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Abstract

In this paper we give a complete analysis of the joint replenishment problem (JRP) under constant
demands and continuous time. We present a solution method for the JRP when a correction is made for
empty replenishments, and we test the solution procedures with real data. We show that the solutions
obtained differ from the standard JRP when no correction is made in the cost function. We further
show that the JRP with correction outperforms independent ordering. Additional numerical
experiments are presented.
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1. Introduction

During the last two decades much attention has been given in the literature to the
deterministic joint replenishment problem (JRP) in continuous time. In this problem it
is assumed that a major ordering cost is charged at a basic cycle time 7, and that the
ordering cycle of each item j is some integer k; multiple of 7, which is called a (k,7)
policy. Furthermore, it is generally assumed that a minor set-up cost is charged for
each item j included in a single order. In this paper we want to give a comprehensive
analysis of the JRP. First of all we present a complete theory proving some claims
made in earlier papers; second we consider the inclusion in the objective function of a
correction factor for empty replenishments, and third we make a comparison with
independent ordering.

Although many heuristics and exact methods have been proposed to solve the JRP
efficiently, no paper so far incorporates the correction factor in the analysis. In this
paper we show that the inclusion of the correction factor in the cost function may
yield very different optimal solutions in terms of the basic cycle time and the values
of the k;. We show by experimentation that this is often the case for large values of the
minor set-up costs and moderate major set-up cost. This may have a large impact on
the quality of the solution from an implementation point of view, especially when
using the deterministic JRP as an approximation to the stochastic case. Moreover, a
major theoretical shortcoming of the standard JRP is that it does not indicate whether
an independent ordering solution with EOQ applied to the individual lot sizes is
better. We show that the inclusion of the correction factor in the cost function of the
JRP yields a solution that always outperforms independent ordering. Numerical
results support this theoretical finding.
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In this paper we present a method similar to van Eijs [2], but modified to be
suitable for general integer policies (GI) with a correction factor in the objective
function. We show that the objective function with correction factor is still piecewise
convex with respect to 7 but discontinuous. Additionally, we substantiate the claim
that the methods provided in the literature to solve the JRP are optimal algorithms.

The method presented in this paper is similar to the one given in Porras and Dekker
[8], who studied the JRP under minimum order quantities for the lot sizes of
individual items included in the replenishment order.

The set-up of the paper is as follows: In the next section we give the definition of
the problem and the relevant literature review. In section 3 we present the algorithms
to solve the JRP using GI policies with and without correction factor. In section 4
numerical experiments are presented and further theoretical results are discussed. The
final conclusions are included in section 5. For clarity of the ideas presented, we
include all the theoretical details of the methods proposed in the appendices at the end
of the paper.

2. Problem definition

Consider the problem of ordering M items that can be jointly replenished against a
major set up cost S. The demand D; for item j is assumed constant and known. No
backorders are allowed. In the base formulation one seeks an interval 7 and a vector k
of k;’s which minimize the total holding and ordering costs, given by:
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where s; and #; are the minor set-up cost and unit holding cost of item ;.
The formulation for the JRP without correction factor is given below:

JRP (standard formulation)
(P) min{TC(T,k) ‘ T >0, k; 21 integers for j =1,2,...,M}

Note that a solution (k;,7) may have empty replenishments, e.g. k = (2,3), for
which the major set-up cost is still charged. Therefore, a correction factor A(k) should
be included in the objective function, as follows:
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The factor A(k) in the previous equation is the fraction of non-empty
replenishments per year. When such a correction for empty replenishments is made in
the objective function, we denote this by problem (P'?).

The following formula can be derived using the principle of inclusion and
exclusion for the evaluation of A(k) (Dagpunar [1]):
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Note that if k; = 1 for some j, A(k) = 1. In other cases it is more difficult to compute
A(k). In Appendix A we present an algorithm for the evaluation of A(K).

Both formulations (P) and (P(C)) are non-linear mixed-integer programming
problems, which are difficult to solve especially for large number of items. Goyal [5]
and other authors argue that the cost improvement gained by the inclusion of the
correction factor is only of few percentage points, and hence it should be left out.
However, Goyal does not consider any possible effect that the correction factor may
have on the optimal values of T and k;. Wildeman et al. [12] showed that the solution
of a relaxation of the JRP can be used as a lower bound for the optimal solution of the
JRP with correction factor. Jackson et al. [6] and Roundy [10] proposed the use of the
so-called power-of-two (PoT) policies, by letting k; = 27, p>0 (p: integer). The former
showed that a PoT policy for the JRP produces 94%-effective solutions with respect
to the optimal value of the objective function when using GI policies. Fang-Chuan
and Ming-Jong [3] provided a global optimization procedure for the JRP using a PoT
policy, and they showed that the optimal PoT solution contains at least one of the &;’s
equal to one. Such a solution has an associated correction factor of one. Consequently
(as pointed out by Goyal), its optimal objective value will be either equal or slightly
worse than the optimal objective value of a GI policy solution with correction factor.
In the next section we give the solution methods for (P) and (P(c)).

3. Solution methods
3.1. Solution method for problem (P)

The function 7C(7T,K) is not jointly convex with respect to 7" and k. However, for a
fixed vector k the function 7C(7) is convex in 7, with optimal 7 given by:

2

Substituting (2) back in 7C(7,k) we get the optimal 7C for a fixed k:
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Now consider the following equivalent formulation of problem (P) as suggested by
Wildeman et al. [12]:

(P) Min TC(T) = % + iz (T)

s.t. >0

where the functions z;(T) are given by:

z,(T)= ngn{ks—’T +%thjij} : kj 21 integers for j=1,..., M. 4
J

Wildeman et al. [12] showed that for a fixed T the optimal value of %; is given by:
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where b =

Let 7" and corresponding k' = k(T “") be given. Now let J; be the interval
[fi), ]“(i'l)) associated to k. Next observe that for Te [T, 7Y the arguments in
(5) increase as T — T, The optimal vector k will change when one (or more) of its
elements increases by one unit just below 7. Therefore, 7" can be calculated from:

TV = max{Tj“)} (6)
J
where
7O = 2, forj=1,..., M. )
S\ apraT T

The elements of the vector k just below 7, say k', are given by:

50— k;"’” +1 for jeJY
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where J is the set of all elements of k for which the maximum in (6) is attained.
The previous analysis allows us to make a partition on the set / = (0,00) of T values
using equation (6), with optimal k vectors given by (5). Note that we do not need a
full enumeration on Kk, since we only consider the vectors k that minimize the total
cost for a given 7. Therefore, if we can establish lower and upper bounds on 7, say



Tiow and T,,,, we only need to evaluate a finite number of intervals. We can obtain the
local minima of 7C with formula (3) inside each interval of such a partition, and
compute the best solution among all intervals.

The above procedure was first proposed by Goyal [5]. However, he did not
explicitly show that the optimality of k given by (5) determines the number of k
vectors that should be considered between 7}, and 7,,,. Therefore, in his procedure
one needs to enumerate all optimal vectors starting in k = (1,...,1). In the method we
propose in this paper, by using (5) we can directly start the searching procedure in the
optimal vector k associated to 7,,. Another pitfall of Goyal’s method, as pointed out
by van Eijs [2], is that the lower bound that he used could only guarantee optimal
solutions for strict cyclic policies, where the smallest k; = 1.

Now notice that for a given K, the optimal value of T given by (2), say T, j_l) , does

not necessarily belongs to the interval [T, 7") where the vector k" minimizes
TC. However, the overall optimal solution for 7C has an associated optimal 7, say

Topi» €qual to some T j_l) (see Figure 1). Therefore, we need to evaluate 7C only in the
intervals for which 7;?_1) e[T”, 7"y, We formalize this result in the following

theorem.

Theorem 1. Let ko, be the vector of k; values that minimize the function 7C(7T.K)

among all possible 7 values as given by equation (5). Let [T, T ") be the interval

opt >~ opt

associated with Kopt. Then Top = T, (k) ,kyeonskyy) €[50, T ).

opt >~ opt

Proof. See appendix B.
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Figure 1. Schematic representation of the searching procedure for the JRP.



The above result was not provided in previous papers to show that Goyal’s
algorithm and modified versions of it (including the one presented in this paper)
provide indeed the optimal solution for the JRP. Moreover, this result may not hold
for extended versions of the JRP, e.g. when a constraint is imposed on the lot sizes for
individual items [8] or when the correction factor is included in the objective function.
For these cases the optimal 7 may be on the boundary of a given interval in the
partition of T values.

Bounds on T

Before giving the algorithm to solve the JRP, we need to establish bounds on 7. In
order to overcome the problem associated with Goyal’s lower bound, Van Eijs [2]
proposed the following lower bound to ensure an optimal solution for GI policies:

7V =28 /TRCY

low

where TRCY is the total cost associated with a feasible solution for the JRP.

Although 7" can be improved iteratively by inserting in the last equation the

low
best TC found so far in the algorithm, for high values of the major set-up cost the
resulting lower bound can be very small.
Van Eijs uses the same upper bound as the one proposed by Goyal, given by:

TV =T"(1,...,])

upp

Viswanathan [11] presented an iterative method to obtained tighter bounds on 7 for
the JRP. Starting with the van Eijs lower bound, Viswanathan uses iteratively

formulas (2) and (5) to obtain a local optimal solution of TC, in say 7, . He shows

low *

that the function 7C is monotonically decreasing between 7.'*) and 7, . A similar

low

procedure is used to find an upper bound on 7, say Tu:,p . The Viswanathan bounds are

appropriate for GI policies and therefore we can use them in our method.

Wildeman et al. [12] uses a relaxation of problem (P), say (R), for which the
optimal solution of 7C'® is found in, say, 7(R). Then a feasible solution for the JRP is
obtained using 7(R) and formula (5). Finally, by determining the intersection between
the level line corresponding to the feasible TC and the TC'™® curve, a lower and an

upper bound on T, say 7\") and 7;% ), are obtained using bisection. This procedure

can yield tighter bounds on 7 with respect to the ones in Viswanathan [11] for a
number of problem configurations, namely for moderate major set-up costs and
relatively high minor set-up costs. Moreover, the initial Wildeman lower bound can
be further improved by repeating the bisection procedure using the best value of 7C
found so far in the algorithm, whenever 7C(T)<T'C(T(R)). Notice that given the initial
Wildeman bounds, tighter bounds on 7 can be obtained by the Viswanathan procedure
described above (for a numerical comparison on the performance of these procedures
see Porras and Dekker [9]). Based on this analysis, we proposed the following
algorithm.



Algorithm to solve (P)

Step 0. Initialization
Evaluate Wildeman bounds 7,”) and 7"’ and improve them using

low upp
Viswanathan iterative procedure.
Set k© = k(7" using equation (5).

upp

Set TC® =0, T =0 and n=1.
Evaluate T, forj=1, ..., M using formula (7).

Step 1. For k") determine 7" using (6) and set J ™ = { j: max {T"}}.
J

For k"™ = (k"™,..,k'™) evaluate T, using equation (2).

Set: TC") = i

min

{min{TC(”‘” TC(k™™ .. kY if T, e[T™, 70

0 otherwise

Obtain the elements of the new vector k™ according to (8)

2b,
andset 7"V = |——L—— ifje J*. Otherwise """ =T".
K+ 1) ;T
J p

*

Step 2.1f T™ < T,y STOP with TC

min

Otherwise set n =n + 1 and GOTO step 1.

(T,k)=TC") and T,,, =T,

min n-1°

END of the algorithm.

The above algorithm is similar to the one proposed by van Eijs [2], although
implemented in a slightly different way and with tighter bounds on the basic cycle
time. Notice that in each round of the algorithm we check whether the optimal T lies
inside the interval for which the associated vector k minimizes 7C. If not, no
evaluation of 7C is done, which may save some computation time, especially for a
large number of items.

Computational complexity of the proposed algorithm

An additional result of our algorithm comes from the use of formula (5), which
was not previously incorporated in algorithms to solve the JRP. Using (5) and noting
that the k;’s change in step sizes of one, we can evaluate the maximum number of
intervals needed to obtain the optimal solution. Thus, given lower and upper bounds
on 7' we provide the following formula:

Maximum # of steps = Zkl.(T}ow)—kl.(T )

upp
itb;#b;



For fixed T, and T,,, this number increases linearly in the number of items, M.
This has been unnoticed in the literature, as most papers give no explicit expression

for the optimal kj-values, like equation (5). Next assume that the initial list of Tj(” -

values is sorted before entering Step (1) of the algorithm. Since the items change their
ki values one by one at each step of the algorithm with only one 7}-value updated in
each round, it follows that the number of computation steps of the algorithm is O(M
log M) under constant upper and lower bounds.

In the remainder of the complexity analysis, we need to set bounds on the s and 2D
values. This comes from a practical reason, since we assume that in reality there is
always an effort associated with the handling or receiving of an item. Similarly, items
are assumed to cause holding costs when kept on stock. Thus, for s;€[smin, Smax] and
h;Dj €[hDuin, hDmax] we distinguish the following cases:

a) S fixed.

First notice that 7}, yz is proportional to 1/M, since the total cost 7C adds up M
positive terms in s; and A;D;, plus a constant term in S. For the Wildeman bounds,
since we take the intersection of a relaxation of (P) with the 7C curve, it follows by a

. . . (W) (W) . .
similar reasoning that 7,,,’and 7, ° are proportional to 1/M (for a complete analysis

low

see Porras and Dekker [9]). Therefore, from (5) we have that k(7" ) and k& (T oy

low upp
are proportional to M. From this it follows that the number of steps in the algorithm is
proportional to M*log(M). It can also be shown that the complexity to obtain the
solution T(R) of the relaxation is O(M log M), since M derivatives of TC(R) need to
be sorted in the procedure [12]. Therefore the complexity of the overall algorithm is
O(M? log M) under Wildeman bounds.

b) S increases in M but M/S is bounded.

In this case we have that 7\, and 7, remain bounded as M increases. Therefore

the number of steps in the algorithm increases linearly in M. It follows that the
algorithm complexity is O(M log M).

For SV0, the number of steps of the algorithm increases more than in the previous
cases, however it is not such an interesting case since a practical lower bound on 7'

can be used. Moreover, for small values of S the JRP is less relevant, and independent
ordering for the items should be applied.

3.2. Solution method for problem (P'”)

Now we consider the JRP when a correction factor is included in the cost function.
As before we consider the following alternative formulation of the function
TCTk):

TC'AT) = —SAT(k) + izj (T)

where the function z,(7) are defined in the same way as for 7C(7).



The problem (P“)) is generally more difficult to solve than problem (P), since the
inclusion of the correction factor makes the function 7C'” discontinuous in 7' Similar
to TC, the function TC' is not jointly convex with respect to 7 and k. As before, for a
fixed vector k the function 7C'® is convex in 7, with optimal T given by:

Z[SA(k) + Zsf}
Zh] JT |

*

T (kyyeoskyy) =

©)

Substituting (9) back in TC(T, k) we get the optimal TC® for a fixed k:

TCY (ky,....k,,) = \/ (SA(k) + Z J(Zhj ; jj
=g

Moreover, the inclusion of A(Kk) requires the evaluation of equation (1) in every
step of the search algorithm. In addition to that, numerical experiments presented in
the next section suggest that the function T ') tends to fluctuate around a certain
value as T goes to zero, rather than going to infinity as in the case of 7C (see Porras
and Dekker [8] for a detailed description). Therefore, the traditional lower bounds on
T presented in the literature are not valid anymore, and a completely new analysis is
necessary. On the other hand, since A(k)=1 if at least one &; equals one, problem (P
and problem (P) are the same for large values of 7, and therefore the traditional upper
bounds on 7 presented in the literature ([2], [11]) to solve (P) are still valid, as long as
A(k) = 1.

Lower bound on T for problem (P*“)

We will derive a lower bound on T for problem (P*)) in a similar way as in Porras
and Dekker [8]. Here we provide the main results and the reader is referred to
Appendix B for details and proofs. As in that paper, we use the following proposition

for our analysis:

Proposition 1. Given M products with associated vector k, the following holds:

i JAK) YT
;T k(T) ZT lcm(k(T)k(T)) T Z T-k(T) (10)

1#]

Proposition 1 will be used to establish upper and lower limits on the function 7 dc)(n
as T goes to zero. We give first the following definition.

Definition 1. Let a, =/2b, for i =1,..., M. For two items i, j with a;/a;e Q, where O

(i, ))

denotes the set of rational numbers, let m"”,n{ be the smallest integers for which

the following equality holds:



For ease of notation, in the sequel we drop the super index (i, ;).

Theorem 2. Given M products with demands Dj,...,Dy, and minor set-up costs
S1,...,8u. If aj/aje Q Vi, j, then the following holds:

M
s © (T —
llr%ljglfTC (T)—S[Z

:1ﬁ—0])a¢u no J+21[2ShD

and

limsup TC'“)(T) = S[z 1/2shD.
\/_ J

T—0

Note: Alternatively, the terms (7,,/2b.)”" inside the second summation of lim inf, can
be replaced by (m,,/2b; )

Theorem 2 can be extended for the case where aj/a;eR\Q, the set of irrational
numbers. As in Porras and Dekker [8] we give the following theorem:

Theorem 3. Given M products with demands Dy,...,Dy, and minor set-up costs
S1,....5m. If aj/a; € R\Q Vi, j, then the following holds:

hmTC(‘)(T) S[Z \/_J J2s,h.D,

Although for most real applications the ratios a;/a; are often truncated to rational
numbers, for which Theorem 2 is the one of practical interest, note that for arbitrary
numbers a;, a; the values of mg and ny are likely to be large. In that case, the gap
between the two limits in Theorem 2 is likely to be small.

The analysis used to establish Theorem 2, also yields a lower bound on 7. First we
give the following lemma.

Lemma 1. If aj/a;e Q Vi, j, then there exists a time value T, s.t. forany T < T the

low »

following holds:

M

< Ak)
ZT k,(T) ;no\/_ <;T k(T)

1=

In the proof of lemma 1 (see Appendix B), we find that 7'’ is obtained from:

low
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where 7}: is a time value for which the following holds (lemma 4 of Appendix B):

7}; = maX{T0

T -lem(k,(T),k (T)) = nyy[2b, = my\[2b, VT < TO}

Remark 1. The above procedure to evaluate a lower bound on 7 can yield very small
values (e.g. less than 1 hour), which may not be useful for practical purposes. In such
a case, a practical lower bound on the basic cycle time T should be established, say
one day or one hour, which is a reasonable assumption for most inventory tracking
systems. Note that 7 is just a multiplier in the deterministic JRP as the replenishment
interval for each item is giving by k;7. However, if we use the deterministic solution
of the JRP as an approximation to the stochastic case, 7’ may well be considered as a
real review time for the inventory system and the value &7 a guide on the ordering
time of item j. Moreover, for the deterministic JRP, T actually represents the precision
of the ordering interval for the items. Therefore, using a lower bound of one day on 7,
means that the items are ordered with a precision of 1 day.

Given the previous results, we now formulate the following algorithm.
Algorithm to solve (P'))

Replace the function 7C by TC*® in the algorithm to solve (P) presented in section 3.1
and use the new lower bound 7'’ or a practical lower bound on 7. Use formula (9)

low >

for the evaluation of 7., in step 1 of the algorithm.

As we can see in the numerical experiments presented in section 3, the inclusion of
the correction factor A(k) makes the function T ' discontinuous in T at the points
where the vector k changes. In this case Theorem 1 does not apply and we have to
check the extreme points of the intervals as well. Therefore, the following formula
should be used in each round of the algorithm for the evaluation of 7Cyn:

min{TC(”‘” TC(C)(/CI("_I),...,kj(\;_l))} lf Tn*—l < [T("),T("_l)]

min

T (m) _
min {min{TC("” TCO (1™ K", 7C (T k")) otherwise

min

3.3. Independent ordering

We now consider the general case of independent ordering of M items, where each
item pays the major set-up cost S in addition to its minor set up cost s;, but can be
scheduled at an own time 7}, as follows:

L (S+s) 1
(Pro) min ), L=+ —hDT, st T[>0

J
7 j=1 j 2

11



The optimal solution of (Pjp) is given by:

o [2SEs)
) GRS Y (an
hD,

Substituting (11) back into the total cost function yields the optimal cost for
independent ordering:

M
TCry = > \J2(S +5,)h,D,
j=1

We now would like to prove that the solution of problem (P always outperforms
the independent ordering solution given by (11), while this does not need to be the
case for problem (P).

Let Tj* be given by equation (11) and let € > 0. By continuity of the term #;D;T it
follows that there exists ¢, > 0, j = 1,..., M, such that for all T satisfying |T - T/| J

we have:

—lhDT +1hDT<—
M

2// 2//

Next realize that if we choose the basic cycle time 7T} in (P(C)) small enough we can
find integers k;, j = 1,..., M, s.t. Tj <kT,< Tj* +0, Vj. Hence, using inequality (10):

M

SA(k)+iks += Zh TDjSSiﬁat kT
/1 j

J=1 % J=1"%j%p J=1 %

1 M
—Zhjij,,Dj

J =14 =

G S .
IT* +ZT* Zh DT +¢

j:

Notice that the combination 7}, kj, j = 1,..., M is a feasible solution to (P) and hence
TCY) is less than the first term of the previous inequality. Since the previous

min

calculation can be done for all €0, we have proved that 7C') <TC,,. A similar

result can be obtained for ordering only a subset of all items 1ndependently. We
formalize this result in the following theorem.

Theorem 4. For the standard formulation of the JRP the following holds:

TCY) <TC,,

min

As a side result, notice that from Theorem 3 it follows that the limit as 7—0 of
TC'AT) gives the total cost of the system assuming that the items are ordered
according to their EOQ (evaluated with s; alone) and that each item pays an additional
set-up cost S in every replenishment. That is, each item is replenished every

12



\2s;/(h;D;) units of time and pays an additional annual cost of S/./2s;/(h,D,) .

Note however that this result differs from limy_,o 7C(7), which yields infinite costs.

4. Numerical experiments

In this section we will show by numerical experimentation that the solutions of
problem (P) and problem (P(c)) given by the above algorithms can be radically
different. We apply the algorithms to the following data taken from a real case [7]
(that case did not provide s;’s, since the minor set-up costs where replaced by a
minimum order quantity for the lot size of each item j included in the order):

M = 8 items
S =950 euros
h;j=0.325 euros/unit-year for all j

Table 1 shows the demand rates for the items, where values for demand set 1 were
taken from the case and values for demand set 2 were randomly generated from
[5000, 50000]. For the above data we performed a set of experiments for values of the
minor set-up costs ranging from 5 to 50,000 euros, as shown in Tables 2-3. This
choice of values of s; allows us to analyze the effect on the optimal solution of the
JRP under two conditions: 1) when there is an incentive to include the items in every
replenishment opportunity (low values of s;) and 2) when ordering the items in a
multiple time of the basic cycle time makes more economical sense (for large values
of s;). The average time between replenishments (7,,) is also reported for the optimal
solution, where 7,,; = T/A(K).

Table 1. Demands per year, D;
Item j Set 1 Set 2

1 18,304 17,906
2 20,176 5,203

3 16,796 13,368

4 10,140 45,376

5 21,216 43,449

6 10,140 22,460

7 25,428 35,872

8 25,428 9,567
Table 2. Solutions for demand set 1
Solutions with correction factor Solutions without correction factor
sj:j=1,...,8 | TC@min T K opt A(K) Tovg TCmin Tont k opt Tag  %Diff. TCmin
(weeks) (weeks)

5 9,747 " (1, 1 " 9,746.72 " " 0.00
50 11,382 12 1, 1 12 11,381.72 12 12 0.00
150 14,364 16 (1, 1 16 14,363.50 16 16 0.00
350 18,970 21 (1, 1 21 18,969.53 21 21 0.00
700 25,070 27 (1, 1 27 25,070.43 27 27 0.00
1,050 29,953 32 1.1, 1 32 29,953.45 32 32 0.00
1,500 35,251 38 1., 1 38 35,251.36 38 38 0.00
2,000 40,330 44 1.1,...,1) 1 44 40,329.78 44 44 0.00
3,000 48,846 25 (2223.2,3,2,2) 0.67 37 48,930.12 53 AA1,1,1,1,1,1) 53 0.17
4,000 56,018 28 (2223.2,3,2,2) 0.67 43 56,210.40 54 (1,1,1,2,1,2,1,1) 54 0.34
5,000 62,370 32 (2223.2,3,2,2) 0.67 47 62,638.57 60 (1,1,1,2,1,2,1,1) 60 0.43
10,000 87,465 44 (2,2,2,3,2,3,2,2) 0.67 67 87,835.75 45 (2,2,2,3,2,3,2,2) 67 0.42
20,000 123,168 62 (2,2,2,3,2,3,2,2) 0.67 94 123,431.73 63 (2,2,2,3,2,3,2,2) 94 0.21
40,000 173,709 21 (9,9,9,12,8,12,8,8) 0.25 84 173,999.83 88 (2,2,2,3.2,3,2,2) 132 0.17
50,000 194,081 24 (9,9,9,12,8,12,8,8) 0.25 94 194,412.49 99 (2,2,2,3.2,3,2,2) 148 0.17
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Table 3. Solutions for demand set 2

i with correction factor i without correction factor
sj:j=1,..,8 [ TC¥min T K™ opt A(k) Tavg TCmin T opt k opt Tag  %Diff. TCmin
(weeks) (weeks)
5 11,150 9 1,1,...,1) 1 9 11,150.11 9 1.1,...,1) 9 0.00
50 13,021 " 1,1,...,1) 1 " 13,020.52 " 1.1,...1) " 0.00
150 16,358 13 (1.2,1,1,1,1,1,1) 1 13 16,358.40 13 (1.21,1,1,1,1,1) 13 0.00
350 21,439 16 (1,2,1,1,1,1,1,2) 1 16 21,438.65 16 (1,21,1,1,1,1,2) 16 0.00
700 28,121 22 (1,2,1,1,1,1,1,2) 1 22 28,121.34 22 (1,21,1,1,1,1,2) 22 0.00
1,050 33,445 24 (1,22,1,1,1,1,2) 1 24 33,445.36 24 (1,2,2,1,1,1,1,2) 24 0.00
1,500 39,227 28 (1,3.21,1,1,1,2) 1 28 39,227.37 28 (1,3,2,1,1,1,1,2) 28 0.00
2,000 44,774 29 (2,3.21,1,1,1,2) 1 29 44,773.62 29 (2,3,2,1,1,1,1,2) 29 0.00
3,000 54,114 18 (3,6,3,2,2,3,2,4) 0.67 27 54,143.72 35 (2,3.21,1,1,1,2) 35 0.06
4,000 61,953 20 (3.6,4,2,2,3,2,4) 0.67 30 62,116.08 41 (2.3,21,1,1,1,2) 41 0.26
5,000 68,898 22 (3,6,4,2,2,3,2,4) 0.67 34 69,175.66 45 (2.321,1,1,1,2) 45 0.40
10,000 96,389 31 (3.64,2,2,3,2,4) 0.67 47 96,914.44 31 (3.6:4,2,2,3,2,4) 47 0.54
20,000 135,568 44 (3,6,4,2,2,3,2,4) 0.67 66 135,941.58 44 (3,6,4,2,2,32,4) 66 0.28
40,000 191,191 62 (3.6,4,2,2,3,2,4) 0.67 93 191,456.32 62 (3,6,4,2,2,3,2,4) 93 0.14
50,000 213,639 69 (3.6,4,2,2,3.2,4) 0.67 104 213,876.66 69 (3,6,4.2,2,3,2,4) 104 0.11

In Fig. 2 we show a plot of the functions TC(T) and TC*(T) for demand set 1 and
s5;= 40,000 for all items. As one can see from the plot, the function 7C is smoother

than 7C'®, since the latter exhibits discontinuities for each interval [7®,7%™") with

associated constant vector k'"". Furthermore, we can see that the function T C® does
not go to infinity as T approaches to zero, as stated in Theorem 2.

From the results presented in Tables 2-3 several conclusions are drawn. First note
that for small values of s; (s; < 2,000), the optimal solutions for (P) and (P(C)) are
exactly the same. This is due to the fact that for these values of s; the optimal k’s are
given by k;= 1 for some j, with the corresponding correction factor equal to one. From
equation (6) it follows that as the s;’s decrease, so does the time 7; in which the vector
k changes its last coordinate(s) from 1 to 2 (step 1 of the algorithms). In other words,
for small s;’s the optimal value of the function 7C or T "9 is likely to lie in the region
in which at least one element of k equals one.

1g0,000 1 elros

Plot of 7C and 7C'©
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Figure 2. Plot of TC' and TC(T)

For large values of s; (s; > 3,000) the optimal values of the objective function for
problems (P) and (P') differ no more than 0.54% in all problems solved for both
demand sets. Nevertheless, for most of the cases, the optimal 7 and k differ
significantly. In all problems solved, the optimal 7" obtained by using formulation
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(P is lower or equal than the one corresponding to problem (P). The inclusion of
the correction factor prevents the optimal 7 to reach high values, and the vector k
takes on values that allow more frequent replenishment occasions. For instance
consider the solutions for demand set 1 with s;= 40,000. The optimal review time for
problem (P) is 7“)0,,, =21 weeks, with an average review time of 84 weeks, whereas
for problem (P) these values equal 88 and 132 weeks, correspondingly. We can
observe this behavior graphically in the plots of Fig. 2. If we use the deterministic
JRP as an approximation for the stochastic case, when the minor set-up costs are high,
using formulation (P')) the system gets more opportunities to be reviewed. This may
have a great impact on the performance of the system.

In addition to the previous experiments, we carried out a large set of experiments
for 5, 10, 15 and 20 items using the real case as base but with expanded ranges for the
demand and holding costs. Accordingly, for each problem size we considered 7
different values of the major set up cost S (1, 25, 75, 150, 500, 1000 and 5000).
Therefore we considered 28 different problem instances. For each of them we solved
100 problems using both algorithms plus independent ordering, with demands
randomly generated from [5000, 50000], holding costs randomly generated from
[0.1,1] and minor set-up costs randomly generated from [50, 500]. Thus, 2800
different problems were solved with each algorithm. We present the numerical results
in Table 4, where the average values are reported over the 100 demand realizations.
To be fair in the comparison, we implemented an additional step in the algorithm for
problem (P) where the function 7C is corrected with the correction factor associated
with the optimal vector Kop: (Peorr). Both values of TC are reported. For the
independent ordering solution (with optimal total cost 7C),), the lot size for each

item j is evaluated using formula (10) together with D;. Values of Tjgy, prac: between
0.001 and 0.008 years were used in the algorithm for problem (P). The average
number of intervals evaluated and the average CPU time in seconds is reported for
each algorithm. The percentage difference between 7C values is calculated from:

B Vat
o0 ey = T TC o

A similar formula was used for %Diff. TCio, %Diff. T,p and %Diff. T,yg.
From the numerical results presented in Table 4 we derive the following conclusions:

1. As the major set-up cost S decreases, T,y also decreases and the savings with
respect to independent ordering become smaller. Eventually it does not pay off
anymore to apply the joint replenishment policy and therefore applying EOQ suffices.
Note however that for some problem instances, even for low S, important savings
with respect to independent ordering can still be achieved. E.g. for 20 items and S in
the range 25~75, savings of 5.6~11.8% are achieved w.r.t independent ordering. For
these problem instances the percentage difference in average replenishment time can
be as high as 26.8% (for S = 25). Note that the solution of (P(C)) always outperforms
the independent ordering solution, while this is not always the case for (P) (see the
result for 5 items and S=1).
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Table 4. Comparison of algorithms for the standard JRP

Av. no. of intervals Average TC optimal %Diff. | %Diff. | Average Tox'" | %Diff. | Average T., | %Diff. | Average T, Average T 5, Av. CPU
No. of Algorithm for indep. Algorithm for TCon | TC"o |  Algorithm Topt Algorithm Tag | Algorithm Algorithm time in sec.
items S (P) (P) | order. P) (Peor) (P) [ (Peor- P) P) (P*) (P) (P (P) (P*) P) P9 | (P) (P
5 T 840 2524 | 12212 12220 12216 12,109 0.88%| 0.8%| 0072 0024| 67.3%| 0.108 0.071| 345%| 0008 0003 0170 0.170] 33 137
25| 79  191.3 [ 14226 13908 13902 13875 0.20%| 2.5%| 0.135 0.108| 20.1%| 0.139 0.126] 9.2%| 0072 0005 0176 0.176] 05 84
75| 45 1907 | 15368 14,281 14281 14,259 0.15%| 7.2%| 0154 0139 9.6%| 0154 0144 6.4%| 0105 0005 0189 0.189[ 04 84
150 | 29 1912 [ 16917 14774 14774 14,774 0.0%| 12.7%| 04175 0.475| 00%| 0175 0175 0.0%| 0131 0005 0201 0.201 03 85
500| 22 1713 | 22719 16592 16,592 16,592 0.0%| 27.0%| 0219 0219 0.0%| 0219 0219 00% 0174 0006 0229 0229 03 7.3
1000| 16 1383 | 20021 18782 18,782 18782 0.0%| 35.3%| 0250 0250 0.0%| 0250 0.250| 0.0% 0200 0007| 0263 0263 02 57
5000| 15 1391 | 58674 30791 30,791 30,791 0.0%| 47.5%| 0429 0429| 0.0%| 0420 0429] 00%| 0299 0007| 0431 0431 02 56
10 1| 4224 8283 | 28965 28,964 28,951 28,688 0.91%| 1.0%| 0034 0011| 67.7%| 0063 0038 39.0%| 0.003 0002] 0184 0.184] 369 3645
25| 261 3156 | 27,621 26815 26787 26,719 0.26%| 3.3%| 0096 0.070| 27.3%| 0.111 0.093| 16.5%| 0042 0005 0.164 0.164] 1.99 695
75| 109 3142 [ 20933 27,260 27,260 27,214 0.17%| 9.4%| 0433  0.111| 16.3%| 0.133 0421 87%| 0079 0005 0172 0.172] 159 684
150 | 7.0 3140 | 33,059 27822 27,822 27,822 0.0%| 15.8%| 0147 0.147| 0.0%| 0147 0147 00% 0104 0005 0177 0477 15 686
500 | 41 2472 | 44,694 30,043 30,043 30,043 0.0%| 32.8%| 04176 0.176| 0.0%| 0176 0.176] 00%| 0136 0006] 0203 0203 07 54.1
1000| 34 1792 | 57,271 32681 32,681 32,681 0.0%| 42.9%| 0208 0208 0.0%| 0208 0208 00% 0159 0007| 0223 0223 06 41.0
5000 | 1.7 1799 | 116219 47,843 47,843 47,843 0.0%| 58.8%| 0318 0.318] 0.0%| 0318 0.318] 0.0%| 0234 0007| 0325 0.325| 03 405
15 1] 8088 1633.4 | 37,076 37,951 37,935 37,568 0.97%| 1.1%| 0.024  0.005| 79.1%| 0.039 0.012| 68.3%| 0.002 0.001| 0.123 0.123| 929 9745
25| 414 4653 | 41407 39,994 39932 39,740 048%( 4.0%| 0088 0.061| 31.2%| 0090 0070 222%| 0037 0004 0121 0121 7.0 328.8]
75| 265 4661 | 45037 40,616 40616 40,527 0.22%| 10.0%| 0095 0.071| 25.2%| 0.095 0079 17.6%| 0056 0004 0150 0.150| 63 328.6)
150 | 17.4 4662 [ 49915 41,377 41377 41377 0.0%| 17.1%| 0127  0.127| 0.0%| 04127 0127 00% 0073 0004 0.165 0.165] 4.2 328.0
500| 83  338.1 | 67,947 43,800 43890 43,890 0.0%| 354%| 0160 0.160| 0.0%| 0.160 0.160| 0.0%| 0.111 0005 0.182 0.182| 3.4 1954
1000 61 3312 | 87,341 46,896 46,896 46,896 0.0%| 46.3%| 04173 0173 0.0%| 0173 0173[ 00% 0133 0006] 0205 0205 3.1 156.1
5000| 1.7 3117 | 177891 64,408 64408 64,408 0.0%| 63.8%| 0.269 0269 0.0%| 0269 0.269] 00% 0200 0007| 0282 0282 23 117.0
20 1] 13684 29108 52,157 52,109 52,096 51,082 195%| 21%| 0024 0.004| 83.9%| 0035 0009] 75.6%| 0.002 0001 0.103 0.103| 189.1 1396.4
25| 1032 6540 | 54764 52,746 52634 51,703 1.77%| 5.6%| 0059 0.037| 36.8%| 0081 0059| 26.8%| 0021 0.004| 0.164 0.164| 13.4 608.1
75| 442 6534 | 59645 53253 53226 52,581 121%| 11.8%| 0092 0.065 29.8%| 0.093 0074 204%| 0042 0004 0169 0.169) 7.0 606.1
150 | 217 6538 | 66,118 54,692 54,692 54,102 1.08%| 18.2%| 0125 0107 14.7%| 0125 0.115| 84% 0075 0004| 0168 0.168) 6.2 606.7]
500| 96 4583 | 89389 57,145 57,145 57,145 0.0%| 36.1%| 0156 0.156| 0.0%| 0.156 0.156] 0.0%| 0.114 0005 0.184 0.184| 4.1 4466
1000| 7.4 4308 | 114,543 60210 60,210 60,210 0.0%| 47.4%| 04172 0.472| 0.0%| 0472 0172 00%| 0134 0006| 0202 0202 3.8 3664
5000| 31 3582 | 232438 78350 78,350 78,350 0.0%| 66.3%| 0.258 0258 0.0%| 0258 0.258] 0.0% 0196 0007] 0267 0.267] 29 3186

(1) All time units are in years

2. For moderate values of the major set-up cost (S = 150), both algorithms yield the
same solution for 5, 10 and 15 items. However for 20 items the solutions are different,
with the algorithm for (P') achieving a lower average replenishment time (difference
of 8.4%). For this problem instance the savings w.r.t. independent ordering are of
18%.

3. For large values of the major set-up cost (S > 500) both algorithms yield the same
solution in all problems solved. However, the effect of increasing S becomes less
important as the number of items increases, as can be seen for moderate values of S.

4. Although we only present in Table 4 summary information for the experiments, i.e.
average values over 100 random demand realizations, we pair-checked the statements
in the solutions of both algorithms for all individual problem instances. The

statements 7, >T), T, >T) and TC') <TC,, were always confirmed.

opt = Topt > Tavg avg min

5. Although the computation time associated with the solution of (P')) is much higher
than that of (P), we believe that for the cases discussed in the previous paragraph the
algorithm with correction factor is relevant and can yield better solutions, especially
when we use the deterministic JRP as approximation in stochastic environments.
Moreover, the JRP is related to tactical managerial decisions, as the JRP is solved
only once over a certain period of time (months up to a year). In this respect the high
difference in computation time between both algorithms becomes less relevant.

The above numerical observations can be generalized in the following empirical
observations.

Empirical observation 1. The general shape of A(Kk) follows a decreasing pattern in k
as T decreases, as can be seen in the plot of Fig. 3.

Explanation. From equation (1) and the principle of inclusion and exclusion, we can

establish an upper bound on A(k) by replacing the least common multiple with the
multiplication of the integers k;, as follows:
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From equation (5) it follows that as T decreases, the upper bound on A(k)
decreases, and therefore the general shape of A(k) will be decreasing in k.

Al

:/mﬂﬂ

F‘.

T (weeks)

Fig. 3. Plot of A(k)

Note: It should be pointed out that often the k; values in the optimal solution are
obtained when the value of A(k) observes a drop. This result is not surprising since
this will happen when the values of the %;’s allow a better coordination between the
orders for the different items. In this case, some of the &; values will be either equal to
each other or multiple of each other. For these values of the &;’s, A(k) will be smaller
than when no coordination is observed.

Empirical observation 2. Let 7,, and TO;C,) be the optimal basic cycle times for

problems (P) and (P,.), with corresponding optimal vectors k_. and kf;), Then the

opt

following has been observed in the numerical experiments:

If A(kY))=1 then 7o) =T, and TC'(T\))=TC(T,,). For Ak))<1, in all cases
we observed that 7;(;) <T, and TC (T (L)) <TC(T,,) . Moreover, if k(‘) #k,, then
T, <T,.

Note: We failed to find a formal proof of this finding. One can prove that the
derivative with respect to 7' of TC” is larger than that of TC, implying that any
minimum of 7C has a minimum of 7C left of it. Moreover, if A(K) were monotonic
in 7, then the result could be shown. However, there are some cases where it is not.

Remark 2. For large values of the minor set-up costs s;, it follows from equation (5)
that the optimal &;’s are likely to be large. Therefore, by the result of the previous

observations it follows that in this case often Tn(pct) <T,,- This is observed in the

numerical results presented in Tables 2-3. The equivalent result is found in Table 4
for small values of S. This can also be seen graphically in the plots of Fig. 2.
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In addition to the above results, we investigated the behavior of the system when S
is very small in comparison with s; for j = 1,..., M. In order to gain some theoretical

insight in this respect, we let S—0 and observe that problem (P) (or equivalently
(P))) becomes:

m%hmﬂU%n=f%MW@D}uT>o

J

s, 1 .
where ¢j(ij)=k+T+Ethjij forj=1,..., M.

J

It is not difficult to verify that ¢ (k,T) is strictly convex in (&;7), with a minimum

attained in: (k,T ) =./2b .. On the other hand, in Appendix B we show that

lim 7" () = [2b, .

Notice that the smaller 7 is, the closer T-k,(T) is towards .|2b; . Accordingly, for

S—0 we expect 7" — 0 as well. This coincides with the observation that for very low
major set-up cost, the optimal solution is not to use joint replenishment at all. In other
words, it is optimal to check the system in a continuous fashion, and to order each
item j independently every (k,T )" units of time. This theoretical result is illustrated in

the numerical example shown in Table 5 (it can also be observed in the results
corresponding to S =1 in Table 4).

As we can see in Table 5, as S goes to zero, the vector of optimal replenishment
times defined by ((k;7)*,(k2T)*,..., (kyT)*) tends to its limit given by:

lim(K(T)T)" = ((2b;,2b.....\/2b,, )

and the objective function goes to its limit given by:

}%@Wﬂ—ﬁz+fpj%/

Table 5. Demand set 2 with varying S and fixed s;= 2,000

s TC“min Topt (Weeks) Kopt Ak) Tavg
1000 44,860.3 32 (1,3,21,1,1,1,2) 1.000 32
500 43,867.2 15 (3,6,3,2,2,3,2,4) 0.666 22
100 42,8827 14 (3,6,4,2,2,3,2,4) 0.666 21

50 42,757.8 14 (3,6,4,2,2,3,2,4) 0.666 21

10 42,611.2 25 (18,32,20,11,11,16,12,24) 0253 10

1 42,557.9 1 (38,71,44,24,24,34,27,52) 0.163
0.1 42,550.8 0.9 (48,90,56,30,31,43,34,66) 0.149

0.0001 42,549.4 0.7 (61,113,71,38,39,54,43,83) 0.135
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5. Conclusions

In this paper we presented a complete analysis for the JRP, by showing that the
optimal methods found in the literature to solve the JRP provided indeed optimal
solutions. Furthermore, we provided an efficient optimal solution method to solve the
JRP when a correction is made in the cost function. We showed that although the cost
improvement when using the correction for empty replenishments is only of few
percentage points, the quality of the solution in terms of optimal 7 and k is higher.
Particularly this proves to be the case for large values of the minor set-up costs and
moderate major set-up costs. We further showed that the solution with correction
factor outperforms the solution given by applying independent ordering using EOQ’s.
This is not the case for the formulation of the problem without correction factor,
which proves formally that this is a particular case of the model with correction
factor.
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Appendix A

In this appendix we provide an algorithm for the evaluation of the correction factor
A(K). Notice that the amount of work for the evaluation of (1) increases exponentially
with the number of items. Nevertheless, we show that in many cases the size of the
vector k can be reduced and therefore also the number of terms in (1). First observe
that for a given a vector k with some of its elements being equal or multiples of each
other, it is easy to verify the following: formula (1) will give the same numerical
value for A(Kk) if we apply it to a reduced vector, say kyew, With its elements extracted
from the original k and satisfying: ki/k;gN for all related-pairs i,j. Since A(Kpew)
counts the fraction of effective replenishments, it is clear that it will also include the
replenishments in which products with %; element of k take place. In such a case, we
can reduce considerably the amount of work needed to evaluate (1).

Given a vector k = (ky, k»,..., ky) the following algorithm is used to evaluate the value
of A(k) using formula (1).

Algorithm for the evaluation of A(K)

Step 1. 1f kj=1 forany j = 1,..., M, then A(k) = 1. STOP.
Step 2. Re-arrange the elements of k s.t. k&, <k, <---<k,, and define the set
K= {kl, kz,..., kM}
Set R” =K.
Set D(0) = dim(K) and n = 1.
Step 3. Forj=nto D(n-1)-1 do
if kj1/k, €N then R = RV (k1) else RV = RV
Next j
Set K = R” and D(n) = dim(R?).
Step 4. If D(n) = n GOTO Step 5.
Else setn=n+ 1 and R" " =K. GOTO Step 3.
Step 5. Apply formula (1) to the new vector Kpew With elements given by K.

Appendix B

Proof of Theorem 1 .
First note that from (2) it follows that T (kj,...,ky) is monotone decreasing in k. Now

let k” be the adjacent locally optimal vector to key for 7> 7" and suppose that
T'(k )>To(;,’ V. By the convexity of TC(T) it follows that TC is decreasing in
[Z0),T,") which implies that the minimum of 7C is found in T, " . It follows that

opt * = opt

opt

TC(T) is increasing for T >7, . Again by the convexity of TC this implies that
"k <7y =T (k") <T (k,,), which is a contradiction by the monotonicity of
T". Therefore, T (k,,)<T,, " and the minimum of 7C is to the left of 70 ".

Proceed in a similar way to show that 7' *(kopt) >T" implying T, = T (K,p) - [

opt >
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Proof of proposition 1
First note that the inequality in proposition 1 is equivalent to:

L1

- — (k) —
i=1 k (i, /)dl,...M} Zcm(kl,k ) Z i

1

Next notice that since the fraction of replenishments of item i per year is (1/k;) the
RHS of the above inequality holds. Now realise that through the principle of
inclusion-exclusion the number of non-empty replenishments due to item i is larger
than the number of replenishments of item i minus the joint replenishments of pairs of
products including item i. Hence, the LHS of the inequality holds. [

Note: If at least one of the ;= 1, then A(K) =1 and 7' C(C)(T .K) coincides with TC(T k).
We use proposition 1 to establish a lower bound on 7 for problem (P) and the basis
for Theorem 2 and Lemma 1. First we have:

kj(T)z{—%Jr%w/Hgbw —% %,/ _k(T)<— ,/

Multiplying both sides of the above inequality by 7 and taking the limit as 7 goes to
zero yields:

lTiiréT-kj(T)z 2b, =a,

In the following analysis, we will see that the behaviour of the second term in the
LHS of (10) as 7—0 is very much determined by the nature of the ratios aja;.
Although for practical purposes these ratios can be considered as rational numbers,
we found an interesting behaviour of the product 7-lem(kd(T),k(T)) for T—0 when the
ratios are regarded as irrational numbers, as is the case when demands are continuous
variables, rather than discrete (see Porras and Dekker [8]). Therefore, we consider
both cases in our analysis.

Accordingly, we first consider the case for which the g;’s are rational numbers, and
we proceed in a similar way as in Porras and Deker [8]. Let R\Q denote the set of
irrational numbers, where ‘R is the set of real numbers and Q the set of rational
numbers.

We first try to construct a subsequence of T going to zero, say T, /=1,2,... s.t.

T(an

ki(T(N/))={—%+% 14 8bi —‘le.m

and

8b.
kj(T<Nf>)={_%+l 1+ —1 —‘zN,'n

2 TW?
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where m, n are given integers with gcd(m, n)=1and N, e Z".
Hence, lem(k,(T""),k,(T""))=N,-m-n

Such a subsequence of 7 should satisfy the following system for N;, /= 1,2,...

N,m—1<—l+l 1+ Sb"z < N,m
2 2\/ 7
1 1 8b,
Nn—-l<——+— [l+—=<Npn
2 2 70D

Or equivalently:
8bi < T(Nl) < 8bi
QNm+1)* -1 QNm-1)" -1
and
8b] < (Ny) 8b/
Q@Nn+1)* -1 (2Nn-1)" -1

From the previous system it follows that we can find such a sequence of 7 ’s if and
only if

8b, . 8b,
QNm-17 -1\ @Nn+1) -1

and

8b, 8b,

J > i

QNn-17-1"\@Nm+1)> -1

Letting N, — oo we obtain:

Nn*+n n
a, < ————a, VN, =a, <—aq,
Nm™—m m

and

Nn’+n n
a, > ————a, VN, =a,>—aq,
Nm” —m m



The above inequalities yield: a, = iai (12)
m

This implies that the only m, n for which

, 8b.
e ] {_Ll » }N
2 2 TV 2 2 TWD

s . . a m
have an infinite number of solutions N, is given by —/ =—. Let us call these values
n

J

m{"”, n$"*" . For simplicity of notation, in the sequel we drop the super index (i, /).

Next note that for 7" = 2—])’ , N=1,2,... we have such a sequence for
Nmy(Nm, +1)

which:

; 1) (N) N,
im (T Lem(h, (T K, (7))

Ctimd — 20 Ny eny b= limd | 22N L o
Ni=o |\ Nymy (Nmy, +1) N—el \ Nymy, +1

Observe that we can also select T = |———.—— N =1,2,... Using this value
Nny(Nn, +1)

and equation (12) we have:

tim (7™ - lem(k (T™),k,(T™))) = my \[2b, =y [2b,

N, >

Now consider an arbitrary m, n given with gcd(m,n) = 1 and a time T for which

f ) / 8b.
—l+l +8—bz’ =N-m and —l+l 1+— |= N -n for some integer N > 0.
2 2 T 2 2 T

Note that N satisfies the following system:

L —1+1/1+8£;" £N<L 1+1/1+8bz"
2m T 2m T

(13)

System (13) implies that
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) 8b. 8b. .
R —1+1/1+8—b2’ <L 1+,/1+—~ | and L 1+—~ <Ly 1+8bz’
2m T 2n T 2n T 2m T

Rewrite the above system as follows:

VTP +85, =T _m
JT? +8b, +T n

JT°+86,-T
JT?+8b +T m

Solving the above system for 7 yields:

2
%”a—m@j
T> m n =T

(mHJ[nbi +b’) ’
n m

Using the root 7'= 0 in the above system of inequalities yields that 7, , is nonzero if

b, .

L L __ , similarly as the result found in Porras and Dekker [7].
n ,/bj a,

Let ]}; = min {T n}.

{(m,n)eN:m<mg,n<ng} m,

Now consider a T < T:j and let w.l.o.g.
k(T)=N""-m, k;(T)=N"-n for some m,n,N"’ eN

with ged(m,n) = 1, and from (13) we have that:

: 8b,
ND > max]——| —1+ 1+8—b; ,L —1+,1+—F |}
2m T ) 2n T

Then,

T -lem(k(T),k (T)) = T-ND.m-n

: 8b,
ny2b, if L —1+1/1+8—b2’ >L =1+ 1+
> 2m T 2n T (14)

m.,| 2bj otherwise
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Since T < ij we cannot have by (14) both m <m, and n <n,. Hence, either m > m,

or n>n,.Inboth cases T- N -m-n>n,./2b, =my,[2b; .

From the previous analysis we have established the following lemma:

Lemma 4. If 4 € Q Vi, j, then the following holds:
a.

1

! I | .
OS < — = foran T<T ..
T-lem(k(T),k,(T)) ~ ngJ2b,  my2b, Y=

Proof of Lemma 1
By lemma 4 and equation (10) the result follows. [

Lemma 5. If 4 € Q Vi, j, then the following holds:
a.

1

limsup ! = ! = !
ro0 T -lem(k(T),k,(T))  ny\2b,  my,|2b,

and

liminf ! =0
750 T -lem(k,(T),k;(T))

Proof. A large part of this lemma follows from lemma 4 and the analysis preceding it.
What remains to be proved is that the liminf as 7—0 is indeed 0. For this part suppose
w.l.o.g. that a; > a;, implying that k(7) > k(7) for T small. Note that as 7—0, k(7)
takes all possible integers 1,2,... Let a1, o, a3,... be an increasing sequence of prime
numbers and let 7’ be the T-values for which k(T“)=a,, 1=1,2,.. Now note

that for 7 small enough lem(k,(T'*"),k,(T*“")) = k,(T*“") -k ,(T**") and hence,

lim —= 1(a> oy = lim s (a1> @)
re o T Dem(k (T, ke, (T°7)) - 100 T (TH7) - ke (TH7)

1
lim (T & (T“7))- lim (k,(T))
T 50 -

T 50
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Proof of Theorem 2

By lemma 5 we can evaluate the limit as 7—0 on the LHS of inequality (10) and
since the limit exists, the first part of the theorem follows. For the second part take the
limit on the RHS of (10), and since this limit exists and it is independent of a;/a; Vi, j,
the claim of the theorem follows. [

Before giving the proof of Theorem 3, we need first the following lemma.

Lemma 6. If a,/a, e R\Q Vi, , then

lim : =0
70T - lem(k,(T), k,(T))

Proof. Let lem(k(T),k,(T)) =n(T)k,(T)=m(T)k,(T) for some integers n(T), m(T).
Suppose that there is a bounded subsequence n(T"),m(T"”), r = 1,2,..., such that
740 as r—o and n(T")< K, m(T")< K for some K >0. Since this implies
that there are only finitely many different values of n(T"),m(T""), there exists a

second subsequence n(T)),m(T*) of integers such that n(T))=n, m(T)=m eN
and

no_.on@Y kT TVETY) a
—=1lim =lim—Z =lim—~——=-1
m  so» m(T(S)) s ki (T(S)) s> T(é)kl_ (T(s)) a

1

However, we assumed that a/a; was irrational, so there can be no bounded
subsequence, hence n(7T) , m(T) — as T—0 and

lim ! = lim;
TOT lem(k (T),k,(T)) 70 (k,(D)T) - n(T)

=0 as required. [

Proof of Theorem 3
By Lemma 6 we can take limits on both sides of inequality (10) and since both limits
exist, the limit of A(k)/T exists and is equal to the stated value. [
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