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Abstract 

Examples of descriptive models for changing seasonal patterns in economic time series are autoregressive models with 
seasonal unit roots or with deterministic seasonal mean shifts. In this paper we show through a forecasting comparison for 
three macroeconomic time series (for which tests indicate the presence of seasonal unit roots) that allowing for possible 
seasonal mean shifts can improve forecast performance. Next, by means of simulation we demonstrate the impact of 
imposing an incorrect model on forecasting. We find that an inappropriate decision can deteriorate forecasting performance 
dramatically in both directions, and hence we recommend the practitioner to take account of seasonal mean shifts when 
testing for seasonal unit roots. © 1997 Elsevier Science B.V. 
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1. Introduct ion  

Quarterly growth rates of  many macroeconomic 
variables observed for a few decades typically do not 
display a constant seasonal pattern over time, see e.g. 
Hylleberg (1994) for some illustrative graphs. Sever- 
al time series models have been proposed to describe 
such unstable patterns. One approach is given by 
imposing unit roots at the seasonal frequencies in the 
autoregressive [AR] part of  a model, which corre- 
sponds to the assumption of  a changing seasonal 
pattern caused by seasonal stochastic trends, see 
Hylleberg et al. (1990). Another approach is to 
introduce periodically varying AR parameters, see 
among others Osborn (1988) and Franses (1996). Yet 
another method amounts to allowing deterministic 
changes in the seasonal means. Such deterministic 
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seasonal mean shifts can occur for example when 
two sources of data are combined or when a statisti- 
cal agency introduces new measurement methods. In 
this paper, we focus on the first and third approach, 
and we compare their relative merits in terms of  
out-of-sample forecasting. 

The influence of  seasonal mean shifts on testing 
for seasonal unit roots has been analyzed in Ghysels 
(1994); Franses and Vogelsang (1997) and Franses et 
al. (1997) among others. It appears that neglected 
deterministic seasonal mean shifts bias the outcomes 
of seasonal unit root tests towards non-rejection, 
which is similar to the findings in Perron (1990) for 
the nonseasonal case. It seems therefore necessary to 
allow for possible seasonal mean shifts when testing 
for seasonal unit roots in order to avoid overdif- 
ferencing. Since overdifferencing usually results in 
many lagged regressors in AR models, one may 
expect forecasting performance to depend on the 
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appropriate description of changing seasonality. In 
this paper we investigate through simulations the 
effects of neglecting and imposing seasonal mean 
shifts on the forecasting performance of univariate 
AR models. We compare forecasts from AR models 
with one or more seasonal unit roots with forecasts 
from models with deterministic seasonal mean shifts. 

The outline of our paper is as follows. In Section 2 
we discuss the two models of interest and compare 
their forecast performance for three macroeconomic 
consumption series t o  illustrate the focus of this 
paper. To show the effects of seasonal mean shifts 
on the forecasting performance of AR models with 
seasonal unit roots and vice versa, we perform 
several Monte Carlo experiments in Section 3. In 
Section 4, we conclude this paper by giving some 
practical suggestions. 

2. Seasonal  unit  roots  and seasonal  m e a n  shifts 

A procedure to test for seasonal unit roots in a 
quarterly time series, Yt, t = 1 . . . . .  T, is developed 
by Hylleberg et al. (1990) [HEGY]. This procedure 
is based on the auxiliary regression model 

4 

d4y  , = ~ .  Ix .D.  + y T  t + 7rlYl,t_ 1 + 7"r2y2,,_ l 
s=l 

k 

+ W3Y3,t-2 + 7r4Y3,t-i + Z  q~iA4yt-i + "~t, 
i - I  

(1) 

where /)st represent the usual seasonal dummies 
(s= 1, 2, 3, 4), T, is a deterministic trend term 
(T,=0, 1, 2 . . . .  ), A i y , = y , - y , _  i, and where ~, is 
assumed to be a standard white noise process. The 
terms 

Yl,t -= (1 "t-B + B 2 + B3)yt  =Y t  q-Y t - I  -t-Yt-2 + Y t - 3  

y2.t = (--1 + B - B Z + B 3 ) y ,  

= - Y t  "t-Yt-I  - Y t - 2  + Y t - 3  (2) 

Y3.t = ( -  1 + B2)y, = - y, + Y,-2,  

with Biyt  = Yt - i ,  can be seen as error correction 
terms such that the insignificance of the N parame- 
ters corresponds to the presence of seasonal and 

nonseasonal unit roots. In fact, if 7rt =0, the series 
has a unit root at the zero frequency, which implies 
that the series has a nonseasonal stochastic trend. 
The appropriate differencing filter in that case is 
( 1 - B ) .  A unit root at the bi-annual frequency ( -1) ,  
i.e. two cycles per year, corresponds with ~'2 = 0. The 
presence of this unit root implies that the differenc- 
ing filter (1 +B)  is appropriate. If % =0  and 7r4=0 
the series contains the roots i and - i ,  i.e. seasonal 
unit roots at the annual frequencies, which corre- 
sponds to one cycle per year and to the filter (1 + 
BZ). Applying OLS to (1), the significance of the ~, 
parameters can be checked by t- and F-tests. Simu- 
lated critical values of t-tests for the significance of 
the ~ ' s  and an F-test for the significance of 7r 3 and 
7r 4 are tabulated in Hylleberg et al. (1990). 

A typical outcome of an application of the HEGY 
method is that macroeconomic time series tend to 
have one or more seasonal unit roots. For example, 
Osborn (1990) detects seasonal unit roots in six out 
of thirty UK macroeconomic variables. Otto and 
Wirjanto (1990) obtain similar results for Canadian 
macroeconomic time series and Hylleberg et al. 
(1993) find that several country-specific Gross 
Domestic Product series have one or more seasonal 
unit roots. 

The influence of seasonal mean shifts on seasonal 
unit root inference is analyzed in several recent 
papers. For example, Franses and Vogelsang (1997) 
find that the evidence for the bi-annual unit root - 1 
in USA Industrial Production disappears, when a 
seasonal mean shift is added to the test regression 
(1). With Bayesian methods, Franses et al. (1997) 
show that the evidence for seasonal unit roots in 
three consumption series tends to disappear when 
one allows for a possible seasonal mean shift. The 
series in this last paper are the log of real Total 
Consumption of Sweden, 1963.1-1988.4, the log of 
real Total Consumption of the UK, 1955.1-1988.4, 
and the log of real Nondurable Consumption in the 
USA, 1947.1-1991.4. For expository purposes, we 
re-analyze these series within the light of out-of- 
sample forecasting. Table 1 shows the results of the 
standard HEGY test for unit roots using test regres- 
sion (1). The test regression contains seasonal dum- 
mies and a trend and the order k is based on the 
Lagrange Multiplier [LM] test for first-to-fourth 
order serial correlation in the residuals. From the first 
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Table 1 
HEGY test results and outcomes of the tests for the most l ikely breakpoint in a first difference model with seasonal mean shifts for three 

consumption series 

Country Period HEGY test" Breakpoint test" 

k t(Tr t ) t(Tr2) F(Tr~, rr4) p estimated r 

Sweden 63.1-88.4  8 - 1.54 1.25 3.64 5 1980.3 
UK 55.1-88.4  8 - 1.69 - 1.14 2.81 9 1977.2 

USA 47.1-91.4  6 - 0.43 - 2.24 5.06 9 1956.3 

"k denotes the order of the model in test Eq. (1). The 5% critical values of t(7"r~), t(~'2), and F(Tr~, 7r4) are - 3 . 5 3 ,  2.94, and 6.60 

respectively. 
hp denotes the order of the model in Eq. (5). 

part of  Table 1 we note that we cannot reject the 
presence of  the nonseasonal and the three seasonal 
unit roots for all three series, which indicates that we 
have to transform the series with the A 4 filter. This 
conclusion does not change if insignificant lags of  
fourth differences are removed in the kth order 
HEGY test regression. The AR orders of  the models 
in fourth differences turn out to be 8 for Sweden, 8 
for the UK, and 6 for the USA. 

Franses et al. (1997) consider an alternative model 
to describe these three consumption series, which is 
capable of describing seasonal mean shifts, i.e., 

4 4 

AlYt =E ~sDst + E 8*D,.,[I,>~] + rl,, (3) 
s--I ~'=1 

where [I,>_~] is 1 if t-----r and zero otherwise, and 
where r/, is some AR type error process. Hence, 
the quarterly intercepts are ~ for t < r and ~s + 87 
for t->r, s = l ,  2, 3, 4. Note that if N~= l 6 " ¢ 0 ,  
the annual drift term changes from N2=t ~, to 
E~_ l (~ ,+~*) .  Model (3) allows for a one-time 
change at time r in the seasonal means. The higher 
order dynamics enter the model by an AR(p)  struc- 
ture on 7/, in (3), or 

p 

~/, = ~'~ ~bir/, ~ + ~,. (4) 
i - 1  

Combining (3) with (4) leads to the following model 
for Aj y, 

4 4 

A,y,  = ~,  Ix, D ,  +~/x.*O,,[I ,>~l  
s--I s = l  

P 

+ E (d)iA, yt-~ + o6[l,=,-,+i]) + o°,, (5) 
i--I 

where [1,_ T ~+/] is 1 if t = r - l + i  and zero other- 
wise. The parameters ix s, /x* and a i are functions of  
the parameters 6,., 6 " ,  and ~bi, s = 1, 2, 3, 4 and i =  1, 
. . . .  p. The ce~ parameters accommodate the dy- 

namic adaptation of  the changing seasonal means. 
To construct the model with the seasonal mean 

shifts for our three consumption series, we first build 
a model in first differences. AR models of order 
p = 5 for Sweden, p = 9 for the UK, and p = 9 for the 
USA result in models without first-to-fourth order 
serial correlation in the residuals. In these models we 
add seasonal mean shifts like in (5) for different 
values of  r and test for the significance of  these 
seasonal mean shifts using an F-test on /x* =0 ,  
s =  1,2,3,4 and ~ = 0 ,  i =  1 ..... p. The value of r for 
which the F-test takes the largest value is taken as an 
estimate for the timing of  the seasonal mean shift, 
see Andrews (1993). The estimated values of  r, see 
the second part of  Table 1, correspond reasonably 
well with the posterior modes of  the breakpoint 
parameter in the Bayesian analysis of  Franses et al. 
(1997), which are given by 1979.3 for Sweden, 
1978.2 for the UK and 1957.4 for the USA, respec- 
tively. After imposing the seasonal mean shift we 
adjust the order of  the AR model in first differences. 
The definitive order of the AR model with seasonal 
mean shifts is 3 for the Swedish series, 1 for the UK 
series and 3 for the USA series, and we use these 
models for out-of-sample forecasting. 

To evaluate the fourth order differenced models 
and the seasonal mean shift models, we analyze their 
relative forecast performance. The sample is split up 
in an estimation and a validation period. For the 
USA and the UK we remove the last 24 observations 
to evaluate the forecasts. Since the seasonal mean 
shift for the consumption series of  Sweden occurs at 
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Table 2 
Forecasting performance of the seasonal unit root AR model versus the model with seasonal mean shifts for the three consumption series a 

Series One-step ahead Four-steps ahead 

period 85.1-86.4 85.1-88.4 85.4-86.4 85.4-88.4 

Sweden GFESMb 0.48 0.61 2.59 0.52 
F s w s  s 0.74 (0.42) 0.02 (0,89) 1.62 (0.27) 2.47 (0.14) 
Fss.suR 9.01 (0.02) 9.64 (0.01) 0.36 (0.58) 0.10 (0.75) 

period 83.1-85.4 83.1-88.4 83.4-85.4 83.4-88.4 

UK GFESM b 1.22 1.17 3.96 0.80 
Fsur.ss 3.45 (0.09) 4.44 (0.05) 4.53 (0.06) 0.91 (0.35) 
Fss,s w 0.87 (0.37) 0.46 (0.50) 0.00 (0.97) 1.96 (0.18) 

period 86.1-88.4 86.1-91.4 86.4-88.4 86.4-91.4 

USA GFESM b 1.40 1.24 3.23 4.77 
Fsw.s s 4.83 (0.05) 5.74 (0.03) 6.08 (0,04) 2.32 (0.14) 
Fss.s w 0.30 (0.59) 0.14 (0.71) 0.12 (0.74) 0.95 (0.34) 

~The models are estimated using the sample 63.1-84.4 for Sweden, 55.1-82.4 for the UK and 47.1-85.4 for the USA series. 
bThe top cells denote the ratio of the GFESM of the forecasts of the fourth difference model and the model with seasonal mean shifts. If the 
ratio exceeds 1, the model with seasonal mean shifts is preferred. FsuR,ss and Fss.svr denote the forecast encompassing tests in Eq. (6) with 
p-values between brackets. 

the end of the series, only the last 16 observations 
are removed. Table 2 shows the forecast perform- 
ance of both models according to the Generalised 
Forecast Error Second Moment [GFESM] criterion. 
This criterion is identical to the determinant of the 
covariance matrix of the 1 through h-step ahead 
forecast errors. For one-step ahead forecasts this 
criterion simplifies to the mean squared forecast 
error. An advantage of this criterion is that it is 
invariant to non-singular, scale-preserving linear 
transformations of the linear forecasting model, see 
Clements and Hendry (1993). The top cells in Table 
2 denote the ratio of the GFESM of the fourth order 
difference model and the seasonal mean shift model. 
If this ratio exceeds 1, the model with imposed mean 
shifts is preferred. 

For the Swedish series the one-step ahead fore- 
casts of the fourth order difference model are better 
than those of the seasonal mean shift model. For the 
UK and the USA, however, the one-step ahead 
forecasts of the seasonal mean shift model are better. 
For the USA series the same is true for the four-step 
ahead forecasts but for the UK and the Swedish 
series the model in fourth differences has a smaller 
GFESM when we evaluate four-step ahead forecasts 
for the whole forecasting period. 

Apart from comparing forecast criteria, we also 
compare the forecasting performance of competing 
models using forecast encompassing tests. Let YT+h 

and Yr÷h denote h-step ahead forecasts of the 
seasonal unit root model and the model with a 
seasonal mean shift, respectively. A forecast en- 
compassing test can be performed in the following 
test regression, 

Yr+h -- Yr+h = /3(Yr+h --Yr+h) + Ut, (6) 

where YT+h is the 'true' value of the series, see e.g. 
Clements and Hendry (1993). If fl does not sig- 
nificantly differ from zero, the forecasts of the 
seasonal unit root model encompass the forecasts of 
the seasonal mean shift model. We denote the F-test 
for the significance of /3 by Fsur.ss. Likewise, we 
can test whether the seasonal mean shift model 
encompasses the seasonal unit root model using an 
Fss,sur-test. 

Note that several situations can occur. If both the 
FsuR.ss-Statistic and the Fss,seR-Statistic are signifi- 
cant, neither of the two models produces superior 
forecasts. The latter occurs, when only one of the 
F-test values implies rejection of the null hypothesis. 
Finally, the forecasts of both models are not sig- 
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nificantly different, if neither of  the F- tes t  values 

indicates rejection. 
Table 2 shows the results of  the encompassing 

tests. For the Swedish series the one-step ahead 
forecasts of  the fourth difference model  encompass 
the forecasts from the seasonal mean shift model. 
For the UK and USA series, we arrive at the 
opposite conclusion. For the four-step ahead fore- 
casts, there is some evidence that the seasonal mean 
shift model  encompasses the fourth difference model 
for the UK and the USA series for the period 
1983.4-1985.4 and 1986.4-1988.4, respectively. 

In summary, we note that although the HEGY 
procedure selects a model with three seasonal unit 
roots, the seasonal mean shift model seems to 
produce more adequate forecasts for two out of  three 
series under consideration. In general, we can say 
that model  (5) describes changing seasonality as a 
deterministic change in the seasonal means of  a time 
series. This is in contrast to models with seasonal 
unit roots, which assume that the seasonal pattern 
changes due to a seasonal stochastic trend. Obvious- 
ly, it is not surprising that it is often difficult to 
decide between the two models in practice, although 
the above results show that an inappropriate choice 
may lead to biased forecasts. Incorrectly imposing 
seasonal unit roots leads to overdifferencing and 
hence to seasonal unit roots in the moving average 
part of  the model. This may have a negative in- 
fluence on forecasting accuracy. Neglecting a 
seasonal unit root and imposing a deterministic 
seasonal mean shift assumes that forecasts of  the 
observations in particular seasons are constant while, 
in fact, they are l ikely to change in the future. 
Furthermore, deterministic changes in the seasonal 
means can also occur outside the estimation sample 
and cannot be forecasted with a model  like (5). To 
detect seasonal mean shifts in the forecasting period 
one could think of  a recursive forecasting method in 
combination with Hendry ' s  predictive failure tests or 
Chow tests; see Hendry (1979). Notice that in this 
case one assumes the availabili ty of a hold-out 

sample. 
In the next section we investigate the effects of  

neglecting seasonal mean shifts or neglecting season- 
al unit roots on the forecasting performance of  AR 
models. Addit ionally,  we consider the forecast per- 
formance of  the seasonal mean shift model  and the 

model with seasonal unit roots for series with 
recurrent seasonal mean shifts and with seasonal 
means which evolve as martingales. The investiga- 
tion is restricted to detecting seasonal mean shifts in 
the sample and not in the forecast period. We decide 
to focus on AR models, since these are typically 
used in the context of seasonal unit roots and 
seasonal mean shifts. Furthermore, we focus on point 
forecasts instead of  interval forecasts. 

3. Monte Carlo experiments 

In this section, we use Monte Carlo techniques to 
analyze the impact of  seasonal mean shifts on 
forecasting performance. Several data generating 
processes [DGPs] are considered. 

The simulation experiment is performed in the 
following way. First we consider for the simulated 
series a model with possible seasonal unit roots. We 
test for seasonal unit roots using Eq. (1) with y =0 .  
The number of  lags k is determined using an LM test 
on first-to-fourth order autocorrelation in the re- 
siduals using a 5% significance level. We impose the 
unit roots indicated by the HEGY procedure, where 
we again adopt a 5% significance level, and we 
construct an AR model for the resulting transformed 
time series using the same LM test. The nonseasonal 
unit root is always imposed, since our main focus is 
on modeling the seasonal component.  

The second model is a model in first differences 
with four seasonal dummies. We determine the 
number of  lagged first differences using an LM test 
on first-to-fourth order autocorrelation in the re- 
siduals. In this model we include for all possible 
values of  r a seasonal mean shift as in (5). The 
estimate of  the timing of  the seasonal mean shift is 
determined by the largest value of an F-test  for 
/1,* = 0, s = 1, 2, 3, 4 and c~ i = 0, i = 1 . . . . .  p. After 
imposing the most likely seasonal mean shift, we 
construct an AR model and decide on its order again 
using the same LM test for serial correlation. We feel 
that this experiment mimics a useful empirical 
strategy in practice. 

Finally, we generate forecasts for A~y,  from the 
AR model selected by the HEGY procedure and 
from the AR model with seasonal mean shifts. 
Notice that the HEGY test may also indicate that no 
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seasonal unit roots are needed. We consider one-step, 
four-step and eight-step ahead forecasts for 16, 32, 
and 64 quarters. The forecasts are evaluated with the 
GFESM criterion and with the two encompassing 
tests using a 5% level of  significance. 

The Monte Carlo experiment is split up into three 
parts. In Section 3.1, we consider DGPs with season- 
al mean shifts. In Section 3.2, DGPs with seasonal 
unit roots are considered. Section 3.3 deals with 
other DGPs which incorporate recurrent changing 
seasonal means. 

3.1. DGPs with seasonal mean shifts 

The DGPs in this section are of  the form 

4 4 

A,y, = ~  I~sO, + ~  tx*~Ds,[I,>_~] + ~,, 
s = l  s = l  

~, ~ NID(O, 1). (7) 

Since we only focus on seasonal mean shifts, we 
impose that Z4_, /zs=0, and Z4=~ /z~ =0 ,  i.e., there 
are no annual drifts. We set the parameters as ~ = { 1, 
- 1 ,  1, - 1 }  and / x * = w  /~ with w = - 3  . . . . .  0, 
. . . .  3. The sample size T =  136 and the mean shift 

occurs at ~- = 69. The number of  replications is 5000. 
In Tables 3 - 6  we display results for DGPs with 

seasonal mean shifts. First, we consider the effect of  
the size of  the seasonal mean shift, denoted by w, on 
the forecast performance in Table 3. Each cell in 
Table 3 denotes the percentage that an AR model 
selected by the HEGY procedure forecasts better 
than a model with seasonal mean shifts (5) according 
to the GFESM criterion. Several conclusions can be 
drawn from Table 3. If  there is no seasonal mean 
shift (i.e., w = 0 )  the model selected by tests for 
seasonal unit roots forecasts better than the seasonal 
mean shift model in about 75% of the cases. Similar 
results are found for one-, four-, and eight-step ahead 
forecasts. For the DGPs with a seasonal mean shift, 
i.e. the case with w ~ 0 ,  the results are different. 
Already for a small mean shift the seasonal mean 
shift model is better than the model selected by the 
HEGY procedure in about 80% of the cases. This 
percentage increases to over 90% if we evaluate 
more forecasts. 

Similar results are obtained for the encompassing 
tests. In about 90% of the cases the forecasts of  the 

seasonal mean shift model encompasses the model 
with possible seasonal units. However, if the number 
of  forecasts is small, the model with possible season- 
al unit roots encompasses the seasonal mean shift 
model in more than 50% of the cases. Note that in 
case of  no seasonal mean shift ( w - 0 )  this per- 
centage is about 90%, as expected. The percentage 
that the null hypothesis for both encompassing tests 
cannot be rejected is relatively high. This means that 
the encompassing tests do not always provide un- 
ambiguous information. 

Finally, the relative performance of the models 
appears symmetric around w =-0, which suggests that 
the direction of  the shift, i.e. positive or negative, 
does not seem important for forecasting. 

Next, we consider the influence of  the location of  
the seasonal mean shift within the range of  observa- 
tions on forecasting. Table 4 shows the outcomes of 
the simulation exercise for a seasonal mean shift at 
three different time points, 1/4, 1/2, and 3 /4  of  the 
sample size. For the one-step ahead forecasts it 
seems that when the timing of a seasonal mean shift 
is later in the sample, the forecasting performance of  
the seasonal mean shift model decreases slightly. A 
possible reason can be that the number of  observa- 
tions to estimate the new seasonal mean is too small 
to produce relatively good forecasts. The same 
conclusion can be drawn for the performance of  the 
encompassing tests. For the four- and eight-step 
ahead forecasts we see that the model selected by the 
HEGY procedure performs relatively poor when the 
seasonal mean shift occurs in the middle of  the 
sample, compared to shifts in the beginning or at the 
end of  the series. 

The effects of  the number of  seasonal means that 
are changing on the forecasting performance is 
shown in Table 5. Note that due to the restriction 
E4=, #*  = 0 it is not possible to analyze the effects 
of  only a single change in the mean. The results 
indicate that the more seasons change, the better the 
model selected by the HEGY procedure performs, 
although the model with deterministic shifts out- 
performs the seasonal unit root model in more than 
85% of the cases. Also, the percentage that forecasts 
of  the model with possible seasonal unit roots 
encompass the forecasts of  the seasonal mean shift 
model increases, when the number of changing 
seasonal means increases. 
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Table 3 
The effects of neglecting seasonal mean shifts on the forecasting performance 

363 

w Criterion" One-step ahead Four-steps ahead Eight-steps ahead 
number of periods number of periods number of periods 

16 32 64 16 32 64 16 32 64 

- 3  

2 

- I  

GFESM 15.5 8.9 4.0 15.8 9.3 4.4 15.6 8.4 0.6 
FsuR.ss 58.5 19.8 1.8 54.0 19.7 2.3 52.6 18.2 2. I 
Fsss,H 95.0 92.7 89.5 93.8 90.1 86.6 93.0 90.5 85.3 

GFESM 16.6 10.5 5.1 16.6 10.0 4.7 15.8 8.6 4.3 
FsvR.ss 62.7 25.8 3.5 56.4 23.6 3.7 55.0 25.5 5.0 
E~ssr.,~ 95.0 93.1 90.3 94.2 92.2 88.4 93.4 90.7 86.0 

GFESM 21.2 15.4 10.2 22.3 15.7 10.9 21.8 15.0 10.4 
Fsu~.ss 69.1 39.7 13.2 66.7 38.0 13.1 64.2 37.6 13.2 
Fsss.~ 94.6 91.8 86.7 93.5 90"3 84.4 92.9 89.4 83.7 

GFESM 69.6 73.9 79.5 69.4 73.5 79.7 66. I 71.4 77.8 
l(~k.s s 94.0 92.0 89.6 94.2 92.4 90.4 93.7 92.5 90.4 
Fss.s~, ~ 76.6 61.3 46.0 76.5 62.0 45.9 77.0 61.6 45.6 

GFESM 22.3 16.0 10.5 22.7 16.6 10.5 21.6 15.7 10.4 
Esvk.ss 70.0 41.8 13.4 66.3 40.2 13.6 65.0 38.6 13.6 
Fss.s,k 94.0 91.0 86.6 93.4 89.4 84.2 92.8 89.0 83.6 

GFESM 16.4 10.5 5.4 16.1 10.0 5.2 15.2 8.8 4.4 
Fsu~ss 62.5 25.2 4.0 56.7 24.9 3.9 53.7 26.0 4.9 
E~s.s,~ 94.9 93.4 89.6 94.7 92.1 88.3 93.8 91.7 86.8 

GFESM 15.1 8.9 4.2 15.7 9.1 4.6 14.5 7.7 3.8 
Fsv~.ss 58.7 19.6 1.9 53.3 20.4 1.9 51.0 18.9 1.9 
Fss.s w 94.9 93.0 88.9 94.7 91.6 86.7 94.0 91.7 86. I 

"The top cell denotes the percentage that the GFESM of the model selected by the HEGY procedure is smaller than the GFESM of the 
seasonal mean shift model. The middle cell denotes the percentage that the forecasts generated by the model selected by HEGY encompass 
the forecasts generated by the seasonal mean shift model. The bottom cell denotes the percentage that the forecasts generated by the seasonal 
mean shift model encompass the forecasts generated by the model selected by the HEGY procedure. 
Total number of observations T= 136. 

Finally,  we  ana lyze  forecas t ing  pe r fo rmance  ac- 

ross var ia t ion in the seasons.  F r o m  Table  6 we  not ice  

that if  we  change  two seasons ,  it does  not mat ter  

wh ich  two  seasons  we  change.  Unrepor t ed  s imula-  

t ion results  show that the same conc lus ion  can be 

d rawn if  three ins tead o f  two seasons  change.  

3.2. D G P s  wi th  s e a s o n a l  uni t  roots  

In the s econd  part  we  analyze  the relat ive forecas t  

pe r fo rmance  for  D G P s  conta in ing  one  or more  

seasonal  unit  roots.  The fo l lowing  D G P s  are cons id-  

e red  

@(B)y ,  = et, e , - N I D ( O ,  1) (8) 

where  @(B) is e i ther  ( 1 - B 4 ) ,  (1 + B 2 ) ( 1 - B ) ,  (1 + 

B ) ( 1 - B )  or ( 1 - B ) .  This  co r responds  to three, two, 

one,  and no seasonal  unit roots,  respect ively .  

Table  7 shows  the results for the above men t ioned  

DGPs.  As a b e n c h m a r k  we also report  the results  o f  

a D G P  having  no seasonal  unit  roots and no seasonal  

mean  shifts.  The results  indicate that the mode l s  

se lec ted  by the H E G Y  procedure  p roduce  bet ter  one-  

and four-s tep  ahead  forecasts .  Remarkably ,  in the 

case  that the D G P  has seasonal  unit roots,  the eight-  

step ahead forecasts  f rom the mode l  se lec ted  by the 
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Table 4 
The effects of the location of the mean shift on the forecasting performance" 

r Criterion b One-step ahead Four-steps ahead 
number of periods number of periods 

Eight-steps ahead 
number of periods 

16 32 64 16 32 64 16 32 64 

35 

69 

103 

GFESM 16.1 9.3 4.2 15.6 9.7 4.5 16.0 8.5 3.8 
FsvR.ss 65.3 30.6 5.7 68.8 42.2 15.3 69.1 43.6 17.1 
Fss.svR 95.7 94.5 93.1 95.4 94.4 92.8 94.3 93.2 91.2 

GFESM 16.6 10.5 5.1 16.6 10.0 4.8 15.8 8.6 4.3 
FsvR.ss 62.7 25.8 3.5 56.4 23.6 3.7 55.0 25.8 5.0 
Fss.svR 95.0 93.1 90.3 94.2 92.2 88.4 93.4 90.7 86.0 

GFESM 24.4 19.1 15.2 24.0 19.4 15.1 23.8 19.1 15.2 
FsvR.ss 62.8 31.6 8.9 46.8 24.8 6.4 44.4 25.6 8.0 
Fss.svR 90.9 84.3 75.0 89.6 81.3 71.1 88.2 79.5 67.8 

Total number of observations T= 136. 
aThe DGP is given by Eq. (7). 
~See footnote " of Table 3. 

Table 5 
The effects of the number of quarters that are changing on the forecasting performance a 

Number Criterion b One-step ahead Four-steps ahead 
of number of periods number of periods 

quarters 16 32 64 16 32 64 

Eight-steps ahead 
number of periods 

16 32 64 

GFESM 12.5 6.0 2.3 12.1 5.9 2.3 11.9 5.3 2.0 
FsvR.ss 44.5 12.0 1.1 45.0 12.8 1.1 41.2 11.4 1.1 
Fss.svR 94.0 92.1 88.9 94.2 92.2 88.0 93.9 91.3 86.5 

GFESM 15.1 8.3 4.0 14.8 8.2 4.4 15.7 8.1 4.1 
Fsvk.ss 50.9 18.8 2.6 51.6 19.8 3.1 49.2 18.6 3.0 
Fss.svR 93.9 91.6 87.4 93.8 91.4 87.1 94.1 91.4 86.4 

GFESM 16.6 10.5 5.1 16.6 10.0 4.8 15.8 8.6 4.3 
FsvR.ss 62.7 25.8 3.5 56.4 23.6 3.7 55.0 25.8 5.0 
Fss.svR 95.0 93.1 90.3 94.2 92.2 88.4 93.4 90.7 86.0 

Total number of observations T= 136. 
aThe DGP is given in (7) with /**={-2,  2, 0, 
respectively. 
bSee footnote " of Table 3. 

0}, /z* ={ -1 ,  2, -1 ,  0}, and /x,* ={ -2 ,  2, -2 ,  2} for 2, 3, and 4 changing quarters 

H E G Y  procedure  are in more  than 50% o f  the cases  

worse  than forecas ts  f rom the mode l  wi th  the 

seasonal  m e a n  shift. F r o m  the ou t comes  o f  the 

s econd  and third D G P  o f  the table it s eems  that 

neg lec t ing  the root  - 1  is worse  than neg lec t ing  the 

roots  i and - i ,  i f  one  is in teres ted  in one-  and 

four-s tep  ahead  forecasts .  In about  90% o f  the cases  

the forecas ts  o f  the mode l  wi th  poss ib le  seasonal  unit  

roots  e n c o m p a s s  the forecas ts  o f  the seasonal  m e a n  

shift  model .  The  pe rcen tage  that  the seasonal  mean  

shift  mode l  e n c o m p a s s e s  the mode l  with poss ib le  

seasonal  unit  roots  is larger for  D G P s  with only  one  
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Table 6 
The effects of the choice of quarters we allow to change on forecasting performance" 

365 

Changing Criterion" One-step ahead Four-steps ahead 
quarters number of periods number of periods 

Eight-steps ahead 
number of periods 

16 32 64 16 32 64 16 32 64 

(1,2) 

(1,4) 

(2,3) 

(3,4) 

GFESM 12.5 6.0 2.3 12.1 5.9 2.3 11.9 5.3 2.0 
FsvH.ss 44.5 12.0 1.1 45.0 12.8 1.1 41.2 I 1.4 1.1 
Fss.svt ~ 94.0 92.1 88.9 94.2 92.2 88.0 93.9 91.3 86.5 

GFESM 11.8 6.4 2.4 ' 11.5 6.0 2.4 11.9 5.8 2.3 
Fsv,.ss 44.5 12.2 1.2 45.0 13.7 1.3 42.2 11.8 1.4 
Fsssc ,  94.2 92.6 88.5 94.2 92.2 87.6 93.5 90.4 85.2 

GFESM 12.0 6.1 2.5 11.2 5.7 2.2 11.2 5.3 2.3 
Fstm.ss 42.2 12.4 0.9 44.1 13.5 0.9 41.0 I 1.8 1.0 
Fss.sv~ 94.7 92.0 88.2 94.2 91.7 87.6 94.0 90.9 85.7 

GFESM I 1.9 6.4 2.5 12.0 6.2 2.5 11.9 5.4 1.8 
FwR.ss 42.7 12.5 1.1 43.5 13.1 1.1 41.0 11.0 1.1 
Fss.svR 94.3 92.3 88.5 93.4 91.4 87.0 92.9 90.8 85.9 

Total number of observations T= 136. 
"The DGP is given in (7) with p~* = { - 2 ,  2, 0, 
(2,3), and (3,4) respectively. 
"See footnote a of Table 3. 

o}, gy ={-2, o, O, 2 } , / ~ *  = {0,  2, - 2, 0}, a n d / z *  = {0, O, - 2, 2} for the quarters (1,2), (I ,4), 

Table 7 
Forecast performance, when the DGP is a process with one or more seasonal unit roots a 

(/'(B) Criterion" One-step ahead Four-steps ahead 
number of periods number of periods 

Eight-steps ahead 
number of periods 

16 32 64 16 32 64 16 32 64 

(1 - B )  4 GFESM 69.3 79.8 90.0 69.9 80.0 90.2 8.6 39.4 72.8 
Fsw.s s 94.7 93.1 91.8 88.7 87.5 87.3 76.6 74.4 73.9 
Fss.svR 67.8 40.5 14.4 61.8 37.4 14.2 50.8 29.8 I 1.1 

( 1 + B 2) GFESM 63.7 72.5 83.1 64.3 72.3 87.8 7.5 32.7 62.0 
× ( 1 - B) Fsv,.ss 93.4 90.8 86.8 79.6 75.4 70.0 63.6 58.5 53.3 

Fss.svk 73.3 50.5 24.7 63.2 42.7 22.5 49.6 34.1 17.3 

( 1 + B)  GFESM 70.2 76.8 84.5 70.3 76.5 84.5 6.8 28.8 58.1 
× ( 1 - B ) Fsv~.ss 93.5 92.7 90.1 62.2 62.1 58.0 4 I. 8 43.9 42.4 

Fss.sv, 76.7 57.9 32.7 49.4 40.1 25.5 31.2 26.8 16.7 

(1 - B )  GFESM 69.6 73.9 79.5 69.4 73.5 79.7 66.1 71.4 77.8 
Fsv,~.s s 94.0 92.0 89.6 94.2 92.4 90.4 93.7 92.5 90.4 
Fss.sv~ 76.6 61.3 46.0 76.5 62.0 45.9 77.0 61.6 45.6 

Total number of observations T= 136. 
~The DGP is given in (8). 
"See footnote " of Table 3. 
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seasonal unit root instead of 2 or 3 seasonal unit 
roots. Notice from Table 7 that the percentage that 
the model with possible seasonal unit roots leads to 
better forecasts in case the DGP is model (8) (about 
70%) is lower than the percentage that the seasonal 
mean shift model leads to better forecasts in case the 
DGP is model (7) (about 85%), see e.g. Table 3. 

3.3. Several other DGPs 

So far, the DGPs correspond with one of the 
models of interest, which are used to generate 
forecasts. In this subsection we consider DGPs 
which are different from the models under inves- 
tigation. It is interesting to see how the seasonal 
mean shift model and the model with possible 
seasonal unit roots forecast if the DGP contains an 
alternative description of changing seasonality. 

The first DGP contains several seasonal mean 
shifts. The location of these shifts is determined by a 
Markov process, i.e., 

4 4 

A, yt = E I~Ds, + E tz * Dsts, + et, 
s = l  s = l  

~-NID(O,  I), (9) 

where s t follows a first order Markov process with 
transition probabilities p = Pr[s, = 0Is ~_ 1 = 0] and q = 
Pr[s,= lls,_~--1], see Hamilton (1989). This DGP 
provides a simple framework to mimic a business 
cycle, see also Canova and Ghysels (1994). 

A seasonal mean, which evolves over time as a 
martingale, is another possibility to generate a 
changing seasonal pattern, see Canova and Hansen 
(1995). We consider the DGP 

Aly  , = ~ , ( - 1 ) ' +  4, (10) 

with/zt=/zt_ ~ + v,, 8t-NID(O,1), and vt-NID(O,0-2). 
Note that when 0-2=0, the DGP in (10) is identical 
to (7) with /xs* ={0, 0, 0, 0}. 

Unreported simulation results show that consider- 
ing one- and four-step ahead forecasts, the model 
with possible seasonal unit roots outperforms the 

model with seasonal mean shifts. For the eight-step 
ahead forecasts this is not the case if the probability 
of a regime change is small (i.e., p and q are large). 
If the probability of staying in the same regime 
decreases the forecast performance of the seasonal 
mean shift model deteriorates. The encompassing 
tests display the same pattern. The results for the 
DGP in (10) are roughly the same as for the DGP in 
(8) with qb(B) = ( 1 + B)( 1 - B). This is not surprising 
since the DGP in (10) resembles a process with a 
unit root - 1. 

In summary, the Monte Carlo simulations in this 
section show that it is important to account for 
possible seasonal mean shifts if they are present. 
Neglecting seasonal mean shifts can have large 
consequences for the forecasting performance of the 
selected model. On the other hand, incorrectly 
modeling seasonal stochastic trends by a one-time 
seasonal mean shift also results in inferior forecasts. 

One may conjecture that outcomes in the simula- 
tion exercises are biased due to the proposed model 
selection strategy. However, this model selection 
procedure reflects the way in which empirical data 
are often modeled. To investigate the effects of the 
proposed model selection strategy on our simulation 
results we run some experiments where we impose 
the correct lag order and the location of the break- 
point in our simulation experiments. These unre- 
ported simulation results show that then the per- 
centage that the correct model produces better fore- 
casts increases substantially. 

4. Conclusion 

Recent research has shown that seasonal mean 
shifts bias tests for seasonal unit roots towards 
nonrejection of seasonal unit roots. In the present 
paper we have addressed the choice between the 
seasonal mean shift model and the seasonal unit root 
model from a forecasting perspective. By means of 
simulation, we investigated the impact of imposing 
the incorrect model on forecasting performance. Data 
generating processes with seasonal mean shifts as 
well as with seasonal unit roots have been consid- 
ered. 

If a seasonal mean shift is present, the simulation 
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exercise shows that in about  80% to 95% of the 

cases the model  selected by the H E G Y  procedure is 
outperformed by the seasonal  mean  shift model.  This  
is especial ly the case if  the shift does not  occur near 
the end of the es t imat ion sample. Results  are insensi-  
tive to which of  the four seasons is affected by a 

seasonal mean  shift. However ,  the n u m b e r  of chang-  
ing seasons has some impact  on the results. On the 
other hand,  if one or more seasonal uni t  roots are 

present, the model  selected by the H E G Y  procedure 

outperforms the seasonal mean  shift model  in 70% of  
the cases for one- and four-step ahead forecasts. 
Surpris ingly,  the seasonal mean  shift model  does 

often significantly better for eight-step ahead fore- 

casts. 
Our  s imulat ion results show the importance of  

selecting the most  appropriate model  for forecasting 
purposes.  This was also illustrated by consider ing 

three consumpt ion  series, which provided the moti-  
vat ion of  our  s imulat ion exercises. Al though the 

HEGY procedure selects a model  with three seasonal 
unit  roots for all series, the forecasts of  this model  
are often outperformed by the model  with seasonal 
mean  shifts. In practice, when  the H E G Y  procedure 

indicates the presence of  one or more seasonal unit  

roots, it is advisable to al low for possible seasonal 
mean  shifts in the H E G Y  test regressions, see 

Franses and Vogelsang (1997) or Franses et al. 

(1997).  This  contr ibutes  to a better knowledge  about  
the number  of  seasonal uni t  roots, which in turn may 
result in a better forecast performance of the model.  
If the evidence  for seasonal uni t  roots disappears,  it 
is useful to consider  models  with determinist ic  

seasonal mean  shifts. However,  the fact that these 
models  are not capable of forecasting seasonal mean  
shifts in the out-of-sample period, can be seen as a 

disadvantage.  If it is l ikely that such events  can 
happen again in the future, it may  be sensible to 
consider  models  which al low for stochastically 

changing seasonal means.  
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