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Abstract 

In this paper we propose a Bayesian analysis of seasonal unit roots in quarterly ob- 
served time series. Seasonal unit root processes are useful to describe economic series 
with changing seasonal fluctuations. A natural alternative model for similar purposes con- 
tains deterministic seasonal mean shifts instead of seasonal stochastic trends. This leads 
to analysing seasonal unit roots in the presence of mean shifts using Bayesian techniques. 
Our method is illustrated using several simulated and empirical data. 
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1. Introduction 

An empirical regularity of many quarterly observed macroeconomic time series 
is that the seasonal fluctuations do not seem constant over time. A class of  models 

that is useful to describe such series is an autoregressive (AR) model with one 
or more so-called seasonal unit roots, see Hylleberg et al. (1990) (HEGY). In 

HEGY a test procedure for seasonal and nonseasonal unit roots in quarterly data 

is proposed. Seasonal unit roots correspond to the presence of stochastic trends 

at the seasonal frequencies. Since the usual purpose of univariate time series 

analysis is to obtain an indication of how to construct multivariate models like, 
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e.g., the seasonal cointegration model in Engte et al. (1993), it is important to 
have an adequate impression of the number of seasonal unit roots in individual 
series. Practical experience with statistical tests for seasonal unit roots reveals 
that seasonal unit roots are detected in many macroeconomic time series, see, 
e.g., Hytleberg et al. (1993). 

A particular alternative model, for which tests for seasonal unit roots can be 
expected to have a low rejection frequency, is the AR model with one  or more 
deterministic shifts in the seasonal means, see, e.g., Ghysels (1994). This conjec- 
ture is based on the results for nonseasonal time series discussed in, e.g., Perron 
(1989), where tests for zero frequency unit roots break down in the presence of  
shifts in mean or trend. The seasonal mean shift model may be useful in case 
statistical agencies start measuring economic quantities differently at some point 
in time or when two or more sources of data are combined into one single time 
series. The latter can occur for such variables as GNP and Employment. From 
an economic point of view, the seasonal mean shift model may reflect that eco- 
nomic agents change their behaviour instantaneously and permanently because 
of perceived exogenous shocks. Such shocks can be generated, for example, by 
changes in policies because of a government change, by a decision (halfway the 
observed sample) to execute tax changes in a certain season only, or (in case 
of nondurable consumption) by the fact that holiday periods sometimes change 
abruptly over time such that there appears a strong tendency to have holidays 
twice a year. From a statistical point  of view, it is important to have reason- 
ably precise knowledge of the properties of univariate time series, since such 
knowledge usually forms the basis of methods for constructing multivariate mod- 
els. Finally, from a forecasting point of view, the seasonal unit root model and 
the seasonal mean shift model can result in widely different point-forecasts, and 
foremost, forecast intervals; see Paap et al. (1997). In this paper we analyse uni- 
variate quarterly time series processes for seasonal unit roots in the presence of  
seasonal mean shifts. We assume no a priori knowledge of the timing of such 
shifts, and no a priori knowledge of the presence of seasonal unit roots. We 
choose to use Bayesian techniques for this analysis. 

The outline of our paper is as follows. In Section 2 we discuss the seasonal 
unit roots model and the model with seasonal mean shifts. In Section 3 we 
consider Bayesian analysis of the joint model, i.e., the model that nests both 
the seasonal unit roots representation and the seasonal mean shifts model. In 
this section we also elaborate on how our method differs from that advocated 
by Koop and Pitarakis (1992). A focal point in this section is the appropriate 
representation of the nesting model. Furthermore, we consider the specification 
of the prior distributions of  the various parameters. In Section 4 we discuss 
some computational issues regarding the application of Bayesian techniques. In 
Section 5 we apply our approach to some simulated time series and three quarterly 
observed macroeconomic time series, i.e., total consumption in Sweden and in the 
United Kingdom and nondurable consumption in the United States. It appears that 
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the evidence for seasonal unit roots becomes less pronounced for the Swedish 
and US series if we allow for seasonal mean shifts. Finally, in Section 6 we 
conclude this paper with some remarks and suggestions for further research. 

2. S e a s o n a l  unit  roots  and m e a n  shifts  

A typical differencing filter that is applied to a quarterly observed time series, 
Yt, t -~ 1 , . . . ,  T,  is the seasonal differencing filter A 4 = (1 -- B 4),  where B is the 
backward shift operator defined by Bmyt = Yt-m and where Am -= (1 -Bin) ,  
m = 1,2 . . . . .  Since the polynomial (1 - B  4) can be decomposed as 

(1 - B 4) = (1 - B)(1 + B)(1  - iB)(1 + iB) 

= (1  - B ) ( 1  +B)(1  + B  2) (1) 

= (1  - B ) ( 1  + B + B  2 -~- B3),  

it is clear that a time series which needs fourth differences to obtain stationarity 
has four roots on the unit circle. Such a series is said to be seasonally integrated. 
The nonseasonal root at the zero frequency (1) corresponds to a nonseasonal 
stochastic trend. The seasonal unit root at the frequency �89 ( - 1 )  corresponds to 

two cycles per year and the seasonal unit roots at the frequencies �88 and ~ (i and 
- i )  correspond to one cycle per year. Notice from (1) that the (1 - B  4) filter 
can be decomposed in a part with a nonseasonal unit root and a part with three 
seasonal unit roots. 

A procedure to test for nonseasonal and seasonal unit roots in a quarterly time 
series is developed by Hylleberg et al. (1990). This procedure is based on the 
auxiliary regression model 

4 
zJ4Yt ~--- E dsDst + cTt + g l Y l , t - I  § 7~2Y2,t-I § 7~3Y3,t-2 § 7r4Y3,t-I 

s= 1 

k 
+ ~ q~4y , - i  + ~,, (2) 

i=1 

where Dst represent the usual seasonal dummies, where st is assumed to be 
a standard white noise process, where Tt is a deterministic trend term (Tt = 
0, 1, 2,...) and where 

Yl,t = (1 + B + B 2 + B3)yt  = Yt + Y t - I  + Yt -2  + Yt-3,  

Y2,t = ( - - i  + B - B  2 § B3)y t  = - Y t  + Y t - I  - Y t -2  + Yt-3,  (3) 

Y3,t = ( - -1  + BZ)yt  = - Y t  + Yt-2.  

In practice, the value of k in (2) is unknown and has to be determined. The 
parameters ds, s = 1, . . . ,4,  c, 7rj,j = 1, . . . ,4  and q~i,i = 1 . . . .  ,k, can be estimated 
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using ordinary least squares (OLS). For unit root testing, the zcj parameters are 
the most relevant. In fact, if  zq = 0 the series contains a unit root at the zero 
frequency. A unit root at the frequency �89 ( - 1 )  corresponds to zc2 = 0. If  zc3 = 0 
and zc4 = 0 the series contains the roots i and - i .  After applying OLS to (2) 
t- and F-tests are performed to check for the significance of the z~j parameters. 
Critical values of  t-tests for the significance of the zcj's and an F-test for the 
significance of zc3 and z~4 are tabulated in Hylleberg et al. (1990). The asymptotic 
distributions of the various tests are discussed in Hylleberg et al. (1990) and 
Engle et al. (1993). 

2.1. Seasonal mean shifts 

The auxiliary test regression (2) and the estimated t- and F-values for the rcj 
parameters can be used to investigate the presence of  seasonal and nonseasonal 
stochastic trends in Yt. An implication of a seasonal stochastic trend is that 
the seasonal fluctuations in Yt can change over time. There may however be 
alternative models for Yt that are useful in practice to describe changing seasonal 
fluctuations. For nonseasonal time series, it is shown in, e.g., Perron (1989) and 
Perron and Vogelsang (1992) that a mean shift biases unit root statistics towards 
nonrejection. Similarly, changing seasonal patterns can be generated by a model 
like 

4 4 

Aly, = ~ dsD,t + ~ d;Dst[It>~r + e,, (4) 
s=l  s= l  

where [I] is an indicator function and where seasonal mean shifts (from ds to 
ds + d*) occur at time ~. In fact, given the results in Perron (1989), one may 
expect that the seasonal unit root statistics based on (2) to be biased towards non- 
rejection when (4) is the data-generating process (DGP). In (unreported) simu- 
lation experiments (see also Paap et al., 1997) we indeed find that neglecting 
seasonal mean shifts yields evidence of  seasonal unit roots. In particular, when 
(4) is the DGP and (2) is estimated (using classical methods), we tend to find 
much evidence in favour of the seasonal unit root - 1  (the bi-annual frequency), 
and a relatively smaller increase of evidence for the seasonal unit roots +i. Below, 
in Section 5, we report similar findings based on Bayesian techniques. 

The purpose of the present paper is now to analyse (2) in the presence of  
seasonal mean shifts as in (4) using Bayesian techniques. We wish to confine 
our Bayesian analysis to the relevance of  the rq . . . . .  rc4 parameters in (2). This 
implies that we condition on a priori knowledge of the value of k, the number 
of lagged A4yt variables in (2). Furthermore, we adopt a nesting framework 
in the sense that we somehow incorporate model (4) within (2), and then we 
focus on rq,...,rc4. In subsequent work we aim to analyse (2) when k is also a 
parameter of the model using a Bayesian method and to compare (2) and (4) in 
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a nonnested framework using Bayes factors. At present, we consider these two 
extensions beyond the scope of  this paper. 

3. Bayesian analysis 

For our Bayesian analysis we consider the series y t  in deviation from seasonal 
intercepts and the deterministic trend, i.e., we define 

Yt = Yt - 6sDst - yTt .  (5) 

An advantage of  this parameterization over that in (2) is that the parameters 
65 and y in (5) have a more natural interpretation than the parameters d~ and 
c in (2). In fact, the parameters ds and c in (2) have different interpreta- 
tions under different unit root hypotheses. This point can be illustrated using 
the following two parameterizations of  the AR(1) model with unknown 
mean #: 

Yt - # = P ( Y t - I  - I t)  + ~t (6) 

and 

Yt = ct + P Y t - t  + et. (7) 

I f  Ipl < 1, It has the interpretation of  the mean of  the process Yt ,  while in terms 
of  Eq. (7), the mean is given by c~/(1-p) .  I f  p = 1 however, ~ can be interpreted 
as a drift term, while It is no longer identified. This reflects that a random walk 
process has no unconditional mean. 

A similar identification problem arises in the analysis o f  the HEGY model 

k 
d4Yt = /~lPt , / --I  q- 712Y2,t--i -~- 7Z3Y3,t--2 q- 7z4.)$3,t_l --b ~ ~id4.~t_i ~- et, (8 )  

i=1 

where Yt is given in Eq. (5) and Yl , t ,  Pz, t , f :3, t  are defined by (3). To make the 
identification problem explicit, consider the following one-to-one transformation 
of  the seasonal mean parameters 6s into the parameters fl~, s - -  1,2,3,4: 11)(, / 

f12 = 1 - 1 1 - 1 ~2 (9) 
133 1 0 - 1 0 83 ' 
/34 0 1 0 - 1 8 4 

or fl = L S ,  where ]3 = ( f l l , [32 , f13 , f14 ) ' , ' 8  = (81,82,c53,84)' and L a (4 x 4) 
transformation matrix. Using this transformation I and defining for notational 

I Note that y is always identified and has, independent of the hypothesis under consideration, the 
interpretation of a growth rate: E(A4yt)= 4y. 
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convenience, fit = Yt - 7 T t ,  we can write (8) as 

/14)3 t ---- ~1 (J~l,t--1 -- fll ) -~- 7~2()~2, t -  I -- f12(-- 1 )t) 

"~3(fi3,t--2 -- fl3K't--I -- f14K'--2) -~- g4(53.t--I -- fl3Kt -- fl4gt - I  ) (10) 

k 
"~- ~ ~)iA4fl t - i  -{- et, 

i=1 

where xt = l ( i /q -  ( - i )  t) and where we assume that t = 1 corresponds to a first 
quarter observation. It is easy to see that in (10) the parameter fll is not identified 
if  rq = 0. Analogously, if z2 = 0 the parameter f12 is not identified. Roots at the 

I and 3 frequencies ~ ~ (g3 --- g4 = 0) imply that f13 and f14 are not identified. 
Under the assumption et "~ N(0,a2),  the likelihood function for model (10) 

conditional on the initial observations Yo = {Y-3-k,  Y-2-k  . . . . .  Yo}, is given by 

r 1 f _  gt2"~ (11) 
s  Yo;0) = t=,l-[ ~ - - - ~  exp \ 2 a 2 j ,  

where Yr = { Y l , Y 2 , . . . , Y r } ,  0 = (rc, fl,7, a, qS)', ~ = (rq,rc2, n3, zt4)' and q~ = 

(4'1,..., 4~k)'. 
Similar to the HEGY test procedure, we compare the following hypotheses for 

model (8) with k assumed known a priori: 

H : zcE(2, 

Ht : gl = 0, {gz, 7~3,7~4} E ~"~1, 
H2 : /z2 = 0 ,  {/'Cl,7~3,~4} E ~'22, (12) 

H34 : re3 = zc4 = 0, {rq,rc2} E 034. 

Under the first hypothesis H the 7z parameters are restricted to the region f2, 
where all the roots of  (10) are outside the unit circle, i.e., f2 = {Tr I all roots 
are outside the unit circle}. 2 The H1 hypothesis denotes the presence of  the 
unit root at the zero frequency, which corresponds to the restriction 7rl = 0. The 
remaining 7r parameters are restricted to the region (21, which ensures that the 
remaining roots in (10) are outside the unit circle. The presence o f  the root - 1  
is contained in hypothesis I42. The corresponding parameter restriction is 7r2 = 0 
and {Trj,rc3,//;4} E ~2,  which restrict the rc parameters such that the remaining 
roots in (10) are outside the unit circle. The restriction 7z3 = ~4 ~ 0 in the final 

1 and 3 Again hypothesis H34 is used to test for the unit roots at the frequencies ~ ~. 
the ~'234 region ensures that the remaining roots in the model are outside the unit 
circle: s = {(Trl,Tz2)' I 7zl < 0,~z2 < 0,.~t + 7z2 > - 2}. The subscripts for H 
and f2 correspond to the null restrictions on the 7r parameters. The same type o f  
notation will be used to specify the prior densities under the different hypotheses. 

2 It is implicitly assumed that all the roots of q~(L) = 1 - ~blL . . . . .  ~bkL k are outside the unit 
circle. 
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It should be mentioned that our analysis can naturally be extended by combining, 
e.g., H2 and H34 into a single hypothesis. 

3.1. Prior specification under hypothesis H 

The prior specifications under the different hypotheses are based on recent de- 
velopments in Bayesian analysis o f  stationary AR(MA)  processes, which consider 
the exact likelihood instead of  the conditional likelihood function (see, e.g., Chib 
and Greenberg, 1994). We assume that the initial observations are generated ac- 
cording to the unconditional distribution of  the process. In our framework, the 
assumption of  stationarity and o f  ~bi = 0 for i = i, ..., k, where the latter assump- 
tion 3 is made for the moment  mainly for analytical convenience, results in the 
following model for the initial observations: 

Y-2 ( - 2 ) 7  = 
y-1 (-1)r  

Y0 (O)y 

1 0 0 0  
0 1 0 0  
0 0 1 0  
0 0 0 1  

3t 
62 
63 
~4 

or in matrix notation, 

u-3 

u_2 (13) 
+ u-1 

u0 

l~0 = / 6  + u, (14) 

where u ~-, N(0, V), with V the unconditional covariance matrix of  the stationary 
AR(4) process in 33t described by (10) with ~bi = 0, i = 1 , . . . ,  k. Using the (4 x 4) 
transformation matrix L in Eq. (9), the model in (14) in terms of  fl is 

Yo = L - l f l + u .  (15) 

Following Schotman and van Dijk (1993), this model for the initial observations 
can also be interpreted as a prior density for fl, i.e., 

P(flln, 7, a, I1o) = N(L ~'o,L VL'), (16) 

where 110 are the initial observations. Note that the covariance matrix V is a 
function of the n parameters. I f  one or more of  the n parameters approaches 
zero, the corresponding elements of  V diverge to infinity. See, for example, the 
AR(1) case in (6), where V would be a2/(1 - p 2 ) .  This reflects the fact that the 
fl parameters are unidentified when some x parameters are zero, see (10). 

For the other parameters of  the model we choose the following priors: 

P ( 7 , ~ )  o( cr - z  
p(n) o( 1 for rc E f2, (17) 

3 This assumption is similar to that in Schotman and van Dijk (1993) for analysing a unit root at 
the zero frequency. We assume that information in the data a posteriori excludes the possibility that 
nonzero values for these parameters introduce another unit root. 
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where f2 represents the parameter space for n in which all roots are outside the 
unit circle. In case ~b r 0 we also include a fiat prior on these parameters 

p(q~) ~ 1. (18) 

The total prior for the parameters under hypothesis H, p(O) = p(n, r, 7, a, ~b) is 
proportional to the product of (16)-(18). 

3.2. Prior specification under hypothesis H34 

To illustrate the prior specification under one of the unit root hypotheses, we 
consider the hypothesis H34 in which n3 = n 4 =  0, i.e., the seasonal unit roots i 
and - i  are present. If  n3 = n4 = 0 and k is assumed to be 0, the HEGY model 
(10) becomes 

A4Yt = 7~l(Pl,/-I -- i l l)  "4- 7"/72(Y2,t_ 1 -- f12(--1) t) +/3t, (19) 

which corresponds to a stationary AR(2) model for )73, t. Let V34 denote the 
unconditional covariance matrix of this AR(2) model, which is a function of nl 
and n2 only. The prior for fl~,fl2 (note that r3 and f14 are not present in this 
model) can now be written in the form: 4 

P 3 4 ( f l I ' ~ 2 [ ~ I ' 7 ~ 2 ' Y ' ~ ' Y ~  -Y2,0)]I'~ ) ,L34V34L~4) ' (20)  

where L34 is the (2 x 2) left upper comer submatrix of the (4 x 4) transformation 
matrix L. Priors for the remaining parameters are given by 

P34(~b,y,o') oc 0 "-!  
P34(gl,7~2) (X 1 for {hi,n2} E ~"234, (21) 

where 034 = {(nbn2) ~ ] nl < 0, n2 < 0,hi + n2 > - 2}, which corresponds to 
the parameter space where the two remaining roots are outside the unit cir- 
cle. The total prior for the parameters under the hypothesis H34, P 3 4 ( 0 3 4 ) =  
P34(nl,n2,fJbf32,7,~r, qb) is proportional to the product of (20), (21) and (18) in 
case k r 0. 

3.3. Prior specification under hypotheses Hi and Hz 

The prior specifications for the two remaining hypotheses are similar to the 
prior specification under the H34 hypothesis. Under the restriction nl = 0 (n2 = 0) 
the HEGY model (10) becomes an AR(3) for )31, t 072,t) in which fll (f12) drops 
out. The unconditional covariance matrix of this AR(3) model is used to specify 
the prior on the remaining fl parameters like in (20). The prior densities for ~b, 

4 The subscript corresponds to the restriction n3 = n4 = 0. 
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and cr are the same as in (21) and for the remaining n parameters flat- on the 
stationary region (21 (f2z). 

To compare the different hypotheses in (12), we compute posterior odds. As- 
suming that the hypotheses under consideration are, a priori, equally likely, the 
posterior odds ratio equals the Bayes factor (see, e.g., Zellner, 1971 ). The Bayes 
factor to compare hypothesis H34 with H is given by 

K34 : Pr[H34 ] Yr, I7o] = f P34(O34)L(YTI -Yo; 034)d034 (22) 
er[H [ Yr, Iio] f p(O)s I Yo; 0) dO ' 

where the subscipt on K refers to the H34 hypothesis. Similar Bayes factors can 
be defined for testing the presence of the other unit roots, i.e., for the hypotheses 
HI and H2. We note that the posterior density may have negligible probability 
mass on some regions of the parameter space. Since the numerator and the de- 
nominator of the Bayes factor can be interpreted as average heights, this can 
lead to misleading conclusions. To avoid this problem, we a posteriori restrict 
the parameter regions f2 to the 99% highest posterior density (HPD) region (see 
also Schotman and van Dijk, 1993). Computation of Bayes factors has received 
considerable attention in the recent literature. In our analysis we apply the ap- 
proach of Chib (1995), where the output of the Gibbs sampler (see Section 4 
below) is used to compute the marginal likelihoods needed in (22). 

3.4. Seasonal mean shifts 

A structural break in the seasonal pattern can be incorporated by replacing 6s 
~ ,  

in (5) by 6s + 0s [It~>~]. Since we assume that the breakpoint z is unknown, we 
treat it as an extra parameter with the following noninformative prior density: 

1 
P(~)=  T---~-4' r =  1 . . . . .  T - 4 .  (23) 

Concerning the mean shift parameters 6~', we note that, unlike the seasonal mean 
parameters themselves, their interpretation is independent of the number of unit 
roots. Therefore, the following noninformative prior is used: 

p(6~, 6~, 6~, 3,]) e( 1. (24) 

Extending the earlier analysis by includir/g these breakpoint parameters is straight- 
forward. 

It should be mentioned that our modelling of seasonal mean shifts implies 
a sudden adjustment in the level of the series. The transformed parameters fls, 
see (9), change only stepwise to their new values. Hence, in the terminology of 
Perron (1989), we only consider the 'additive outlier' framework. 
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3.5. R e m a r k s  

An alternative Bayesian approach to investigate seasonal unit roots with the 
possibility of a structural break can be found in Koop and Pitarakis (1992). 
Their analysis differs from ours in several respects. First, they consider the linear 
parameterization of the HEGY model given-in Eq. (2) combined with a fiat 
prior. Hence, they follow the Bayesian unit root analysis of, e.g., DeJong and 
Whiteman (1991). Furthermore, they consider an informative prior suggested by 
Zellner and Siow (1980). The main advantage of this approach is that it is 
easily implemented: posterior odds and I-IPD regions can be obtained analytically. 
However, as we noted earlier, the intercept and trend parameters in model (2) 
are difficult to interpret since their interpretation changes with the hypothesis 
under consideration. This also applies to the interpretation of the seasonal mean 
shift parameters. Second, Koop and Pitarakis (1992) do not explicitly add the 
breakpoint z as an extra parameter. Instead, posterior odds are computed to test 
for no structural change (H0 : 6~' = 0, i = 1,2, 3, 4) for all possible values of 
z. They recommend pretesting for structural change before applying the HEGY 
test procedure. Instead of pretesting, we propose to compute Bayes factors to 
test for (seasonal) roots both under the hypothesis of structural change and no 
structural change. The third and final difference is that in our framework we 
obtain the posterior density of the breakpoint parameter z. This may enable an 
interpretation of the timing of the shifts. 

4. Sampling of the posterior distribution 

Recently, Markov chain Monte Carlo (MCMC) sampling techniques have proved 
to be a useful tool to analyse posterior distributions. Two MCMC sampling al- 
gorithms will be used to evaluate the posterior distributions which result from 
combining the prior and likelihood function described in the previous section: the 
Gibbs sampling and the Metropolis-Hastings algorithm. In the appendix we give 
a short description of both techniques. 

Following Chib and Greenberg (1994), it is straightforward to show that the 
full conditional distributions of our parameters of interest/3, 7, ~b and 6" are nor- 
mal and that a has an inverted gamma-2 distribution conditional on the other 
parameters. The full conditional density of the rc parameters, under the assump- 
tion of stationarity, is of the form 

P(=l-c, O\{rc}) ~x 7-'(rt) exp ( -  �89 - "~)'Z~~(rc - r~)) [Ia], (25) 

where ~u(n) is the prior defined on fl in (20) and [If2] is the indicator function de- 
fined on the stationary region f2. Like Chib and Greenberg (1994), we recognize 
that the second part of (25) corresponds to the kernel of a (truncated) normal 
distribution. The mean and variance of this normal distribution are given by 
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and Z,~, which correspond to the OLS estimate of 7c in (I0) and the corresponding 
estimated covariance matrix, respectively. 5 Let ff denote a draw from this distri- 
bution at iteration i of the Gibbs sampler. Next, we apply the Metropolis-Hastings 
step with acceptance probability rain (7t(~)/gJ(~i-l), 1), with ~i-l denoting the 
draw from the previous iteration, to give n i  

To draw from the conditional distribution of the breakpoint parameter 3, we 
note that this parameter only takes discrete values. Therefore, the distribution 
function of ~ given the parameter vector 0 can easily be computed. Using this 
distribution function a draw of the breakpoint parameter can be obtained using 
an inversion method. The conditional distribution of i5" is normal. 

5. Applications 

To demonstrate the Bayesian analysis of seasonal unit roots and seasonal mean 
shifts, we consider simulated and empirical quarterly time series. 

5.1. Simulated series 

We start with four simulated data generating processes: 

4 
D G P  I : Yt = ~ o~sDst -{- Et, 

s=l 
D G P  I I  : A4Yt = 12 + ~t, 

4 (26) 
DGP I I I :  AlYt = ~ ~sDst + et, 

s= I 
4 

DGP IV " Aiy, = ~ d/sDs, + CsOst[It>~] + gt, 
a=l 

where et ~ IN(0,0.5), t = t ,2 ..... 164, ~ = (1,2,3,4) ' ,  12 = 1, ~ = ( 1 , - 2 , - 1 , 3 ) '  
and ~* = ( -4 ,  5 , -3 ,2 ) ' .  Notice that we do not compare DGPs I-IV relative to 
each other, but merely we investigate the effect of (not) allowing for seasonal 
mean shifts when analysing seasonal unit roots. The first 44 observations are 
used as starting values and deleted from the sample, resulting in samples of 120 
observations. The breakpoint,  is fixed at observation 40 of the 120 observations. 
The first DGP contains no unit roots, the second DGP contains one nonseasonal 
and three seasonal unit roots. The last two DGPs only contain a unit root at the 
zero frequency. The series are analysed using the Bayesian approach suggested 
in the previous sections. Posterior outcomes are based on 21,000 iterations of the 
MCMC sampler, discarding the first 1000 drawings as bum-in period. As starting 
values we take the OLS estimates of the parameters. The first two DGPs are 
analysed without allowing for the possibility of a structural break in the seasonal 

5 Note that, conditional on the other parameters, Eq. (10) is linear in n. 
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Table 1 
Posterior means and standard errors between parentheses for the 7r parameters, all roots in stationary 
region, and posterior odds outcomes for the simulated series 

DGP I DGP II DGP III DGP IV 

No break Break No break Break 

lags k 0 0 0 0 0 0 
rrl -0 .179 -0.048 -0.008 -0.008 -0.010 -0.008 

(0.049) (0.031) (0.006) (0.006) (0.007) (0.006) 
~2 --0.201 --0.023 --0.650 --0.638 --0.042 --0.642 

(0.055) (0.017) (0.093) (0.108) (0.026) (0.099) 
rc 3 -0.441 -0.031 -0.349 -0.341 -0.429 -0.357 

(0.073) (0.020) (0.075) (0.079) (0.078) (0.078) 
rr4 -0 .020 0.014 -0.452 -0.468 -0.382 -0.458 

(0.069) (0.025) (0.076) (0.086) (0.079) (0.078) 

Posterior odds ratios 

Kl 0.01 1.42 2.07 2.17 2.52 2.00 
K2 0.00 2.19 0.00 0.00 1.17 0.00 
K34 0.00 3.78 0.00 0.00 0.00 0.00 

Lags denote the number k of  lagged A4yt included in the model. Results are based on 20,000 
iterations of the MCMC sampler. K denotes the posterior odds ratio, where the subscripts correspond 
to the rc parameters (for example, K34 represents the odds ratio for testing H34:n3 = re4 = 0 against 
H: all roots in the stationary region). An odds ratio exceeding one implies that the null hypothesis 
is a posteriori more likely than the alternative hypothesis. 

pattern. The final two DGPs are analysed with and without the possibility of  a 
structural break. Note that DGP III does not have structural mean shifts. Table 1 
shows the posterior means and standard errors of  the r~ parameters together with 
the posterior odds ratio for the unit root tests. It should be mentioned here that 
because our DGPs in (26) do not include additional lags, we expect to find no 
evidence for seasonal unit roots for DGPs I and III, and hence the relevant odds 
ratios will be about zero. 

For the first DGP we see that the means of  the marginal posterior of  rCl, re2 and 
n3 differ more than two standard errors from zero. However, since these posterior 
densities are truncated, care must be exercised in interpreting the standard errors. 
In Fig. 1 we depict the marginal posterior densities of  the n parameters. The 
modes of the distributions are far away from zero, except for ~4. The latter 
exception corresponds to the results for thd ~4 parameters discussed in Hylleberg 
et al. (1990). The posterior odds for the joint hypothesis re3 = re4 = 0 is clearly 
smaller than one, see Table 1. The same is true for the hypothesis of  the presence 
of the roots 1 and - 1 .  

The marginal posterior densities of the rc parameters for the second DGP are 
shown in Fig. 2. The modes of the marginal densities are near zero. The posterior 
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odds ratio in Table 1 correctly indicates the presence of the nonseasonal and the 
three seasonal unit roots. 

For DGP III only the posterior odds ratio for the presence of the nonseasonal 
unit root exceeds one. The modes of the marginal posterior densities of  the rc 
parameters are far away from zero except for rq,  see Fig. 3. As Fig. 3 also shows, 
the posterior results remain virtually the same when we allow for seasonal mean 
shifts, see also column 5 of Table 1. The marginal posterior of the parameter 
is roughly uniform on its domain with two peaks near the borders. Therefore, we 
can conclude that allowing for possible seasonal mean shifts, when no such shift 
is present, does not seem to influence the conclusions about the presence of unit 
r o o t s .  

The outcomes for DGP IV in column 6 of Table 1 show that the structural 
mean shifts can alter the conclusions about the presence of unit roots. In case we 
do not include the possibility of  a structural mean shift, the posterior odds ratio 
for the hypothesis re2 = 0 is larger than one, see Table 1. The inclusion of the 
structural mean shifts results in a shift of the marginal posterior density of  7z2 
to the left, and this leads to a posterior odds strongly smaller than one, see also 
Fig. 4 and the last column of Table 1. Changes in the posteriors for the other 7z 
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parameter are relatively small if  the seasonal mean shifts are included. This result 
for only one experiment seems to correspond with our (unreported) findings in 
simulations of  the HEGY tests using classical methods. The marginal posterior 
of  the parameter z has 57% of  its probability mass at observation 39 and 43% at 
observation 40. This apparent precision is not surprising since we have imposed 
a substantial structural mean shift in the DGP. It should be mentioned here that 
these simulations only serve illustrative purposes. When we would reduce the 
size of  the mean shifts for DGP IV, we would find less evidence in favour of  
H2. On the other hand, when we would enlarge DGP IV with lags of  A lyt ,  we 
would find larger values of  K2 and/<34. 

In summary, the posterior outcomes of  the four simulated DGPs seem to in- 
dicate the practical usefulness of  our Bayesian approach. However, since only a 
few simulated data sets have been considered, we again stress that no general 
conclusion can be drawn about the perfohnance of  the approach�9 

5.2. Three consumption series 

We now apply our Bayesian analysis o f  seasonal unit roots with and without 
structural mean shifts to three quarterly observed consumption series. These series 
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Table 2 
Posterior means and standard errors between parentheses for the rc parameters, all roots in stationary 
region, and posterior odds outcomes for total consumption of Sweden and the UK and nondurable 
consumption of the US 

Total cons. Sweden Total cons. UK Nondur. cons. US 

No break Break No break Break No break Break 

Lags k 8 8 8 8 8 8 
nl -0.024 -0.027 -0.015 -0.017 -0.003 -0.003 

(0.018) (0.021) (0.011) (0.013) (0.003) (0.003) 
~2 -0.057 -0.313 -0.069 -0.137 -0.078 -0.281 

(0.039) (0.146) (0.050) (0.099) (0.046) (0.112) 
~3 -0.081 -0.139 -0.167 -0.229 -0.119 -0.416 

(0.046) (0.080) (0.082) (0.128) (0.055) (0.138) 
~4 -0.069 -0.146 -0.113 -0.265 -0.050 -0.387 

(0.056) (0.087) (0.090) (0.139) (0.056) (0.139) 

Posterior odds ratios 

KI 2.02 2.14 1.94 2.66 2.54 2.78 
/r 1.82 0.30 2.01 2.29 1.21 0.29 
K34 1.95 0.02 0.39 1.43 0.21 0.00 

Lags denote the number k of lagged d4yt included in the model. Results are based on 20,000 
iterations of the MCMC sampler. K denotes the posterior odds ratio, where the subscripts correspond 
to the rc parameters (for example,/('34 represents the odds ratio for testing H34:;~3 = re4 = 0 against 
H: all roots in the stationary region). An odds ratio exceeding one implies that the null hypothesis 
is a posteriori more likely than the alternative hypothesis. 

are the log of real total consumption of Sweden, 1963.1-1988.4, the log of real 
total consumption of the UK, 1955.1-1988.4 and the log of  real nondurable 
consumption in the US, 1947.1-t991.4. 

Fig. 5 shows plots of the data. The graphs in the first column of Fig. 5 show 
the series. A plot of the first differences of the series split up in a series for 
each quarter is given in the second column. We observe from the last column 
of Fig. 5 that for Swedish consumption there seems to be a structural break in 
the beginning of 1980s, while for the US series we notice a seasonal mean shift 
in the first differences in the end of  1950s. The UK series, however, does not 
display visually obvious mean shifts. 

Table 2 shows the posterior results of  our Bayesian seasonal unit root analysis 
in the presence of structural seasonal mean shifts. A lag order of 8 for the fourth 
differences has been chosen for all three series. 6 In case of no break we conclude 

6 The lag order may affect conclusions concerning the unit root parameters. However, incorporating a 
variable lag order in our framework is outside the scope of  the present paper. To get some indication 
of the robustness of our results with respect to the lag order, we also analysed the consumption series 
using k = 4. This only marginally affected the results and we delete details to save space. 
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Fig. 6. Marginal posterior for total consumption of Sweden, all roots in stationary region: (-): without 
mean shifts; (- -): with mean shifts. 

that total consumption of Sweden contains the nonseasonal and three seasonal unit 
roots. I f  we however include the possibility of  structural seasonal mean shifts we 
observe that the marginal posterior densities of  n2, n3 and n4 shift to the left, 
see Fig. 6. The posterior odds ratio K2 drops from 1.82 to 0.30 which results in 

[ Also, the posterior odds favouring the absence of  the unit root at the frequency ~. 
ratio K34 drops from 1.95 to 0.02, which provides further evidence that seasonal 
mean shifts can explain the nonrejection of  seasonal unit roots when no break 
is included in the model. The mode of the marginal posterior of z is in 1979.3, 
where we find more than 70% of the probability mass. 

The posterior outcomes of total consumption of the UK indicate that the series 
contains the roots, 1 and - 1  if we do not allow for a seasonal mean shift. 
Allowing a possible structural break in the series alters these results; see Table 2. 
In this case, support is also found for the presence of  the complex roots i and 
- i .  Figs. 7 show the marginal posterior distributions of  the rr parameters. The 
marginal posterior of the z parameter displays two low peaks, the first in 1967.1, 
where we find 12% of the probability mass and the second in 1978.2 with 49.6% 
of  the probability mass. 

The posterior odds ratios Kl and K2 for the US nondurable consumption series 
exceed one, indicating the presence of one nonseasonal and one seasonal unit root. 
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From Fig. 8 it can be seen that when we allow for a possible mean shift, the 
posterior distributions of  he, n3 and n4 move away from zero. Indeed, from the 
last column o f  Table 2 we observe that the posterior odds ratio for the presence 
of  the root - 1  drops below one. The marginal posterior density of  the break 
parameter ~ displays a clear peak around 1957.3 and 1957.4. 

In summary, allowing for possible seasonal mean shifts can alter the empirical 
evidence in favour of  seasonal unit roots. For the consumption series of  Sweden 
and the US, the Bayesian analysis yields a rather precise estimate of  the timing of  
seasonal mean shifts. When we allow for these shifts, the evidence for seasonal 
unit roots disappears. For the UK consumption series, there is no clear evidence 
for a deterministic seasonal mean shift. However, the inclusion o f  such a shift 
results in more evidence for seasonal unit roots. 

6. Conclusions 

In this paper we have presented a Bayesian approach to test for seasonal unit 
roots. Our analysis is based on a reparameterization o f  the model o f  Hylleberg et 
al. (1990), which yields parameters that appear to have a natural interpretation. 
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( - - ) :  without mean shifts; (- -): with mean shifts. 

Further, we extend the HEGY analysis by allowing for possible deterministic 
seasonal mean shifts. 

Simulation exercises demonstrate the usefulness of our approach. In particular, 
it is shown that neglecting seasonal mean shifts may incorrectly suggest the 
presence of seasonal unit roots, and that the inclusion of an unknown breakpoint 
yields more appropriate results. Application of  our method to a model that does 
not incorporate seasonal mean shifts for three consumption series results in a 
nonseasonal and one or more seasonal unit roots in the series. However, when 
we allow for seasonal mean shifts, we can 'reject' the hypothesis of the seasonal 
unit roots for two of the three series. Apparently, these seasonal mean shifts 
adequately explain the changing seasonal fluctuations in these two series. 

Our focus has been to demonstrate that ignoring seasonal mean shifts may 
incorrectly yield evidence in favour of  seasonal unit roots. Practical issues, like 
simultaneously determining the lag order of the process, have received little at- 
tention. However, choice of  the lag order may also affect unit root inference. 
Therefore, this issue should be put on the research agenda. 

Our analysis can also easily be extended to investigate nonseasonal and sea- 
sonal unit roots in bianlaual or monthly data. Furthermore, extensions to season- 
ally varying variances and/or t-distributed errors is straightforward. Finally, the 
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analysis of multiple seasonal mean shifts can be based on similar methods as 
described in this paper. 

Appendix. Markov chain Monte Carlo 

In this appendix we give a short description of the two sampling techniques 
we use in our empirical analysis, i.e., the Gibbs sampling and the Metropolis - 
Hastings sampling technique. 

To describe the Gibbs sampler, let x be a random vector which can be divided 
in d blocks (xl,...,xj,...,xd), Also, let f(x]tx_j) denote the distribution of xj 
conditional on the other random variables x_j = x\xj. The sampling method can 
be described as follows: 

Step 1: Specify starting values x ~ = (x ~ ...,x ~ and set i = 0. 
Step 2: Simulate 

xil +1 from f (xl  
x~ +' from f(x2 
x~ +l from f(x3 

x~ +l from f(xd 

Step 3: set i = i +  

i ..... xS) ,  
I Xil +1 X~,..., X~/), 
Ixi  §  , i .  X 2 ,X 4,.. . ,xd), 

xil 1, X TM xi+l "~ 
2 '""  d-l]~ 

1, and go to step 2. 

This iterative scheme generates a Markov chain, which converges under mild 
conditions, see, e.g., Smith and Roberts (1993) and Tierney (1994). After the 
chain has converged, say at H iterations, the simulated values {x i, i ~> H} can be 
used as a sample from the joint distribution f ( x )  in order to compute posterior 
densities and expectations. 

The second algorithm was introduced by Metropolis et al. (1953) and has 
been adapted for statistical problems by Hastings (1970). Let f (x )  be the target 
density and let g(x, y) be a transition probability function. The algorithm works 
as follows: 

Step 1: Specify starting values x ~ = (x ~ ...,x ~ and set i = 0. 
Step 2: Simulate y from g(x ~, y) 
Step 3: Define 

{ m i n f  f (y)g(y 'x ' )  } 
O~(xi, y )  .= [f(xi)g(xi,  yi ,  1 , f ( x i ) g ( x i ,  y )  > O, 

1, f(xi)g(x i, y) = O. 

y is accepted with probability cffx i, y) and x i+l = y and rejected with proba- 
bility 1 - a(x i, y) and x i+l = x i. 
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Step 4: Set i = i +  I, and go to step 2. 

Different choices for the t ransi t ion probabi l i ty  funct ion result  in  different spe- 

cific forms o f  the algorithm. For example,  i f  9(x i, y)  = 9(y ,x  i) the acceptance 

probabi l i ty  simplifies to ~(x i, y)  = m i n { f ( y ) / f ( x i ) ,  1 }. This  describes the original  
Metropolis  algorithm. I f  g(x i, y)  = g(y),  we get cffx i, y )  = min{w(y)/w(xi) ,  1}, 

where  w(x i) is defined by  w(x i) : =  f ( x i ) /9 (x  i) (which can be interpreted as 
impor tance  weights) .  
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