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Abstract

Trends and cyclical components in economic time series are mod-
eled in a Bayesian framework. This enables prior notions about the
duration of cycles to be used, while the generalized class of stochas-
tic cycles employed allows the possibility of relatively smooth cycles
being extracted. The posterior distributions of such underlying cycles
can be very informative for policy makers, particularly with regard to
the size and direction of the output gap and potential turning points.
From the technical point of view a contribution is made in investi-
gating the most appropriate prior distributions for the parameters in
the cyclical components and in developing Markov chain Monte Carlo
methods for both univariate and multivariate models. Applications
to US macroeconomic series are presented.
KEYWORDS: Output gap, Kalman �lter, Markov chain Monte

Carlo, real-time estimation, turning points, unobserved components.
JEL classi�cation: C11, C32, E32

1 Introduction

Decomposing time series into trends and cycles is fundamental to a good
deal of macroeconomic analysis. Key features of the �business�cycle, such as
length and turning points, are of great interest to policy makers in industry
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and government. Similarly, potential output trends and their deviations from
the actual level of output yield important signals on the performance of an
economy.
Trends and cycles may be modeled1 directly as unobserved components

within the framework of structural time series models (STMs); see Harvey
and Jaeger (1993). The statistical treatment is based on the state space form
with the components in a linear model extracted by the Kalman �lter and as-
sociated smoother. For a Gaussian model, the likelihood function is obtained
from the innovations produced by the Kalman �lter and maximized numer-
ically with respect to the unknown parameters. This classical procedure is
implemented in the STAMP package of Koopman et al (2000). However, �t-
ting the standard trend plus cycle plus irregular model to time series of Gross
Domestic Product (GDP) often results in the irregular component disappear-
ing with the result that the cycle is quite noisy. More generally, maximum
likelihood (ML) can sometimes produce implausible parameter values, result-
ing perhaps in trends that are too in�exible or cycles that have too long a
period. The higher order stochastic cycles introduced recently by Harvey and
Trimbur (2003) tend to produce smoother extracted cycles, but problems of
implausible estimates still remain. This provides one of the motivations for
investigating a Bayesian approach.
A key parameter in the stochastic cycle is the period around which most

of the power of the spectrum is concentrated. In building models to capture
business cycles, it is not unreasonable to take on board prior notions about
the period. These may be incorporated into the model in a �exible way; we
do this here using a beta prior distribution. Previous work on using Bayesian
methods for STMs, such as Durbin and Koopman (2002) and Koop and van
Dijk (2000), has not dealt with cycles. Huerta and West (1999) study cyclical
behavior indirectly using autoregressive models, but this approach does not
make it easy to use prior information on periodicity.
We present a Markov chain Monte Carlo (MCMC) algorithm in order to

compute posterior results on parameters, model probabilities and unobserved
components. The treatment of cycles introduces a number of new issues that

1Our concern here is with a model-based approach. Although detrending methods
such as the Hodrick-Prescott �lter are popular in macroeconomics, they can be misleading
when used inappropriately, as argued in Harvey and Jaeger (1993) and Cogley and Nason
(1995). The same is true of the more recent band-pass �lter of Baxter and King (1999); see
Harvey and Trimbur (2003) and Murray (2003). Furthermore, model-based approaches
have the advantage that measures of uncertainty can be attached to the output.
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need to be addressed. With the aid of state space modeling techniques,
we set out an e¢ cient procedure for computing the joint posterior density
of parameters and components based on Gibbs sampling. In doing so we
draw on earlier work on the e¢ cient smoothing of unobserved components
by, amongst others, Carter and Kohn (1994), Frühwirth-Schnatter (1994),
de Jong and Shephard (1995) and Durbin and Koopman (2002).
While one of the potential advantages of a Bayesian approach is that it

is able to avoid �tting implausible models, another is that it can yield more
informative results. For example, many of the parameters in STMs are vari-
ances. The small sample behaviour of ML estimators of such parameters is
not easy to pin down, but it is certainly the case that distributions can be
very far from normality. When the true value of a variance is zero, the asymp-
totic theory is non-standard. One response to gauging the signi�cance2 of
estimated variances is to use the bootstrap as documented in Sto¤er andWall
(2004). The Bayesian approach provides another, possibly more attractive,
line of attack by o¤ering the opportunity to examine posterior distributions.
Another motive for investigating a Bayesian approach is that it allows

for parameter uncertainty in the posterior distributions of components. This
is important in the present context since one of our concerns is to present
information on the size of the output gap as represented by the cycle. It is
also straightforward to compute statistics such as the probability that the
cycle, or its rate of change, is negative. Of course, a Bayesian approach
also allows for parameter uncertainty in the predictive distributions of future
observations.
Applications are based on quarterly US macroeconomic time series from

1947 onwards. Univariate methods are illustrated using real GDP and fea-
tures of the cycle such as its duration, turning points and time-varying am-
plitude are analyzed. We also demonstrate on-line analysis of the size and
direction of the output gap. A multivariate model is then �tted to con-
sumption, investment and GDP, so providing a contrast with the well-known
study of King, Plosser, Stock, and Watson (1991). Finally, a bivariate model
of in�ation and output, developed from the ideas of Kuttner (1994), is used
to estimate the output gap by exploiting the Phillips curve relationship.
The paper is arranged as follows. Section 2 reviews the extension of

the class of structural time series models to include higher order cyclical

2Valid tests of the null hypothesis that the variance is zero can be carried out, but this
usually requires that the restricted model be estimated; see Harvey (2001).
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components and discusses ways of capturing their features and assessing the
size and direction of the output gap. The Bayesian treatment is developed in
section 3, while section 4 applies the methods to US GDP. The multivariate
applications are in section 5 and section 6 concludes. Technical details on
the state space form and the Markov chain Monte Carlo algorithms for the
univariate and multivariate cases are laid out in an appendix.

2 Structural time series model for trends and
cycles

De�ne the N�1 vector of observations yt, where yt = (y1t ; :::; yNt )0: The class
of multivariate structural time series models under consideration consists of
trend, cycle and irregular components, denoted by N�1 vectors �t; n;t and
"t respectively. Thus

yt= �t+ n;t+"t; "t � NID(0;�"); t = 1; :::; T; (1)

where NID(0;�") denotes that the vector is serially independent and nor-
mally distributed with zero mean vector and N � N positive semi-de�nite
covariance matrix, �". The stochastic trend is a multivariate integrated
random walk

�t = �t�1 + �t�1; (2)

�t = �t�1 + �t; �t � NID(0;��);

where �t is the vector of slopes. A seasonal component can easily be added
if appropriate.
The vector  n;t is a generalization of the similar cycle model of Harvey

and Koopman (1997). The aim of the generalization, originally proposed by
Harvey and Trimbur (2003), is to include higher order models that tend to
produce smoother extracted cycles.

2.1 Generalized stochastic cycles

An n� th order univariate cycle is de�ned by
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The parameter �c denotes frequency in radians while � is a damping factor
lying between zero and one; if it is equal to one, the cycle is nonstationary.
The disturbances, �t and ��t ; are assumed to be uncorrelated with each other
and with the disturbances driving the other components. Harvey and Trim-
bur (2003) show that as n increases the signal extraction �lter for a cycle
plus noise model tends towards a band pass �lter as in Baxter and King
(1999). General expressions for the variance, autocovariances and spectrum
are given in Trimbur (2005).
In a similar cycle model � and �c are the same across all series. Therefore,

the cycles have the same dynamic properties in the sense that their autocor-
relation functions and spectral densities are identical. However, the cycles
themselves are not, in general, identical. The similar cycle model, originally
formulated for n = 1; may be extended to higher order cycles by de�ning a
2nN � 1 state vector

 t = [ 
1
n;t; :::;  

N
n;t;  

1�
n;t; :::;  

N�
n;t ; ::: 

1
1;t; :::;  

N
1;t;  

1�
1;t; :::;  

N�
1;t ]

0 (5)

where the sub-vector  n;t = [ 
1
n;t; :::;  

N
n;t]

0 appears in (1). De�ne the matrix

Tn = In 
T+ Sn 
 I2 (6)

where

T = �

�
cos�c sin�c
� sin�c cos�c

�
(7)

and Sn is n � n with ones on the o¤-diagonal strip that lies adjacent to
the main diagonal on the right hand side and zeros everywhere else; that is,
the row i; column i + 1 element of Sn equals 1 for i = 1; :::; n � 1; and all
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other elements equal 0. De�ne cn to be an n� 1 vector with one in the last
position and zeroes elsewhere. Then

 t = (Tn 
 IN) t�1 + cn 

�
�t
��t

�
; (8)

where the assumptions on the N �1 vectors of Gaussian disturbance, �t and
��t ; are

E(�t) = 0; E(�t�
0
t) = E(��t�

�0
t ) = ��; E(�s�

0
t) = O; for s 6= t

with�� anN�N covariance matrix and E(�s��
0
t ) = O for all s; t = 1; :::; T .

2.2 The changing output gap and turning points in the
cycle

The trend in GDP is often regarded as a permanent component, while the
cycle is transitory, but serially correlated; see, for example, Blanchard and
Fischer (1989). The STM makes the concept operational in that the trend is
the component that yields the long-run forecasts; see Harvey (1989, p 284-6).
This avoids the ad hoc nature of a trend based on the Hodrick-Prescott or
band pass �lter. In what follows we will associate the trend with potential
output and the cycle with the output gap.
Having �tted a model, we are interested in studying the characteristics of

the cycle from the smoothed estimates. For example, although the expected
value of the square of the amplitude isE( 2t+ 

�2
t ) = 2�

2
 ; it may be of interest

to plot estimates of the amplitude through time to see if it is changing in
any way. Of course the full distribution of the output gap at any time may
be of prime interest and we may wish to use this to produce statistics such
as the probability that the economy is below potential output.
One characteristic of a cyclical series is its turning points. (For instance,

the change from top to bottom in a downturn of the cycle gives a measure of
the severity of the contraction, but to measure this we clearly need to know
the top and bottom). Here turning points are identi�ed from the extracted
cycle rather than from the application of a criterion directly to the series
itself. A fairly straightforward approach is to follow Zellner, Hong and Gulati
(1990) in labeling a time point t as a peak, or downturn, if

b n;t�b, b n;t�b+1,..., b n;t�2, b n;t�1 < b n;t > b n;t+1, b n;t+2, ..., b n;t+a (9)
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where a and b are positive integers, and de�ning a trough, or upturn, in an
analogous fashion. The smoother is the extracted cycle, b n;t; the easier it
should be to identify meaningful turning points.
Turning points may also be assessed directly from the �tted stochastic

cycle as the elements in the state (5) contain information on the rate of
change of the cycle. To see this it is necessary to move to a continuous time
formulation. It is shown in appendix A that the discrete time analogue of
the expected incremental change of a �rst-order cycle is given by

D t = (log �) t + �c 
�
t (10)

The second-order case is more complicated but it is argued in appendix A
that for the discrete time model formulated in the previous sub-section an
appropriate measure of change is

D 2;t = (log �) 2;t + �c 
�
2;t + ��1( 1;t cos�c �  �1;t sin�c): (11)

This formula can also be used for higher order cycles with the subscripts 2
and 1 replaced by n and n � 1 respectively. Plotting an estimate of D 2;t
should be highly informative. So too should the series on the probability
that D 2;t is negative (positive), this being the probability that the cycle is
moving down (up). Turning points can be associated with points at which
the estimate of D 2;t changes sign.
The NBER turning points are de�ned with respect to the level of the

series. Harding and Pagan (2002) show that a rather simple dating rule
applied to the di¤erences in GDP reproduces the NBER peaks and troughs
quite closely. A trough at time t is de�ned by f�2yt < 0; �yt < 0; �yt+1 > 0;
�2yt+2 > 0g where �2yt+2 = yt+2 � yt = �yt+2 + �yt+1; and a peak simi-
larly. Expansions and contractions are de�ned from these peaks and troughs
and used as the basis for recognizing a cycle and measuring its characteris-
tics. The same criterion could be applied to the extracted level and cycle
components by looking at the change in estimates of �t +  n;t:
One might, of course, question the whole notion of the identi�cation of

changing points and the associated binary classi�cation into expansions and
recessions. The series of estimates of  2;t andD 2;t contain more information
as they measure the size and direction of the output gap at all points in time.
Even more information is contained in the full posterior distributions.
With a model-based approach, more information is obtained on a com-

ponent at a particular point in time as more observations become available.
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Thus information on the current cycle is obtained by �ltering, but more ac-
curate information is given by smoothing as new observations become avail-
able. On-line tracking of components is of considerable importance for policy
makers and it is important to be aware of the uncertainty attached to any
estimates; see the discussion in Orphanides and van Norden (2002).

3 Bayesian treatment

For convenience, we present the univariate case in this section and refer to the
appendix for the multivariate case. The three variance parameters and two
cyclical parameters are arranged in the vector � = f�2� ; �2�; �2"; �; �cg. The
goal is to analyze the posterior distribution, p(�jy); where y =fy1; :::; yTg de-
notes the observations. The joint posterior of the trend and cycle components
is produced as a by-product of the Markov chain Monte Carlo routine.

3.1 Priors

The direct interpretation of the cycle parameters in the STMmakes it straight-
forward to design priors that re�ect knowledge of the business cycle. Thus
for quarterly data we consider priors for frequency, �c; based on beta dis-
tributions with a mode at 2�=20, corresponding to a period of �ve years.
Figure 1 shows three such priors, labeled wide, intermediate and sharp. For
technical details see appendix B.
The parameter � is linked to the order of the cycle. In the �rst order case

� is the rate of decay of the cycle, but for higher orders the interpretation
of � changes somewhat so that di¤erent values are appropriate. Although it
seems, on the basis of empirical work, that � falls as n increases, it is di¢ cult
to be precise about the form of the relationship so we use a uniform prior on
� over the interval [0,1].
For the variance parameters independent �at priors on [0;1] are assumed.

The use of �at priors has the same advantage as inverted gammas of allowing
one to sample directly, but in applications where expectations on the values of
variance parameters are rather vague, a �at prior ensures that the likelihood
surface is not distorted near zero3.

3The unobserved components models we consider in this paper have essentially the
same fundamental structure as hierarchical models for studying group e¤ects. As Gelman
(2005) notes for the case of a basic hierarchical model, any noninformative prior on the
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Figure 1: Beta-based priors on �c, with mode equal to 2�=20 (�ve-year period
for quarterly data).

3.2 Posterior

The posterior distribution is obtained as

p(�jy) = L(�;y)p(�);

where the likelihood function, L(�;y); is evaluated using the Kalman �lter;
see, for example, Harvey (1989, p. 126). The posterior is di¢ cult to work
with directly as the constant of proportionality is not available analytically.
A strategy is therefore needed for analyzing its properties. In the applica-
tions that follow we deal with up to twenty-dimensional parameter vectors
and MCMC methods o¤er an e¢ cient way to sample (pseudo-random) para-
meter drawings from the posterior. This also allows us to produce drawings
of regular functions of the parameters, such as periods of cycles and signal-
noise ratios, and to compare �nite sample results on posterior moments with
ML estimates.

group level variance gives a proper posterior when su¢ cient data are available, as is the
case here.
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The parameter space is extended to include the components and associ-
ated auxiliary processes in (1), which together form the state vector, �t, for
the model, taken over all observation times t = 1; :::; T . The state space form
is discussed in appendix C. In this way, we design an MCMC routine that is
able to capitalize on recent developments in state space modeling. Speci�-
cally, the simulation smoother for drawing from the conditional density of the
state vector, as in de Jong and Shephard (1995), and, more recently, Durbin
and Koopman (2002), may be embedded in a MCMC sampling setup.
Thus, the basic idea is to set up the algorithm to produce drawings from

the expanded multivariate density p(�;�jy), where � denotes the set of state
vector elements over the entire sample period; the de�nition of � is given in
equations (17) and (18) in appendix C. This provides an e¢ cient route for
obtaining draws from p(�jy), and it also gives additional information that is
useful for studying the trend and cycle.

3.3 Signal Extraction on Characteristics of Cyclical
and Trend Components

The MCMC scheme produces draws from the joint posterior of the trend
and cyclical components. The estimated component series are obtained by
averaging over the J state draws, for example b�t = PJ

j=1 �
(j)
t =J; where �(j)t

denotes the j�th draw for the trend at time t: The standard deviation of the
trend estimate at each time point is given by the square root of

P
�
2(j)
t =J�b�2t

and higher-order moments can be similarly constructed. The amplitude of
the cycle at time t is estimated by

At =
1

J

JX
j=1

qb 2(j)n;t +
b �2(j)n;t ; t = 1; :::; T (12)

The probabilities that the cycle and its change, (11), are negative are easily
estimated.
In keeping with state space terminology we will refer to posterior means

computed over the whole sample as smoothed estimates while the corre-
sponding estimates based only on current and past observations will be called
�ltered estimates.
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3.4 Model evaluation

The marginal likelihood m(y) is given as

m(y) =

Z
L(�;y)p(�)d� (13)

Bayes factors are computed as the ratio of marginal likelihoods for di¤er-
ent model speci�cations {L(�;y), p(�)g. Posterior odds may be formed by
multiplying Bayes factors by prior probability ratios that give the relative
preference, ex ante, for the various likelihood-prior model structures. These
form the basis for decision-making in a Bayesian framework; see Kass and
Raftery (1995). The method we use for estimating marginal likelihoods is
discussed in Appendix C.

4 US GDP

In this section we �t univariate models, with di¤erent orders for the cycle
component, to the logarithms of quarterly real Gross Domestic Product from
1947Q1 to 2004Q4 (Source: Bureau of Economic Analysis, US Department of
Commerce). The aim of the analysis is to present results on the mapping from
prior to posterior of model parameters including a sensitivity analysis with
respect to the choice of the prior on the frequency as shown in �gure 1. The
properties of extracted cycles are analysed by looking at turning points and
changes in amplitude, as well as size and direction. Table 1 summarizes the
results of �tting models in terms of posterior means and marginal likelihoods.
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n Prior �2� �2� �2" � �c 2�=�c �2 q m(y)

1 Wide 46.1 466 32 0.884 0.409 16.02 2336 0.0276 698.1
Intermediate 28.3 539 23 0.894 0.341 18.66 2911 0.0117 698.4
Sharp 24.5 561 21 0.898 0.320 19.69 3110 0.0092 698.4

2 Wide 17.1 363 111 0.697 0.272 24.62 4603 0.0058 704.0
Intermediate 20.2 322 117 0.695 0.308 20.71 3854 0.0068 704.1
Sharp 20.5 314 118 0.694 0.313 20.09 3706 0.0070 704.0

3 Wide 26.5 218 148 0.560 0.291 23.29 4097 0.0115 703.5
Intermediate 26.9 199 150 0.562 0.311 20.54 3723 0.0112 703.7
Sharp 26.6 196 151 0.563 0.314 20.05 3648 0.0108 703.8

4 Wide 43.0 159 157 0.461 0.310 22.13 3804 0.0287 702.3
Intermediate 37.8 151 159 0.467 0.314 20.36 3759 0.0202 702.8
Sharp 37.5 150 159 0.468 0.314 20.04 3728 0.0206 702.9

Table 1: Posterior means for logarithms of quarterly US real GDP from 1947:1
to 2004:4 for n = 1 to 4 with di¤erent priors on �c. 2�=�c is the period in
quarters, and �2 is the variance of the cycle. The estimated logarithm of the
marginal likelihood is denoted by m(y). The signal-ratio q = �2�=(�

2
 + �

2
"). All

variance parameters are multiplied by 107.
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4.1 Priors and posteriors

Marginal posterior densities for n = 1; with the wide prior on �c, are shown
in �gures 2 and 3, along with 95% HPD (Highest Posterior Density) regions.
Each estimated density function from the MCMC routine represents a stan-
dard approximation based on local Gaussian kernels, as implemented in the
Ox programming language of Doornik (1999). The 95% HPD region is de-
�ned as the interval of minimum length that contains 95% of the probability
mass for which the upper and lower boundary have equal density. The HPD
regions resemble classical con�dence intervals, but have a di¤erent interpre-
tation in that they represent a direct probability statement about the value
of an uncertain parameter or hidden component.
Figure 2 shows that the marginal posteriors of both the irregular variance,

�2"; and the slope variance, �
2
� ; are skewed, but while the density of �

2
" is

concentrated near zero, that of �2� displays a clear peak away from zero,
giving clear evidence for stochastic variation in the trend. As regards the
cycle parameters, the marginal posterior for �; which is based on a uniform
prior on [0; 1], peaks near 0.9, while the density of the cyclical error variance
�2� appears symmetric. The prior and posterior densities for the frequency,
�c; and period, 2�=�c; appear in �gure 3. The posteriors indicate a clear peak
around a four- to �ve-year period even with a relatively noninformative prior.
These results suggest that the likelihood surface in the �rst order model has
a more or less regular shape so that it is relatively straightforward to pick
out a business cycle component.
The underlying growth rate (slope of the trend) and the cycle, estimated

as described in sub-section 3.3, are displayed in �gures 4 and 5. The shaded
regions in �gure 5 denote recessions as identi�ed by the NBER. The marginal
posterior densities of the slope and cycle at 2003Q1 are shown in the lower
panels of �gure 3. The cycle will be analysed in the next sub-section. Figure
4 suggests the intriguing possibility of a cycle in the growth rate but this
idea will not be pursued further in this paper.
For n = 1 a �at prior on �c gives nearly the same results as for the wide

prior, since the likelihood surface with respect to �c has a clear peak. For
higher order cycles, the results are more sensitive to the prior. With a �at
prior the posterior of �c for n = 2 has most of its probability mass at very
low values, with no clearly discernible peak; see �gure 18 in appendix E. A
corresponding problem arises in computing maximum likelihood estimates;
Harvey and Trimbur (2003) had to resort to �xing �c in this case. Using an
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Figure 2: Marginal posterior densities of �, �2�, �
2
� , and �

2
" for n = 1; with

least informative prior on �c, for quarterly US real GDP (logarithms) from
1947Q1 to 2004Q4. The dashed lines indicate the 95% Highest Posterior
Density intervals; the rectangular regions shown on the graphs have a height
that gives a total area of unity.

informative prior addresses the issue in a more �exible way. The results in
table 1 indicate that the di¤erences between the outcomes for wide, interme-
diate and sharp priors are not great and so it is probably safest to stick to
the wide prior.
Figure 6 shows marginal posteriors of the cycle parameters for n = 2

with the wide prior. The posterior means are now around six years. The
posteriors of �2" and the cycle variance, �

2
 ; indicate

4 that more high frequency
movement is consigned to the irregular. Figure 7 also shows the posterior
distribution of the signal-noise ratio q = �2�=(�

2
 + �2"). This measures the

relative variation in the nonstationary and stationary parts of the model.
The density in �gure 7 is skewed with a 95% HPD region that extends up to

4The posterior of �2 was obtained by computing the cycle variance for each set of

draws {�(j); �(j)c ; �
2
�g.
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Figure 3: (Top) Marginal posterior densities of �c and 2�=�c for n = 1
with wide informative prior on �c. Results are based on quarterly data from
1947Q1 to 2004Q4, with sample size T = 232. (Bottom) Marginal posterior
densities of the slope and cyclical components �t;T and  t;T at the observation
time t = 225, which corresponds to 2003Q1.
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Figure 4: Smoothed slope (growth rate) in trend of US GDP, with 95% HPD
bands, estimated with n = 1 and a wide prior on �c.

0.02.
Similar analysis could be carried out for n = 3 and 4. However, the main

contrast is between n = 2 and the standard �rst-order case. Furthermore,
the marginal likelihood shows the second-order cycle to be the preferred one5.
The analysis in the next two sub-sections is based on the second-order cycle
with a wide informative prior on the frequency.

4.2 Characteristics of the cycle

The relative smoothness of the second order cycle shown in �gure 8 makes
it easier to track movements in the business cycle and to identify peaks and
troughs. We show the turning points evaluated from de�nition (9), with
b = 10 and a = 8. Our turning points are related to many of the NBER

5There is tricky theoretical issue here because of the use of di¤use priors on certain
parameters. However, it is generally accepted that comparisons are valid so long as the
parameters in question are not restricted and occur in all models; see Gelman (2005). In
the present context our preference for n = 2 is supported by the plausibility of posterior
moments, the properties of the extracted cycles and forecasting performance.
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Figure 5: First-order cycle in quarterly US real GDP, with 95% HPD bands;
estimated using a wide informative prior on �c.

expansions and recessions: the peaks occur a little before the start of an
NBER recession while the troughs tend to match the end of the recessionary
periods. However, as was observed in sub-section 2.2, focussing on the binary
labelling of business cycle phases means that one loses sight of the �ner detail
o¤ered by the extracted cycle. For example, the smoothed cycle in �gure
8 shows clearly that some recessions are deeper than others. A plot of the
changing amplitude of the cycle, using formula (12), allows one to see how the
intensity of business cycles has changed over the last half-century. Figure
9 displays the evolving amplitude for the second order model. The graph
shows that the strength of the cycle has been more moderate, as well as less
volatile, since the mid 1980�s. However, it also shows a slight upturn in the
last few years, indicating that, contrary to the view of some economists, the
business cycle is still relevant.
Figure 10, shows a plot of the posterior mean of D 2;t; together with

a corresponding estimate based on (� t + � t+1)=2: This second estimate
yields a series very close to D 2;t, though the averaging makes it slightly less
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Figure 6: Marginal posterior densities of cycle parameters for n = 2; with
wide informative prior on �c for quarterly US real GDP (logarithms) from
1947Q1 to 2004Q4.

volatile. The attraction of D 2;t is that it can be calculated at time t; rather
than at t+ 1; and this is important at the end of the sample.
The bottom-right graph of �gure 7 shows the marginal posterior of the

change in the cycle, D 2;t; at observation point 1973Q4. As is clear from
�gure 8 this quarter marks the onset of the deep recession induced by the
�rst oil price shock of the 1970�s. Table 2 shows the probability that D 2;t
is negative over the four year period surrounding the 1973-4 recession.
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Figure 7: (Top) Marginal posterior densities of irregular and cycle variances
for n = 2 with wide prior on �c. Data is quarterly US real GDP (logarithms)
from 1947Q1 to 2004Q4. (Bottom, Left) Marginal posterior of signal-noise
ratio q = �2�=(�

2
 + �2"). (Bottom, Right) Marginal posterior of D 2;t at

observation time t = 108, which corresponds to 1973Q4.

Date Pr(D 2;t < 0)
1972Q1 0.0124
1972Q2 0.1689
1972Q3 0.0252
1972Q4 0.0002
1973Q1 0.0438
1973Q2 0.8114
1973Q3 0.5200
1973Q4 0.9426

Date Pr(D 2;t < 0)
1974Q1 0.8536
1974Q2 0.9924
1974Q3 0.9954
1974Q4 1.000
1975Q1 0.8734
1975Q2 0.1330
1975Q3 0.0796
1975Q4 0.0068

Table 2 : Probability that the rate of change in the cycle is negative for
the period 1972Q1 to 1975Q4.
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Figure 8: Second-order cycle in quarterly US real GDP, with 95% HPD
bands; estimated using a wide informative prior on �c.

4.3 On line tracking of the output gap

While smoothed estimates for the whole series provide a historical perspec-
tive, what is most important for policy makers is real time estimates the
current state of the economy. Figure 11 tracks the �ltered cycle from the
�rst quarter of 1999 to the end of 2004. An associated series of the proba-
bility of the cycle being negative could also be produced.
Figure 12 shows the estimated on-line change in the cycle based on �ltered

estimates ofD 2;t, while �gure 13 shows the estimated probability thatD 2;t
is negative. The most interesting feature of these graphs is that they show
how D 2;t anticipates changes in direction of the cycle. Thus in 2002Q1 the
cycle is still moving down but D 2;t is positive: in the next period the output
gap has narrowed. Similar behaviour can be seen in 2002Q3 and 2003Q2.
Figure 14 shows the �ltered marginal posterior for the cycle at 2001Q4

together with some of the subsequent (smoothed) posteriors. The idea is
to show how the uncertainty is reduced with the arrival of new data. The
posterior is already much tighter after two periods. One year later, there is a
sizeable gain in precision and by the end of 2003 the distribution is relatively
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Figure 9: Estimated amplitude of the cycle in quarterly US real GDP for
n = 2 and a wide informative prior on �c; shown with 95% HPD bands.

compact and symmetric with a peak close to �0:01.

5 Multivariate models

In this section we investigate whether modeling GDP jointly with other US
macroeconomic series can help to give a more accurate picture of the business
cycle. The �rst sub-section �ts a model of the form (1) to consumption,
investment and GDP. Although most of the bene�t to business cycle analysis
is likely to come from the inclusion of investment, it is interesting to �t the
model to the three series, �rstly to make a comparison with the well-known
study of King, Plosser, Stock and Watson (1991) and secondly to see whether
there are technical di¢ culties in applying our method in the trivariate case.
The second sub-section reports an extension of the modeling framework in
which lagged cyclical components are included in an in�ation equation.
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Figure 10: D 2;t and average of adjacent di¤erences
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Figure 11: Filtered cycle from 1999Q1 with 95% HPD bands
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Figure 12: Estimated change in the �ltered cycle
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Figure 13: Probability that change in the �ltered cycle, D 2;t; is negative
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Figure 14: Marginal posterior densities of  2;t (with a wide informative prior
on �c) for 2001Q4 using data up to 2001Q4 and then using more observa-
tions. HPD regions are shown for the �ltered estimate (at 2001Q4) and the
smoothed estimate at the end of the series (2003Q4).
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5.1 C-I-Y for the US economy

The data consist of quarterly series, expressed as real quantities with base
year 2000, on Personal Consumption Expenditures, Gross Private Domestic
Investment, and GDP from 1947Q1 to 2004Q4 (Source: Bureau of Economic
Analysis). The similar cycle assumption of a shared cyclical period is per-
fectly sensible, and it may lead to e¢ ciency gains. The MCMC routine for
the Bayesian treatment of the general model (1) is closely related to the uni-
variate algorithm, and the details of the multivariate extension are shown in
the appendix.
To demonstrate the e¤ectiveness of pooling the data, we �rst assumed a

�at prior on �c. (The uniform prior on [0,1] is again used for �). To avoid
potential distortions of the multivariate likelihood surface due to the in�uence
of the inverted Wishart prior, we used �at priors on the variance matrices.
The posterior density for �c with n = 2; shown in �gure 19 in appendix E,
reached a clear peak where the implied period is about twenty-one quarters.
If we use an informative prior for n = 2 there seems little point in going

beyond the wide prior given the results of the previous paragraph - in any
case the wide prior seemed to be adequate even in the univariate case. Table
3 shows posterior means and �gure 20, in the appendix, displays estimated
marginal posteriors for a number of variance parameters. Random drawings
for the correlations, denoted �; between the components across di¤erent series
are directly constructed from the draws for the variance matrices.
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Series: Consumption Series: Investment Series: Output

n �2� �2� �2"
1 70.1 96.3 167
2 40.5 99.6 193
3 39.4 64 208
4 40.9 33 218

�2� �2� �2"
1640 7890 4430
338 7170 6160
296 4650 7221
300 1999 8220

�2� �2� �2"
106 279 82.1
51.8 260 137
66.6 168 169
86.5 75 191

Correlations and shared cyclical parameters

n � �c 2�=�c �� �" �� m(y)

1 0.886 0.545 11.6 0.927 -0.679 0.654 -1842.9
2 0.705 0.334 20.3 0.732 -0.493 0.824 -1724.9
3 0.603 0.266 34.6 0.709 -0.388 0.851 -1680.0
4 0.554 0.281 31.5 0.620 -0.345 0.895 -1663.1
Table 3: Posterior means for a trivariate model for quarterly US real GDP,

consumption, and investment from 1947:1 to 2004:4 using �at priors on the variance
matrices and a wide prior on �c. All variance parameters are multiplied by 107.
The parameters � and �c are common to all series and � denotes correlation.

The estimated second order cycle in GDP - shown in �gure 21 in appendix
E - is similar to the one produced by the univariate case. However, the HPD
bands are approximately 25% smaller than the univariate band during the
1990s. The �ltered estimates corresponding to those reported at the end of
the previous section will likewise be more accurate.
Instead of looking at recent �ltered estimates, as in the previous section,

we examine forecasting performance. Figure 15 shows the multi-step pre-
dictions6 for the cycle made at the end of 2002 for the subsequent two-year
period. The forecast function indicates an upturn in the cycle and this is
consistent with the smoothed estimates made at the end of 2004 and shown
in �gure 21 in the appendix (the corresponding univariate estimates shown
in �gure 8 are similar).

6The subsequent observations are not being used to construct a series of one-step ahead
predictions.
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Figure 15: Forecast of cyclical component, with 95% HPD bands, of quarterly
US real GDP (logarithms) for the two-year period 2003Q1 to 2004Q4, based
on the trivariate C-I-Y model with n = 2 using a wide prior on �c. Also
shown from 1990Q1 to 2002Q4, is the smoothed cycle.
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5.2 In�ation and the output gap

Kuttner (1994) and Planas and Rossi (2004) argue that the link between in-
�ation and the output gap, as re�ected in the Phillips curve, may be exploited
to produce more reliable estimates of the output gap. Thus an unobserved
components model for GDP is combined with an equation in which in�ation
depends on lagged values of the output gap, as measured by the cycle in
GDP.
The model we �t is�

�t
yt

�
=

�
��t
�yt

�
+

�
 �t
 yt

�
+

�
pt
0

�
+

�
"�t
"yt

�
where yt is the logarithm of quarterly real U.S. GDP, �t is the CPI rate of
in�ation and

pt = c1 
y
t�1 + c2 

y
t�2

denotes the price pressure due to recent output gap levels. Note that a simple
transformation of the similar cycle model allows the cycle in in�ation to be
broken down into two independent parts, one of which depends on the GDP
cycle, that is  �t = c yt +  +t : Putting the model into state space form is
straightforward; see appendix D. Posterior results for cycle orders from 1 to
4 are shown in table 4.
The above in�ation equation is somewhat di¤erent from the ones in Kut-

tner (1994) and Planas and Rossi (2004) in that we drop the lagged growth
rate of GDP and include a stochastic trend. The reason for including the
stochastic trend is that it is di¢ cult to �nd a stable relationship between in-
�ation and output without it. Figure 16 shows the trend and cycles obtained
by a model of the form (1) with n = 2. Plotting the cycles on the same graph,
�gure 17, provides an indication that GDP leads in�ation, particularly in the
1970s.
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Figure 16: Estimated trends and cycles in quarterly CPI in�ation and US
real GDP (logarithms) for n = 2 with wide prior on �c.
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Figure 17: Estimated second-order cycles in quarterly CPI in�ation and US
real GDP.
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Series: In�ation Series: GDP
n �2� �2� �2"
1 5.97 337 5241
2 3.77 112 5875
3 4.76 39.3 6315
4 4.25 19.3 6594

�2� �2� �2"
44.4 497 39.6
25.8 272 140
62.6 131 173
96.1 82 180

Correlations, shared cyclical parameters, and in�ation response coe¢ cients

n � �c 2�=�c �� �" �� c1 c2 m(y)

1 0.902 0.349 18.25 0.045 -0.008 0.016 0.710 0.061 -1136.0
2 0.725 0.295 22.36 -0.221 -0.028 0.040 0.723 0.018 -974.1
3 0.596 0.302 22.09 -0.081 -0.029 0.168 0.876 0.098 -948.2
4 0.501 0.313 21.54 0.105 -0.023 0.243 1.01 0.155 -944.5
Table 4: Posterior means for a bivariate model of quarterly US CPI in�ation

and real GDP from 1947:2 to 2004:4 using �at priors on the variance matrices and
a wide prior on the central frequency �c. All variance parameters are multiplied
by 107. The parameter �� denotes the correlation between the slope disturbances,
and � and �c are the shared cyclical parameters. The parameters c1and c2 rep-
resent the response of in�ation to the GDP cycle at lags of one and two quarters,
respectively.
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In moving from �rst to second order cycles, the marginal likelihood rises
markedly, and the coe¢ cients that relate the response of in�ation to lagged
output gap increase. The posteriors for c1 and c2 - shown in appendix E
- appear more or less symmetric with the 95% HPD bounds being [0.144,
1.380] and [ -0.486, 0.470] respectively. Furthermore the correlation between
the cycle disturbances is close to zero, implying a small coe¢ cient on the
current cycle if the model is reparameterized in the way indicated earlier7.
The conclusion is that a one percent increase in the GDP cycle is expected
to foreshadow a rise of about 0.7 of a percentage point in the rate of in�ation
in the next quarter. Including a second lag, as is done by Planas and Rossi
(2004) but not by Kuttner (1994), is probably not necessary.
The GDP cycle - shown in �gure 23 in appendix E - resembles corre-

sponding series from the univariate model, but the HPD bands are narrower.
Of course, it would be even more useful if one had an equation that featured
leads in the cycle rather than lags. Nevertheless given that it takes two or
three periods to recognize a turning point, a one period lag is not entirely
useless.8

6 Conclusion

This article further extends the model-based methodology for the estimation
of trends and cycles in macroeconomic time series. The preferred models use
the second order cycles introduced recently by Harvey and Trimbur (2003)
since these tend to be smoother than �rst-order cycles, with relatively more
noise consigned to the irregular component. We suggest various ways in
which the information obtained by �tting such models can be used to describe
past movements of the cycle and to focus attention on such features such as
changing volatility and turning points.
There are two main attractions to a Bayesian approach. Firstly, �ex-

ible restrictions can be placed on key parameters, such as the frequency
parameter in the stochastic cycle, and this avoids �tting implausible models.
Secondly, parameter uncertainty is taken account of in providing information
about extracted components and their forecasts. The disadvantage is that
the computational requirements are heavier than for maximum likelihood.

7c = 0:040
p
112=272 = 0:027

8Of course the model might also be useful for forecasting in�ation.
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However, although Bayesian estimation typically requires several minutes9,
as opposed to a few seconds, this hardly renders it infeasible. The Markov
chain Monte Carlo routines we describe should be of value for future research,
particularly for multivariate series where the computations are non-trivial.
Cycles were successfully extracted fromUSGDP using a univariate model.

Such cycles have a simple interpretation in terms of the percentage by which
they exceed or fall below the long-term level of potential output. Associated
measures track the size and direction of the cycle. The posterior distributions
clearly indicate the degree of uncertainty that arises from signal extraction
and the fact that the parameters are unknown. Fitting multivariate models
o¤ers the possibility of reducing this uncertainty. Used on-line, measures
such as the probability that the output gap is increasing or decreasing may
be of considerable practical value.
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A Rate of change in the cycle

A �rst-order cycle in continuous time is written

d (t) = A (t)dt+ dW�(t)
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where  (t) = f (t)  �(t)g;W�(t) is a 2� 1 vector of Brownian motion and
A is the matrix

A =

�
ln � �c
��c ln �

�
The expected incremental change in  (t) is

d (t) = (log �) (t)dt+ �c 
�(t)dt

and the discrete time model is as in (3); see Harvey (1989, p 487). The
discrete time expression corresponding to d (t) is therefore as in (10). There
is a slight complication with �ow variables in that the discrete time model
has correlated measurement and transition equation noise; see Harvey (1989,
p 494). However, we would still suggest using (10) as an approximation.
The second-order cycle is

d 2(t) = A 2(t)dt+ 1(t)dt

d 1(t) = A 1(t)dt+ dW�(t)

with expected incremental change

d 2(t) = (log �) 2(t)dt+ �c 
�
2(t)dt+  1(t)dt (14)

The model in in (4), that is

 2;t = T 2;t�1 + 1;t�1; (15)

 1;t = T 1;t�1 + �t; �t � NID
�
0;�2�I

�
(16)

with T as in (7) and  1;t = T 
y
1;t; where  

y
1;t corresponds to the continuous

time variable  1(t); is an approximation to the discrete time formulation as
there will be a disturbance, correlated with �t; attached to the �rst equation
and, for a �ow, both disturbances will be correlated with the measurement
equation disturbance. If the approximation to the continuous time model
is accepted, the appropriate formula for change is as in (11) because of the
transformation from  y1;t to  1;t:

B Priors

The univariate case
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The priors on �c derive from the beta family of densities and are based on
expectations of period lying in the business cycle range. For details on the
beta family we refer to Poirier (1995). The priors on �c are all constructed
to have a mode of 2�=20 and to lie between �=20 (10 year period) and �=4
(2 year period). In this way, the prior mass peaks around a period of �ve
years and implausible average periods are preempted. If one were to use
a constant mean of �=10 as a basis, then for large spreads, the skewness
of the density means that the prior would peak at lower frequencies. By
concentrating on the mode, one ensures the prior probability density is at a
maximum in a region representative of the business cycle period. The three
priors in �gure (1) cover a range of spreads to account for di¤erent degrees of
informativeness. For the widest prior the standard deviation is �� = 2�=50
and the proportional spread is ��=b�� = 40%. For the intermediate prior
�� = 2�=150; ��=b�� = 13%, and for the sharpest prior 2�=400; ��=b�� = 5%.
The priors are designed by setting the beta density parameters and interval
bounds to give the desired characteristics.
The �at priors on the variance parameters �2� ; �

2
�; �

2
" ensure that the pos-

terior is una¤ected by the prior shape around zero. As shown below, the
variance parameters have independent inverted gamma conditional posteri-
ors when independent �at priors are used, so direct simulation is possible,
which enhances the e¢ ciency of the algorithm. We will give the expressions
for the scale and shape of each conditional posterior density in the follow-
ing appendix. For details on the inverted gamma family we refer to Poirier
(1995).
Another possibility would be to use inverted gamma densities. In both

cases, as shown in the appendix, the conditional posteriors are inverted
gamma, enabling direct simulation within the Gibbs sampler routine. The
use of inverted gamma priors, which are conditionally natural conjugate for
the variance parameters, allows for implementing any prior knowledge that
may be available. However, di¢ culties may arise when using inverted gamma
densities with very low shape and scale, to represent vague prior notions. If
the likelihood function does not fall away rapidly enough, for low values of
the variance parameters, then the posterior may be signi�cantly in�uenced
by the way the prior rises toward zero. Low values are not uncommon for
innovation variances in components models, particularly for the trend, and
in some cases for the irregular variance as well.
For these reasons, �at priors are implemented in all applications. In

the univariate case, we use uniform densities on the interval [�; a] where

37



� > 0 is very small and a is su¢ ciently large, so that the posterior domain
is completely covered. In practice, with the logarithms of macroeconomic
variables being modeled, choosing values such as � = 10�100; a = 1 gives an
interval wide enough to envelope the likelihood function to a high degree of
accuracy. Specifying each prior as a bounded uniform density gives a well-
de�ned basis for the implementation as it ensures propriety of posteriors.
In this case the conditional posterior is inverted gamma with the shape and
scale entirely determined by the data. The draws for �2� ; �

2
�; �

2
" in the MCMC

routine may then be obtained by standard sampling, as discussed in the next
appendix.
The multivariate case
Similarly, in the multivariate case, we work with the generalization of the

inverted gamma distribution, i.e., the Inverted Wishart (IW) distribution;
for details see e.g. Zellner (1971). Using independent inverted Wishart den-
sities or �at priors on the variance matrices ��;�� ;�" produces independent
conditional posteriors of the IW form. To re�ect informative expectations,
one may use independent IW priors for the variance matrices and choose the
scale and shape parameters appropriately; the natural conjugate property
holds as in the univariate case.
However, if one assumes relatively vague prior knowledge, then �at priors

are advisable. Using an IW density with small values for the scale and
shape would represent a poor general strategy since the same di¢ culties,
described for the inverted gamma priors in the univariate case, apply to the
inverted Wishart class. As the number of series being modeled increases, the
dimensionality of the vector of variance and covariance parameters rises, so
the pattern of distortions in the posterior results may become rather complex.
We prefer noninformative priors that will re�ect the shape of the multivariate
likelihood surface, and therefore we use �at priors for the variance matrices
��;�� ;�" de�ned over suitably large regions.

C MCMC routine

In this appendix an MCMC routine, known as a �Metropolis-Hastings within
Gibbs� sampling algorithm, is presented for obtaining posterior draws for
the class of models in (1). The algorithm produces pseudo-random drawings
from the combined joint density of state and parameter vectors. The state
space form of (1) was set out in Trimbur (2005).
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We start by deriving the density of the states conditional on the hyper-
parameters, which plays a key role in the MCMC routine. This conditional
density is obtained from the state space form and initial conditions. The
model de�ned in equations (1) to (4) expresses the observed process as a
sum of unobserved components. The (2+2n) � 1 state vector contains the
trend, cycle, and the associated processes used in their de�nition, that is

�t = ( �t �t  n;t  
�

n;t  n�1;t : : :  1;t  �1;t )
0 (17)

We will use the notation �t = (�0t; 
0
n;t) to refer to the cycle and trend

portions of the state vector. Denote by � the (m + 2n) � T matrix formed
by stacking the complete set of state vectors over the sample period:

� = [�1; :::;�T ] (18)

This will be referred to as the state matrix. The full density of the state
matrix, given the parameters is

p(�j�) = p(�1j�)
TY
t=2

p(�tj�t�1;�) (19)

The nonstationary trend state vector is initialized with a di¤use prior;
thus the variance matrix var(�1) is equal to the limit �

2
�I2 as �

2
� !1. The

initialization of the cyclical part is based on the unconditional distribution of
the cyclical state vector  n;t, which is Gaussian with mean zero and known
covariance matrix; see Trimbur (2005). The density of the initial state, given
di¤use initial conditions for the trend part, depends only on  1 (which con-
tains the starting values of the elements of the cyclical state vector) and the
cyclical parameters :

p(�1j�2�; �; �c) _ j�j�1=2 exp(�
1

2
 01�

�1 1) (20)

In (20), the notation � stands for var( n;t); this matrix is a function of the
cycle order and parameters; see Trimbur (2005).
Conditional on �t�1; some elements of �t are known so we de�ne the

reduced state vector, transition matrix, and covariance matrix by:
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��t =

24 �t
 1;t
 �1;t

35 , T� =

24 1 0 0
0 � cos�c � sin�c
0 �� sin�c � cos�c

35 , 
� =

24 �2� 0 0
0 �2� 0
0 0 �2�

35
Then the one-step ahead density is

p(�tj�t�1;�) = j
�j�1=2 exp
�
�1
2
(��t �T���t�1)0
��1(��t �T���t�1)

�
Therefore,

p(�j�) _ j�j�1=2 j
�j�(T�1)=2 exp
(
�1
2
 01�

�1 1 �
1

2

TX
t=2

(��t �T���t�1)0
��1(��t �T���t�1)
)

Given the partitioned structure of T�, this can be rewritten as

p(�j�) _ j�j�1=2 ��2(T�1)� �
�(T�1)
� exp

(
�1
2
 01�

�1 1 �
1

2�2�

TX
t=2

ct

)
(21)

� exp
(
� 1

2�2�

TX
t=2

(�t � �t�1)
2

)
where

ct = ( 1;t�� cos�c 1;t�1�� sin�c �1;t�1)2+( �1;t+� sin�c 1;t�1�� cos�c �1;t�1)2

In designing an e¢ cient MCMC routine in order to produce draws {�(i),
�(i)} from the joint posterior p(�;�jy), it is convenient that the conditional
densities of the � and the variance parameters f�2�; �2� ; �2"g are known up to
proportionality and can be handled using Gibbs methods. We label this steps
1 and 2. The remaining parameters � and �c are generated using an M-H
method in steps 3 and 4, respectively. Similar algorithms, which capitalize
on the state space framework, may be found in Carter and Kohn (1994),
Koop and van Dijk (2000), and Kleijn and van Dijk (2005).
The four sections of the routine correspond to a set of complete con-

ditional densities for the joint posterior density p(�;�jy). Taken on their
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own, the variates {�(i)} represent draws from the marginal posterior p(�jy).
Similarly, the {�(i)g serve as draws from p(�jy).
We start with an initial value for the parameter vector, �(0). Each itera-

tion i involves the following sequence of draws, organised into four steps:
1. �(i) is drawn from p(�j�(i�1);y):
The state space form of the model was shown in the previous appendix.

This enables the direct application of the general simulation smoother of
Durbin and Koopman (2002).
2. The variances f�2�(i); �2� (i); �2"(i)g are sampled as a group from the joint

density p(�2�; �
2
� ; �

2
"j�(i�1); �(i�1)c ;�(i);y):

As the priors on all parameters are assumed independent, we start with

p(�2�; �
2
� ; �

2
"j�; �c;�;y) _ p(yj�;�)p(�j�)p(�2�)p(�2�)p(�2") (22)

Conditional on � and �c, the reduced state transition matrix T� is �xed. The
unconditional variance matrix of the cyclical part of the state can be written
as � = �2��

� where �� is a 2n � 2n matrix that depends only on � and �c
for given n. The determinant of � is therefore proportional to �4n� , and it
follows that

p(�j�) _ ��(T+n�1)� exp

(
� 1

2�2�
 01�

��1 1 �
1

2�2�

TX
t=2

ct

)

� �
�(T�1)=2
� exp

(
� 1

2�2�

TX
t=2

(�t � �t�1)
2

)

Furthermore,

p(yj�;�) _ ��T=2" exp

(
� 1

2�2"

TX
t=1

(yt � zt�t)
2

)
(23)

Given independent �at priors on the variances, the joint conditional posterior
factors into three independent IG densities. Comparing the above expres-
sions with the standard form of the inverted gamma, we see that the scales
{c�; c�; c"} and shape parameters {S�; S�; S"} of the posteriors are

c� = 2(T + n� 2), c� = T � 3, c" = T � 2
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S� =  1�
��1 1 +

TX
t=2

ct, S� =
TX
t=2

(�t � �t�1)
2, S" =

TX
t=1

(yt � zt�t)
2

For our application with quarterly US real GDP and investment, the �at
priors we used helped avoid distortion of the posterior shape. In particular,
the slope innovation variance tended to be low, corresponding to a relatively
smooth trend. Our experience with simulations showed that the use of an
inverted gamma prior density, with shape and scale set to low values to
aim at an e¤ectively noninformative, could distort the resulting estimates;
in particular, the marginal posterior was concentrated near �2� = 0: This
re�ected the way in which the IG prior rose inde�nitely toward zero. The use
of �at prior better re�ected the variation in the trend apparent in the data, as
represented in the likelihood surface. This was also the case for the irregular
variance for n = 1. In all applications in the current paper, we used �at
priors on the variance parameters to represent noninformative expectations.
A Bayesian treatment of a state space class of models which relied on inverted
gamma priors was introduced in Fruhwirth-Schnatter (1994). The extended
class of models we investigate include the presence of cyclical components,
hence it is necessary to handle � and �c in the analysis by embedding them
in the Gibbs sampler.
3. {�(i)g is drawn from p(�j�2�(i); �2� (i); �2"(i); �(i�1)c ;�(i);y):
The parameter � determines how the white noise shocks feed through to

the cyclical component over time. A uniform prior is used to ensure the value
of � lie between zero and one, but otherwise gives no information about its
location within the interval. Denote the prior by p(�). Using Bayes theorem
for densities,

p(�j�2�; �2� ; �2"; �c;�; Y ) _ p(�)p(Y j�;�)p(�j�) _ p(�)p(�j�)

p(�j�2�; �2� ; �2"; �c;�; Y ) _ p(�) j�j�1=2 exp
(
�1
2
 01�

��1 1 �
1

2�2�

TX
t=2

ct

)
(24)

Recall from (20) and (21) that ct and � both depend on �. The use of an
M-H step made it possible to handle (24) in a straightforward manner. A
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random walk proposal density was used. Note that if informative priors on �
were used, for instance to capture the relationship between � and the cyclical
order n, then the algorithm would remain the same, with the scale in the
M-H step adjusted.
4. Analogously to the case for �, for the frequency parameter we have

p(�cj�2�; �2� ; �2"; �;�; Y ) _ p(�c)p(Y j�;�)p(�j�) _ p(�c)p(�j�) (25)

p(�cj�2�; �2� ; �2"; �;�; Y ) _ p(�c) j�j�1=2 exp
(
�1
2
 01�

��1 1 �
1

2�2�

TX
t=2

ct

)
(26)

With a beta density for p(�c), the conditional posterior is nonstandard
as trigonometric functions of �c occur within the exponent. Again, an M-
H step was applied, with candidates generated by a random walk, see e.g.,
Chib and Greenberg (1996), Koop and van Dijk (2000), and Bos, Mahieu,
and van Dijk (2000). The scales of the proposal densities for � and �c were
calibrated for each model and prior based on the suggested rule of thumb
noted in Chib and Greenberg (1996). That is, the variances for the random
walk innovations were set to attain acceptance probabilities of 30-40%. The
simulations performed well within this range, though the exact choices for
the scale parameters are not crucial. By adapting the M-H properties to
di¤erent priors, cyclical orders, and datasets, the e¢ ciency of the posterior
computations was enhanced. Calibration of the scales for � and �c was based
on trial runs of the Gibbs sampler with a small number of iterations and
typically required less than a minute.
The ultimate set of drawings {�(j), �(j)}, j = 1; :::; J , used in the �nal

posterior sample were a subset of the {�(i), �(i)} produced by the MCMC
routine. Speci�cally, to improve the e¢ ciency of the analysis, correlations be-
tween successive posterior draws were reduced by running multiple iterations
for each draw and by discarding, or �burning�, a number of initial iterations.
The starting values for the parameters had a negligible impact on the �nal
results assuming that plausible values were used. In the univariate case, we
ran twenty repetitions of the Gibbs sampler to produce each draw, and we
burned the �rst 5000 iterates as the chain moved toward convergence. The
multivariate applications used �ve iterations per posterior draw after burn-
ing the �rst 2000. The �nal posterior sample consisted of 5,000 draws for
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parameters and components of multivariate models and 10,000 draws in the
univariate examples. Similarly, in the bivariate in�ation-output application,
after burning the �rst 5000 iterates, the �nal posterior sample consisted of
5000 draws, with ten iterations per draw. The autocorrelations for each
sequence of parameter draws typically fell to near zero after just a few lags.
The slope innovation variances generally had the highest degree of correlation
between successive parameter draws; the correlogram for the period typically
appeared similar to that of the frequency. Enhancing the informational con-
tent of the �nal set of posterior draws led to more e¢ cient estimation of
trend and cyclical properties.
Evaluation of marginal likelihood
Marginal likelihoods may be estimated using the posterior output. Kass

and Raftery (1995) and DiCiccio, Kass, Raftery, and Wasserman (1997) dis-
cuss computational approaches based on the Laplace method. This method,
which relies on a multivariate Gaussian approximating density to the pos-
terior, is appealing due to its simplicity. For our particular MCMC study,
calibration of M-H steps and the use of multiple iterations per draw helped to
produce a posterior sample with favourable properties. In other situations,
for example, if the chain shows a tendency to veer away for long intervals,
one may use an estimator of the posterior covariance matrix that is robust
to multivariate outliers.
The Laplace approximation requires the evaluation of the prior and like-

lihood, preferably at a point of high density. We used the posterior mean,
which is simple to compute. Alternatively, the posterior mode or median
could be estimated. For the basic Laplace method, the estimated posterior
ordinate is then obtained directly from the sample posterior covariance ma-
trix. This approximation, based on a Gaussian kernel, is appropriate for
comparing marginal likelihoods in cases where the posterior is relatively well-
behaved, for instance it is not multimodal in a high density region for any of
the parameters.
State matrix and Bayesian smoother
Taken on their own, the draws {�(j)g are variates from p(�jY ). The

posterior density of � involves a substantial amount of information as it
describes the relationships among subsets of the state vector at various points
in time. The associated marginal densities of the components are of primary
interest for current purposes, but one could in theory examine virtually any
aspect of the joint density of the cyclical estimates by averaging over di¤erent
functions of draws. This permits a great deal of �exibility in analyzing the
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cycle and its relative positions at di¤erent points in time. The conditional
mean of the cyclical component, given the data, represents the Bayesian
counterpart of the classical smoother.
Conditional posteriors in multivariate case
In extending the Bayesian analysis of model (1) to the multivariate setup

whereN > 1, the algorithm remains essentially the same as for the univariate
case. The main novelty lies in the treatment of the N -dimensional variance
matrices.
We now set out the exact expressions for the conditional densities, that

combine to form the Gibbs sampler for the multivariate model. The density
of the initial state is now

p(�1j��; �; �c) _ j� j�1=2 exp(�
1

2
 01�

�1
  1)

The conditional density of the state matrix, given the parameters, is

p(�j�� ;��; �; �c) _ j� j�1=2 jI2 
��j�(T�1)=2 j�� j�(T�1)=2 (27)

� exp
(
�1
2
 1�

�1
  1 �

1

2

TX
t=2

c0t(I2 
��)
�1ct

)

� exp
(
�1
2

TX
t=2

(�t � �t�1)0��1
� (�t � �t�1)

)

where ct = [ 
0
1;t; 

�0
1;t]

0�(T
IN)[ 01;t�1; �01;t�1]0 with 1;t = [ 11;t; :::;  N1;t]0; �1;t =
[ 1�1;t; :::;  

N�
1;t ]

0.
The summation in the cyclical part may be written as

TX
t=2

c0t(I2 
��)
�1ct =

TX
t=2

tr
�
(I2 
��1

� )ctc
0
t

�
= tr(��1� c1;tc

0
1;t) + tr(��1

� c2;tc
0
2;t)

where c0t =
�
c01;t c02;t

�
. For this partition of ct, the upper half c1;t (N � N)

corresponds to the N �rst order cycles [ 11;t; :::;  
N
1;t]

0, and the lower half c2;t
to the auxiliaries, [ �11;t; :::;  

�N
1;t ]

0.
Thus the cyclical part of the conditional density of � may be written as
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� = �2��
� where �� is a 2n � 2n matrix that depends only on � and �c

for given n.

p(�j��; �; �c) _ j�� 
��j�1=2 jI2 
��j�(T�1)=2

� exp
�
�1
2
 01 [V (�; �c; n)
 ��]

�1 1 �
1

2
tr
�
��1
� G

��
where

G =
TX
t=2

(c1;tc
0
1;t + c2;tc

0
2;t)

Since
j�� 
��j = j��jN j��j2n

and jI2 
��j = j��j2 we have

j�� 
 ��j�1=2 jI2 
��j�(T�1)=2 = j��j�N=2 j��j�(n+T�1)

Let the elements of block i; j of �� be denoted by

f��gi;j =
�
��i;j ��i;j�
��i�;j ��i�;j�

�
The complete cyclical state vector at each t is partitioned as

 t = [ 
1
n;t; :::;  

N
n;t;  

1�
n;t; :::;  

N�
n;t ; ::: 

1
1;t; :::;  

N
1;t;  

1�
1;t; :::;  

N�
1;t ; ]

0

= [ 0n;t; 
�0
n;t; 

0
n�1;t; :::; 

0
1;t; 

�0
1;t]

0

The term involving the initial state vector in the exponent may be written
as

 01 [�
� 
��]

�1 1 =
1

2
tr(��1

� H) (28)

where the (N � N) matrix H is given by

H =

nX
i=1

(

nX
j=1

���1i;j  j;1 
0
i;1 +

nX
j=1

���1i;j� 
�
j;1 

0
i;1)

+
nX
i=1

(
nX
j=1

���1i�;j j;1 
�0
i;1 +

nX
j=1

���1i�;j� 
�
j;1 

�0
i;1)
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This expression is derived by �rst noting that

[�� 
��]
�1 = tr

�
(���1 
��1� ) 1 01

�
Once the Kronecker product and multiplication are applied, the sum of the
diagonal elements gives (28).
The summation for the trend part of the conditional density can similarly

be written as

TX
t=2

(�t � �t�1)0��1� (�t � �t�1) =
TX
t=2

tr
�
��1� (�t � �t�1)(�t � �t�1)0

�
In summary, the conditional density of the state matrix is

p(�j��; �; �c) _ j��j�N=2 j��j�(n+T�1) exp
�
�1
2
tr(��1

� [G+H])

�
(29)

� j�� j�(T�1)=2 exp
(
�1
2
tr

 
��1
�

"
TX
t=2

(�t � �t�1)(�t � �t�1)0
#!)

The conditional density of � is shown in (29). The joint density of the
observations given the hyperparameters and � is a direct extension of the
univariate expression:

p(Y j�;�) _ j�"j�T=2 exp
(
�1
2

TX
t=1

tr
�
��1
" (yt � zt�t)(yt � zt�t)

0�)
The joint posterior of {�� ;��;�"} factors into a product of inverted

Wishart densities with shape and scale matrix parameters given by

�� : c
�
�
= c

�
+ (T � 1), S�� = S� +

TX
t=2

(�t � �t�1)(�t � �t�1)0

�� : c
�
� = c� + 2(n+ T � 1), S�� = S� +G+H

�" : c
�
"
= c" + T , S�

"
= S" +

TX
t=1

(yt � zt�t)(yt � zt�t)
0
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D Extension of state space model for bivari-
ate estimation of output gap series

Here we show the modi�ed state space form for the cyclical part of the
in�ation-output model for n = 1. The state vector is now

�t =
�
 �t  yt  ��t  y�t  yt�1  yt�2

�0
with transition equation

26666664
 �t
 yt
 ��t
 y�t
 yt�1
 yt�2

37777775 =
26666664

� cos�c 0 � sin�c 0 0 0
0 � cos�c 0 � sin�c 0 0

�� sin�c 0 � cos�c 0 0 0
0 �� sin�c 0 � cos�c 0 0
0 1 0 0 0 0
0 0 0 0 1 0

37777775

26666664
 �t�1
 yt�1
 ��t�1
 y�t�1
 yt�2
 yt�3

37777775+
26666664
��t
�yt
���t
�y�t
0
0

37777775
The corresponding part of the observation equation is

�
�t
yt

�
=

�
1 0 0 0 c1 c2
0 1 0 0 0 0

�
26666664

 �t
 yt
 ��t
 y�t
 yt�1
 yt�2

37777775+
�
"�t
"yt

�

The form of the matrices for n > 1 is analogous.
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E Additional �gures
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Density Simulated posterior for univariate model with n = 2
                using flat prior on frequency parameter

Prior Posterior     Lamda_c

Figure 18: Marginal posterior of the cyclical frequency �c for n = 2; using a
uniform prior on [0; �]. The series is quarterly US real GDP from 1947Q1
to 2004Q4. The graph shows the density function over the domain 0 to �=5;
the midpoint corresponds to a �ve-year period.
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Figure 19: Estimated posterior density for the cyclical frequency parameter
�c based on a trivariate model with quarterly series on consumption (C), in-
vestment (I), and gross domestic product (Y ). The sample period is 1947Q1
to 2004Q4 and a �at prior on �c was used.
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Figure 20: Marginal posteriors for variance parameters and correlations for
consumption (C) and investment (I) based on the trivariate C�I�Y model.
The sample period is 1947Q1 to 2004Q4 and a �at prior on �c was used.
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Figure 21: Estimated cycle in quarterly US real GDP (logarithms) from the
trivariate C-I-Y model shown with 95% HPD bands for n = 2. The wide
informative prior on �c was used. The sample period is 1947Q1 to 2004Q4.
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Figure 22: Posteriors for bivariate model of CPI in�ation and quarterly US
real GDP (logarithms) for sample period 1947Q2 to to 2004Q4, with n = 2
and a wide prior on �c.
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Figure 23: Estimated cyclical component (output gap) of quarterly US real
GDP (logarithms) for sample period 1947Q2 to to 2004Q4, based on the
in�ation-output bivariate model with n = 2 and a wide prior on �c. The
series is shown with 95% HPD bands.
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