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Abstract 

In this paper we consider a single-product, single-echelon production and inventory system with product returns, 
product remanufacturing, and product disposal. For this system we consider three different procurement and inventory 
control strategies, i.e., the (sp,Qp,sd,N) strategy, the (sp,Qp,sd) strategy, and the (sp, Q,,AJ) strategy. The control 
parameters in these strategies relate to the inventory position at which an outside procurement order is placed (sp), the 
inventory position at which returned products are disposed of (sd), the outside procurement order quantity (Q,), and the 
capacity of the remanufacturing facility (N). For each of the strategies we derive exact expressions of the total expected 
costs as functions of the control parameters. Main objective of this paper is to compare the performance of each of the 
alternative strategies with respect to costs, under different system conditions. 

Keywords: Production planning and inventory control; Remanufacturing; Disposal; Re-order point and disposal point 
strategies for inventory control; Stochastic models; Markov chains 

1. Introduction 

Today, authorities force by means of environmental laws that manufacturers reduce the amount of waste 
generated by their products. Also, environmental conscientious consumers put pressure on manufacturers to 
start waste reduction programs. One option to reduce waste is to remanufacture. While remanufacturing, 
(components of) used products are returned from the market. Upon return, the used products are tested, 
cleaned, and repaired. Typical for remanufacturing is, that after these operations the product is suitable to be 
re-sold in the market of new products. This implies that remanufactured products need to satisfy the same 
quality standards as new products. 

Although product remanufacturing influences almost all functional areas in business (see Cl]), we restrict 
ourselves in this paper to the operations management related consequences of remanufacturing. In particu- 
lar, we focus on production planning and inventory control strategies with remanufacturing. 
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In the past, most articles that appeared in the operations management literature dealt with inventory 
control of spare parts. Typical assumptions in models for spare-parts are, that, (i) demands for new products 
are generated by product failures (returns) only (implying perfect correlation between demands and returns), 
and (ii) the number of spare parts in the system is kept constant over time. This is why spare parts inventory 
control models are often indicated as ‘closed-loop’ models. Overviews on closed-loop models are found in 
Nahmias [2] and Cho and Parlar [3], among others. 

Since recent, a growing interest for remanufacturing can be observed in the operations management 
literature. Specific for the situation with remanufacturing is, that assumptions (i) and (ii) do often not apply, 
i.e., in practice demand and returns are not perfectly correlated, and the number of products in the system 
may fluctuate over time. In addition, used products may still be disposed of after return from the market. This 
may be necessary due to a test outcome indicating that the product is (technically) inappropriate for 
remanufacturing, or it may be motivated by economical considerations. The latter might for instance be the 
case when a product is at the end of its life-cycle, where the average demand for new products is smaller than 
the average number of returned products. Remanufacturing all returned products would result in relatively 
high inventories, and consequently in high costs. 

One of the first production planning and inventory control models which applies to the situation with 
remanufacturing was proposed by Muckstadt and Isaac [4]. In this model, it is assumed that demands and 
returns are independent Poisson processes, and outside procurement lead-times are constant. The re- 
manufacturing process is modelled by a multiple server queueing system, with stochastic remanufacturing 

lead-times. The inventory position and the outside procurements are controlled by an (s,,, Q,) continuous 
review strategy, where sp is the outside procurement level, and Q, is the outside procurement quantity. The 
implementation of this strategy is as follows: whenever the inventory position drops below sp + 1, an outside 
procurement order of size Q, is placed. Muckstadt and Isaac present a numerical approximation procedure 
to calculate the control parameters, such that the sum of serviceable inventory holding costs, fixed outside 
procurement costs, and backordering costs is minimized. Disposal of used products is not allowed to occur in 
their model. 

In an earlier paper, Heyman [S] presents a model which applies to the situation with disposal. 
However, remanufacturing lead-times, fixed outside procurement costs, and outside procurement lead- 
times are not taken into account. Heyman pointed out that under these conditions it is optimal to set 
the re-order level s,, = - 1 and the outside procurement quantity Q, = 1. The only remaining control 

parameter is sd: the inventory level at which disposal becomes profitable. The strategy of the single 

parameter model is as follows: as long as the inventory level exceeds or equals sd, every returned product 
is disposed of upon arrival. Heyman develops an exact expression to determine the parameter sd under 
which the sum of inventory holding costs, production costs, remanufacturing costs, and disposal costs is 
minimized. 

Another interesting class of models in the context of remanufacturing are the so-called cash balancing 
models. In cash-balancing models, the amount of money in the cash (cash position) is controlled by an 
(sp,Sp,sd,Sd) strategy. This strategy is as follows: at the beginning of each period the cash position is 
inspected; whenever the cash position is at or below sp, money is ordered at the central bank, such that the 
cash position increases to S,. Furthermore, whenever the cash position exceeds sd, money is transferred to 
the central bank, such that the cash position reduces to Sd. Although these models consider both outside 
procurements (money orderings), and disposals (money transfers), practical applicability of these models for 
remanufacturing is limited to the rather uncommon situation were procurement lead-times, disposal 
lead-times, and remanufacturing lead-times are negligible. An overview of various cash-balancing models is 
given by Inderfurth [6]. 

Up to now, only two papers consider strategies in which decisions on outside procurements, remanufactur- 
ing, and disposals are considered simultaneously. As already mentioned, these combined strategies might be 
interesting from an economical point of view (see also [7]). In Salomon et al. [7], the (sp, Qp, sd) strategy is 
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introduced and analyzed for a production-inventory system similar to the system considered by Muckstadt 
and Isaac [4]. In van der Laan et al. [S] an alternative disposal strategy is considered, i.e., the (sp, Qp, N) 
strategy. Under this strategy, remanufacturing and disposal are controlled by the queue length of returned 
products waiting to be remanufactured. The implementation of this strategy is as follows: whenever the 
number of products waiting in the queue in front of the remanufacturing facility equals N, every returned 
product is disposed of upon arrival. 

The purpose of this paper is to present an operating strategy which generalizes the (sp, Qp,sd), the 
(sp, Qp, N), and the (sp, Q,) strategy and to perform a numerical comparison based on exact analysis. The 
generalized strategy consists of four control parameters, and is denoted by (sp, Qp, sd, N). Under this strategy, 
disposal of a returned item takes place in two cases, i.e., (i) whenever the inventory position equals sd, or (ii) 
whenever the number of products in the remanufacturing facility equals N. This operating strategy is further 
outlined in Section 2. Furthermore, in Section 2 an exact expression for the total expected costs under this 
operating strategy is derived. In Section 3 the performance of the three control strategies is compared with 
respect to expected minimal costs. To the latter end we report on the results of a numerical study. 
Conclusions and directions for further research are given in Section 4. 

2. Inventory control under an (sp, Qp, sd, NJ strategy 

The (sp, Qp, sd, N) strategy outlined here applies to the situation where a single-product is remanufactured 
and stocked at a single location. The other assumptions with respect to the production-inventory system are 
the following: 
l product demands and product returns are independent Poisson processes. The expected time between two 

subsequent product demands (returns) equals l/A (l/r). Demand (return) quantities per demand (return) 
occurrence are equal to one unit, 

l remanufacturing of product returns takes place in a remanufacturing facility.The remanufacturing facility 
consists of c identical parallel remanufacturing machines. Each machine has the capacity to remanufacture 
one returned unit at a time. The remanufacturing time at each machine is exponentially distributed, with 
expectation l/p. Remanufactured units enter the serviceable inventory, 

l the queue in front of the remanufacturing facility consists of returned units waiting to be remanufactured. 
Units which have entered the queue are remanufactured as soon as a remanufacturing machine becomes 
available. The queueing discipline is FCFS. The maximum number of units of the remanufacturing facility 
equals N, 

l whenever the inventory position drops below sp + 1 (sp 3 0), an outside procurement order of size Qp 
(Q, 3 1) is placed. The procurement lead-time equals z, 

l returned units are either remanufactured or disposed of, depending on the inventory position and the 
number of units in the remanufacturing queue. The strategy with respect to remanufacturing and disposal 
is as follows: whenever the inventory position equals sd, or whenever the number of units in the 
remanufacturing facility equals N, returned units are disposed of upon arrival. Returned units that are not 
disposed of enter the remanufacturing facility, 

l customer demand is fulfilled from serviceable inventory, or from outside procurements. If customer 
demand cannot be fulfilled immediately, demand is backordered, 

l the costs consist of the following components: 
- fixed outside procurement costs of A per order, 
_ variable outside procurement costs of 6, per ordered unit of product, 
_ variable remanufacturing costs of 6, per remanufactured unit of product, 
_ variable disposal costs of dd per disposed unit of product, 
_ inventory holding costs of h, per time unit per unit of product in serviceable inventory, 
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_ inventory holding costs of h, per time unit per product in the remanufacturing facility, 
~ backordering costs of Sb per unit of product per time unit. 

The relevant processes and goods-flows of the production-inventory system are depicted in Fig. 1. 
We will now derive an exact expression for the total expected costs resulting from the implementation of 

the (s,,, Qp, sd, N) control strategy in the above productioninventory system. It should be noted that both the 

(sp, Qp, sd) and the (s,,, Qp, N) strategy are special cases of the (sp, Qp, sd, N) strategy: the (sp, Q,,, sd) strategy is 
identical to the (sp, Qp,sd,N) strategy with N = CC, and the (sp, QP, N) strategy is identical to the 
(Sp, Q,,, sd, N) Strategy with &, = E. 

In the derivation we use the following notation: N(t) is the net inventory at time t; O(t) is the number of 
on-hand products in serviceable inventory at time t, and B(t) is the number of products in backorder at time t. 
By definition the following relation holds, 

N(t) = O(t) - B(t). (1) 

Furthermore, the inventory position at time t is denoted by I(t), the number of products on order at time t by 
P(t), and the number of products in the remanufacturing facility at time t by R(t). The inventory position at 

time t is defined as 

l(t) = N(t) + R(t) + P(t). (2) 

Note that at time t all outside procurement orders outstanding at time t - z have arrived. Hence, the net 
inventory at time t equals the inventory position at time t - z, minus the number of products in the 
remanufacturing shop at time t - T, minus the demands during the interval [t - 7, t], plus the output of the 
remanufacturing shop in the interval [t - z, t]. In formula, 

N(t) = I(t - z) - R(t - z) + Z(t - T’, t) - D(t - z, t), (3) 

where D(t - 7, t) is the demand, and Z(t - T, t) is the output of the remanufacturing shop in the interval 
[t - z, t]. It should be noted that the demand in the interval [t - z, t] 

- Az(AT)d 
Pr{D(t-z,t)=d} =exp d, . 

To obtain an expression for the expected net-inventory using (3) we 
probability, 

lim Pr{Z(t - 7) = i, R(t - 7) = Y, Z(t - z, t) = 2, D(t - 7, t) = d}. 
f+m 

- _ 
is Poisson distributed, i.e., 

(4) 

need to calculate the limiting joint 

(5) 

1 serviceable 
-’ inventory 

1 demands, 

Fig. I 
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Since I(t - r), R(t - r), and Z(t - z,t) are not mutually independent, it turns out to be complicated to 
evaluate the right-hand side of (5) directly. However, evaluation is simplified by rewriting (5) as, 

(6) 

where 

rc,,, = f’m Pr{Z(t) = i, R(t) = r> (7) 

and 

P:lr,r = lim Pr{Z(t - z,t) = zlI(t - 5) = i, R(t - r) = r}. (8) fdol 

To calculate rr,,, we formulate a continuous-time Markov Chain model with state space Y = 
{(i, r) 1 sp < i 6 sd, 0 d r d N}. The state (i, r) in this Markov Chain model corresponds to the situation where 
the inventory position equals i, and r products are in the remanufacturing facility at time t. 

The non-zero transition rates from state (io,ro) to state (il,rl), ql,r,,i,r,, in the Markov Chain model are 
written as 

Numerical values for 

sp + 1 < i. < sd, 0 < r. < N, il = io + 1, r1 = r. + 1, 

sp + 1 < i. < sd, 0 < r. d N, il = i. - 1, rl = ro, 

i. = sp + 1, 0 6 r. d N, il = sp + Qp, r1 = ro, (9) 

sp + 1 d i. d sd, 1 d r. < min{c,N}, il = io, rl = r. - 1, 

s,+ 1 diodsd, c < r. < max{c, N}, il = io, r1 = r. - 1. 

n,,, are obtained from solving a system of linear equations, using Gauss-Seidel 
iteration.’ The conditional probabilities pII i,r are calculated by transient analysis of the Markov Chain model 
outlined in the appendix. 

For further analysis of the cost function we define the following expectations: 

O(s,>Q,,s,>N) = !im E{O(r)}, (10) 

~(s,,Q,,%>N) = ,‘;t E{B(t))> 

~b,,Q,,%,N) = f’; E{R(t)j. 

The expectations are calculated as 

(11) 

(14 

o(s,,Q,,Sd,N) = i -f f f (i-r + z -4q,p,~,,,Pr{W~) = d)lpr+z-d>O; 
,=~,+l r=Oz=Od=O 

(13) 

Sd 

B(sp,Qp,Sd,N)= 1 =f f -f (r--++--z)ni,,P,i,,,Pr{D(z)=d}li,~i+d-=>0} 

i=s_+lr=Oz=Od=O 
(14) 

R(s,,Q,,sd>N) = 2 ; rn,,,, 
!=$+I r=O 

(15) 

1 Whenever the number of states in the state space Y is infinite (which occurs for example ifs,, = CO), we truncate the state space, such 
that only a finite set of linear equations remains to be solved. In general, we. found that truncation does not cause numerical problems. 
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where 1 ix , ,+ is the indicator function, which is defined as 

1 
i 

1 if x > y, 

‘X1” = 0 otherwise 

and lim,,, Pr{D(t - r, t) = d} = Pr{D(r) = d}. 
Next we derive an expression for the average number of returned products per unit of time that is not 

disposed of. In what follows, we denote this average which we might call the acceptance rate by 
jJ(s,, Qp, sd, N). Recall that products are disposed of, either when the inventory position equals sd, or when the 
number of products in the remanufacturing facility equals N. It follows that 

Since the average number of outside procured products per unit of time equals A - y(s,, Qp, sd, N), the 
average number of procurement orders per unit of time equals (A - y(s,, Qp,sdl N))/Q,. Furthermore, the 
average production costs per unit of time are calculated as (A - y(s,, Qp, sd, N))6,, the average remanufactur- 
ing costs are equal to Y(sp,Qp,sd,N)6,, and the average disposal costs equal (‘/ - ?/(s,, Qp,sd,N))bd. This 
results in the following expression for the total expected costs C(s,, Qp, sd, N), 

+ ~(Sp,Qp,Sd,~h + ‘f(s,,Q,,Sd,~))~ + & + $d, (17) 

where A = 6, - dd - 6,. Note that the constant A can be interpreted as the marginal costs of remanufactur- 

ing per remanufactured product. 
In order to carry out a numerical study on the performance of the three aforementioned control strategies, 

we need to search for the combination of control parameters corresponding to the minimum of (17). We have 
implemented an enumerative search procedure to find this combination. In general, the enumerative search 
yields within a reasonable amount of time the parameter combination corresponding to the true minimum of 

(17). 
Note that, for the optimal combination of control parameters, the following two relations hold: 

C(s,,Q,,sd,N) d C(sJ,,Q~,si) and Cb,,Q,,sd,N) G C(.$‘,Q~,W, 

since the three parameter strategies are special cases of the four parameter strategy. 

(18) 

3. Numerical study 

In this section we study the behaviour of the (sp, Qp, sd, N) strategy and two of its special cases, i.e. the 
(sp,Qp,sd) strategy and the (sp,Qp,N) strategy. Besides a small numerical comparison at the end of this 
section, we first present some interesting characteristics of the above-mentioned strategies: 
l the (s,,, QP,sd) strategy; If cp < y it may occur that the acceptance rate j+,,Qp,sd) iS larger than the 

maximum remanufacturing rate cp, causing the remanufacturing inventory to ‘explode’. To prevent infinite 
costs if h, > 0, sd has to be given a finite value, such that the acceptance rate is smaller than the maximum 
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remanufacturing rate. Note that if y is large compared to cp, this may even lead to putting sd equal to 
s, + 1, which implies that all incoming products are disposed of. If cp is small compared to y we expect the 
number of items in the remanufacturing shop to be relatively large. Since we dispose on inventory position 
we do not directly control the (large) number of items in the remanufacturing shop so we expect this 
strategy to provide poorer control on disposals in case of small values of cc1 than for larger values of CF. 
the (sp,Qp,N) strategy; If y > i it may occur that the acceptance rate is larger than the demand rate, 
causing the serviceable inventory to ‘explode’. To prevent infinite costs if h, > 0, N has to be given a finite 
value, such that the acceptance rate is smaller than the demand rate. Note that if y is large compared to ;1, 
this may even lead to putting N equal to 0, which implies that all incoming products are disposed of. 

If cp is large compared to y we expect this strategy to provide poor control on disposals. Since in this case 
there is almost no queueing, the only option besides accepting almost all incoming products (N > 0), is 
disposing all incoming products (N = 0). 
the (sp, Qp,sd, N) strategy; With respect to the cases cp < y and y > i the same remarks made for the 
(s,,, Qp, sd) and (sP, Qp, N) strategy hold. However, we expect this strategy to perform somewhat better than 
the other two since this strategy has finer disposal control capability. 
In our numerical study, we use a standard parameter set. The parameter I serves as a scale parameter and 

is put at 1, whereas y, c and p are chosen such that y < 3, < cp, which implies that even if sd = cc or N = m, 
the inventory system will not ‘explode’. The number of remanufacturing machines is put at 1, so that the 
(sP, QP, N) strategy has maximum control on incoming products (less machines implies more queueing, which 
implies more control). The cost parameters are such that optimization results in nontrivial values of the 
decision variables. However, we found that the effects presented in the remainder of this section are very 
typical for a wide range of parameter settings. 

We would like to note that the optimal values of the decision variables for all three disposal strategies do 
not so much depend on the individual values of 6,, 6,, and bd. It is the combination of the three, namely 
d = 6, - dd - 6,, which influences the optimal values of the decision variables. In other words, all combina- 
tions of 6,, 6,, and dd for which d = c, and c some predefined constant, will result in the same optimal values 
of the decision variables (optimal costs however may differ). We have chosen d = -2.00. 

An overview of the standard parameter settings can be found in Table 1. 
In the remainder of this section we will indicate the minimal cost function associated with the (sP, Q,,, N) 

strategy, the (sP, Qp, sd) strategy, and the (sP, Qp, sd, N) strategy with C,*, C:, and C,*,, respectively. 
We have investigated the following scenarios: 
Scenario 1: varying the return rate y. Fig. 2 shows that for small values of y the three strategies do not differ 
very much, but as ‘/ increases CT and C,*, become significantly smaller than C,*, particularly if y > A. It 
seems that the (sP, Qp, N) strategy does not control the return flow properly. Moreover, for large values of 
y the optimal (sP, Qp, N) strategy is to dispose all items (indicated by the flat C,*-curve for y larger than 
approximately 1.6). Fig. 2, where we have 6, > 6,, shows that for all three strategies there exists some 
positive value of y for which the optimal costs curve is smallest. However, C,* takes on its minimal value for 
a larger value of y than C,*, implying that the optimal (sP, Qp, sd) strategy is attractive for larger values of y 

Table 1 

Standard parameter settings 

i = 1.00 

y = 0.70 

p = 2.00 
c=l 

T = 10.00 

A = 10.00 

h, = 1.00 

h, = 1.00 
db = 10.00 

A = -2.00 
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Fig. 2 
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Fig. 3 

than the optimal (s,,, Qp, N) strategy. The value of C,*, does not seem to differ significantly from Cc, except 
for very large values of the return rate. 

l Scenario 2: varying the remanufacturing rate p. Fig. 3 shows that for small values of ,u compared to y (i.e. 
p approximately between 0.4 and 1.4) C: performs somewhat worse than C,* and C,*,. As was mentioned 
earlier, this is due to indirect control of the returned units in the remanufacturing shop. For larger values of 
p however, the optimal (sP, Qp, s,J strategy operates more efficient than the optimal (sP, Qp, N) strategy as 
was expected. The optimal combined strategy is a reasonable improvement of C,* for small values of p, and 
of C,* for larger values of ,u. If we would vary the number of machines, we would see a similar behaviour as 
the behaviour just described, since an increase of the number of machines decreases throughput time and 
queue-length, just as an increase of the remanufacturing rate does. 

4. Summary and concluding remarks 

In this paper we have presented the (sP, QP, sd, N) disposal strategy and its special cases, namely the 
(sP, Qp, sd) strategy and the (sP, QP, N) strategy. A small numerical study indicates that the optimal (sP, Qp, sd) 
strategy outperforms the optimal (sP, Qp, N) strategy (with respect to costs) in most of the situations that were 
considered. Furthermore, combining both strategies in the (s,,, QP, sd, N) strategy may result in reasonable 
costs reduction since, in the optimal case, this strategy provides a lower bound on costs for the other two 
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strategies. The reader must note however that the computational burden involved with the optimization of 
these strategies, and the four parameter strategy in particular, is considerably large and probably not very 
practical. However, we think that this paper provides some insights in the effects of disposal strategies on 
inventory control which may be of help in constructing disposal strategies for more complex situations or in 
constructing fast approximative algorithms. 

Other types of strategies may be worth while to consider as well, such as a strategy in which returned 
products are not immediately remanufactured or disposed but delayed for remanufacturing until they are 
really needed. This may be typical for the situation in which k, < k, or the situation in which we have nonzero 
setup costs for remanufacturing. This will be a topic for further study. 

Appendix. Transient analysis 

To show how we used transient analysis to compute the conditional probabilities pzIl,,, we consider here 
the case of the (sP, Qp, N) model. Note that in this case the in- and outflow of the remanufacturing shop is 
independent of inventory position. 

Consider a M/M/c/N queueing system, where c is the number of identical parallel servers and N is the 
maximum number of ‘customers’ in the system. Let y be the arrival rate of customers and Jo the service rate. 
This system can be formulated as a continuous-time Markov chain {X(t); t > 0}, where X(t) = (i,k) 
whenever at time t the number of customers is equal to i and the output of the system since time t = 0 is equal 
to k. The nonzero transition rates from state (i, k) to state (j, I), qik,j[, are given as 

I 

Y> O<i<N, O<k<x, j=i+l, l=k, 

qik,jl = 4, O<i<min{c,Nj, O<k<co, j=i-1, l=k+l, 

cP> c<idN, O<k<m, j=i-1, l=k+l. 

The total nonzero transition rates out of each state (i, k), Yik = ~~~~ I;“=, qik,j[, are given as 

(A.1) 

7, i = 0, O<k<co, 

min(i,c}fi, i = N, Obk<co, 
Vik = 

Y + ip, O<i<min{c,N}, Odk<ca, 

1’ + cp, c<i<N, O<k<m. 

(A.21 

Next we apply a uniformization. 
To go from the continuous-time Markov chain {X(t); t > O> to the embedded discrete-time Markov chain 

{X(n); n=0,1,2,...} we compute the one-step discretized transition probabilities Pik, jl as 

( “ilv, Odi<N, Odk<co, j=i+l, 1=k, 

W, O<ibmin{c,N}, O<k<m, j=i-1, l=k+l, 

Pik,jl = ( CP/V, c<i<N, Odk<co, j=i-1, l=k+l, 

1 - ‘i/v, i=j=O, 1 = k, 

( 1 - cplv, i=j=N, 1 = k, 

64.3) 

where the constant v is chosen such that v > maxcikjvik. Since vik < y + cc1 we choose v = y + cp. The 
probability Pi,k(S) that at time t = T the number of served customers is equal to k, given that at time t = 0 the 
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system is in state (i,O), can recursively be computed using the equation (see [9]) 

~.~(r) = f exp_yiE ; P:lljk, 

I, 

n=O 
n! j=(J 

where the n-step discretized transition probabilities P~~)jk are recursively computed as 

(4.4) 

Returning to Section 2, we now have an expression for the conditional probability, namely 

PZ,i.r(r) = 
i 

&(r), sp + 1 < i < sd, 0 d z < a, 

0 otherwise. 

One can apply the same procedure to the unconstrained (sr, QP, sd, N) disposal model. However, in that case 
the output of the repair shop is also dependent on the inventory position, thus an appropriate extension of 
the state space, to keep track of the state of the inventory position, is needed to obtain the desired results. It 
goes without saying that the computational burden grows exponentially with the dimension of the state 
space which implies that this procedure is practically feasible for ‘small’ values of sd only. 
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