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Cyclical components in economic time series are analysed in a Bayesian framework,
thereby allowing prior notions about periodicity to be used. The method is based
on a general class of unobserved component models that encompasses a range of
dynamics in the stochastic cycle. This allows for instance relatively smooth cycles
to be extracted from time series. Posterior densities of parameters and estimated
components are obtained using Markov chain Monte Carlo methods, which we
develop for both univariate and multivariate models. Features such as time-varying
amplitude may be studied by examining different functions of the posterior draws
for the cyclical component and parameters. The empirical application illustrates
the method for annual US real GDP over the last 130 years.
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1 Introduction

Decomposing time series into trends and cycles is fundamental to a good deal of macro-
economic analysis. The Hodrick-Prescott (HP) filter is often used to detrend series but
as shown in Harvey and Jaeger (1993) and Cogley and Nason (1995), using it inappropri-
ately can result in the creation of spurious cycles. The same is true of the band pass filter
recently proposed by Baxter and King (1999) for extracting cyclical movements over the
range two to ten years; see Murray (2003).

Harvey and Jaeger (1993) argued that detrending is best accomplished by fitting a struc-
tural time series model consisting of trend, cycle and irregular unobserved components.
In the classical approach, the model is estimated in state space form with the components
extracted by the Kalman filter and associated smoother. However, fitting the model to
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series like GDP usually results in the irregular component nearly disappearing with the
result that the cycle is quite noisy. The class of higher order stochastic cycles introduced
in Harvey and Trimbur (2003) enables one to overcome this feature. Trimbur (2004)
provides the exact characterization of this class of models, showing analytical expressions
for the time and frequency domain properties.

Using higher order cycles in the unobserved components model for the series yields im-
plicit filters that concentrate on extracting relatively more power from a narrower band
of frequencies. More high frequency noise is forced into the irregular thereby yielding a
smoother cycle. A perfectly sharp band pass filter, typically referred to as the "ideal"
filter, emerges as a limiting case. In empirical work it has often been taken for granted
that such a filter naturally provides the best basis for extracting cycles - this view is
implicit in the terminology itself - and the "ideal" filter has been emulated in numer-
ous applications with time series data. Examining the models that underpin different
types of filters provides insight as to their relative appropriateness. In the general case,
the gain tapers off gradually at the band edges, in contrast to the "ideal" filter, which
exhibits discontinuity at the boundaries, a shape that is in some sense less natural, par-
ticularly in economic applications. The biggest concern, however, remains the potential
for distortions of the type demonstrated in Murray (2003).

The model-based estimators of cyclical components, introduced in Harvey and Trimbur
(2003), enable one to mitigate such distortions. These classical estimators are referred
to as generalized Butterworth band-pass filters, given their close links with the Butter-
worth filters commonly used in engineering. The goal of this paper is to develop the
complementary Bayesian analysis of models with higher order cycles so that parameter
uncertainty is accounted for, with the estimated posterior densities providing compact
and informative summaries of trend and cyclical dynamics. We show empirical appli-
cation with the annual US real GDP series. Essentially, the paper introduces Bayesian
band-pass filters for economic time series.

Prior knowledge on periodicity is readily available in the area of business cycle analysis.
This paper introduces a Bayesian approach, whereby parameter uncertainty in accounted
for and expectations about cyclical dynamics are updated optimally, producing a poste-
rior probability density of the model parameters and component series. In a classical
framework, fixed estimates for the parameters in structural time series models are usu-
ally obtained by maximum likelihood (ML) using the Kalman filter. Harvey and Trimbur
(2003) found that this works well for series like investment where the cycle is pronounced.
For some cases, however, it may be difficult to obtain plausible parameter estimates on
the basis of the likelihood surface alone. In any case, the classical approach is unable
to provide a satisfactory way to implement any prior knowledge that may be available
about the period of oscillation.

In estimating economic cycles, prior information on the frequency range of interest has
clearly played a role in a good deal of empirical work. Typically, however, such informa-
tion has been implemented by imposing stringent conditions on the desired pattern of the
gain function of the filter, for instance in Baxter and King (1999) where an approximation
to an "ideal" filter with prespecified boundaries is proposed. The concerns associated
with the use of "ideal" filters in economics were noted above. By using prior knowledge

in a more consistent manner, a model-based framework is able to address these concerns.
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Specifically one may construct a Bayesian prior for the frequency parameter of the cyclical
component as part of the model; the prior distribution is then updated, following Bayes
rule, conditional on the information in the data. Prior information on other parameters
may also be used, though this will typically be rather more vague. The resulting joint
posterior density of parameters and components may then be used to provide a great deal
of insight on many different aspects of the time series dynamics.

The Bayesian approach also has the practical advantage that it allows one to address
potential finite sample problems. In particular, for any given model and series of limited
length, the likelihood surface may exhibit some irregularities, with reasonable parameter
estimates impossible to attain in an unrestricted classical framework. In Harvey and
Trimbur (2003), difficulties were sometimes experienced in obtaining a sensible period
for the cycle in real GDP; in such cases, estimation with a fixed period led to acceptable
results. However, the use of suitable priors, within a Bayesian framework, enables one
to address the problem more effectively in a consistent manner. Greater flexibility is
provided, and generally, a Bayesian approach may be feasible for a broader range of
applications with different model structures and sample sizes.

This paper presents a Markov chain Monte Carlo (MCMC) algorithm for a Bayesian
analysis of stochastic cycles in time series. The method we develop is a new composite
of the Gibbs sampler and Metropolis-Hastings algorithms. With the aid of state space
modeling techniques, we set out an efficient procedure for computing the joint posterior
density of parameters and components. This provides a great deal of information that
may be used to study a variety of features of cyclical dynamics. For instance, one may
characterize the complete distribution of the cyclical component series. As the algorithm
allows for the computation of marginal posteriors of the trend and cyclical component
at different points in time, based on the percentiles of the estimated distributions, bands
showing the highest posterior density regions of the cycle and trend may be constructed.

The area of Bayesian analysis of dynamic econometric models has benefitted from develop-
ments in state space and MCMC methods in recent years. Some important contributions
have been Carter and Kohn (1994), Fruhwirth-Schnatter (1994), deJong and Shephard
(1995), and Durbin and Koopman (2002). The paper by Huerta and West (1999) sets
out a Bayesian treatment of cyclical behaviour indirectly through autoregressive mod-
els. However, there has been no attempt to conduct a Bayesian analysis of cycles in an
unobserved components framework.

Fruhwirth-Schnatter (1994) and Koop and van Dijk (2000) analyse trends and seasonals
in various macroeconomic series. The treatment of cycles leads to a number of new
technical issues which we address in this paper and the Bayesian approach allows us to
present the results of model fitting in an informative way. As outlined in Harvey, Trimbur,
and van Dijk (2002), the analysis may be naturally extended to multivariate unobserved
components models. Again this has not been attempted in a Bayesian framework and it
introduces a number of issues that require careful consideration.

The rest of the paper is arranged as follows. Section 2 describes the extension of the

class of structural time series models to include higher order cyclical components. The

Bayesian treatment is developed in section 3, while section 4 illustrates the method

with an applications to an annual US macroeconomic series. Technical details on the
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state space form and the Markov chain Monte Carlo algorithms for the univariate and
multivariate cases are set out in Harvey, Trimbur, and van Dijk (2002).

2 Cyclical and trend components in time series

We consider a class of unobserved component (UC) models in which the observations y;,
t =1,...,T, are made up of a nonstationary trend component p,, a cyclical component
¥+, and an irregular term &;. Thus:

yt:ut—i_wn,t—i_‘gtﬂ t=1,..T, (1)

where the irregular is white noise, that is &, ~ WN(0,0?), the stochastic trend is an
integrated random walk

fe = pyq + Beas (2)
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The parameter ). denotes frequency in radians while p is a damping factor lying between
zero and one; if it is equal to one, the cycle is nonstationary. The disturbances driving the
trend and cycle are assumed to be uncorrelated with each other and with the irregular.
The specification in (1) is well-suited for trend-cycle decompositions. The assumption in
using model (1) directly is that the seasonal component has been removed. Alternatively,
the raw (non-seasonally adjusted) data could be used, with the model augmented by
adding a seasonal component.

Each type of stochastic cycle is defined in terms of a number of processes. The nth order
stochastic cycle 9, , has periodic movements centered around a frequency of A.. The
stochastic movements stem from the two disturbances, x; and «; in (4). Suppressing <} in
the model specification yields a class of band pass filters that generalises the Butterworth
class of filters; see Gomez (2001) and Harvey and Trimbur (2003). Our preference here is
to work with the ‘balanced form’ of (4); for n = 1 this is identical to the stochastic cycle
in (Harvey 1989, p. 39) and as shown in Trimbur (2004), analytical expressions for key
properties are available for all n. The different spectral shapes for different orders give an
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illustration of the range of dynamics of the class of higher order cycles. With the cyclical
parameters fixed, the spectrum becomes sharper as the order increases, concentrating
around the central frequency. Further details may be found in Trimbur (2004).

State space methods play a key role in both classical and Bayesian treatments of the
class of models (1). The state space formulation and dynamic characteristics of the
higher order cycles are set out in Trimbur (2004). In the next section, we devise an
efficient Bayesian approach, where components are estimated in a way that accounts for
parameter uncertainty. This allows for an informative analysis of cyclical behavior with
flexible expectations on periodicity.

3 DBayesian treatment

The three variance parameters and two cyclical parameters are arranged in the vector
0 = {0%,0%,02,p,A\c}. The model is assumed to have Gaussian disturbances through-
out. Given a sample y = {1, ..., yr}, the likelihood function is specified by the model
structure. Below we introduce a flexible set of priors for 6.

The goal is then to analyze the properties of the posterior distribution, p(8|y). Since
this is not a member of a class of densities which has known analytical properties, a new
Markov chain Monte Carlo routine is developed. The method produces draws from the
posterior density of the parameters and components, giving smoothed estimates of the
cycle as a by-product. The approach can be adapted to different kinds of priors, and in
the next section we also set out the extension to multivariate model structures.

3.1 Priors and likelihood

We start by summarising the elicitation of priors. The direct interpretation of the
cycle parameters makes it straightforward to design suitable priors; they are linked to
economic intuition and previous experience of studying business cycles. The parameter
A represents a central frequency; the annual sample we investigate below includes cyclical
swings that vary a great deal in their duration, and the expectation is that, on average,
fluctuations in the cycle will have a period of around ten years. A standard peaked
distribution for A, may be used by the researcher to reflect this expectation in a consistent
and adaptable framework.

For annual macroeconomic data, we consider priors for \. centred around 27 /10, based on
the class of beta distributions; such priors are flexible, covering a variety of possibilities,
and they are easy to work with analytically. We consider different degrees of concen-
tration in the prior around the mean. The least informative prior covers a wide range of
frequencies, while the sharpest density focuses attention narrowly around a period of ten
years. Other priors, with different spreads and locations, may be implemented in this
framework. If a particular shape of prior were desired, then another class of densities
could be used and the algorithm would be constructed in the same way as shown below.



The informative priors we implement all reflect an emphasis on average business cycle
periodicity of ten years.

For technical details on the class of priors we use, see appendix A in Harvey, Trimbur,
and van Dijk (2002). The approach taken by Huerta and West (1999) uses priors for the
autoregressive parameters implied by the reduced form of the first order cycle. We find it
more useful to focus on A.. In any case adapting the Huerta and West approach to higher
order cycles would not be straightforward. The parameter p is linked to the order of the
cycle. In the first order case p is the rate of decay of the cycle, but for higher orders the
interpretation of p changes somewhat so that different values are appropriate. However,
since the precise form of the relationship between p and n is not clear, we use a uniform
prior on p over the interval [0,1].

For the variance parameters, we use inverted gamma prior densities with shape and
scale set to near zero, which serve as effectively noninformative. The class of inverted
gamma priors are conditionally natural conjugate so that the conditional posteriors are
also inverted gamma, and thus one has the advantage of direct simulation within the Gibbs
sampler routine. Also, the flexibility of this class of density allows for implementing any
prior knowledge that may be available for the variance parameters. Thus, for instance,
if there is the expectation of stochastic trend dynamics, such an expectation may be
expressed as a prior with positive mean and a degree of dispersion to reflect uncertainty
in the exact value of the disturbance variance.

Next, we summarise the evaluation of the likelihood and posterior of our unobserved
components model. The sample y represents the observed realization of the data gener-
ating process, which is a multivariate density p(Y'|@) over all possible realizations Y. As
normality of the disturbances is assumed, the likelihood function, L(0;y) = p(y|@), can
be evaluated for any permissible value of 8 using the Kalman filter. This relies on the
prediction error decomposition as described in Harvey (1989, p. 126). With an appro-
priate initialisation, the density p(Y'|@) is multivariate Gaussian so that computation of
the likelihood for a given sample is straightforward.

The densities {p(0), p(Y'|0)} give the full description of the model in the Bayesian context.
Given the data y, the prior-likelihood pair {p(0), L(0;y)} defines the analysis. The
expectations reflected in p(@) are updated using the information in the y, through L(0;y).
By studying the characteristics of the posterior, the analysis addresses various questions
about cyclical and trend dynamics.

3.2 Posterior

The posterior p(@|y) is proportional to the product of the prior and likelihood. However,
the expression for the product p(@)L(0;y) does not represent the kernel of a known
distribution. The normalizing constant (equal to the marginal likelihood) required for
evaluating the posterior ordinate is not known in terms of elementary functions (like v/27
in the case of the normal distribution).

A strategy is needed for analyzing the properties of p(@|y). With a five-dimensional
parameter vector, MCMC methods offer an efficient way to sample (pseudo-random)
6



parameter drawings from the posterior. This may be used to produce drawings of
regular functions of the parameters. Thus for instance, finite sample results on posterior
moments may be compared with ML estimates.

The strategy for posterior analysis is based on extending the parameter space to include
the components and associated auxiliary processes in (1), which together form the basis
for the state space form of the model. As described in Harvey, Trimbur, and van Dijk
(2002), we design an MCMC routine that is able to capitalize on recent developments in
state space modeling. Thus, the simulation smoothing techniques developed, for instance,
in deJong and Shephard (1995) and Durbin and Koopman (2001), may be efficiently used
in a Gibbs sampling setup. In this way, the algorithm is set up to produce drawings
from the expanded density of both the parameters and unobserved components. This
provides an efficient route for obtaining draws from p(8]y), and it also gives additional
information that is useful for studying the trend and cycle.

3.3 Signal extraction

The MCMC method produces drawings from the joint density of the two unobserved
components, the cycle and trend, over the sample period. These high-dimensional vari-
ates, conditional on the data, can be used to compute a Bayesian analogue of the classical
smoother. As they form part of the Gibbs sampler, no additional effort is required to
obtain them. Classical estimates correspond to the conditional means of the cyclical
component, given the sample, assuming the parameters are fixed at estimated values.
The Bayesian smoother incorporates parameter uncertainty (the parameter vector is in-
tegrated out) and accounts for prior knowledge about the period.

The Bayesian analysis produces draws from the joint posterior of the trend and cyclical
components, p(fy, ..., iy, ¥y, 15 - Yy 7|y).  We note that the posterior mean is the optimal
estimator for a quadratic loss. The estimated component series are obtained by averaging
over the J state draws, that is

J J
~ 1 ; ~ 1 ;
My = jZng)y wn,t = 321/17(1{3:7 t= ]-7 "'7T7
j=1 j=1

where ,uz(fj ) denotes the jth draw for the trend at time ¢ and similarly for the cyclical
component. The standard deviation of the trend estimate at each time point is given by

\/ > pf G) /J — iy and other higher-order moments, for the various components, may be
computed in a similar way.

Drawings of regular functions of the trend, cycle, and other state vector elements over
the sample are directly obtained. This enables properties of the time-varying cycle, such
as amplitude, to be studied. The amplitude of the cycle at time ¢ is estimated by

J
1 2(g *2(7
At: j; \/ ¢n€i)+¢n,15(])v t= 1a"'7T
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Other features of interest of the unobserved components may be studied analogously.

3.4 Annual US GDP

Annual time series are available over a fairly long period of time and this allows one to
investigate issues concerning long-term changes in the business cycle. We examine annual
US real GDP data from 1870 to 1998 compiled from the OECD publications Monitoring
the World Economy and The World Economy: a Millennial Perspective. The enormous
swing from the beginning of the Great Depression to the end of World War II constitutes
a much longer and more pronounced cycle than is found in post-war data. The priors
we consider for A, have a mean of 27/10; thus we allow for relatively long periods with
an average of around ten years. In addition we assume that the variance of the cyclical
disturbances from 1929 to 1946 is ten times what it is elsewhere. The state space model
has no difficulty handling such an extension. (A similar device could have been adopted
for the frequency, that is the period from 1929 to 1946 could have been assumed to be
double what it is elsewhere).
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Figure 1: Marginal posterior densities of frequency and period with intermediate and
very informative priors on . for annual US real GDP (logarithms) from 1870 to 1998.

The results for n = 1 with the least informative prior on A. show that the posterior
distribution of period concentrates around 17.5 years, owing to the dominating influence
of the Great Depression and the subsequent World War 11 recovery. It may be preferable,
therefore, to use a sharper prior. The posterior densities for frequency and period are
shown in figure 1 for intermediate and very informative priors, and the resulting trend
and cycle for the very informative prior is shown in figures 2 and 3. Note that the data
are in logarithms.

The series of trend and cycle estimates over the sample period are computed as posterior
8



means, obtained by averaging over the .J state draws as described in sub-section 3.3. The
HPD (Highest Posterior Density) regions for the estimated series are shown as well.

16
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Figure 2: Estimated trend in annual US real GDP (logarithms) from 1870 to 1998 for
n = 1 with most informative prior on A..
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Figure 3: Estimated cycle in annual US real GDP (logarithms) from 1870 to 1998 for
n = 1 with most informative prior on ..

The HPD regions in figures 2 and 3 are obtained by taking the 2.5 and 97.5 percentiles,
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and we will refer to the series of HPD regions as HPD bands!. These resemble classical
95% confidence intervals but their interpretation is distinct; the bands in figures 2 and 3
give exact finite sample measures of uncertainty. The Bayesian smoother refers to the
actual distribution of the trend and cycle conditional on the dataset. The associated
HPD bands incorporate the posterior uncertainty in components and parameters. To
our knowledge, no one has given, so far, finite sample confidence bands around the trend
and cycle components.

t [—amplitude smooth —— HPD]
0.4+

0.2+

1900 1950 2000

Figure 4: Evolving amplitude of the cyclical component in annual US real GDP (loga-
rithms) from 1870 to 1998 for n = 1 with most informative prior on A..

An interesting question is whether business cycles have generally declined in intensity
since World War II. Figure 4 displays the evolving amplitude. The graph is dominated
by the Great Depression and World War II, but there is some indication that the average
amplitude of the cycle is smaller in the post war period as compared with the period
before 1929. This contradicts the findings of Backus and Kehoe (1992) from a study
based on detrending with the Hodrick-Prescott filter?.

IThe precise definition of the 95% highest posterior density (HPD) region is the minimum interval
that contains 95% of the probability mass. For symmetric distributions this gives a result identical to the
2.5 to 97.5 percentile interval as defined in the paper. For posteriors with a limited degree of asymmetry,
the HPD region is approximately given by the percentile-based definition.

2Backus and Kehoe (1992) are concerned with the volatility of macroeconomic time series in different
historical periods, but in fixing the HP smoothing constant (the inverse of the signal-noise ratio), they
effectively make an assumption about the very thing they are trying to determine! Ravn and Uhlig
(2002) show that the result is overturned if a more plausible value of the HP smoothing constant is
used. A model-based approach, focusing on the relative variance of cycle and trend components, gives a
coherent answer to the question, though in doing so it raises the whole issue of whether one should be
doing HP detrending in the first place.
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There is some difficulty in estimating plausible cycles in the annual series for higher
order models; with noninformative priors the cyclical variance falls to near zero so that
the trend accounts for most of the variation in the series. Therefore, for n > 1 more
informative priors on O'g were used to ensure that the trend does not change too rapidly.
Posterior means for different values of n are shown in table 1 for the sharp prior; with
less informative priors on A. the posterior mass of the period shifts to higher values while
the results for the other parameters remain similar. Considerably more noise is removed
for n > 1, as can be seen from the higher estimates for o2.

Ordern o} o2 o? p A 21/ A
1 60.7 5416 3413 0.918 0.507 124
2 18.8 417 7847 0.897 0.525 11.9
3 20.7 64.4 8296 0.872 0.549 11.5
4 12.9 3.11 10,469 0.883 0.542 11.6

Table 1 : Posterior means for annual US real GDP from 1870 to 1998 for different values of
n with an informative prior on A., centred at 2w/10. For n = 2,3, the shape and scale of
the inverted gamma prior on O'g were set to 20 and 2 x 1075, respectively. For n = 4, the
shape and scale of the inverted gamma prior on Ug were set to 100 and 107, and additionally,
g was used, with shape and scale equal to 10 and 107°. The
period in years is 27 /A .- All variance parameters are multiplied by 107,

a moderately informative prior on o

| [—— cyde smooth —— CydeHPD]

-0.25 -

]
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Figure 5: Estimated cycle in annual US real GDP (logarithms) from 1870 to 1998 for
n = 2 with most informative prior on ..

The biggest change occurs in moving from the first order to the second order cycle. The
estimated cyclical component for n = 2 is displayed in figure 5. The increased smoothness
relative to the first order case means that the turning points become more clearly defined.
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4 Conclusion

A structural time series model provides a consistent framework for extracting trends and
cycles. This article has investigated the Bayesian treatment of such a model, paying
particular attention to the cyclical component and the way in which prior information
on periodicity can be used. Markov chain Monte Carlo routines are successfully designed
for univariate and multivariate models, including those with higher order cycles of the
kind introduced recently by Harvey and Trimbur (2003). Smooth cycles were successfully
extracted from the annual US GDP time series. These cycles have a simple interpretation
in terms of the percentage by which they exceed or fall below the long-term level. The
series of smoothed Bayesian estimates give more information about the relative position
of the business cycle over time, along with measures of uncertainty.

Two key incentives for exploring a Bayesian approach are, on the practical side, the
possibility of addressing a broader range of problems including those with limited sample
sizes, and from a theoretical perspective, the more consistent and flexible use of prior
knowledge on periodicity. Bayesian analysis in an unobserved components framework
provides a direct and informative approach to studying cyclical dynamics. Cyclical
turning points and features such as changing amplitude are assessed while accounting
for parameter uncertainty. Multivariate applications provide the capacity to combine
the information in sets of economic indicators and to study underlying business cycle
components and relationships across different series.
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