the ones discussed in x3 cannot be analyzed using STAMP. For this

purpose we have used the object-oriented matrix language Ox 2.2 of Doornik (1998)

together with the state space functions in SsfPack 2.2 of Koopman, Shephard and

Doornik (1999) 2.

2Details can be obtained from http://www.ssfpack.com. Data and programs can be obtained
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1960 1965 1970 1975 1980 1985 1990 1995

5000

10000

y_t : unemployment

1960 1965 1970 1975 1980 1985 1990 1995

2

3

4 p_t: oil price

1960 1965 1970 1975 1980 1985 1990 1995

.1

.2
pp_t: positive oil price shocks

Figure 1: Unemployment yt (measured by thousands of unemployed individiuals);

Oil price pt (in logs of US dollars); Positive oil price shocks ppt (positive price

di�erence of oil prices in logs).

4.2 Model-based seasonal adjustment

4.2.1 Mean speci�cation

In the case of a structural time series model without explanatory variables, the mean

equation consists of level and seasonal components. During the process of estimation

and diagnostic checking, we may detect irregular observations such as outliers and

structural breaks; see also the discussion in x2.3. It is standard practice in time

series analysis to allow for such observations by introducing intervention variables

into the model. The coe�cients of the interventions will be part of the state vector

and estimation is done by means of the Kalman �lter.

4.2.2 Variance speci�cation

The default variance speci�cation is based on homogeneity, that is, constant vari-

ances for disturbances associated with the level, slope, seasonal and irregular com-

from http://www.econ.vu.nl/koopman/seasadj/.
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ponents. This implies that the default model is (1) with the restriction that all

seasonal variances are equal, that is,

�
2

!1 = : : : = �
2

!6 = �
2

!:

The inclusion of di�erent variances for di�erent seasonal frequencies in the trigo-

nometric speci�cation of the seasonal component will be referred to as seasonal

heteroscedasticity.

The speci�cation of trend heteroscedasticity depends on the choice of the exo-

genous variable zt in (5). Since we want to investigate whether the underlying trend

uncertainty of unemployment is higher during a recession and since, especially in

the 1970s and 1980s, oil price is believed to be an important leading variable for

recessions, we use a constructed variable based on the oil price to model the trend

heteroscedasticity. Generally speaking, positive oil price shocks lead to price in-

creases and a higher burden for manufacturing and therefore output is bound to

decrease after some burning-in period. A simple weighted sum, where weights are

distributed by a triangular shape, of positive changes in oil price can be an e�ective

measure. For example, we have found that the indicator

ppt =

3X
j=�3

4� jjj
16

max(0;�pt�j);

is appropriate for this purpose. The oil price is a leading indicator and therefore we

may want to allow ppt to enter the variance speci�cation of the trend with some lag

P . The constructed ppt series as de�ned is given in Figure 1.

4.2.3 Model speci�cations

We consider the following model speci�cations in our empirical analysis of the un-

employment data:

� (a) basic structural model;

� (b) basic model with seasonal heteroscedasticity;

� (c) basic model with restricted seasonal heteroscedasticity;
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� (d) basic model with trend heteroscedasticity;

� (e) basic model with both seasonal (c) and trend (d) heteroscedasticity;

4.3 Empirical results

We start with the BSM. We �nd that it is required to include a level intervention

for January 1975 and an outlier intervention for January 1986 in this model. The

January 1975 observation corresponds with an unexpected increase of about 1 million

unemployed. Furthermore, in January 1986 we have found an irregularity in the data

which might have been caused by a rede�nition of unemployed workers. An outlier

intervention was appropriate to allow for this. These e�ects for the basic model are

estimated as 1122 (194; 5:785) for the January 1975 break and �529 (136;�3:890)
for the January 1986 outlier with standard error and t-value given in parentheses.

These interventions are also included in all other models considered in this paper

and give similar estimation results.

Table 1: Estimation output for BSM speci�cation (1)

stand.dev estimate q-ratio

�" 15.6 0.0911

�� 171. 1.0000

�� 26.4 0.1542

�! 4.07 0.0238

Diagnostics

N 2.28

H 1.30

DW 1.97

Q(20) 27.76

R2 0.20

Estimates of standard deviations are reported together with q-ratios which are de�ned as the stand-

ard deviation divided by the largest standard deviation. Diagnostics include N, the �2
2
normality

test statistic, H, the Goldfeld-Quandt F(150,150) test for heteroscedasticity, DW, the Durbin-

Watson test for serial correlation, Q(20), the �
2

17
Box-Ljung portmanteau statistic, and R2, a

measure of �t against a random walk plus drift model with �xed seasonal dummies.

Model parameter estimates and some diagnostic test statistics applied to the

standardized one-step-ahead prediction errors ut for the basic model are reported in
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Table 1. The estimated components are presented in Figure 2. We may conclude that

the basic model is capable of extracting the main features of the model. However,

the model does not seem to have captured all dynamics satisfactorily since the Box-

Ljung Q(20) statistic is relatively large.

1960 1970 1980 1990

2500

5000

7500

10000

12500
unemployment Trend

1960 1970 1980 1990

-100

0

100

Slope

1960 1970 1980 1990

-500

0

500

Seasonal

1960 1970 1980 1990

-2

0

2

Irregular

Figure 2: Estimated components: Trend, Slope, Seasonal and Irregular

The �rst extension of the basic model concerns seasonal heteroscedasticity in

terms of the trigonometric speci�cation. Instead of having one seasonal variance,

that is model speci�cation (a), we consider six di�erent variances (an increase of

�ve parameters) and this model is labelled as (b). The resulting estimates of the

variances are reported in Table 2. The variances associated with the frequencies 2

and 4 are su�ciently close, as well as the ones associated with frequencies 3, 5 and

6, to restrict these variances accordingly. This model is labelled as (c) in Table 2

and it produces a loglikelihood value which was su�ciently larger than its value for

the basic model (a) which is reected by the smallest Akaike information criterion

for model (c). It is remarkable that the Box-Ljung statistic Q(20) is much lower for

the preferred model (c) compared to (a). This emphasizes that accurate modeling
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of seasonal dynamics is important in time series modeling.

Table 2: Parameter estimates for models with seasonal heteroscedasticity

Model speci�cations

(a) (b) (c)

�" 15.6 50.0 45.4

�� 171. 149. 152.

�� 26.4 30.7 30.0

�!1 4.07 11.6 11.3

�!2 4.07 6.31 5.67

�!3 4.07 3.65 3.27

�!4 4.07 5.23 5.67

�!5 4.07 2.78 3.27

�!6 4.07 3.38 3.27

log.lik -2989.33 -2986.79 -2986.99

nr.pars 4 9 6

nr.state 15 15 15

AIC 13.34 13.36 13.33

Q(20) 27.76 16.97 17.42

Estimates of standard deviations are reported for model speci�cations (a), (b) and (c). Further

the loglikelihood value (log.lik) is reported of the estimated model together with the number of

estimated parameters (nr.pars) and the dimension of the state vector (nr.state). Finally, AIC is

the Akaike information criterion and Q(20) is the �2
17

Box-Ljung portmanteau statistic.

We now consider the trend heteroscedastic extension of the basic model. The

time-varying variance for the trend component is speci�ed in (5) and we take zt as

the lagged positive oil price (in logs), that is

�
2

�t = exp(�0 + �1ppt�P );

for some positive value P . Some experimentation suggested that the optimal lag

was equal to P = 9. The resulting model is labelled as (d) and the corresponding

estimation results are reported in the �rst column of Table 3. Note that the estimated

value for �0 is log �̂
2

� = log 134: = 4:86. The standard error of the estimated �1 is

1:56 so that we conclude that trend heteroscedasticity signi�cantly improves the �t

of our model. This conclusion is con�rmed by the increase of the loglikelihood value,

that is, when comparing the loglikelihood values of models (a) and (d).
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The model that allows for trend and seasonal heteroscedasticity is labelled as

(e) and the estimation results for this model are also reported in Table 3. This

model (with P = 9) leads to the highest loglikelihood value and the smallest AIC

and it is therefore our preferred model. Since in empirical time series analysis it is

not often that we �nd signi�cant heteroscedastic e�ects in variances of unobserved

components, we strongly believe that it may well be essential to include time-varying

variances in the speci�cation of trend components for time series which are subject

to business-cycle e�ects such as unemployment �gures.

Table 3: Parameter estimates for models trend heteroscedasticity

Model speci�cations

(d) (e)

�" 12.5 40.2

�� 134. 121.

�� 28.1 29.0

�!1 4.47 13.8

�!2;4 4.47 5.64

�!3;5;6 4.47 3.52

�1 4.55 4.55

log.lik -2984.75 -2980.31

nr.pars 5 7

nr.state 15 15

AIC 13.32 13.31

Q(20) 13.22 14.04

Estimates of standard deviations are reported for model speci�cations (d) and (e). Further the

loglikelihood value (log.lik) is reported of the estimated model together with the number of esti-

mated parameters (nr.pars) and the dimension of the state vector (nr.state). Finally, AIC is the

Akaike information criterion and Q(20) is the �2
17

Box-Ljung portmanteau statistic.

4.4 Seasonal adjustment of unemployment �gures

The seasonally adjusted �gures for unemployment based on our estimated are com-

puted by means of Kalman �ltering and smoothing and they are constructed as

ŷ
SA
t = �̂t + "̂t; t = 1; : : : ; n;
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see also x2.4. These �gures are estimates and subject to error for which standard

deviations can be computed. For the basic model, the standard error of seasonally

adjusted data is constant for all time periods in the middle of the sample and it

starts to get larger when we get closer to the end of the sample (or the beginning)

since the number of observations surrounding a particular time point decreases. The

introduction of seasonal heteroscedasticity will result in di�erent standard errors for

di�erent seasonal periods but the di�erences are usually small. The inclusion of

trend heteroscedasticity leads to di�erent standard errors for di�erent time periods.

For our model (e) we �nd that in times of recession the standard errors are higher

than in times of no recession. This reects well on the fact that in times of recession,

more uncertainty exists within the economy and it is therefore harder to identify the

estimated trend during these periods.

In our model the seasonally adjusted data is the sum of the estimated trend and

irregular. The di�erences in width of the con�dence intervals are indicated by twice

the standard errors and they are reported in Table 4 for models (a), (c) and (e). We

present the results for the typical years of 1980 (recession) and 1996 (no recession).

It is concluded that the di�erences in standard errors among the three models are

pronounced in 1980 while in 1996 the con�dence intervals are more or less equal.

The percentage increase of the width of the con�dence interval due to the recession

period is, on average, about 34% for model (e) compared to model (a).

5 Concluding remarks

In this paper we have constructed a structural time series model, which allows the

con�dence intervals around the seasonally adjusted data to depend on business cycle

conditions. We discussed representation, estimation, and computational issues. We

illustrated the model for a US unemployment series, and we found substantial evid-

ence in favor of our model. Next, we showed that the estimated con�dence interval

around seasonally adjusted unemployment can be much wider in a recession period

than in an expansion period. As such, we believe that our model can contribute to

a better understanding of seasonally adjusted data.
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Table 4: Standard errors (two times) for model-based seasonally adjusted �gures

period 2SE model (a) 2SE model (c) 2SE model (e)

1980.1 160.12 159.14 214.14

1980.2 160.12 158.32 212.63

1980.3 160.12 161.75 216.83

1980.4 160.12 160.93 216.02

1980.5 160.12 157.38 211.92

1980.6 160.12 158.62 212.48

1980.7 160.12 162.29 217.01

1980.8 160.12 162.08 216.85

1980.9 160.12 157.57 212.14

1980.10 160.12 159.59 213.70

1980.11 160.12 160.93 216.44

1980.12 160.12 161.21 216.29

1996.1 160.12 159.14 158.63

1996.2 160.12 158.32 157.97

1996.3 160.12 161.75 161.29

1996.4 160.12 160.93 160.10

1996.5 160.12 157.38 157.14

1996.6 160.12 158.62 157.98

1996.7 160.12 162.29 161.49

1996.8 160.12 162.08 161.28

1996.9 160.12 157.57 156.34

1996.10 160.12 159.59 158.91

1996.11 160.12 160.93 160.17

1996.12 160.12 161.21 160.94

Admittedly, we illustrated our model for only one unemployment series, while

using only one variable that can indicate business cycle uctuations. Naturally, we

are aware of the fact that other macroeconomic variables could have been used for

both purposes. In order to see whether our model is useful in general, it should

be considered in other situations, and we plan to do so in the future. Another

further topic would be to see whether our model can lead to policy decisions, other

than those based on the standard model. Finally, it is of interest to see if business

cycle conditions have common e�ects on the con�dence intervals of several seasonally

adjusted series
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