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l)COMPUTATIONAL AND GAME-THEORETIC APPROACHES FOR MODELING BOUNDED
RATIONALITY

This thesis studies various computational and game-theoretic approaches to economic
modeling. Unlike traditional approaches to economic modeling, the approaches studied in
this thesis do not rely on the assumption that economic agents behave in a fully rational way.
Instead, economic agents are assumed to be boundedly rational. Abandoning the assump -
 tion of full rationality has a number of consequences for the way in which economic reality
is being modeled. Traditionally, economic models are mostly of a static nature and have a
strong focus on deriving equilibria. Also, models are usually analyzed mathematically. In
models of boundedly rational behavior, dynamic elements play a much more prominent
role and there is less emphasis on equilibrium behavior. Also, to analyze models of
boundedly rational behavior, researchers not only use mathematical techniques but they
also rely heavily on computer simulations.

This thesis presents four studies into the modeling of boundedly rational behavior of
economic agents. Two studies are concerned with investigating the emergence of coopera -
tion among boundedly rational agents. One study focuses on cooperation among firms in
a Cournot oligopoly market, while the other study examines cooperation in a spatial model
of price-competing firms. The other two studies in this thesis are concerned with methodo -
logical issues in the use of evolutionary algorithms for economic modeling purposes. One
study shows how evolutionary algorithms can be analyzed mathematically rather than
using computer simulations. The other study criticizes the use of a so-called binary encoding
in evolutionary algorithms.
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Chapter 1

Introduction

1.1 The gradually shifting paradigm of mainstream eco-
nomics

Economic theory is frequently criticized. The assumption of economic agents being

fully rational, well-informed, and driven only by selfish motives plays a central role

in economic theory. This assumption, however, is often argued to be highly unreal-

istic. Economic theory is also criticized for its heavy reliance on static models and

equilibrium analysis. Related to this, it is argued that economists pay too much atten-

tion to mathematical rigor and neglect the practical relevance of their work. According

to Mark Blaug, a scholar of economic methodology and of the history of economic

thought, “economics has increasingly become an intellectual game played for its own

sake and not for its practical consequences” (Blaug, 2002, p. 36).

I believe that the above criticism, whether one in essence agrees with it or not, has

somewhat less relevance for today’s economic research than for the economic research

that was done, say, twenty or thirty years ago. Especially during the last two decades,

economists have become more and more interested in studying boundedly rational be-

havior. They do so not only theoretically but also empirically. Economists have also

started analyzing all kinds of dynamic processes, which means that they are no longer

focusing exclusively on static equilibrium analysis. Because of these developments,

criticism on unrealistic rationality assumptions made by economists and on economists’
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fixation with equilibrium analysis seems somewhat less relevant today than it was a few

decades ago.

This view of the developments taking place in economic research fits well into the

account offered by Colander, Holt, and Rosser (2004b).1 Colander et al. assert that

mainstream economics is moving away from, what they call, the holy trinity of rational-

ity, selfishness, and equilibrium, and they interpret this movement as a paradigm shift.

Unlike Thomas Kuhn’s notion of a paradigm shift (Kuhn, 1996), Colander et al. argue

that the paradigm shift in mainstream economics occurs gradually rather than suddenly.

They also argue that the paradigm shift is partly due to forces from within the main-

stream.

The studies presented in this thesis all involve economic agents that are boundedly

rational and that dynamically adjust their behavior. Before introducing the studies in

more detail, I will first discuss three areas of economic research in which the modeling

of bounded rationality and dynamic adjustment processes plays a central role. My focus

will be on game-theoretical settings, that is, settings with a limited number of agents

interacting with each other. In Sections 1.2 and 1.3, the areas of evolutionary game

theory and economic learning theory will be discussed. Nowadays, these areas seem

to be well-accepted in mainstream economics. In Section 1.4, the area of agent-based

computational economics will be discussed. Even though there is some overlap with

the other two areas, the area of agent-based computational economics seems to have

gained much less acceptance in mainstream economics (Lehtinen & Kuorikoski, 2007;

Leombruni & Richiardi, 2005). After the three research areas have been discussed, the

studies presented in this thesis will be introduced in Section 1.5. A brief outline of the

thesis will be provided in Section 1.6.

Some general characteristics of the research areas of evolutionary game theory, eco-

nomic learning theory, and agent-based computational economics are summarized in

Table 1.1. These characteristics will be discussed in the next three sections. To the best

of my knowledge, there is no literature in which the areas of evolutionary game theory,

economic learning theory, and agent-based computational economics are systematically

compared with each other. There also does not seem to exist a generally accepted view

on the characteristics of the three areas and on the similarities and dissimilarities be-
1See also Colander, Holt, and Rosser (2004a) for interesting background reading.
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Table 1.1: Some general characteristics of the areas of evolutionary game theory (EGT),

economic learning theory (ELT), and agent-based computational economics (ACE). See

Sections 1.2, 1.3, and 1.4 for an explanation of the table.

EGT ELT ACE

Model specification mathematical mathematical algorithmic
Model complexity low fairly low medium/high
Methodology mathematical mathematical; simulation;

econometric agent-based modeling
Inspiration evolutionary ad hoc; ad hoc;

psychological computer science;
evolutionary

Focus long run short/long run short/long run
Empirical orientation low fairly high moderate

tween the areas. The discussion below reflects my personal view on how the areas of

evolutionary game theory, economic learning theory, and agent-based computational

economics can be characterized and on how they relate to each other.

1.2 Evolutionary game theory

Much of mainstream micro-economic theory rests on a foundation in classical game

theory. Classical game theory is built on the assumption of fully rational behavior, and

it focuses exclusively on equilibria. No attention is paid to issues such as bounded

rationality and lack of information. Also, the question how equilibria emerge is more or

less ignored and definitely not explicitly modeled.

During the last two decades, a fundamental change of direction has taken place in

the field of game theory (see also Sugden, 2001). Many game theorists have shifted their

attention from classical game theory to evolutionary game theory (EGT). EGT assumes

that behavior in games is determined by some evolutionary mechanism. Economists

usually do not give a biological interpretation to the evolutionary mechanism. Instead,

they interpret the mechanism in terms of agents that learn from each other or that imitate

each other. Alternatively, the mechanism is interpreted in terms of, for example, suc-

cessful firms taking over market share from non-successful ones. Unlike classical game
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theory, EGT does not rely on the assumption of fully rational behavior. Instead, it as-

sumes some kind of bounded rationality. EGT also pays more attention to the dynamic

processes through which equilibria may emerge.

EGT seems to have been largely inspired by the work of the biologist Maynard Smith

(1982). He introduced the well-known notion of an evolutionary stable strategy (ESS).

Even though the notion of an ESS is in fact just a refinement of the Nash equilibrium

concept, its underlying justification is very different. It relies on an evolutionary justi-

fication rather than on a justification based on full rationality and common knowledge.

Although ESS is basically a static equilibrium concept, much of the current EGT liter-

ature explicitly models dynamic processes and examines whether such processes con-

verge to a certain equilibrium.

Unlike the classical game theory literature, the EGT literature has not yet resulted

in a single generally accepted modeling framework. Instead, the models studied by

different authors are sometimes based on quite different ideas. A number of books have

appeared in which various approaches to EGT are discussed, see Gintis (2009), Vega-

Redondo (1996), Samuelson (1997), Weibull (1995), and Young (1998).

In some way, the difference between classical game theory and EGT (as studied by

economists) is smaller than it might seem to be (see also Sugden, 2001). Although EGT

has dropped the important assumptions of full rationality and common knowledge, the

methodology of EGT is in many respects not very different from that of classical game

theory. Like classical game theory, EGT relies almost exclusively on model building and

rigorous mathematical analysis. Models are almost always studied mathematically, and

computer simulations are rarely used. Also, researchers in EGT usually focus mainly on

the long-run outcomes of their models. Hence, like in classical game theory, researchers

are primarily interested in equilibria. Another thing to note is that researchers in EGT

generally do not pay much attention to empirical validation (Silva & Teixeira, 2009;

Sugden, 2001). At the moment, the practical relevance of much of the EGT literature

therefore still seems unclear.
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1.3 Economic learning theory

During the last decades, more and more economists and game theorists have started

studying simple models of learning in games. There seems to be no commonly used

name for this research area. I will here refer to it as the area of economic learning

theory (ELT).

Research in ELT is partly theoretically oriented and partly empirically oriented. In

theoretical research in ELT, the properties of learning models are analyzed mathemati-

cally (e.g., Fudenberg & Levine, 1998; Young, 2004). Like in EGT, the focus is mainly

on long-run outcomes and on convergence to equilibria. Empirical research in ELT is

usually done by experimental and behavioral economists. These researchers try to build

models that describe experimental data obtained from human participants learning to

play games in laboratory settings (e.g., Chapter 6 in Camerer, 2003). In empirical ELT

research, the focus is much more on the short-run outcomes of a learning model. These

outcomes are important to determine how well a model fits experimental data.

Well-known learning models studied in ELT include Bayesian learning, best re-

sponse learning, fictitious play, reinforcement learning, and experience-weighted at-

traction learning. Overviews of various models proposed in the literature are given by

Brenner (1999, 2006) and Fudenberg and Levine (1998). ELT models typically assume

some kind of bounded rationality. Unlike the models studied in EGT, ELT models usu-

ally do not rely on an evolutionary mechanism. Instead, more ad hoc mechanisms are

employed, sometimes with some psychological justification.

1.4 Agent-based computational economics

Agent-based computational economics (ACE) is a research area in which economic

phenomena are studied using agent-based modeling techniques. One leading researcher

defines ACE as “the computational study of economic processes modeled as dynamic

systems of interacting agents” (Tesfatsion, 2006, p. 835). The label ‘agent-based com-

putational economics’ seems to be used only by a relatively small number of researchers.

Many researchers who are following an ACE approach in much of their work do not use

the ACE label. This is especially the case for researchers with an interest not only in

economics but in the social sciences in general. An example is Epstein (2006), who
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refers to his work as generative social science. Miller and Page (2007) are another ex-

ample. They refer to their work as research into complex adaptive (social) systems. A

third example is Axelrod (1997a, 2006a), who refers to his work simply as simulation

in the social sciences.2 Overviews of the area of ACE can be found in a survey paper by

Tesfatsion (2003) and a handbook edited by Tesfatsion and Judd (2006). Discussions of

the ACE approach are also provided by Dawid (1996) and Dawid, La Poutré, and Yao

(2008). General introductions to agent-based modeling in the social sciences can be

found in the books by Epstein (2006), Epstein and Axtell (1996), and Miller and Page

(2007). The value of simulation and agent-based modeling in social science research is

discussed by Axelrod (1997a, 2006a) and Axtell (2000).

The well-known segregation model of Nobel laureate Thomas Schelling (1969, 1971,

1978) is sometimes seen as an early example of the ACE approach (e.g., Epstein & Ax-

tell, 1996). However, the ACE approach really started to attract attention about two

decades ago, when researchers began to use techniques from computer science and ar-

tificial intelligence for economic modeling purposes (early research includes Arthur,

1991, 1994; Axelrod, 1987; Holland & Miller, 1991; Miller, 1986). Nowadays, ACE is

still a rather heterogeneous research area, with some researchers publishing their work

mainly in computer science oriented journals and conference proceedings and other re-

searchers targeting more at an audience in mainstream economics.

Like EGT and ELT, ACE assumes that agents are boundedly rational. Following

Epstein (2006, p. xvi–xviii), heterogeneity, local interaction, and non-equilibrium dy-

namics may be seen as other characteristics of the ACE approach. Similar characteris-

tics are mentioned by Miller and Page (2007, Chapter 6). The most important difference

between on the one hand ACE and on the other hand ELT and even more EGT seems

to be that in ACE more weight is given to realistic modeling while less attention is paid

2Axelrod notes that many different labels are being used for simulation research in the social sciences.
Examples are artificial society, complex system, agent-based model, multi-agent model, individual-based
model, bottom-up model, and adaptive system. Given this plethora of labels, Axelrod calls for conver-
gence on a commonly accepted terminology.
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to parsimonious modeling.3 Hence, in general the models studied in ACE are more

complex than those studied in EGT and ELT.

A major difference between ACE and mainstream economics is that researchers in

ACE perform almost all their analyses using computer simulations.4 They perform al-

most no mathematical analyses. In mainstream economics this is exactly the other way

around.5 A related difference concerns the way in which researchers formulate their

models. In mainstream economics models are almost always formulated mathemati-

cally, which usually means that the specification of a model is completely clear. In ACE

many models are formulated in terms of an algorithm to be run on a computer. This

sometimes causes some ambiguity about the exact specification of a model (see also

Axelrod, 1997a; Axtell, Axelrod, Epstein, & Cohen, 1996).

Many ACE researchers study models that are evolutionarily inspired. From this

point of view, ACE is quite closely related to EGT. In both areas, researchers employ

evolutionary mechanisms for modeling boundedly rational behavior and dynamic ad-

justment processes. Despite this similarity between ACE and EGT, there is not much

interaction between the two research communities (for an example of work in which

ACE and EGT approaches are brought together, see Dawid, 1996).

The ACE approach seems to be somewhat less empirically oriented than the ELT

approach. During the last years, however, ACE researchers have started to pay more

attention to the issue of empirical validation (e.g., Fagiolo, Birchenhall, & Windrum,

2007; Windrum, Fagiolo, & Moneta, 2007). For an overview of work that has been

done on the validation of ACE (and ELT) models based on experimental data, see Duffy

(2006).
3According to Tesfatsion (2006, p. 838), ACE researchers “seek causal explanations grounded in the

repeated interactions of agents operating in realistically rendered worlds. Ideally, the agents should have
the same flexibility of action in their worlds as their corresponding entities have in the real world”. The
distinction between realistic models and parsimonious models is somewhat related to the distinction that
Miller and Page (2007, p. 78–80) make between flexible models and precise models. Miller and Page
argue that compared with mainstream economic models ACE models are more flexible but less precise.

4Tesfatsion (2006) seems to regard the use of a computer as an intrinsic element of the ACE approach.
However, Epstein (2006, p. xiii) and Miller and Page (2007, p. 64–65) state that in their modeling
approaches the use of a computer is not an essential element.

5For a discussion why computer simulation and agent-based modeling are not very popular in main-
stream economics, see Lehtinen and Kuorikoski (2007) and Leombruni and Richiardi (2005). Miller
and Page (2007, Chapter 5) list some common objections against agent-based modeling and try to refute
these objections. Axelrod (2006b) discusses some personal experiences with resistance against agent-
based modeling.
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1.5 Contribution of the thesis

This thesis consists of four studies. These studies are presented in Chapters 2, 3, 4,

and 5 of the thesis. Each study is an independent piece of research that makes a separate

contribution to the literature.

A common theme of all four studies consists of bringing together elements from on

the one hand the ACE modeling approach and on the other hand the EGT (Chapters 3,

4, and 5) and ELT (Chapter 2) modeling approaches. As discussed above, these three

modeling approaches have a number of fundamental ideas in common, but they also

differ from each other in important ways. Moreover, the three approaches have been

developed relatively independently from each other, with only a limited degree of inter-

action between the different scientific communities that were involved. In this thesis,

relations between the three modeling approaches are pointed out and elements from the

different approaches are employed in a complementary fashion. In this way, the thesis

aims to bring the three modeling approaches closer together.

A second common theme of the four studies presented in this thesis consists of

studying the emergence of cooperative (or altruistic) behavior. Cooperative behavior

has been fascinating biologists and social scientists for quite some time already (e.g.,

Axelrod, 1984; Dawkins, 1989; Fehr & Fischbacher, 2003; Nowak, 2006; Ostrom,

2000). The emergence of cooperative behavior is puzzling because in general it seems

to be at odds with basic evolutionary mechanisms. Cooperative behavior is also difficult

to reconcile with one of the cornerstones of mainstream economics, namely the idea of

fully rational self-interested economic agents. Chapters 2 and 3 of this thesis study the

emergence of cooperative behavior in models in which firms compete with each other

based on either quantity (Chapter 2) or price (Chapter 3). Chapters 4 and 5 of the thesis

focus on methodological issues. The methodological insights from these chapters are il-

lustrated using well-known models for studying the emergence of cooperative behavior.

A prisoner’s dilemma model is used in Chapter 4, and a model of quantity competition

among firms is used in Chapter 5.

I will now discuss the contribution of each of the four studies presented in this thesis.

As already mentioned, the studies in Chapters 4 and 5 focus on methodological issues.

The studies in Chapters 2 and 3 are concerned with substantive economic issues. A

purely theoretical approach is taken in these studies. No empirical or experimental
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analyses are performed. Hence, the thesis contributes to methodological advancement

as well as to increased theoretical understanding.

Chapter 2 of the thesis is concerned with a simple model of the learning behavior

of boundedly rational agents. The model has been adopted from the computer sci-

ence literature, where it is referred to as Q-learning (Watkins, 1989; Watkins & Dayan,

1992). The Q-learning model makes only very limited assumptions about the informa-

tion available to agents and the cognitive abilities of agents. In Chapter 2, the Q-learning

model is studied in the setting of a Cournot oligopoly market. The analysis of the model

is performed partly mathematically and partly using computer simulations. The main

contribution of Chapter 2 consists of showing that the Q-learning model is able to ex-

plain the emergence of cooperative behavior. Many similar learning models studied in

the economic literature are unable to explain this phenomenon.

Chapter 3 of the thesis is concerned with a relatively recent explanation for the emer-

gence of cooperative behavior. According to this explanation, cooperative behavior can

be a consequence of evolutionary dynamics combined with local interaction among spa-

tially distributed agents. This explanation was first proposed by the biologists Nowak

and May (1992) and was introduced in the economic literature by Bergstrom and Stark

(1993) and Eshel, Samuelson, and Shaked (1998). In the economic literature, the expla-

nation has been studied mainly for agents that are located in a one-dimensional world

and that can choose from only two actions (i.e., cooperation and defection). The ad-

vantage of this highly stylized setting is that it can be analyzed mathematically. The

disadvantage is that it is unclear to what extent results derived in this setting general-

ize to other more complex settings. The contribution of Chapter 3 consists of studying

some of these more complex settings, in particular settings in which agents are located

in a two-dimensional world and settings in which agents can choose from more than

two actions. The agents in the models studied in Chapter 3 are firms that compete with

each other based on price. The models studied in Chapter 3 appear to be mathematically

intractable, and most of the analysis is therefore performed using computer simulations.

The main finding of Chapter 3 is that the emergence of cooperative behavior depends

strongly on the amount of information available to agents. Agents tend to behave most

cooperatively if they have only a very limited amount of information about their neigh-
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bors. Contrary to earlier research, it is found that in some cases agents behave even less

cooperatively than they would do according to the Nash equilibrium prediction.

The methodological issues studied in Chapters 4 and 5 of the thesis relate to the

application of so-called evolutionary algorithms for modeling purposes in economic

research. The application of evolutionary algorithms, and especially of genetic algo-

rithms, is quite popular in the ACE approach. For a general introduction to genetic

algorithms, see for example Mitchell (1996). For an extensive discussion of the appli-

cation of genetic algorithms for economic modeling purposes, see Dawid (1996).

ACE researchers almost always use computer simulations to analyze genetic algo-

rithm models (a notable exception is Dawid, 1996). In Chapter 4 of the thesis, it is

shown how genetic algorithm models can be analyzed mathematically rather than using

computer simulations. The proposed approach for mathematically analyzing genetic al-

gorithm models relies on a mathematical technique that is frequently used in the EGT

literature (e.g., Foster & Young, 1990; Kandori, Mailath, & Rob, 1993; Young, 1993).

The main contribution of Chapter 4 consists of exploring the consequences of the sim-

ilarities between evolutionary models studied in the ACE literature and evolutionary

models studied in the EGT literature. As discussed earlier, the ACE and EGT research

communities are quite separated from each other. The similarities between the mod-

els studied by the two communities suggest that the separation of the communities is

somewhat artificial and may impede the further development of evolutionary modeling

approaches. Chapter 4 illustrates this point by showing how the ACE community can

benefit from a mathematical technique that is well-known in the EGT community.

Chapter 5 of the thesis is concerned with a problematic aspect of genetic algorithm

models. These models typically rely on a so-called binary encoding of strategies. In

Chapter 5, it is argued that such an encoding usually does not have a meaningful eco-

nomic interpretation. It is also shown that the use of a binary encoding may lead to

artifacts in the results of an analysis. Hence, the contribution of Chapter 5 consists of

pointing out that in general it is not appropriate to use genetic algorithm models with a

binary encoding of strategies for economic modeling purposes. The more general con-

tribution of Chapter 5 consists of illustrating how the fairly high complexity of models

in the ACE approach combined with a somewhat ad hoc justification may lead to results

that have no economic significance and that are merely artifacts of the model. The anal-
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ysis presented in Chapter 5 can be seen as an argument for simplifying the evolutionary

models studied by ACE researchers. Simplifying these models would also illuminate

the similarities with models studied by EGT researchers. Hence, it may help to reduce

the somewhat artificial separation between the ACE and EGT research communities.

1.6 Outline of the thesis

This thesis consists of six chapters and is organized as follows. After this introductory

chapter, there are four chapters that each present a separate study. As discussed above,

Chapters 2 and 3 focus on the issue of the emergence of cooperative behavior. Chap-

ter 2 presents an analysis of the Q-learning model, and Chapter 3 studies an evolutionary

model with local interaction among spatially distributed agents. Chapters 4 and 5 fo-

cus on methodological issues concerning the application of evolutionary algorithms for

economic modeling purposes. Chapter 4 points out how genetic algorithm models can

be analyzed mathematically, and Chapter 5 criticizes the use of a binary encoding of

strategies in genetic algorithm models. Chapter 6 provides a summary of the thesis.

Of the four studies presented in this thesis, two have been published in the peer-

reviewed scientific literature. Chapter 2 has been published in the Journal of Economic

Dynamics and Control, and Chapter 5 has been published in the Journal of Evolutionary

Economics. Chapter 5 partly builds on a short contribution published in Computational

Economics (Waltman & Van Eck, 2009). This contribution is not part of the thesis.

Chapters 3 and 4 are currently under submission.





Chapter 2

Q-learning agents in a Cournot
oligopoly model∗

Abstract

Q-learning is a reinforcement learning model from the field of artificial intelli-

gence. We study the use of Q-learning for modeling the learning behavior of firms

in repeated Cournot oligopoly games. Based on computer simulations, we show

that Q-learning firms generally learn to collude with each other, although full col-

lusion usually does not emerge. We also present some analytical results. These re-

sults provide insight into the underlying mechanism that causes collusive behavior

to emerge. Q-learning is one of the few learning models available that can explain

the emergence of collusive behavior in settings in which there is no punishment

mechanism and no possibility for explicit communication between firms.

2.1 Introduction

In this chapter, we model the learning behavior of firms in repeated Cournot oligopoly

games using Q-learning. Q-learning is a reinforcement learning model of agent behavior

originally developed in the field of artificial intelligence (Watkins, 1989). The model

is based on two assumptions. First, for each possible strategy an agent is assumed

∗This chapter is joint work with Uzay Kaymak. The chapter has been published in the Journal of
Economic Dynamics and Control (Waltman & Kaymak, 2008).
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to remember some value indicating that strategy’s performance. This value, referred

to as a Q-value, is determined based on the agent’s past experience with the strategy.

Basically, the Q-value of a strategy is calculated as a weighted average of the payoffs

obtained from the strategy in the past, where more recent payoffs are given greater

weight. The second assumption of Q-learning states that, based on the Q-values, an

agent probabilistically chooses which action to play. A logit model is used to describe

the agent’s choice behavior. The assumptions made by Q-learning can also be found

in other reinforcement learning models. The models of Sarin and Vahid (1999, 2001)

and Kirman and Vriend (2001) use ideas similar to Q-values, while the models of, for

example, Mookherjee and Sopher (1997) and Camerer and Ho (1999) use a logit model

to describe the way in which an agent chooses an action. Q-learning distinguishes itself

from other reinforcement learning models in that it combines these two elements in a

single model. In the economic literature, the combination of these elements has, to our

knowledge, not been studied before.

In this chapter, we show that the use of Q-learning for modeling the learning behav-

ior of firms in repeated Cournot oligopoly games generally leads to collusive behavior.1

This is quite a remarkable result, since most Q-learning firms that we study do not have

the ability to remember what happened in previous stage games. The firms therefore

cannot use trigger strategies, that is, they cannot threaten to punish each other in case of

non-collusive behavior. There is also no possibility for explicit communication between

firms. However, despite the absence of punishment and communication mechanisms,

collusive behavior prevails among firms. Apart from Q-learning, there are almost no

models of the learning behavior of individual economic agents that predict collusive

behavior in Cournot games. The only model of which we are aware is the so-called

trial-and-error model studied by Huck, Normann, and Oechssler (2004a). Yet, experi-

mental results (for an overview, see Huck, Normann, & Oechssler, 2004b) indicate that

with two firms collusive behavior is quite common in Cournot games. Q-learning is one

of the few models that does indeed predict this kind of behavior.

Models of the learning behavior of economic agents are studied both in agent-based

computational economics (e.g., Tesfatsion, 2003, 2006) and in game theory (e.g., Fu-

1We refer to all firm behavior that results in a joint profit above the joint profit in the Nash equilibrium
as collusive behavior. So, collusive behavior does not always mean that firms make the highest possible
joint profit.
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denberg & Levine, 1998). In agent-based computational economics the methodology

of computer simulation is typically adopted, whereas in game theory the analytical

methodology is predominant. It seems rather difficult to obtain analytical results for

the behavior of multiple Q-learning agents interacting with each other in a strategic set-

ting. In the field of artificial intelligence, it has been proven that under certain conditions

a single Q-learning agent operating in a fixed environment learns to behave optimally

(Watkins & Dayan, 1992). However, for settings with multiple agents learning simul-

taneously almost no analytical results are available. Given the difficulty of obtaining

analytical results, most of the results that we present in this chapter are based on com-

puter simulations. Analytical results are provided only for the special case in which Q-

learning firms in a Cournot duopoly game can choose between exactly two production

levels, the production level of the Nash equilibrium and some other, lower production

level. The analytical results turn out to be useful for obtaining some basic intuition why

Q-learning firms may learn to collude with each other.

The remainder of this chapter is organized as follows. First, in Sections 2.2 and 2.3,

we provide an overview of related research and we introduce Q-learning. Then, in

Section 2.4, we discuss the Cournot oligopoly model with which we are concerned

throughout the chapter. We consider our computer simulations in Sections 2.5 and 2.6,

in which we discuss the simulation setup and present the simulation results. We provide

some analytical results in Section 2.7. Finally, in Section 2.8, we draw conclusions.

2.2 Related research

The literature on modeling the learning behavior of economic agents is quite large.

Overviews of this literature are provided by Brenner (2006) and Duffy (2006). One

can distinguish between individual learning models and social learning models (Vriend,

2000). In individual learning models an agent learns exclusively from its own expe-

rience, whereas in social learning models an agent also learns from the experience of

other agents. Below, we first discuss the modeling of individual learning behavior, and

we then consider the modeling of social learning behavior.

The two most important approaches to modeling individual learning behavior are

belief-based learning and reinforcement learning. Examples of belief-based learning
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models are Cournot adjustment and fictitious play (Fudenberg & Levine, 1998). These

two models assume that an agent has the ability both to observe its opponents’ action

choices and to calculate best responses. In a Cournot oligopoly game, the models predict

that firm behavior can converge only to the Nash equilibrium.

Reinforcement learning is based on a very simple idea: the higher the payoffs ob-

tained from a strategy in the past, the more likely the strategy is to be played. Compared

with belief-based learning models, reinforcement learning models make few assump-

tions about both the information available to an agent and the cognitive abilities of an

agent. For example, in reinforcement learning an agent needs no information about its

opponents’ action choices or about the payoffs of the game. An agent is only assumed

to have knowledge of the strategies that it can play and, after playing a strategy, of

the payoff that it has obtained from that strategy. Reinforcement learning models are

studied both in the economic literature and in the artificial intelligence literature (for

an overview of the artificial intelligence literature on reinforcement learning, see Kael-

bling, Littman, & Moore, 1996; Sutton & Barto, 1998). Q-learning is a reinforcement

learning model that has been studied extensively by artificial intelligence researchers

(e.g., Watkins, 1989; Watkins & Dayan, 1992) but that has received almost no attention

from economists. In the economic literature, the reinforcement learning model stud-

ied by Roth and Erev (1995) and Erev and Roth (1998) is well-known. Bell (2001)

performs a simulation study in which this model is compared with Q-learning. Some

other reinforcement learning models have been proposed in the economic literature by

Mookherjee and Sopher (1997), Sarin and Vahid (1999, 2001), and Kirman and Vriend

(2001). These models are all in some way similar to Q-learning. We discuss their rela-

tionship with Q-learning in Section 2.3.

Some preliminary results on Q-learning behavior in a Cournot oligopoly game are

reported by Kimbrough and Lu (2003). In their simulation study, the authors find a

small tendency towards collusive behavior. In the present study, we extend the work of

Kimbrough and Lu by analyzing Q-learning behavior in a Cournot game in more detail

and by providing an explanation for the emergence of collusive behavior. Furthermore,

in the artificial intelligence literature there are some papers in which Q-learning behav-

ior in iterated prisoner’s dilemmas or generalizations thereof is studied (Sandholm &

Crites, 1996; Littman & Stone, 2001; Stimpson & Goodrich, 2003; Waltman & Kay-
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mak, 2007). Whether Q-learning agents in an iterated prisoner’s dilemma learn to coop-

erate with each other turns out to depend on the specific values of the prisoner’s dilemma

payoffs (Waltman & Kaymak, 2007).

The trial-and-error learning model studied by Huck et al. (2004a) also models indi-

vidual learning behavior. Like reinforcement learning models, the trial-and-error model

makes few assumptions about both the availability of information and the cognitive abil-

ities of an agent. However, the underlying idea of the model is different. In a Cournot

oligopoly game, the model assumes that a firm keeps increasing (decreasing) its pro-

duction level as long as this results in a higher profit. As soon as profit falls, the firm

starts decreasing (increasing) its production level. Like Q-learning, the trial-and-error

model predicts collusive behavior in Cournot games.

A number of studies have investigated social learning behavior in Cournot oligopoly

games. In a well-known study by Vega-Redondo (1997), an evolutionary model of firm

behavior is analyzed. Vega-Redondo shows that the model predicts convergence of firm

behavior to the Walrasian equilibrium. Alós-Ferrer (2004) and Bergin and Bernhardt

(2005) extend the model of Vega-Redondo by providing firms with a memory. When

firms have a memory, convergence to any outcome between the Walrasian equilibrium

and the Nash equilibrium becomes possible (Alós-Ferrer, 2004) and even collusive be-

havior may emerge (Bergin & Bernhardt, 2005). Social learning behavior in Cournot

games has also been investigated using models based on genetic algorithms (e.g., Ar-

ifovic, 1994; Vriend, 2000). Depending on the way in which genetic algorithms are

applied, such models predict convergence of firm behavior to either the Walrasian equi-

librium or the Nash equilibrium or some outcome in between. We further mention the

work of Droste, Hommes, and Tuinstra (2002), in which social learning behavior in

Cournot games is investigated using a model based on replicator dynamics.

Finally, Dixon (2000) and Oechssler (2002) use models with aspiration levels to in-

vestigate learning behavior in Cournot oligopoly games. In their models, a firm changes

its production level only if its profit is below some aspiration level. The models predict

collusive behavior in Cournot games.
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2.3 Q-learning

In this chapter, Q-learning is applied as follows. An agent plays a repeated game. At

the beginning of the stage game in period t, the agent’s memory is in some state st.

This state may be determined by, for example, the actions played by the agent and

its opponents in the stage game in period t − 1. Taking into account the state of its

memory, the agent chooses to play some action at. The choice of an action is made

probabilistically based on the so-called Q-values of the agent. Playing action at results

in some stage game payoff πt that is obtained by the agent and in a transition of the state

of the agent’s memory from the old state st to some new state st+1. The agent uses the

experience gained during the stage game to update its Q-values, thereby modifying the

way in which it chooses actions in stage games in future periods.

For a formal discussion of Q-learning, let Qt(s, a) denote an agent’s Q-value for

state s ∈ S and action a ∈ A at the beginning of period t. The state space S and

the action space A are assumed to be finite. The probability that in period t the agent

chooses to play action a is given by

Pr(a) =
exp(Qt(st, a)/β)∑

a′∈A exp(Qt(st, a′)/β)
, (2.1)

where st denotes the state of the agent’s memory at the beginning of period t and the

parameter β > 0 denotes the experimentation tendency. The larger the value of β, the

higher the probability that the agent chooses to experiment, that is, chooses to play an

action that does not have the highest Q-value. As β approaches zero, the probability that

the agent chooses to experiment approaches zero too. In the artificial intelligence litera-

ture, action choice according to probabilities given by (2.1) is known as the Boltzmann

exploration strategy (e.g., Kaelbling et al., 1996; Sandholm & Crites, 1996). Various

other approaches to choosing actions have also been studied in the artificial intelligence

literature. We model action choice behavior using (2.1) because this corresponds to a

logit model, which is a quite commonly used model of choice behavior in the economic

literature (e.g., McKelvey & Palfrey, 1995; Brock & Hommes, 1997; Mookherjee & So-
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pher, 1997; Fudenberg & Levine, 1998; Camerer & Ho, 1999; Hofbauer & Sandholm,

2007)2.

After the agent has played some action at in period t, the agent’s Q-values are up-

dated according to

Qt+1(s, a) =

(1− α)Qt(s, a) + α(πt + γmaxa′∈AQt(st+1, a
′)) if s = st and a = at,

Qt(s, a) otherwise,
(2.2)

where πt denotes the stage game payoff obtained by the agent and the parameters 0 <

α ≤ 1 and 0 ≤ γ < 1 denote, respectively, the learning rate and the discount factor. The

value of α determines the relative weight that is given to recent experience compared to

older experience, while the value of γ indicates the time preference of the agent. The

update rule in (2.2) has the appealing property that when there is only one learning agent

(either because there is only one agent or because all other agents use fixed strategies),

the update rule allows the agent, under certain conditions, to learn to behave optimally.

This property has been proven by Watkins and Dayan (1992).

Unlike Q-learning, most reinforcement learning models studied in the economic

literature (e.g., Roth & Erev, 1995; Mookherjee & Sopher, 1997; Erev & Roth, 1998;

Sarin & Vahid, 1999, 2001) do not consider the possibility that an agent has a memory

for remembering past events. In these models, it is not possible for an agent to learn

a strategy in which the choice of an action in the current stage game depends on what

happened in previous stage games. In this chapter, we consider both agents with a

memory and agents without a memory. For an agent without a memory, (2.1) and (2.2)

simplify to, respectively,

Pr(a) =
exp(Qt(a)/β)∑

a′∈A exp(Qt(a′)/β)
, (2.3)

2Note, however, that in each of these papers logit models are used in a somewhat different context.
McKelvey and Palfrey, for example, use logit models as the basis of the logit equilibrium concept that
they introduce in their paper. Brock and Hommes use logit models to model the way in which agents
choose between different predictors based on publicly available information on each predictor’s past
performance. Hofbauer and Sandholm study settings in which there are a large number of agents and in
which each of the agents occasionally changes its action according to, for example, a logit model.
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and

Qt+1(a) =

(1− α)Qt(a) + απt if a = at,

Qt(a) otherwise.
(2.4)

Note that an agent without a memory cannot take into account the consequences of the

action it plays in the current stage game on the payoffs it obtains in future stage games.

For such an agent, the discount factor γ in (2.2) must therefore equal zero.

Sarin and Vahid (1999) and Kirman and Vriend (2001) propose reinforcement learn-

ing models that use the same update rule as Q-learning without a memory. The differ-

ence between Q-learning and the model of Sarin and Vahid is that in the latter model

there is no experimentation, so that an agent always chooses the action from which it

expects to obtain the highest payoff. Sarin and Vahid also propose a variant of their

model in which an agent experiments depending on its ‘state of mind or mood’. How-

ever, they do not seem to study this variant further in other papers (e.g., Sarin & Vahid,

2001). In the model of Kirman and Vriend, agents do experiment, but the probabilities

with which the various actions are chosen are not the same as in Q-learning. Q-learning

without a memory is also related to the learning model proposed by Mookherjee and

Sopher (1997). In a similar way as in Q-learning without a memory, Mookherjee and

Sopher use a logit model to describe an agent’s choice behavior. Since Mookherjee and

Sopher do not specify what kind of update rule to use, Q-learning without a memory

can in fact be regarded as a special case of their model.

2.4 Cournot oligopoly model

We consider a simple Cournot oligopoly model with the following characteristics: the

number of firms is fixed, firms produce perfect substitutes, the demand function is linear,

firms have identical cost functions, and marginal cost is constant. The inverse demand

function is given by

p = max

(
u− v

n∑
i=1

qi, 0

)
, (2.5)
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where n denotes the number of firms, p denotes the market price, qi denotes firm i’s

production level, and u > 0 and v > 0 denote two parameters. Firm i’s total cost equals

ci = wqi for i = 1, . . . , n, (2.6)

where the parameter w denotes a firm’s constant marginal cost and satisfies 0 ≤ w < u.

It follows from (2.5) and (2.6) that firm i’s profit is given by

πi = pqi − ci = qi max

(
u− w − v

n∑
i′=1

qi′ ,−w

)
for i = 1, . . . , n. (2.7)

The Nash equilibrium of a Cournot model is obtained if each firm chooses the pro-

duction level that maximizes its profit given the production levels of its competitors.

Hence, in the Nash equilibrium ∂πi/∂qi = 0 for i = 1, . . . , n. In the above Cournot

model, this implies that firms’ joint production level in the Nash equilibrium is given by

q∗ =
(u− w)n

v(n+ 1)
. (2.8)

Consequently, firms’ joint profit in the Nash equilibrium equals

π∗ =
(u− w)2n

v(n+ 1)2
. (2.9)

Although in the Nash equilibrium firms individually maximize their profit, they do

not maximize their joint profit. Firms maximize their joint profit in the collusive equi-

librium, in which they collectively behave as a single monopolist. In the above Cournot

model, firms jointly produce a quantity of (u − w)/2v in the collusive equilibrium,

which results in a joint profit of (u− w)2/4v. In the collusive equilibrium of a Cournot

model, firms produce a smaller quantity than the quantity that maximizes their indi-

vidual profit. Firms therefore have an incentive to increase their production level. For

this reason, a collusive equilibrium is unstable and is not a Nash equilibrium. However,

things are different in repeated Cournot games, in which firms may be interested in max-

imizing their long-term profits. If firms play a Cournot game repeatedly and remember

what happened in previous stage games, it may be possible to sustain collusion. Trigger
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strategies may then be used to support collusive behavior, and collusive behavior may

constitute a Nash equilibrium of the repeated game.

In addition to the Nash equilibrium and the collusive equilibrium, another outcome

that may be obtained in a Cournot model is the Walrasian equilibrium. As discussed

in Section 2.2, this equilibrium is sometimes encountered in studies on social learning

behavior in Cournot models. The Walrasian equilibrium is obtained if firms are not

aware of their influence on the market price and therefore behave as price takers. In the

above Cournot model, firms’ joint production level in the Walrasian equilibrium equals

(u− w)/v. This production level results in zero profits for all firms.

2.5 Setup of the computer simulations

In this chapter, we focus on the long-run behavior of Q-learning agents when the prob-

ability of experimentation approaches zero. In this respect, the approach that we take

is similar to the approach that is typically taken to analyze evolutionary game-theoretic

learning models (e.g., Vega-Redondo, 1997; Alós-Ferrer, 2004; Bergin & Bernhardt,

2005). We further focus on settings in which the learning behavior of all agents is

modeled using Q-learning. An alternative would be to consider settings in which the

learning behavior of only one agent is modeled using Q-learning and in which all other

agents use fixed strategies. However, such settings are less interesting to study. This

is because a single Q-learning agent operating in a fixed environment is, under certain

conditions, guaranteed to learn to behave optimally (Watkins & Dayan, 1992). This

means that when a Q-learning agent competes with agents that use fixed strategies, the

Q-learning agent will simply learn a best response to the strategies of the other agents.

The settings on which we focus in this chapter, that is, settings with multiple Q-learning

agents learning simultaneously, are more interesting to study, because for such settings

analytical results are generally not available. Because of the difficulty of obtaining an-

alytical results, most of the results that we present are based on computer simulations.

We now discuss the setup of these simulations.

In the simulations, the Cournot oligopoly model introduced in the previous section

was used. The values of the parameters u and v in the inverse demand function were,

respectively, 40 and 1. The parameter w, which denotes a firm’s constant marginal cost,
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had a value of 4. Simulations were performed for various values for the number of firms

n.

In each simulation run, firms played a repeated Cournot oligopoly game that lasted

for one million periods. The learning behavior of firms was modeled using Q-learning.

Three types of firms were considered in the simulations: firms without a memory, my-

opic firms with a memory, and non-myopic firms with a memory. All three types of

firms had to choose their production level between 0 and 40. Only integer quantities

were allowed. Simulations were performed for various values for the learning rate α.

During a simulation run, the experimentation tendency β was gradually decreased over

time according to

β(t) = 1000 · 0.99999t. (2.10)

In this way, the probability of experimentation was almost one at the beginning of a

simulation run and almost zero at the end. In other studies on Q-learning (e.g., Sand-

holm & Crites, 1996), β is decreased in a similar way. At the beginning of a simulation

run, firms’ Q-values were initialized to zero. Firms with a memory were able to remem-

ber their own production level in the previous period as well as their competitors’ joint

production level in the previous period. For myopic firms with a memory the discount

factor γ had a value of zero, while for non-myopic firms with a memory it had a value

of 0.9.

2.6 Results of the computer simulations

In this section, we present the results of the computer simulations that we performed.

We first consider the simulations with firms that did not have a memory, and we then

consider the simulations with firms that did have a memory.

Simulations with firms that did not have a memory were performed for various val-

ues for both the number of firms n and the learning rate α. For each combination of

values for n and α, Table 2.1 shows firms’ joint quantity produced and joint profit.

Since we focus on the long-run behavior of firms when the probability of experimenta-

tion approaches zero, the quantities and profits in Table 2.1 were calculated by averaging

firms’ joint quantity produced and joint profit over the last 100 periods of a simulation

run. Moreover, because the outcomes of a simulation run depend on the random num-
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Table 2.1: Results of computer simulations with firms that did not have a memory.

Nash α = 0.05 α = 0.25 α = 0.50 α = 1.00

n = 2 quantity 24.0 22.8 (1.3) 21.2 (1.4) 20.8 (1.2) 20.8 (1.4)

profit 288.0 299.1 (11.6) 312.0 (10.2) 314.7 (6.2) 314.3 (7.0)

n = 3 quantity 27.0 25.1 (1.6) 22.0 (1.8) 21.5 (1.9) 22.1 (1.9)

profit 243.0 270.7 (22.9) 304.6 (14.5) 307.8 (14.3) 303.7 (16.6)

n = 4 quantity 28.8 26.3 (1.8) 22.6 (1.9) 22.1 (2.4) 22.9 (2.6)

profit 207.4 252.1 (29.8) 299.0 (18.7) 301.4 (19.2) 293.2 (25.8)

n = 5 quantity 30.0 27.6 (1.6) 23.2 (1.8) 22.2 (2.2) 23.3 (2.5)

profit 180.0 229.3 (30.0) 294.1 (17.3) 301.1 (19.2) 290.2 (28.7)

n = 6 quantity 30.9 28.3 (1.5) 23.3 (2.2) 22.6 (2.6) 23.1 (3.1)

profit 158.7 215.4 (32.2) 290.7 (23.5) 296.3 (27.1) 289.1 (34.8)

bers that are used, 100 simulation runs with different random numbers were carried out

for each combination of values for n and α. Table 2.1 shows the mean of the outcomes

of these 100 simulation runs. The corresponding standard deviation is reported within

parentheses. For each value for n, firms’ joint quantity produced and joint profit in the

Nash equilibrium, calculated using (2.8) and (2.9), are also reported in Table 2.1. Firms’

joint quantity produced and joint profit in the collusive equilibrium do not depend on n

and are equal to, respectively, 18 and 324 (see Section 2.4).

Table 2.1 shows that for all combinations of values for n and α the average outcome

that emerged in the simulation runs was somewhere in between the Nash equilibrium

and the collusive equilibrium. For each combination of values for n and α, the mean

of firms’ joint quantity produced was significantly lower than firms’ joint quantity pro-

duced in the Nash equilibrium (p < 0.0001), while the mean of firms’ joint profit was

significantly higher than firms’ joint profit in the Nash equilibrium (p < 0.0001). So, on

average firms learned to collude with each other. Full collusion usually did not emerge,

since firms usually did not learn to make the highest possible joint profit. It can fur-

ther be seen in Table 2.1 that on average firms’ joint quantity produced increased as the

number of firms n increased. However, since firms’ joint quantity produced in the Nash

equilibrium also increases as n increases, a substantial degree of collusion remained

even for larger values for n. The same observation can be made if firms’ joint profit

rather than firms’ joint quantity produced is considered. Now consider the effect of the

learning rate α, which determined the relative weight that firms gave to recent experi-
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Table 2.2: Results of computer simulations with firms that had a memory.

Nash myopic non-myopic
(γ = 0.0) (γ = 0.9)

n = 2 quantity 24.0 20.8 (0.9) 19.6 (1.2)

profit 288.0 314.2 (7.3) 318.0 (6.8)

n = 3 quantity 27.0 22.9 (1.3) 21.5 (1.7)

profit 243.0 297.3 (15.8) 304.8 (18.5)

n = 4 quantity 28.8 24.1 (1.4) 23.8 (1.7)

profit 207.4 284.2 (19.8) 277.5 (41.3)

n = 5 quantity 30.0 24.4 (1.4) 23.6 (2.1)

profit 180.0 280.1 (20.5) 271.6 (75.8)

n = 6 quantity 30.9 24.7 (1.6) 21.9 (2.0)

profit 158.7 274.5 (29.2) 288.5 (51.0)

ence compared to older experience. As can be seen in Table 2.1, a value of 0.05 for

α resulted in a significantly lower degree of collusion than a value of 0.25 or higher.

However, even for α = 0.05 the degree of collusion was significant. For α equal to

0.25, 0.50, and 1.00, the differences in the degree of collusion were quite small. So, the

relative weight that firms gave to recent experience compared to older experience did

not have a very large effect on the degree of collusion. A substantial negative effect on

the degree of collusion was found only when firms gave a rather low weight to recent

experience compared to older experience.

Simulations with firms that had a memory were performed for various values for the

number of firms n. In addition, both myopic and non-myopic firms were considered

in the simulations. A value of 0.50 was used for the learning rate α. Table 2.2 shows

the results of the simulations. The results in Table 2.2 were calculated in the same way

as the results in Table 2.1. Comparing the results in the two tables, it can be seen that

the results obtained for firms with a memory are quite similar to the results obtained for

firms without a memory. Like firms without a memory, firms with a memory on average

learned to collude with each other. Full collusion usually did not emerge. The degree

of collusion seems to be somewhat lower for firms with a memory, both for myopic and

for non-myopic firms, than for firms without a memory, but the difference is not very

large. Between myopic and non-myopic firms with a memory, no clear difference can

be observed in the degree of collusion.
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2.7 Analytical results

In the previous section, we presented simulation results showing that the use of Q-

learning for modeling the learning behavior of firms in a Cournot oligopoly game gen-

erally leads to collusive behavior. This turned out to be the case not only for firms with

a memory but also for firms without a memory. This is quite remarkable, since firms

without a memory cannot use trigger strategies, that is, they cannot threaten to punish

each other in case of non-collusive behavior. So, collusive behavior prevails among Q-

learning firms without a memory even though there is no punishment mechanism and

no possibility for explicit communication between the firms. Interestingly, apart from

Q-learning, there are very few learning models that predict collusive behavior in such

a setting. In this section, we analyze why Q-learning results in collusive behavior. To

do so, we make two simplifying assumptions. First, we assume that there are only two

firms in the market. And second, we assume that firms can choose between only two

production levels, the production level of the Nash equilibrium and some other, lower

production level. Under these two assumptions, a Cournot game reduces to a pris-

oner’s dilemma game. Moreover, the behavior of Q-learning firms becomes analytically

tractable, and it becomes clear why Q-learning firms may learn to collude with each

other.

Consider the Cournot oligopoly model introduced in Section 2.4. Let there be two

firms in the market, that is, let n = 2. It follows from the results in Section 2.4 that in the

Nash equilibrium each firm produces a quantity of (u − w)/3v while in the symmetric

collusive equilibrium each firm produces a quantity of (u − w)/4v. The following

theorem provides sufficient conditions for the emergence of collusive behavior among

Q-learning firms without a memory.

Theorem 2.1. Consider an infinitely repeated Cournot duopoly game based on the

Cournot model introduced in Section 2.4 with the number of firms n equal to 2. Let

the firms’ learning behavior be described by Q-learning, and assume that the firms do

not have a memory. Assume that the firms can choose between two production levels,

denoted by qC and qN, that satisfy

(u− w)/4v < qC < qN = (u− w)/3v. (2.11)



2.7 Analytical results 27

Let πCN, πNN, πCC, and πNC denote a firm’s profit, respectively, if the firm produces qC
and its competitor produces qN, if both the firm and its competitor produce qN, if both

the firm and its competitor produce qC, and if the firm produces qN and its competitor

produces qC. Let the learning rate α satisfy

πNN − πCN

πCC − πCN

< α < 1. (2.12)

Let each firm’s Q-value of producing qC be initialized to a value strictly between πCN

and πCC, and let each firm’s Q-value of producing qN be initialized to a value strictly

between πNN and πNC. Then, in the limit as the experimentation tendency β approaches

zero, the proportion of time in which both firms produce qC equals one.

The proof of the theorem is provided in Appendix 2.A. The basic intuition of the

proof is as follows. Consider first what happens when the firms never experiment, that

is, when from the production levels qC and qN the firms always choose the one with the

higher Q-value. Two special states can be distinguished: a ‘collusive state’ in which

under the assumption of no experimentation both firms keep producing qC forever and a

‘Nash state’ in which under the assumption of no experimentation both firms keep pro-

ducing qN forever. It can be shown that without experimentation the firms will always

end up in one of these states, in which they will then remain forever. Consider now what

happens when experimentation is introduced. Let the experimentation tendency β have

a value close to zero, so that there is only a very low probability of experimentation.

With experimentation, the firms will no longer keep producing the same quantity for-

ever, and two kinds of transitions will start taking place: transitions from the collusive

state to the Nash state and transitions the other way around. Since the probability of

experimentation is very low, it will usually take a long time before a transition from

one state to the other occurs. In which of the two states, the collusive state or the Nash

state, the firms will spend most of their time depends on the relative likelihood of the

two kinds of transitions. If transitions from the collusive state to the Nash state are more

likely than transitions the other way around, the firms will spend most of their time in

the Nash state. Conversely, if transitions from the collusive state to the Nash state are

less likely than transitions the other way around, the firms will spend most of their time

in the collusive state. It turns out that for β close to zero transitions from the collusive

state to the Nash state are less likely than transitions the other way around. This can be
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seen as follows. A transition from the collusive state to the Nash state can be shown to

require at least one period in which one of the firms experiments (that is, produces qN
rather than qC). Assuming that the learning rate α satisfies (2.12), it can also be shown

that for a transition from the Nash state to the collusive state one period in which both

firms experiment (that is, produce qC rather than qN) will usually be sufficient. The

probability with which a firm experiments is given by (2.1) and depends on the differ-

ence between the firm’s Q-values of producing qC and qN. The larger this difference, the

lower the probability of experimentation. It can be shown that in the collusive state the

difference between a firm’s Q-values will usually be equal to approximately πCC−πNN,

while in the Nash state the difference will usually be no larger than πNN−πCN. Because

it can also be shown that πCC − πNN > 2(πNN − πCN), the probability of experimenta-

tion will usually be lower in the collusive state than in the Nash state. It even follows

from (2.1) that the probability of one of the firms experimenting in the collusive state

will usually be lower than the probability of both firms experimenting simultaneously

in the Nash state. For that reason, transitions from the collusive state to the Nash state

are less likely than transitions the other way around. As a consequence, the firms will

spend most of their time in the collusive state.

The above informal argument provides the basic intuition why Q-learning firms may

learn to collude with each other. There turn out to be two opposing forces at work. One

force is due to firms trying to optimize their behavior in a given situation. This force

is directed towards the Nash equilibrium. The other force is due to the possibility that

firms experiment simultaneously and in that way discover the advantages of collusion.

This force is directed towards collusive behavior. Somewhat surprisingly, the second

force is typically stronger than the first one. This then leads to firms spending most of

their time colluding with each other.

It is interesting to note that the argument depends crucially on the specific way in

which the probability of experimentation is determined in Q-learning. In a setting with

only two actions, the probability of experimentation depends on the difference between

the actions’ Q-values. The larger this difference, the lower the probability of experi-

mentation. In many other learning models, for example in evolutionary models (e.g.,

Vega-Redondo, 1997) and in genetic algorithm models (e.g., Vriend, 2000), the prob-

ability of experimentation (sometimes referred to as the probability of mutation) has a
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fixed value and does not depend on past experience. With a fixed probability of experi-

mentation, the informal argument provided above no longer holds. (This is because with

a fixed probability of experimentation the probability of one of the firms experimenting

in the collusive state is higher than the probability of both firms experimenting simul-

taneously in the Nash state.) Computer simulations indicate that a fixed probability of

experimentation typically leads to firms spending most of their time in the Nash state

rather than in the collusive state (see also Waltman & Kaymak, 2007). Apparently, the

way in which the probability of experimentation is determined can have a large effect

on the learning behavior of economic agents. According to Brenner (2006), psychologi-

cal research indicates that people take into account past experience when choosing their

actions. A learning model like Q-learning, in which the probability of experimentation

depends on past experience, therefore seems more in line with psychological findings

than learning models with a fixed probability of experimentation.

Finally, we note that the informal argument for the emergence of collusive behav-

ior that we provided above holds not only for two firms but for any number of firms.

Although we do not have a formal proof, this suggests that the emergence of collusive

behavior is always possible, regardless of the number of firms. This would be a some-

what counterintuitive result, since collusion is generally believed to become much more

difficult, if not impossible, when the number of firms increases. However, it would be

in line with the simulation results discussed in Section 2.6, which indicate a substantial

degree of collusion for various numbers of firms.

2.8 Conclusions

We have studied the use of Q-learning for modeling the learning behavior of firms in

repeated Cournot oligopoly games. Q-learning, which belongs to the family of rein-

forcement learning models, combines two elements that, individually, can also be found

in other models of the reinforcement learning type. On the one hand, the way in which

the performance of a strategy is measured is similar to the way in which this is done

in the models of Sarin and Vahid (1999, 2001) and Kirman and Vriend (2001). On

the other hand, the use of a logit model to describe an agent’s choice behavior is fairly

common and can also be found in the models of, for example, Mookherjee and Sopher
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(1997) and Camerer and Ho (1999). Q-learning combines both elements in a single

model.

Based on computer simulations, we have shown that Q-learning firms generally

learn to collude with each other in Cournot oligopoly games, although full collusion

usually does not emerge, that is, firms usually do not learn to make the highest pos-

sible joint profit. Interestingly, our results hold not only for firms with a memory but

also for firms without a memory. The latter firms do not have the ability to remem-

ber the quantities produced by their competitors in past periods. Although these firms

cannot use trigger strategies to sustain collusion, they still learn to collude with each

other. Apart from Q-learning, there are very few learning models that predict collusive

behavior among firms without a memory. The analytical results that we have obtained

for Cournot duopoly games with two production levels provide some insight into why

Q-learning firms may learn to collude with each other. The emergence of collusive

behavior seems to depend crucially on the specific way in which the probability of ex-

perimentation is determined in Q-learning. More specifically, it seems crucial that in

Q-learning the probability of experimentation does not have a fixed value, as is the case

in many other learning models, but depends on an agent’s past experience.

Whether Q-learning provides a good description of the learning behavior of eco-

nomic agents is, of course, an empirical question. We have not considered this question

in the present study. However, there is at least some correspondence between Q-learning

behavior in Cournot oligopoly games and results from laboratory experiments (for an

overview, see Huck et al., 2004b). Experimental results indicate that collusive behav-

ior is quite common in Cournot duopoly games. Unlike most other learning models,

Q-learning does indeed predict collusive behavior in these games. However, Q-learning

also predicts a substantial degree of collusion in Cournot games with more than two

firms. This does not match experimental results. In experimental studies, firm behavior

usually turns out to be quite close to the Nash equilibrium when the number of firms is

larger than two.
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2.A Proof of Theorem 2.1

In this appendix, we provide a proof of Theorem 2.1. As a shorthand expression, below

we sometimes write that the firms produce, for example, (qC, qN). With this we mean

that one firm, firm 1, produces qC while the other firm, firm 2, produces qN.

Proof. Proof of Theorem 2.1 It follows from (2.7) and (2.11) that

πCN = (−3vqC + 2u− 2w)qC/3, (2.13)

πNN = (u− w)2/9v, (2.14)

πCC = (−2vqC + u− w)qC, (2.15)

πNC = (u− w)(−3vqC + 2u− 2w)/9v, (2.16)

and that

πCN < πNN < πCC < πNC. (2.17)

For i = 1, 2 and t = 0, 1, . . ., let QC
i,t and QN

i,t denote, respectively, firm i’s Q-value of

producing qC in period t and firm i’s Q-value of producing qN in period t. The theorem

assumes that QC
1,0, Q

C
2,0 ∈ (πCN, πCC) and QN

1,0, Q
N
2,0 ∈ (πNN, πNC). It then follows

from (2.4) that QC
1,t, Q

C
2,t ∈ (πCN, πCC) and QN

1,t, Q
N
2,t ∈ (πNN, πNC) also holds for t =

1, 2, . . .. Firm i is said to experiment in period t if it produces qC while QC
i,t < QN

i,t or

if it produces qN while QN
i,t < QC

i,t. For t = 0, 1, . . ., let Xt ∈ {0, 1, 2, 3} denote the

state of the learning process in period t. Consider the following three conditions on the

firms’ Q-values:

QC
1,t, Q

C
2,t ≤ πNN, (2.18)

QN
1,t, Q

N
2,t < πNN + ε < πCC − ε < QC

1,t, Q
C
2,t, (2.19)

max
(
QN

1,t, πCC − ε
)
< QC

1,t and max
(
QN

2,t, πCC − ε
)
< QC

2,t

and max
(
QN

1,t, Q
N
2,t

)
≥ πNN + ε. (2.20)

In these conditions, ε denotes a constant that satisfies

0 < ε < min((2πCN − 3πNN + πCC)/4, (1− α)πCN − πNN + απCC), (2.21)
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where the positivity of the first argument of the min function follows from (2.11), (2.13),

(2.14), and (2.15) and the positivity of the second argument of the min function follows

from (2.12) and (2.17). Let the state of the learning process be determined by the above

three conditions in the following way: Xt = 1 if (2.18) is satisfied, Xt = 2 if (2.19) is

satisfied, Xt = 3 if (2.20) is satisfied, and Xt = 0 otherwise.

To prove the theorem, three properties of the learning process will be used. Each

property is proven separately below.

Property 2.1. As the experimentation tendency β approaches zero, the proportion of

time in which the learning process is in state 0 approaches zero.

Due to this property, state 0 need not be considered further. Consequently, a transition

from state j to state k, where j, k ∈ {1, 2, 3} and j 6= k, is said to occur between periods

t and t′, where t < t′, if Xt = j, Xt+1 = . . . = Xt′−1 = 0, and Xt′ = k.

Property 2.2. As the experimentation tendency β approaches zero, the probability that

a transition from state 1 leads to state 2 approaches one.

Property 2.3. Consider the ratio between the average time it takes in state 1 before

a transition to another state occurs and the average time it takes in state 2 before a

transition to another state occurs. This ratio approaches zero as the experimentation

tendency β approaches zero.

It follows from the last two properties that the ratio between the time in which the

learning process is in state 1 and the time in which the learning process is in state 2

approaches zero as β approaches zero. Together with Property 2.1, this implies that as

β approaches zero the proportion of time in which the learning process is in state 0 or 1

approaches zero. If the learning process is not in state 0 or 1, it will be in state 2 or 3. If

the learning process is in one of the latter states, the probability that the firms produce

(qC, qC) approaches one as β approaches zero. It follows that as β approaches zero the

proportion of time in which the firms produce (qC, qC) approaches one.

Proof. Proof of Property 2.1 It will first be shown that if the learning process is in state

0 and the firms never experiment, the learning process will leave state 0 within a finite

number of periods. Under the assumption that the firms never experiment, the following

three observations can be made:
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(1) As long as the learning process is in state 0, the firms will not keep producing

(qN, qN) forever.

This can be seen as follows. Each firm’s Q-value of producing qN will decrease

if the firms produce (qN, qN). Moreover, as long as the learning process is in state

0, at least one firm, say firm 1, will have a Q-value of producing qC that is larger

than πNN (otherwise the learning process would be in state 1). If the firms pro-

duce (qN, qN) for a certain finite number of consecutive periods while the learning

process is in state 0, firm 1’s Q-value of producing qN will become smaller than

its Q-value of producing qC. Due to the assumption of no experimentation, firm 1

will then produce qC in the next period.

(2) If the learning process is in state 0 and the firms produce (qC, qC), the learning

process will leave state 0 within a finite number of periods.

This can be seen as follows. Due to the assumption of no experimentation, in

some period t the firms will produce (qC, qC) only if QC
1,t ≥ QN

1,t and QC
2,t ≥ QN

2,t.

If the firms produce (qC, qC) in period t, it follows that QC
1,t+1 > QN

1,t+1 and

QC
2,t+1 > QN

2,t+1. As a consequence, the firms will produce (qC, qC) another time

in period t+ 1 and will in fact keep producing it forever. After a finite number of

periods, each firm’s Q-value of producing qC will then be larger than πCC− ε and

the learning process will have reached state 2 or 3.

(3) Regardless of the state of the learning process, the firms will produce (qC, qN) and

(qN, qC) at most a finite number of times.

To see this, consider one of the two quantity pairs, say (qC, qN). Firm 1’s Q-value

of producing qC will decrease if the firms produce (qC, qN) and increase if the

firms produce (qC, qC). If firm 1’s Q-value of producing qC decreases a certain

finite number of times, denoted by m, and does not increase in between, it will

no longer be larger than πNN. It can be seen that the firms will produce (qC, qN)

at most m times. Two cases have to be distinguished. In the first case, the firms

produce (qC, qC) before they have produced (qC, qN) m times. As shown above,

due to the assumption of no experimentation, the firms will then keep producing

(qC, qC) forever. In the second case, the firms produce (qC, qN)m times and do not

produce (qC, qC) in between. After the firms have produced (qC, qN)m times, firm

1’s Q-value of producing qC will no longer be larger than πNN. Firm 1 will then
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keep producing qN forever. This is because firm 1’s Q-value of producing qN is

always larger than πNN and because, by assumption, firm 1 will never experiment.

In both the first and the second case, the firms produce (qC, qN) no more than m

times.

So, under the assumption of no experimentation, as long as the learning process is in

state 0, the firms will not keep producing (qN, qN) forever and they will produce the

other three quantity pairs at most a finite number of times. It follows that if the learning

process is in state 0 and the firms never experiment, the learning process will leave state

0 within a finite number of periods. The other three states do not have this property.

If the learning process is in state 1 and the firms never experiment, the firms will keep

producing (qN, qN) forever and the learning process will never leave its current state.

Similarly, if the learning process is in state 2 or 3 and the firms never experiment, the

firms will keep producing (qC, qC) forever. Again, the learning process will never leave

its current state.

As β approaches zero, the probability that a firm experiments approaches zero. Us-

ing the results obtained above, it can be seen that if the probability of experimentation

approaches zero and the learning process is in state 0, the probability that within a finite

number of periods another state is reached approaches one. Similarly, it can be seen that

if the probability of experimentation approaches zero and the learning process is in state

1, 2, or 3, the probability that within a finite number of periods another state is reached

approaches zero. It follows that as β approaches zero, the proportion of time in which

the learning process is in state 0 approaches zero.

Proof. Proof of Property 2.2 When the learning process is in state 1, two cases can be

distinguished. If QN
1,t, Q

N
2,t < πNN + ε, the learning process is said to be in state 1a,

otherwise it is said to be in state 1b. The following three observations can now be made:

(1) If the learning process is in state 1, it will leave that state only if the firms produce

(qC, qC).

This is because in order to leave state 1, for at least one of the firms the Q-value of

producing qC must increase. Producing (qC, qC) is the only way in which a firm’s

Q-value of producing qC can increase.
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(2) If the learning process is in state 1a and the firms produce (qC, qC), the probability

that a transition to state 2 occurs approaches one as β approaches zero.

This can be seen as follows. Due to (2.21), ε < (1 − α)πCN − πNN + απCC.

Therefore, if in some period t learning process is in state 1a and the firms produce

(qC, qC), it follows that QC
1,t+1, Q

C
2,t+1 > πNN + ε and hence that QC

1,t+1 > QN
1,t+1

andQC
2,t+1 > QN

2,t+1. Consequently, the probability that the firms produce (qC, qC)

another time in period t+ 1 approaches one as β approaches zero. As long as the

firms keep producing (qC, qC), the probability that they produce it again in the

next period approaches one as β approaches zero. After the firms have produced

(qC, qC) for some finite number of consecutive periods, each firm’s Q-value of

producing qC will be larger than πCC−ε and the learning process will have reached

state 2.

(3) Suppose that in some period t the learning process is in state 1 and the firms pro-

duce (qC, qC). The probability that the learning process was in state 1a in period

t then approaches one as β approaches zero.

This can be seen as follows. Let ∆t denote the number of consecutive periods

in which (qN, qN) must be produced so that a firm’s Q-value of producing qN de-

creases from πNC to a value smaller than πNN+ε. Let t′ = t−∆t. For the moment,

assume that the learning process has been in state 1 all the time between periods

t′ and t. This assumption implies that the firms have never produced (qC, qC) be-

tween periods t′ and t−1. If the firms have produced (qN, qN) all the time between

periods t′ and t− 1, the learning process would have been in state 1a in period t.

If, on the other hand, the firms have produced either (qC, qN) or (qN, qC) at least

once between periods t′ and t− 1, the learning process could have been in either

state 1a or state 1b in period t. Given that the learning process was in state 1 in pe-

riod t′, the probability that the firms have produced (qN, qN) all the time between

periods t′ and t − 1 approaches one as β approaches zero. Furthermore, given

the firms’ Q-values in period t′, the probability that the firms produce (qC, qC) in

period t is higher if the firms have produced (qN, qN) all the time between periods

t′ and t − 1 than if they have produced either (qC, qN) or (qN, qC) at least once

between these periods. It now follows that the probability that the learning pro-

cess was in state 1a in period t approaches one as β approaches zero. This result
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relies on the assumption that the learning process has been in state 1 all the time

between periods t′ and t. Since producing (qC, qC) in state 1 requires experimen-

tation and since t − t′ is a finite number, it can be seen that the probability that

this assumption is true approaches one as β approaches zero. Consequently, the

result also holds without making the assumption.

As a consequence of the above three observations, the probability that a transition from

state 1 leads to state 2 approaches one as β approaches zero.

Proof. Proof of Property 2.3 First consider state 1. When the learning process is in this

state, two cases can be distinguished. If QN
1,t, Q

N
2,t < πNN + ε, the learning process is

said to be in state 1a, otherwise it is said to be in state 1b. If in some period t the learning

process is in state 1a, it will be in state 1b in period t+ 1 only if the firms produce either

(qC, qN) or (qN, qC) in period t. The probability that this happens approaches zero as

β approaches zero. If in some period t the learning process is in state 1b, it will reach

state 1a if from period t onwards the firms produce (qN, qN) for some finite number of

consecutive periods. The probability that this happens approaches one as β approaches

zero. So, in the limit as β approaches zero, it takes an infinite number of periods to

reach state 1b from state 1a, whereas it takes a finite number of periods to reach state 1a

from state 1b. Furthermore, if the learning process is in state 1, the number of periods

it takes to leave that state approaches infinity as β approaches zero. It now follows that

the conditional probability that the learning process is in state 1a given that it is in state

1 approaches one as β approaches zero. If in some period t the learning process is in

state 1a, the probability that the firms produce (qC, qC) approaches zero as β approaches

zero and is of order exp(−(QN
1,t − QC

1,t + QN
2,t − QC

2,t)/β). (To see this, note that the

firms choose their production levels independently according to probabilities given by

(2.3).) A lower bound for this order is exp(−2(πNN − πCN + ε)/β). Furthermore, if

the learning process is in state 1a and the firms produce (qC, qC), the probability that

a transition from state 1 to another state occurs approaches one as β approaches zero.

(This has been shown in the proof of Property 2.2.)

Now consider state 2. If in some period t the learning process is in this state, a

transition to another state can occur only if the firms produce either (qC, qN) or (qN, qC).

The probability that this happens approaches zero as β approaches zero and is of order



2.A Proof of Theorem 2.1 37

exp(−min(QC
1,t−QN

1,t, Q
C
2,t−QN

2,t)/β). An upper bound for this order is exp(−(πCC−
πNN − 2ε)/β).

In summary, if the learning process is in state 1, then in the limit as β approaches

zero the rate at which the probability of a state transition approaches zero equals, with

probability one, at most 2(πNN−πCN+ε). Furthermore, if the learning process is in state

2, the rate at which the probability of a state transition approaches zero equals at least

πCC − πNN − 2ε. From ε < (2πCN − 3πNN + πCC)/4, which is due to (2.21), it follows

that 2(πNN− πCN + ε) < πCC− πNN− 2ε. Consequently, the ratio between the average

time it takes in state 1 before a state transition occurs and the average time it takes in

state 2 before a state transition occurs approaches zero as β approaches zero.





Chapter 3

An evolutionary model of price
competition among spatially
distributed firms∗

Abstract

Various studies have shown the emergence of cooperative behavior in evolution-

ary models with spatially distributed agents. We investigate to what extent these

findings generalize to evolutionary models of price competition among spatially

distributed firms. We consider both one- and two-dimensional models, and we

vary the amount of information firms have about competitors in their neighbor-

hood. Our computer simulations show that the emergence of cooperative behavior

depends strongly on the amount of information available to firms. Firms tend to

behave most cooperatively if they have only a very limited amount of information

about their competitors. We provide an intuitive explanation for this phenomenon.

Our simulations further indicate that three other factors in our models, namely the

accuracy of firms’ information, the probability of experimentation, and the spa-

tial distribution of consumers, have little effect on the emergence of cooperative

behavior.
∗This chapter is joint work with Nees Jan van Eck, Rommert Dekker, and Uzay Kaymak. The chapter

is currently under submission.



40 An evolutionary model of price competition among spatially distributed firms

3.1 Introduction

The phenomenon of cooperative behavior among individuals in social, economic, and

biological systems has been fascinating researchers for quite some time already. An

important topic in the economic and biological literature is the emergence of cooperative

behavior among individuals who are pursuing their self-interest. Researchers aim to

identify the conditions under which the emergence of cooperative behavior among such

individuals is possible.

In an economic context, the best-known explanation of cooperative behavior is prob-

ably the one based on the idea of reciprocity in repeated encounters. When individu-

als interact with each other repeatedly, they may choose to behave cooperatively, even

though this has a negative effect on their short-term interests. Individuals may choose

to behave cooperatively because they realize that if they do not behave this way, others

won’t do either. They also realize that in the long run they are better off in a cooperative

world than in a non-cooperative one. Hence, although cooperative behavior harms one’s

short-term interests, it is likely to be beneficial to one’s interests in the long run.

Explaining cooperative behavior in terms of reciprocity assumes that individuals

interact with each other repeatedly and that they remember what happened in the past.

These assumptions seem reasonable in some contexts but not in others. Because of this,

a number of alternative explanations of cooperative behavior have been proposed in the

literature. In this chapter, we focus on one such explanation. This is the explanation that

cooperative behavior is a consequence of the spatial distribution of individuals and the

local interaction among them. In the biological literature, this explanation was proposed

in a well-known paper by Nowak and May (1992). Many biologists have built on this

work, which has resulted in a substantial body of literature.

Inspired by the work done in biology, economists have also attempted to explain

cooperative behavior in terms of local interaction among spatially distributed individu-

als. An evolutionary perspective is typically taken, in which individuals are assumed to

imitate each other and to randomly experiment with new actions. The first work in the

economic literature was done by Bergstrom and Stark (1993) and Eshel et al. (1998).

In this work, cooperative behavior was shown to emerge in models in which individu-

als are organized in a circular structure. A large number of studies have expanded on
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this early work.1 Studies in the economic literature often focus on rather abstract mod-

els. Many studies for example assume that individuals are located in a one-dimensional

world. Also, many studies assume a situation similar to a classical prisoners’ dilemma,

in which individuals can choose from only two actions (i.e., cooperation and defection).

For examples of studies that make these assumptions, we refer to Bergstrom and Stark

(1993), Eshel et al. (1998), Jun and Sethi (2007), Mengel (2009), and Stark and Behrens

(2010).

In this chapter, we consider a somewhat less abstract level of modeling. We aim to

determine to what extent the findings from earlier studies generalize to models of price

competition among spatially distributed firms. In particular, we want to find out whether

imitation and experimentation may cause cooperative behavior to emerge in spatial price

competition models. Compared with the frequently studied prisoners’ dilemma models,

our model is of a more complex nature. There is no simple binary decision between co-

operative and non-cooperative behavior in our models. Firms can cooperate by jointly

increasing their price, and different price levels correspond with different levels of coop-

eration. Also, interactions in our models may involve more than two individuals. In one

of our models, each consumer has four different firms from which he may choose to buy.

Hence, firms in this model always have multiple competitors with which they fight for

the same market share. Like in the literature mentioned above, we take an evolutionary

perspective in our models. We assume that the behavior of firms is determined by imi-

tation and experimentation. More specifically, we assume that firms change their price

either by imitating successful competitors in their neighborhood or by experimenting

with small price increases or decreases.

We study a variety of conditions under which firms may or may not start to coop-

erate. We consider both a model in which firms are organized in a one-dimensional

space and a model in which firms are organized in a two-dimensional space. Our two-

dimensional model has two variants, which differ in the way in which consumers are

located. We also look at the effect of the information firms have about competitors in

their neighborhood. In doing so, we distinguish between on the one hand the number of

1See Barr and Tassier (2010), Bilancini and Boncinelli (2009), Chen and Chow (2009), Eshel, Her-
reiner, Samuelson, Sansone, and Shaked (2000), Eshel, Sansone, and Shaked (1999), Fosco and Mengel
(2011), Jun and Sethi (2007, 2009), Kirchkamp (1999, 2000), Mengel (2009), Noailly, Van den Bergh,
and Withagen (2009), Noailly, Withagen, and Van den Bergh (2007), Outkin (2003), Stark and Behrens
(2010), Tieman, Houba, and Van der Laan (2000), and Wilhite (2006).
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competitors about which firms have information and on the other hand the accuracy of

the information firms have. Another effect that we look at is the effect of firms’ exper-

imentation probability, that is, the probability with which firms experiment with small

price increases or decreases. Due to the complexity of the models that we study, we

perform our analyses mainly using computer simulations.

This chapter is organized as follows. The models that we study are introduced in

Section 3.2. The analysis of the models is presented in Section 3.3. The main conclu-

sions of our research are summarized in Section 3.4.

3.2 Models

We consider two closely related models. We refer to these models as the one-dimensional

model and the two-dimensional model. The way in which firms and consumers are

located is different in each model. Apart from this difference, the models are essen-

tially identical. We discuss the one-dimensional model in Subsection 3.2.1 and the

two-dimensional model in Subsection 3.2.2.

3.2.1 One-dimensional model

There are n firms, denoted by 1, . . . , n. In the one-dimensional model, firms are located

equally spaced on a circle (see Figure 3.1).2 The distance, measured over the circum-

ference of the circle, between any two neighboring firms equals one. Consumers are

uniformly distributed on the circle. They are modeled as a continuum. The density of

consumers equals 1 everywhere on the circle. Firms all produce the same product, they

all have an unlimited production capacity, and they all have the same constant marginal

cost. Without loss of generality, firms’ constant marginal cost is set to zero. The price

at which firm i sells one unit of its product is denoted by pi. Firms choose their prices

simultaneously. A consumer’s total cost of buying a unit from a firm equals the price

charged by the firm plus transportation cost. Transportation cost equals the distance,

measured over the circumference of the circle, between the consumer and the firm. Each

consumer needs exactly one unit of the product produced by the firms. A consumer buys

2Firms are located on a circle rather than on a line in order to avoid boundary effects.
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Figure 3.1: One-dimensional model with n = 10 firms. A firm is indicated by a black

dot. Consumers are located everywhere on the circle.

this unit from the firm for which the consumer’s total cost is lowest. This implies that

the circle can be partitioned into n segments in such a way that all consumers located

on the ith circle segment buy from firm i. Firm i’s quantity demanded, denoted by qi,

then equals the length of the ith circle segment, and firm i’s profit is given by πi = piqi.

The model has a symmetric pure-strategy Nash equilibrium in which p1 = · · · =

pn = 1. This can be seen as follows. Suppose that p1 = · · · = pn = 1. We will show that

a firm cannot increase its profit by unilaterally changing its price. Consider an arbitrary

firm i, and suppose that this firm changes its price pi. The other firms do not change

their price. Next, consider a consumer located somewhere in between firm i and firm j,

where firm j is one of the two neighboring firms of firm i. Let the distance between the

consumer and firm i be denoted by d. The distance between the consumer and firm j

is then given by 1 − d. The consumer’s total cost of buying from firm i equals pi + d,

while the consumer’s total cost of buying from firm j equals pj + 1−d = 2−d. Hence,

the consumer will buy from firm i if pi + d < 2 − d or, equivalently, if d < 1 − pi/2.

This means that firm i’s quantity demanded equals qi = 2(1 − pi/2) = 2 − pi and that

firm i makes a profit of πi = pi(2− pi). Clearly, firm i maximizes its profit by choosing

a price of pi = 1. In other words, if firm i changes its price to a value different from 1,

its profit will decrease. This implies that p1 = · · · = pn = 1 is a Nash equilibrium. In

this equilibrium, each firm makes a profit of 1.

It is straightforward to see that firms find themselves in a situation that is somewhat
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Table 3.1: Payoff matrix that illustrates the situation of firms in the one-dimensional

model. For the purpose of illustration, price is treated as a discrete variable that can

take four different values. The row player represents an arbitrary firm i. The column

player represents firms i− 1 and i+ 1, which are the two neighbors of firm i. (The two

neighbors are assumed to choose the same price.) The payoffs represent the profits of

firm i.3

pi−1 = pi+1 = 1.50 pi−1 = pi+1 = 1.25 pi−1 = pi+1 = 1.00 pi−1 = pi+1 = 0.75

pi = 1.50 1.50 1.13 0.75 0.38

pi = 1.25 1.56 1.25 0.94 0.63

pi = 1.00 1.50 1.25 1.00 0.75

pi = 0.75 1.31 1.13 0.94 0.75

similar to a prisoners’ dilemma. Choosing the Nash equilibrium price can be seen as

defection, while choosing a price above the Nash equilibrium level can be seen as co-

operation. If a firm cooperates while its neighbors defect, the firm will make a lower

profit than in the Nash equilibrium. However, if a firm cooperates and its neighbors do

so as well, the firm will make a higher profit than in the Nash equilibrium. The payoff

matrix shown in Table 3.1 illustrates the situation in which firms find themselves. No-

tice that there is one important difference with a prisoners’ dilemma. This is because a

firm may also choose a price below the Nash equilibrium level. For this action, there is

no analogous action in a prisoners’ dilemma.

In our model, we assume that firms are boundedly rational. Hence, firms need not

use Nash equilibrium strategies. We take an evolutionary game theory approach and

assume that the behavior of firms is determined by imitation and experimentation. The

stage game described above is played repeatedly for a large number of rounds. After

each round, firms may change their price. Firms change their price by imitating suc-

cessful neighbors or by experimenting with a small price increase or decrease. Price is

modeled as a discrete variable. That is, firms choose their price from a finite set of price

levels.
3In the payoff matrix shown in Table 3.1, there are three Nash equilibria, namely a strict Nash equi-

librium in which each firm charges a price of 1 and two weak Nash equilibria, one in which each firm
charges a price of 1.25 and one in which each firm charges a price of 1.5. The weak Nash equilibria are
due to the treatment of price as a discrete variable. We will come back to this issue later on in this chapter
(see Footnote 5).
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Imitation is modeled as follows. At the end of each round, a firm is randomly se-

lected. The selected firm knows its own price in the most recent round and the prices

of its ρ closest neighbors, where ρ is an even number that indicates the size of the in-

formation neighborhood of a firm. The selected firm also observes its own profit in the

most recent round and the profits of its ρ closest neighbors. In the case of its neigh-

bors, however, the firm does not observe their true profits but rather their true profits

perturbed by some noise. For each neighbor, the noise is modeled by adding a normally

distributed random variable to the neighbor’s true profit. The random variable has mean

0 and standard deviation σ, where we refer to σ as the noise level. The selected firm

chooses a new price by copying the price that appears to have been most profitable in

the most recent round. More specifically, the firm first averages the observed profits of

firms that used the same price in the most recent round. The firm then chooses the price

associated with the highest observed profit as its new price. (Ties are broken randomly.)

An illustration of the imitation mechanism is provided in Figure 3.2.

Experimentation takes place after imitation and is modeled as follows. At the end

of each round, each firm independently decides whether to experiment with a new price

or not. The probability that a firm chooses to experiment is given by the parameter µ.

This probability is typically very small. If a firm chooses to experiment, there is a 50%

probability of a price increase and a 50% probability of a price decrease. The firm will

set its new price to the closest price level above or below its current price. If the firm’s

current price equals the highest (lowest) price level that can be chosen in the model, no

price increase (decrease) is possible.

One-dimensional models have been frequently studied in the literature (Barr &

Tassier, 2010; Bergstrom & Stark, 1993; Chen & Chow, 2009; Eshel et al., 1998, 1999,

2000; Jun & Sethi, 2007; Mengel, 2009; Noailly et al., 2007; Outkin, 2003; Stark &

Behrens, 2010; Wilhite, 2006).4 Our model is somewhat similar to the model of Eshel

et al. (1998). Eshel et al. study a population of altruists and egoists located on a circle.

Like in our model, agents imitate the strategies of successful neighbors. It turns out

that, even though being an egoist is a dominant strategy, altruism can still prevail in the

long run. Altruism can prevail if altruists are grouped together on the circle, so that they

benefit from each other’s altruism. An important difference between the model of Eshel

4We focus on the theoretical literature. In the experimental literature, a model similar to our one-
dimensional model is considered by Selten and Apesteguia (2005).
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Firm
1 2 3 4 5 6 7 8 9 10

Price 1.00 1.10 1.10 1.10 1.00 0.90 1.00 1.00 0.90 0.80

Quantity 0.95 0.95 1.00 0.95 1.00 1.10 0.95 0.95 1.00 1.15

Profit 0.95 1.05 1.10 1.05 1.00 0.99 0.95 0.95 0.90 0.92

Obs. profit 1.17 1.23 1.00 0.98 0.86

Figure 3.2: Illustration of the imitation mechanism. There are n = 10 firms. Firms have

an information neighborhood of size ρ = 4, and the noise level equals σ = 0.1. For

each firm, the price, the quantity demanded, and the profit are listed in the table. Firm 5

is randomly selected to change its price. Firm 5 does not observe the true profits of its

neighbors but rather their true profits perturbed by some noise. The profits observed by

firm 5 are listed in the table as well. The average observed profit equals 0.98 for a price

of 0.9, (1.00 + 0.86)/2 = 0.93 for a price of 1.0, and (1.17 + 1.23)/2 = 1.20 for a price

of 1.1. Hence, firm 5 will increase its price from 1.0 to 1.1.

et al. and our model is that in our model agents can choose from more than two actions

(i.e., firms can choose from more than two price levels). Another difference is that in our

model agents do not always have noise-free information about their neighbors’ payoffs.

3.2.2 Two-dimensional model

The two-dimensional model is very similar to the one-dimensional model except that

firms and consumers are located differently. In the two-dimensional model, we start
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Figure 3.3: Two-dimensional model with n = 16 firms. A firm is indicated by a black

dot. In variant A of the model, consumers are located only on the black lines. In variant

B of the model, consumers are located everywhere in the gray area.

with a square lattice of m × m points. There are n = m2 firms, which are located

on the points of the lattice (see Figure 3.3). The distance between firms that are direct

neighbors equals one. The model has two variants. These variants differ in the way in

which consumers are located (see Figure 3.3). In one variant, referred to as variant A,

consumers are located only on line segments between firms that are direct neighbors.

In the other variant, referred to as variant B, consumers are located everywhere in the

two-dimensional space in between the firms. Consumers are modeled as a continuum

in both variants of the model. Also, in both variants, the distribution of consumers is

uniform, with a density of one everywhere. All distances in the model are calculated

using the city block or Manhattan distance measure rather than using the Euclidean

distance measure (see Figure 3.4). The use of the city block measure is mathematically

convenient, and it also is a natural choice if we interpret the model in terms of firms and

consumers located in a city with a block design.

In our one-dimensional model discussed in Subsection 3.2.1, firms and consumers

are located on a circle rather than on a line. This simplifies the analysis of the model, be-

cause there are no boundary effects that need to be taken into account. In a similar way,

we also want to avoid boundary effects in our two-dimensional model. We therefore

treat firms at opposite edges of the two-dimensional space as direct neighbors. Hence,

each of the leftmost firms has a direct neighbor among the rightmost firms. Similarly,
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Figure 3.4: Illustration of the calculation of distances using the city block measure. The

distance between firm F and consumer C equals 0.7 + 0.4 = 1.1.

each of the topmost firms has a direct neighbor among the bottommost firms. In this

way, there are no boundary effects in the model. That is, each firm finds itself in exactly

the same position, with the same number of neighboring firms and an equally-sized

consumer market.

Both variants of the model have a symmetric pure-strategy Nash equilibrium. Vari-

ant A has an equilibrium in which p1 = · · · = pn = 1. This can be shown using an

argument analogous to the argument used in the case of the one-dimensional model.

Variant B has an equilibrium in which p1 = · · · = pn = 1/2. This can be seen as

follows. Suppose that p1 = · · · = pn = 1/2. We will show that a firm cannot increase

its profit by unilaterally changing its price. Consider an arbitrary firm i, and suppose

that this firm changes its price pi. The other firms do not change their price. We dis-

tinguish between two cases, namely the case of a price increase and the case of a price

decrease. We first analyze the case of a price increase. If firm i increases its price

pi to a value above 1/2, its quantity demanded will become qi = max(3/2 − pi, 0)2

(see Figure 3.5(a) for an illustration for pi = 0.7). Consequently, firm i will make

a profit of πi = pimax(3/2 − pi, 0)2. Clearly, for pi ≥ 1/2, this profit function is

monotonically decreasing. Hence, if firm i increases its price to a value above 1/2, its

profit will decrease. We now analyze the case of a price decrease. In the case of a

price decrease, firm i’s quantity demanded is given by qi = (1/2)p2i − (5/2)pi + 17/8
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(a) (b)

Figure 3.5: Illustration of the calculation of a firm’s quantity demanded. The firm in the

center of panel (a) charges a price of 0.7. The firm in the center of panel (b) charges a

price of 0.1. The surrounding firms all charge a price of 0.5. In both panels, the shaded

area marks the consumers that buy from the firm in the center. In panel (a), the quantity

demanded of the firm in the center equals 0.8 × 0.8 = 0.64. In panel (b), the quantity

demanded of the firm in the center equals 1.4× 1.4− 4× 0.5× 0.2× 0.2 = 1.88.

(see Figure 3.5(b) for an illustration for pi = 0.1). This results in a profit function of

πi = (1/2)p3i − (5/2)p2i + (17/8)pi. For pi ≤ 1/2, this function is monotonically in-

creasing. This implies that a decrease of firm i’s price to a value below 1/2 will lead to

a decrease of firm i’s profit. Hence, both a price increase and a price decrease will lead

to a decrease in profit. This shows that p1 = · · · = pn = 1/2 is a Nash equilibrium of

variant B of the model.

Both in variant A and in variant B of the model, firms find themselves in a situation

that resembles a prisoners’ dilemma. If a single firm unilaterally deviates from the Nash

equilibrium by increasing its price, the firm will make a lower profit than in the equi-

librium. However, if all firms jointly deviate from the Nash equilibrium by increasing

their price, they will all make a higher profit than in the equilibrium.

Like in our one-dimensional model, we assume that firms are boundedly rational

in our two-dimensional model. Firms’ behavior is assumed to be determined by imi-

tation and experimentation in the same way as in the one-dimensional model. In the
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one-dimensional model, imitation takes place by looking at the prices and profits of

ρ + 1 firms, namely a randomly selected firm and its ρ closest neighbors. In the two-

dimensional model, we focus on two scenarios for the way in which firms imitate each

other. In the first scenario, imitation takes place based on the prices and profits of five

firms, namely a randomly selected firm and its direct neighbors in horizontal and verti-

cal direction. In this scenario, firms have an information neighborhood of size ρ = 4. In

the second scenario, imitation takes place based on the prices and profits of nine firms.

In this scenario, the selected firm’s direct neighbors in diagonal direction are included

as well. The second scenario results in an information neighborhood of size ρ = 8.

A number of two-dimensional models have been studied in the economic literature

(Barr & Tassier, 2010; Kirchkamp, 1999, 2000; Noailly et al., 2009; Outkin, 2003;

Tieman et al., 2000; Wilhite, 2006). The models of Kirchkamp (2000) and Tieman et

al. (2000) are the ones that are most closely related to our model. Kirchkamp studies

a two-dimensional model in which agents play prisoners’ dilemma games with their

neighbors. He shows that under certain conditions cooperation can prevail in the long

run. Important differences between Kirchkamp’s model and our model are that in our

model agents can choose from more than two actions and that in our model agents do

not always have noise free information about their neighbors’ payoffs. Tieman et al.

study a local interaction model in which agents play generalized prisoners’ dilemma

games, that is, prisoners’ dilemma games in which there can be more than two actions.

They find that with a high probability a moderate level of cooperation emerges in their

model. An essential difference between the model of Tieman et al. and our model is

that in the model of Tieman et al. agents do not imitate each others’ strategies. Instead,

agents increase or decrease their cooperativeness depending on whether their average

payoff is higher or lower than the average payoff of their neighbors.

3.3 Analysis

We are interested in the long-run behavior of firms in our one-dimensional and two-

dimensional models. In particular, we want to find out whether in the long run firms

behave cooperatively by charging prices above the Nash equilibrium level. Because our

models do not seem analytically tractable, we use computer simulations to perform our
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analysis. In Subsection 3.3.1, the setup of the simulations is discussed. The results ob-

tained using the simulations are presented in Subsections 3.3.2 (one-dimensional model)

and 3.3.4 (two-dimensional model). Some intuitive insight into the one-dimensional

model is provided in Subsection 3.3.3.

3.3.1 Simulation setup

In our simulations, there are n = 400 firms. This means that in the two-dimensional

model firms are located on the points of a 20×20 square lattice. Firms choose their price

from a set of 21 price levels. These price levels are uniformly distributed between 0.5pN

and 1.5pN , where pN denotes the Nash equilibrium price. Hence, in the one-dimensional

model and in variant A of the two-dimensional model, the price levels that can be chosen

are 0.50, 0.55, . . . , 1.50. In variant B of the two-dimensional model, the price levels that

can be chosen are 0.250, 0.275, . . . , 0.750.5 In the case of the one-dimensional model,

simulations are run for six different values of the information neighborhood size ρ,

namely 2, 4, 6, 8, 10, and 20. In the case of the two-dimensional model, simulations are

run for an information neighborhood of size ρ = 4 and for an information neighborhood

of size ρ = 8. Furthermore, both in the case of the one-dimensional model and in the

case of the two-dimensional model, simulations are run for four different noise levels σ,

namely 0, 0.1pN , 0.2pN , and 0.5pN , and for four different experimentation probabilities

µ, namely 0, 0.00001, 0.0001, and 0.001.

At the beginning of a simulation run, each firm’s price is initialized by randomly

drawing a price from a uniform distribution over all price levels. A simulation run

lasts for one million rounds. One million rounds turns out to be sufficient for studying

firms’ long-run behavior. We performed some tests which indicate that after one million

rounds the results of our simulations are insensitive to the way in which firms’ prices

were initialized. The tests that we performed also indicate that a larger number of rounds

would yield essentially the same simulation results.

5Modeling price as a discrete rather than a continuous variable may introduce additional Nash equi-
libria. This turns out to be the case in the one-dimensional model and in variant A of the two-dimensional
model. In addition to a strict Nash equilibrium in which each firm charges a price of 1.00, there are two
weak Nash equilibria in these models, one in which each firm charges a price of 0.95 and one in which
each firm charges a price of 1.05. There turn out to be no additional Nash equilibria in variant B of the
two-dimensional model. In the rest of this chapter, when we refer to a Nash equilibrium of a model, we
always mean a strict Nash equilibrium.
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Table 3.2: Simulation results for the one-dimensional model for ρ = 2 and for different

values of σ and µ. The table shows the mean price at the end of the simulation runs.

σ = 0.0 σ = 0.1 σ = 0.2 σ = 0.5

µ = 0 1.28 1.33 1.31 1.31

µ = 0.00001 1.27 1.25 1.27 1.28

µ = 0.0001 1.25 1.20 1.22 1.23

µ = 0.001 1.14 1.11 1.13 1.15

Table 3.3: Simulation results for the one-dimensional model for different values of ρ, σ,

and µ. The table shows the mean price at the end of the simulation runs.

σ = 0.0; µ = 0 σ = 0.0; µ = 0.0001 σ = 0.2; µ = 0 σ = 0.2; µ = 0.0001

ρ = 2 1.28 1.25 1.31 1.22

ρ = 4 0.90 0.90 0.93 0.95

ρ = 6 0.90 0.90 0.95 0.95

ρ = 8 0.90 0.93 0.95 0.96

ρ = 10 0.93 0.95 0.96 0.96

ρ = 20 0.98 1.00 0.98 0.98

The source code of the simulations is available online at www.ludowaltman.nl/

price competition/. The source code runs in MATLAB and has been written partly

in the MATLAB language and partly in the C language.

3.3.2 Simulation results for the one-dimensional model

The results of the simulations for the one-dimensional model are reported in Tables 3.2

and 3.3. For each combination of an information neighborhood size ρ, a noise level σ,

and an experimentation probability µ, 500 simulation runs were performed. For each

simulation run, we calculated the mean price of the firms at the end of the last round (i.e.,

at the end of the one millionth round). In Tables 3.2 and 3.3, this mean price is averaged

over the 500 simulations runs that were performed. Standard deviations over the 500

simulation runs (not reported in the tables) are always less than 0.05. The relatively

small standard deviations indicate that there is little variation between simulation runs.

In Table 3.2, results are reported of simulations in which the information neigh-

borhood has a size of ρ = 2. In these simulations, firms can imitate only their direct
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neighbors. As can be seen in the table, the simulations yield prices that are substan-

tially above the Nash equilibrium level of 1. The prices are not very sensitive to the

noise level σ. They are somewhat more sensitive to the experimentation probability µ.

A higher experimentation probability clearly leads to a lower price. The results in Ta-

ble 3.2 are in line with the findings of earlier studies in which somewhat similar models

were analyzed (e.g., Eshel et al., 1998).

We now turn to the effect of the information neighborhood size ρ. Simulation results

for different values of the size of the information neighborhood are reported in Table 3.3.

If the size of the information neighborhood is larger than 2, firms can imitate not only

their direct neighbors but also some of their more distant neighbors. The results in

Table 3.3 are quite remarkable. It turns out that prices are no longer above the Nash

equilibrium level if the size of the information neighborhood is larger than 2. On the

contrary, if the size of the information neighborhood is not too large, prices turn out to

be below the Nash equilibrium level. This is especially the case if there is no noise and

no experimentation (i.e., σ = 0 and µ = 0). In earlier studies (Hoffmann, 1999; Ifti,

Killingback, & Doebeli, 2004; Mengel, 2009; Stark & Behrens, 2010), it was found that

cooperative behavior (i.e., prices above the equilibrium level in our context) tends to be

more difficult to sustain if the size of the information neighborhood is increased. This

is consistent with our findings, but our findings go one step further. If the size of the

information neighborhood is increased, firms not only stop behaving cooperatively but

they in fact start behaving in exactly the opposite way, that is, they decrease their prices

to values below the equilibrium level. Hence, our results show that in some cases the

combination of local interaction and imitation of neighboring individuals has a negative

rather than a positive effect on the degree to which individuals cooperate.

3.3.3 Further analysis of the one-dimensional model

Why does our one-dimensional model yield completely opposite simulation results for

an information neighborhood of size ρ = 2 on the one hand and for an information

neighborhood of size ρ ∈ {4, 6, 8, 10} on the other hand? To provide some intuitive

insight, we first focus on the case of an information neighborhood of size 2 and we then

consider the case of an information neighborhood of size 4. To simplify the analysis, we

assume that in both cases firms can choose from only two price levels. We also assume
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that there is no noise and no experimentation (i.e., σ = 0 and µ = 0). In other words,

the only way in which a firm can change its price is by means of imitation, and if a firm

imitates, it does so based on noise-free information about the profits of its neighbors.

In the case of an information neighborhood of size 2, we assume that firms charge

a price of either 1.0 (i.e., the Nash equilibrium price) or 1.1.6 We refer to these prices

as, respectively, the low price and the high price, and we refer to firms charging the low

price as low-price firms and to firms charging the high price as high-price firms. Suppose

that we have a cluster of low-price firms and a cluster of high-price firms. By a cluster of

low-price (high-price) firms, we mean a number of low-price (high-price) firms that are

direct neighbors of each other. Suppose further that the cluster of low-price firms and the

cluster of high-price firms are located next to each other in the one-dimensional space of

our model. This is illustrated in Figure 3.6(a). The figure also shows the profit made by

each firm. Based on Figure 3.6(a), let us look what will happen. A low-price firm that

is surrounded by two other low-price firms cannot change its price. The same holds for

a high-price firm that is surrounded by two other high-price firms. We therefore focus

on firms 5 and 6 in Figure 3.6(a). Firm 6 will not change its price. This is because,

based on the information available to this firm, the average profit resulting from the

high price (i.e., π6/2 + π7/2 ≈ 1.073) exceeds the average profit resulting from the low

price (i.e., π5 = 1.050). Hence, firm 6 will stick to the high price. Unlike firm 6, firm 5

will change its price. Firm 5 is currently a low-price firm, but based on the information

available to the firm, the high price appears to be more profitable than the low price

(since π6 = 1.045 > π4/2 + π5/2 = 1.025). As a consequence, firm 5 will change to

the high price. This will lead to a new situation, which is illustrated in Figure 3.6(b).

Looking at Figure 3.6(b), it is clear that the next step will be firm 4 changing from the

low price to the high price. Hence, the general pattern is that the cluster of high-price

firms is growing more and more while the cluster of low-price firms is shrinking. This

6The choice of these two prices is fairly arbitrary. However, our analysis is valid for many other prices
as well.
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(a)

(b)

Figure 3.6: Illustration of the effect of imitation in the one-dimensional model with an

information neighborhood of size ρ = 2.

is the basic intuition underlying our simulation results for an information neighborhood

of size 2.7

We now consider the case of an information neighborhood of size 4.8 In this case,

we assume that firms charge either a low price of 0.9 or a high price of 1.0 (i.e., the

Nash equilibrium price). Notice that these prices are different from the prices used in

the above analysis for an information neighborhood of size 2. This is because we now

want to explain why firms charge prices below the Nash equilibrium level, while in

the analysis presented above we wanted to explain why firms charge prices above the

Nash equilibrium level. We again start from a situation with a cluster of low-price firms

and a cluster of high-price firms. This situation is illustrated in Figure 3.7(a). Based

on Figure 3.7(a), it can be seen that there are two firms for which a price change is

possible, namely firm 4 and firm 5. In both cases, there would be a change from the

low price to the high price. Firm 4 and firm 5 cannot both change their price at the

same time. Instead, one of the two firms will be randomly selected to change its price.

If firm 5 is selected, the effect will be that the cluster of high-price firms grows while

the cluster of low-price firms shrinks. This is similar to what happens in the case of

7The full story is more complicated. In particular, it can be shown that low-price firms will not
disappear altogether. Suppose we have a cluster of low-price firms surrounded on both sides by a cluster of
high-price firms. As explained above, the cluster of low-price firms will shrink more and more. However,
when there are just two low-price firms left, the cluster of low-price firms will not shrink any further.
Hence, in the end there will be mostly high-price firms, but in between these firms there will also be some
small islands of low-price firms. We refer to Eshel et al. (1998) for an extensive discussion of this kind of
dynamics.

8We refer to Mengel (2009) for a somewhat similar analysis. One of the differences between our
analysis and the analysis of Mengel is that we do not consider the effect of experimentation while Mengel
focuses on the limit case in which the probability of experimentation (referred to as trembling by Mengel)
approaches zero.
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(a)

(b)

(c)

Figure 3.7: Illustration of the effect of imitation in the one-dimensional model with an

information neighborhood of size ρ = 4.

an information neighborhood of size 2. If firm 4 is selected, the effect will be quite

different. We will then end up in the situation illustrated in Figure 3.7(b). As can be

seen in the figure, there will no longer be a perfect separation of low-price and high-price

firms. In this new situation, there turn out to be three firms for which a price change is

possible, namely firm 4, firm 6, and firm 7. In all three cases, the price change would

be a movement from the high price to the low price. At this point, a comprehensive

analysis of the various possibilities becomes cumbersome. Let us therefore focus on

the most interesting possibility. This is the possibility of a price change by firm 7. If

firm 7 changes its price, the cluster of high-price firms will shrink, as is illustrated in

Figure 3.7(c). A next step could then be that firm 8 or firm 9 also changes its price,

which would mean that the cluster of high-price firms will shrink even further. Going

back to the initial situation illustrated in Figure 3.7(a), it is now clear that there are

two counteracting forces at work. On the one hand the cluster of high-price firms may

grow, while on the other hand this cluster may shrink. In the situation illustrated in

Figure 3.7(a), the cluster of high-price firms will grow if firm 5 changes its price. On

the other hand, if firm 4 changes its price, this may cause the cluster of high-price firms

to shrink. It is not immediately clear which of these two counteracting forces is stronger.

However, based on the simulation results reported in Table 3.3, it can be concluded that

the force working against the high-price firms must be the stronger one.

We have now looked at our one-dimensional model both in the case of an informa-

tion neighborhood of size 2 and in the case of an information neighborhood of size 4.
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What is the essential difference between these two cases? In both cases, a cluster of

high-price firms may take over a neighboring low-price firm. However, the difference is

that in the case of an information neighborhood of size 2 the high-price firms will always

remain organized in a single cluster (see Figure 3.6) while in the case of an information

neighborhood of size 4 the high-price firms may become separated from each other (see

Figure 3.7). When high-price firms are separated from each other, they become vulner-

able. This is because an isolated high-price firm makes a relatively low profit while an

isolated low-price firm makes a relatively high profit. The result may therefore be that

low-price firms start to take over high-price firms. This is the basic mechanism that ex-

plains why in our one-dimensional model prices are lower in the case of an information

neighborhood of size 4 than in the case of an information neighborhood of size 2.

3.3.4 Simulation results for the two-dimensional model

The results of the simulations for the two-dimensional model are reported in Tables 3.4

to 3.7. Tables 3.4 and 3.5 relate to variant A of the model. This is the variant in which

consumers are located on line segments between neighboring firms. Tables 3.6 and 3.7

relate to variant B of the model. In this variant, consumers are located everywhere

in the two-dimensional space in between the firms. The results in Tables 3.4 to 3.7

were obtained in the same way as the results in Tables 3.2 and 3.3. Hence, the results

are averages over 500 simulation runs. Standard deviations over the 500 simulation

runs (not reported in the tables) are always less than 0.03, indicating that there is little

variation between simulation runs.

We first focus on variant A of the two-dimensional model. As can be seen in Ta-

bles 3.4 and 3.5, prices tend to be relatively close to the Nash equilibrium level of

1. They do not exceed the equilibrium level by more than 18%. This is much less

than in the one-dimensional model, in which prices exceed the equilibrium level by at

most 33% (see Table 3.2). Also, in variant A of the two-dimensional model, prices do

not fall below the equilibrium level (except for σ = 0.5 and µ = 0, where the price

is marginally below the equilibrium level). This is another difference with the one-

dimensional model. In the one-dimensional model, prices can be up to 10% below the

equilibrium level (see Table 3.3). Comparing Tables 3.4 and 3.5, it can be seen that

increasing the size of the information neighborhood from ρ = 4 to ρ = 8 leads to sub-
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Table 3.4: Simulation results for variant A of the two-dimensional model for ρ = 4

and for different values of σ and µ. The table shows the mean price at the end of the

simulation runs.

σ = 0.0 σ = 0.1 σ = 0.2 σ = 0.5

µ = 0 1.15 1.05 1.06 1.06

µ = 0.00001 1.17 1.07 1.06 1.07

µ = 0.0001 1.18 1.10 1.08 1.08

µ = 0.001 1.16 1.12 1.11 1.11

Table 3.5: Simulation results for variant A of the two-dimensional model for ρ = 8

and for different values of σ and µ. The table shows the mean price at the end of the

simulation runs.

σ = 0.0 σ = 0.1 σ = 0.2 σ = 0.5

µ = 0 1.04 1.01 1.00 0.99

µ = 0.00001 1.04 1.00 1.00 1.00

µ = 0.0001 1.05 1.01 1.01 1.01

µ = 0.001 1.07 1.05 1.04 1.03

stantially lower prices. This is similar to what was observed for the one-dimensional

model, and it is also somewhat similar to earlier findings reported in the literature (Ifti

et al., 2004). The effect of the noise level σ and the experimentation probability µ is

different than in the one-dimensional model. The noise level turns out to have a nega-

tive effect on prices, while the experimentation probability turns out to have a positive

effect. Notice, however, that especially the effect of the experimentation probability is

not very strong.

We now consider variant B of the two-dimensional model. As discussed in Subsec-

tion 3.2.2, variant B has a Nash equilibrium price of 0.5, which is only half of the Nash

equilibrium price of variant A. This explains why the prices in Tables 3.6 and 3.7 are

much lower than the prices in Tables 3.4 and 3.5. When looking at prices relative to the

equilibrium price, it can be seen that the results in Tables 3.6 and 3.7 are in fact very

similar to the results in Tables 3.4 and 3.5. The effects of the information neighborhood

size ρ, the noise level σ, and the experimentation probability µ are also very similar.
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Table 3.6: Simulation results for variant B of the two-dimensional model for ρ = 4

and for different values of σ and µ. The table shows the mean price at the end of the

simulation runs.

σ = 0.00 σ = 0.05 σ = 0.10 σ = 0.25

µ = 0 0.58 0.53 0.53 0.54

µ = 0.00001 0.59 0.54 0.54 0.54

µ = 0.0001 0.59 0.55 0.55 0.55

µ = 0.001 0.59 0.56 0.56 0.57

Table 3.7: Simulation results for variant B of the two-dimensional model for ρ = 8

and for different values of σ and µ. The table shows the mean price at the end of the

simulation runs.

σ = 0.00 σ = 0.05 σ = 0.10 σ = 0.25

µ = 0 0.52 0.50 0.51 0.51

µ = 0.00001 0.52 0.51 0.51 0.51

µ = 0.0001 0.53 0.51 0.51 0.52

µ = 0.001 0.54 0.53 0.53 0.53

Hence, it turns out that the way in which firms behave is very similar in the two variants

of the two-dimensional model.

3.4 Conclusions

We have studied evolutionary models of price competition among spatially distributed

firms. In our models, firms are organized either in a one-dimensional space or in a two-

dimensional space. The behavior of firms is determined by imitation and experimenta-

tion. Imitation means that firms copy the price of one or more successful competitors in

their neighborhood. Experimentation means that firms randomly increase or decrease

their price by a small amount.

In earlier studies (e.g., Bergstrom & Stark, 1993; Eshel et al., 1998; Nowak & May,

1992), often in the context of prisoners’ dilemma games, it was found that spatially

distributed individuals that interact locally and that imitate successful neighbors tend to

behave cooperatively in many cases. In this chapter, our aim has been to investigate
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whether a similar tendency towards cooperative behavior can be found in the context

of price competition among spatially distributed firms. In this context, cooperative be-

havior would mean that firms have prices and profits above the ordinary equilibrium

level.

We have performed our analyses mainly using computer simulations. The results

of the simulations provide a mixed picture. The emergence of cooperative behavior

turns out to depend strongly on the amount of information available to firms. In the

one-dimensional model, firms behave cooperatively only if the information they have

about the prices and profits of other firms is restricted to their two direct neighbors. In

the two-dimensional model, firms behave more cooperatively if they have information

about four neighbors than if they have information about eight neighbors. Hence, the

general pattern seems to be that having too much information may hurt cooperation (for

similar results, see Hoffmann, 1999; Ifti et al., 2004; Mengel, 2009; Stark & Behrens,

2010). We have shown that in the one-dimensional model this is because having too

much information may cause cooperative firms to become separated from each other,

which weakens their position relative to non-cooperative firms. The two-dimensional

model is more difficult to analyze, but the mechanism at work in this model may well

be similar. A remarkable finding is that in the one-dimensional model having too much

information may even lead to prices and profits below the ordinary equilibrium level.

This shows that the combination of local interaction and imitation of neighboring indi-

viduals can have both a positive and a negative effect on the degree to which individuals

cooperate. To the best of our knowledge, negative effects have not been reported before

in the literature. We have also investigated a number of other factors that may affect the

degree of cooperative behavior among firms. One of these factors is the accuracy of the

information firms have about the profits of their neighbors. Another factor is the prob-

ability with which firms experiment with small price increases or decreases. The effect

of these two factors turns out to be relatively small. In the case of the two-dimensional

model, we have also looked at the effect of the way in which consumers are located in

the two-dimensional space. There turn out to be no substantial differences between the

two variants that we have considered.



Chapter 4

A mathematical analysis of the
long-run behavior of genetic
algorithms for economic modeling∗

Abstract

We present a mathematical analysis of the long-run behavior of genetic algorithms

that are used for modeling economic phenomena. The analysis relies on commonly

used mathematical techniques in evolutionary game theory. Assuming a positive

but infinitely small mutation rate, we derive results that can be used to calculate

the exact long-run behavior of a genetic algorithm. Using these results, the need

to rely on computer simulations can be avoided. We also show that if the mutation

rate is infinitely small the crossover rate has no effect on the long-run behavior

of a genetic algorithm. To demonstrate the usefulness of our mathematical anal-

ysis, we replicate a well-known study by Axelrod in which a genetic algorithm is

used to model the evolution of strategies in iterated prisoner’s dilemmas. The the-

oretically predicted long-run behavior of the genetic algorithm turns out to be in

perfect agreement with the long-run behavior observed in computer simulations.

Also, in line with our theoretically informed expectations, computer simulations

indicate that the crossover rate has virtually no long-run effect. Some general new

insights into the behavior of genetic algorithms in the prisoner’s dilemma context

are provided as well.

∗This chapter is joint work with Nees Jan van Eck. The chapter is currently under submission.
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4.1 Introduction

The field of evolutionary computation is concerned with the study of all kinds of evo-

lutionary algorithms. These algorithms can be used for various purposes. Perhaps the

most popular purpose for which they can be used is function optimization (e.g., Gold-

berg, 1989; Michalewicz, 1996; Gen & Cheng, 2000). In the function optimization

context, evolutionary algorithms can be seen as heuristics that serve as alternatives to

more traditional techniques from the fields of combinatorial optimization and mathemat-

ical programming. Another important purpose for which evolutionary algorithms can

be used is the modeling of biological, social, and economic phenomena (e.g., Mitchell,

1996). This is the topic with which we are concerned in this chapter. Our focus is in

particular on the use of evolutionary algorithms for modeling economic phenomena.

When using evolutionary algorithms in the economic modeling context, one of the

assumptions one makes is that the agents whose behavior is being modeled are bound-

edly rational. This basically means that the agents are assumed not to behave in a utility

maximizing manner. There are numerous ways in which boundedly rational behavior

can be modeled (e.g., Fudenberg & Levine, 1998; Brenner, 2006). A popular approach

is to rely on an evolutionary metaphor. This is the approach that is taken by evolutionary

algorithms. In its simplest form, the evolutionary approach assumes that there is a pop-

ulation of agents and that for each agent in the population the strategy it uses depends

on the population-wide past performance of strategies. The better the past performance

of a strategy, the more likely the strategy is to be used again. The evolutionary approach

also assumes that there always is a small probability that an agent experiments with a

new strategy.

The evolutionary approach to modeling boundedly rational behavior has attracted a

lot of attention, not only from researchers in the field of evolutionary computation but

also from researchers in the social sciences, in particular from economists. Tradition-

ally, economists have typically relied on game-theoretic models to analyze interactions

between agents. These models usually assume agents to behave in a fully rational way.

Nowadays, however, the limitations of game-theoretic models based on full rationality

are well recognized and many economists have started to study evolutionary models of

agent behavior. These models are based on the assumption that the behavior of agents
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can best be described using some evolutionary mechanism rather than using the idea of

full rationality.

In the field of economics, there are two quite separate streams of research that are

both concerned with the evolutionary approach to modeling boundedly rational behav-

ior. One stream of research, which is usually referred to as agent-based computational

economics (e.g., Tesfatsion, 2006), makes use of techniques from the field of evolution-

ary computation. Especially genetic algorithms (GAs) are frequently used. Early work

in this stream of research includes Miller (1986); Holland and Miller (1991); Marks

(1992); Arifovic (1994); Andreoni and Miller (1995); Arifovic (1996); Dawid (1996);

Miller (1996), and examples of more recent work are Vriend (2000); Lux and Schorn-

stein (2005); Alkemade, La Poutré, and Amman (2006); Georges (2006); Haruvy,

Roth, and Utku Ünver (2006); Alkemade, La Poutré, and Amman (2009); Waltman

and Van Eck (2009). The other stream of research is more closely related to traditional

game theory and is referred to as evolutionary game theory (e.g., Maynard Smith, 1982;

Weibull, 1995; Vega-Redondo, 1996; Gintis, 2000). Like the traditional game-theoretic

approach, the evolutionary game-theoretic approach is model-based and relies heavily

on mathematical analysis. The use of computer simulations is not very common in

evolutionary game theory.

In this chapter, it is not our aim to argue in favor of either the agent-based computa-

tional economics approach, which emphasizes algorithms and computer simulations, or

the evolutionary game-theoretic approach, which emphasizes models and mathematical

analysis. Instead, we want to show how the former approach can benefit from the math-

ematical techniques used in the latter approach. More specifically, we want to show

how evolutionary algorithms that are used for modeling economic phenomena can be

analyzed mathematically using techniques that are popular in evolutionary game theory.

Our focus in this chapter is on one particular type of evolutionary algorithm, namely

GAs with a binary encoding. However, we emphasize that the approach that we take

can be applied to other types of evolutionary algorithms as well. The reason for fo-

cusing on GAs with a binary encoding is that this seems to be the type of evolutionary

algorithm that is used most frequently for modeling economic phenomena (e.g., Miller,

1986; Axelrod, 1987; Marks, 1992; Arifovic, 1994; Yao & Darwen, 1994; Andreoni &

Miller, 1995; Arifovic, 1996; Ashlock, Smucker, Stanley, & Tesfatsion, 1996; Crowley
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et al., 1996; Dawid, 1996; Miller, 1996; Vriend, 2000; Van Bragt, Van Kemenade, &

La Poutré, 2001; Alkemade, Van Bragt, & La Poutré, 2005; Ishibuchi & Namikawa,

2005; Lux & Schornstein, 2005; Alkemade et al., 2006; Georges, 2006; Alkemade,

La Poutré, & Amman, 2007; Alkemade et al., 2009; Waltman & Van Eck, 2009).

The mathematical analysis that we present in this chapter deals with the long-run be-

havior of GAs with a binary encoding. The GAs are assumed to be used in the economic

modeling context (for theoretical work on GAs in the function optimization context, see

e.g. Nix & Vose, 1992; Rudolph, 1994; Mitchell, 1996; Rudolph, 1998; Vose, 1999). In

the terminology of Vriend (2000), we are concerned with GAs that are used for mod-

eling social learning (as opposed to individual learning). Our work can be seen as an

extension of the work of Dawid (1996), who derived a number of important mathemati-

cal results on the behavior of GAs. For small and moderate population sizes, the results

of Dawid do not provide a full characterization of the long-run behavior of GAs. We ex-

tend the work of Dawid by deriving results that do provide a full characterization of the

long-run behavior of GAs for small and moderate population sizes. Using our results,

the long-run behavior of a GA can be calculated exactly and needs not be estimated us-

ing computer simulations. This means that it is no longer necessary to run a GA a large

number of times for a large number of iterations in order to get insight into its long-run

behavior. The use of our mathematical results has at least three advantages over the use

of computer simulations:

(1) Our mathematical results can be used to calculate the long-run behavior of a GA

exactly, while computer simulations can only be used to estimate the long-run

behavior of a GA.

(2) When using computer simulations, it can be difficult to determine how many it-

erations of a GA are required to approximate the long-run behavior of the GA

reasonably closely. Our mathematical results do not have this problem.

(3) Calculating the exact long-run behavior of a GA using our mathematical results

requires less computing time than obtaining a reasonably accurate estimate of the

long-run behavior of a GA using computer simulations.

Our mathematical results have one important limitation, which is that on most of today’s

computers they can only be used if the chromosome length is not greater than about 24
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bits. If the chromosome length is greater than about 24 bits, the use of our mathematical

results to calculate the long-run behavior of a GA most likely requires a prohibitive

amount of computer memory.

Like in Dawid (1996), the mathematical analysis presented in this chapter relies on

the assumption that the mutation rate is positive but infinitely small. (In other words, the

analysis is concerned with the limit case in which the mutation rate approaches zero.)

In simulation studies with GAs, researchers typically work with values between 0.001

and 0.01 for the mutation rate. This seems to be a rather pragmatic choice (cf. Dawid,

1996). On the one hand, lower values for the mutation rate would lead to very slow

convergence and, consequently, very long simulation runs. On the other hand, higher

values for the mutation rate would lead to convergence to unstable, difficult to interpret

outcomes. We believe that our assumption of an infinitely small mutation rate is justified

because an infinitely small mutation rate is less arbitrary than a mutation rate whose

value is determined solely based on pragmatic grounds (cf. Foster & Young, 1990).

The assumption of an infinitely small mutation rate is also in line with the common

practice in evolutionary game theory, in which a similar assumption is almost always

made. The advantage of assuming an infinitely small mutation rate is that it greatly

simplifies the mathematical analysis of the long-run behavior of GAs (see also Dawid,

1996). In fact, GAs with an infinitely small mutation rate can be analyzed in a similar

way as well-known models in evolutionary game theory (e.g., Foster & Young, 1990;

Kandori et al., 1993; Young, 1993; Vega-Redondo, 1997). Like in evolutionary game

theory, mathematical results provided by Freidlin and Wentzell (1998) are the key tool

for analyzing the long-run behavior to which convergence will take place. We note that,

in addition to the assumption of an infinitely small mutation rate, there are some other

assumptions on which our mathematical analysis relies. However, these assumptions

are quite mild. Most GAs will probably satisfy them, and if a GA does not satisfy them,

a minor modification of the GA will usually be sufficient to meet the assumptions.

To demonstrate the usefulness of our mathematical analysis, we replicate a well-

known study by Axelrod (1987, 1997b; see also Dawid, 1996; Mitchell, 1996). Axelrod

used a GA to model the evolution of strategies in iterated prisoner’s dilemmas. He

showed that an evolutionary mechanism can lead to cooperative behavior. Axelrod’s

study has been one of the first and also one of the most influential studies on the use
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of evolutionary algorithms for modeling social and economic phenomena. Directly or

indirectly, his study seems to have inspired many researchers (e.g., Mühlenbein, 1991;

Fogel, 1993; Yao & Darwen, 1994; Ashlock et al., 1996; Crowley et al., 1996; Van Bragt

et al., 2001; Alkemade et al., 2005; Chong & Yao, 2005; Ishibuchi & Namikawa, 2005;

Ashlock, Kim, & Leahy, 2006; Mittal & Deb, 2006; Chong & Yao, 2007; Thibert-Plante

& Charbonneau, 2007; Ashlock & Kim, 2008). The results obtained by Axelrod are all

based on computer simulations. In this chapter, we show that more or less the same

results can be calculated exactly, with no need to rely on simulations. We also discuss

some new insights that exact calculations provide.

The mathematical analysis that we present in this chapter also has an important

implication for the choice of the parameters of a GA. The analysis indicates that if the

mutation rate is infinitely small the crossover rate has no effect on the long-run behavior

of a GA. This is a quite remarkable result that, to the best of our knowledge, has not

been reported before in the theoretical literature on GAs. The result implies that when

GAs are used for modeling economic phenomena the crossover rate is likely to be a

rather insignificant parameter, at least when one is mainly interested in the behavior of

GAs in the long run (for the short run, see Thibert-Plante & Charbonneau, 2007). This

suggests that in many cases the crossover rate can simply be set to zero, in which case no

crossover will take place at all. Simulation results that we report in this chapter indeed

show no significant effect of the crossover rate on the long-run behavior of a GA.

The remainder of this chapter is organized as follows. In Section 4.2, we present

a mathematical analysis of the long-run behavior of GAs that are used for modeling

economic phenomena. Based on the analysis, we derive an algorithm for calculating the

long-run behavior of GAs in Section 4.3. In Section 4.4, we demonstrate an application

of the algorithm by replicating Axelrod’s study (Axelrod, 1987). Finally, we discuss

the conclusions of our research in Section 4.5. Proofs of our mathematical results are

provided in the appendix.

4.2 Analysis

The general form of the GAs that we analyze in this chapter is shown in Figure 4.1. In

this figure, and also in the rest of this chapter, the positive integers n and m and the
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Input: n, m, γ, and ε
1 Initialize the population by randomly setting nm bits to zero or one
2 repeat
3 Selection: Apply the selection operator to select n chromosomes from the population (a chro-

mosome may be selected more than once), and use the selected chromosomes as the new pop-
ulation

4 Crossover: Randomly partition the population into n/2 pairs of two chromosomes, and apply
the crossover operator to each pair of chromosomes with probability γ

5 Mutation: Mutate the population by inverting each bit with probability ε
6 until some stopping criterion is satisfied

Figure 4.1: General form of the genetic algorithms analyzed in this chapter.

probabilities γ and ε denote, respectively, the population size, the chromosome length,

the crossover rate, and the mutation rate. For simplicity, we assume the population size

n to be even. We further assume the crossover rate γ and the mutation rate ε to remain

constant over time. We also assume ε to be positive. The GAs that we analyze are

generalizations of the canonical GA discussed by, for example, Goldberg (1989) and

Mitchell (1996). Like the canonical GA, we assume the use of a binary encoding, that

is, chromosomes correspond to bit strings in our GAs. Unlike the canonical GA, we

do not assume the use of specific selection and crossover operators. Instead, the GAs

that we analyze may use almost any selection operator, such as roulette wheel selec-

tion (sometimes referred to as fitness-proportionate selection), tournament selection, or

rank selection, and any crossover operator, such as single-point crossover, two-point

crossover, or uniform crossover. Furthermore, in the GAs that we analyze, the fitness

of a chromosome may depend, either deterministically or stochastically, on the entire

population rather than only on the chromosome itself. When using GAs for economic

modeling, the fitness of a chromosome typically depends on the entire population. This

is referred to as state-dependent fitness by Dawid (1996). In most studies, GAs that are

used for economic modeling have the same general form as the GAs that we analyze in

this chapter.

We now introduce the terminology and the mathematical notation that we use in

our analysis. We note that an overview of the mathematical notation is provided in

Table 4.1. There are µ = 2m different chromosomes, denoted by 0, . . . , µ − 1. Each
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chromosome has a unique binary encoding, which is given by a bit string of length

m.1 C = {0, . . . , µ − 1} denotes the set of all chromosomes. i and j denote typical

chromosomes and take values in C. The following definition introduces the notion of

uniform and non-uniform populations.

Definition 4.1. A population is said to be uniform if and only if all n chromosomes in

the population are identical. A population is said to be non-uniform if and only if some

chromosomes in the population are different.

U denotes the set of all uniform populations. Obviously, since there are µ different

chromosomes, there are also µ different uniform populations, that is, |U| = µ. u(i) ∈ U
denotes the uniform population consisting of n times chromosome i. δ(i, j) denotes the

Hamming distance between chromosomes i and j, that is, the number of corresponding

bits in the binary encodings of i and j that are different. G(i) denotes the set of all

chromosomes that have the same binary encoding as chromosome i except that one bit

has been changed from one into zero. Conversely, H(i) denotes the set of all chromo-

somes that have the same binary encoding as chromosome i except that one bit has been

changed from zero into one. In mathematical notation,

G(i) = {j | j < i and δ(i, j) = 1}

H(i) = {j | j > i and δ(i, j) = 1}.

Notice that j ∈ G(i) if and only if i ∈ H(j). There are

ν = µm/2 = m2m−1

combinations of two chromosomes i and j such that δ(i, j) = 1, that is, such that the

binary encodings of i and j differ by exactly one bit. k and k′ denote indices that take

values in {1, . . . , ν}. Ṽ denotes the set of all populations in which there are exactly two

different chromosomes and in which the binary encodings of these chromosomes differ

1In this chapter, we use a standard binary encoding. Hence, if m = 2, chromosomes 0, 1, 2, and
3 have binary encodings 00, 01, 10, and 11, respectively. We emphasize that the use of a standard
binary encoding is by no means essential for our analysis. Other binary encoding schemes, such as Gray
encoding, can be used as well. This does not require any significant changes in our analysis.
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by exactly one bit. There are

ξ = |Ṽ| = ν(n− 1) = (n− 1)m2m−1

such populations. (The order of the chromosomes within a population has no effect

on the behavior of a GA. Populations consisting of the same chromosomes in different

orders are therefore considered identical.) V denotes the set that is obtained by adding

the uniform populations to Ṽ , that is, V = Ṽ ∪ U . For i and j such that δ(i, j) = 1

and for λ ∈ {0, . . . , n}, v(i, j, λ) ∈ V denotes the population consisting of λ times

chromosome i and n−λ times chromosome j. Notice that v(i, j, λ) = v(j, i, n−λ) and

that v(i, j, 0) = u(j) and v(i, j, n) = u(i).W denotes the set of all possible populations.

As shown by Nix and Vose (1992, Lemma 1) and Dawid (1996), the number of possible

populations equals

|W| =
(
n+ µ− 1

µ− 1

)
=

(n+ µ− 1)!

n!(µ− 1)!
.

(Again, populations consisting of the same chromosomes in different orders are con-

sidered identical.) For t ∈ {0, 1, . . .}, the random variable Wt ∈ W denotes the pop-

ulation at the beginning of iteration t of a GA. For i and j such that δ(i, j) = 1 and

for λ ∈ {1, . . . , n − 1} and λ′ ∈ {0, . . . , n}, π(i, j, λ, λ′) denotes the limit as the mu-

tation rate ε approaches zero of the probability that population v(i, j, λ) is turned into

population v(i, j, λ′) in a single iteration of a GA. In mathematical notation,

π(i, j, λ, λ′) = lim
ε→0

Pr(Wt+1 = v(i, j, λ′) |Wt = v(i, j, λ)) (4.1)

where t ∈ {0, 1, . . .}. Because the binary encodings of the chromosomes i and j dif-

fer by only one bit, the crossover operator has no effect on π(i, j, λ, λ′). Moreover,

because ε approaches zero, the mutation operator has no effect on π(i, j, λ, λ′) either.

π(i, j, λ, λ′) therefore equals the probability that the selection operator turns population

v(i, j, λ) into population v(i, j, λ′) in a single iteration of a GA.

The following definition introduces the notion of almost uniform populations.

Definition 4.2. A non-uniform population w ∈ W \ U is said to be almost uniform if

and only if

lim
ε→0

Pr(Wt+N = u |Wt = w) > 0
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Table 4.1: Overview of the mathematical notation.

C Set of all chromosomes
G(i) Set of all chromosomes that have the same binary encoding as chromosome i except

that one bit has been changed from one into zero
H(i) Set of all chromosomes that have the same binary encoding as chromosome i except

that one bit has been changed from zero into one
m Chromosome length
n Population size
q̄(w) Long-run probability of population w
q̂(w) Long-run limit probability of population w
q̂ Long-run limit distribution
U Set of all uniform populations
u(i) Uniform population consisting of n times chromosome i
V Set of all populations in which there are at most two different chromosomes and in

which the binary encodings of chromosomes differ by at most one bit
v(i, j, λ) Population consisting of λ times chromosome i and n− λ times chromosome j
W Set of all populations
Wt Population at the beginning of iteration t of a GA
γ Crossover rate
δ(i, j) Hamming distance between chromosomes i and j
ε Mutation rate
µ Number of different chromosomes

Number of uniform populations
ν Number of combinations of two chromosomes whose binary encodings differ by ex-

actly one bit
ξ Number of populations in which there are exactly two different chromosomes and in

which the binary encodings of chromosomes differ by at most one bit
π(i, j, λ, λ′) Probability that the selection operator turns population v(i, j, λ) into population

v(i, j, λ′) in a single iteration of a GA
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for all t ∈ {0, 1, . . .}, some finite positive integer N , and some u ∈ U .

Hence, a non-uniform population is almost uniform if and only if no mutation is required

to go from the non-uniform population to some uniform population. We note that in

many cases all non-uniform populations are almost uniform. For example, if a GA uses

roulette wheel selection or tournament selection, the selection operator can turn any non-

uniform population into a uniform population in a single iteration and, consequently, all

non-uniform populations are almost uniform.

The following two definitions introduce the notion of a connection from one chro-

mosome to another.

Definition 4.3. A direct connection from chromosome i to chromosome j is said to

exist if and only if δ(i, j) = 1 and

lim
ε→0

Pr(Wt+N = u(j) |Wt = v(i, j, n− 1)) > 0

for all t ∈ {0, 1, . . .} and some finite positive integer N .

Definition 4.4. A connection from chromosome i to chromosome j is said to exist if

and only if there exists a sequence (i1, . . . , iN) such that i1, . . . , iN ∈ C, i1 = i, iN = j,

and iM is directly connected to iM+1 for all M ∈ {1, . . . , N − 1}.

Definition 4.3 states that there is a direct connection from chromosome i to chromo-

some j if and only if the minimum number of mutations required to go from uniform

population u(i) to uniform population u(j) is one. We note that in many cases all chro-

mosomes i and j such that δ(i, j) = 1 have mutual direct connections. This is for

example the case if a GA uses roulette wheel selection and the fitness of a chromosome

is always positive. Definition 4.4 states that there is a connection from chromosome i to

chromosome j if and only if there is a sequence of chromosomes starting at i and ending

at j such that each chromosome in the sequence is directly connected to its successor.

Clearly, if all chromosomes i and j such that δ(i, j) = 1 have mutual direct connections,

then each chromosome is connected to all other chromosomes.

It is well-known that the population in the current iteration of a GA has no effect on

the behavior of the GA in the long run (e.g., Nix & Vose, 1992; Dawid, 1996). More

specifically, the population an infinite number of iterations in the future is statistically
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independent of the population in the current iteration. The following lemma states this

result in a formal way.

Lemma 1. For each population w ∈ W , there exists a long-run probability q̄(w) such

that

lim
N→∞

Pr(Wt+N = w |Wt = wt) = q̄(w) (4.2)

for all t ∈ {0, 1, . . .} and all wt ∈ W .

Proof. See the appendix.

In our analysis, we are concerned with the long-run behavior of GAs in the limit as the

mutation rate ε approaches zero. We therefore use the following definition.

Definition 4.5. For w ∈ W , q̂(w) = limε→0 q̄(w) is called the long-run limit probability

of population w.

We now introduce the vectors and matrices that we need to state the main result of

our analysis. We first note that throughout this chapter vectors and matrices are repre-

sented by, respectively, bold lowercase and bold uppercase letters and that the transpose

of a matrix X is written as XT. IN denotes an identity matrix of order N × N , and

0M×N and 1M×N denote matrices of order M × N in which all elements are equal to,

respectively, zero and one. We simply write I, 0, or 1 when the order of a matrix is clear

from the context. g = [gk] and h = [hk] denote vectors of length ν that satisfy

∀k : gk, hk ∈ C

∀k : hk ∈ H(gk)

∀k, k′ : k 6= k′ ⇒ (gk, hk) 6= (gk′ , hk′).

Hence, for each k, (gk, hk) denotes a combination of two chromosomes such that the

binary encodings of the chromosomes differ by exactly one bit. g and h together contain

all such combinations of two chromosomes. A, B, C, and D denote matrices of order
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µ× ξ, ξ × µ, ξ × ξ, and µ× µ, respectively. Matrix A is given by

A =


a(0, 1) · · · a(0, ν)

... . . . ...

a(µ− 1, 1) · · · a(µ− 1, ν)

 (4.3)

where

a(i, k) =


ã1, if gk = i

ã2, if hk = i

01×(n−1), otherwise

(4.4)

and

ã1 =
[
01×(n−2) 1

]
ã2 =

[
1 01×(n−2)

]
. (4.5)

Matrix B is given by

B =


b(1, 0) · · · b(1, µ− 1)

... . . . ...

b(ν, 0) · · · b(ν, µ− 1)

 (4.6)

where

b(k, i) =


b̃(gk, hk, n), if gk = i

b̃(gk, hk, 0), if hk = i

0(n−1)×1, otherwise

(4.7)

and

b̃(i, j, λ) =


π(i, j, 1, λ)

...

π(i, j, n− 1, λ)

 . (4.8)
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Matrix C is given by

C =


C(1, 1) · · · C(1, ν)

... . . . ...

C(ν, 1) · · · C(ν, ν)

 (4.9)

where

C(k, k′) =

C̃(gk, hk), if k = k′

0(n−1)×(n−1), otherwise
(4.10)

and

C̃(i, j) =


π(i, j, 1, 1) · · · π(i, j, 1, n− 1)

... . . . ...

π(i, j, n− 1, 1) · · · π(i, j, n− 1, n− 1)

 . (4.11)

Matrix D is obtained from A, B, and C and is given by

D = A(I−C)−1B−mI. (4.12)

The following theorem states the main result of our analysis.

Theorem 4.1. Let all non-uniform populations be almost uniform, and let each chromo-

some in C be connected to all other chromosomes in C. Then, (i) all non-uniform popu-

lations have a long-run limit probability of zero, that is, q̂(w) = 0 for all w ∈ W \ U ,

and (ii) the long-run limit distribution q̂ =
[
q̂(u(0)) · · · q̂(u(µ− 1))

]
satisfies

q̂D = 0 (4.13)

q̂1 = 1 (4.14)

which has a unique solution.

Proof. See the appendix.

There are three comments that we would like to make on the above theorem. First,

the result that under certain assumptions non-uniform populations have a long-run limit

probability of zero is not new. A similar result can be found in Dawid (1996, Proposi-

tion 4.2.1). Second, under the assumptions of the theorem, the long-run limit probability
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of a population does not depend on the crossover rate γ. This is a quite remarkable result

that, to the best of our knowledge, has not been reported before in the theoretical litera-

ture on GAs. It indicates that in the limit as the mutation rate ε approaches zero γ has no

effect on the long-run behavior of a GA. Third, the theorem can be used to calculate the

long-run limit distribution q̂ only if the probabilities π(i, j, λ, λ′) defined in (4.1) can be

calculated for all i and all j such that δ(i, j) = 1 and for all λ ∈ {1, . . . , n − 1} and

all λ′ ∈ {0, . . . , n}. Whether this is possible depends on the way in which the fitness

of a chromosome is determined and on the selection operator that is used. This in turn

depends heavily on the specific problem that one wants to model using a GA. Because

of the dependence on the problem to be modeled, we cannot provide any general results

for the calculation of the probabilities π(i, j, λ, λ′). In Section 4.4, however, we demon-

strate how the probabilities π(i, j, λ, λ′) can be calculated for a GA that is similar to the

GA used by Axelrod in his seminal paper on GA modeling (Axelrod, 1987).

4.3 Algorithm

In this section, we present an algorithm for calculating the long-run limit distribution

q̂. The algorithm is based on Theorem 4.1. Like Theorem 4.1, it assumes that all non-

uniform populations are almost uniform and that each chromosome in C is connected to

all other chromosomes in C. It also assumes that the probabilities π(i, j, λ, λ′) defined

in (4.1) can be calculated for all i and all j such that δ(i, j) = 1 and for all λ ∈
{1, . . . , n− 1} and all λ′ ∈ {0, . . . , n}.

The most straightforward approach to calculating the long-run limit distribution q̂

would be to start with calculating the matrices A, B, and C using (4.3)–(4.11). Matrix

D would then be calculated using (4.12), which would require solving a linear system.

Finally, q̂ would be obtained by solving the linear system given by (4.13) and (4.14).

Unfortunately, this approach to calculating q̂ requires a lot of computer memory and is

therefore infeasible even for problems of only moderate size. Most memory is required

for storing matrix C. This matrix has (at most) ν(n− 1)2 = (n− 1)2m2m−1 non-zero

elements. Clearly, as the population size n and the chromosome lengthm increase, stor-

ing the non-zero elements of C in a computer’s main memory soon becomes infeasible.

The algorithm that we propose for calculating q̂ exploits the sparsity of the matrices A,
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B, and C in order to calculate matrix D in a memory-efficient way. The algorithm does

not require the entire matrices A, B, and C to be stored in memory. The algorithm also

solves the linear system given by (4.13) and (4.14) in a memory-efficient way. This is

achieved by exploiting the sparsity of D. The algorithm is shown in Figure 4.2. We now

discuss it in more detail.

We first consider the efficient calculation of matrix D. Let Ĉ = (I−C)−1. Because

C is a block diagonal matrix, Ĉ can be written as

Ĉ =


Ĉ(1, 1) · · · Ĉ(1, ν)

... . . . ...

Ĉ(ν, 1) · · · Ĉ(ν, ν)


where

Ĉ(k, k′) =

(I− C̃(gk, hk))
−1, if k = k′

0(n−1)×(n−1), otherwise.

Hence, Ĉ is a block diagonal matrix too. Let D be written as

D =


d(0, 0) · · · d(0, µ− 1)

... . . . ...

d(µ− 1, 0) · · · d(µ− 1, µ− 1)

 .

Taking into account the sparsity of A, B, and Ĉ, it can be seen that

d(i, j) =



∑
i′∈G(i) ã2ẽ(i′, i, 0) +

∑
i′∈H(i) ã1ẽ(i, i′, n)−m, if i = j

ã2ẽ(j, i, n), if j ∈ G(i)

ã1ẽ(i, j, 0), if j ∈ H(i)

0, otherwise

(4.15)

where

ẽ(i, j, λ) = (I− C̃(i, j))−1b̃(i, j, λ).

This result shows that each non-zero element of D can be calculated by solving one or
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Input: n, m, q̂0, and ω
Output: q̂

1 // Calculation of D =
[
d(i, j)

]
2 // Only non-zero elements of D should be stored
3 µ← 2m

4 D← −mIµ

5 ã1 ← ã1 given by (4.5)
6 ã2 ← ã2 given by (4.5)
7 for i← 0 to µ− 1 do
8 for all j ∈ H(i) do
9 b̃← b̃(i, j, n) given by (4.8)

10 C̃← C̃(i, j) given by (4.11)
11 ẽ← (I− C̃)−1b̃ // Use, e.g., Gaussian elimination
12 d(i, i)← d(i, i) + ã1ẽ

13 d(j, j)← d(j, j) + 1− ã2ẽ

14 d(i, j)← 1− ã1ẽ

15 d(j, i)← ã2ẽ

16 end for
17 end for
18 // Calculation of q̂ =

[
q̂(u(i))

]
19 // The linear system given by (4.13) and (4.14) will be solved using successive overrelaxation
20 q̂← q̂0

21 repeat
22 for i← 0 to µ− 1 do
23 σ ← 0

24 for all j ∈ G(i) ∪H(i) do
25 σ ← σ + q̂(u(j))d(j, i)

26 end for
27 σ ← −σ/d(i, i)

28 q̂(u(i))← (1− ω)q̂(u(i)) + ωσ

29 end for
30 until some convergence criterion is satisfied
31 q̂← q̂/(q̂1)

Figure 4.2: Algorithm for calculating the long-run limit distribution of a genetic algo-

rithm.
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more relatively small linear systems, that is, systems of n− 1 equations and unknowns.

Moreover, by calculating the elements of D one by one, there is no need to store the

entire matrices A, B, and C in memory. Solving a linear system of n− 1 equations and

unknowns can be done using standard Gaussian elimination methods. Except for very

large values for the population size n, today’s computers have sufficient main memory

to apply Gaussian elimination methods to such systems. We further note that the amount

of computation required for obtaining D can be reduced by taking into account that

ẽ(i, j, 0) = (I− C̃(i, j))−1b̃(i, j, 0)

= (I− C̃(i, j))−1(1−
∑n

λ=1 b̃(i, j, λ))

= (I− C̃(i, j))−1(1− C̃(i, j)1− b̃(i, j, n))

= (I− C̃(i, j))−1(I− C̃(i, j))1− ẽ(i, j, n)

= 1− ẽ(i, j, n).

Because of this, d(i, j) can be written as

d(i, j) =



∑
i′∈G(i)(1− ã2ẽ(i′, i, n)) +

∑
i′∈H(i) ã1ẽ(i, i′, n)−m, if i = j

ã2ẽ(j, i, n), if j ∈ G(i)

1− ã1ẽ(i, j, n), if j ∈ H(i)

0, otherwise.
(4.16)

Using (4.16) rather than (4.15) to calculate D halves the number of linear systems that

need to be solved. In the algorithm in Figure 4.2, the calculation of D based on (4.16)

is performed between lines 1 and 17.

Matrix D has µ2 = 22m elements. Consequently, storing all elements of D in a

computer’s main memory is possible only if the chromosome length m is not too large.

It follows from (4.15) and (4.16) that the number of non-zero elements in D equals

µ(m+ 1) = (m+ 1)2m. Hence, D is a rather sparse matrix and a lot of memory can be

saved by storing only its non-zero elements.2 In addition to the memory efficiency of

2The non-zero elements of D can be stored efficiently by using two arrays: a one-dimensional array
of size µ for the diagonal elements of D and a two-dimensional array of size m × µ for the non-zero
off-diagonal elements of D. The element in the κth row and the ith column of the latter array is used to
store d(j, i), where j has the same binary encoding as i except that the κth bit is inverted.
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the way in which D is stored, one should also pay attention to the memory efficiency of

the method that is used to solve the linear system given by (4.13) and (4.14). Gaussian

elimination and other direct (i.e., non-iterative) methods for solving linear systems gen-

erally require that at least a large number of elements of the coefficient matrix, including

zero elements, are stored in memory. Consequently, when using such a method to solve

the linear system given by (4.13) and (4.14), it would not be possible to fully exploit the

sparsity of D. Linear systems can also be solved using iterative methods that require

only the non-zero elements of the coefficient matrix to be stored in memory. One such

method is the method of successive overrelaxation (e.g., Stewart, 1994; Tijms, 1994,

2003; Barrett et al., 2008). In the algorithm in Figure 4.2, this method is used to solve

the linear system given by (4.13) and (4.14) (see lines 18–31 of the algorithm). In addi-

tion to an initial guess q̂0 for the solution of the linear system, the method of successive

overrelaxation also requires a value for the relaxation factor ω. The value of ω, which

should be between 0 and 2, may have a large effect on the rate of convergence of the

method, and for some values of ω the method may not converge at all. An appropriate

value for ω has to be determined experimentally. For ω = 1, the method of successive

overrelaxation reduces to the Gauss-Seidel method, which is another iterative method

for solving linear systems. We refer to Stewart (1994) for an in-depth discussion of

both the method of successive overrelaxation and a number of alternative methods for

solving linear systems similar to the one given by (4.13) and (4.14). We further note

that the amount of main memory in most of today’s computers allows the algorithm in

Figure 4.2 to be run for chromosomes with length m up to about 24 bits.

4.4 Application

In this section, we demonstrate an application of the algorithm presented in the previous

section. We study the use of a GA for modeling the evolution of strategies in iterated

prisoner’s dilemmas (IPDs). The use of GAs in this context was first studied by Axelrod

(1987, 1997b; see also Dawid, 1996; Mitchell, 1996) and after him by many others (e.g.,

Mühlenbein, 1991; Yao & Darwen, 1994; Ashlock et al., 1996; Crowley et al., 1996;

Miller, 1996; Van Bragt et al., 2001; Alkemade et al., 2005; Ishibuchi & Namikawa,

2005; Ashlock et al., 2006; Mittal & Deb, 2006; Thibert-Plante & Charbonneau, 2007;
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Ashlock & Kim, 2008). The algorithm presented in the previous section is used to

analyze the long-run behavior of our GA. The results of the analysis are compared with

results obtained using computer simulations. We emphasize that our primary aim is

merely to illustrate the usefulness of the mathematical analysis provided in Section 4.2

and of the algorithm derived from the analysis in Section 4.3. It is not our primary aim

to provide new insights into the behavior of GAs in the context of IPDs.

4.4.1 Genetic algorithm modeling in iterated prisoner’s dilemmas

The way in which we model the evolution of strategies in IPDs is similar to the way

in which this was done by Axelrod (1987). However, Axelrod studied two approaches

for modeling the evolution of strategies. In one approach, the fitness of a chromosome

is determined by the performance of the chromosome in IPD games against a fixed set

of opponents. In the other approach, the fitness of a chromosome is determined by

the performance of the chromosome in IPD games against other chromosomes in the

population. We restrict our attention to the second approach. This is the approach on

which almost all studies after Axelrod’s work have focused (an exception is Mittal &

Deb, 2006).

We model the evolution of strategies in IPDs using a GA with a population size of

n = 20 chromosomes. Each chromosome represents a strategy for playing IPD games.

Players in IPD games are assumed to choose the action they play, that is, whether they

cooperate or defect, based on their own actions and their opponent’s actions in the pre-

vious τ periods of the game, where τ is referred to as players’ memory length. Players

are further assumed to play only pure strategies. We use the same binary encoding of

strategies as was used by Axelrod (1987). For a description of this encoding, we refer

to Dawid (1996); Mitchell (1996); Axelrod (1987, 1997b). Using Axelrod’s encoding,

the chromosome length m depends on the memory length τ . We consider three memory

lengths, 1, 2, and 3 periods, which result in chromosome lengths of, respectively, 6, 20,

and 70 bits. In each iteration of the GA, each chromosome in the population plays an

IPD game of 151 periods against all other chromosomes. In addition, each chromosome

also plays a game against itself. The payoff matrix for a single period of an IPD game
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Table 4.2: Payoff matrix for a single period of an iterated prisoner’s dilemma game. The

payoff obtained by the row (column) player is reported first (second).

Cooperate Defect

Cooperate R,R S, T

Defect T, S P, P

is shown in Table 4.2. The payoffs in this matrix must satisfy

S < P < R < T

and

S + T < 2R.

The payoff obtained by a chromosome in an IPD game equals the mean payoff obtained

by the chromosome in all periods of the game. The fitness f of a chromosome equals

the mean payoff obtained by the chromosome in the IPD games that it has played in

the current iteration of the GA. Like in Axelrod’s work (Axelrod, 1987), we use sigma

scaling (e.g., Mitchell, 1996) to normalize the fitness of a chromosome. The normalized

fitness f̃ of a chromosome is given by

f̃ =

max

(
f − µf
σf

+ 1, 0

)
, if σf > 0

1, otherwise
(4.17)

where µf and σf denote, respectively, the mean and the standard deviation of the fitness

of the chromosomes in the population. The selection operator that we use is roulette

wheel selection. Selection is performed based on the normalized fitness of the chromo-

somes in the population. The crossover operator that we use is single-point crossover.

4.4.2 Calculation of the long-run limit distribution of the genetic
algorithm

In this subsection, we are concerned with the calculation of the long-run limit distri-

bution of the GA discussed in the previous subsection. To calculate the long-run limit
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distribution of the GA, we use the algorithm presented in Section 4.3. This algorithm

assumes that the probabilities π(i, j, λ, λ′) defined in (4.1) can be calculated for all i and

all j such that δ(i, j) = 1 and for all λ ∈ {1, . . . , n−1} and all λ′ ∈ {0, . . . , n}. We now

discuss the calculation of the probabilities π(i, j, λ, λ′) for our GA. For i′, j′ ∈ C, let

ϕ(i′, j′) denote the payoff obtained by chromosome i′ in an IPD game against chromo-

some j′. Suppose that the population in the current iteration of our GA equals v(i, j, λ),

where i and j satisfy δ(i, j) = 1 and where λ ∈ {1, . . . , n− 1}. That is, the population

in the current iteration of our GA consists of λ times chromosome i and n − λ times

chromosome j. The fitness fi of chromosome i is then given by

fi =
λϕ(i, i) + (n− λ)ϕ(i, j)

n
.

Similarly, the fitness fj of chromosome j is given by

fj =
λϕ(j, i) + (n− λ)ϕ(j, j)

n
.

Furthermore, the mean µf and the standard deviation σf of the fitness of the chromo-

somes in the population are equal to, respectively,

µf =
λfi + (n− λ)fj

n

and

σf =

√
λ(fi − µf )2 + (n− λ)(fj − µf )2

n
.

The normalized fitness f̃i of chromosome i is obtained by substituting fi, µf , and σf
into (4.17). The normalized fitness f̃j of chromosome j is obtained in a similar way.

Let π̃i and π̃j denote the probabilities that the roulette wheel selection operator selects,

respectively, chromosome i and chromosome j. Obviously, π̃i and π̃j equal

π̃i =
λf̃i

λf̃i + (n− λ)f̃j
π̃j =

(n− λ)f̃j

λf̃i + (n− λ)f̃j
.

π(i, j, λ, λ′), where λ′ ∈ {0, . . . , n}, equals the probability that the roulette wheel selec-

tion operator turns population v(i, j, λ) into population v(i, j, λ′) in a single iteration of
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our GA. Taking into account that the roulette wheel selection operator selects chromo-

somes independently of each other, it can be seen that π(i, j, λ, λ′) equals the probability

mass function of a binomial distribution and is given by

π(i, j, λ, λ′) =

(
n

λ′

)
π̃i
λ′ π̃j

n−λ′

where the binomial coefficient
(
n
λ′

)
is defined as(
n

λ′

)
=

n!

λ′!(n− λ′)!
.

The algorithm presented in Section 4.3 also assumes that all non-uniform popu-

lations are almost uniform and that each chromosome in C is connected to all other

chromosomes in C. Because of the use of roulette wheel selection, the assumption

that all non-uniform populations are almost uniform is satisfied. The assumption that

each chromosome in C is connected to all other chromosomes in C is satisfied if and

only if matrix D calculated in lines 1–17 of the algorithm in Figure 4.2 is irreducible.

(D =
[
d(i, j)

]
is said to be irreducible if and only if there does not exist a non-empty

set of chromosomes C̃ ⊂ C such that d(i, j) = 0 for all i ∈ C̃ and all j ∈ C \ C̃.) For the

particular values that we use for the parameters S, P , R, T , and τ (see the next subsec-

tion), D turns out to be irreducible. Hence, the assumption that each chromosome in C
is connected to all other chromosomes in C is satisfied.

4.4.3 Analysis of the long-run behavior of the genetic algorithm

In this subsection, we analyze the long-run behavior of our GA for the prisoner’s dilemma

payoffs S = 0, P = 1, R = 3, and T = 5. These are the same payoffs as were used by

Axelrod (1987) (see also Axelrod, 1984) and by many others. The analysis is performed

using the algorithm presented in Section 4.3. The use of this algorithm to analyze the

long-run behavior of our GA was discussed in the previous subsection. We compare the

results obtained using the algorithm with results obtained using computer simulations.3

3The software used to obtain the results reported in this subsection is available online at
www.ludowaltman.nl/ga analysis/. The software runs in MATLAB and has been written partly in the
MATLAB programming language and partly in the C programming language.
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Figure 4.3: The long-run limit distribution calculated using the algorithm presented in

Section 4.3 (in dark grey) and a probability distribution over the uniform populations es-

timated using computer simulations (in light grey). The memory length τ equals 1. On

the horizontal axis, integers between 0 and 63 are used to represent the uniform popu-

lations. Integer i represents the uniform population consisting of 20 times chromosome

i.

The long-run limit distribution for a memory length of τ = 1 period is shown in

Figure 4.3 (in dark grey). The distribution was calculated using the algorithm from

Section 4.3. As mentioned before, τ = 1 results in a chromosome length of m = 6

bits. This implies that there are µ = 2m = 64 different chromosomes and, as a conse-

quence, that there are 64 different uniform populations. The long-run limit distribution

is a probability distribution over these populations. As can be seen in Figure 4.3, the

long-run limit distribution spreads most of its mass over approximately fifteen popula-

tions. It puts almost no mass on the remaining populations. Since all chromosomes in a

uniform population are identical and represent the same strategy, the long-run limit dis-

tribution can be used to determine the long-run limit probability that a particular strategy

is played. However, when doing so, it should be noted that there is some redundancy in

the binary encoding of strategies that we use (as was already pointed out by Axelrod,

1987). Due to this redundancy, it is possible that different chromosomes represent the

same strategy. Some strategies can be encoded in two or three different ways, and the

strategies always cooperate and always defect can even be encoded in twelve differ-

ent ways. Taking into account the redundancy in the encoding, we have calculated the

long-run limit probabilities of all possible strategies. The six strategies with the highest

long-run limit probability are reported in Table 4.3. Together, these strategies have a
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Table 4.3: The six strategies with the highest long-run limit probability (reported in the

first column). The memory length τ equals 1.

Prob. Strategy Chromosomes

0.430 Always defect 0, 2, 8, 10, 16, 24, 32, 34,
40, 42, 48, 50

0.147 Start cooperating; cooperate if and only if both you and your
opponent cooperated in the previous period

56

0.139 Start cooperating; cooperate if and only if your opponent coop-
erated in the previous period (tit for tat)

44, 60

0.133 Start defecting; cooperate if and only if you and your opponent
played different actions in the previous period

6, 54

0.051 Start cooperating; cooperate unless you cooperated in the previ-
ous period and your opponent did not

13, 45, 61

0.049 Start defecting; cooperate unless you cooperated in the previous
period and your opponent did not

29

long-run limit probability of almost 0.95. The remaining strategies all have very low

long-run limit probabilities. It is sometimes claimed (e.g., Axelrod, 1984, 1987) that

a very effective strategy for playing IPD games is the tit for tat strategy, which is the

strategy of cooperating in the first period and repeating the opponent’s previous action

thereafter. The results reported in Table 4.3 do not really support this claim. As can be

seen in the table, the always defect strategy has by far the highest long-run limit prob-

ability. In the long run, this strategy is played about 43% of the time. The tit for tat

strategy has a long-run limit probability of no more than 0.14. This is even slightly less

than the long-run limit probability of another cooperative strategy, namely the strategy

that keeps cooperating until the opponent defects and then keeps defecting forever.

In order to check the correctness of the algorithm presented in Section 4.3, we have

also used computer simulations to analyze the long-run behavior of our GA. Like above,

we first focus on the behavior of the GA for a memory length of τ = 1 period. We per-

formed 500 runs of the GA. The crossover rate was set to γ = 1.0, and the mutation

rate was set to ε = 10−5. Because of the very small value of ε, the simulation results

should be similar to the results obtained using the algorithm from Section 4.3. (Recall

that the latter results hold in the limit as ε approaches zero.) Each run of the GA lasted

2 · 105 iterations. This seemed sufficient for the GA to reach its steady state. After the

last iteration of a GA run, we almost always observed that the population was uniform.
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Based on the 500 GA runs that we had performed, we estimated for each uniform pop-

ulation the probability of observing that population at the end of a GA run. In this way,

we obtained a probability distribution over the uniform populations. This distribution

is shown in Figure 4.3 (in light grey). Figure 4.3 allows us to compare the distribution

with the long-run limit distribution calculated using the algorithm from Section 4.3. It

can be seen that the two distributions are very similar. This confirms the correctness of

the algorithm presented in Section 4.3.

In order to examine to what extent our GA results in the evolution of cooperative

strategies, we now focus on the long-run mean fitness, that is, the mean fitness of a

chromosome after a large number of iterations of the GA. For various values of the

memory length τ , the crossover rate γ, and the mutation rate ε, the long-run mean

fitness estimated using computer simulations is reported in Table 4.4. The associated

95% confidence interval is also provided in the table. The simulation results for τ = 1

are based on 500 runs of the GA, and the simulation results for τ = 2 and τ = 3 are

based on 200 runs. Each run lasted 2 · 105 iterations. The long-run mean fitness was

estimated by taking the average over all GA runs of the mean fitness of a chromosome

at the end of a run. In the limit as ε approaches zero, the long-run mean fitness can

be calculated exactly and does not depend on γ. The calculation of the long-run mean

fitness is based on the long-run limit distribution of the GA, which can be obtained

using the algorithm presented in Section 4.3. For τ = 1 and τ = 2, the long-run mean

fitness in the limit as ε approaches zero is reported in Table 4.4. For τ = 3, we cannot

calculate the long-run limit distribution of the GA and we therefore do not know the

long-run mean fitness in the limit as ε approaches zero. Calculating the long-run limit

distribution of the GA is impossible for τ = 3 because the chromosome length equals

m = 70 bits and because for such a chromosome length storing the long-run limit

distribution requires a prohibitive amount of computer memory.

Based on the results in Table 4.4, a number of observations can be made. First, for

τ = 1 and τ = 2, the results obtained for ε = 10−4 and ε = 10−5 turn out to be very

similar to the results obtained for ε → 0. This again confirms the correctness of the

algorithm presented in Section 4.3. Second, for τ = 1, we find that the results are quite

sensitive to the value of ε. Studies on GA modeling sometimes report that the long-run

behavior of a GA is relatively insensitive to the value of ε. Our results demonstrate
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that this need not always be the case. Third, for small values of ε, it can be seen that

increasing τ leads to a higher long-run mean fitness and, hence, to more cooperation.

The evolution of cooperative strategies in IPD games therefore seems more likely when

players have longer memory lengths. Finally, it can be observed that the value of γ

has no significant effect on our results. This is in line with the mathematical analysis

provided in Section 4.2. The mathematical analysis implies that for ε→ 0 the long-run

mean fitness is independent of γ. The results in Table 4.4 indicate that this is the case

not only for ε→ 0 but more generally.

4.5 Conclusions

In this chapter, we have presented a mathematical analysis of the long-run behavior

of GAs that are used for modeling economic phenomena. Under the assumption of a

positive but infinitely small mutation rate, the analysis provides a full characterization of

the long-run behavior of GAs with a binary encoding. Based on the analysis, we have

derived an algorithm for calculating the long-run behavior of GAs. In an economic

context, the algorithm can for example be used to determine whether convergence to an

equilibrium will take place and, if so, what kind of equilibrium will emerge. Compared

with computer simulations, the main advantage of the algorithm that we have derived

is that it calculates the long-run behavior of GAs exactly. Computer simulations only

estimate the long-run behavior of GAs.

To demonstrate the usefulness of our mathematical analysis, we have replicated a

well-known study by Axelrod in which a GA is used to model the evolution of strategies

in iterated prisoner’s dilemmas (Axelrod, 1987). We have used both our exact algorithm

and computer simulations to replicate Axelrod’s study. By comparing the results of the

two approaches, we have confirmed the correctness of our algorithm. We have also ob-

tained some interesting new insights. For example, when players have a memory length

of one period, the tit for tat strategy turns out to be less important than is sometimes

claimed (e.g., Axelrod, 1984, 1987). In the long run, the strategy is played only 14% of

the time. Another finding is that the long-run behavior of a GA can be quite sensitive

to the value of the mutation rate. We regard this as a serious problem, since the value
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of the mutation rate is typically chosen in a fairly arbitrary way without any empirical

justification (see also Dawid, 1996).

The mathematical analysis that we have presented also reveals that if the mutation

rate is infinitely small the crossover rate has no effect on the long-run behavior of a

GA. This remarkable result is perfectly in line with the simulation results that we have

reported in Section 4.4. For various values of the mutation rate, the simulation results

show no significant effect of the crossover rate on the long-run behavior of a GA. Hence,

when GAs are used for modeling economic phenomena, the crossover rate seems to be

a rather unimportant parameter, at least when the focus is on the long run (for the short

run, see Thibert-Plante & Charbonneau, 2007). It seems likely that in many cases leav-

ing out the crossover operator altogether has no significant effect on the long-run be-

havior of a GA. Interestingly, leaving out the crossover operator brings GAs quite close

to well-known models in evolutionary game theory, such as those studied by Kandori et

al. (1993) and Vega-Redondo (1997).

Finally, we note that an analysis such as the one presented in this chapter can be per-

formed not only for GAs with a binary encoding but also for other types of evolutionary

algorithms. From a modeling point of view, a binary encoding in many cases has the

disadvantage that it lacks a clear interpretation (e.g., Dawid, 1996). The use of a binary

encoding can therefore be difficult to justify and may even lead to artifacts, as is shown

in Chapter 5 of this thesis (see also Waltman & Van Eck, 2009). Probably for these

reasons, some researchers use evolutionary algorithms without a binary encoding (e.g.,

Lux & Schornstein, 2005; Haruvy et al., 2006). The analysis presented in this chap-

ter then does not directly apply. However, when the action space of agents is assumed

discrete, the long-run behavior of evolutionary algorithms without a binary encoding

can still be analyzed in a similar way as we have done in this chapter, namely by rely-

ing on mathematical results provided by Freidlin and Wentzell (1998). This indicates

that our approach is quite general and can be adapted relatively easily to other types of

evolutionary algorithms.
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Appendix

In this appendix, we prove the mathematical results presented in Section 4.2. Before

proving the results, we first provide some definitions and lemmas on Markov chains.

Definition 4.6. A collection of random variables {Xt}, where the index t takes values in

{0, 1, . . .} and where X0, X1, . . . take values in a finite set X , is called a finite discrete-

time Markov chain if

Pr(Xt+1 = xt+1 |Xt = xt) = Pr(Xt+1 = xt+1 |Xt = xt, . . . , X0 = x0)

for all t and all x0, . . . , xt+1 ∈ X . The elements of X are called the states of the Markov

chain. X is called the state space of the Markov chain.

Definition 4.7. A finite discrete-time Markov chain {Xt} is said to be time-homogeneous

if

Pr(Xt+1 = xt+1 |Xt = xt) = p(xt, xt+1)

for all t, all xt, xt+1 ∈ X , and some function p : X 2 → [0, 1] that does not depend on t.

For x, x′ ∈ X , the probability p(x, x′) is called the transition probability from state x to

state x′. The matrix

P =
[
p(x, x′)

]
x,x′∈X

is called the transition matrix of the Markov chain.

In the remainder of this appendix, the term Markov chain always refers to a finite

discrete-time Markov chain that is time-homogeneous.

Definition 4.8. Consider a Markov chain {Xt}. A row vector p̄ = [p̄(x)]x∈X that

satisfies

p̄P = p̄

p̄1 = 1

is called a stationary distribution of the Markov chain. For x ∈ X , the probability p̄(x)

is called the stationary probability of state x.
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Definition 4.9. A Markov chain {Xt} is said to be irreducible if for each x, x′ ∈ X
there exists a positive integer N such that Pr(Xt+N = x′ |Xt = x) > 0.

Lemma 2. If a Markov chain {Xt} is irreducible, it has a unique stationary distribution

p̄.

Proof. See, for example, Tijms (1994, Theorem 2.3.3).

Definition 4.10. An irreducible Markov chain {Xt} is said to be aperiodic if for each

x ∈ X there exists a positive integer N such that Pr(Xt+M = x |Xt = x) > 0 for all

integers M ≥ N .

Lemma 3. If a Markov chain {Xt} is irreducible and aperiodic, then

lim
t→∞

Pr(Xt = x |X0 = x0) = p̄(x)

for all x, x0 ∈ X .

Proof. See, for example, Tijms (1994, Theorem 2.3.1 and Lemma 2.3.2).

Lemma 4. Let a Markov chain {Xt} be irreducible. Let Y ⊂ X and Y 6= ∅. Let

T =
[
p(x, x′)

]
x,x′∈Y

U =
[
p(x, x′)

]
x∈Y,x′∈X\Y

V =
[
p(x, x′)

]
x∈X\Y,x′∈Y

W =
[
p(x, x′)

]
x,x′∈X\Y

and let

PY = T + U(I−W)−1V.

Let {Yt} denote a Markov chain with state space Y and transition matrix PY . Markov

chain {Yt} is then irreducible and has stationary probabilities p̄Y (y) that are given by

p̄Y (y) =
p̄(y)∑

y′∈Y p̄(y
′)

where y ∈ Y .

Proof. See Kemeny and Snell (1960, Theorem 6.1.1).4

4The terminology used by Kemeny and Snell (1960) differs from the terminology used in many other
texts on Markov chains. In particular, an ergodic Markov chain in Kemeny and Snell (1960) corresponds
to an irreducible Markov chain in this chapter.
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Definition 4.11. Consider a set X . For x, x′ ∈ X , the ordered pair (x, x′) is called an

arrow from x to x′. For x1, . . . , xN ∈ X , the sequence of arrows

((x1, x2), (x2, x3), . . . , (xN−2, xN−1), (xN−1, xN))

is called a path from x1 to xN . For x ∈ X , a set of arrows E is called an x-tree on X if

it satisfies the following conditions:

(1) E contains no arrow that starts at x.

(2) For each x′ ∈ X \ {x}, E contains exactly one arrow that starts at x′.

(3) For each x′ ∈ X \ {x}, E contains a path from x′ to x (or, formulated more

accurately, for each x′ ∈ X \ {x}, there exists a path from x′ to x such that E

contains all arrows of the path).

Lemma 5. Let a Markov chain {Xt} be irreducible. For x ∈ X , let E(x) denote the

set of all x-trees on X . The stationary probabilities p̄(x) of the Markov chain are then

given by

p̄(x) =
p̃(x)∑

x′∈X p̃(x
′)

where x ∈ X and

p̃(x) =
∑

E∈E(x)

∏
(x,x′)∈E

p(x, x′).

Proof. A proof is provided by Freidlin and Wentzell (1998, Chapter 6, Lemma 3.1) (see

also Dawid, 1996, Theorem 4.2.1).

Using the above definitions and lemmas, we now prove the mathematical results

presented in Section 4.2.

Proof of Lemma 1. Notice that

Pr(Wt+1 = wt+1 |Wt = wt) = Pr(Wt+1 = wt+1 |Wt = wt, . . . ,W0 = w0)

for all t ∈ {0, 1, . . .} and all w0, . . . , wt+1 ∈ W . That is, the population in iteration

t + 1 of a GA depends only on the population in iteration t. Given the population in
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iteration t, the population in iteration t+1 is independent of the populations in iterations

0, . . . , t− 1. Notice further that

Pr(Wt+1 = wt+1 |Wt = wt) = q(wt, wt+1)

for all t ∈ {0, 1, . . .}, all wt, wt+1 ∈ W , and some function q : W2 → [0, 1] that does

not depend on t. That is, the probability of going from one population to some other

population remains constant over time. (Recall that the crossover rate γ and the mutation

rate ε are assumed to remain constant over time.) It now follows from Definitions 4.6

and 4.7 that {Wt}, where the index t takes values in {0, 1, . . .}, is a Markov chain with

state spaceW and transition probabilities q(w,w′). Since the mutation rate ε is assumed

to be positive, any population can be turned into any other population in a single iteration

of a GA. Hence, q(w,w′) > 0 for all w,w′ ∈ W . Consequently, it follows from

Definitions 4.9 and 4.10 that Markov chain {Wt} is irreducible and aperiodic. Lemma 3

then implies that for each population w ∈ W there exists a stationary probability q̄(w)

such that

lim
t→∞

Pr(Wt = w |W0 = w0) = q̄(w) (4.18)

for all w0 ∈ W . We refer to a stationary probability q̄(w) as the long-run probability

of population w. Finally, (4.2) is obtained from (4.18) by taking into account the time-

homogeneity of Markov chain {Wt}. This completes the proof of Lemma 1.

Proof of Theorem 4.1. As shown in the proof of Lemma 1, {Wt}, where the index t

takes values in {0, 1, . . .}, is an irreducible and aperiodic Markov chain with state space

W . Markov chain {Wt} has stationary probabilities q̄(w), to which we refer as long-run

probabilities. We now introduce some additional mathematical notation. Like in the

proof of Lemma 1, the function q : W2 → [0, 1] denotes the transition probabilities of

Markov chain {Wt}. For w,w′ ∈ W , q(w,w′) is a polynomial in the mutation rate ε

and can therefore be written as

q(w,w′) =
∞∑
l=0

α(w,w′, l)εl (4.19)

where α(w,w′, 0), α(w,w′, 1), . . . denote the coefficients of the polynomial. c(w,w′) is
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defined as

c(w,w′) = min{l |α(w,w′, l) 6= 0}. (4.20)

That is, c(w,w′) is defined as the rate at which q(w,w′) approaches zero as ε approaches

zero. It follows from this definition that c(w,w′) equals the minimum number of mu-

tations required to go from population w to population w′ in a single iteration of a GA.

α(w,w′) is defined as

α(w,w′) = α(w,w′, c(w,w′)). (4.21)

For w ∈ W , q̃(w) is defined as

q̃(w) =
∑

E∈E(w)

∏
(w,w′)∈E

q(w,w′) (4.22)

where E(w) denotes the set of all w-trees on W . Since the transition probabilities

q(w,w′) are polynomials in ε, q̃(w) is a polynomial in ε too. q̃(w) can therefore be

written as

q̃(w) =
∞∑
l=0

α̃(w, l)εl (4.23)

where α̃(w, 0), α̃(w, 1), . . . denote the coefficients of the polynomial. c̃(w) is defined as

c̃(w) = min{l | α̃(w, l) 6= 0}. (4.24)

That is, c̃(w) is defined as the rate at which q̃(w) approaches zero as ε approaches zero.

α̃(w) is defined as

α̃(w) = α̃(w, c̃(w)). (4.25)

Using the mathematical notation introduced above, we first prove part (i) of The-

orem 4.1. It follows from (4.19), (4.20), and (4.22)–(4.24) that c̃(w) can be written

as

c̃(w) = min
E∈E(w)

∑
(w,w′)∈E

c(w,w′). (4.26)

At least one mutation is required to go from a uniform population u ∈ U to any other

population w ∈ W \ {u}. Hence, c(u,w) ≥ 1 for all u ∈ U and all w ∈ W such that

u 6= w. Consequently, it follows from (4.26) that c̃(u) ≥ µ − 1 for all u ∈ U and that
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c̃(w) ≥ µ for all w ∈ W \U . We now show that for each chromosome i it is possible to

construct a u(i)-tree E onW that satisfies∑
(w,w′)∈E

c(w,w′) = µ− 1. (4.27)

Consider an arbitrary chromosome i. Let the function ρ : C → C satisfy the following

conditions:

(1) For each j 6= i, chromosome j is directly connected to chromosome ρ(j).

(2) For each j 6= i, ρN(j) = i for some positive integer N .

In condition (2), ρN(j) is defined as

ρN(j) =

ρ(j), if N = 1

ρ
(
ρN−1(j)

)
, otherwise.

Because Theorem 4.1 assumes that each chromosome is connected to all other chro-

mosomes, a function ρ that satisfies the above two conditions is guaranteed to ex-

ist. In order to construct a u(i)-tree E on W that satisfies (4.27), we start with an

empty set of arrows E. For each j 6= i, we then add an arrow to E that starts at

u(j) and ends at v(j, ρ(j), n − 1). It follows from condition (1) that one mutation

is required to go from u(j) to v(j, ρ(j), n − 1) in a single iteration of a GA. Hence,

c(u(j), v(j, ρ(j), n − 1)) = 1. Next, for each j 6= i, we add a path to E that starts

at v(j, ρ(j), n − 1) and ends at u(ρ(j)). Each path that we add to E must contain no

cycles, that is, it must contain no two arrows (w1, w
′
1) and (w2, w

′
2) such that either

w1 = w2 or w′1 = w′2. In addition, each path must only contain arrows (w,w′) for

which c(w,w′) = 0. Condition (1) guarantees the existence of paths that satisfy the

latter requirement. Due to condition (2), for each u ∈ U \ {u(i)}, E now contains a

path from u to u(i). Finally, for each w ∈ W \ U , if E does not yet contain an arrow

that starts at w, we add such an arrow to E. We choose the arrows that we add to E

in such a way that, after adding the arrows, E contains, for each w ∈ W \ U , a path

from w to some u ∈ U (which implies that E contains a path from w to u(i)). In addi-

tion, we only choose arrows (w,w′) for which c(w,w′) = 0. We can choose the arrows
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in this way because Theorem 4.1 assumes that all non-uniform populations are almost

uniform. Using Definition 4.11, it can be seen that the set of arrows E constructed as

discussed above is a u(i)-tree on W . Moreover, E satisfies (4.27). We have therefore

shown that for each chromosome i a u(i)-tree E onW that satisfies (4.27) can be con-

structed. Consequently, it follows from (4.26) that c̃(u) ≤ µ− 1 for all u ∈ U . Since it

has been shown above that c̃(u) ≥ µ−1 for all u ∈ U , this implies that c̃(u) = µ−1 for

all u ∈ U . It has also been shown above that c̃(w) ≥ µ for all w ∈ W \U . Hence, as the

mutation rate ε approaches zero, q̃(w) approaches zero faster for w ∈ W \ U than for

w ∈ U . It then follows from Lemma 5 that for all non-uniform populations w ∈ W \ U
the long-run probability q̄(w) approaches zero as ε approaches zero. In other words, the

long-run limit probability q̂(w) equals zero for all non-uniform populations w ∈ W \U .

This completes the proof of part (i) of Theorem 4.1.

We now prove part (ii) of Theorem 4.1. It has been shown above that c̃(u) = µ− 1

for all u ∈ U . Consequently, as the mutation rate ε approaches zero, q̃(u) approaches

zero equally fast for all u ∈ U . Using Lemma 5, it can therefore be seen that the

long-run limit probability q̂(u) of a uniform population u ∈ U is given by

q̂(u) = lim
ε→0

q̄(u) =
α̃(u)∑

u′∈U α̃(u′)
. (4.28)

For u ∈ U , let Ẽ(u) be defined as

Ẽ(u) =
{
E ∈ E(u)

∣∣∣∑(w,w′)∈E c(w,w
′) = µ− 1

}
. (4.29)

It then follows from (4.19)–(4.25) that α̃(u) can be written as

α̃(u) =
∑

E∈Ẽ(u)

∏
(w,w′)∈E

α(w,w′). (4.30)

Consider an arbitrary uniform population u ∈ U and an arbitrary u-tree E onW , where

E ∈ Ẽ(u). Let E1 and E2 denote sets of arrows that are given by

E1 = {(w,w′) ∈ E |w ∈ V}

E2 = E \ E1.
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It is immediately clear that E1 satisfies the following conditions:

(A1) E1 contains no arrow that starts at u or at some w ∈ W \ V .

(A2) For each v ∈ V \ {u}, E1 contains exactly one arrow that starts at v.

Notice that c(u′, w) ≥ 1 for all u′ ∈ U and all w ∈ W such that u′ 6= w. Notice further

that, due to (4.29),
∑

(w,w′)∈E1
c(w,w′) ≤ µ − 1. These observations imply that, for

each (w,w′) ∈ E1, c(w,w′) = 1 if w ∈ U and c(w,w′) = 0 otherwise. They also imply

that E1 satisfies the following condition:

(A3)
∑

(w,w′)∈E1

c(w,w′) = µ− 1.

It is easy to see that c(v, w) ≥ 1 for all v ∈ V and all w ∈ W \ V and that c(u′, w) ≥ 2

for all u′ ∈ U and all w ∈ W \V . Consequently, E1 contains no arrows that end at some

w ∈ W \ V . This implies the following condition on E1:

(A4) For each v ∈ V \ {u}, E1 contains a path from v to u.

It is immediately clear that E2 satisfies the following conditions:

(B1) E2 contains no arrow that starts at some v ∈ V .

(B2) For each w ∈ W \ V , E2 contains exactly one arrow that starts at w.

(B3) For each w ∈ W \ V , E2 contains a path from w to some v ∈ V .

Furthermore, taking into account that E1 satisfies condition (A3), (4.29) implies that E2

satisfies the following condition:

(B4)
∑

(w,w′)∈E2

c(w,w′) = 0.

For u ∈ U , let Ẽ1(u) denote a set that contains all sets of arrows E1 satisfying con-

ditions (A1)–(A4). Let Ẽ2 denote a set that contains all sets of arrows E2 satisfying

conditions (B1)–(B4). Notice that Ẽ2 does not depend on u. Clearly, for each E ∈ Ẽ(u),

there exist an E1 ∈ Ẽ1(u) and an E2 ∈ Ẽ2 such that E = E1 ∪ E2. Conversely, it can
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be seen that for each E1 ∈ Ẽ1(u) and each E2 ∈ Ẽ2 there exists an E ∈ Ẽ(u) such that

E = E1 ∪ E2. Hence,

Ẽ(u) =
{
E1 ∪ E2

∣∣∣E1 ∈ Ẽ1(u), E2 ∈ Ẽ2
}
.

Equation (4.30) can now be written as

α̃(u) =
(∑

E1∈Ẽ1(u)
∏

(w,w′)∈E1
α(w,w′)

)(∑
E2∈Ẽ2

∏
(w,w′)∈E2

α(w,w′)
)
.

Consequently, it follows from (4.28) that

q̂(u) = lim
ε→0

q̄(u) =

∑
E1∈Ẽ1(u)

∏
(w,w′)∈E1

α(w,w′)∑
u′∈U

∑
E1∈Ẽ1(u′)

∏
(w,w′)∈E1

α(w,w′)
. (4.31)

Based on (4.31), the following observations can be made:

(1) For w,w′ ∈ W such that w 6= w′ and such that there exists an E1 ∈
⋃
u′∈U Ẽ1(u′)

that contains an arrow (w,w′), limε→0 q̄(u) depends on the term of lowest de-

gree in the transition probability q(w,w′) and does not depend on other terms in

q(w,w′).

(2) For w,w′ ∈ W such that w 6= w′ and such that there does not exist an E1 ∈⋃
u′∈U Ẽ1(u′) that contains an arrow (w,w′), limε→0 q̄(u) does not depend on any

of the terms in the transition probability q(w,w′).

Let {Vt}, where the index t takes values in {0, 1, . . .}, denote a Markov chain with

state space V , transition probabilities r(v, v′), and stationary probabilities r̄(v), where

v, v′ ∈ V . For v 6= v′, let

r(v, v′) =


α(v, v′)ε, if v ∈ U and c(v, v′) = 1

α(v, v′), if v /∈ U and c(v, v′) = 0

0, otherwise.

(4.32)

Furthermore, let r(v, v) = 1 −
∑

v′∈V\{v} r(v, v
′). Clearly, Markov chain {Vt} is ir-

reducible. Taking into account the two observations made above, it can be seen that
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limε→0 r̄(v) = limε→0 q̄(v) for all v ∈ V . That is, in the limit as ε approaches zero, cor-

responding states of Markov chains {Vt} and {Wt} have the same stationary probability.

It follows from this that limε→0 r̄(v) = q̂(v) for all v ∈ V .

The following observations can be made:

(1) For v ∈ U and v′ ∈ V , c(v, v′) = 1 if and only if v = u(i) and v′ = v(i, j, n− 1)

for some i and some j such that δ(i, j) = 1.

(2) For v ∈ U and v′ ∈ V such that c(v, v′) = 1, q(v, v′) equals the probability

that the mutation operator inverts one specific bit in the binary encoding of an

arbitrarily chosen chromosome and that it does not invert any other bits in the

binary encoding of the chosen chromosome or of any other chromosome in the

population. This probability does not depend on v or v′. Consequently, for all

v1, v2 ∈ U and all v′1, v
′
2 ∈ V such that c(v1, v′1) = c(v2, v

′
2) = 1, q(v1, v′1) =

q(v2, v
′
2) and hence α(v1, v

′
1) = α(v2, v

′
2).

(3) For v ∈ V \ U and v′ ∈ V , c(v, v′) = 0 only if v = v(i, j, λ) and v′ = v(i, j, λ′)

for some i and some j such that δ(i, j) = 1 and for some λ ∈ {1, . . . , n− 1} and

some λ′ ∈ {0, . . . , n}.

(4) For v ∈ V \ U and v′ ∈ V such that c(v, v′) = 0, α(v, v′) = π(i, j, λ, λ′), where

i, j, λ, and λ′ satisfy v = v(i, j, λ) and v′ = v(i, j, λ′) and where π(i, j, λ, λ′) is

defined in (4.1).

Let α = α(v, v′) for all v ∈ U and all v′ ∈ V such that c(v, v′) = 1. Using (4.32),

it follows from the first two observations made above that r(v, v′) = αε if v = u(i)

and v′ = v(i, j, n − 1) for some i and some j such that δ(i, j) = 1. It also follows

that r(v, v′) = 1 −mαε if v = v′ ∈ U . Furthermore, taking into account the last two

observations made above, it can be seen from (4.32) that r(v, v′) = π(i, j, λ, λ′) if v =

v(i, j, λ) and v′ = v(i, j, λ′) for some i and some j such that δ(i, j) = 1 and for some

λ ∈ {1, . . . , n− 1} and some λ′ ∈ {0, . . . , n}. Finally, (4.32) implies that r(v, v′) = 0

if none of the above conditions is satisfied. Let the vector ṽ =
[
ṽ1 · · · ṽξ

]
be given
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by

ṽT =



v(g1, h1, 1)
...

v(g1, h1, n− 1)

v(g2, h2, 1)
...
...

v(gν−1, hν−1, n− 1)

v(gν , hν , 1)
...

v(gν , hν , n− 1)


where g = [gk] and h = [hk] are defined in Section 4.2. Notice that ṽ contains each

population in V \ U exactly once. It can be seen that

(1−mαε)I =


r(u(0), u(0)) · · · r(u(0), u(µ− 1))

... . . . ...

r(u(µ− 1), u(0)) · · · r(u(µ− 1), u(µ− 1))

 (4.33)

αεA =


r(u(0), ṽ1) · · · r(u(0), ṽξ)

... . . . ...

r(u(µ− 1), ṽ1) · · · r(u(µ− 1), ṽξ)

 (4.34)

B =


r(ṽ1, u(0)) · · · r(ṽ1, u(µ− 1))

... . . . ...

r(ṽξ, u(0)) · · · r(ṽξ, u(µ− 1))

 (4.35)
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C =


r(ṽ1, ṽ1) · · · r(ṽ1, ṽξ)

... . . . ...

r(ṽξ, ṽ1) · · · r(ṽξ, ṽξ)

 (4.36)

where A, B, and C are defined in (4.3), (4.6), and (4.9). Let S denote a µ × µ matrix

that is obtained from the matrices in (4.33)–(4.36) and that is given by

S = (1−mαε)I + αεA(I−C)−1B. (4.37)

This can be written more simply as

S = I + αεD

where D is defined in (4.12). Let {Ut}, where the index t takes values in {0, 1, . . .},
denote a Markov chain with state space U and transition matrix S. Using (4.33)–(4.37),

it follows from Lemma 4 that Markov chain {Ut} is irreducible and has stationary prob-

abilities s̄(u) that are given by

s̄(u) =
r̄(u)∑

u′∈U r̄(u
′)

(4.38)

where u ∈ U . Definition 4.8 states that the stationary distribution

s̄ =
[
s̄(u(0)) · · · s̄(u(µ− 1))

]
of Markov chain {Ut} satisfies

s̄S = s̄ (4.39)

s̄1 = 1. (4.40)

Lemma 2 implies that this linear system has a unique solution. The equality in (4.39)

can be written as

s̄(S− I) = αεs̄D = 0.
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Since α > 0 and ε > 0, this can be simplified to

s̄D = 0. (4.41)

Notice that D does not depend on ε. s̄ therefore does not depend on ε either. Recall

further that limε→0 r̄(v) = q̂(v) for all v ∈ V and that q̂(w) = 0 for all w ∈ W \ U .

Using (4.38), it now follows that

s̄(u) = lim
ε→0

s̄(u) = lim
ε→0

r̄(u)∑
u′∈U r̄(u

′)
=

q̂(u)∑
u′∈U q̂(u

′)
= q̂(u)

for all u ∈ U . Hence, the stationary distribution s̄ of Markov chain {Ut} equals the

long-run limit distribution q̂. Consequently, (4.40) and (4.41) imply that q̂ satisfies

(4.13) and (4.14). It also follows that the linear system given by (4.13) and (4.14) has a

unique solution. This completes the proof of part (ii) of Theorem 4.1.



Chapter 5

Economic modeling using evolutionary
algorithms: The effect of a binary
encoding of strategies∗

Abstract

We are concerned with evolutionary algorithms that are employed for economic

modeling purposes. We focus in particular on evolutionary algorithms that use

a binary encoding of strategies. These algorithms, commonly referred to as ge-

netic algorithms, are popular in agent-based computational economics research. In

many studies, however, there is no clear reason for the use of a binary encoding

of strategies. We therefore examine to what extent the use of such an encoding

may influence the results produced by an evolutionary algorithm. It turns out that

the use of a binary encoding can have quite significant effects. Since these ef-

fects do not have a meaningful economic interpretation, they should be regarded as

artifacts. Our findings indicate that in general the use of a binary encoding is unde-

sirable. They also highlight the importance of employing evolutionary algorithms

with a sensible economic interpretation.

∗This chapter is joint work with Nees Jan van Eck, Rommert Dekker, and Uzay Kaymak. The chapter
has been accepted for publication in the Journal of Evolutionary Economics (Waltman, Van Eck, Dekker,
& Kaymak, in press).



104 Economic modeling using evolutionary algorithms

5.1 Introduction

Evolutionary algorithms (EAs) are algorithms that are inspired by the process of natural

evolution. EAs have their origins in the field of computer science, where they are mainly

applied for optimization purposes. Nowadays, EAs are also regularly employed in the

field of economics. In economic research, EAs frequently serve as a tool for modeling

boundedly rational behavior. When EAs are applied as a modeling tool in economic

research, a binary encoding of strategies is typically used. This means that strategies are

represented by bit strings (i.e., strings of zeros and ones, often referred to as chromo-

somes) and that evolutionarily inspired operations such as crossover and mutation take

place at the level of individual bits. EAs that use a binary encoding of strategies are

commonly referred to as genetic algorithms. For early research in which genetic algo-

rithms are employed, we refer to Miller (1986, 1996), Axelrod (1987), Marks (1992),

Arifovic (1994, 1996), Andreoni and Miller (1995), and Dawid (1996). Examples of

more recent research can be found in the work of, among others, Lux and Schornstein

(2005), Alkemade et al. (2006, 2007, 2009), Arifovic and Maschek (2006), Wheeler,

Bean, Gaffney, and Taylor (2006), Xu (2006), Casari (2008), and Maschek (2010).

Researchers who apply genetic algorithms as a tool for modeling boundedly ratio-

nal behavior typically do not justify why they use a binary encoding of strategies. If the

agents whose behavior is being modeled have to make decisions that are intrinsically

binary, such as decisions between cooperation and defection in a prisoner’s dilemma

(e.g., Axelrod, 1987), the use of a binary encoding of strategies is a very natural choice.

However, in the case of non-binary decisions, such as decisions by firms on their pro-

duction level (e.g., Arifovic, 1994; Price, 1997; Dawid & Kopel, 1998; Franke, 1998;

Vriend, 2000; Alkemade et al., 2006, 2007, 2009; Arifovic & Maschek, 2006; Wheeler

et al., 2006; Casari, 2008; Maschek, 2010), there is no clear reason for the use of a

binary encoding of strategies.

In this chapter, we examine to what extent the use of a binary encoding of strategies

may influence the results of studies in which EAs are employed. It turns out that the use

of a binary encoding can have quite significant effects. In general, these effects do not

have a meaningful economic interpretation and should be regarded as artifacts. In order

to avoid these artifacts, we argue that in most cases researchers should not use a binary

encoding of strategies.
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Our research is inspired by results reported by Alkemade et al. (2006, 2007, 2009;

see also Waltman & Van Eck, 2009). Alkemade et al. show that under certain conditions

an EA that is employed for modeling purposes may exhibit premature convergence. By

premature convergence Alkemade et al. mean that different runs of the EA can lead to

very different results. Alkemade et al. argue that premature convergence is caused by

a too small population size. In this chapter, we report results that point in a different

direction. We show that the observation of premature convergence by Alkemade et al.

depends crucially on their use of a binary encoding of strategies. Using the same eco-

nomic environment as Alkemade et al. (i.e., a Cournot oligopoly market), we demon-

strate that premature convergence does occur in the case of EAs with a binary encoding

while it does not occur in the case of EAs without a binary encoding.

We note that the consequences of the use of a binary encoding of strategies are

also studied extensively by Dawid (1996; see also Dawid & Kopel, 1998). However,

the approach taken by Dawid is quite different from the approach that we take in the

present study. Dawid focuses on EAs with a large population size, and he is concerned

with aggregate results, that is, results averaged over many EA runs. We do not assume

the population size to be large, and we are specifically interested in comparing results

of individual EA runs. Another difference is that the crossover operator plays a crucial

role in Dawid’s approach while in our approach the crossover operator is not important

at all.

The remainder of this chapter is organized as follows. In Section 5.2, we introduce

the Cournot market that we consider in this chapter. In Sections 5.3 and 5.4, we present

the various EAs that we study and we discuss the economic interpretation of EAs. We

report the results of the computer simulations that we have performed in Section 5.5.

Based on these results, we provide an elaborate analysis of the effect of a binary encod-

ing of strategies in Section 5.6. Finally, in Section 5.7, we discuss the conclusions of

our research.

5.2 Cournot oligopoly market

To analyze the effect of a binary encoding of strategies, we study the behavior of firms

in a Cournot oligopoly market. To facilitate comparison, we consider exactly the same
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Cournot market as Alkemade et al. (2006, 2007, 2009). For other studies in which quan-

tity competition among firms is modeled using EAs, we refer to Arifovic (1994), Price

(1997), (Dawid & Kopel, 1998), Franke (1998), Vriend (2000), Arifovic and Maschek

(2006), Wheeler et al. (2006), Casari (2008), and Maschek (2010).

The Cournot market that we consider has the following characteristics: The number

of firms equals four, firms produce perfect substitutes, the demand function is linear,

firms have identical cost functions, and marginal cost is constant. The inverse demand

function is given by

p = max

(
256−

4∑
i=1

qi, 0

)
, (5.1)

where p denotes the market price and qi denotes firm i’s production level. Firm i’s total

cost equals ci = 56qi. Hence, it follows that firm i’s profit is given by

πi = pqi − ci = qi max

(
200−

4∑
i′=1

q′i,−56

)
. (5.2)

A Nash (or Cournot) equilibrium is obtained if each firm chooses a production level that

maximizes its profit given the production levels of its competitors. This means that in

a Nash equilibrium ∂πi/∂qi = 0 for i = 1, . . . , 4. It is easy to see that the Cournot

market that we consider has a Nash equilibrium in which each firm produces a quantity

of 40. Each firm makes a profit of 1600 in the Nash equilibrium. In addition to a Nash

equilibrium, the Cournot market that we consider also has a competitive (or Walrasian)

equilibrium. This equilibrium is obtained if firms are not aware of their influence on the

market price and therefore behave as price takers. In the competitive equilibrium, the

four firms jointly produce a quantity of 200 and each firm makes a profit of 0.

5.3 Evolutionary algorithms

As discussed by Vriend (2000), there are two quite different ways in which EAs can

be employed to model the behavior of economic agents. In the individual learning

approach, each agent learns exclusively from its own experience (e.g., Arifovic, 1994;

Price, 1997; Arifovic & Maschek, 2006; Casari, 2008). This is modeled through the use

of a separate EA for each agent. In the social learning approach, each agent learns not
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only from its own experience but also from the experience of other agents (e.g., Arifovic,

1994; Dawid & Kopel, 1998; Franke, 1998; Alkemade et al., 2006, 2007, 2009). This

is modeled through the use of a single EA for all agents together. The social learning

approach seems to be more popular than the individual learning approach (Arifovic &

Maschek, 2006). In this chapter, we focus on the social learning approach.

An important observation about the social learning approach is made by Alkemade

et al. (2006, 2007, 2009). They note that the social learning approach can be imple-

mented in two quite different ways. On the one hand, one can employ an EA with a

population size that equals the number of interacting agents (e.g., Arifovic, 1994; Dawid

& Kopel, 1998; Franke, 1998; Vriend, 2000). This results in a one-to-one relationship

between strategies and agents. In the case of the Cournot oligopoly market discussed

in the previous section, the EA would have a population size of four (since there are

four firms in the market). On the other hand, one can employ an EA with a popula-

tion size that exceeds the number of interacting agents (e.g., Axelrod, 1987; Andreoni

& Miller, 1995; Dawid, 1996, Sections 4.5 and 5.3; Miller, 1996). Strategies are then

evaluated using some matching mechanism. In the case of the Cournot oligopoly mar-

ket discussed in the previous section, the EA would have a population size greater than

four. Alkemade et al. show that the two ways in which the social learning approach

can be implemented can lead to very different results.1 In this chapter, we only employ

EAs with a population size that equals the number of interacting agents. We take this

approach because it is very suitable for demonstrating how the use of a binary encoding

of strategies can lead to artifacts.

We consider six different EAs in this chapter. We refer to these EAs as EA1 to

EA6. Each of the EAs provides a slightly different model of the behavior of firms in the

Cournot market discussed in the previous section. The six EAs all have the same general

form. This general form is shown in Figure 5.1. Each EA works on a population of four

strategies. A strategy corresponds with the production level of one of the four firms in

the Cournot market. The EAs all impose the constraint that the production level of a

firm must lie between 0 and 127, and they all randomly generate an initial population by

drawing four strategies from a uniform distribution over all possible strategies. In each

1In the evolutionary game theory literature, similar observations have been made by various re-
searchers, for example by Hansen and Samuelson (1988) and Rhode and Stegeman (1996) in an economic
context and by Schaffer (1988) in a biological context.
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1 Randomly generate an initial population of strategies
2 repeat
3 Calculate each strategy’s profit
4 Calculate each strategy’s fitness
5 Apply the selection operator
6 Apply the crossover and mutation operators
7 until a specific number of iterations have been performed

Figure 5.1: General form of the six EAs considered in this chapter.

iteration of an EA, the profit resulting from each of the four strategies in the current

population is calculated using (5.2). Based on the profits of the four strategies, the

fitness values of the strategies are calculated according to

fi = max

(
πi − µ
σ

+ 2, 0

)
, (5.3)

where µ and σ denote, respectively, the mean and the standard deviation of the profits

of the strategies, that is,

µ =

∑4
i=1 πi
4

, (5.4)

σ =

√∑4
i=1(πi − µ)2

4
. (5.5)

The above transformation from profits to fitness values is sometimes referred to as sigma

scaling (e.g., Mitchell, 1996) or sigma truncation (e.g., Goldberg, 1989). The transfor-

mation is used by, for example, Axelrod (1987), Andreoni and Miller (1995),Miller

(1996), and Franke (1998). The six EAs that we study all use roulette wheel selection

(e.g., Goldberg, 1989; Mitchell, 1996), also known as fitness-proportionate selection.

This means that in each iteration of an EA the selection operator generates a new popu-

lation of strategies by randomly drawing four strategies from the old population. Strate-

gies are drawn independently and with replacement. The probability that a strategy is

drawn is proportional to the fitness of the strategy given by (5.3).

The six EAs that we consider differ from each other on the following four dimen-

sions:
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Table 5.1: Overview of the differences between the six EAs considered in this chapter.

EA1 EA2 EA3 EA4 EA5 EA6

Strategy integer integer integer integer real number integer
Binary encoding yes yes no no no yes (Gray)
Crossover yes no no no no yes
Mutation bit flip bit flip unif. dist. ±1 norm. dist. bit flip

(1) The type of strategy that is used, that is, integer production levels or real-valued

production levels.

(2) Whether a binary encoding of strategies is used or not.

(3) Whether a crossover operator is used or not.

(4) The type of mutation operator that is used.

The differences between the EAs are summarized in Table 5.1. We now discuss the

specific characteristics of each of the EAs.

5.3.1 EA1

EA1 is a standard genetic algorithm (e.g., Goldberg, 1989; Mitchell, 1996). It uses inte-

ger production levels and a binary encoding of strategies. A strategy is represented by a

bit string of length seven. The production level corresponding to a bit string (b1, . . . , b7),

where bj ∈ {0, 1} denotes the value of the jth bit in the string, is given by

q =
7∑
j=1

27−jbj. (5.6)

EA1 uses a single-point crossover operator (e.g., Mitchell, 1996) with a crossover rate

of 1. The mutation operator used by EA1 randomly determines for each bit in a bit

string whether to invert the bit or not. The mutation rate equals 0.001, which means that

each bit has a probability of 0.001 of being inverted. We note that EA1 is very similar

to the EA employed by Alkemade et al. (2006, 2007, 2009).
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5.3.2 EA2

EA2 is identical to EA1 except that it does not use a crossover operator.

5.3.3 EA3

Like EA2, EA3 uses integer production levels and does not use a crossover operator.

Unlike EA2, EA3 does not use a binary encoding of strategies. EA3 also uses a different

mutation operator than EA2. The probability that a strategy is being mutated equals

0.01. If a strategy is being mutated, it is replaced by a random new strategy that is drawn

from a uniform distribution over all possible strategies. In the economic literature, EAs

similar to EA3 are employed by Unver (2001), Dawid and Dermietzel (2006), and

Haruvy et al. (2006).

5.3.4 EA4

EA4 is identical to EA3 except that it uses a different mutation operator. The probability

that a strategy is being mutated equals 0.01. If a strategy is being mutated, the corre-

sponding production level is either increased by one or decreased by one (both with a

probability of 0.5). The increase or decrease does not take place if the resulting new

production level would be below 0 or above 127.

5.3.5 EA5

Like EA3 and EA4, EA5 does not use a binary encoding of strategies and also does not

use a crossover operator. Unlike EA3 and EA4, EA5 uses real-valued production levels.

EA5 also uses a different mutation operator than EA3 and EA4. The probability that a

strategy is being mutated equals 0.01. If a strategy is being mutated, the corresponding

production level is updated according to

qnew = min
(
max

(
qold +N

(
0, s2

)
, 0
)
, 127

)
, (5.7)

where qold denotes the production level before mutation, qnew denotes the production

level after mutation, and N(0, s2) denotes a normally distributed random variable with

mean 0 and standard deviation s. EA5 uses a value of 1 for the parameter s. We note that
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Table 5.2: Illustration of the Gray coding used in EA6.

Production level Bit string

0 0000000
1 0000001
2 0000011
3 0000010
4 0000110

. . . . . .
126 1000001
127 1000000

EA5 is somewhat similar to what is referred to as an evolution strategy in the computer

science literature (e.g., Beyer, 2001; Beyer & Schwefel, 2002). In the economic liter-

ature, EAs similar to EA5 are employed by Sellgren (2001), Gerding, Van Bragt, and

La Poutré (2003), Lux and Schornstein (2005), and Clemens and Riechmann (2006).

5.3.6 EA6

EA6 is identical to EA1 except that it does not use an ordinary binary encoding of

strategies. Instead, it uses a so-called Gray coding of strategies. Like in EA1, strategies

are represented by bit strings of length seven. However, the transformation from bit

strings to production levels is different from the transformation used in EA1, that is, it is

different from (5.6). In EA6, the transformation from bit strings to production levels is

performed in such a way that bit strings corresponding to consecutive production levels

always differ by only one bit. This is referred to as a Gray coding of strategies. The

Gray coding used in EA6 is illustrated in Table 5.2.

In the literature, Gray codings of strategies are used only rarely. Usually, an ordinary

binary encoding of strategies is used, like in EA1 and EA2. Examples of the use of Gray

codings of strategies are provided by Arifovic (1996) and Maschek (2010). Arifovic

states that “the Gray coding ensures that, if a small number of bits within a binary string

change, this will correspond to a small change in a decoded integer or real number”

(p. 525). However, this is not correct. Even if a Gray coding of strategies is used, a

change of a small number of bits in a bit string may still correspond to a large change

in the decoded value. This can be seen in Table 5.2. The bit strings 0000000 and
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1000000 differ by only one bit, but they correspond to two very different production

levels, namely 0 and 127, respectively.

5.4 Economic interpretation of evolutionary algorithms

In many papers in which EAs are applied as an economic modeling tool, relatively

little attention is paid to the economic interpretation of EAs.2 In the present study, the

economic interpretation of EAs is a central issue and hence requires serious attention.

In this section, we therefore summarize the various ways in which EAs are interpreted

in the literature.

An EA works on a population of strategies. What exactly does a population of

strategies represent? As discussed in the previous section, we need to make a distinc-

tion between the individual learning approach and the social learning approach (Vriend,

2000).3 In the individual learning approach, a separate EA is used for each agent.

Hence, each agent has its own population of strategies. Arifovic (1994) interprets a

population of strategies in the individual learning approach as “an agent’s mutually

competing ideas about what his behavior in a given environment should be” (p. 15).

According to Dawid (1996), the interpretation of the individual learning approach has

several weaknesses. For example, the individual learning approach assumes that an

agent is able to determine the performance of a strategy without actually executing the

strategy. This may be a strong assumption in many contexts. Price (1997), however,

argues that in certain cases the assumption may be justified, in particular in the case of

firms that perform scenario analysis.4 In the social learning approach, a single EA is

used for all agents together. In this approach, the population of strategies can be in-

terpreted in two ways (Alkemade et al., 2006, 2007, 2009). In one interpretation, the

population size equals the number of interacting agents and strategies and agents are

related in a one-to-one manner. Each strategy then simply represents the strategy of one
2A notable exception is a paper by Chattoe (1998), in which the economic interpretation of EAs is

critically discussed.
3Arifovic (1994) refers to these approaches as the multiple-population design and the single-

population design. Chattoe (1998) refers to the approaches as the mental interpretation and the population
interpretation of an EA.

4An alternative assumption is that agents try out the various strategies they have in mind and that they
update their strategies only after they have obtained a sufficient amount of information on each strategy’s
performance. An assumption like this is made by Vriend (2000).
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particular agent. This is the interpretation that we follow in this chapter. In the other

interpretation, the population size exceeds the number of interacting agents. The popu-

lation of strategies can then be seen as a pool of strategies that are commonly known to

all agents. When interacting with each other, agents randomly choose a strategy from

the strategy pool.

In most EAs that are employed for economic modeling, a binary encoding of strate-

gies is used. In general, it is unclear how the use of such an encoding can be given

a sensible economic interpretation. Most researchers ignore this issue. An exception

is Brenner (2006), who points out that the use of a binary encoding of strategies may

lead to difficulties with the interpretation of the crossover operator. A somewhat similar

comment is made by Dawid (1996).

We now discuss the economic interpretation of the selection, crossover, and mutation

operators of an EA. Our focus is on the social learning approach.

Following Chattoe (1998), we distinguish between two interpretations of the selec-

tion operator. The first interpretation can be used only if there is a one-to-one rela-

tionship between strategies and agents. According to this interpretation, the selection

operator models the removal of unsuccessful agents from the economic environment.

An example is the removal of unprofitable firms from the market due to bankruptcy.

The second interpretation, which is used by most researchers, states that the selection

operator models the imitation of successful strategies. According to this interpretation,

agents have information on the past performance of strategies and tend to imitate those

strategies that were most successful in the past. The details of this interpretation depend

on the type of selection operator that is used. For example, roulette wheel or fitness-

proportionate selection, which is the most commonly used selection operator, assumes

that an agent has information on the past performance of all strategies. On the other

hand, tournament selection, which is used in some papers (e.g., Bullard & Duffy, 1998;

Van Bragt et al., 2001; Dawid & Dermietzel, 2006), assumes that an agent has informa-

tion on the past performance of only a limited number of strategies. Another thing to

realize is that most selection operators assume that agents update their strategies simul-

taneously rather than one by one. The assumption of simultaneous updating of strategies

may not always be realistic. A comparison of simultaneous and non-simultaneous up-

dating of strategies is performed by Dawid and Dermietzel (2006). They find that the
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two strategy updating regimes may lead to significantly different results. We note that

the issue of the appropriate strategy updating regime has also received considerable

attention in the biological literature (e.g., Huberman & Glance, 1993).

The economic interpretation of the crossover and mutation operators is quite straight-

forward. The crossover operator is typically interpreted as the exchange of ideas or in-

formation. Hence, the crossover operator models communication between agents (or

industrial espionage, as suggested by Dawid & Kopel, 1998). The mutation operator

is usually interpreted as the effect of innovation. Innovation may be due to deliberate

experimentation or unintended errors.

5.5 Simulation results

In this section, we report the results of the computer simulations that we have per-

formed.5 Each of the six EAs discussed in Section 5.3 was run 100 times, each time

using different random numbers. Each run lasted 10, 000 iterations. The results re-

ported below are fairly robust to changes in the values of the various EA parameters. By

changing parameter values, somewhat different results may be obtained, but the anal-

ysis will remain essentially unchanged. The results reported below are also robust to

changes in the transformation from profits to fitness values. We further experimented

with simulation runs that lasted one million instead of 10, 000 iterations, but this also

did not affect the analysis in any fundamental way.

The results of six selected runs of EA1 are shown in Figure 5.2. Each graph in the

figure corresponds with one run of EA1. The graphs display how the average production

level of the four firms in the market evolves over time. In the graphs in panels (a),

(b), and (c), firms’ average production level stabilizes fairly quickly, respectively at a

quantity of 47, 50, and 64. These results are quite typical. In almost all 100 runs of

EA1, we observe that firms’ average production level stabilizes at one of these three

quantities. However, firms’ average production level does not always remain stabilized

at the same quantity during an entire run. In a few runs of EA1, we find that firms’

5The software used to obtain the results is available online at www.ludowaltman.nl/binaryencoding/.
The software runs in MATLAB.
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average production level switches from one stable quantity to another. Panels (d), (e),

and (f) of Figure 5.2 provide examples of such runs.

In panel (a) of Figure 5.3, the results of all 100 runs of EA1 are averaged. As can be

seen, on average firms’ production level stabilizes at a quantity of about 52. Based on

the 100 runs of EA1, the distribution of firms’ average production level at the end of a

run can be determined. This distribution is displayed in panel (b) of Figure 5.3. It turns

out that in somewhat more than half of the runs firms’ average production level after

10, 000 iterations equals the stable quantity of 50. In most other runs, firms’ average

production level after 10, 000 iterations equals either the stable quantity of 47 or the

stable quantity of 64. There are a few runs in which firms’ average production level

after 10, 000 iterations does not equal one of the three stable quantities. In most of these

runs, this is probably due to small disturbances caused by the mutation operator.

The results that we have obtained using EA1 are very similar to the results reported

by Alkemade et al. (2006, 2007, 2009).6 Like Alkemade et al., we find that in different

EA runs firms’ average production level stabilizes at different quantities. This phe-

nomenon is referred to as premature convergence by Alkemade et al. We further find

that on average firms’ production level stabilizes at a quantity above 50. This means

that on average firms produce a larger quantity than in the competitive equilibrium of

the Cournot oligopoly market (see Section 5.2). This finding is also in agreement with

the results reported by Alkemade et al.

We now turn to EA2. The results obtained using EA2 are shown in panels (c) and

(d) of Figure 5.3. It is clear that the results of EA2 are quite similar to the results

of EA1. Like EA1, EA2 leads to premature convergence. Firms’ average production

level again stabilizes at a quantity of 47, 50, or 64. The similarity between the results

of EA1 and EA2 is not surprising. The only difference between the two EAs is that

EA1 uses a crossover operator while EA2 does not use such an operator. In Chapter 4

of this thesis, we show mathematically that, if the mutation rate is small and some

technical assumptions are satisfied, the effect of the use of a crossover operator on the

results produced by an EA tends to be negligible in the long run. The results shown in

Figure 5.3 are in line with this theoretical finding.

6Due to an error in their computer simulations, the results reported by Alkemade et al. (2006, 2007)
are not entirely correct. For a correction of the results, see Alkemade et al. (2009). For some additional
comments on the results, see Waltman and Van Eck (2009).
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Figure 5.2: Results of six selected runs of EA1. The graphs display for each run how

firms’ average production level evolves over time. The horizontal line in each graph

indicates the competitive equilibrium quantity of 50.
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Figure 5.3: Results of EA1 to EA6. The graphs in the left panels display for each EA

how firms’ average production level evolves over time. The results shown in the graphs

are averages over 100 EA runs. Error bars indicate standard deviations. The horizontal

line in each graph indicates the competitive equilibrium quantity of 50. The histograms

in the right panels display for each EA the distribution of firms’ average production

level at the end of a run. The distributions are based on 100 EA runs.
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Finally, we consider EA3, EA4, EA5, and EA6. The results obtained using these

EAs are shown in panels (e) to (l) of Figure 5.3. As can be seen, in the long run the four

EAs produce quite similar results. The only noteworthy difference is that the results

of EA3 are more volatile than the results of EA4, EA5, and EA6. However, this is to

be expected, since EA3 uses a more disruptive mutation operator than the other three

EAs (see Section 5.3). What is more interesting to look at is the difference between the

results of EA3, EA4, EA5, and EA6 on the one hand and the results of EA1 and EA2

on the other hand. When looking at the aggregate results of 100 EA runs (see the left

panels of Figure 5.3), it can be seen that firms’ average production level stabilizes at a

quantity of 50 in the case of EA3, EA4, EA5, and EA6 while it stabilizes at a quantity of

about 52 in the case of EA1 and EA2. Hence, in the case of EA3, EA4, EA5, and EA6,

firms on average produce the quantity associated with the competitive equilibrium of the

Cournot market (see Section 5.2). In the case of EA1 and EA2, on the other hand, firms

on average produce a quantity that is larger than the competitive equilibrium quantity.

When looking at the results of individual EA runs (see the right panels of Figure 5.3),

it turns out that firms’ average production level stabilizes around a quantity of 50 in the

case of EA3, EA4, EA5, and EA6 while it stabilizes at a quantity of 47, 50, or 64 in

the case of EA1 and EA2. Hence, premature convergence only takes place in the case

of EA1 and EA2. It does not take place in the case of the other four EAs. Based on

the above observations, it is clear that, both at the aggregate level and at the level of

individual runs, EA3, EA4, EA5, and EA6 produce fundamentally different results than

EA1 and EA2.

The principal difference between EA1 and EA2 on the one hand and EA3, EA4,

and EA5 on the other hand is that EA1 and EA2 use a binary encoding of strategies

while EA3, EA4, and EA5 do not use such an encoding (see Table 5.1). EA6 also uses

a binary encoding of strategies, but this is a special type of binary encoding, namely

a Gray coding. Based on the results reported in this section, it seems that the use of

a binary encoding of strategies can have quite significant effects. In the next section,

we provide an analysis of these effects, in particular of the phenomenon of premature

convergence.
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5.6 Analysis of the effect of a binary encoding of strate-
gies

For each of the six EAs considered in the previous section, it turned out that in at least

a substantial number of runs firms’ average production level stabilized at a quantity of

50, that is, at the quantity associated with the competitive equilibrium of the Cournot

oligopoly market. There is a straightforward explanation for this finding. Suppose that

in some iteration of an EA the population consists of four identical strategies, each cor-

responding with a production level of 50. The market price then equals firms’ constant

marginal cost, and each strategy therefore results in a profit of 0. Suppose now that

the mutation operator changes one of the strategies in the population. We refer to this

strategy as strategy A. Strategy A’s production level may either increase or decrease. If

strategy A’s production level increases, the total quantity produced in the market will in-

crease and, as a consequence, the market price will fall below firms’ constant marginal

cost. All four strategies in the population will then result in a loss, but strategy A will

result in a larger loss than the other strategies. If on the other hand strategy A’s pro-

duction level decreases, the total quantity produced in the market will decrease and, as

a consequence, the market price will rise above firms’ constant marginal cost. All four

strategies in the population will then result in a profit, but strategy A will result in a

smaller profit than the other strategies. Hence, regardless of whether strategy A’s pro-

duction level increases or decreases, the fitness of strategy A will always be lower than

the fitness of the other strategies in the population. As a consequence, the probability

that in the next iterations of the EA strategy A remains in the population is quite low.

Most likely, within one or a few iterations, the selection operator will remove strategy A

from the population. The population will then return to its original state, that is, it will

again consist of four identical strategies, each corresponding with a production level of

50.

The above mechanism explains why in the EAs considered in the previous section

firms’ average production level tends to stabilize at the competitive equilibrium quantity

of 50. It should be noted that the mechanism has been discussed quite extensively in the

evolutionary game theory literature. The mechanism was first discussed by Hansen and

Samuelson (1988) and Schaffer (1989), and a comprehensive mathematical treatment of
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the mechanism was provided by Vega-Redondo (1997). A discussion of the mechanism

can also be found in a study by Vriend (2000) on EA modeling in a Cournot oligopoly

environment.

As discussed in the previous section, the fundamental difference between the results

obtained using EA1 and EA2 on the one hand and the results obtained using EA3, EA4,

EA5, and EA6 on the other hand is that in the case of EA1 and EA2 firms’ average pro-

duction level can stabilize not only at a quantity of 50 but also at a quantity of 47 or 64.

This phenomenon of multiple stable quantities is referred to as premature convergence

by Alkemade et al. (2006, 2007, 2009). We now show that the premature convergence

phenomenon is caused by the use of a binary encoding of strategies.

Suppose that in some iteration of EA1 or EA2 the population consists of four iden-

tical strategies, each corresponding with a production level of 47. Each strategy is then

represented by the bit string 0101111. Suppose now that out of the 28 bits used to rep-

resent the four strategies in the population exactly one bit is inverted by the mutation

operator. This means that after applying the mutation operator one of the four strategies

in the population has changed while the other three strategies have not changed. We

refer to the strategy that has changed as strategy A. The first column of Table 5.3 lists

seven bit strings. It is clear that one of these bit strings must represent strategy A (which

one depends on which bit has been inverted). For each bit string, the corresponding

production level is listed in the second column of the table. The last two columns of

the table list for each production level the resulting profit of strategy A as well as the

resulting profit of the other three strategies in the population, that is, the strategies cor-

responding with a production level of 47. Profits were calculated using (5.1) and (5.2).

As can be seen in the table, the profit of strategy A will always be smaller than the profit

of the other three strategies, regardless of which bit has been inverted. This means that

within one or a few iterations of the EA the selection operator will most likely remove

strategy A from the population. The population will then return to its original state, that

is, it will again consist of four identical strategies, each corresponding with a production

level of 47.

In the case of EA1 and EA2, the above mechanism shows that, if the population is in

a state in which each strategy corresponds with a production level of 47, the inversion of

a single bit is unlikely to upset this state for more than a few iterations. Of course, things
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Table 5.3: Effect of the inversion of a single bit given a population in which each strategy

corresponds with a production level of 47 (represented by the bit string 0101111).

Bit string Production level Profit strategy A Profit other
strategy A strategy A strategies

0101110 46 598 611
0101101 45 630 658
0101011 43 688 752
0100111 39 780 940
0111111 63 -252 -188
0001111 15 660 2068
1101111 111 -5772 -2444

Table 5.4: Effect of the inversion of a single bit given a population in which each strategy

corresponds with a production level of 64 (represented by the bit string 1000000).

Bit string Production level Profit strategy A Profit other
strategy A strategy A strategies

1000001 65 -3640 -3584
1000010 66 -3696 -3584
1000100 68 -3808 -3584
1001000 72 -4032 -3584
1010000 80 -4480 -3584
1100000 96 -5376 -3584
0000000 0 0 512

Table 5.5: Effect of the inversion of a single bit given a population in which each strategy

corresponds with a production level of 48 (represented by the bit string 0110000).

Bit string Production level Profit strategy A Profit other
strategy A strategy A strategies

0110001 49 343 336
0110010 50 300 288
0110100 52 208 192
0111000 56 0 0
0100000 32 768 1152
0010000 16 640 1920
1110000 112 -6272 -2688
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may be different when the mutation operator inverts two or more bits at the same time.

However, this happens only very rarely. (Given a mutation rate of 0.001, this happens

on average once in every 2692 iterations of an EA.) The above mechanism therefore

explains why in the case of EA1 and EA2 firms’ average production level can stabilize

at a quantity of 47.

The same explanation also holds for a quantity of 64. This quantity corresponds

with the bit string 1000000. The bit strings that can be obtained by inverting a single bit

are listed in the first column of Table 5.4. This table has a similar structure as Table 5.3.

Like in Table 5.3, the profits listed in the third column of Table 5.4 are always smaller

than those listed in the fourth column. This indicates that, if the population is in a state in

which each strategy corresponds with a production level of 64, the inversion of a single

bit is unlikely to upset this state for more than a few iterations. Taking into account that

the simultaneous inversion of two or more bits happens only very rarely, this explains

why 64 is a stable quantity in the case of EA1 and EA2.

A question that remains is whether in the case of EA1 and EA2 there are other stable

quantities in addition to 47, 50, and 64. To answer this question, we calculated tables

similar to Tables 5.3 and 5.4 for all integer quantities between 0 and 127. It turned

out that 47, 50, and 64 are the only quantities for which the inversion of a single bit

always results in a smaller profit for the mutated strategy than for the three non-mutated

strategies. 47, 50, and 64 are therefore the only stable quantities. All other quantities

are unstable. Consider for example Table 5.5. This table was calculated for a quantity

of 48. As can be seen in the table, the inversion of one of the three rightmost bits results

in a larger profit for the mutated strategy (referred to as strategy A in the table) than

for the three non-mutated strategies. This indicates that, given a population in which

each strategy corresponds with a production level of 48, the inversion of a single bit can

relatively easily trigger a transition to a completely different population. This makes 48

an unstable quantity.

We have now shown how the use of a binary encoding of strategies causes the pre-

mature convergence observed in the case of EA1 and EA2. Based on our analysis, it is

clear that the phenomenon of premature convergence depends crucially on the use of a

binary encoding of strategies. An obvious question then is why no premature conver-

gence is observed in the case of EA6. Like EA1 and EA2, EA6 uses a binary encoding
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of strategies. In the case of EA6, however, a special type of binary encoding is used,

namely a Gray coding. Why is no premature convergence observed when a Gray cod-

ing is used? This can be explained as follows. Suppose that in some iteration of EA6

the population consists of four identical strategies. These strategies correspond with a

production level of q, where q denotes an integer below 50. Suppose further that the mu-

tation operator inverts a single bit. We refer to the strategy that has changed as strategy

A. Due to the use of a Gray coding of strategies, it is always possible that the inversion

of a single bit causes one of the four production levels to increase by one. (Notice that

this is not the case when an ordinary binary encoding of strategies is used.) Suppose

that the production level corresponding with strategy A has indeed increased by one,

from q to q + 1. It is clear that strategy A then results in a larger profit than the other

three strategies in the population. This means that, due to the effect of the selection

operator, it is quite likely that strategy A will spread through the population. As a con-

sequence, within a few iterations, all four strategies in the population may correspond

with a production level of q + 1. This mechanism explains why any quantity below 50

is unstable in the case of EA6. A similar mechanism explains why any quantity above

50 is unstable. Hence, unlike in the case of EA1 and EA2, 50 is the only stable quantity

in the case of EA6. Because of this, EA6 does not exhibit premature convergence.

5.7 Conclusions

In a paper on EA modeling, Dawid and Kopel (1998) warn that “we have to be aware of

the fact that simulation results may crucially depend on implementation details which

have hardly any economic meaning” (p. 311). The present study can be seen as an

illustration of this important but somewhat overlooked point. In the context of quantity

competition among firms, it is difficult if not impossible to give a sensible economic

interpretation to the use of a binary encoding of strategies. In fact, the use of a binary

encoding seems merely a relic from the genetic algorithm literature in the field of com-

puter science. Of course, nothing would be wrong with the use of a binary encoding if

its effect on the results produced by an EA were insignificant. However, our computer

simulations and the subsequent analysis make clear that this need not be the case. They

show that the use of a binary encoding may lead to a phenomenon known as premature
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convergence. This phenomenon is an artifact that depends crucially on strategies being

encoded in binary form.

Based on our findings, we conclude that in general the use of a binary encoding

of strategies is undesirable. By not using a binary encoding, one avoids the risk of

having to deal with all kinds of artifacts, such as the premature convergence observed by

Alkemade et al. (2006, 2007, 2009).7 For various examples of studies in which EAs are

employed without using a binary encoding, we refer to Sellgren (2001), Unver (2001),

Gerding et al. (2003), Lux and Schornstein (2005), Clemens and Riechmann (2006),

Dawid and Dermietzel (2006), and Haruvy et al. (2006). It should be noted, however,

that there are special cases in which we consider the use of a binary encoding perfectly

acceptable. In a prisoner’s dilemma, for example, agents have to make decisions that

are intrinsically binary, namely decisions between cooperation and defection. The use

of a binary encoding of strategies (e.g., Axelrod, 1987) then seems a very natural choice

that is unlikely to cause any artifacts.

The more general point that we want to make is that, when one employs an EA

for economic modeling, all elements of the EA should have a meaningful economic in-

terpretation (see also Dawid & Dermietzel, 2006).8 Many EAs employed in economic

research have been adopted from the computer science literature without any substantial

modification. Such EAs are likely to contain elements of which the economic interpre-

tation is unclear. The use of a binary encoding of strategies is an example of such an

element. Other EA elements of which the economic interpretation requires special at-

tention include the population size (Alkemade et al., 2006, 2007, 2009), the selection

operator (Van Bragt et al., 2001; Dawid & Dermietzel, 2006), and the strategy updating

regime (Dawid & Dermietzel, 2006). As we have shown in this chapter, EA elements

without a sensible economic interpretation may lead to simulation results that lack a

7Our results seem to suggest that, if one insists on the use of a binary encoding of strategies, it is
advisable to use a Gray coding rather than an ordinary binary encoding. However, even though in this
chapter we have not observed any artifacts of the use of a Gray coding, it seems quite well possible that
such artifacts will be observed in other contexts. For example, the fact that in the case of a Gray coding
the smallest and the largest decoded value differ by only one bit (see Table 5.2) seems unnatural and it
may well be that this sometimes has unintended consequences.

8This point stands in stark contrast with one of the conclusions reached by Alkemade et al. (2006,
2007, 2009). They state that “economic model parameters and evolutionary algorithm parameters should
be treated separately” (Alkemade et al., 2006, p. 367).
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sound underlying economic rationale. To avoid such results, paying close attention to

the economic interpretation of the various elements of an EA is absolutely essential.





Chapter 6

Summary

In this thesis, various computational and game-theoretic approaches to economic mod-

eling have been studied. Unlike traditional approaches to economic modeling, the ap-

proaches studied in this thesis do not rely on the assumption that economic agents be-

have in a fully rational way. Instead, economic agents are assumed to be boundedly

rational. Agents for instance do not take into consideration the influence of their be-

havior on the behavior of others. Abandoning the assumption of full rationality has a

number of consequences for the way in which economic reality is being modeled. Tra-

ditionally, economic models are mostly of a static nature and have a strong focus on

deriving equilibria. Also, models are usually analyzed mathematically. In models of

boundedly rational behavior, dynamic elements play a much more prominent role and

there is less emphasis on equilibrium behavior. Also, to analyze models of boundedly

rational behavior, researchers not only use mathematical techniques but they also rely

heavily on computer simulations.

Within the field of economics, there are a number of subfields that are concerned

with modeling boundedly rational behavior. The work that has been presented in this

thesis relates to three of these subfields. These three subfields were referred to as

evolutionary game theory, economic learning theory, and agent-based computational

economics. The first two subfields are still relatively closely related to traditional ap-

proaches to economic modeling, and in particular to the traditional game-theoretic ap-

proach. The third subfield, agent-based computational economics, differs much more

strongly from traditional approaches to economic modeling. This subfield has been
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strongly influenced by computer science research and is dominated by studies based on

computer simulations.

The core of this thesis consisted of four chapters (Chapters 2 to 5). In each of these

chapters, an independent piece of research was presented and a separate contribution to

the literature was made. In Chapters 2 and 3, the focus was on a substantive economic

issue, namely the issue of the emergence of cooperative behavior. In Chapters 4 and 5,

the focus was on methodological issues, namely issues concerning the application of

evolutionary algorithms for economic modeling purposes. Each of the chapters will

now be briefly summarized.

In Chapter 2, a simple model of the learning behavior of boundedly rational agents

was studied. The model was adopted from the computer science literature, where it is

referred to as Q-learning (Watkins, 1989; Watkins and Dayan, 1992). The Q-learning

model, which belongs to the broader family of reinforcement learning models, makes

only very limited assumptions about the information available to agents and the cogni-

tive abilities of agents. In Chapter 2, the Q-learning model was studied in the context

of a Cournot oligopoly market. The agents were firms that have to decide on their

production level. Firms can increase their profits if they cooperate with each other by

jointly decreasing the quantity they produce. The analysis of the Q-learning model was

performed partly mathematically and partly using computer simulations. The main con-

tribution of Chapter 2 consists of showing that the Q-learning model is able to explain

the emergence of cooperative behavior. Many similar learning models studied in the

economic literature are unable to explain this phenomenon.

In Chapter 3, a relatively recent explanation for the emergence of cooperative be-

havior was studied. According to this explanation, cooperative behavior can be a conse-

quence of evolutionary dynamics combined with local interaction among spatially dis-

tributed agents. The explanation was first proposed by the biologists Nowak and May

(1992) and was introduced in the economic literature by Bergstrom and Stark (1993)

and Eshel, Samuelson and Shaked (1998). In the economic literature, the explanation

has been studied mainly for agents that are located in a one-dimensional world and that

can choose from only two actions (i.e., cooperation and defection). The advantage of

this highly stylized setting is that it can be analyzed mathematically. The disadvantage
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is that it is unclear whether results derived in this setting are also valid in other more

complex settings.

The contribution of Chapter 3 consists of studying some of these more complex set-

tings, in particular settings in which agents are located in a two-dimensional world and

settings in which agents can choose from more than two actions. More specifically, in

the models considered in Chapter 3, agents were firms that compete with each other

based on price. Firms can cooperate with each other by jointly increasing their price.

Because the models studied in Chapter 3 seemed to be mathematically intractable, most

of the analysis was performed using computer simulations. The main finding of Chap-

ter 3 is that the emergence of cooperative behavior depends strongly on the amount of

information available to agents. Agents tend to behave most cooperatively if they have

only a very limited amount of information about their neighbors. Contrary to earlier

research reported in the literature, it was found that in some cases agents behave even

less cooperatively than they would do according to the Nash equilibrium prediction.

Chapter 4 was concerned with the application of genetic algorithms (i.e., a spe-

cific type of evolutionary algorithms) for modeling purposes in economic research. The

application of genetic algorithms for economic modeling purposes is quite popular in

agent-based computational economics research. Researchers almost always use com-

puter simulations to analyze genetic algorithm models. In Chapter 4, it was shown how

genetic algorithm models can be analyzed mathematically rather than using computer

simulations. The proposed approach for mathematically analyzing genetic algorithm

models relies on a mathematical technique that is frequently used in the evolutionary

game theory literature.

The main contribution of Chapter 4 consists of exploring the consequences of the

similarities between evolutionary models studied in the area of agent-based computa-

tional economics and evolutionary models studied in the area of evolutionary game the-

ory. As discussed in Chapter 1, these two research areas are quite separated from each

other. The similarities between the models studied in the two areas suggest that the sep-

aration of the areas is somewhat artificial and may impede the further development of

evolutionary modeling approaches. In Chapter 4, this point was illustrated by showing

how agent-based computational economics research can benefit from a mathematical

technique that is well-known in the evolutionary game theory literature. Chapter 4 also
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indicated an advantage of the agent-based computational economics approach, and in

particular of the use of computer simulations. In the evolutionary game theory literature,

one almost always focuses on the limit case in which the probability of experimentation

(or mutation) approaches zero. Focusing on this limit case is convenient from a math-

ematical point of view, but it may lead to less realistic modeling. In Chapter 4, it was

shown how computer simulations can be used to test the sensitivity of one’s modeling

results to the assumption of an almost zero experimentation probability. It was found

that in some cases results are quite sensitive to this assumption.

In Chapter 5, the focus was on a problematic aspect of genetic algorithm models.

These models typically rely on a binary encoding of strategies. The use of such an

encoding originates from the computer science literature, in which genetic algorithms

were first introduced. In Chapter 5, it was argued that a binary encoding of strategies

usually does not have a meaningful economic interpretation. It was also shown that the

use of a binary encoding may lead to artifacts in the results of an analysis. Hence, the

contribution of Chapter 5 consists of pointing out that in general it is not appropriate to

use genetic algorithm models with a binary encoding of strategies for economic model-

ing purposes. The more general contribution of Chapter 5 consists of illustrating how

the fairly high complexity of models in agent-based computational economics research

combined with a somewhat ad hoc justification may lead to results that have no eco-

nomic significance and that are merely artifacts of the model. The analysis presented in

Chapter 5 can be seen as an argument for simplifying the evolutionary models studied

in the agent-based computational economics literature. Simplifying these models would

also illuminate the similarities with models studied in the evolutionary game theory lit-

erature. Hence, it may help to reduce the somewhat artificial separation between the

research areas of agent-based computational economics and evolutionary game theory.
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(Summary in Dutch)

Dit proefschrift gaat over computationele en speltheoretische methodes voor econo-

misch modelleren. In tegenstelling tot de traditionele manier van economisch modelle-

ren, zijn de in dit proefschrift onderzochte methodes niet gebaseerd op de aanname dat

economische agenten volledig rationeel handelen. In plaats daarvan wordt verondersteld

dat aan het handelen van economische agenten een beperkte rationaliteit (‘bounded ra-

tionality’) ten grondslag ligt. Agenten denken bijvoorbeeld slechts een klein aantal

stappen vooruit en ze overzien bijvoorbeeld niet hoe hun eigen gedrag dat van anderen

beı̈nvloedt. Het afstand doen van de aanname van volledige rationaliteit heeft verschil-

lende gevolgen voor de manier waarop de economische werkelijkheid wordt gemodel-

leerd. Traditioneel zijn economische modellen veelal statisch van aard en sterk gericht

op evenwichtssituaties. Modellen worden doorgaans wiskundig geanalyseerd. Wanneer

het uitgangspunt van de beperkte rationaliteit wordt gekozen, gaan dynamische aspecten

een veel belangrijker rol spelen en wordt er minder nadruk gelegd op evenwichtssitua-

ties. Voor het analyseren van modellen die uitgaan van beperkte rationaliteit wordt naast

de wiskundige benadering ook veel gebruik gemaakt van computersimulaties.

Binnen de economische wetenschap zijn er verschillende onderzoeksgebieden die

zich bezighouden met modelleren onder de aanname van beperkte rationaliteit. Het

werk dat in dit proefschrift wordt gepresenteerd is aan drie onderzoeksgebieden gerela-

teerd. In het proefschrift worden deze gebieden aangeduid als de evolutionaire spelthe-

orie, de economische leertheorie en de agent-gebaseerde computationele economie. De

eerste twee gebieden staan relatief dicht bij de traditionele manier van economisch mo-

delleren, en in het bijzonder bij de traditionele speltheoretische benadering. Het derde
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gebied, de agent-gebaseerde computationele economie, staat veel verder van de tradi-

tionele manier van economisch modelleren af. Dit gebied is sterk beı̈nvloed door de

informatica en wordt gedomineerd door onderzoek dat gebruik maakt van computersi-

mulaties.

Dit proefschrift bestaat uit zes hoofdstukken. Het eerste hoofdstuk biedt een alge-

mene inleiding en het laatste hoofdstuk sluit het proefschrift af. In de vier tussenlig-

gende hoofdstukken worden vier op zichzelf staande studies gepresenteerd. Wat deze

studies gemeenschappelijk hebben, is dat ze zich alle vier bezighouden met het bestu-

deren van modellen die gebaseerd zijn op de aanname van beperkte rationaliteit. De

studies in hoofdstuk 2 en 3 gaan over het modelleren van het ontstaan van samenwer-

kingsgedrag. Hoofdstuk 4 en 5 hebben een meer methodologisch karakter. De studies

die in deze twee hoofdstukken worden gepresenteerd gaan over het gebruik van zoge-

heten evolutionaire algoritmes voor economisch modelleren. Hieronder worden hoofd-

stuk 2 tot en met 5 kort samengevat.

In hoofdstuk 2 wordt een eenvoudig model van het leergedrag van beperkt rationele

agenten bestudeerd. Het model is overgenomen uit de informatica literatuur, waar het

wordt aangeduid met de term Q-leren (‘Q-learning’). Het Q-leermodel maakt slechts

zeer beperkte aannames over de informatie waar agenten over beschikken en over de

cognitieve vaardigheden van agenten. In hoofdstuk 2 wordt het Q-leermodel bestudeerd

in de context van een Cournot oligopoliemarkt. De agenten zijn bedrijven die moeten

beslissen hoeveel ze gaan produceren. Bedrijven kunnen hun winst verhogen als ze on-

derling samenwerken door de hoeveelheid die ze gezamenlijk produceren te verlagen.

De analyse van het Q-leermodel wordt deels wiskundig en deels met computersimula-

ties uitgevoerd. Het belangrijkste resultaat van hoofdstuk 2 is dat het Q-leermodel in

staat is om het ontstaan van samenwerkingsgedrag te verklaren. Veel vergelijkbare leer-

modellen die in de economische literatuur worden bestudeerd kunnen dit verschijnsel

niet verklaren.

In hoofdstuk 3 wordt een relatief recente verklaring voor het ontstaan van samen-

werkingsgedrag onderzocht. Volgens deze verklaring kan samenwerkingsgedrag het

resultaat zijn van evolutionaire mechanismes in combinatie met lokale interactie tussen

ruimtelijk georganiseerde agenten. Deze verklaring heeft begin jaren 90 van de vorige

eeuw in de biologie zijn intrede gedaan en is vervolgens ook in de economische litera-
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tuur geı”ntroduceerd. In de economische literatuur is de verklaring vooral onderzocht

voor agenten die zich in een eendimensionale wereld bevinden en die uit slechts twee

acties kunnen kiezen (wel of niet samenwerken). Het voordeel van deze sterk gesti-

leerde opzet is dat een grondige wiskundige analyse mogelijk is. Het nadeel is dat het

niet duidelijk is of resultaten die in deze opzet zijn afgeleid ook in andere complexere

situaties van toepassing zijn.

De bijdrage van hoofdstuk 3 bestaat uit het onderzoeken van enkele van deze com-

plexere situaties, in het bijzonder situaties waarin agenten zich in een tweedimensionale

wereld bevinden en situaties waarin agenten uit meer dan twee acties kunnen kiezen.

Meer specifiek houdt hoofdstuk 3 zich bezig met modellen waarin bedrijven op basis

van prijs met elkaar concurreren. Omdat de modellen die in hoofdstuk 3 worden onder-

zocht wiskundig niet volledig lijken te kunnen worden geanalyseerd, wordt de analyse

voor het grootste deel met computersimulaties uitgevoerd. Het voornaamste resultaat

van hoofdstuk 3 is dat het ontstaan van samenwerkingsgedrag sterk afhankelijk is van

de hoeveelheid informatie die agenten tot hun beschikking hebben. Agenten gedragen

zich doorgaans het meest coöperatief indien ze slechts een beperkte hoeveelheid infor-

matie hebben over hun buren. In tegenstelling tot eerder onderzoek blijkt verder dat

agenten zich in bepaalde gevallen minder coöperatief gedragen dan in het Nash even-

wicht.

Hoofdstuk 4 gaat over het toepassen van zogeheten genetische algoritmes (een spe-

ciaal soort evolutionaire algoritmes) voor economisch modelleren. Het gebruik van

genetische algoritmes voor economisch modelleren is behoorlijk populair in het onder-

zoeksgebied van de agent-gebaseerde computationele economie. Onderzoekers gebrui-

ken vrijwel altijd computersimulaties om modellen gebaseerd op genetische algoritmes

te analyseren. In hoofdstuk 4 wordt uiteengezet hoe dit soort modellen wiskundig kun-

nen worden geanalyseerd in plaats van met computersimulaties. De voorgestelde me-

thode voor het wiskundig analyseren van modellen gebaseerd op genetische algoritmes

maakt gebruik van een wiskundige techniek die ook veelvuldig wordt gebruikt in de

literatuur op het gebied van de evolutionaire speltheorie.

De belangrijkste bijdrage van hoofdstuk 4 bestaat uit het verkennen van de over-

eenkomsten tussen evolutionaire modellen die in het gebied van de agent-gebaseerde

computationele economie worden onderzocht en evolutionaire modellen die worden on-
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derzocht in het gebied van de evolutionaire speltheorie. Deze twee onderzoeksgebieden

opereren in hoge mate onafhankelijk van elkaar. De overeenkomsten tussen de mo-

dellen die in de twee gebieden worden onderzocht suggereren dat de scheiding tussen

de gebieden enigszins kunstmatig is en wellicht een belemmering zou kunnen vormen

voor de verdere ontwikkeling van het evolutionaire modelleerparadigma. In hoofdstuk 4

wordt dit punt onderbouwd door te laten zien hoe de agent-gebaseerde computationele

economie kan profiteren van een wiskundige techniek die veelvuldig wordt gebruikt in

de evolutionaire speltheorie. Hoofdstuk 4 laat ook een voordeel zien van de benadering

van de agent-gebaseerde computationele economie, en in het bijzonder van het gebruik

van computersimulaties. In de evolutionaire speltheorie richt men zich vrijwel altijd op

het limietgeval waarin de kans op experimenteren (of muteren) naar nul nadert. Hoewel

het vanuit wiskundig opzicht inderdaad handig is om je op dit limietgeval te concentre-

ren, kan dit wel tot minder realistische modellen leiden. In hoofdstuk 4 wordt getoond

hoe computersimulaties kunnen worden gebruikt om te testen in welke mate model-

leerresultaten afhankelijk zijn van de aanname van een experimenteerkans van vrijwel

nul. In bepaalde gevallen blijkt de afhankelijkheid van deze aanname behoorlijk groot

te zijn.

Hoofdstuk 5 houdt zich bezig met een problematisch aspect van modellen die ge-

baseerd zijn op genetische algoritmes. Deze modellen maken gewoonlijk gebruik van

een zogeheten binaire codering van strategieën. Het gebruik van een dergelijk codering

stamt uit de informatica literatuur, waar genetische algoritmes hun oorsprong vinden. In

hoofdstuk 5 wordt beargumenteerd dat een binaire codering van strategieën doorgaans

geen betekenisvolle economische interpretatie heeft. Bovendien wordt getoond hoe het

gebruik van een binaire codering tot artificiële resultaten kan leiden. Hoofdstuk 5 laat

dus zien dat het over het algemeen niet gewenst is om genetische algoritmes met een

binaire codering van strategieën te gebruiken voor economisch modelleren. In meer al-

gemene zin illustreert hoofdstuk 5 hoe de behoorlijk hoge complexiteit van modellen

in de agent-gebaseerde computationele economie, in combinatie met een enigszins ad

hoc onderbouwing, kan leiden tot resultaten die geen economische betekenis hebben

en die slechts artefacten van het gebruikte model zijn. De analyse die in hoofdstuk 5

wordt gepresenteerd kan worden gezien als een pleidooi voor het vereenvoudigen van

de evolutionaire modellen die in de agent-gebaseerde computationele economie wor-
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den gebruikt. Het vereenvoudigen van deze modellen zou ook meer inzicht geven in

de gelijkenissen met modellen die in de evolutionaire speltheorie worden gebruikt. Op

die manier kan het bijdragen aan het verkleinen van de enigszins kunstmatige scheiding

tussen de onderzoeksgebieden van de agent-gebaseerde computationele economie en de

evolutionaire speltheorie.
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l)COMPUTATIONAL AND GAME-THEORETIC APPROACHES FOR MODELING BOUNDED
RATIONALITY

This thesis studies various computational and game-theoretic approaches to economic
modeling. Unlike traditional approaches to economic modeling, the approaches studied in
this thesis do not rely on the assumption that economic agents behave in a fully rational way.
Instead, economic agents are assumed to be boundedly rational. Abandoning the assump -
 tion of full rationality has a number of consequences for the way in which economic reality
is being modeled. Traditionally, economic models are mostly of a static nature and have a
strong focus on deriving equilibria. Also, models are usually analyzed mathematically. In
models of boundedly rational behavior, dynamic elements play a much more prominent
role and there is less emphasis on equilibrium behavior. Also, to analyze models of
boundedly rational behavior, researchers not only use mathematical techniques but they
also rely heavily on computer simulations.

This thesis presents four studies into the modeling of boundedly rational behavior of
economic agents. Two studies are concerned with investigating the emergence of coopera -
tion among boundedly rational agents. One study focuses on cooperation among firms in
a Cournot oligopoly market, while the other study examines cooperation in a spatial model
of price-competing firms. The other two studies in this thesis are concerned with methodo -
logical issues in the use of evolutionary algorithms for economic modeling purposes. One
study shows how evolutionary algorithms can be analyzed mathematically rather than
using computer simulations. The other study criticizes the use of a so-called binary encoding
in evolutionary algorithms.
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