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1 Introduction

There are two classes of models that are often used to estimate and forecast unobserved

volatility in asset returns. These are (variants of) the GARCH model, see Engle (1982)

and Bollerslev (1986) and (variants of) the Stochastic Volatility (SV) model, see Taylor

(1986), among others. Basically, the SV model assumes two error processes, while the

GARCH model allows for only a single error term. This implies that the SV model can

provide a better in-sample fit, see Danielsson (1994) and Kim et al. (1998), and perhaps

also better forecasts. On the other hand, the SV model parameters are not always easy to

estimate, while GARCH parameters can easily be estimated using maximum likelihood.

Hence, for practical purposes, one might want to know beforehand whether it is worth

the trouble trying to estimate an SV model.

In the limits of continuous time, the GARCH and SV models bear strong similarities,

see Nelson (1990) and Duan (1997), but when fitting these models to discretely-observed,

say daily data, the models look rather distinct, see also Fleming & Kirby (2003). In fact,

the models are non-nested, and this can complicate model comparison. In this paper, we

therefore propose a simple test that can be used for selecting between GARCH and SV.

The test is based on a GARCH model that is extended with an additional error term.

This new model is called a stochastic GARCH model. The model is a variant of an SV

type model, and it captures typical SV model properties. The test concerns only a single

parameter, where under the null hypothesis the GARCH model appears. A beneficial

feature is that the parameters in our stochastic GARCH model are easy to estimate, as

we will demonstrate below.

The outline of our paper is as follows. In Section 2 we outline the representation of the

stochastic GARCH(1,1) model. We derive the theoretical moments of this new model and

consider its autocorrelation function. Furthermore, we give the details of the estimation

procedure, and we discuss inference where we focus on the parameter that distinguishes

standard GARCH from stochastic GARCH. In Section 3, we apply the model to nine

stock markets for which we consider daily data. We see that the GARCH model gets
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rejected against the stochastic version for all cases, at least, based on the in-sample data.

When we compare the out-of-sample fit, the regular GARCH model turns out to be a

good competitor. In Section 4 we conclude and discuss potential further research areas.

2 Representation, Estimation and Inference

In this section we put forward a model for asset returns yt that captures the features of

a stochastic volatility model, and which collapses into a GARCH model when a variance

parameter is equal to zero. We derive the theoretical moments and autocorrelations of

the new model specification. Finally, we discuss parameter estimation and inference.

2.1 Representation

We assume that asset returns yt for t = 1, . . . , T can be described by

yt = δ + εt (1)

with εt =
√

htzt and zt ∼ NID(0, 1), where

ht = kt + ηt (2)

with ηt ∼ LNID(µ, σ2), where LN denotes the lognormal distribution. The lognormal

distribution is used to ensure that the error contributions and hence ht are always positive.

The kt process is defined to be a standard GARCH(1,1) specification

kt = αε2
t−1 + βkt−1. (3)

The model (1)–(3) is a variant of a stochastic volatility model, as it has two sources

of uncertainty, that is, zt for the level of the series and ηt for the conditional variance. It

collapses to a standard GARCH(1,1) model when σ2 ↓ 0. This is easily seen as follows.

Equation (2) can be rewritten as

kt = ht − ω

1− β
exp(σut), (4)
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with ut ∼ NID(0, 1), where ω ≡ (1− β) exp(µ). Substituting (4) into (3) and rearranging

gives

ht =
exp(σut)− β exp(σut−1)

1− β
ω + αε2

t−1 + βht−1. (5)

As exp(σut) converges to 1 when σ2 ↓ 0, it is clear that then the model converges to a

standard GARCH(1,1) model where ω denotes the intercept in the volatility equation.

Our model is also related to the standard stochastic volatility model of Taylor (1986)

which is defined as

yt = δ̃ + ε̃t, (6)

with ε̃t =
√

h̃tzt and

ln h̃t = γ ln h̃t−1 + ln η̃t, (7)

where η̃t ∼ LNID(µ̃, σ̃2).

There are two major differences between the standard SV model and our model in

(1)–(3). First, our new model assumes a linear specification for ht, while h̃t in the SV

model has a loglinear specification. This does however not mean that ht in our model can

become negative. The restrictions α > 0 and β > 0 and the fact that ηt has a lognormal

distribution ensures positive values for ht. The second difference is that in a stochastic

volatility model ln h̃t depends on all contemporaneous and lagged shocks η̃t, η̃t−1, η̃t−2, . . .,

which are all unobserved. This results follows immediately if we solve (7) for h̃t

ln h̃t = γt ln h̃0 +
t−1∑

k=0

γk ln η̃t−k. (8)

On the other hand, solving for ht in (2) gives

ht = α

t∑

k=1

βk−1ε2
t−k + βtk0 + ηt (9)

and hence in our new model ht depends on past realized shocks εt−1, εt−2, . . . and only on

one contemporaneous unobserved shock ηt. As we will show below, the fact that ht in our

model only depends on one contemporaneously unobserved shock facilitates parameter

estimation tremendously. We like to call our model a stochastic GARCH [SGARCH]

model.
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2.2 Properties

The SGARCH(1,1) process in (1)–(3) contains an extra error term and hence the the-

oretical unconditional moments of yt are not the same as those of a standard GARCH

process. The following theorem gives expressions and existence conditions for the 2mth

unconditional moments of our SGARCH(1,1) process.

Theorem 1 For the SGARCH(1,1) process given by (1)–(3) a necessary and sufficient

condition of existence of the 2mth centered moment is

m∑
j=0

(
m

j

)
ajα

jβm−j < 1, (10)

where

ak = E[z2k
t ] =

{
1 for k = 0∏k

j=1(2j − 1) for k = 1, 2, . . . .

The 2mth centered moment is given by

E[ε2m
t ] = am

m∑
j=0

(
m

j

)
bm−jE[kj

t ],

where

bk = E[ηk
t ] =

(
ω

1− β

)k

exp(σ2k2/2),

and the mth moment of kt can be expressed by the recursive formula

E[km
t ] =

1

1− ψm,m

m−1∑

k=0

(
m

k

)
bm−kψm,kE[kk

t ], (11)

where

ψm,k =
k∑

j=0

(
k

j

)
am−jα

m−jβj.

The proof of this theorem follows the lines of Theorem 2 of Bollerslev (1986) and is

given in Appendix A. We note that the moment existence conditions are identical to that

of a standard GARCH(1,1) process.
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Unconditional variance and kurtosis

With Theorem 1 we derive the unconditional variance and kurtosis of εt (and hence yt).

The unconditional variance exists if and only if α+β < 1, while the kurtosis exists if and

only if 3α2 + 2αβ + β2 < 1. Under these existence conditions

E[kt] =
αω

(1− α− β)(1− β)
exp(σ2/2), (12)

and

E[k2
t ] =

1

1− ψ1,1

(b2ψ2,0 + 2b1ψ2,1E[kt])

=
α2ω2 exp(σ2)

(1− 3α2 − 2αβ − β2)(1− β)2

(
3 exp(σ2) +

6α + 2β

1− α− β

)
. (13)

Hence, the variance of εt is given by

E[ε2
t ] =

ω

1− α− β
exp(σ2/2), (14)

and the fourth moment of εt is given by

E[ε4
t ] = 3(b2 + 2b1E[kt] + E[k2

t ])

=
3ω2 exp(σ2)

(1− 3α2 − 2αβ − β2)(1− β)2

(
(1− 2αβ − β2) exp(σ2) +

2α(1− αβ − β2)

1− α− β

)
.

(15)

Finally, the kurtosis of εt is given by

K[εt] =
E[ε4

t ]

E[ε2
t ]

2

=
3(1− α− β) ((1− 2αβ − β2)(1− α− β) exp(σ2) + 2α(1− αβ − β2))

(1− 3α2 − 2αβ − β2)(1− β)2
.(16)

For σ2 = 0 the kurtosis reduces to

K[εt; σ
2 = 0] =

3(1− α− β)(1 + α + β)

1− 3α2 − 2αβ − β2
, (17)

which is of course equal to the kurtosis of a GARCH(1,1) process.
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Autocorrelations

To derive the autocorrelation function for ε2
t , we define

νt = ε2
t − kt − E[ηt] = ε2

t − kt − ω

1− β
exp(σ2/2), (18)

which implies that E[νt] = 0. We substitute kt = ε2
t −E[ηt]− νt into (3) and rearrange to

obtain

ε2
t = ω exp(σ2/2) + (α + β)ε2

t−1 + νt − βνt−1. (19)

Hence, the SGARCH(1,1) process can be represented as an ARMA(1,1) process for ε2
t . In

fact, exactly the same representation can be found for a standard GARCH(1,1) process,

see Bollerslev (1986), although the distribution of νt in the SGARCH(1,1) differs for that

of a GARCH(1,1) process.

The autocorrelations for ε2
t can be derived from (19) and these are identical to those

of a GARCH(1,1) process. In particular, let ρk be the kth order autocorrelation of ε2
t .

Then

ρ1 =
α(1− αβ − β2)

1− 2αβ − β2
, (20)

and

ρn = (α + β)n−1ρ1, (21)

for n = 2, 3, . . ., see Bollerslev (1986).

In sum, there are many similarities between the SGARCH and GARCH model, except

for the variance and kurtosis.

2.3 Parameter Estimation

As can be seen from (9), ht can be expressed in terms of past εt and the random term ηt.

Hence, unlike the standard SV model, it is relatively easy to derive the likelihood function

of our stochastic GARCH model.

The density function of yt given past observations Ωt−1 ≡ {yt−1, yt−2, . . . , y0} and

parameters θ ≡ {δ, ω, α, β, σ2} is given by

f(yt|Ωt−1; θ) =

∫ ∞

−∞

1√
ht(ut)

φ

(
yt − δ√
ht(ut)

)
φ(ut) dut, (22)
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for t = 1, . . . , T , where φ(z) = 1√
2π

exp(−1
2
z2). The conditional variance is defined as

ht(ut) ≡ h(ut; Ωt−1, θ) = kt +
ω

1− β
exp(σut), (23)

with

kt = k(Ωt−1, θ) = α

t∑

k=1

βk−1(yt−k − δ)2 + βtk0. (24)

Similar to the GARCH model, kt can be computed recursively using (3) where we choose

k0 as a starting value for kt with

k0 =
αε2

−1

1− β
, (25)

where ε2
−1 = 1

T

∑T−1
t=0 (yt − δ)2.

The loglikelihood function is given by

`(θ; y) =
T∑

t=1

ln f(yt|Ωt−1; θ), (26)

where y = (yT , . . . , y0). The ML estimator θ̂ML is obtained by maximizing `(θ; y) with

respect to θ. This can be done with standard optimization algorithms like the BFGS

algorithm. Note that there is no analytic expression for the integral in (22). Hence,

this integral has to be evaluated numerically for each observation t with, for example,

an adaptive Simpson procedure. Since the integral is only one-dimensional, numerical

integration is straightforward, and the optimization procedure typically converges without

difficulties, although we note that parameter estimation is more time-consuming than for

a standard GARCH model.

Asymptotic standard errors for the maximum likelihood estimator can be obtained by

evaluating minus the inverse of the second-order derivative of the loglikelihood function

in θ̂ML,

V (θ̂ML) = −
(

∂2`(θ; y)

∂θ∂θ′

)−1
∣∣∣∣∣
θ=θ̂ML

. (27)

2.4 Inference

If we impose the restriction σ2 = 0 in (5), our SGARCH(1,1) model simplifies to a

standard GARCH(1,1) model. Hence, we can test our stochastic GARCH specification
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versus a standard GARCH using a likelihood ratio test. As this is a one-sided test (σ2 = 0

versus σ2 > 0) the likelihood ratio statistic is asymptotically 1
2
χ2(0)+ 1

2
χ2(1) distributed,

see Wolak (1989). Hence, if one wants to test at a 5% level of significance, the critical

value is the 90% percentile of the χ2(1) distribution.

3 Illustration

We illustrate our simple test for GARCH against SV for a decade of daily data for nine

stock markets. We fit GARCH(1,1) and SGARCH(1,1) models for the data for 1990-1999,

while we use the year 2000 data for out-of-sample forecast evaluation. The estimation

results for the Dow Jones, Nasdaq, SP500, Nikkei, FTSE appear in Table 1, while those

of the Dax, Cac, AEX and the HangSeng appear in Table 2.

There are a few observations to be made from these estimation results. First, and

as expected, the persistence parameter β is higher for the SGARCH model than for the

GARCH model. Indeed, one may view an additional error process as a process generating

additive outliers, and taking care of such outliers is known to lead to higher persistence.

A second observation is that the σ̂2 parameters are always more than twice as large as

the corresponding standard errors, and hence at first sight the SGARCH model seems

preferable. This seems to be confirmed by the log-likelihood values in the last column of

the two tables.

Table 3 substantiates the findings in Table 2 by comparing these log-likelihoods using

the AIC. For all nine stock markets, the SV-like model obtains the smallest AIC value.

Also, a likelihood ratio type test would indicate that the additional error process has a

variance far from zero.

If an SGARCH would better describe the data, this should then also be observed from

the implied properties of the data, and here notably the variance and kurtosis. From

Table 4 we can observe that for some cases, the estimated SGARCH model generates

empirical variance and kurtosis that are remarkably close to those of the actual data. In

some other cases however, the SGARCH generates a kurtosis value which is way out of

the usual range, see, for example, the kurtosis for the DAX.
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Finally, when we consider the two models for forecasting the daily returns for 2000, we

observe that the models perform about equally well, see Table 5. In 5 cases the SGARCH

model is better, while in the other 4 the GARCH is. The largest difference between the

out-of-sample log-likelihoods is found for the Nikkei, where the GARCH model is best.

And, for the Nasdaq the SV-like model provides a much better out-of-sample fit.

4 Conclusion

In this paper we proposed a simple extension of a standard GARCH(1,1) model, which

can capture SV-like properties of the data. The parameters in this new SGARCH model

can be estimated quite easily, and we showed that its implied properties differ from those

of the GARCH model in terms of variance and kurtosis. The model can be used to provide

a simple and quick, though indirect, test for GARCH against SV. An illustration of the

new model for nine daily returns series shows that there are gains in fit when considering

an SV-like model, although it must be mentioned that the out-of-sample forecasts are not

that much better.

A beneficial feature of our simple test for GARCH against SV is that it is easy to

extend to the many non-linear variants of these models, see Franses & van Dijk (2000) for

a survey. The main feature of our test is that it amounts to testing the constancy of the

intercept term in the GARCH equation. Also, we expect that an extension to multivariate

GARCH models should not be complicated either. This would be very useful, as the

estimation of multivariate SV models is not easy, and one would better want to know in

advance if such routes are necessary. We postpone these two extensions to our further

work.
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A Proof

Proof: The proof follows the lines of Theorem 2 of Bollerslev (1986). We first derive

existence conditions for E[km
t ]. Substituting (1) and (2) into (3), we have

kt = αz2
t−1ηt−1 + (αz2

t−1 + β)kt−1. (28)

Using the binomial theorem, km
t can be expressed as

km
t =

m∑

k=0

(
m

k

)
ηm−k

t−1 kk
t−1

k∑
j=0

(
k

j

)
αm−jβjz

2(m−j)
t−1 . (29)

Since zt−1 and ηt−1 are independent, and kt−1 is determined by Ωt−2 = {yt−2, yt−3, . . .},
the conditional expectation of km

t given Ωt−2 is

E[km
t |Ωt−2] =

m∑

k=0

(
m

k

)
bm−kψm,kk

k
t−1, (30)

where

ψm,k =
k∑

j=0

(
k

j

)
am−jα

m−jβj, (31)

and

ak = E[z2k
t ] =

{
1 for k = 0∏k

j=1(2j − 1) for k = 1, 2, . . .
(32)

is the kth moment of the standard normal distribution, and

bk = E[ηk
t ] = exp(µk + σ2k2/2) =

(
ω

1− β

)k

exp(σ2k2/2) (33)

is the kth uncentered moment of the lognormal distribution.

Let vt = (km
t , km−1

t , . . . , kt)
′. Then

E[vt|ωt−2] = d + Cvt−1, (34)

where d = (αmambm, . . . , αa1b1)
′, and C is an m×m upper triangular matrix with diagonal

elements

diag(C) = (ψm,m, ψm−1,m−1, . . . , ψ1,1)
′. (35)
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Repeated substitution into (34) yields

E[vt|Ωt−k−1] = (I + C + . . . + Ck−1)d + Ckvt−k. (36)

This converges for k → ∞ as long as all eigenvalues of C are within the unit circle, or

equivalently

ψm,m =
m∑

j=0

(
m

j

)
am−jα

m−jβj < 1. (37)

This is the moment existence condition of (10). Note that ψm,m < 1 implies ψm−1,m−1 < 1,

see Bollerslev (1986).

If (10) holds, then E[km
t ] = E[km

t−1]. Solving the unconditional version of (30), that is,

E[km
t ] =

m∑

k=0

(
m

k

)
bm−kψm,kE[kk

t−1], (38)

we obtain the recursive expression of E[km
t ] in (11).

To finalize the proof we observe that the mth moment of εt exists if and only if mth

moment of kt exists and

E[ε2m
t ] = E[z2m

t (kt + ηt)
m] = am

m∑
j=0

(
m

j

)
bm−jE[kj

t ]. (39)

Q.E.D.
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Table 1: ML estimates for the GARCH(1,1) and SGARCH(1,1) model for daily
returns on 5 stock markets from 1/1/1990 to 12/31/1999. Estimated standard
errors in parentheses.

Model δ ω α β σ2 log-lik.

DOWJONES (2518 obs.)

GARCH 0.067 0.007 0.049 0.942 -3089.579
( 0.015 ) ( 0.003 ) ( 0.009 ) ( 0.011 )

SGARCH 0.074 0.002 0.034 0.952 3.443 -3027.045
( 0.014 ) ( 0.001 ) ( 0.006 ) ( 0.009 ) ( 0.918 )

NASDAQ (2528 obs.)

GARCH 0.097 0.035 0.118 0.855 -3534.344
( 0.018 ) ( 0.010 ) ( 0.021 ) ( 0.026 )

SGARCH 0.112 0.004 0.054 0.929 3.353 -3490.344
( 0.017 ) ( 0.002 ) ( 0.012 ) ( 0.015 ) ( 0.967 )

SP500 (2527 obs.)

GARCH 0.062 0.006 0.053 0.941 -3032.802
( 0.014 ) ( 0.002 ) ( 0.009 ) ( 0.011 )

SGARCH 0.069 0.002 0.035 0.952 3.707 -2977.213
( 0.014 ) ( 0.001 ) ( 0.007 ) ( 0.009 ) ( 0.925 )

NIKKEI (2465 obs.)

GARCH 0.023 0.071 0.107 0.864 -4315.032
( 0.025 ) ( 0.016 ) ( 0.014 ) ( 0.018 )

SGARCH -0.013 0.020 0.077 0.890 2.747 -4261.379
( 0.024 ) ( 0.008 ) ( 0.011 ) ( 0.014 ) ( 0.665 )

FTSE (2524 obs.)

GARCH 0.051 0.009 0.052 0.937 -3173.497
( 0.016 ) ( 0.004 ) ( 0.011 ) ( 0.014 )

SGARCH 0.052 0.002 0.040 0.951 2.556 -3152.139
( 0.015 ) ( 0.001 ) ( 0.008 ) ( 0.010 ) ( 1.017 )
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Table 2: ML estimates for the GARCH(1,1) and SGARCH(1,1) model for daily
returns on 4 stock markets from 1/1/1990 to 12/31/1999. Estimated standard
errors in parentheses.

Model δ ω α β σ2 log-lik.

DAX (2502 obs.)

GARCH 0.068 0.051 0.090 0.877 -3862.969
( 0.021 ) ( 0.011 ) ( 0.015 ) ( 0.019 )

SGARCH 0.075 0.002 0.056 0.930 5.083 -3748.888
( 0.018 ) ( 0.002 ) ( 0.010 ) ( 0.012 ) ( 1.583 )

CAC (2497 obs.)

GARCH 0.054 0.072 0.079 0.872 -3919.054
( 0.022 ) ( 0.018 ) ( 0.014 ) ( 0.023 )

SGARCH 0.062 0.022 0.059 0.914 1.168 -3891.759
( 0.022 ) ( 0.011 ) ( 0.011 ) ( 0.018 ) ( 0.427 )

AEX (2524 obs.)

GARCH 0.074 0.021 0.086 0.893 -3407.396
( 0.017 ) ( 0.005 ) ( 0.012 ) ( 0.014 )

SGARCH 0.082 0.005 0.072 0.911 2.716 -3362.690
( 0.016 ) ( 0.002 ) ( 0.012 ) ( 0.013 ) ( 0.812 )

HANGSENG (2478 obs.)

GARCH 0.132 0.079 0.114 0.859 -4457.943
( 0.026 ) ( 0.015 ) ( 0.014 ) ( 0.016 )

SGARCH 0.129 0.017 0.080 0.891 2.973 -4383.711
( 0.025 ) ( 0.008 ) ( 0.014 ) ( 0.017 ) ( 0.745 )
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Table 3: Within-sample forecasting performance of the
GARCH and SGARCH model for daily returns.

log likelihood value AIC
Series GARCH SGARCH GARCH SGARCH

DOWJONES -3089.579 -3027.045 2.497 2.447
NASDAQ -3534.344 -3490.344 2.856 2.821
SP500 -3032.802 -2977.213 2.451 2.407
NIKKEI -4315.032 -4261.379 3.486 3.443
FTSE -3173.497 -3152.139 2.565 2.548
DAX -3862.969 -3748.888 3.121 3.030
CAC -3919.054 -3891.759 3.166 3.145
AEX -3407.396 -3362.690 2.753 2.718
HANGSENG -4457.943 -4383.711 3.601 3.542

Table 4: Sample variance and kurtosis of the nine stock returns together with
the implied values from the estimated GARCH and SGARCH models

Variance Kurtosis
Series Sample GARCH SGARCH Sample GARCH SGARCH
Dow Jones 0.797 0.851 0.803 7.825 4.154 12.593
Nasdaq 1.234 1.274 1.180 7.289 6.206 10.034
SP 500 0.790 0.900 0.777 7.916 5.510 13.941
NIKKEI 2.328 2.484 2.383 7.355 5.086 8.997
FTSE 0.834 0.831 0.813 5.157 3.986 5.243
DAX 1.575 1.559 1.796 7.937 3.998 33.286
CAC 1.492 1.461 1.443 5.435 3.452 4.264
AEX 1.172 1.056 1.033 6.889 4.797 6.925
HangSeng 3.023 2.884 2.636 14.745 5.730 9.430
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Table 5: Out-of-sample forecasting
performance of the GARCH and
SGARCH model for daily returns in
2000.

Log likelihood value
series SGARCH GARCH

DOWJONES -418.316 -418.676
NASDAQ -633.571 -637.350
SP500 -438.385 -439.069
NIKKEI -443.926 -436.570
FTSE -397.876 -398.707
DAX -460.682 -462.547
CAC -459.394 -458.467
AEX -396.470 -393.198
HANGSENG -523.109 -518.673
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